
PROCEEDINGS Open Access

On the inversion-indel distance
Eyla Willing1,2, Simone Zaccaria3, Marília DV Braga4, Jens Stoye1,2*

From Eleventh Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Lyon, France. 17-19 October 2013

Abstract

Background: The inversion distance, that is the distance between two unichromosomal genomes with the same
content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of
Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of
unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides
inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no
deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and
deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch
of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome
rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has
been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation.
Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with
unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time.

Results: In the present work we put these two results together to solve an open problem, showing that, when the
graph that represents the relation between the two compared genomes has no bad components, the inversion-
indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel
distance in the presence of bad components.

Background
The inversion distance problem in genome comparison
searches for the minimum number of signed inversions
(reversals) to transform one unichromosomal genome,
represented as a signed permutation, into another one
with the same gene content and without duplications.
The inversion sorting problem requests a sequence of
inversions that achieve this minimum number. Hannen-
halli and Pevzner (1995) gave the first algorithm for cal-
culating the inversion distance and solving the inversion
sorting problem in polynomial time for two linear gen-
omes [1]. Soon after (1997), it was shown that a similar
result holds for circular genomes [2]. El-Mabrouk (2000)
proposed an extension to include insertions and dele-
tions (indels) to the model [3]. The author introduced

an exact algorithm for computing the minimum number
of inversion and indel events for the asymmetric case
where additional genes are present in only one genome.
The symmetric case was treated only heuristically,
though.
The double cut and join (DCJ) is an abstract rearran-

gement operation, introduced by Yancopoulos et al. [4]
in 2005, which allows to represent most large scale
mutation events, such as inversions, translocations,
fusions and fissions, which can occur in genomes. If no
restriction on the genome structure considering linear
and/or circular chromosomes is imposed, using a simple
graph data structure, the adjacency graph [5], this leads
to considerable algorithmic simplifications. For example,
the inversion distance problem can be tackled via the
DCJ model in linear time [6].
Yancopoulos and Friedberg [7] introduced insertions

and deletions (indels) into the DCJ model but left open
the design of an algorithm. This is non-trivial if an indel

* Correspondence: jens.stoye@uni-bielefeld.de
1Faculty of Technology, Bielefeld University, Bielefeld, Germany
Full list of author information is available at the end of the article

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

© 2013 Willing et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:jens.stoye@uni-bielefeld.de
http://creativecommons.org/licenses/by/2.0

of consecutive DNA fragments is treated as a single
event. In [8] the DCJ distance with indels was consid-
ered again, and a linear time algorithm has been pro-
posed. In that paper, the cost of an indel is the same as
that of an inversion, but generalizations are possible [9].
In this paper, we combine techniques from [6] and [8]

in order to revisit the problem of computing the inver-
sion distance with indels for unichromosomal circular
genomes having unequal contents but without duplica-
tions. The paper is organized as follows. In the remain-
der of this section we give definitions and previous
results used in this work. We will then use the relational
diagram introduced in [10] and prove that, when the
graph that represents the relation between the two com-
pared genomes has no bad components, the inversion
distance with indels equals the DCJ distance with indels,
that can be computed in linear time. We then extend
the definition of the component tree from [6] in order
to give a lower and an upper bound for the inversion
distance with indels in the presence of bad components.

Basic definitions
Each marker in a genome is an oriented DNA fragment.
The representation of a marker g in a genome A can be
the symbol g, if it is read in direct orientation in A, or
the symbol ḡ, if it is read in reverse orientation. Let A
be a unichromosomal circular genome, that is a genome
composed of a single circular chromosome. We repre-
sent A by a string s, obtained by the concatenation of all
symbols in the chromosome of A, read in any of the
two directions (we can build s starting at any marker).
An example is given in Figure 1.
Common and unique markers
In this work, duplicated markers are not allowed. Given
two unichromosomal circular genomes A and B, possibly
with unequal contents, let G, A and B be three disjoint
sets, such that G is the set of common markers which
occur once in A and once in B, A is the set of markers
which occur only in A, and B is the set of markers which
occur only in B. The markers in sets A and B are also
called unique markers. For A = (awd̄c̄ybz̄ēfxijhg) and

A =
{
w, x, y, z

}
, we have G =

{
a, b, c, d, e, f , g, h, i, j

}
,

A =
{
w, x, y, z

}
and B = {r, s, t, u, v}.

Indels
In order to sort genomes with unequal contents, we
need to consider insertions and deletions of blocks of
contiguous markers [3,8]. We refer to insertions and
deletions collectively as indels. Indels have two restric-
tions: (i) markers of G cannot be deleted; and (ii) an
insertion cannot produce duplicated markers [8]. We
illustrate an indel with the following example: the dele-
tion of markers uv from genome B = (asbcduvefghitjr)
results in B’ = (asbcdefghitjr).
Observe that, if |G| ≤ 1, the problem of sorting A into

B becomes trivial: we simply delete at once the unique
content of the chromosome of A and insert at once, in
the proper orientation, the unique content of the chro-
mosome of B. Due to this fact, we assume in this work
that |G| ≥ 2.
Rearrangements modeled by DCJ
A double cut and join (DCJ) [4] is the operation that
cuts a genome at two different positions, creating four
open ends, and joins these open ends in a different way.
Consider, for example, a DCJ applied to genome

A = (awd̄c̄ybz̄ēfxijhg), that cuts before and after yb, creat-
ing the segments •z̄ēfxijhgawd̄c̄• and •yb•, where the
symbol • represents the open ends. If we then join the
first with the third and the second with the fourth open
end, we obtain A′ = (awd̄c̄b̄ȳz̄ēfxijhg). This DCJ corre-
sponds to the inversion of contiguous markers yb. The
alternative would be to join the first with the second
and the third with the fourth open end, giving two cir-
cular chromosomes, representing an excision. Its inverse
is called an integration, completing the set of DCJ
operations for circular genomes [5].

Methods
In order to find a parsimonious sequence of rearrange-
ments (and indels) sorting one unichromosomal circular
genome into the other, it is convenient to find some
data structure to represent the relation between the

Figure 1 Graphic representation of the unichromosomal circular genomes A and B. Each arrow represents a marker and its

orientation. The genome A, for example, could be represented by (awd̄c̄ybz̄ēfxijhg), or by (cdw̄āḡh̄jix̄f̄ ezb̄ȳ), or by any circular rotation of

these strings.

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 2 of 11

organization of two genomes. This task can be accom-
plished with the help of the relational diagram, pro-
posed in [10]. (Similarly to [11], we adopt here the term
diagram, as not only the abstract graph structure, but
also the linear representation of its nodes along the
chromosome is used, as we will describe.) This diagram
is a specific view of the master graph [12] and unifies in
a single structure the breakpoint diagram, proposed in
[13] to analyze the inversion distance [1] and also used
for the inversion-indel distance [3], and the adjacency
graph, proposed in [5] to analyze the DCJ distance, and
then used for the DCJ-indel distance [8].

The relational diagram
Given two unichromosomal circular genomes A and B,
their relational diagram, denoted by R(A, B), shows the
elements of genome A in an upper horizontal line and
the elements of genome B in a lower horizontal line.
We denote the two extremities of each marker g ∈ G by
gt (tail) and gh (head). For each extremity of g the dia-
gram R(A, B) has an orange vertex in the upper line and
a blue vertex in the lower line. Clearly, each line (that
corresponds to the chromosome of one of the two gen-
omes) has 2|G| vertices, and its vertices are distributed
following the same order of the corresponding chromo-
some. Since the chromosomes are circular, we have to
choose one marker a ∈ G from which we start to read
the chromosomes in both genomes, s.t. in both lines the
leftmost vertex is ah and the rightmost is at. Then, for
each marker g ∈ G, we connect the orange and the blue
vertices that represent gt by a dotted edge. Similarly, we
connect the orange and the blue vertices that represent
gh by a dotted edge.
Moreover, for each integer i from 1 to |G|, let g1 and g2

be the orange vertices (analogously blue vertices) at
positions 2i - 1 and 2i of the corresponding line of the
diagram. We connect the orange vertices (analogously
blue vertices) g1 and g2 by an orange edge (analogously
blue edge) labeled by ℓ, which is the substring composed
of the markers of genome A (analogously genome B)
that are between the extremities represented by g1 and
g2. Observe that g1 and g2 are G-adjacent, that is, they
represent extremities of occurrences of markers from G
in genome A (analogously B), so that in-between only
markers from A (analogously B) can appear. In other
words, the label ℓ contains no marker of G. When the
label of an orange (or blue) edge is empty, the edge is
said to be clean, otherwise it is said to be labeled. A
similar notion was introduced in [3] as direct, resp.
indirect edge.
Each vertex is now connected to one dotted edge and

either to one orange or to one blue edge, thus the
degree of all the vertices is two and the diagram is a
simple collection of cycles. Each cycle alternates a pair

of orange-dotted with a pair of blue-dotted edges, con-
sequently the length of each cycle is a multiple of 4. By
walking through each of these cycles, arbitrarily in one
of the two possible directions, we assign an orientation
to each colored edge (see Figure 2). The relative orienta-
tions of the colored edges within one cycle are useful for
classifying different types of inversions, as we will see
later.
We represent the labels according to the assigned

direction instead of taking a simple left-to-right orienta-
tion for each edge, in order to avoid any ambiguity. In
other words, the orientations of the edges determine the
orientations in which the labels are read. Note, however,
that an edge γ1�γ2 could be equivalently represented as
γ2�̄γ1. A cycle that contains at least one labeled edge is
said to be labeled, otherwise the cycle is said to be clean.

DCJ sorting and DCJ distance
The cycles of R(A, B) containing only two dotted edges
(and one orange and one blue edge) are called 2-cycles
and are said to be DCJ-sorted. Longer cycles are DCJ-
unsorted and have to be reduced, by applying DCJ
operations, to 2-cycles. This procedure is called DCJ-
sorting of A into B. A DCJ can be of three types [8]:
split DCJ when it increases the number of cycles by one;
neutral DCJ when it does not affect the number of
cycles; and joint DCJ when it decreases the number of
cycles in R(A, B) by one. It has been shown that, given
any pair of orange edges (or any pair of blue edges)
belonging to the same cycle, a split DCJ can be applied
to these edges [14]. (However, depending on the relative
orientations of the edges, the number of chromosomes
may stay the same, when the DCJ corresponds to an
inversion, or increase, when the DCJ corresponds to the
excision of a circular chromosome.) Due to this fact, the
DCJ distance of A and B, denoted by dDCJ(A, B) and
defined as the minimum number of steps required to do
a DCJ-sorting of A into B, is given by the following
theorem.
Theorem 1 (from [4]). Given two unichromosomal cir-

cular genomes A and B over the same set of markers G,
we have dDCJ(A, B) = |G| − c, where c is the number of
cycles in R(A, B).

Inversion model
In the inversion model, circular excisions and reintegra-
tions are not allowed, and a DCJ can only represent an
inversion. In the following, without loss of generality,
we will refer to operations applied to orange edges of
R(A, B), but a symmetric analysis could be done using
blue edges. Differently from a general DCJ operation, an
inversion only increases the number of cycles in R(A, B)
when it is applied to two orange edges that belong to
the same cycle C and have opposite orientations

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 3 of 11

according to the arbitrary direction assigned to C (see
Figure 3) [1].
Two distinct cycles C and C′ are said to be interleaving

when in the relational diagram there is at least one
orange edge of C between two orange edges of C′ and at
least one orange edge of C′ between two orange edges
of C. An interleaving path connecting two distinct cycles
C and C′ is defined as the smallest set of cycles C1, C2, ...,
Ck such that C1 = C, Ck = C′ and Ci and Ci+1 are inter-
leaving for all i, 1 ≤ i < k. An interleaving component or
simply component is then a maximal set of cycles C
where each C ∈ C is connected by an interleaving path to
any other C′ ∈ C.
Components can be of three types. The first type is a

2-cycle, that can never interleave with any other cycle
and is then called a trivial component. The other two
types are components of DCJ-unsorted cycles. Let C be
a DCJ-unsorted cycle in R(A, B). If C does not have a
pair of orange edges with opposite orientations, C is
called a bad cycle. Otherwise the cycle C is said to be
good. A bad cycle C cannot be split by any inversion
applied to its orange edges. However, if C is part of a
component C that contains at least one good cycle, it is
always possible to apply one or more inversions that
split good cycles of C, so that C becomes good and can

then be also sorted with split inversions [1]. Therefore,
if a non-trivial component contains at least one good
cycle, it is called a good component, otherwise it is called
a bad component.
The relational graph represented in Figure 2 has four

components: one good (the cycle C1), two trivial (the
cycles C2 and C4) and one bad (composed of the two
interleaving bad cycles C3 and C5).
When R(A, B) has no bad components, it has been

long known that the inversion distance is equal to the
DCJ distance:
Lemma 1 (adapted from [2,15]). For two unichromoso-

mal circular genomes A and B, such that R(A, B) has no
bad component, dINV(A, B) = dDCJ(A, B) = |G| − c.
Cutting and merging bad components
While the DCJ distance is achieved with split inversions
only, bad components require neutral and/or joint
inversions to be sorted. Given an inversion r, we define
the DCJ-cost of r, denoted by ||ρ||, to be respectively 1
or 2 depending on whether r is a neutral or a joint
inversion.
A neutral inversion, applied to any two orange edges

of the same bad cycle C, turns it into a good cycle [1].
Consequently, if C is part of a bad component C, then C
also becomes a good component. This type of inversion

Figure 2 Example of a relational diagram. For genomes A = (awd̄c̄ybz̄ēfxijhg)and B = (asbcduvefghitjr) the relational diagram

contains five cycles. Only cycle C2 is clean, while cycles C1, C3, C4 and C5 are labeled.

Figure 3 Effects of an inversion in the diagram (from [10]). Observe that the inverted segment is inside the horizontal square bracket, that
shows g2, g3, ..., g4, g5 at the left side and g5, g4, ..., g3, g2 at the right side of both pictures. (i) If the edges are in the same cycle and with
opposite orientations, the inversion splits the cycle. Inversely, if the edges are in different cycles, the inversion joins them (independently of the
orientations of the original edges, that are omitted). (ii) If the edges are in the same cycle with the same orientation, the inversion is neutral and
the number of cycles remains unchanged.

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 4 of 11

is said to be a cut of a bad component. It decreases the
number of bad components by one and, since it is a
neutral inversion, its DCJ-cost is one.
A joint inversion, applied to two orange edges of two

distinct cycles C1 and C2, turns them into a single good
cycle C. If C1 and C2 belong to two distinct components
C1 and C2 they are merged into a single good component
C that contains the good cycle C [1]. This type of inver-
sion is said to be a merging of bad components. It can
decrease the number of bad components by at least two,
and, since it is a joint inversion, its DCJ-cost is two.
The inversion distance between two unichromosomal

genomes A and B with equal content, denoted by dINV

(A, B), can be then represented by the following equa-
tion:

dINV(A, B) = dDCJ(A, B) + τINV(A, B).

The value τINV(A, B) corresponds to the extra cost for
cutting and merging bad components. It can be effi-
ciently computed based on the direct analysis of R(A, B)
[1]. In the last section of this paper we will recall an
alternative approach [6,16], based on a tree structure
that represents the components of R(A, B).

Runs, indel-potential and the DCJ-indel distance
Now we go back to the general DCJ distance, in which
we do not need to take care of bad components. We
introduce some definitions and concepts that will help
us to integrate indels into the general DCJ model. These
concepts are useful to show how to use DCJ operations
to minimize the number of indels to be performed. First
observe that a set of labels of one genome can be accu-
mulated with DCJs. For example, take the orange edges
ctybt and ehz̄bh from genome A in Figure 2. A DCJ
applied to these two edges could result in the new edges
ctbh and ehz̄ȳbt, in which the label z̄ȳ results from the
accumulation of the labels of the two original edges.
With this notion we can then recall the concept of

run, introduced in [8]. Given two genomes A and B and
a cycle C of R(A, B), a run is a maximal subpath of C,
in which the first and the last edges are labeled and all
labeled edges have the same color (belong to the same
genome). A run in genome A is also called an A-run,
and a run in genome B is called a B-run. We denote by
Λ(C) the number of runs in cycle C. A cycle has either
0, or 1, or an even number of runs. As an example, note
that the cycle C1 represented in Figure 2 has 4 runs
({ahwdh} and {ehz̄bh, bhct, ctybt} are A-runs, while {bt s̄ah}
and {dhuvet} are B-runs). When we apply split DCJs
internal to a single cycle of the relational diagram, we
can accumulate an entire run into a single edge [8].
In addition to being accumulated, runs can also be

merged by DCJ operations. Consequently, during the

optimal DCJ-sorting of a cycle C, we can reduce its
number of runs. The indel-potential of C, denoted by l
(C), is defined in [8] as the minimum number of runs
that we can obtain by DCJ-sorting C with split DCJ
operations. The indel-potential of a cycle depends only
on its initial number of runs:
Proposition 1 (from [8]). Given two genomes A and B,

the indel-potential of a cycle C of R(A, B) is given by

λ(C) =
⌈

�(C) + 1
2

⌉
, if �(C) ≥ 1. Otherwise, if Λ(C) = 0,

then l(C) = 0.
Given two unichromosomal circular genomes A and

B, the DCJ distance of A and B and the indel-potential
of the cycles in R(A, B) allow us to easily compute the
DCJ-indel distance, that is the minimum number of DCJ
and indel operations required to sort A into B, denoted
by did

DCJ(A, B).
Theorem 2 (from [8]). Given two unichromosomal cir-

cular genomes A and B, we have

did
DCJ(A, B) = dDCJ(A, B) +

∑
C∈R(A,B)

λ(C).

Results
The inversion-indel distance between two unichromoso-
mal genomes A and B, denoted by did

INV(A, B), is the
number of steps (inversions and indels) required to sort
A into B. It is lower bounded by the DCJ-indel distance
and can be represented by the equation

did
INV(A, B) = did

DCJ(A, B) + τ id
INV(A, B),

in which the value τ id
INV(A, B) gives the extra cost to

handle bad components of the relational graph.
In this section we present our results, assuming that

in R(A, B) the label of each orange edge is composed of
at most one marker from A and the label of each blue
edge is composed of at most one marker from B. We
first show how to optimally perform indels directly on
the original genomes. Then we prove that τ id

INV(A, B) = 0
when R(A, B) has no bad component, and finally we
give a lower and an upper bound for τ id

INV(A, B) when R
(A, B) has bad components.

Finding optimal integrations
In a DCJ-indel sorting scenario there are DCJ opera-
tions, insertions of unique markers of B into A and
deletions of unique markers of A from A. Although in
an arbitrary scenario the order of these operations may
vary, from [17] we know that insertions can always be
moved ahead of the DCJ operations, s.t. they occur in
the first steps, and analogously the deletions can be
moved aback to occur after the DCJ operations in the
last steps. This separation of insertions, DCJs and

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 5 of 11

deletions within the sorting scenario also appears in
[18], where an alternative approach was presented to
compute the DCJ-indel distance, based on the concept
of optimal completion. In this approach, each indel is
modeled as a circular chromosome, called circular sin-
gleton, composed only of the markers that are inserted
or deleted by this indel. A completion of genomes A
and B adds i new circular singletons to A and k new cir-
cular singletons to B, yielding two multichromosomal
circular genomes that have the same content G ∪ A ∪ B.
A completion is optimal when i + k =

∑
C∈R(A,B)λ(C).

Here we show how to build an optimal completion
using the relational diagram and the concepts of run
and indel-potential. Let r be a B-run of a cycle C in R
(A, B), composed of m labels (each label is composed of
a single marker, as stated earlier). Then let s be the cir-
cular singleton obtained from R(A, B) by walking
through the path that corresponds to r and concatenat-
ing its m labels. We close the circular chromosome con-
catenating also the last to the first label. Such a
singleton s is called r-singleton. The addition of the r-
singleton s to genome A, yielding genome A′, produces
m - 1 new clean cycles in the diagram, that is, the num-
ber of cycles in R(A’, B) is c’ = c + m - 1, where c is the
number of cycles in R(A, B). Since the number of com-
mon markers between A’ and B is |G′| = |G| + m, we
have dDCJ(A’, B) = dDCJ(A, B) + 1. Furthermore, the
cycle C in R(A, B) is transformed into a cycle C’ in R(A’,
B), containing the same labels of C except for the m
labels of the run r.
Proposition 2. If we add the r-singleton of a B-run r to

genome A yielding genome A’, the overall indel-potential is
achieved, that is,

∑
C′∈R(A′,B)λ(C′) =

(∑
C∈R(A,B)λ(C)

) − 1
(Analogous for the addition of the r’-singleton of an A-run
r’ to genome B.)
Proof. Let C be the cycle that contains the B-run r in

R(A, B). We then add the r-singleton to genome A yield-
ing genome A’. If C originally had only one or two runs,
then it is clear that the sum of the indel-potentials in R
(A’, B) decreases by one with respect to R(A, B). If C
originally had four or more runs, two A-runs of C are
merged into a single run in R(A’, B), and this also guar-
antees that the sum of the indel-potentials decreases by
one. □
For describing the indels in our inversion-indel model,

we still need to integrate the singletons so that we
obtain a unichromosomal genome. Again, let r be a
B-run and let A’ be the genome composed of A and the
r-singleton. We know that dDCJ(A’, B) = dDCJ(A, B) + 1
and, to integrate the singleton, we need to apply exactly
one DCJ to two orange (or two blue) edges of a cycle of
R(A’, B), such that one is part of the chromosome of A
and the other is part of the r-singleton [4,19]. An

optimal integration is then an integration that preserves
the runs of the diagram.
Proposition 3. Any integration of the r-singleton of a

B-run r into the chromosome of A that creates a new
clean cycle in the relational diagram is optimal. (Analo-
gous for the integration of an A-run into the chromo-
some of B.)
Proof. The integration only affects one cycle C of the

diagram, by splitting it into two cycles. If one of these
two cycles is clean, then we know that all runs of C
remain together in the other cycle, that is, the runs of
the diagram are preserved. □
With the previous results we have a straight recipe for

the construction of an optimal integrated completion of
genomes A and B. At each step we can decide arbitrarily
whether we optimally integrate the r-singleton of a
B-run to A, or the r’-singleton of an A-run to B, until
no more runs exist in the relational diagram. In the end
we have two unichromosomal circular genomes A* and
B* with the same content.
As an example, let us build one optimal integrated

completion for genomes A = (axc̄ybz̄d̄) and B =
(aubcvd), whose relational diagram has one cycle C with
four runs, see Figure 4 (i). We have l(C) = 3, thus we
need to perform three optimal integrations. We first do
an integration of the singleton (zy), composed of the
labels of an A-run, into the chromosome of genome B,
creating B’ = (aubcvdzy). After this step, R(A, B’) has
three cycles, one with two runs. In the second step, we
do an integration of the singleton (v̄u), composed of the
labels of the last B-run, into the chromosome of gen-
ome A, creating A∗ = (axc̄ybz̄d̄v̄u). Now R(A*, B’) has
five cycles, one with an A-run. We finally do an integra-
tion of the singleton (x), composed of the labels of the
last A-run, into the chromosome of genome B’, creating
B* = (axubcvdzy), yielding R(A*, B*) composed of six
clean cycles, see Figure 4 (ii). Indeed, dDCJ(A, B) = dDCJ
(A*, B*).

Finding safe integrations - the inversion-indel distance in
the absence of bad components
Let A and B be two unichromosomal circular genomes
with unequal contents such that R(A, B) has no bad
component. A safe integration is an optimal integration
in A yielding A’ (respectively in B yielding B’), such that
also R(A’, B) (respectively R(A, B’)) has no bad
component.
In Figure 5 we perform an optimal but not safe inte-

gration, producing a bad component in the relational
diagram. Even several bad components can be created
by an optimal integration, but, fortunately, it is always
possible to perform a safe integration, as shown in the
following.

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 6 of 11

Let the size of a component C in R(A, B) be the total
number of orange (or blue) edges in the cycles of C.
Furthermore, let C1 and C2 be two components in R(A,
B). If each orange edge of C1 is between two orange
edges of C2, the component C1 is said to be nested
within C2. Otherwise, if C1 is not nested within C2 and
C2 is not nested within C1, the components C1 and C2

are said to be independent. Two independent compo-
nents C1 and C2 are said to be linked if the leftmost
orange edge of C2 appears immediately after the right-
most orange edge of C1 in R(A, B). In this case the right-
most orange vertex of C1 and the leftmost orange vertex
of C2 represent extremities of the same marker g ∈ G.
The marker g is said to be a link of C1 and C2. A
sequence of k linked components is called a chain of
size k.
Without loss of generality, let all markers in B have

the same orientation and let R(A, B) have only one com-
ponent C, that is good. Assume that an optimal integra-
tion of a singleton s in A yielding A’ creates, besides one
or two trivial components, exactly one good component
C1 and one bad component C2 in R(A’, B). If necessary,
we can flip genome A’ so that the markers within C2 in
A’ have the same orientation as the markers in B.
Furthermore, due to the circularity of the genomes, we

can rotate the diagram so that R(A’, B) is a chain of
exactly two linked components C1 and C2. A link of C1

and C2 is within the optimal integration. If we then do
an alternative optimal integration of s in the middle of
the bad component C2 (see Figure 6), we obtain A“. In R
(A“, B) we have either a single bad component smaller
than C2, or no bad component.
(In general, there can be other components in R(A’, B)

nested within C1 and C2, but each one of these is either
trivial or has at least one edge within and at least one
edge outside the integrated cluster. In any case, since
the component in R(A, B) was good, at least one com-
ponent in R(A’, B) has to be good. By extending the
approach illustrated in Figure 6 we can show that all
components but C2 are merged into a single good com-
ponent and only one bad component, strictly smaller
than C2, can exist in R(A“, B).)
Proposition 4. Let r be a B-run in R(A, B). At least

one optimal integration of the r-singleton into the chro-
mosome of A is safe. (Analogous for the integration of an
A-run in B.)
Proof. Assume that each optimal integration of the

r-singleton in A, yielding A’, creates at least one bad com-
ponent in R(A’, B). Then, among all possible optimal
integrations of r, assume that we take one that produces

Figure 4 Optimal integrated completion of two genomes. (i) For genomes A = (axc̄ybz̄d̄)and B = (aubcvd) we show positions for

optimally integrating the singletons in R(A, B). (ii) In the resulting genomes A∗ = (axc̄ybz̄d̄v̄u) and B* = (axubcvdzy), there are five more

common markers between A* and B*, but also five more cycles in R(A*, B*).

Figure 5 Optimal but not safe integration. For genomes A = (ac̄bed) and B = (abxcydze), an optimal but not safe integration of the
singleton (xyz) produces A’. In R(A’, B) we have two clean 2-cycles (C3 and C4), one good component C1 = {C1} and one bad component
C2 = {C2}. The marker y is a link of C1 and C2 and is adjacent to d in genome B. This information is used to find an alternative optimal
integration for the singleton (xyz), as we will show in Figure 6.

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 7 of 11

a bad component C ′ of the smallest size. It is always pos-
sible to perform another optimal integration of r, as
described in Figure 6, in the middle of the bad compo-
nent C ′, transforming A’ into A“, so that we create a clean
2-cycle in R(A“, B). Either R(A“, B) does not have any bad
component (then we have a contradiction to the assump-
tion that all optimal integrations create bad components),
or it has a bad component C′′ (then C′′ must be strictly
smaller than C ′, and we have a contradiction to the
assumption that C ′ was a bad component with the smal-
lest size). □
The results presented above give rise to the following

theorem:
Theorem 3. For two unichromosomal circular genomes

A and B, such that R(A, B) has no bad component, we
have did

INV(A, B) = did
DCJ(A, B).

Proof. We know that there is at least one safe integra-
tion for each run and that by integrating one run per
step we perform exactly

∑
C∈R(A,B)λ(C) integrations,

yielding genomes A* and B* with the same content, such
that R(A*, B*) has no bad component. Then we have
dDCJ(A, B) = dDCJ(A*, B*) = dINV(A*, B*). □
Since the DCJ-indel distance can be computed in lin-

ear time, the same is true for the inversion-indel dis-
tance in the absence of bad components.

Bounds for the inversion-indel distance in the presence
of bad components
Now we will give bounds to the extra cost for handling
bad components in R(A, B). Without loss of generality,
let us assume that, if R(A, B) has at least two compo-
nents, the first and the last orange edges of R(A, B)
belong to two distinct components. Recall that R(A, B)
represents the relation between two circular chromo-
somes, thus its first orange edge comes right after its
last orange edge.

Let C1, C2 and C3 be three distinct components in R(A,
B) such that if we take the rightmost orange edge of C1

and look at the following orange edges one by one, we
always find an edge of C3, before finding an edge of C2.
In the same way, if we take the rightmost orange edge
of C2 and look at the following orange edges one by
one, we always find an edge of C3, before finding an
edge of C1. The component C3, is then said to separate
C1 and C2. (In Figure 2 the good component {C1} sepa-
rates the trivial component {C2} from both the trivial
component {C4} and the bad component {C3, C5}. Simi-
larly, {C3, C5} separates {C4} from both {C2} and {C1}.)
By joining two cycles C1 and C2, that belong to two dis-
tinct components C1 and C2, we merge not only the
components C1 and C2, but also all components that
separate C1 and C2, into a single component C. Even
when all merged components are bad, the new compo-
nent C is always good [1].
The extra cost for handling bad components can be

computed using an approach from [6,16], in which a
tree structure is defined representing the linking and
nesting relationship of the components of R(A, B).
The component tree
The component tree T (A, B) is a rooted tree with two
types of nodes, defined as follows [16]:

1. Each component is represented by a round node.
2. Each maximal chain is represented by a square
node whose children are the round nodes that repre-
sent the components of this chain.
3. A square node is either the root, or the child of
the smallest component in which this chain is
nested.

A round node is called a bad node, drawn in white, if
it represents a bad component. Otherwise it is called a

Figure 6 Our approach to find an alternative to an optimal integration that creates a bad component. Observe that, from R(A’, B) to R(A“,
B), only the orange edges marked with the symbol ≀ were transformed into the orange edges marked with the symbol \\. All the other edges
of the diagram were preserved. While the distinct cycles C3 and C4 of R(A’, B) are merged into a single cycle in R(A“, B), the cycle C2 of R(A’,B) is
split into two cycles in R(A“, B). The hat on markers b and x indicates that we make no assumptions about the orientation of theses markers (but
we know they have the same orientation in A’ and A“). (i) After the first integration we have a good component C1 at the left side, and a bad
component C2 at the right side (at the interval yz...wc...ed...a of A’). The marker y is a link of C1 and C2 and is adjacent to d in genome B. (ii) If
we do the optimal integration inside C2, so that y is adjacent to d in genome A“, we create the clean 2-cycle C ′

2. There can be a bad
component in R(A“, B) (at the interval c...ez...w of A“), but it is strictly smaller than C2.

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 8 of 11

good node, drawn in black. (A good node can be a trivial
or a good component.) Figure 7 (i) shows an example of
T (A, B).
Reducing T to T’. Let T’ be the unrooted tree that

corresponds to the smallest subgraph of T (A, B) that
contains all bad nodes. Let a long branch be a branch in
T’ that contains two or more bad nodes.
Covering the bad nodes. A path P in T’ can be short,

if P contains only one vertex, or long, if P contains at
least two vertices. A cover of T’ is defined as a set of
paths that contain all bad nodes of T’. The cost of a
cover is given by the sum of the costs of its paths and
an optimal cover of T’ is a cover with the minimum
cost.
Computing τINV (A, B). For the inversion model, by

assigning the cost of one to each short path and the
cost of two to each long path, it has been shown in
[6,16] that the cost of an optimal cover of T’ corre-
sponds exactly to the value τINV(A, B) and can be com-
puted as follows:
Theorem 4 (from [6,16]). Let w be the number of

leaves of T’. Then

τINV(A, B) =
{

w + 1 if w is odd and all leaves are on long branches,
w otherwise.

The costs of cutting and merging bad components in the
inversion-indel model
Recall that the DCJ-cost of an inversion r is denoted by
||ρ|| and corresponds respectively to 1 or 2 depending
on whether r is a neutral or a joint inversion. Further-
more, let l0 and l1 be, respectively, the sum of the
indel-potentials for the components of the relational
diagram before and after the inversion r. We then have
Δl(r) = l1 - l0 and we also define the cost of r to be
�d(ρ) = ||ρ|| + �λ(ρ).
Each cut is a neutral inversion r that has ||ρ|| = 1. If r

cuts a bad component C that contains only cycles with

at most two runs, it is clear that r cannot save indels.
In this case, Δd(r) = 1. However, if C contains a cycle C
with at least four runs, it is possible to apply r such
that two A-runs and two B-runs are merged. This
reduces the number of runs by two, that is, ΔΛ(r) = -2,
hence Δl(r) = -1 and Δd(r) = 0.
Each merging is a joint inversion r that has ||ρ|| = 2.

The cost of each merging depends on the runs of the
affected cycles. A cycle with no run is represented by
Cε. Let CA (respectively CB) be a cycle with an A-run
(respectively a B-run). Similarly, let CAB, be a cycle with
two or more runs. In Table 1 we show the costs of the
different types of joint inversions.
The colored component tree
All components that have a cycle of type CAB can be
merged together into a single (good) component with
cost 0, thus we assume that R(A, B) has at most one
component C of this type. Furthermore, if C is bad, we
also assume that it has no cycle with four or more runs.
(Otherwise it could be cut with cost 0.)
With these assumptions, we build the component tree

T (A, B) as described previously. Then we transform T
(A, B) into To(A, B), by adding at most two colored dots
to each round node, as follows: we add an orange dot, if
at least one cycle of the corresponding component has
an A-run; and a blue dot, if at least one cycle of the
corresponding component has a B-run. Figure 7 (ii)
shows an example of To(A, B).
Reducing To to T′

o Let T′
o be the unrooted tree that

corresponds to the smallest subgraph of To(A, B) that
contains all bad nodes. The leaves of T′

o are bad compo-
nents. Let v be a leaf of T′

o and let t be the subtree of To

(A, B) rooted at v. In T′
o, the leaf v will then have the

union of all colored dots from t.
Computing τ id

INV(A, B). The cost of a short path here
is also one. On the other hand, the cost of a long path
is either one, if its endpoints share at least one colored

Figure 7 Examples of component trees. (i) The tree T (A, B) for the relational diagram represented in Figure 2 has one bad (white)
and three good (black) nodes, and (ii) the corresponding colored tree To(A, B). Here, the indel-type of each cycle is given. In both cases
the trees T′ and T′

o are composed of a single bad node. (iii) An example of a T′
o to show that a greedy strategy, of maximizing the merging of

leaves with the same colored dot, does not work. If we merge the two leaves with blue dots the cost of the cover is 5. However, if we merge
twice a leaf with a blue dot and a leaf with no dot (the longer paths), the cost is 4. (iv) Another example of a T′

o to show that, on the other
hand, if we merge the leaves of the longer path we have a cost of 3. But if instead we merge the two nodes with blue dots and the two nodes
with orange dots, the cost is 2.

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 9 of 11

dot, or two otherwise. An optimal cover of T′
o corre-

sponds to the value of τ id
INV(A, B). However, the problem

of computing this value is very intricate, even when
each node has at most one colored dot, as we can see in
Figure 7 (iii) and (iv).
Below we give a lower and an upper bound for

τ id
INV(A, B), but finding an exact formula to compute this
value is left as an open problem.
Proposition 5. Let τ id

INV(A, B) be the cost of an optimal
cover of T′

o. We then have:

⌈w
2

⌉
≤ τ id

INV(A, B) ≤ w + 1,

where w is the number of leaves in T′
o.

Proof. The lower bound can be obtained when w ≤ 1
or when all leaves share at least one colored dot (in this
case, all paths have cost 1). The upper bound occurs
when w is odd, all leaves are clean (have no colored
dot) and are on long branches (the greatest value of
Theorem 4). □

Conclusions
In this work we have revisited the inversion-indel dis-
tance between two unichromosomal genomes A and B
with unequal contents. We have shown that, when the
relational diagram R(A, B) has no bad component, the
inversion-indel distance is equal to the DCJ-indel dis-
tance of A and B and can be computed in linear time.
We also gave a lower and an upper bound for the extra
cost τ id

INV(A, B) of handling bad components in R(A, B).
However, finding an exact formula to compute this
value is very intricate and was left as an open problem.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EW, SZ, MDVB and JS have elaborated the model, proved the results and
written the paper.

Acknowledgements
The authors would like to thank Paola Bonizzoni for suggestions how to
improve the presentation of the proof of Theorem 3.

Declaration
MDVB is funded by the Brazilian research agency CNPq grant PROMETRO
563087/10-2. The Deutsche Forschungsgemeinschaft and the Open Access
Publication Funds of Bielefeld University Library supported the Article
Processing Charge.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 15, 2013: Proceedings from the Eleventh Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
14/S15.

Authors’ details
1Faculty of Technology, Bielefeld University, Bielefeld, Germany. 2Institute for
Bioinformatics, Center for Biotechnology, Bielefeld University, Bielefeld,
Germany. 3Dip. Informatica Sistemistica e Comunicazione (DISCo), Univ.
Milano-Bicocca, Milan, Italy. 4Inmetro - Instituto Nacional de Metrologia,
Qualidade e Tecnologia, Duque de Caxias, Brazil.

Published: 15 October 2013

References
1. Hannenhalli S, Pevzner PA: Transforming cabbage into turnip: polynomial

algorithm for sorting signed permutations by reversals. J ACM 1999,
46:1-27, [A preliminary version appeared in Proc. of STOC 1995].

2. Meidanis J, Walter MEMT, Dias Z: Reversal distance of signed circular
chromosomes. Relatório Técnico IC-00-23, Institute of Computing, University
of Campinas, Brazil 2000.

3. El-Mabrouk N: Sorting signed permutations by reversals and insertions/
deletions of contiguous segments. Journal of Discrete Algorithms 2001,
1:105-122, [A preliminary version appeared in Proc. of CPM 2000, LNCS
1848].

4. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by Translocation, Inversion and Block Interchange.
Bioinformatics 2005, 21(16):3340-3346.

5. Bergeron A, Mixtacki J, Stoye J: A Unifying View of Genome Rearrangements
In Proceedings of WABI 2006, Volume 4175 of LNBI 2006, 163-173.

6. Bergeron A, Mixtacki J, Stoye J: A new linear time algorithm to compute
the genomic distance via the double cut and join distance. Theor
Comput Sci 2009, 410(51):5300-5316.

7. Yancopoulos S, Friedberg R: DCJ path formulation for genome
transformations which include Insertions, Deletions, and Duplications.
J Comput Biol 2009, 16(10):1311-1338.

8. Braga MDV, Willing E, Stoye J: Double cut and join with insertions and
deletions. J Comput Biol 2011, 18(9):1167-1184[http://dx.doi.org/10.1089/
cmb.2011.0118].

9. da Silva PH, Machado R, Dantas S, Braga MDV: DCJ-indel and DCJ-
substitution distances with distinct operation costs. Alg for Mol Biol 2013,
8:21.

10. Braga MDV: An overview of genomic distances modeled with indels.
Proceedings of Computation in Europe, Volume 7921 of LNCS 2013, 22-31.

11. Setubal JC, Meidanis J: Introduction to Computational Molecular Biology.
PWS Publishing Company 1997 .

12. Friedberg R, Darling A, Yancopoulos S: Genome rearrangement by the
double cut and join operation. Bioinformatics, Methods in Molecular Biology
2008, 452:385-416.

13. Bafna V, Pevzner P: Genome rearrangements and sorting by reversals.
Proc of FOCS 1993, 148-157.

14. Braga MDV, Stoye J: The solution space of sorting by DCJ. J Comp Biol
2010, 17(9):1145-1165.

15. Hannenhalli S, Pevzner PA: Transforming Men Into Mice (Polynomial
Algorithm for Genomic Distance Problem). Proc 36th Annu Symp Found
Comput Sci, FOCS 1995 IEEE Press; 1995, 581-592.

16. Bergeron A, Mixtacki J, Stoye J: The Inversion Distance Problem. In
Mathematics of Evolution and Phylogeny. Oxford, UK: Oxford University Press;
Gascuel O 2005:262-290.

17. da Silva PH, Machado R, Dantas S, Braga MDV: Restricted DCJ-indel model:
sorting linear genomes with DCJ and indels. BMC Bioinformatics 2012,
13(S19):S14.

18. Compeau PEC: DCJ-Indel sorting revisited. Algorithms for Molecular Biology
2013, 8(6).

Table 1 Types of joint inversions (C* represents a cycle
with any number of runs, Δd(r) = 2 + Δl(r)).

sources resultant Δl(r) Δd(r)

Cε + C* C* 0 2

CA + CB CAB 0 2

CAB + CAB CAB -2 0

CA + CA CA -1 1

CB + CB CB -1 1

CA + CAB CAB -1 1

CB + CAB CAB -1 1

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 10 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S15
http://www.ncbi.nlm.nih.gov/pubmed/24009434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24009434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19803734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19803734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899423?dopt=Abstract
http://dx.doi.org/10.1089/cmb.2011.0118
http://dx.doi.org/10.1089/cmb.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/23282138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23282138?dopt=Abstract

19. Kovác J, Warren R, Braga MDV, Stoye J: Restricted DCJ Model (The
Problem of Chromosome Reincorporation). Journal of Computational
Biology 2011, 18(9):1231-1241.

doi:10.1186/1471-2105-14-S15-S3
Cite this article as: Willing et al.: On the inversion-indel distance. BMC
Bioinformatics 2013 14(Suppl 15):S3.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Willing et al. BMC Bioinformatics 2013, 14(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/14/S15/S3

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/21899428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899428?dopt=Abstract

	Abstract
	Background
	Results

	Background
	Basic definitions
	Common and unique markers
	Indels
	Rearrangements modeled by DCJ

	Methods
	The relational diagram
	DCJ sorting and DCJ distance
	Inversion model
	Cutting and merging bad components

	Runs, indel-potential and the DCJ-indel distance

	Results
	Finding optimal integrations
	Finding safe integrations - the inversion-indel distance in the absence of bad components
	Bounds for the inversion-indel distance in the presence of bad components
	The component tree
	The costs of cutting and merging bad components in the inversion-indel model
	The colored component tree

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declaration
	Authors' details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

