The Concept of Reference Objects in the Representation

of Natural Language Information in L-LILOG

Claus-Rainer Rollinger
Rudi Studer
Ipke Wachsmuth

IBM Deutschland Gmbll
Science and Technology - LILOG
SchiofBstr. 70
D-7000 Stuttgart 1, W. Germany

VNET: ROLLING, SHSTUD, WACHSMUT at STUTVYMI

Abstract

We present a brief description of the knowledge representation language 1-LILOG. In particular, the concept
of reference objects is introduced as a central means to build semantic representations for textual information.
We describe how to construct internal representations as dirccted acyclic graphs and how to realize operations
on reference objects to be performed in the process of constructing and utilizing semantic representations for
natural language texts.

The Knowledge Representation Language L-LILOG

The main objective of the project LILOG (Linguistic and Logic Methods) is to develop concepts and methods
for understanding German texts and dialogs. For representing the different types of knowledge needed within a
natural language understanding system, a knowledge representation language, 1-1ILOG has been designed
which is currently being implemented. L-LILOG is based on a many sorted first-order predicate calculus and
includes structuring principles for organizing large knowledge bases. On the short run these cfforts are not
directly concerned with expert system applications. As an explicit long-range objective, however, the concepts
and methods developed shall scrve as a basis for knowledge acquisition in the arca of advanced expert systems.

The knowledge representation language L-LILOG has been designed to fulfill two general requirements:

® The language should provide a framework for representing different kinds of domain knowledge which have
to be handled in a natural language understanding system. Le. concepts have to be offered for representing
domain specific as well as domain independent real world knowledge which is typically incomplete, vague
and/or uncertain. According to specific topics investigated in the LILOG project, the representation of
temporal and spatial knowledge is of paricular importance.

® The language should be based on a sound theoretical basis which provides means (i) for formally specifying
the semantics of the language constructs as well as (ii) for formally defining the semantics of the inference

Processcs,

Purther, general design requirements for knowledge representation languages (Steels 1984) and several
knowledge representation formalisms, especially KRYPTON (Brachman et al. 1983), SR (Habel 1986,
Conceptual Graphs (Sowa 1984), and Discourse Representation Theory (Guenthner et al. 1986), were screened
and analyzed. Based on this analysis it was decided to design the core of 1-1LILOG according to the following
principles:

L. L-LILOG is based on a many-sorted predicate caleulus,

2. Sorts in I-L.H.OG are partially order-sorted.

3. Knowledge packets offer means for structuring knowledge bases in a hierarchical way.
4. Within the sort hierarchy an inheritance mechanism for attributes is defined.

5. Reference objects are used 1o represent information available about existing world entities in an
object-centered way.,

6. Attributes are used for specifying relationships between components of sort specifications.
7. A role-value notation for specifying arguments is offercd to support variable aritics of predicates.

8. L-LILOG includes different types of notational formalisms among which well-defined transformation rules
are given.

Subscquently, we describe some of these principles in more detail. Basically, a [-LILOG knowledge base is
defined as follows:

Knowledge-Base = Sort-Declaration
Reference-Object- Declaration
Knowledge-Packet-Structure
Knowledge-Flements

The ‘Sort-Declaration’ component represents the main part of the 1.1LOG concept lexicon. And contains a
specification for each concept known 1o the system. Tt consists of a set of sort descriptions each specifying the
name of the sort (‘sort-name”), its supersort(s), the associated knowledge packets (possibly several), and the sort
specification. The partial ordering of sorts has to be a semi-lattice and is intepreted as a sct-subsct rolationship
in the models of L-LILOG. It was decided to use a sort concept within the predicate caleutus approach in
order to be able to represent and manipulate taxonomic knowledge more appropriately, e.g., by replacing
general deduction processes by more specialized processes like type checking (Ait-Kaci 1984). This information
is used to define assertions which are included in the ‘Knowledge-Flements” component,

Attributes are specificd by their name, optional coreference markers for defining an equality relation between
attributes, and a domain specification. Actually, an aftribute is interpreted as a partial function from the sort
for which it is defined to the sort specified by its domain specification. Sort specifications may be nested to any

level,

The "Knowledge-Iilements” component is comprised by a set of first-order formulas representing facts and rules
which express propositions about real world entitics. Roughly speaking, the ‘Sort-Declaration” component and
the “Knowledge-Flements” component correspond to the T-Box and A-Box components of representations in
KRYPTON-like formalisms (Brachman et al. 1983).

The ‘Knowledge-Packet-Structure” defines a hicrarchy of knowledge packets (Wachsmuth 1987) organizing
conceptual as well as assertional knowledge in a modular way. To this end, all clements defined in the different
knowledge base components are associated with one or several knowledge packet(s) to define the context in
which these elements are available o the knowledge processing component,

The "Reference-Object-Declaration’ component introduces internal identificrs for the real world entitics
mentioned in a natural language text. Tach identificr is associated with a sort defined in the ‘Sort-Declaration”
component as well as with a set of designations which have been used in the text to refer to a particular entity.
The “Reference-Object-Declaration” component is based on the referential net concepts described in (I abel
1986). This construct is particulary well-suited to handle hard-to-deal-with phenomena of reference
characteristic for natural language. To some extent, such a construct is also provided by Discourse
Representation Theory (Guenthner et al. 1986). In the remainder of the paper we highlight how reference
objects are employed in L-LILOG constructing and using semantic representations for natural language texts.

The Concept of Reference Objects

Reference objects are introduced as unique internal representatives for external objects of a domain to account
for the fact that natural language provides various means to designate a given rcal world object. The current
version of L-LILOG accounts for multiple designations of objects by proper nouns. So far, it does not give
consideration to any other definite or any indefinite descriptions of objects. The syntax is given below,

reference-object-declaration 1= "REFERIENCE OBIGCTS”
reference-object +

reference-object 1= reference-object-id "¢” sort-name

"DESIGNATED-BY <7 [designation+] ”>"

reference-object-id ;- =

B
r

digit-string

designation ;1= object-name
[knowledge-packet-assignment|

These definitions introduce two relations defined between reference objects and other constructs of L-LILOG.
The first one is the clement relation “e” between reference objects and sorts. By this relation we can specify the
sort that a reference object belongs to. The scoond relation is the "DISIGNATED-BY” relation between
reference objects and object names. Object names arc proper nouns used in the external world to designate the
real object. Instances of this relation enables the system to find out which internal object is reforred 1o when a
certain proper noun is used in a discourse to designate an cxternal object. Object names are also neceded when
we want to generate a natural language sentence that speaks about a real world object.

Below we describe how attributes of reference objects are represented internally as directed acyelic graphs
(IDAGs) and discuss the operations for constructing such intcrnal representations and for extracting information
from them. Internal representations are based on the Stuttgart Type Unification Formailsm, STUY, described
elsewhere (Uszkoreit 1981). Tor cach particular picce of knowledge to be expressed in 1L-LILOG with its
particular synfactic constructions we construct an internal STUY representation along with operations suited to
process this knowledge. Tor reasons of efficiency and cconomy these internal representations are
process-otiented.

The declaration of a reference object includes (1) an instantiation of the clement relation which relates a
particular reference object identifier (¢.g., r1) to a particular sort name, and (2) an (optional) instantiation of the
DESIGNATED-BY relation between rl and a set of strings (c.g., proper nouns designating this reference
object). We handle each casc separately.

For each sort Si we define a graph with Si as its name. We take the reference object identifiers of the reference
objects that are elements of that sort and associate them as labels with those cdges that start at the top node of
Si. That way cach reference object explicitly belongs to exactly one sort Si and it implicitly belongs to all
supersorts of St This part of our knowledge base is not static: As more information about a reference object is
obtained (c.g., that it has a certain attribute) it can be moved down the sort lattice to a subsort. That is, we
have to replace “ri e $j” by “ri e Sk”, given that “subsort{Sk,8j)" is true. To do this, the edge <ri> is removed
from the graph Sj and attached to the graph Sk by graph unification. All reference objects of a sort, including
the ones attached 1o its subsorts can be obtained by unifying graph Si with all graphs of its subsorts.

For cach reference object we can define a sct of strings designating it. ‘These designations do not have to be
definite, that is, onc string may designate more than one reference object. For cach reference object a graph is
defined with the reference object identifier as its name. The designations are attached as names to all edges of
that graph that emanate from the top node.

Directed graphs differ from trees in that they can encode equality. Equality is represented as reentrancy; a
sharcd value is pointed at by all attributes that share this value. In this confext we interpret reentrancy as the
cquality of paths in a graph that start at the top node and join cach other at the first node they have in

comimnmon.

Altributes of reference objects are defined as one-place functions. To instantiate the attribute of a reference

object means to write expressions of the special kind “term = term”. Here, a term can only be a reference object
identificr or a one-place function. Specifying the known attributes of the reference objects {cither used in the
the background knowledge or in the discourse knowledge) means to formulate a special system of cquations.
This system need not be complete. That means, we nced not know all attributes of an object, there may be
reference objects for which only the sorts they belong to are known. We are interested in the cquality of the
attribute values but not in the equality of the atiributes as functions. Reference objects of a certain sort may
obtain attributes that are not defined for its sort. These additional attributes are required to be attributes of a
subsort so we can be sure that the objects with this attribute are clements of that subsort. At the current stage
we do not allow to define “free” attributes that are not inherited since we do not yet allow the blockage of

inheritance.

The system of equalities is to satisfy the following consistency conditions: (1) a reference object cannot be used
as its own attribute value and (2) if a reference object i is the attribute value of some other reference object 1j,
then rj cannot be the value of any attribute of ri. In case the sccond restriction turns out too strong it can be
weakened by introducing inverse functions for those functions which are injective. In the internal
representation we have chosen for this system of equalities the consistency conditions are casily verified since
their violation yields cycles in the resulting graph which has to be acyclic by definition.

Yor each atomic formula we construct as internal representation a graph with the two reference object
identifiers as labels of the two edges emanating from the top node. These are followed by edges labeled with
those attribute names the reference object identifiers arc imbedded in. The resulting two paths corefer to the
bottom node of the graph. Then all such graphs are unified. The resulting graph will contain for each reference
object, if at least one of its attributes is known, exactly onc edge with its reference object identifier as label. In
this way all equations of interest are made explicit. The unification of two graphs fails if a cycle is produced as
defined above.

att-1(ri)=r2 att-2(att-1(r2))=r3 . r2=rd
rl r2
\f r2 > r3 r2 rd
att-1 a‘&; 1 \e/

att-2

The uvnification of these graphs results in the graph FOQUATIONS:

EQUATIONS
rl
r2 r4
a.tt"l I'3
at&r
att-2

Now we can prove cqualities such as att-2(att-1(att- 1(r D)) = r3. To do this, we first construct the corresponding
graph Gi. Then we test whether or not this praph subsumes the graph EQUATIONS. If
“subsumes(EQUATIONS, (i) is true we have proved that the equation holds. This is the most important
operation on the graph Gi. Other operations arc indicated below:

®w Which term is the value of an attribute att-i of an object 1j?
get(att-i(ry),x)

» Which reference object has ri as value of an attribufe att-j?
get{att-j(x),r)

® What are the attributes of the reference object ri?
get(x(rf),y)

= What is the relation between i and 1j?
get-rel(ri,rj,z}, z is a graph

= Which terms embedded in att-i have which value?
get(att-i(x),y)

® Add an equation!
unify{ BQUATIONS,Gi) AND store the resulting graph

The above constructions constitute part of the inventory to deal with more complex tasks such as evaluating if
two terms (in the restricted sense used here) can be equal. As a more specific task the question, whether or not
two reference objects can be equal, can be dealt with in this framework.

Conclusions and future perspectives

In this paper, we have sketched the basic design features of a representation systen that integrates different
kinds of knowledge. A language that is based on a many-sorted predicate calculus has been equipped with the
additional descriptive power of a graph-unification-based sort hierarchy with cquality. The integration of the
two systems provides a high degree of conceptual clarity and supports a modular implementation in which the
underlying data type and its operations are shared by all components of the system. Work is well underway to
use L-LILOG for representing temporal and spatial information which is prominent in many natural language
texts. Appropiate ontological categories have been included in the sort lattice and have proved successful in first
applications. Topics to be addressed next include extending the expressive power of L-LILOG to provide
mcans for handling vapueness and uncertainty.

References

Ait-Kact, . (1984), A Lattice Theoretic Approach to Computation Based on a Calculus of Partially Ordered
Type Structures. Ph.D. Thesis, University of Pennsylvania.

Brachman, R.J, Tikes, R.E., & Levesque, 111, (1983). KRYPTON: Integrating terminology and assertion.
Proceedings AAATL-83 (pp.31-35).

Guenthner ct al (1986). A theory for the representation of knowledge. In: 1BM Joumnal of Rescarch and
Development, Vol.30, No.1, 1986, pp 19-56.

Iabel, Ch. (1986). Prinzipien der Referentialitit: Untersuchungen zur propositionalen Reprisentation von
Wissen. Berlin: Springer.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading, Mass.:
Addison-Wesley,

Uszkoreit, I1. (1987). STUE: A Description of the Stuttgart Type Unification Formalism (LILOG-Report
16). Stuttgart: IBM Deutschland. ’

Steels, L. (1984). Design Requirement for Knowledge Representation Systems. In: Proc. GWAI-84, pp.
I-19.

Wachsmuth, L. (1987). On structuring domain-specific knowledge (LILOG-Report 12). Stuttgart: IBM
Deutschiand.

