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Abstract—We present a novel approach to learn and combine
multiple input to output mappings. Our system can employ the
mappings to find solutions that satisfy multiple task constraints
simultaneously. This is done by training a network for each map-
ping independently and maintaining all solutions to multivalued
mappings. Redundancies are resolved online through dynamic
competitions in neural fields. The performance of the approach
is demonstrated in the example application of inverse kinematics
learning. We show simulation results for the humanoid robot
iCub where we trained two networks: One to learn the kinematics
of the robot’s arm and one to learn which postures are close to
joint limits. We show how our approach can be used to easily
integrate multiple mappings that have been learned separately
from each other. When multiple goals are given to the system,
such as reaching for a target location and avoiding joint limits,
it dynamically selects a solution that satisfies as many goals as
possible.

I. INTRODUCTION

Autonomous robots that should acquire ever new skills by
exploring their physical and social environment autonomously
need to solve many problems that involve the capability of
learning sensorimotor mappings. A well studied example is
the learning of the own kinematics (e.g. [1], [2], [3]). Here
the robot is faced with the problem to find correspondences
between the variables that it can directly control (for example
the angular positions of rotational joints) and the – in some
way – measured positions of important parts of its body (for
example its hand). This correspondence is usually not trivial
and non-linear. For simple kinematic structures of the robot,
it can be expressed as an equation by the designer. However
the more complex the robot’s body is, the more do external
factors (such as gravity and friction) play a role. There are
cases where it might even be impossible to a priori capture the
robot’s kinematics in an equation [4] (for example when using
pneumatic joints or when there can occur physical change to
the robot’s body, as through damage or ware-off). Here, the
kinematics of the robot has to be learned.

Also the acquisition of more complex skills requires the
learning of sensorimotor mappings. Some examples from the
robotics literature are learning the “affordances” of objects
through physical interaction [5], learning a baseball swing [6],
learning to play ping pong [7] and learning to shoot with bow
and arrow [8].

Most approaches for the learning of sensorimotor mappings
focus on accuracy of the resulting mapping, the generalization
capability of the learning method from as few training exam-
ples as possible, and its suitability for online-learning. While
all of these aspects are very important, often the learning of
only one single new skill is studied in a special experimental
setup in isolation. Humans constantly perform many of their
learned skills in parallel. We can sip from a cup of coffee
while walking, we can read in a magazine while stirring
in a casserole, we can talk to another person while we are
driving a car, etc. Thus, if we want to build robots that can
autonomously learn new skills, we need to specify how the
learned skills can be organized once the robot has learned
more than just one skill, how they interact with each other
and how they can be used in conjunction to learn even more
complex skills.

In state-of-the-art robotics approaches orchestrating multiple
skills in a task, usually the task is segmented into a sequence of
basic actions and symbolic planning is used to find sequences
of actions suitable to solve the task. In the work of Gienger et
al. [9], the task of picking up an object is translated into the
execution of an action sequence of the kind “walk to position
x in front of the table,” “find the object,” “determine a good
way to grasp and perform it,” etc. Most of these basic actions
are implemented as whole-body controllers, i.e. each skill takes
over exclusive control of the entire body of the robot or at least
entire parts of the body, such as limbs. Some of the actions can
also be performed in parallel, for example visual search only
requires using the head motors while the head movement is
rather negligible for the behavior of walking to some position.
However, this knowledge has to be carefully considered by the
designer and is put into the system a-priori.

Similarly, reinforcement learning is concerned with finding
sequences of actions to maximize reinforcement signals [10].
The learner has to find a sequence of actions that optimizes
the gain of a target signal. Most approaches treat actions as
discrete units, and even methods that can in principle deal with
continuous state spaces treat actions as transitions from one
robot “state” to another [11]. Thus, the parallel execution of
several skills is not considered.

Humans are able to execute skills in parallel because our
bodies are highly redundant, which means that we have many



ways to solve a single task. When you put the index finger of
one of your hands on a spot on a table, you can still move your
elbow around quite freely without lifting your finger. Thus,
there are several solutions of arm configurations allowing to
fulfill a task of keeping your finger on the same spot on the
table. With your other hand you could now still reach most
points on the table for the additional task to pick up an object,
even if it meant to bend over or step to the side a bit. This
redundancy, or flexibility in fulfilling a skill, allows us to
perform several tasks in parallel.

Many robots also have redundant kinematic setups, for
example humanoid robots mimic the structure of the human
body. These robots in principle have the same, or at least
some of the flexibility that we have in performing skills.
In control theory, the subspace of the joint-space which
allows for reaching a task goal is termed a null-space of
a task [12]. Knowledge and control of the null-space offers
advantages [13]: When controllers are designed by the system
developer, null-space control allows for example to avoid self-
collisions while reaching. The information necessary has again
to be carefully considered by the human developer when
implementing the controllers.

In contrast, in the machine learning literature redundancy is
often discussed as a problem, the non-convexity problem [1].
The problem states that averaging between multiple solutions
for one task does not necessarily yield a valid solution. Av-
eraging between solutions is done in learning approaches that
use function approximation when training from data points that
originate from a multivalued function. Thus, these methods try
to learn a many-to-one mapping yielding incorrect solutions
where actually a many-to-many mapping should be learned.
The most illustrative example is that of a simple robotic arm
with a fixed base and two rotational joints. The robot can
bring the end of its arm to most points in its workspace in
two ways, which are the “elbow-up” and the “elbow-down”
solutions. Learning methods that average between solutions
will average these two solutions, ending up with associating
a fully extended arm posture to every target point, which is
incorrect.

To overcome this problem, “redundancy resolution
schemes” are applied to the training set, which sort out
training samples to guarantee that effectively only training
samples from a single-valued function remain [14]. One
consequence is of course, that the resulting learned mapping
only stores a single solution for each target. Thus, there is a
great loss of information and the robot cannot know how to
move around in the null-space.

There are some learning methods that can also deal with
multivalued functions, for example using locally linear mod-
els [2], through manifold learning [15] or using reservoir
networks [16]. However it has not been shown, how multiple
mappings can be combined to perform several tasks in parallel.

In this work, we therefore propose a system that is able to
learn multivalued functions in a way that preserves information
about the redundancy and further show how multiple mappings
that are learned separately from each other can be integrated

to find solutions that comply with several tasks at once.

II. MAKING USE OF REDUNDANCIES

As we have just discussed, there exist more than one
solution for individual problems in many sensorimotor tasks,
as for example with a redundant robot arm that reaches for
a point in space. If the robot learned about all the possible
solutions, it could freely choose any one of them to reach its
goal. This means that it would have a good deal of flexibility in
choice and could also freely navigate from one of the solutions
to another without having to leave the goal state.

We are therefore interested in finding a way to integrate
multiple learned sensorimotor mappings into a system, such
that the robot can find solutions that satisfy several task
specifications simultaneously. Given that the robot can solve
one task in many different ways, it would be convenient to
let the system choose one among the possible solutions that
also satisfies other tasks. Moreover, our focus lies on finding
a generic way of integrating sensorimotor mappings, so that
in the long run a robot could acquire ever new sensorimotor
mappings online and orchestrate all of its learned mappings
in parallel.

The system can employ sensorimotor mappings to generate
sets of solutions for a given task. Consider the example of
a planar robot with three rotational joints. To bring its end-
effector to a point in its two-dimensional workspace, the robot
has infinitely many solutions for all points that do not lie
at the extreme ends of the workspace. For each target point,
the solutions lie on a two-dimensional manifold in the three-
dimensional space spanning the possible angular configura-
tions of the robot. We will call these “solution manifolds”.

If the robot now has learned two sensorimotor mappings,
both of which use the robot’s arm motors, then solving tasks
involving both of these mappings will correspond to two
solution manifolds lying in the three-dimensional arm angular
space. A favorable solution would be one that solves both
tasks, i.e. lies on both solution manifolds. If any such solution
exists, which is the case if the two solution manifolds intersect,
then such a solution should be selected. Otherwise, that is if the
solution manifolds do not intersect, the system should select a
solution that lies on either one of the manifolds and minimizes
the distance to the other manifold, because then the robot has
solved one task while being as close as possible to solving the
other, given that the mappings have gradually changing values.
Likewise, when having learned several skills and performing
multiple tasks simultaneously, the robot should select solutions
that lie on as many solution manifolds as possible, and as close
as possible to the remaining ones.

Also, one of the tasks could have a higher priority for
the robot than others. For example, actually brining the end-
effector to the target point might be crucial, while it would
be nice to avoid having joints in their limits while doing so.
Thus, the former task would have a higher priority than the
latter.
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Fig. 1. A schematic overview of the proposed system. Input and output
vectors are represented in a set of neural fields of receptive field units.
Sensorimotor mappings are trained to store information about correlations
between different in- and outputs. The neural fields are shared among all
learned mappings, i.e. the field activations are used as inputs for all connected
mappings. The responses of the mappings are then combined to generate a
coherent system response.

III. COMPUTATIONAL MODEL

Figure 1 is a schematic overview of our proposed system.
We use a set of neural fields to represent values of variables
encoding for sensor inputs and motor outputs. As we will de-
scribe below, the neural fields are composed of receptive field
units that cover the corresponding domains of the input and
output variables. Based on the activations in the neural fields,
we let the system acquire sensorimotor mappings that should
learn about correlations in the input and output variables.
Tasks are given to the system as target values for the input
variables, i.e. activation landscapes in the neural fields. The
system should then employ its learned sensorimotor mappings
to control the output variables (e.g. angular joint positions)
such that it will bring the input variables to the target values.

A. Learning Redundant Sensorimotor Mappings

We want the robot to be able to learn skills autonomously
from its sensorimotor experiences. To represent solution man-
ifolds, our approach requires us to be able to retrieve many
solutions upon a query from the learned mappings, instead
of just a single solution. In the following we will discuss
how this can be done using networks of sigma-pi units.
Sigma-pi units have originally been studied in the 1980s
(e.g. [17], [18]). More recently, Weber and Wermter have
proposed to use sigma-pi units in conjunction with a SOM-
like learning algorithm to learn invariances in input signals in
an unsupervised fashion [19].

Our choice of using sigma-pi units is based on consider-
ations of simplicity, as the sigma-pi weights very naturally
implement the properties that we require. Thus, using sigma-
pi networks allows us to more easily study the properties of our
system. However, it should be noted that our approach does not
depend on the sigma-pi network, but that the network is merely
a building block in our system and could in principle also be
replaced by other learning methods, such as the LWPR [2]
or manifold learning [15], combined with a sampling-based
readout method.

x1 x2

W

Fig. 2. Schematic view of the sigma-pi network, for simplicity in the case
of two one-dimensional inputs. Inputs x1 and x2 first activate receptive field
units in the neural fields, their activation is then fed into the network. The grid
represents the possible synaptic connections with associated sigma-pi weights.
Each unit in the neural fields can be connected to all units in the other field.
Note that there are no lateral connection, but knots in the grid only represent
multiplicative connections for which the network can store sigma-pi weights.

We begin with a formal definition of the network. Figure 2
is a schematic representation of the structure of the sigma-
pi network. As described above, values of input and output
variables are encoded in the system in a set of neural fields.
Each of the fields is composed of receptive field units, imple-
menting radial basis functions with centers mi. The response
of the i-th input unit to the input vector x is computed as

ui = g(x−mi), (1)

where g is a Gaussian function according to

g(d) = exp

(
−ν · d

Td

2σ2

)
. (2)

We use a simple static layout for the centers mi on a regular
grid, such that the domain of the corresponding vector x is
covered by the receptive field units in the neural field.

Using the receptive field units, a manifold can be repre-
sented by giving a high activation value to all those units of
which the receptive fields coincide with parts of the actual
manifold, and a low activation value to all other units.

We want to be able to query the network by presenting it
with one or more input variables, and it should in response
activate solution manifolds in the remaining input variables.
For example, consider a network that has learned a mapping
between arm angular positions and cartesian end-effector po-
sitions. If we query that network by presenting it with a target
position in cartesian space, it should respond by showing us
all possible angular positions that bring the end-effector to the
target position. Also, the other way around, we would like
to let the network provide us with the predicted end-effector
position, if we query it by presenting an angular position
vector.

This can be achieved by learning associations between the
receptive field units, and upon a query activating all units
that are associated with the activated input units. Sigma-pi
units have been proposed as a model for the synaptic basis of
associative learning in cerebral cortex [18]. The idea behind
using the sigma-pi unit for associative learning is that it learns
about co-activation of input units. Networks of sigma-pi units



belong to the class of “higher order” neural networks, as the
simple additive units of linear feed-forward neural networks
are extended by multiplicative connections. Thus, whereas in
first-order neural networks the net input to a unit i is given by

neti =
∑

wijuj , (3)

for the sigma-pi units the activation function includes the
multiplication of inputs,

nets =
∑

wsus1us2 . . . usn (4)

=
∑

ws

n∏
m=1

usm , (5)

where s = (s1, . . . , sn) is a vector of indices. The introduction
of these multiplicative connections allows units to gate one
another [17]: If one unit has zero activation, then the activation
of other units in the multiplicative connection have no effect.

In our implementation, we replaced the sum and product
operators by the max and min operators, respectively, to avoid
the need for normalization of network responses. Thus, the
modified net input to a unit is

nets = max

(
ws ·

n
min
m=1

(usm)

)
. (6)

We want to query the network by presenting it with an
arbitrary activation pattern across the input neurons, and expect
the network to respond by giving us solution manifolds for the
missing inputs.

We can achieve this behavior of the network in the following
way, using the gating property of the multiplicative connec-
tions. We formulate constraints on the values of the variables
in the query by forcing the activation of those receptive field
units that represent allowed values to be high, while forcing
the activation of all other units in that neural field to be low.

The network stores information about co-activation of input
units in the connection weights of the multiplicative connec-
tions. Let us refer to the activation level of the j-th unit in
the i-th neural field as ui,j . More generally speaking, if ti
denotes the number of neurons in the i-th neural field, then
Si = {1, 2, . . . , ti} is the set of possible values for the index j.
Weights can be trained for all possible combinations of taking
a single unit from each of the inputs. This can be formalized
as taking the Cartesian product of the sets Si,

S = S1 × S2 × · · · × Sn (7)
= {s = (s1, s2, . . . , sn) | si ∈ Si}, (8)

which gives us combinations of indices for all possibilities to
combine exactly one input unit from each input domain.

We want the network weights ws, s ∈ S to reflect the
amount to which the input units determined by s tend to
be co-active during training. Thus, if the neurons are always
activated together, then the weight should adopt a high value,
and if one or more units is never active along with the others
during training, then the weight should be zero (i.e. there is
no connection). If whenever one of the neurons was active,

only half of the time also all the other neurons determined by
s were also co-activated, then the connection weight should
have a value around 0.5.

To achieve this, we can use a simple Hebbian learning
rule. As training samples we use tuples of input vectors
(v1,v2, . . . ,vn) to activate the input neurons according to
Equation 1. The resulting activations ui,j are used to compute
the network activation for all s ∈ S (cf. Equation 5), which is
then used to update the network weights as

δws = λ · nets (9)

with learning rate λ.

B. Querying the Network
This section describes how the network can be used in

a query by specifying a task description in terms of target
sensorimotor input values to retrieve possible values for the
missing variables.

We specify which variables to constrain by giving a set
Q ⊆ {1, . . . , n} of corresponding indices of neural fields.
Given the notation of S in Equation 8 and the net input in
Equation 5, we can formulate the network query as

ũi,j =
∑

r∈{s∈S | sj=i}

wr
∏
m∈Q

um,rm , (10)

where ui,j is the input activation that was specifies for the
query for all units in the neural fields given by Q, and ũi,j
is the activation value that was retrieved from the network in
response to the query. The activation of a unit is a sum over
the activation of all elements r of the Cartesian product S
in which that unit is itself a member, i.e. sj = i. For all of
these elements we compute the product of the activations of
the members that were specified in the query, weighted by the
connection weight wr. The modified version that we used for
our implementation is

ũi,j = max
r∈{s∈S | sj=i}

(
wr · min

m∈Q
(um,rm)

)
. (11)

There is an intuitive graphical interpretation for this query,
see Figure 3. In the simple case where there are only two
sets of input neurons, the network weights can be arranged
in a planar grid, such that each knot in the grid represents
the multiplication of two neurons (cf. also Figure 2). Thus, all
knots in the grid together represent the Cartesian product of
the sets of input neurons. If in a query we specify activations
of input neurons in one domain and compute the product of
the activations with the associated weights, we get the network
activation, such that we have one value for each of the knots
in the grid. In the next step, we accumulate for each unit all
the values along the line of knots that are connected to that
unit, which gives us the retrieved activation value of the unit
as the response of the query. The same picture can easily be
extended to the higher dimensional case, in which there are
more than two inputs or where the inputs have more than a
single dimension. Here, the network weights are arranged in a
hyper-cube instead of a grid, and the line of knots corresponds
to a slice through the hyper-cube.
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Fig. 3. Graphical interpretation for the network query using the example of
a network that has learned the function y = x2 in the interval x ∈ [−2, 2].
To retrieve all solutions for x2 = 1, the population of input neurons in the y
domain are activated for y = 1, see bottom right plot. This activation is fed
into the network and after the multiplication with the synaptic weights gives
the net activation that can be seen in the top left plot. In the readout, each
input neuron accumulates the net activity from all points on the grid to which
it is connected.

C. Decision Making, Control and Skill Combination

So far we have proposed to use sigma-pi networks to as-
sociatively learn multi-valued mappings between any number
of input variables. We have further formulated a way to query
the network for solution manifolds by presenting it with target
values for the input variables. We now want to turn to the
following questions:
• How can we pick a solution from the solution manifold

to reach the target sensorimotor state?
• How can we use the network to generate motor com-

mands?
• How can we combine several learned sensorimotor map-

pings in such a way, that we can still simply specify target
values for the input variables, and have the system come
up with a coherent solution?

1) Dynamic Decision Making: In principle the system
could pick any solution from the manifold. However, when
the target value for the input variable changes, the solution
manifold changes with it. In most sensorimotor tasks, gradual
changes in the target value also correspond to gradual changes
in the associated variables. Thus, when for example the
target position for the robot’s end-effector position is moved
gradually, also the solution manifold moves continuously, not
abruptly. We would like the selected solution to dynami-
cally follow the solution manifold to avoid unnecessary large
movements. Also, sensorimotor inputs are usually noisy, thus
the selection mechanism should be robust against noise to a
sufficient degree.

To avoid having to implement an elaborate heuristic to
manage the decision making process of picking a new solution,
we propose to use dynamic neural fields as competition mech-
anisms. Dynamic neural fields are neural fields of laterally
connected neurons, where connections are excitatory for short
distances and inhibitory for longer distances between neurons
(comparable to a “mexican hat” function). The field dynamics
is based on a dynamic update rule, which was first studied
by Amari [20] and is therefore also referred to as the “Amari
dynamics”. Amari investigated the properties of such fields

with respect to dynamic pattern formation and stability. One
simple, but for us important case is the formation of a single
peak solution in the neural field, such that the inhibitory
connections prevent the formation of any other activation
peaks. The peak remains stable as long as it is provided
with input, is robust against noise as the Amari dynamics
implements a low-pass filtering of the input signal, and can
also follow the input signal when the location of strong input is
shifted gradually. Thus, the Amari dynamics nicely complies
with the requirements for the decision making process that we
have stated above.

In our implementation of the dynamic neural field we
follow that of Erlhagen and Schöner [21] as a discrete time
implementation, which was also adapted by Toussaint [22].
The dynamic equation for the activation ui of the neurons in
the neural field is

τ u̇i = −ui + h+ Si +

m∑
j=1

wijf(uj), (12)

where τ is the time constant of the dynamics, h is a parameter
for global self-inhibition and specifies the resting level, Si
is the input to the i-th unit in the neural field, wij is a
distance weighting that effectively implements the excitation
and inhibition property, and f is a non-linearity.

In our implementation, we used a “ramp” function for the
non-linearity f as

f(u) =

 0 u ≤ 0
u 0 < u < 1
1 u ≥ 1

(13)

and for the distance weighting wij a Gaussian function shifted
by a constant wI to achieve inhibition across the whole neural
field,

wij = wE · exp
(
−d(i, j)

2

2σ2
E

)
− wI . (14)

Here, d(i, j) is the Euclidean distance between the units i and
j in the neural field, σE determines the excitatory range and
wE determines the strength of the excitation.

2) Local Gradient Descend: The output of the dynamic
neural field is a single-peak activation lying on the solution
manifold. We want to generate a motor command from this
activation through a population readout mechanism as a linear
combination of the centers mi. However directly using the
output activation of the dynamic neural field units as weights
for the centers does not give us a precise motor command
to reach the target value. The output of the dynamic neural
field only results in a pre-selection of units that should be
used in the population readout, but the activation levels of the
dynamic neural field units do not reflect the actual coefficients
for the linear combination. We therefore use a gradient descend
method to control the target vector.

As an example let us again consider the learning of the
kinematics of a robot arm, where we encode the controllable
angular positions θ and the corresponding Cartesian position
of the end-effector x by two neural fields with activations



uθ,j and ux,j respectively. To retrieve a solution to the inverse
kinematics, the neurons ux,j for the target position x∗ of the
end-effector are activated according to Equation 1 as

ux(x
∗) = (ux,1, . . . , ux,tx) , (15)

which is a single-peak activation. This is then used for the
query as described in Section III-B to retrieve a solution
manifold encoded in the activations

ũθ = (ũθ,1, . . . , ũθ,tθ ) , (16)

which is the input to the dynamic neural field. The output of
the dynamic neural field is a localized activation pattern of the
units in the domain of θ.

We readout a target posture from the output of the dynamic
neural field as a sum of the centers mj weighted by the
activations of the corresponding units,

θ̃ =

tθ∑
j=1

ũθ,j ·mj (17)

The resulting end-effector position lies close, but is not
necessarily equal to the target position. However, we can
compute a gradient for the control variable θ by using the
sigma-pi weights. For this we first compute the difference
in activation between the target position x∗ and the actually
observed end-effector position x as

δux = ux(x
∗)− ux(x) (18)

and then use it along with the output of the dynamic neural
field in another query of the network according to equation 11.
The query gives us a change δũθ in the activation of the units,
which we can use in an update step. Iterating this process
effectively implements a gradient descend that we can use to
control the motors and bring the end-effector to the target
location.

3) Skill Combination: In Section II we have already de-
scribed a few properties that we want the solution selection
process to have, when we combine sensorimotor mappings to
obtain multiple solution manifolds in the domains of input
variables:
• The solution should lie on at least one solution manifold.
• If two or more manifolds intersect, then it should lie on

an intersection point of as many manifolds as possible.
• We would like to be able to assign priorities to tasks.

The competition dynamics of the dynamic neural fields can be
exploited to achieve these criteria: To combine solution man-
ifolds, we can use a superposition of the network responses,

ũi =
∑

k∈{l|i∈Ql}

ak · σ
(
ũki
)
. (19)

Here, Qk is a set of indices that defines for the k-th senso-
rymotor mapping to which neural fields it is connected, ũki
is the response of the network for the i-th field and σ is a
nonlinearity to transform the gradual network responses to a
plateau of uniform activation. The factors ak are normalized
so that their sum is bound to be below or equal to 1.

The resulting activation of the neurons in the input maps is
used as the input for the dynamic neural field. The competition
dynamics of the field then functions as the desired decision
making mechanism as follows.

In cases where the robot only has one task, either because
it only has acquired a single mapping or because only one
network has neurons with activations for target sensorimotor
values, the field behavior reduces to that described in the pre-
vious section. The properties of the field dynamics guarantee
that an activation pattern resembling a peak can only develop
where there is activation present in the input. Thus, in this
simple case, it is obvious that we will always end up with a
valid solution that lies on a manifold. If there is no input at
all, then the field output goes to the resting level for all the
neurons in the field. This can easily be detected so that no
command for the motors is generated at all.

The same is also true for the combined network responses.
When there are more than one network responses, then the
additive combination of the activation levels will give us an
activity landscape, where neurons that are solutions for more
than one task are activated more than those that are only
solutions for a single task. The dynamics of the neural field
will always favor the strongest input, as soon as it surmounts
the input activation at a current peak by a given amount.

The last property of the decision making process, being
able to assign priorities to tasks, can easily be achieved by
controlling the factors ak in Equation 19. If there exists a point
where all solution manifolds intersect, this point will have the
highest activation value in the neural field. If however there is
no such point, the manifold with the higher priority will have
a higher activation value in the superposition and will thus be
selected by the field dynamics.

IV. RESULTS

To test the proposed approach we performed two exper-
iments of kinematics learning, using a simulation of the
humanoid robot iCub [23].

A. Experiment 1

At first we trained a sigma-pi network to learn the forward
and inverse kinematic mappings, which are transformations
between a vector of arm angular values θ and the Cartesian
end-effector position x. We used the robot’s right shoulder and
elbow joints, thus having a four-dimensional angular posture
space. We sampled this space on a regular grid by placing in
each dimension 10 equally distributed grid points, resulting in
T = 10000 configurations. We let the robot move its motors
into the joint configurations and recorded a pair of vectors
(θ,x) for each of them.

To represent the Cartesian input vector of end-effector coor-
dinates, we used a three-dimensional field of 42×36×41 input
neurons. We initialized the centers of their receptive fields
on a regular grid of positions that were equally distributed
and covered the whole workspace of the robot. Similarly,
we used a four-dimensional field of 10× 10× 10× 10 input
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Fig. 4. Several postures that were retrieved by the system for the task of
bringing the robot’s end-effector to one point while constraining one of the
shoulder joints. The position of iCub’s end-effector is at the center of its palm,
which is kept at the target point in the queries shown in (a)-(c) In each new
query, the constrained postural value for the shoulder joint is increased, until
in the final query that is shown in (d) iCub cannot reach the target point with
the constrained posture, because it has reached its joint limits.

neurons with receptive fields arranged on a grid that covered
the domain of the arm angular position vector.

We used a sigma-pi network to learn associations between
joint configuration vectors and Cartesian end-effector coordi-
nates. For each training sample (θt,xt), we first computed
the activation of the input units according to their receptive
fields (cf. Equation 1) and then computed the activation of the
product units netts according to Equation 6 and updated the
weights using the max operator as

wt+1
s = max

(
wts, net

t+1
s

)
, (20)

where wts is the resulting weight after having processed the
t-th training sample. Note that we omitted the learning rate
parameter λ implicitly setting it to 1 to implement one-shot
learning.

We initialized a dynamic neural field to match the configu-
ration of the map of input neurons for the arm angular posi-
tion vector (i.e. 10× 10× 10× 10 equidistant neurons). Our
choice of parameters for the neural field dynamics was τ = 15,
h = −0.1, wE = 1.26, wI = 0.004 and σ = 0.6, where the
distance between two neighboring neurons i and j in the
dynamic neural field was d(i, j) = 1.

To test the decision making process and the proposed
method to combine multiple learned mappings, we used a
second network that should learn the mapping

f(θ) = θ2, (21)

which simply stores for every posture θ only the angular
position of the second shoulder joint. Thus when querying
the learned mapping for candidate postures that use a given
angular position for the second shoulder joint, the network
response will be an activation representing the axis-parallel
hyper plane for all postures including θ2. We used a one-
dimensional input map of 10 neurons with receptive fields
covering the possible angular positions for the joint.

We tested the method by giving a position in front of iCub
as target and querying the first network for solutions. We
simultaneously used the second network to tell the system that
it should drive the second shoulder joint into different target
positions. We also set the priority of the second network to
be higher than that of the first network. Thus, we expect the
system to reach for the target point while using a posture
that satisfies the constraint for the shoulder joint. Figure 4

shows example postures that were generated by the system.
The system was able to generate solutions that satisfied both
of the goals that it was given, i.e. it successfully moved the
end-effector to the target point while staying in the specified
angular position with the second shoulder joint.

B. Experiment 2
In the second experiment, we replaced the second input by

one that should allow the robot to avoid joint limits. For this,
we introduced a virtual proprioceptive sensor that should give
the robot feedback about the “quality” of a posture, where
postures that had one or more joints in their limits produced
a value of 0, whereas postures in the center of the angular
space should have values of 1. We used a modified cosine to
implement this function.

We then retrained the second network with input from this
virtual sensor, thus associating the sensor output to each arm
posture. In combination with the network that has learned the
robot’s kinematics, the two networks perform as a reaching
controller that allows to reach for all points in the robot’s
workspace while avoiding joint limits whenever possible. By
setting the priority of the target point higher than that of the
joint limit avoidance, we can ensure that iCub actually reaches
for all points, even if this is only possible with a configuration
that has one or more joints in their limits.

Figure IV-B shows the result of querying the system for
a posture to reach for a target position in iCub’s workspace,
on the one hand only using the network that has learned the
robot’s kinematics, and on the other hand also using the join
limit avoidance network.

C. A Note on Computational Performance
As described in Section IV-A, the first sigma-pi network

that was trained for the robot’s kinematics has as inputs a four-
dimensional neural field representing the angular motor space
and a three-dimensional neural field representing the position
of the end-effector. Therefore the synaptic weight matrix of the
network is seven-dimensional, which results in a huge amount
of possible synaptic connections. However, since we use a
simple Hebbian learning rule for the training of the network
and do not have to initialize the network weights randomly but
start with an “empty” network, the number of weights above
zero that the trained network stores remains relatively small.
Of the 10× 10× 10× 10× 42× 36× 41 possible weights,
only 1.24% have a value above zero in our trained network.
Implementing the sigma-pi networks using a sparse matrix
representation therefore allows to dramatically increase the
computational performance.

V. CONCLUSION

In this work we have proposed a novel approach to combine
multiple learned sensorimotor mappings by making use of the
robots redundancies. In contrast to approaches to sensorimotor
learning that discard redundant solutions and only store one
representative solution for each target value, we have intro-
duced a learning mechanism that is capable of learning many-
to-many mappings, which allows us to simultaneously retrieve
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Fig. 5. The two plots show the activation that was generated by the system
when queried for a solution to reach a target point in space. The activation
of the neural field representing the robot’s joint configuration is shown,
representatively only for two dimensions. To give a more detailed view, we
used a neural field with 20 neurons in each dimension to produce the plot.
Blue lines show the activation level of neurons in the neural field, which
is also the input to the dynamic neural field. The activation of the neurons
in the dynamic neural field can be seen as green activation landscapes. The
grey plane indicates the zero level. When using only the network that has
learned the robots kinematics (upper plot), the system generates a solution
manifold that is split into two regions, as can be seen by the two plateaus
in the activation of the neural field. The field dynamics then produces a
localized peak that represents the solution. In this case, a solution close to
the joint limits was selected. When using the combined response from both
networks (lower plot), postures that are away from joint limits are favored.
This can be seen as the superposition of the two network responses produces
an activation landscapes with three activation levels: One (the lowest) for all
solutions that are away from joint limits, one for solutions that bring the
end-effector to the target location, and one (the highest) that combines both
tasks, i.e. represents the intersection of the two solution manifolds. The field
dynamics consequently generates a peak at the highest plateau level.

all solutions to reach a target value. We have shown that the
solutions from several learned mappings can easily be com-
bined, and our decision making process is able to dynamically
select the favorable solution online. When considering this in
the context of autonomous robots, which should be able to
extend their repertoire of skills by learning new ones through
exploration, this presents a straightforward way of integrating
multiple learned sensorimotor mappings, because there is no
need for an arbitration mechanism that assigns motor resources
to individual skills. Our method simply combines the different
solution manifolds stemming from the queries of multiple
networks into a combined representation. Priorities can easily
be assigned to each task, so that it can for example be ensured
that the main task is fulfilled and other tasks are only pursued
in the null-space of that main task.
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