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Abstract A major argument for syntactic reconstruction is based on the well-
known fact that semantic reconstruction by β -reduction is possible only if the term
to be substituted for a variable does not contain any variable that would become
bound as a result of substitution: e.g., the expression (λx2∀x1P(x1,x2))(x1) cannot
be β -reduced to ∀x1P(x1,x1), since the underlined occurrence of x1 would become
bound. This way, we derive a theoretical argument for syntactic reconstruction.
However, syntactic reconstruction is not without its problems, simply because
the surface form and the reconstructed form may still differ with respect to other
syntactic, semantic, and information theoretic properties. This is particularly
troublesome for minimalist theories which do not allow for multiple levels of
representation.

In this paper we propose a technique that might help to overcome these diffi-
culties (i.e., the limitation imposed by β -reduction on semantic reconstruction)
by defining a translation function T for expressions of a predicate logic L0 with
λ -abstraction into expressions of a higher-order language L1, with the desirable
property T((λx2∀x1P(x1,x2))(x1)) = T(∀x1P(x1,x1)). In linguistic applications
this will facilitate the binding of a pronoun without presupposing c-command.
We will sketch a formal proof showing that unrestricted β -reduction is a property
of the target expressions in L1, the translations of L0 under T.

Keywords: beta-reduction, lambda-conversion, semantic reconstruction, syntactic recon-
struction, λ -calculus

1 Introduction

In semantics of natural language, λ -abstraction is omnipresent and fundamental; ever
since the work of Richard Montague it has resided at the core of compositionality.
For example, quantifier raising or quantifying-in crucially relies on λ -abstraction;
quantifier raising in turn is essential for the binding of pronouns, and binding itself
presupposes a way of identifying variables that is expressed by coindexation. It is
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this connection between lambda abstraction and coindexation that is at issue in
our paper. As will be illustrated in this introduction, coindexation poses a problem
for the semantics of λ -abstraction in the context of so-called reconstruction.

According to received wisdom, the sentences in (1) get a different interpretation
depending on whether or not the pronoun is coindexed with the quantifier:

(1) a. nobodyk doubts that hek is smart.
b. nobodyk doubts that hej is smart.

Given that quantifying expressions are interpreted as generalized quantifiers, the
representations in (2) differ based on whether the variable is interpreted as bound
or as free. The relevant binder cannot be the generalized quantifier itself, which
only expresses a relation between sets, but it must be the λ -operator:

(2) a. nobodyk λxk xk doubts that xk is smart.
b. nobodyk λxk xk doubts that xj is smart.

Bound and free variables also play a crucial role in the interpretation of movement.
Consider standard examples of topicalization, as in (3):

(3) a. That pizzai, I won’t eat ti.
b. Such examplesi, I thought you said that Tom believes the explanation needs

ti.

Again, λ -abstraction provides for a straightforward semantic interpretation of (3)
by converting the trace into a bound variable:

(4) a. That pizza λxi I won’t eat xi.
b. Such examples λxi I thought you said that Tom believes the explanation

needs xi.

However, this immediate connection between binding, coindexation and movement
is undermined by topicalized sentences like (5):

(5) His motheri λxj nobodyi hates xj.1

The problem is that the pronoun in (5) has left the syntactic domain of its binder.

1 Unfortunately, the example seems to be rather marked in English, and even the reconstructed
form seems to be marked, compare (ia) with the more natural (ib):

(i) a. ?nobodyi hates hisi mother.
b. nobodyi hates theiri/onei’s mother.

But in a language like German, both (iia) and (iib) are perfectly natural and unmarked:
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Perhaps more natural examples in English are topicalized sentences. Consider the
following scenario. A psychopath has a quite different view of the world. He knows
that what he does is violent, but he considers it justified by the circumstances. . .

(6) That he is alone in his interpretation, no psychopath realises.

Likewise:

(7) a. Quite how socially privileged hei is, no studenti realizes.
b. That theyi are handicapped, few studentsi realize.
c. That hei is handicapped, no autistic individuali realizes.

Again, the obvious problem with these constructions is that the pronoun has been
moved out of the scope of the binding expression. The intended meaning is of
course still represented by coindexation, but it seems that this meaning cannot be
derived by interpreting the surface structure.

The reason for this is rooted in the λ -calculus, which permits β -reduction
of some term λxφ(t) to φ [x/t] only if the term t to be substituted for (all free
occurrences of) the variable x in φ does not contain any free variables that would
become bound as a result of substitution. In (8), the last occurrence of the variable y
would end up being bound by ∀y as a result of substituting it for x in ∀y adore(y,x),
and therefore β -reduction is banned.

(8) λx∀y adore(y,x)(y) 6→β ∀y adore(y,y)

Without this restriction on β -reduction the λ -calculus would be inconsistent, since
it would be possible to derive the equivalence of arbitrary terms (cf. Barendregt
1981: 25).

This restriction can not be used as an argument for syntactic reconstruction,
because the surface form and the reconstructed form may still differ with respect
to other syntactic and semantic properties. In a framework like Minimalism, this
is a contradiction because a potential difference cannot even be formulated in that
theory (because surface form is not a level of representation). For example, it
has been shown that syntactic reconstruction predicts Condition (C) effects that
are not attested in the data, therefore syntactic reconstruction is not a solution
for the bound variable problem (cf. e.g., Salzmann 2006). Moreover, there are
contexts that do not permit a reconstructed reading because some blocking material
intervenes between the topicalized item and the trace. As shown by Heycock
(2011), the nature of these interveners must be semantic rather than syntactic.

(ii) a. Niemandi hasst seinei Mutter.
b. Seinei Mutter hasst niemandi.
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To be explicit, in many natural language contexts syntactic reconstruction fails
because: (i) syntactic movement is highly implausible, as in all sorts of clefts, cf.
(9); (ii) it contradicts independent principles of grammar such as Binding Principle
C or the licensing conditions for NPIs (e.g., (9b,c)) and idioms (e.g., (9d)); and
(iii) reconstruction would not help in other cases of binding without c-command,
as in “telescoping” (e.g., (9e)):

(9) a. What [ nobody did t ] was buy a picture of himself.
b. NPIs: Buy a/*any picture of himself was what [ nobody did t ].
c. NPIs: . . . but steal some/*anything, [ nobody did t ]
d. Idioms: (*)What [ Mary didn’t lift t ] was a finger.
e. Telescoping: The picture of hisi mother that everyi soldier kept t wrapped

in a sock was not much use to himi.

The overall conclusion so far is that in some domains syntactic reconstruction is
on the wrong track whereas a surface-true semantic approach to reconstruction
(augmented with potential semantic restrictions) would give correct results. This
surface-true semantic approach calls for a mechanism that allows for extended
variable binding, i.e., variable binding without c-command, for example via the
trace of some kind of movement that is interpreted by β -reduction.

The alternative that we shall explore in this paper is giving up the idea that
pronouns simply denote individuals under an assignment. But unlike the variable-
free approach of Jacobson (1999) and the continuations approach of Barker (2002),
we aim to keep the assumption that variable binding is analysed in terms of
coindexation. We propose that pronouns denote what has been called the “global
extension” of a variable in Zimmermann & Sternefeld 2013. Global extensions
differ from ordinary local extensions in taking assignment functions as part of
the denotation of any expression α , so that given a local extension Jα Kg its
global extension Jα K denotes λgJα Kg. Global extensions are needed to show that
predicate logic is fully compositional, and they will be taken advantage of in the
following to ensure that binding is fully compositional as well. However, as shown
in Zimmermann & Sternefeld 2013, there is a price to pay for compositionality, in
that the variable assignment itself has to be included into the ontology of first order
logic. The point will be made explicit below, in assuming that variable assignments
will be included into an extended formal language whose normal extensions are
the global extensions of ordinary predicate logic.

Our strategy will be that of indirect interpretation. That is, we will provide
for an interpretation of a λ -expression by specifying a translation function T that
translates first order logic plus λ -expressions into a more complex higher order
logic.
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(10) NL expression
T(e)−−−−→ α ∈ L0

T(α)
−−−−→ α+ ∈ L1

J ·K
−−−−→ Jα+ K = JT(α)K

The formal language L1 receives its traditional interpretation J ·K which we pre-
suppose in this paper. It can then be shown that (11) is a special case of a general
equivalence between β -reduced and unreduced formulas.

(11) a. T([λxλy.P(y,x)](y)) = T(λy.P(y,y))
b. T([λx∃y.P(y,x)](y)) = T(∃y.P(y,y))

We proceed as follows: Section 2 introduces assignment functions into the
formal language of a sorted and typed predicate logic L1 with λ -abstraction, and
we show that each formula of first order predicate logic can be translated into a
type shifted formula of L1. We demonstrate how this first step can account for most
linguistic problems of variable binding by reconstruction. Section 3 attacks the
key problem for λ -abstraction, namely the case illustrated in (11), and presents the
solution step-by-step. First we deal with iterated abstraction and application, then
with quantification, and finally with an asymmetry between binding by quantifiers
and binding by λ -abstraction. In section 4 we formally prove that the system
defined in section 3 allows for unrestricted semantic reconstruction.

2 Indices and assignment functions

Our point of departure is Bennett 1979, who intended to design a denotation for
questions as open formulas, but as an open formula standardly denotes a truth value,
such ordinary denotations are unusable for that purpose. However, if open formulas
are instead represented as sets of assignment functions (their global extensions),
they have enough internal structure to be useful. Assignment functions themselves
are, as usual, construed as functions from variables to entities of the usual sort.
But now, these variables must denote entities of the model, and for this purpose
Bennett simply took integers to be the representatives of variables, namely those
integers that normally appear as the subscripts of variables in x1,x2, . . .xn.2 The
correspondence between open formulas of L0 and sets of assignment functions of
L1 illustrated in (12) is straightforward:

(12) a. L0: P(x1,x6,x7)

2 We could as well have taken the variables themselves as the domain of the assignment function,
with variables simply denoting themselves in the manner proposed in Zimmermann & Sternefeld
2013, but at the risk of conflating object language and meta-language. We decided for natural
numbers in order to make clear that they stand for arbitrary objects of L1, having the formal
status of constants of a particular type n, whereas quantification still ranges over ‘real variables’
as explained below.
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b. L1: λg.P(g(1),g(6),g(7))

In (12b), the variable g is a function from an index to an individual. Indices (or
pointers, sometimes also called discourse markers) are constants of type n, therefore
g has type 〈n,e〉.3 To start with, we assume that (12b) is the translation of (12a)
into the target language L1. Likewise, the translation of variables xi (for any i ∈N)
is λg.g(i) which will also be the translation of pronouns of Natural Language.
Such an expression is called a pseudo-variable, for the obvious reason that it does
not contain any free variable.

At this point we can already grasp the basic intuition that will enable us to
interpret β -reduction in the desired way: the relevant feature of the translation of
variables and open formulas is that none of the translations in L1 will contain any
free variables whatsoever. This is the crucial feature of the system: as there are
no free variables in the translated formulas, the problematic cases for β -reduction
simply do not arise in the target language. Moreover, the interpretation/translation
is in an obvious sense equivalent to its source. Let J .Kg be the usual interpretation
function for L0. Let T(α) be the translation of a formula or term into L1. Given
the result of the translation procedure (to be specified precisely further below),
namely that T(α) never contains a free variable, the interpretation function for the
resulting formulas of L1 does not depend on an assignment for variables; this will
simply be the function J .K. In order to compare the standard interpretation of L0
with its new interpretation via L1, let both J .K and J .Kg depend on the same model
for constants of L0 (but this additional index M is omitted in what follows). The
equivalence can then be expressed as in (13):

(13) Jα Kg = JT(α)K(g) = JT(α)(g)K for any assignment function g.4

To get the complete picture we must deal with quantifiers. Bennett’s analysis is
simply a restatement of the usual truth conditions for quantification of L0, now
expressed in L1 rather than in the meta-language of L0. Accordingly, the first thing
to do is express modified assignments in L1:

(14) Modified assignments:
g[i/y] := (ι f )( f (i) = y∧∀n(n 6= i→ f (n) = g(n)))

These are needed for stating universal quantification as shown in (15):

(15) Universal Quantification: (first version)

3 The functions g are subsets of N×D (where D is the domain of entities), whereas the assignment
functions of standard predicate logic are subsets of VAR×D (where VAR is the set of variables).

4 Note that the first g is an expression of the meta language of L0, the second g belongs to the
meta language of L1 and the third is an expression (a variable) of L1.
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T(∀xiφ) = λg∀xiT(φ)(g[i/xi])

Note that hitherto we only translated the meta language of L0 into the object
language L1; the only new device needed to do so is to shift indices (pointers,
discourse referents) from the meta language into the language of L1. The remaining
clauses for deriving full-fledged predicate logic are given in (16):

(16) a. T(¬φ) = λg¬T(φ)(g)
b. T([φ ∧χ]) = λg[T(φ)(g)∧T(χ)(g)]

It is obvious that up to now nothing has changed in the semantics of logical
expressions.

As the reader may verify, the new format already solves most reconstruction
problems in that reconstruction of propositions into the domain of quantifiers is a
result of λ -abstraction over propositions. In fact, such a move is also essential for
any non-syncategorematic and fully compositional treatment of quantifiers. As an
illustration, let us return to (7) repeated as (17):

(17) That hei is smart, nobodyi doubts.

Assume that doubts roughly translates as (18) with pj being a variable of type
〈〈n,e〉,〈s, t〉〉 for propositions, to be interpreted as the trace of movement bound
by the topicalized clause, and g(i) a subject pseudo-variable to be evaluated by
nobodyi:

(18) λg.doubt(g(i), pj(g))

Assume that the lexical meaning of nobodyi is λqλg′¬∃yiq(g′[i/yi]) with q a
variable of the same type as pj above. Now, applying nobodyi to (18) we derive
(19):

(19) λqλg′¬∃yiq(g′[i/yi])(λg.doubt(g(i), pj(g)))
= λg′¬∃yi[λg.doubt(g(i), pj(g))](g′[i/yi])
= λg′¬∃yidoubt(g′[i/yi](i), pj(g′[i/yi]))
= λg′¬∃yidoubt(yi, pj(g′[i/yi]))

An important issue we are ignoring here is that the index of the variable y has to
match the pseudo-variable in subject position (a coindexation which goes under the
label of theta marking). The next steps are straightforward: As usual, the effect of
movement is captured by λ -abstraction over the free variable in (19). The resulting
λ -abstract will then be applied to λg.smart(g(i)) as the translation of hei is smart,
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and intensional functional application yields (20):5

(20) λ pjλg¬∃yidoubt(yi, pj(g[i/yi]))(λg′. ŝmart(g′(i)))
= λg¬∃yidoubt(yi,λg′. ŝmart(g′(i))(g[i/yi]))
= λg¬∃yidoubt(yi, ŝmart(g[i/yi](i)))
= λg¬∃yidoubt(yi, ŝmart(yi))

This is exactly what were aiming for. More applications of the system just described
and further discussion can be found in Sternefeld 2001, an analysis of (9e) is given
by Sternefeld (in press).

As should be obvious, intensionality is irrelevant for the problem under dis-
cussion, hence we will ignore intensions and dismiss with the semantic type s.
Accordingly, propositional variables have the simplified type 〈〈n,e〉, t〉 and the
logic to be developed below is extensional.

3 Unrestricted semantic reconstruction

The goal we are attempting to reach in this paper is more ambitious than the
examples discussed above would suggest. What we want to develop is a formal
system that not only works for the reconstruction of open propositions but for
β -reduction in general. This aim is much more difficult to attain. The problem
so far is that for examples like (5) there is simply no open proposition that could
be reconstructed; what is needed is the semantic reconstruction of a variable (or
more generally, a term) simpliciter.

As the system we are going to develop is quite complex, we will try to motivate
each step by showing what goes wrong in a simpler system, developing the trans-
lation in a piecemeal fashion. We begin by showing that we need continuations of
assignments in order to account for the interplay between quantification and beta
reduction. Second, we discuss iterated abstraction and functional application. Third,
we show that delayed binding via quantification differs from delayed binding via
abstraction, and discuss how to account for this asymmetry, namely by introducing
an index set which keeps track of all the indices quantified over.

Let us reconsider quantification in example (21):

(21) T(∀x7 adore(x7,x9)) = λg∀x7[λg adore(g(7),g(9))(g[7/x7])]
= λg∀x7 adore(g[7/x7](7),g[7/x7](9))
= λg∀x7 adore(x7,g(9))

Unfortunately, this result is not yet appropriate to deal with λ -abstraction over

5 Note that the choice of variables g or g′ is made for mnemotechnical reasons only; one variable
g would indeed suffice to do the job.

264



Unrestrained β -reduction

indiviuals. The reason is that g[7/x7](9) = g(9) does not preserve the information
about the modified value for 7, which is crucial for unrestrained beta reduction in
the formula λx9∀x7 adore(x7,x9)(x7). To preserve this information we introduce
continuation functions c from assignments to assignments. As we will see below,
the critical object position will not contain g(9) but c(g[7/x7])(9), which still allows
us to access the modified assignment.

The required extension for atomic formulas is given (22), the obvious modifi-
cation for quantification is given in (23):

(22) T(P(xi1, . . . ,xin)) = λcλg.P(c(g)(i1), . . . ,c(g)(in))
(23) Quantification (second version, to be revised):

T(∀xiα) = λcλg∀xi[T(α)(F(c)(i))(g[i/xi])], where

F(c)(i)(g)( j)=
{

g( j), if i = j, (∀xi binds xj in α)
c(g)( j), else (no binding)

Nothing changes in case of variable binding, but in the case of other free variables,
we can retain the information about the modified assignment g. Let us see how
this works in the following example:

(24)

T(∀x7 adore(x7,x9))=λcλg∀x7[T(adore(x7,x9))(F(c)(7))(g[7/x7])]
=λcλg∀x7 adore(F(c)(7)(g[7/x7])(7),F(c)(7)(g[7/x7])(9))
=λcλg∀x7 adore(g[7/x7](7),c(g[7/x7])(9))
=λcλg∀x7 adore(x7,c(g[7/x7])(9))
6=λcλg∀x7 adore(x7,c(g)(9))

As we will see later, it is crucial that the modified assignment has “left a trace” at
the position of x9.

Before continuing it may be useful to have a list of type assignments:

(25) Variables of L1:
τ(y1),τ(y2), . . .= e
τ(u) = n
τ(g),τ(g′), . . .〈n,e〉
τ(c),τ(c′), . . .= τ(v) = 〈τ(g),τ(g)〉
τ(h),τ(h′), . . .= 〈n,〈τ(c),τ(c)〉〉
τ(Ψ),τ(Ψ′), . . .= 〈〈n,e〉,e〉

Metavariables:
τ(i),τ( j) = n

Constants of L1:
all constants of L0
τ(1),τ(2), . . .= n
τ(A) = 〈τ(Ψ),τ(h)〉

= 〈τ(Ψ),〈n,〈τ(c),τ(c)〉〉〉
= 〈τ(Ψ),〈n,〈τ(c),

〈τ(g),τ(g)〉〉〉〉
τ(F) = 〈n,〈τ(c),τ(c)〉〉

= 〈n,〈τ(c),〈τ(g),τ(g)〉〉〉
= 〈n,〈τ(c),〈τ(g),〈n,e〉〉〉〉
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The idea behind the translation of λ -abstraction and functional application
is illustrated in (26) by the intended results of the translations. The constant A
in (26c) will be defined further below. The effect of A can be read off from the
equations below; basically it replaces the binding index of x3 in (26c) by the index
of the argument x4.

(26) α T(α)
a. P(x3) λcλgP(c(g)(3))
b. (λx3P(x3)) λhλcλg.P(h(3)(c)(g)(3))
c. (λx3P(x3))(x4) λhλcλg.P(h(3)(c)(g)(3))(A(T(x4)))

= λcλgP(A(T(x4))(3)(c)(g)(3))
= λcλgP(c(g)(4))

d. λx3∀x4P(x4,x3)(x4) λcλg∀x4P(x4,x4)
e. λx3∀x5P(x5,x3)(x4) λcλg∀x5P(x5,c(g[5/x5])(4))

As discussed above, the continuation function c prevents the immediate application
of g to an argument by forming c(g) first; the effect of the modification of g (the
delayed application of g) will become apparent below. Besides c, we also need
an additional function h that operates on the index of the binding variable; this
too will be made precise further below. It is sufficient at this point to note that
λ -abstraction introduces a new variable h, a function from indices and continuations
to continuations, and an index i as one argument of h that represents the index of
the binder. Moreover, functional application to a (pseudo-)variable is described by
a constant A whose exact nature will be described further below.

Before going into the definition of A, there are two additional complications to
be dealt with. When x4 is substituted for x3 we need to ‘know’ whether index 4
has been ∀-bound. This requires storing the ∀-bound indices in a set M of ∀-bound
indices. Furthermore, to get the order of arguments right, iterated abstraction needs
to be handled separately.

In order to handle the first problem, we slightly modify our definition of
quantification by adding a new argument to c, namely the set of indexes that are
bound at the point of evaluation. Naturally, this set is empty in atomic formulas:

(27) Translation of atomic formulas:
T(P(t1, . . . , tn)) = λcλgP(t ′1, . . . , t

′
n), where for all i with 1≤ i≤ n

t ′i =
{

c(∅)(g)( j) if ti = xj for some integer j
ti else (i.e., if ti is a constant of L0)

The empty set will be expanded recursively by each index of a quantified variable,
as shown in (28):
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(28) Translation of quantification:
T(∀xiα) = λcλg∀xi.T(α)(λM.F(c)(M∪{i}))(g[i/xi]), where

F(c)(M)(g)( j) =
{

g( j), if j ∈M
c(M)(g)( j), else

The new definition including M will be taken advantage of only later (when
defining the crucial but unfortunately complex function A); nonetheless it will
help to illustrate the above definition by looking at the intended result, namely
beta reduction into the scope of a quantifier. Consider the following example for
delayed binding by quantification, showing that:

T(λx2∀x1P(x1,x2)(x1)) = T(∀x1P(x1,x1)) = λcλg∀x1P(x1,x1)

(29) T(λx2∀x1P(x1,x2)(x1)) (translation of application, cf. below)
= T(λx2∀x1P(x1,x2))(A(T(x1))) (translation of abstraction, cf. below)
= λhλc[T(∀x1P(x1,x2))(h(2)(c))](A(T(x1))) (translation of quantification)
= λhλc[λc′λg′∀x1[T(P(x1,x2))(λM.F(c′)(M+1))(g′[1/x1])](h(2)(c))]

(A(T(x1))) (translation of atomic formulas)
= λhλc[λc′λg′∀x1[λc′′λg′′P(c′′(∅)(g′′)(1),c′′(∅)(g′′)(2))(λM.F(c′)(M +

1))
(g′[1/x1])](h(2)(c))](A(T(x1))) (conversion of c′′)

= λhλc[λc′λg′∀x1[λg′′P(λM.F(c′)(M + 1)(∅)(g′′)(1),λM.F(c′)(M +
1)(∅)(g′′)(2))(g′[1/x1])](h(2)(c))](A(T(x1))) (conversion of M, twice)

= λhλc[λc′λg′∀x1[λg′′P(F(c′)({1})(g′′)(1),F(c′)({1})(g′′)(2))(g′[1/x1])]
(h(2)(c))](A(T(x1))) (conversion of g′′, twice)

= λhλc[λc′λg′∀x1[P(F(c′)({1})(g′[1/x1])(1),F(c′)({1})(g′[1/x1])(2))]
(h(2)(c))](A(T(x1))) (conversion of c′)

= λhλc[λg′∀x1[P(F(h(2)(c))({1})(g′[1/x1])(1),
F(h(2)(c))({1})(g′[1/x1])(2))]](A(T(x1))) (def. of F)

= λhλc[λg′∀x1P(g′[1/x1](1),h(2)(c)({1})(g′[1/x1])(2))](A(T(x1)))
(definition of modification)

= λhλc[λg′∀x1P(x1,h(2)(c)({1})(g′[1/x1])(2))](A(T(x1))) (conversion of
h)

= λc[λg′∀x1P(x1,A(T(x1))(2)(c)({1})(g′[1/x1])(2))] (def. of A, cf.
below)

= λc[λg′∀x1P(x1,T(x1)(F(c)({1})(g′[1/x1])))] (translation of x1)
= λc[λg′∀x1P(x1,λg.g(1)(F(c)({1})(g′[1/x1])))] (conversion of g)
= λc[λg′∀x1P(x1,F(c)({1})(g′[1/x1])(1))] (definition of F)
= λcλg′∀x1P(x1,g′[1/x1](1)) (definition of modification)
= λcλg′∀x1P(x1,x1)
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Note that at this point we did not yet make essential use of the fact that M is a
set, in contrast to the definition of F in (23). The relevance of M will only unfold
later, when discussing (38).

Let us now turn to the tricky part of the framework, namely the definition of
λ -abstraction. Naively, one would expect that the λxi . . . should correspond to
some function λΨ . . .A . . . to be applied to T(xj), i.e., λg.g(i); and where A is a
function that takes care of the indices of the binder i and the argument j so that
xi factually replaces xj in the remainder of the formula. Abstracting away from
the continuations and additional complications, this intuition can be expressed as
in (30):

(30) Translation of abstraction (to be revised):
T(λxiα) = λΨλg[T(α)(A(Ψ)(i)(g))],
where T(α) is the translation of α and A is a constant function defined as

A(Ψ)(i)(g)( j) =
{

Ψ(g), if i = j
g( j), else

(31) Translation of functional application (to be revised):
T(α(xi)) = T(α)(T(xi)), where T(xi) = λg.g(i).

To illustrate these definitions, we show that T(λx1P(x1,x2)(x3)) = T(P(x3,x2)):

(32) T(λx1P(x1,x2)(x3)) (by translation of functional application)
= T(λx1P(x1,x2))(T(x3)) (by translation of x3)
= T(λx1P(x1,x2))(λg′.g′(3)) (by translation of abstraction)
= λΨλgP(A(Ψ)(1)(g)(1),A(Ψ)(1)(g)(2))(λg′.g′(3)) (by definition of A)
= λΨλg[P(Ψ(g),g(2))](λg′.g′(3)) (conversion of Ψ)
= λg[P(λg′.g′(3)(g),g(2))] (conversion of g′)
= λg[P(g(3),g(2))] (translation of atomic formulas)
= T(P(x3,x2))

Let us turn next to iterated abstraction. Recall that

(33) T(λx1P(x1,x2)) = λΨλgP(A(Ψ)(1)(g)(1),A(Ψ)(1)(g)(2))

What we want as a translation of λx2λx1P(x1,x2) is:

(34) T(λx2λx1P(x1,x2)) =
λΨ′λΨλgP(A(Ψ′)(2)(A(Ψ)(1)(g))(1),A(Ψ′)(2)(A(Ψ)(1)(g))(2))

As the reader may easily verify, applying this term to λg′.g′(1), the translation
T(x1) of x1, we get the correct result, namely
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(35) λΨ′λΨλgP(A(Ψ′)(2)(A(Ψ)(1)(g))(1),A(Ψ′)(2)(A(Ψ)(1)(g))(2))(T(x1))
(definition of A, definition of T)

= λΨ′λΨλgP(A(Ψ)(1)(g)(1),Ψ′(A(Ψ)(1)(g)))(λg′g′(1)) (def. of A)
= λΨ′λΨλgP(Ψ(g),Ψ′(A(Ψ)(1)(g)))(λg′g′(1)) (conversion of Ψ′)
= λΨλgP(Ψ(g),λg′.g′(1)(A(Ψ)(1)(g))) (conversion of g′)
= λΨλgP(Ψ(g),A(Ψ)(1)(g)(1)) (definition of A)
= λΨλgP(A(Ψ)(1)(g)(1),A(Ψ)(1)(g)(1)) (conversion of g′ below)
= λΨλg[λg′P(g′(1),g′(1))(A(Ψ)(1)(g))] (definition of atomic formulas)
= λΨλg[T(P(x1,x1))(A(Ψ)(1)(g))] (definition of T, abstraction)
= T(λx1P(x1,x1))

Focusing just on the terms x1 and x2, we see that their translation in an atomic
formula is g(1) and g(2). Recall that we omitted c because the continuation is irrel-
evant for the argument. After the first abstraction over x1, the corresponding terms
are A(Ψ)(1)(g)(1) and A(Ψ)(1)(g)(2), respectively. After the second abstrac-
tion over x2, what we want to get are the terms A(Ψ′)(2)(A(Ψ)(1)(g))(1) (which
by definition of A is identical to A(Ψ)(1)(g)(1)) and A(Ψ′)(2)(A(Ψ)(1)(g))(2)
(which by definition of A is identical to Ψ′(A(Ψ)(1)(g))), respectively, which after
application to λg′g′(1) both turn to A(Ψ)(1)(g)(1) = Ψ(g).

So far, so good. But now the crucial question is how to arrive at (34) in a
systematic (recursive) way on the basis of (33). According to our preliminary
definition of abstraction and application, the only terms we can substitute in
A(Ψ)(1)(g)(1) are Ψ and g, so by abstracting over x2 we need to get from the term
A(Ψ)(1)(g)(1) to the term A(Ψ′)(2)(A(Ψ)(1)(g))(1) just by substituting Ψ and
g. As it happens, this is not feasible! This problem calls for a major conceptual
revision concerning the division of labor between λ -abstraction and functional
application.6

6 Note that our interpretation of lambda abstraction is non-standard as it does not satisfy alpha
equivalence. For example, (iiia) and (iiib)

(iii) a. λx2λx1.P(x1,x2)
b. λx2λx3.P(x3,x2)

are equivalent in L0, but this cannot hold for the respective translations in L1. If this were the
case, the results of applying (iiia) and (iiib) to x1 should be identical, but as we have argued
above, this outcome is unwarranted. This difference of interpretation also implies that depending
on the choice of α it does not always hold that T(λxi . . .(α)) = T(λxi . . .)(T(α)). It follows
that the system is not alphabetically invariant when it comes to binding by lambda operators.
In particular, the attempt to assimilate the format of lambda abstraction of L1 to that of L0 by
saying that a set of individuals (or the characteristic function thereof) in L0 should correspond
to a set of pseudo-variables defined by something like λΨT(α)(A(Ψ)) would not make much
sense as this similarity disappears when it comes to functional application.
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What we can do instead at this point is introduce variables h for A(Ψ) and
h′ for A(Ψ′), so that our task can be reformulated as getting from h(1)(g)(1) to
h′(2)(h(1)(g))(1) by replacing h and/or g.7 This can be achieved by substituting
h in h(1)(g)(1) with λuλv.h′(2)(h(u)(v)), where u is a variable of type n and v
is a variable of type 〈n,e〉. To see this, note that:

(36) (λuλv.h′(2)(h(u)(v)))(1)(g)(1) (β -reduction of u)
= (λv.h′(2)(h(1)(v)))(g)(1) (β -reduction of v)
= h′(2)(h(1)(g))(1)

To make this work we need to first revise the translation of functional application.
Instead of stipulating that T(α(xi)) = T(α)(T(xi)) we now say that T(α(xi)) =
T(α)(A(T(xi))). This involves a conceptual shift that moves A from the definition
of abstraction to that of application. Second, adjusting the translation of abstraction
requires a definition by cases, one of them being iterated abstraction as discussed
above, the other being the simple case when α in λxiα is of type t. Here are our
final definitions for abstraction and application:

(37) Translation of abstraction (final version):

T(λxiα) =

{
λhλc[T(α)(h(i)(c))], if α has type t
λhλh′[T(α)(λuλvh(i)(h′(u)(v)))], else

(38) Translation of functional application (final version):
T(α(xi)) = T(α)(A(T(xi))), where

A(Ψ)(i)(c)(M)(g)( j) =
{

Ψ(F(c)(M)(g)), if i = j
c(M)(g)( j),else

An additional twist comes in with the inclusion of F and M in the definition
of A; this is motivated by a certain asymmetry between delayed quantification
and abstraction binding. In order to understand the problem, consider the trans-
lation of λx2P(x5,x2)(x1), which, as the reader may easily verify, turns out to
be λcλg′P(c( /0)(g′)(5),c( /0)(g′)(1)),—the correct result. The crucial point here
is that the continuation c blocks the application of g′ to the index 1, which is a
welcome result; otherwise the variable x1 would not be accessible for replacement
via beta conversion anymore. However, although the result at this point must not
be g(1), it is precisely this expression that would be required if x1 were a bound
variable, as would have been the case for example in λx2∃x1P(x5,x2)(x1). It is
precisely this effect that we are after in the context of unrestrained beta reduction.
We therefore must know at the point of substitution whether the index i belongs to

7 Since A has type 〈τ(Ψ),〈n,〈τ(g),τ(g)〉〉〉 it follows that A(Ψ) is of type 〈n,〈τ(g),τ(g)〉〉, so the
variable h is of type 〈n,〈τ(g),τ(g)〉〉, too.
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a bound variable, and this is precisely the information M provides. Thus, if Ψ in
(37) applies to F(c)(M)(g) and if Ψ is λg.g(k), then F will test whether or not
k is in M, and only if it is, the translation will turn out as g(k), otherwise it is
c(M)(g)(k), as illustrated by the derivation in (29).

4 Proof of equivalence

Given the translation function T as defined above, we now sketch a proof that for
each α ∈ L0 the target expressions T(α) is semantically equivalent to an expression
T(α ′), where α ′ results from α by unrestricted β -reduction. We first have to define
the syntactic operation that converts α to α ′.

(39) Definition (unrestricted substitution [x//y]α):
a. If α = P(t1, . . . , tn) is an atomic L0-formula (with P an n-ary relation

symbol), and t1, . . . , tn terms, then [x//y]P(t1, . . . , tn) = P(t ′1, . . . , t
′
n), where

for all t ′i with 1≤ i≤ n: t ′i =
{

y, if ti = x
ti, else

b. [x//y]¬α = ¬[x//y]α
c. [x//y](α ∧β ) = [x//y]α ∧ [x//y]β

d. [x//y]∀xiα =

{
∀xiα, if x = xi
∀xi[x//y]α, else

e. [x//y]λxiα =

{
λxiα, if x = xi
λxi[x//y]α, else

f. [x//y](α(z)) = [x//y]α([x//y]z)

(40) Definition (unrestricted reduction r):
a. if α is atomic L0-formula, then r(α) = α

b. if α = ¬α ′ is L0-formula, then r(α) = ¬r(α ′)
c. if α = β ∧ γ is L0-formula, then r(α) = r(β )∧ r(γ)
d. r(∀xiα) = ∀xir(α)
e. r(λxiα) = λxir(α)
f. r(λxiα(xz)) = [xi//xz]r(α)

Example:

(41) r(λx2λx3∀x2P(x2,x3)(x2)(x3)) (definition of r, clause f)
= [x2//x3]r(λx3∀x2P(x2,x3)(x2)) (definition of r, clause f)
= [x2//x3][x3//x2]r(∀x2P(x2,x3)) (definition of r, clause d)
= [x2//x3][x3//x2]∀x2r(P(x2,x3)) (definition of r, clause a)
= [x2//x3][x3//x2]∀x2P(x2,x3) (definition of substitution)
= [x2//x3]∀x2[x3//x2]P(x2,x3) (definition of substitution)
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= [x2//x3]∀x2P(x2,x2) (definition of substitution)
= ∀x2P(x2,x2)

(42) Lemma (reduction):
Let R be the smallest set of formulas of L0 such that:

a. if α is an atomic formula of L0, then α ∈ R
b. if α ∈ R, then ¬α ∈ R
c. if α ∈ R and β ∈ R, then α ∧β ∈ R
d. if α ∈ R, then λxiα ∈ R (for any xi)
e. if α ∈ R, then ∀xiα ∈ R (for any xi)

Then for all α ∈ L0 it holds that r(α) ∈ R.

(43) Proof of reduction lemma: by induction on the structure of α .
a. Base case: if α is an atomic formula, then r(α) = α (by definition of r),

and therefore α ∈ R (by definition of the set R)
b. Let r(α) ∈ R. Then r(¬α) = ¬r(α) (definition r), and since by ind.

hypothesis r(α) ∈ R we also have by definition of R that ¬r(α) ∈ R.
c. Let r(α) ∈ R and r(β ) ∈ R. Then by definition of r we have r(α ∧β ) =

r(α)∧r(β ), and since by ind. hypothesis r(α) ∈ R and r(β ) ∈ R we also
have by definition of R that r(α)∧ r(β ) ∈ R.

d. Let r(α) ∈ R. Then r(λxiα) = λxir(α) (definition r), and since by ind.
hypothesis r(α) ∈ R we also have by definition of R that λxir(α) ∈ R.

e. Let r(α) ∈ R. Then r(∀xiα) = ∀xir(α) (definition r), and since by ind.
hypothesis r(α) ∈ R we also have by definition of R that ∀xir(α) ∈ R.

f. Let r(λxiα)∈ R. Then by definition of r we have λxir(α)∈ R. Therefore,
r(α) ∈ R. Since substitution does not change membership in R, it follows
further that for any x,y: [x//y]r(α) ∈ R, and so also for xi, t, showing that
[xi//t]r(α) ∈ R, and by definition of r we have r(λxiα(t)) ∈ R.

What this essentially says is that every reduced formula r(α) is built from atomic
formulas using negation, conjunction, quantification and abstraction (but no appli-
cation). This is important in the proof of the next theorem.

We now turn to the formulation of the central theorem, showing that the
translation T(α) of an arbitrary L0-formula α is beta-equivalent to the translation
T(r(α)) of the reduced formula r(α):

(44) Theorem:
Let α be an arbitrary L0-formula. Then: T(α)≡β T(r(α))

(45) Proof: by induction on the structure of α .
a. Base case:

Let α be atomic formula. Then r(α) = α , and therefore T(α) = T(r(α)).
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b. Negation: Assume that T(α) ≡β T(r(α)). We show that T(¬α) ≡β

T(r(¬α)): T(¬α) =⇒ (definition T, negation) =⇒ λcλg¬[T(α)(c)(g)]
=⇒ (ind. hypothesis) =⇒ λcλg¬[T(r(α))(c)(g)] =⇒ (definition T) =⇒
T(¬r(α)) =⇒ (definition r) =⇒ T(r(¬α))

c. Conjunction: Assume that T(α) = T(r(α)) and that T(β ) = T(r(β )).
We show that T(α ∧ β ) = T(r(α ∧ β )): T(α ∧ β ) =⇒ (definition
of T) =⇒ λcλg[T(α)(c)(g)∧T(β )(c)(g)] =⇒ (ind. hypothesis) =⇒
λcλg[T(r(α))(c)(g)∧T(r(β ))(c)(g)] =⇒ (definition of T) =⇒ T(r(α)∧
r(β )) =⇒ (definition of r) =⇒ T(r(α ∧β ))

d. Quantification: Let α be such that T(α) = T(r(α)). Let xi be an arbitrary
variable. We show that T(∀xiα) ≡β T(r(∀xiα)): T(∀xiα) =⇒ (defini-
tion of T) =⇒ λcλg∀yi[T(α)(λM.F(c)(M+ i))(g[i/yi])] =⇒ (induction
hypothesis) =⇒ λcλg∀yi[T(r(α))(λM.F(c)(M+ i))(g[i/yi])] =⇒ (defi-
nition of T) =⇒ T(∀xir(α)) =⇒ (definition of r) =⇒ T(r(∀xiα))

e. Abstraction: Assume that T(α) = T(r(α)). We show that
T(λxiα) = T(r(λxiα)).
First case: α is of type t: T(λxiα) =⇒ (definition T)
=⇒ λhuλc[T(α)(hu(i)(c))] =⇒ (ind. hypothesis) =⇒
λhuλc[T(r(α))(hu(i)(c))] =⇒ (definition of T) =⇒ T(λxir(α))
=⇒ (definition of r) =⇒ T(r(λxiα))
Second case: α is a λ -term: T(λxiα) =⇒ (definition T) =⇒
λhuλhvT(α)(λ jλ f .hu(i)(hv( j)( f ))) =⇒ (induc. hypothesis) =⇒
λhuλhvT(r(α))(λ jλ f .hu(i)(hv( j)( f ))) =⇒ (definition T) =⇒
T(λxir(α)) =⇒ (definition r) =⇒ T(r(λxiα))

f. Application: Assume that T(λxiα) = T(r(λxiα)), for arbitrary xi and α .
We show that for arbitrary xz it holds that T(λxiα(xz)) = T(r(λxiα(xz)))
T(λxiα(xz)) =⇒ (definition T) =⇒ T(λxiα)(A(T(xz))) =⇒ (ind.
hypothesis) =⇒ T(r(λxiα))(A(T(xz))) =⇒ (definition T) =⇒
T(r(λxiα)(xz)) =⇒ (definition r) =⇒ T(λxir(α)(xz)) =⇒ (lemma (46))
=⇒ T([xi//xz]r(α)) =⇒ (definition of r) =⇒ T(r(λxiα(xz)))

(46) Lemma:
For arbitrary xi,xz,α it holds that T(λxir(α)(xz)) = T([xi//xz]r(α))

For reasons of space we cannot include the proof of this lemma. A
complete and longer version of this paper can be downloaded from
www.s395910558.online.de/Downloads/beta-reduction-12.pdf and wwwhomes.uni-
bielefeld.de/uklein/publications/beta-reduction-12.pdf.
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5 Conclusion

Semantic reconstruction via β -reduction inherits (from the definition of β -reduction
of the λ -calculus) the restriction that a term t can be substituted for a variable x
only if t contains no variable that would become bound as a result of substitution.
Given that the alternative approach via syntactic reconstruction is not without its
own problems, we conclude that it is desirable to somehow overcome this restriction
on semantic reconstruction, in order to allow for semantic reconstruction even in
cases where a bound pronoun occurs outside the scope of its binder, for example
when it is part of a topicalized noun phrase (a phenomenon we dubbed delayed
quantification).

In this paper we propose a way of doing so by translating each expression α

of the language L0 of predicate logic (with λ -abstraction) into an expression T(α)
of a new language L1. Crucially, the translation T is set up such that the formulas
T(α) contain no free variables. In particular, a variable xi of L0 is translated
as λg.g(i) with g a function from entities of type n (i.e., integers) to entities of
type e. Since the term λg.g(i) contains no free variables, it can be substituted
for any variable without restriction. The main difficulty was in coming up with
a novel (non-standard) semantics for abstraction, application and quantification
which accounts for delayed abstraction as well as delayed quantification, and thus
allows for pronouns to be bound even if they occur outside the syntactic scope of
the binder. In the final section we introduce the notion of unrestricted reduction
r (e.g., r(λx2∀x1P(x1,x2)(x1)) = ∀x1P(x1,x1)) and show that the translation of a
formula α ∈ L0 is equivalent to the translation of its unrestricted reduction r(α).
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