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Abstract

Throughout the last couple of years multiple imputation (MI) has become a pop-

ular and widely accepted method to address the missing data problem. However, MI

solutions for incomplete count data are still not available in most statistical packages.

We present count data imputation add-ons for the popular mice software in R (van

Buuren & Groothuis-Oudshoorn, 2011). Our add-on functions allow to create multiple

imputations of incomplete ordinary and overdispersed count data following the chained

equations approach of creating multiple imputations (cf. Raghunathan, Lepkowski, van

Hoewyk, & Solenberger, 2001; van Buuren & Groothuis-Oudshoorn, 2011). We further-

more present evaluations of these solutions regarding their ability to produce unbiased

parameter estimates and standard errors as well as their ability to cope with missing

not at random mechanisms.
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1 Introduction

Throughout the last couple of years, multiple imputation has become an increasingly

popular method to handle the missing data problem. Together with full information

maximum likelihood estimation (FIML), it has been enumerated among the state of

the art procedures to analyze incomplete data (Schafer & Graham, 2002). However,

multiple imputation software at the moment has very limited capabilities to impute

incomplete count data. In R, for example, the mi package allows to generate multi-

ple imputations under the Poisson model (Su, Gelman, Hill, & Yajima, 2009). There

are also other software solutions for statistical packages like IVEware for SAS or ice

for STATA that support basic count data imputation procedures. However, more ad-

vanced models like zero-inflation models or multilevel count data models are currently

not supported. To remedy this lack of general count data support, we developed a com-

prehensive count data imputation package called countimp (Kleinke & Reinecke, 2011),

which allows to create multiple imputations of incomplete ordinary, overdispersed, zero-

inflated and multilevel count data. The package is available from the first author. In

this paper we focus on ordinary and overdispersed count data.

We begin by giving a brief introduction to missing data and multiple imputation

in general and a brief introduction to the chained equations MI approach. We then

introduce our imputation procedures for ordinary and overdispersed count data and

present two evaluation studies: The first one generally tests our algorithms’ ability to

plausibly impute missing values under different scenarios and to yield widely unbiased

parameter estimates. The second study tests the algorithms’ sensitivity to missing not

at random processes, a problem that typically affects any missing data procedure and

that generally endangers the correct estimation of statistical parameters. Finally, we

conclude with a discussion of our findings and name fruitful avenues for future research.

2 Theoretical Background

2.1 Missing Data

Missing data are a nuisance. Whether or not missing data may bias estimations of

population quantities depends on the interaction of three factors (Schafer, 1997a): the

number of missing values in the data set, the missing data procedure that is being used

and the missing data mechanism. Firstly, it is quite easily understandable that the more

information is unobserved and thus the more information has to be estimated the more

uncertain one can be about one’s statistical inferences. In fact, the more values are

missing, the larger could be the bias in parameter estimates. Secondly, there are better

and worse procedures to deal with missing data, depending on how well the respective
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procedure is suited to estimate population parameters and standard errors correctly.

For an overview and an evaluation of simple and more sophisticated procedures, see

Schafer & Graham (2002) or Kleinke, Stemmler, Reinecke, & Lösel (2011) for example.

Thirdly, the randomness or non-randomness of the missing data process determines,

how severe bias might be and which missing data procedure should be used: Rubin

(1976) introduced important terminology to describe the randomness of missing data

processes. He regards the missingness of a value as a probabilistic phenomenon, which

means that a missing value occurs in the data set with a certain probability. Let

Y be a n × p data matrix and let R be a matrix with the same dimensions as Y ,

indicating for every value in Y , if it is missing or not. Y can be split into an observed

part Yobs and an unobserved part Ymis. P (Y ) is the distribution of Y , depending

on unknown parameters θ. P (R) denotes the distribution of R, depending on Yobs,

Ymis and unknown parameters ξ. Of special interest are the possible distributions of

R, the so-called missing data processes or missing data mechanisms. Rubin (1976)

distinguishes three mechanisms:

P (R|Y, ξ) = P (R|ξ)

P (R|Y, ξ) = P (R|Yobs, ξ)

P (R|Y, ξ) = P (R|Yobs, Ymis, ξ)

In the first case, missingness does not depend on observed or unobserved infor-

mation. The occurrence of a missing value is a completely random phenomenon and

missing values are therefore called missing completely at random (MCAR), which means

that missing values can be regarded as a random sample of Y . Note that all ad hoc

missing data solutions like listwise or pairwise deletion or unconditional mean impu-

tation require the mechanism to be MCAR to produce unbiased parameter estimates.

The second mechanism allows missingness to depend on Yobs. This mechanism is called

missing at random (MAR): After controlling for observed information Yobs, missingness

in fact is random. FIML and MI procedures typically allow missingness to be MAR. In

the third case, missingness depends on unobserved information. Missing information in

this case is very hard or even impossible to estimate. This mechanism is called missing

not at random (MNAR). Note that there is no way to diagnose a MNAR mechanism.

One has to thoroughly discuss, if it is likely that statistical estimates are distorted by

MNAR mechanisms and to what extent they are biased. Van Buuren & Groothuis-

Oudshoorn (2011) for example demonstrate, how a MNAR sensitivity analysis can be

conducted in that regard. Although multiple imputation procedures had been designed

to work under MCAR and MAR, it has been argued that they are to some extent robust

to mild violations of the MAR assumption (e.g. Schafer, 1997a). If MNAR mechanisms
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are feared to be present in one’s empirical data, the general advice for the practitioner

is to find as many variables as possible that are strongly related both to variables with

missing values and to missingness itself and include them in the imputation model.

This makes missing information to some extent more predictable and thus the miss-

ing data mechanism more likely to be MAR (Collins, Schafer, & Kam, 2001; Graham,

2009; Schafer, 1997a; Schafer & Graham, 2002). Note that also special MNAR tech-

niques have been developed. However, they require extensive modeling and guessing

(typically both Y and R have to be modeled and some untestable assumptions have

to be made). A brief overview of MNAR procedures is given in Schafer (1997a). More

thorough introductions and discussions may be found in Enders (2010, 2011), Hedeker

& Mermelstein (2011) and van Buuren (2011). Most practitioners however would want

to impute under the MAR assumption using a rich imputation model.

2.2 Multiple Imputation in a Nutshell

The basic idea of multiple imputation is that each missing value is replaced by not

only one, but by m > 1 plausible values. Typically between 5 and 20 imputations are

created. The resulting m completed data sets are then analyzed separately and the m

statistical results are combined into one overall result using Rubin’s (1987) formula for

MI inference. While the estimated population quantity is simply the mean of all m pa-

rameter estimates, standard errors are calculated using the combination of two variance

components: the variation between and within the imputed data sets. This combined

variation is supposed to reflect the additional uncertainty in parameter estimation due

to missing data in an adequate way. Typically multiple imputation produces parame-

ter estimates that are more accurate than estimates from traditional single imputation

procedures like unconditional mean imputation or other ad hoc procedures like case

deletion, especially when values are not missing completely at random (Little & Rubin,

1987; Schafer & Graham, 2002; Kleinke et al., 2011). The most commonly used frame-

works for creating multiple imputations are joint modeling (JM, e.g. Schafer, 1997a,b)

and sequential regression multiple imputation (also called MI by chained equations, e.g.

Raghunathan et al., 2001; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006;

van Buuren, 2007). Introductions to joint modeling may be found in Allison (2001);

Graham (2009); Graham, Cumsille, & Elek-Fisk (2003); Schafer (1997a); Schafer &

Graham (2002), an introduction to the sequential regression framework is given by van

Buuren & Groothuis-Oudshoorn (2011). Joint Modeling has a strong theoretical foun-

dation in Bayesian statistics. However, the procedure makes it necessary to specify

a joint probability model for the data set as a whole, which is sometimes unpractical

or impossible in real life (Gelman & Raghunathan, 2001). Currently existing software

allows to create imputations under the multivariate normal model (norm) for approxi-
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mately multivariate normal data, the log-linear model for data sets that contain only

categorical data (cat), the general location model for data sets that contain both con-

tinuous and categorical data (mix) and under a multivariate linear mixed effects model

for clustered or panel data (pan) (Schafer, 1997a,b). Note however that the pan pro-

cedure only supports linear relationships and only two hierarchical levels. Generalized

linear mixed effects models are not supported.

A more flexible alternative to JM, especially in cases where no suitable multivariate

distribution may be specified is the sequential regressions framework. Instead of trying

to find a joint model, each incompletely observed variable is modeled separately.

2.3 Multiple Imputation by Chained Equations

Multiply imputing data with the sequential regressions approach, which is also called

fully conditional specification (FCS), or multiple imputation by chained equations

(MICE) (van Buuren & Groothuis-Oudshoorn, 2011), means that for each incompletely

observed variable Yj in data set Y , a conditional model P (Yj |Ys, θj) is specified, with

Ys being a subset of Y containing some or all of the variables in Y except from Yj .

This subset is used to model Yj and predict missing information in Yj . Having specified

these separate models, imputations of missing values in Yj are then generated from

P (Yj |Ys, θj), assuming that values are missing at random in the sense of Rubin (1976).

The actual imputation process is a three-step process: First, the posterior distribution

of parameters θ is calculated based on the observed data: P (θ|Yobs). Secondly, new

parameters θ∗ are drawn from P (θ|Yobs). Thirdly, imputations Y ∗ are generated from

P (Ymis|Yobs, θ∗). Steps 2 and 3 are repeated m times to obtain the m imputations.

From a mathematical and computational point of view, the problem is to determine

the distributions to draw from. The mice software in R (van Buuren & Groothuis-

Oudshoorn, 2011), which we use as basis for our count data imputation procedures,

approximates this problem by iteratively sampling from the conditional distributions

using a Gibbs sampler:

θ
∗(t)
1 ∼ P (θ1|Y obs

1 , Y
(t−1)
2 , . . . , Y (t−1)

p )

Y
∗(t)
1 ∼ P (Y1|Y obs

1 , Y
(t−1)
2 , . . . , Y (t−1)

p , θ
∗(t)
1 )

...

θ∗(t)p ∼ P (θp|Y obs
p , Y

(t)
1 , . . . , Y

(t)
p−1)

Y ∗(t)p ∼ P (Yp|Y obs
p , Y

(t)
1 , . . . , Y (t)

p , θ∗(t)p ).

obs and mis refer to the observed and missing data respectively, t denotes the itera-

tion number, and p stands for the number of variables in the imputation model. Each

iteration consists of one cycle through all Yj . mice executes these iterations m times in
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parallel to generate the m imputations. One theoretical disadvantage of using chained

equations could be that from a theoretical point of view the specified conditional densi-

ties can be incompatible and the implicit joint distribution to which the Gibbs sampler

attempts to converge may not exist. However, despite this lack of theoretical cor-

roboration, chained equation approaches seem to work well and imputations can be

regarded as plausible (van Buuren et al., 2006; Horton & Lipsitz, 2001; Yu, Burton, &

Rivero-Arias, 2007). The interested reader may find further implementations of chained

equation approaches, applications and discussions in the following references: Brand

(1999); Gelman (2004); Heckerman, Chickering, Meek, Rounthwaite, & Kadie (2001);

Kennickell (1991); Raghunathan et al. (2001); Rubin (2003); van Buuren (2007); van

Buuren, Boshuizen, & Knook (1999).

2.4 The mice Software in R

Before we introduce our count data imputation procedures we give the reader some

basic information about the mice software in R, which is needed to call our functions.

Here, we only focus on the information that is absolutely necessary for the reader and

practitioner to understand, how our procedures work and how mice is used to create

the imputations. We assume that the readers are already familiar with the R language.

Otherwise, a comprehensive introduction to R may be found in Adler (2010). The mice

software is described in details in van Buuren & Groothuis-Oudshoorn (2011).

When calling the main function mice() to multiply impute incomplete data, the

user can specify certain arguments:

mice(data, m = 5,

method = vector("character",length=ncol(data)),

predictorMatrix = (1 - diag(1, ncol(data))),

visitSequence = (1:ncol(data))[apply(is.na(data),2,any)],

post = vector("character", length = ncol(data)),

defaultMethod = c("pmm","logreg","polyreg"),

maxit = 5,

diagnostics = TRUE,

printFlag = TRUE,

seed = NA,

imputationMethod = NULL,

defaultImputationMethod = NULL

)

The imputation procedure with which to impute missing data in a certain variable is

specified via the method argument. A not exhaustive overview of imputation methods
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that are already implemented in mice is given in Table 1. The procedures are all

described in detail in van Buuren & Groothuis-Oudshoorn (2011). method must be a

character vector of length equal to the number of variables in the data set, indicating

the missing data procedures with which each variable is to be imputed1. Completely

observed variables have method "", indicating that they need not be imputed. The

command imp<-mice(data,method=c("","norm","pmm","logreg")) would multiply

impute the data stored in the object data and store the results in an object called imp.

The first variable in that data set would not be imputed, the second one would be

imputed using Bayesian linear regression (norm), the third variable would be filled in

by predictive mean matching (pmm), and the last one by Bayesian logistic regression

(logreg). The respective imputation functions are stored internally under the name

mice.impute.name, where name identifies the respective imputation function. Thus

specifying "logreg" as imputation method for a variable internally calls the function

mice.impute.logreg(). This is important to know when programming self-written

imputation procedures. That these can be called by mice(), they have to be called

mice.impute.name, where the name part can be any combination of characters. Our

count data imputation functions are called mice.impute.pois and mice.impute.qpois

to impute missing data under the Poisson or Quasi-Poisson model. These functions can

be called by setting the respective entry in the method vector to "pois" or "qpois".

Table 1: Overview of imputation procedures in MICE

Name Description Scale
pmm predictive mean matching numeric
norm Bayesian linear regression numeric
2l.norm 2-level linear mixed effects model numeric
logreg Bayesian logistic regression factor (2 levels)
polyreg polytomous regression factor (> 2 levels)
sample random sample from observed data any

Selecting the subsets of predictors for each incompletely observed variable is done

via the predictorMatrix argument. predictorMatrix must be a rectangular matrix

of dimensions equal to the number of variables in the data set. An example is shown

in Table 2. Each row i in that matrix denotes the imputation model of variable Vi.

The zeros and ones indicate (0 = no; 1 = yes), if the respective variable Vj is used to

predict missing data in Vi. Using the information from the predictorMatrix, mice

automatically creates three objects that are passed on to the mice.impute.name sub-

1If method is not specified the defaultMethod is used, which is pmm, predictive mean matching for con-
tinuous data, logreg, i.e. Bayesian logistic regression for factors with two levels and polyreg, polytomous
logistic regression for factors with more than two levels
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function: y, x and ry. y is an incomplete data vector of length n, the dependent variable

in the imputation regression model and x is an n×p matrix of predictors, those variables

that were specified via the respective row in the predictorMatrix. ry is the response

indicator of vector y, indicating if a value in y has been observed (ryi = TRUE), or not

(ryi = FALSE).

Table 2: Specification of imputation models in MICE: The predictor matrix.

V1 V2 V3 V4 V5 V6 V7
V1 0 1 1 1 1 1 1
V2 1 0 1 1 1 0 1
V3 0 0 0 0 0 0 0
V4 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 0
V6 0 0 0 0 0 0 0
V7 0 0 0 0 0 0 0

Note. Each row i denotes the imputation model for incompletely observed variable Vi in the
data set. The zeros and ones indicate, if variable Vj, with j ∈ 1, . . . k, where k is the number
of variables in the data set, is part of the imputation model of Vi (1 = yes, 0 = no).

2.5 Count Data Analysis and Imputation

We present multiple imputation procedures for incomplete count data within a sequen-

tial regression (chained equations) MI framework. The imputation procedures are based

on a Poisson or Quasi-Poisson regression model. For a comprehensive overview on count

data models, see Zeileis, Kleiber, & Jackman (2008). We only give a brief overview:

The classical way to analyze count data is to fit a Poisson model under the general-

ized linear modeling (GLM) framework (Nelder & Wedderburn, 1972): GLMs describe

the dependence of a scalar variable yi on a vector of regressors xi. The conditional

distribution of yi|xi is a linear exponential family with probability density

f(y;λ, δ) = exp

(
yλ− b(λ)

δ
+ c(y, δ)

)
,

with λ being the canonical parameter that depends on xi via a linear predictor, δ being

a dispersion parameter, and b(·) and c(·) being functions that determine, which member

of the family (e.g. Poisson) is used. The mean is determined by E[yi|xi] = µi = b′(λi),

the variance by V [yi|xi] = φb′′(λi). The dependence of E[yi|xi] = µi on xi is specified

via a link function g(·). The classical poisson model

f(y;µ) =
exp(−µ)µy

y!
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with link function g(µ) = log(µ) assumes that the variance V (µ) is equal to the mean

µ (thus dispersion parameter δ has the value 1).

However, the restriction of equidispersion (that the variance is equal to the mean)

is often violated in real life. Very often empirical data are overdispersed, which means

that the variance is larger in comparison to the mean. Analyzing overdispersed data

using classical Poisson regression leads to an underestimation of the variation in the

data and model based tests are thus more liberal (cf. Zeileis et al., 2008). To end up

with proper parameter estimates and standard errors, some adjustments need to be

made. One popular solution is to estimate dispersion parameter δ from the data rather

than fixing it to 1. In the S and R languages for statistical computing this can be

done by fitting a quasipoisson model, which is identical to an ordinary Poisson model

except that δ is estimated from the data (cf. McCullagh & Nelder, 1989).

Our imputation procedures for ordinary and overdispersed count data are based on

Poisson and Quasi-Poisson regression. However, we do not impute deterministically,

i.e. we do not directly return the fitted value. This would cause all imputations to lie

directly on the regression line, which leads to an under-estimation of standard errors.

Instead, we follow the stochastic imputation approach described in Rubin (1987). In

his Bayesian logistic regression approach, Rubin (1987) fits a logit model to the data

and computes parameters θ̂, the posterior mean and V̂ (θ̂), the posterior variance of θ.

θ̂ is estimated by maximum likelihood and is defined by

Πi∈obsf(Yi|Xi, θ̂) ≥ Πi∈obsf(Yi|Xi, θ) ∀ θ,

whereas V̂ (θ̂) is defined by the negative inverse of the second derivative matrix of the

log-posterior distribution at θ = θ̂

V̂ (θ̂) = −
[

∂2

∂θ∂θ
log Πi∈obsf(Yi|Xi, θ)

∣∣∣∣
θ=θ̂

]−1
.

Having calculated θ̂ and V (θ̂), new parameters θ∗ are drawn from N(θ̂, V̂ (θ̂)). For

every missing case the fitted value pi = logit−1(Xiθ
∗) is computed. Finally independent

uniform (0,1) random numbers ui are drawn, with i ∈ mis. If ui > pi the imputed value

is yi = 0, else yi = 1. These steps are repeated m times with new draws of random

numbers to end up with m imputations of each missing value.

Analogous, our Poisson imputation approach fits a Poisson model and calculates θ̂

and V̂ (θ̂), the posterior mean and the posterior variance of θ respectively. Then, new

parameters θ∗ are drawn from N(θ̂, V̂ (θ̂)). With these new parameters, predicted scores

are computed for each participant with missing values in y: pi = exp(Xiθ
∗). Finally,

imputations are simulated from yi ∼ Pois(pi).

The quasi-poisson imputation approach is quite similar. The only difference to
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Poisson imputation is that we use the quasipoisson family instead of the poisson

family and imputations are simulated from yi ∼ NB(µ = pi; size = pi/(δ − 1)), if

the estimate of δ is larger than 1 and yi ∼ Pois(pi), if δ ≤ 1. The negative binomial

(NB) distribution is well suited to simulate overdispersed count data. For further

information about the negative binomial distribution and different parametrizations,

see Hilbe (2007). If data are equidispersed, imputations can as well be drawn directly

from the Poisson distribution. Underdispersion is quite rare in empirical data and not

supported by either the Poisson or NB distribution.

We now present two evaluation studies regarding these procedures’ ability to produce

plausible imputations, unbiased parameter estimates and standard errors (Study 1) and

their robustness to MNAR mechanisms (Study 2).

3 Study 1: Estimation Precision of Poisson and

Quasi-Poisson imputation

We tested the Poisson and Quasi-Poisson imputation approach in a couple of Monte

Carlo simulations. We first simulated incomplete Poisson data following either a MCAR

or MAR pattern with 50% missing values in the dependent count variable. Secondly,

we simulated incomplete overdispersed count data, again following either a MCAR or

MAR pattern with 50% missing values in the dependent variable. We evaluated, how

Poisson and Quasi-Poisson imputation were able to cope with incomplete ordinary and

overdispersed count data.

3.1 Hypotheses

We assume that multiple Poisson imputation only produces proper imputations when

the variable in fact is approximately Poisson distributed. We also hypothesize that

when data are overdispersed, imputations by the Poisson method will no longer be ad-

equate and that Quasi-Poisson imputation produces far better results than the Poisson

approach.

3.2 Monte Carlo Simulations

In the first simulation, we created 1000 data sets with sample sizes N = 200, N = 500,

and N = 1000 respectively, each containing four variables, one dependent variable y,

and three predictors x1, x2, and x3. Continuous variables x1–x3 were drawn from

standard normal distributions, y was drawn from a poisson distribution

yi ∼ Pois(exp(β0 + β1x1i + β2x2i + β3x3i))
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with parameters β0 = 1.00, β1 = 0.50, β2 = −0.75, and β3 = .25.

The design of the second simulation was identical to the first one except that the

count variable y was drawn from a negative binomial distribution

yi ∼ NB(µi; size =
µi
δ − 1

)

with means µi = exp(1 + 0.50x1i − 0.75x2i + 0.25x3i) and dispersion parameter δ = 2.

In both simulations we then deleted values. 50% of all data in y were made missing,

x1–x3 were completely observed. Under the MCAR conditions, cases to receive a miss-

ing value were a random sample of all cases. In the MAR conditions, missing values in

y were introduced according to the following rule:

P (yi ∈ mis) =

{
.2 ∗ .5 = .1 if x1i < x̄1

.8 ∗ .5 = .4 if x1i > x̄1
,

with x1 being the “cause of missingness” and x̄1 denoting the mean of x1. Thus the

probability of a certain yi to be missing was .1 if the corresponding x1 value was below

x̄1 and .4, if it was above the mean.

In each simulation, we ended up with 1000 data sets with sample size N = 200,

1000 data sets with sample size N = 500 and 1000 data sets with sample size N = 1000

that followed a MCAR pattern, and with the same kind of data sets that followed the

described MAR pattern.

3.3 Missing Data Imputation and Data Analysis

We imputed incomplete Poisson data using our multiple Poisson imputation routine.

Incomplete overdispersed count data were imputed using both the Poisson method and

the Quasi-Poisson procedure. We hypothesized that in the latter case Quasi-Poisson

imputation would yield better results than the Poisson method. We then fitted a

generalized linear model y = β0 + β1x1 + β2x2 + β3x3 + ε, using the quasipoisson

family of distributions with a log link to get an estimation for dispersion parameter δ

in addition to the other parameter estimates.

3.4 Quality Criteria

To evaluate the quality of our missing data procedures we followed criteria established

by Neyman & Pearson (1933) and Neyman (1937), which were used in previous missing

data research (e.g. Schafer & Graham, 2002; Kleinke et al., 2011). Let Q be the pop-

ulation parameter of interest and Q̂ the estimate of Q based on the sampled data and

based on the applied missing data procedure. The quality of the missing data procedure
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can be deemed good if the difference between the true parameter and the estimated

parameter is small. Bias is defined as the difference between Q and the average of Q̂

across the replicated samples and should be close to zero. Not only should the bias in

the parameter estimates be as small as possible, also measures of uncertainty need to

be accurate. Too large standard errors are undesirable, as the risk of a Type II error

increases. Underestimation of standard errors is also a serious problem, as confidence

intervals might be too narrow to include the true parameter. Coverage rate is defined

as the percentage of confidence intervals that cover the true parameter. Significant bias

in calculations of standard errors shows up as a reduction in coverage rates. Coverage

rate in fact is a useful quantity that indicates both bias in parameter estimation and

bias in measures of uncertainty. Significant bias in parameter estimation might also

indicate a decrease of coverage, because the intervals would be too far to the left or too

far to the right to cover the true parameter. A missing data procedure is good if the

95% confidence intervals cover the true parameter with probability close to 95%. Lower

coverage rates increase the probability of Type I error. We deem coverage below 90%

as seriously low, as it corresponds to a doubling of the nominal error rate (cf. Schafer

& Graham, 2002).

In sum, bias should be close to zero and standard errors should be reasonably small

with corresponding coverage above 90%.

4 Results

Results regarding multiple Poisson imputation are displayed in Table 3. As can be seen,

coverage is always close to 95% and parameter estimates are close to the “true” popula-

tion values regardless of the sample size and regardless of the missing data mechanism

(MCAR or MAR).

However, if the data are overdispersed, using multiple Poisson imputation yields

suboptimal estimates, as can be seen in Table 4. Regression coefficients are still being

estimated quite well with somewhat larger standard errors in comparison to the first

simulation. Consistency in parameter estimation was not so good, as most coverage

rates were below 90%, however still in the high eighties. Note that dispersion parameter

δ was severely underestimated by around 25%. Again, results are independent from

sample size and the simulated missing data mechanism. Quasi-Poisson imputation was

supposed to produce better results with overdispersed data, and this is supported by our

simulation results. Results regarding Quasi-Poisson imputation are displayed in Table

5. As can be seen, bias in parameter estimation is always negligible with corresponding

coverage rates well over 90%. Dispersion is also always estimated well.
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5 Study 2: Robustness to MNAR Processes

5.1 Overview and Hypotheses

The purpose of the second study was to evaluate the algorithms’ robustness to missing

not at random processes. Like in Study 1, we looked at two scenarios, one with Poisson

data and one with NB data. Typically, MI procedures were designed for MAR mech-

anism, but are believed to be – at least to some extent – robust to violations of the

MAR assumption (e.g. Schafer, 1997a). As bias in parameter estimation both depends

on the missing data mechanism and the amount of missing data, we assumed that our

algorithms can cope with MNAR mechanisms if not too many data are missing.

Secondly, inclusion of strong auxiliary variables may buffer bias introduced by

MNAR mechanisms as they make the mechanism a little bit more MAR (Collins et

al., 2001). Thus we assumed that having strong auxiliary variables in the data set will

buffer the ill effects of MNAR mechanisms more strongly than having only weak pre-

dictors in the data set. Thus, having a large quantity of missing data, a strong MNAR

mechanism, and only few or weak auxiliary variables was assumed to be the worst case

and assumed to lead to severe biases.

5.2 Method

In the first scenario we created a Poisson distributed dependent variable y and three

normally distributed predictors x1–x3. We varied the sample size N = 200, N = 500

and N = 1000 and the percentage of missing values pmis in y respectively, with pmis =

5%, pmis = 10%, pmis = 20% and pmis = 30%. Population parameters were set to

β0 = 1.00, β1 = 0.50, β2 = −0.75, and β3 = .25.

To simulate a MNAR mechanism we chose y itself as the “cause of missingness” Z.

The simulated MNAR mechanism was quite strong with missingness probabilities

P (yi ∈ mis) =

{
pmis if yi < ȳ

0 if yi > ȳ
.

Again, like in Study 1, we simulated 1000 data sets in each condition. The incomplete

data sets were multiply imputed and generalized linear models using the quasipoisson

family were fitted.

The second scenario was identical to the first one, except that we simulated overdis-

persion and drew y from a negative binomial distribution:

yi ∼ NB(µi = exp(1 + 0.15x1i − 0.20x2i + 0.25x3i), size =
µi
δ − 1

),

with δ = 2. We also chose somewhat weaker predictors in comparison to the first sce-

13



nario. Predictors that are strongly related to y and / or that are related to missingness

may buffer bias due to MNAR processes (Collins et al., 2001). The question is, how

robust our algorithms are, if only variables with weak or moderate relations to y are

present in the data set.

5.3 Results

Results of the first scenario are summarized in Table 6, results regarding the second

scenario are displayed in Table 7. In scenario 1, with only 5% missing values, param-

eter estimates were unbiased and coverage rates lay well within the acceptable range

regardless of the sample size. With 10% missing values, we observed about 2% bias in

estimations of the intercepts. Intercepts were estimated higher than they actually are.

With increasing sample sizes (N = 500 and N = 1000) coverage regarding intercept

estimates fell below the 90% line. The lowest coverage rate was 84.4%. With 20%

missing data in y, bias regarding intercepts increased to 4% – 5% and further climbed

up to 8%, when 30% of cases in y were unobserved. Depending on the sample size, cov-

erage ranged from 84.6% – 55.2%, when 20% of values were missing and between 72.7%

and 21.4%, when 30% values were missing. This is clearly an unacceptable coverage

rate. Note that when more than 20% values in y were unobserved, also some regression

coefficients of the completely observed predictors were wrongly estimated.

With regard to the first scenario, we can conclude that with small amounts of

missing data, bias due to MNAR processes is negligible and our proposed procedures

might be used. If up to 10% cases are missing and the underlying MNAR mechanism

is really strong, some but still rather small bias is likely. If much more than 10% of

cases are missing, rather severe mis-estimation may occur. In that case, we would

urge researchers to conduct a thorough MNAR sensitivity analysis (for details, see

van Buuren & Groothuis-Oudshoorn, 2011) and discuss statistical results with utter

caution.

We now turn to the results of the second scenario. With only 5% missing values

in y and weaker predictors in comparison to the first scenario, we observed about 3%

bias in estimations of intercepts regardless of the sample size. However, standard errors

decreased with increasing sample size, which lead to quite noticeable undercoverage of

80.3% under a sample size of N = 1000. Dispersion parameter δ was estimated quite

okay with only −1.5% bias. Things looked quite differently, when the percentage of

missing values increased: With 10% missing cases, we observed 6% bias in estimations

of intercepts and this rapidly increased to 13%–14% under 20% missings and 21%–

23% with 30% missings, which is unacceptably large. The corresponding coverage

rates ranged from 87.6%–40.9%, depending on the sample size, with 10% missings

and between 50% and 0.4% with 20% missings and between 12.3% and 0% with 30%
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missings, which implies that this missing data procedure does not work under theses

conditions. Analogous, mis-estimation of δ was negligible with 5% missings (Bias =

−1.5%), but got more severe, the more values were unobserved: Bias rapidly increased

from −2.5% to −6.5% and finally to −12.5% under 10%, 20% and 30% missing values

respectively.

We conclude, that our missing data procedures might be used under MNAR, when

the missing data problem is only minor (around 5%). If more values are missing, the

missing data mechanism is really strong and only weak predictors are present in the

data set, rather severe biases are to be expected.

6 Discussion

We have tested two multiple imputation procedures for incomplete count data that

work as an add-on to the mice software in R: Multiple Poisson imputation for variables

that are approximately Poisson distributed, and multiple Quasi-Poisson imputation

for overdispersed count data. Our simulations have shown that incompletely observed

variables that in fact follow the assumed distributions, can very well be imputed with

our procedures.

However, empirical count data do more or less deviate from these theoretical models

and we would assume that the more empirical count data deviate from these statistical

convenient distributions, the more inadequate imputations will become and the more

bias is to be expected. Our algorithms are expected to work well, if the model fit is

good. If the Poisson or Quasi-Poisson model as an imputation model for count data

is a misspecified imputation model, then the imputations can be expected to be not

proper anymore and the inferences of scientific interest may be biased. A semi- or non-

parametric imputation approach could be a solution in this case. Further simulations

need to clarify, to what extent our procedures are robust in that regard.

Another point that needs to be addressed in the near future is the problem of in-

complete predictors. In our simulations we had a complete set of predictors. This is

seldom the case in empirical data. mice handles this problem by repeatedly cycling

through each incompletely observed variable, imputing it and then using the filled-in

information to estimate the next variable and so on. Imputation models are specified

on a variable to variable basis and imputation results are expected to be good, if theo-

retically and mathematically sound models are specified and good predictors have been

found (cf. Collins et al., 2001). Nevertheless, if there is a huge quantity of missing data

in the predictors as well, there is not much substance to estimate missing information

and bias is to be expected. A fruitful avenue for future research is to see, if semi- or

nonparametric procedures are more robust in that regard. Generally, future simula-
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tions should show how much information must be present in the data – or how much

missing information may be allowed to still obtain reasonable and justifiable parameter

estimates.

Furture evaluations should also look at more complex models with higher order

relationships and interactions.

A further problem that often occurs when analyzing count data are behavioral events

that seldom occur. This leads to distributions with large amounts of zeros. Such zero-

inflated data are typically analyzed with special models like the zero-inflated Poisson

model for example (Lambert, 1992). The procedures presented here cannot handle

excess zeros. This problem, as well as imputation of multilevel count data is addressed

by other imputation procedures in the countimp package (Kleinke & Reinecke, 2011).
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Table 3: Performance of multiple Poisson imputation with Poisson distributed data

MCAR MAR
β0 β1 β2 β3 δ β0 β1 β2 β3 δ

N = 200 Q̂ 0.99 0.50 -0.75 0.25 1.00 0.99 0.50 -0.75 0.25 1.00
SE 0.07 0.05 0.06 0.05 0.08 0.06 0.06 0.06
CR 93.90 95.00 94.30 96.00 94.60 93.80 93.80 95.30

N = 500 Q̂ 1.00 0.50 -0.75 0.25 1.00 0.99 0.50 -0.75 0.25 1.01
SE 0.04 0.03 0.03 0.03 0.08 0.06 0.06 0.06
CR 96.10 94.00 95.10 95.60 94.70 95.50 94.60 95.30

N = 1000 Q̂ 1.00 0.50 -0.75 0.25 1.00 0.99 0.50 -0.75 0.24 1.00
SE 0.03 0.02 0.02 0.02 0.08 0.07 0.06 0.06
CR 94.90 95.10 92.80 93.80 94.30 93.00 96.40 94.90

Note. Monte Carlo Simulations with sample sizes N = 200, N = 500 and N = 1000 with 1000 replications

respectively. The population parameters were set as: y = 1 + 0.50x1 − 0.75x2 + 0.25x3 + ε. δ = 1.

δ: dispersion parameter

Q̂: estimated average population quantity across the 1000 replications

SE: average standard error

CR: coverage rate (Use of boldface type indicates low coverage, i.e. CR < 90%)

Table 4: Performance of multiple Poisson imputation with overdispersed Negative Binomial
distributed data

MCAR MAR
β0 β1 β2 β3 δ β0 β1 β2 β3 δ

N = 200 Q̂ 0.99 0.51 -0.75 0.25 1.49 0.99 0.50 -0.75 0.25 1.48
SE 0.08 0.06 0.06 0.06 0.08 0.07 0.07 0.07
CR 88.70 89.10 87.10 90.20 88.80 86.90 89.30 88.60

N = 500 Q̂ 1.00 0.50 -0.75 0.25 1.49 0.99 0.49 -0.75 0.25 1.48
SE 0.05 0.04 0.04 0.04 0.08 0.07 0.07 0.07
CR 88.60 87.80 87.80 88.50 90.10 87.70 88.80 88.70

N = 1000 Q̂ 1.00 0.50 -0.75 0.25 1.50 0.99 0.50 -0.75 0.25 1.48
SE 0.03 0.03 0.03 0.03 0.08 0.07 0.07 0.07
CR 87.00 88.90 88.10 88.20 89.10 88.90 88.60 88.20

Note. Monte Carlo Simulations with sample sizes N = 200, N = 500 and N = 1000 with 1000 replications

respectively. The population parameters were set as: y = 1 + 0.50x1 − 0.75x2 + 0.25x3 + ε. δ = 2.

δ: dispersion parameter

Q̂: estimated average population quantity across the 1000 replications

SE: average standard error

CR: coverage rate (Use of boldface type indicates low coverage, i.e. CR < 90%)
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Table 5: Performance of multiple Quasi-Poisson imputation with overdispersed Negative
Binomial distributed data

MCAR MAR
β0 β1 β2 β3 δ β0 β1 β2 β3 δ

N = 200 Q̂ 0.99 0.51 -0.75 0.25 1.97 0.98 0.50 -0.75 0.25 1.95
SE 0.09 0.07 0.07 0.07 0.10 0.08 0.08 0.08
CR 93.50 92.10 91.80 93.20 93.30 91.20 91.00 91.00

N = 500 Q̂ 1.00 0.50 -0.75 0.25 1.99 0.98 0.50 -0.75 0.25 1.95
SE 0.06 0.04 0.04 0.04 0.10 0.08 0.08 0.08
CR 92.20 94.00 93.00 93.20 93.70 91.40 92.30 92.60

N = 1000 Q̂ 1.00 0.50 -0.75 0.25 1.99 0.99 0.50 -0.75 0.25 1.96
SE 0.04 0.03 0.03 0.03 0.10 0.08 0.08 0.08
CR 93.00 93.90 92.20 93.50 91.60 91.60 91.60 92.10

Note. Monte Carlo Simulations with sample sizes N = 200, N = 500 and N = 1000 with 1000 replications

respectively. The population parameters were set as: y = 1 + 0.50x1 − 0.75x2 + 0.25x3 + ε. δ = 2.

δ: dispersion parameter

Q̂: estimated average population quantity across the 1000 replications

SE: average standard error

CR: coverage rate (Use of boldface type indicates low coverage, i.e. CR < 90%)
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Table 6: Performance of multiple Poisson imputation when the data are missing not at
random

β0 β1 β2 β3 δ β0 β1 β2 β3 δ
5% NAs 20% NAs

N = 200 Q̂ 1.01 0.50 -0.75 0.25 1.00 1.04 0.49 -0.74 0.24 1.00
SE 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04
CR 95.10 94.20 95.30 96.20 84.60 93.80 93.40 96.40

N = 500 Q̂ 1.01 0.50 -0.75 0.25 1.00 1.05 0.49 -0.73 0.25 1.00
SE 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02
CR 92.80 94.70 94.50 94.70 71.50 92.90 89.50 94.10

N = 1000 Q̂ 1.01 0.50 -0.75 0.25 1.00 1.04 0.49 -0.74 0.25 0.99
SE 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
CR 92.00 94.50 95.00 94.80 55.30 90.80 85.30 94.40

10% NAs 30% NAs

N = 200 Q̂ 1.02 0.50 -0.74 0.25 1.00 1.08 0.48 -0.72 0.24 0.99
SE 0.05 0.04 0.04 0.04 0.06 0.04 0.04 0.04
CR 92.90 94.80 94.10 95.40 72.70 92.80 87.50 94.80

N = 500 Q̂ 1.02 0.49 -0.74 0.25 1.00 1.08 0.48 -0.72 0.24 0.99
SE 0.03 0.02 0.02 0.02 0.04 0.02 0.02 0.02
CR 88.80 94.00 94.40 94.60 44.50 88.80 79.60 93.30

N = 1000 Q̂ 1.02 0.50 -0.74 0.25 1.00 1.08 0.48 -0.72 0.24 0.99
SE 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02
CR 84.40 94.80 93.30 94.00 21.40 83.70 70.00 93.10

Note. Monte Carlo Simulations with sample sizes N = 200, N = 500 and N = 1000 with 1000 replications

respectively. The population parameters were set as: y = 1 + 0.50x1 − 0.75x2 + 0.25x3 + ε. δ = 1.

δ: dispersion parameter

Q̂: estimated average population quantity across the 1000 replications

SE: average standard error

CR: coverage rate (Use of boldface type indicates low coverage, i.e. CR < 90%)
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Table 7: Performance of multiple Quasi-Poisson imputation when the data are missing not
at random and predictors are “weak”

β0 β1 β2 β3 δ β0 β1 β2 β3 δ
5% NAs 20% NAs

N = 200 Q̂ 1.03 0.14 -0.20 0.25 1.97 1.13 0.14 -0.18 0.23 1.89
SE 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
CR 93.30 95.00 95.20 95.20 50.00 94.00 93.20 92.90

N = 500 Q̂ 1.03 0.15 -0.20 0.25 1.97 1.13 0.13 -0.18 0.23 1.87
SE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
CR 90.50 96.00 94.30 94.00 12.70 93.30 91.60 89.50

N = 1000 Q̂ 1.03 0.15 -0.20 0.24 1.97 1.14 0.13 -0.18 0.22 1.87
SE 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
CR 80.30 94.40 94.50 94.70 0.40 91.00 86.30 82.40

10% NAs 30% NAs

N = 200 Q̂ 1.06 0.14 -0.19 0.24 1.95 1.21 0.12 -0.17 0.21 1.77
SE 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
CR 87.60 95.00 94.90 94.90 12.30 91.80 89.60 88.30

N = 500 Q̂ 1.06 0.14 -0.19 0.24 1.95 1.22 0.12 -0.17 0.21 1.75
SE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
CR 70.60 95.50 94.30 94.70 0.50 88.60 84.30 78.30

N = 1000 Q̂ 1.06 0.14 -0.19 0.24 1.95 1.23 0.12 -0.16 0.20 1.75
SE 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
CR 40.90 94.40 94.70 93.60 0.00 81.40 68.90 58.50

Note. Monte Carlo Simulations with sample sizes N = 200, N = 500 and N = 1000 with 1000 replications

respectively. The population parameters were set as: y = 1 + 0.15x1 − 0.20x2 + 0.25x3 + ε. δ = 2.

δ: dispersion parameter

Q̂: estimated average population quantity across the 1000 replications

SE: average standard error

CR: coverage rate (Use of boldface type indicates low coverage, i.e. CR < 90%)
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