Furace@Unibi Model v1.0
User Manual

Herbert Dawid
Simon Gemkow
Philipp Harting
Sander van der Hoog
Michael Neugart

February 3, 2011

Contents

About the documentation

1.1 Levels of documentation
1.2 Criteria and organisation

Balance Sheets and the System of National Accounts

2.1 Stock-flow consistent modelling
2.2 Overview of balance sheets
2.3 Detailed balance sheets for each agent type

Consumption Goods Market Documentation

3.1 Messages e e
3.2 Firm e
3.3 Household
3.4 Mall .. oo
3.5 Stategraph L

Labour Market Documentation

4.1 Firm e
4.2 Household
4.3 Stategraph L

Financial Management Documentation

5.1 Firm oL
5.2 Stategraph L

Bankruptcy Documentation

6.1 Introduction
6.2 Bankruptcy in the full-fledged version of Eurace
6.3 Scaled down version of Eurace@Unibi
6.4 Functions e e e e
6.5 Stategraph L

Credit Market Documentation

7.1 Bank
7.2 Firm
7.3 Central Bank
7.4 Stategraph

11
11
11
13

21
21
22
38
44
50

51
o1
29
65

67
67
72

73
74
74
76
76
79

8 Financial Market Documentation

Messages
Constants
Firm,
Households

8.1
8.2
8.3
8.4
8.5
8.6

9 Government Documentation

Messageso
Eurostat L.
Firm, Household, Bank
Government
Stategraph

9.1
9.2
9.3
9.4
9.5

10 Model initialization
10.1 Population initialization
10.2 Realization of initial values

Clearinghouse

Stategraph

11 Model validation

11.1 Validation rules
11.2 List of tested rules
11.3 Validation output

CONTENTS

CONTENTS 5

Preface

This is the documentation of the Eurace@QUnibi model, written at Bielefeld University. It de-
scribes the modules that were developed by the Bielefeld Team for the Eurace model, and that
subsequently have entered into the Eurace@QUnibi model.

The Eurace@Unibi model presented here is based on the agent-based macroeconomic simu-
lation platform developed within the EURACE project (aka the Eurace Simulator). After the
completion of the EURACE project in November 2009 the group consisting of Herbert Dawid,
Simon Gemkow, Philipp Harting, Michael Neugart and Sander van der Hoog has extended and
altered the model and its implementation substantially in numerous directions leading to the
current version of the model (version 1.0 of February 2011).

The Eurace@Unibi model should therefore not be identfied to the Eurace Simulator. It
contains several extensions and simplifications with respect to the Eurace model. A list of
features that differ is the following:

1. Consumption goods producers use a Leontief production function. [In the Eurace model
a Cobb-Douglas production function is used.]

2. Investment goods producers produce heterogeneous vintages of capital, with newer vintages
having a higher productivity than older ones. [In the Eurace model there is just a single
vintage of capital the productivity of which increases over time.]

3. Credit market: The banks pay a positive interest on deposits. The Central Bank pays the
base rate on overnight deposits of the banks, and banks have to pay the base rate on their
Central Bank debt (overdrafts on the standing facility). [In the Eurace model banks do
not pay interest on deposits, nor does the Central Bank pay interest to banks.]

4. The financial market is highly stylized and simplified. There is a single risky asset that is a
stock market index. Transactions follow from a rationing scheme, and the price mechanism
is a cautious adjustment based on the excess demand for index shares. Dividends are paid
on shares of the market index. Firms are not allowed to issue new shares, hence the
number of outside shares remains constant. [In the Eurace model there is a multi-asset
market with shares of individual firms, banks and for government bonds. A centralized
Clearinghouse manages all trades by a clearing price mechanism. Firms are allowed to
issue new shares to raise equity.|

5. Balance sheets. The structure of the balance sheets has been completely overhauled and
checked rigorously. A list of 33 rules for stock-flow consistency has been checked as a
means of model verification (see Chapter 2).

6. Bankruptcy code. The code for firm bankruptcy has been extended to ensure that bankrupt
firms are able to resurface (see Chapter 6).

General acknowledgement to our Furace partners.
We are thankful for the collaboration with our partners in the Eurace project, without whom we
would not have been able to develop the model in such detail. We have had many discussions over
the years that helped us clarify many issues surrounding the integration of models, testing and
validation, the implementation in the FLAME framework, and issues of model development in
general. The usual disclaimer applies. The authors of this documentation are solely responsible
for any ommissions or failures in the documentation.

CONTENTS

Chapter 1

About the documentation

Why we have written this user manual.

We have often heard the comment about agent-based models that it is difficult to understand
precisely what is going on. The complaint is that the model is too detailed, contains too many
variables and parameters (is over-specified and over-parametrized) and is not described properly
or in sufficient detail. We can identify several reasons for this.

The first reason is that the agent-based research community lacks clear standards how to
communicate and document the models. There does not yet exist a set of guidelines on how to
build, describe, analyse and evaluate agent-based models (Squazzoni (2010)). What seems to
be needed is a common modelling methodology and a set of best-practices that leads to a lingua
franca for describing agent-based models. An attempt in this direction is given by the ‘Dahlem
guidelines for agent-based model documentation (Wolf et al. (2013)) which was the result of a
meeting of several groups engaged in building economic agent-based models.

A second reason may be that some agent-based models, and in particular the Eurace model,
are simply too complex or too complicated to be intelligible for any human being. Humans are
not computers and the human mind has inherent limitations on the amount of information it
can hold. A person cannot parse and compile the code of a model and understand it, so the
model must be communicated by some other means. In addition there is the need to explain
the model at different levels of description for different purposes.

The lowest level of description is understanding the model without necessarily being able to
use it oneself. For example, for the purpose of comparing two models in the same domain. The
second level is to actually be able to use the code, and the third level is the ability to extent
and alter it. Ideally, documentation should exist at each level of description but with varying
degrees of detail.

Our approach to the documentation problem is to take a modular view. It is basically a
divide-and-conquer approach, which we have come to dub the general to specific approach, in
which the model is divided into several logical components according to the contexts of activities
(e.g., markets). We document the behavior of each component separately, and then describe
how the modules are connected, possibly in a hierarchy.

Our aim with this User Manual is to provide a documentation of the model that gives as much
detail as possible, without burdening the reader with too many technical details. This means we
do not just provide the source code, because in our opinion this would not provide the reader
with sufficient information on how the model works. Therefore we describe the model using a
mixture of explanatory text in natural language, mathematics, pseudocode and diagrams.

7

8 CHAPTER 1. ABOUT THE DOCUMENTATION

We hope this documentation will provide the reader with an in-depth understanding of the
model and that it will be found useful as a tool for macroeconomic analysis, also by different
research groups than the ones originally developing it.

1.1 Levels of documentation

Following the general practice of software documentation there are different levels at which
documentation can be written, depending on the purpose and the level of expertise of the
audience.

1. Requirements documentation gives a specification of what the software does or should do.
The Requirements documentation is written at the beginning of the software development
project and updated as it proceeds.

2. Architecture design documentation states the general requirements for the existence of
routines, but does not specify the routines themselves. A good architecture document is
short on details but thick on explanation.

3. Technical documentation (developers manual) is the most detailed form of documentation.
It consists of text accompanying the code that describes its intended operation, that should
allow developers of the code to understand how to use, apply and extend the existing code.

4. The user documentation (user manual) describes each feature of the program, but in less
detail than the technical developers manual. It should be sufficiently detailed to understand
and use the code, but not necessarily to alter and extend it.

5. Reference manual. This manual gives a complete reference to all entities that are used in
the code: variables, functions, global constants and data structures are all listed.

Remark

For the Eurace@Unibi model the documentation currently consists of a User manual and a
Reference manual.

1.2 Criteria and organisation

The following principles have guided the organisation of the text for the manuals:

e Tutorial approach: the description should be useful for a new user. We therefore have
written the user manual as a walkthrough of the code, with accompanying text explaining
what the code does.

e Thematic approach: the chapters of the user manual have been organised in a hierarchical
way, according to the components of the software model. The modules mostly represent
the economic markets, but can also refer to a particular context. For example, the firm’s
financial management routines are not part of a market context, but form a collection of
routines that describe the firm’s behavior in a certain role.

e Reference approach: In the Reference Manual we have collected tables per agent and per
module. These tables contain the memory variables and functions of the agents, as well as

1.2. CRITERIA AND ORGANISATION 9

the model constants with their default values, a list of all messages with data content, and
the abstract datatypes. Furthermore, the Reference Manual has an alphabetical index to
easily cross-reference the items.

We have adopted several criteria to guide our writing effort for the documentation:

1.

Accuracy. The documentation should be thorough and up to date. It should accurately
reflect the implementation, but it should also be concise enough so as not to burden the
reader with too many unecessary details.

. Human-readability, consistency and simplicity. Humans are not computers, so we can

not expect them to be able to read source code and understand what the model does.
We therefore have adopted a combination of text and source code to give the reader a
walkthrough, a guide to the code. One of the objectives is to help new users to understand
the code.

. Self-documenting code. We have strived to make the code itself as clear as possible by

using descriptive names for variables and functions as much as possible. For example, there
exists a variable total_debt_installment_payment instead of the shorter form tot_debt_pymnt
such that it is clear from the name what is meant by the variable.

. Auto-generated documentation. The FLAME framework contains several tools that help

us to automatically generate (parts of) the documentation. One of these is the output
of IATEX-tables of all memory variables, functions, constants, and data structures. These
are found in the reference manual. Another very useful documentation feature are the
stategraphs that are found at the end of each chapter in the user manual. These graphs
are automatically generated by FLAME from the xml code.

10

CHAPTER 1. ABOUT THE DOCUMENTATION

Chapter 2

Balance Sheets and the System of
National Accounts

2.1 Stock-flow consistent modelling

An important part of the testing and verification process will be the verification of the internal
consistency of the model. For this task we need a stock-flow consistent (SFC) model, that can
be defined as:

“[...] models that identify economic agents with the main social categories/insti-
tutional sectors of actual capitalist economies — thoroughly describe these agents’
short-period behaviors and consistently model the ‘period by period’ balance sheet
dynamics implied by the latter.” (Macedo e Silva and Dos Santos (2008, p. 2))

Using a SFC model we need to check that all monetary flows are accounted for, and that all
changes to stock variables are consistent with these flows. This can be accomplished by tracking
the time evolution of the balance sheets across the different sectors of the economy. This could
be done by constructing a Social Accounting Matrix (SAM) that contains all the monetary flows
and changes to the balance sheet between the beginning and end of an accounting period. A
SAM consists of a double-entry accounting system in which each flow comes from somewhere and
goes to somewhere. It shows how the balance sheets of the different economic sectors (agents) are
interlinked, and it also shows how the period-by-period balance sheets change dynamically over
time. Such an accounting system at the macro level provides us with a number of accounting
identities that should always hold and this can be tested by an external invariant detector such
as Daikon.

This provides us with a solid and economically well-founded methodology to test the consis-
tency of the model and it increases the credibility that can be attached to the model’s results.
Thereby it is not only part of the testing and verification procedure, but is also part of the
accreditation process. It will help to raise the acceptability and trust in the model.

2.2 Overview of balance sheets

Below we list for each agent type the items on its balance sheet. The cash flows indicated only
relate to the financing activities.

11

12 CHAPTER 2. BALANCE SHEETS AND THE SYSTEM OF NATIONAL ACCOUNTS

Household: Refer to Tables 2.1 and 2.2.

Household labour income consists of a wage (W) or unemployment benefits (U"), and
they can receive government subsidies (S”) or transfers (Tr"). their expenditures consist of
consumption (C"), taxes (T") and a possible restitution payment (R").!

Households can have bank deposits (M") and receive interest on deposits (r°M"). They do
not take out bank loans. They can purchase government bonds (nZ) and private equity shares
of firms (n”). They receive interest on the government bonds (—H“gn}gl) and dividends on the

shares (_; n?)

Firm - Consumer goods and investment goods: Refer to Tables 2.3 and 2.4.

The income of firms consists of sales revenues (péRf), subsidies (S7) and transfers (Tr/).
Their expenditures include the wage bill (W), investment costs (I7), energy costs Enf, tax
payment (Tf), debt installment and interest payments, and dividend payments.

Firms can have bank deposits (M7, at a single bank) and bank loans (Dg , at multiple
banks). They receive interest on the deposits (r?M/), and have to pay interest on each loan
(rbL{:). They have equity shares (N/) on which they pay dividends (df N¥). They they do not
purchase government bonds, or shares of other firms.

Bank: Refer to Tables 2.5 and 2.6.

Banks also have outstanding equity shares on which they pay dividends (N®, d®N®). They
have a portfolio of outstanding loans to firms (L’J’c) on which they receive interest (+T‘?Ll}) and
debt instalment payments (ALY). They do not purchase government bonds, and they do not
purchase shares in other firms or banks. The banks have a standing facility with the Central
Bank from which they can draw advances freely (D?), on which they have to pay the base interest
rate to the Central Bank (—r°D?%). The Central Bank pays the same base interest on overnight
deposits of the bank’s liquid reserves (r¢M?). The interest rate that the bank pays on household
and firm deposits is lower than the base rate, while the interest on loans to firms is higher than
the base rate (r’ < r¢ < rg’c). The deposits interest rate r° is determined as a mark-down on the

base rate. The interest on loans ri’c depends on the firm-specific balance sheet, in particular on
the probability of debt default.

Government: Refer to Tables 2.7 and 2.8.

The Government income consists of taxes and restitution payments (7%, R"). Government
expenditures are: unemployment benefits (U"), subsidies (S%, i = h, f) and transfers (T,
i=h,f).

The government deposits its liquid funds (its payment account) at the Central Bank (M9Y).
If there are any changes to the payment account of the government (i.e. withdrawals to pay for
unemployment benefits or subsidies) this is recorded as a change in the stock of the asset MY
(=AM?Y), with a counterpart liability on the balance sheet of the Central Bank (+AM?Y). The
government also has a standing facility at the Central Bank that allows it to have a negative
payment account (DY). The government has a liability that is given by the stock of currently
outstanding government bonds (/N9) on which it pays coupons (—r9NY).

1The household repays a restitution payment to the Government if it received a monthly unemployment benefit
at the start of the month, and was reemployed during the same month.

2.3. DETAILED BALANCE SHEETS FOR EACH AGENT TYPE 13

Central Bank: Refer to Tables 2.9 and 2.10.

The Central Bank can purchase government bonds (ng
deficit. It receives coupons (+r9n¢). The Central Bank gives advances to the banks (—AD"),
on which the banks have to pay an interest (+7r°D?). The Central Bank pays interest on the
overnight deposits by banks (4+r°M?), but not for governments. Since the Central Bank is
not allowed to make a profit, its revenues from government bonds and bank advances (—i—rgn;,
+7¢D?) are distributed to the government in the form of a dividend (—Div®). In case of multiple
governments, the total dividend payment is equally divided among the governments.

) as a means to finance the budget

Fiat money is created automatically when banks or governments draw on their standing
facilities (AD9,ADP), and is being destroyed whenever these funds return to the Central Bank
(AD(-)).

2.3 Detailed balance sheets for each agent type
Household balance sheet (h)

Table 2.1: Household balance sheet.
Assets Liabilities

M": liquidity deposited at a given bank
+Wh+ U+ Trh
—Ch —T1h - R"
{,r,th
+rInl
+> dfn]} + dbn?
—(pfAn? + pbAn{j + pgAnZ)

n;l: government bonds holdings (none)
—I—AnZ
n?, nlg: equity shares holdings of
firm f and bank b
—I—An’; + Anp

Explanation:

e Financial wealth (liquidity + asset wealth):

woate Y et X dne Y
fe{firms} be{banks} g€{governments}

e py, pp: daily price of equity shares issued by firm f and bank b, respectively

e pgy: daily price of the bond issued by government g

14 CHAPTER 2. BALANCE SHEETS AND THE SYSTEM OF NATIONAL ACCOUNTS

Table 2.2: Household cash flow.

Ingoing Outgoing

Wh Wage C" Consumption

U" Unempl. benefits Th Tax payment

Sh Subsidies R" Restitution payment

Tr" Transfers

rP M Interest on deposits

rgn}gl Coupons on gov bonds

S df n? + d’n Dividend income
An’}(+) Asset sales An?(—) Asset purchases

Total income Total expenses

Table 2.3: Firm balance sheet.
Assets Liabilities

M/ liquidity deposited at a given bank D({ : debts to banks

+pl RS+ ST+ T/ +AD! (+)
~Wf —1f —Enf -1/ —~AD!(-)
+AD]
+rbMf — rng
—d'NT

L{@: value of local inventories at malls ET: equity
—Rf
+péX f

K7: value of physical capital
+17

Firm balance sheet (f)
Explanation:

o M7, Irfn updated daily following the firm’s cash flow and sales in the local malls.

e K/ and Dg updated monthly on the ideosyncratic day of the month to act.

e E/: equity updated monthly (on the last day of the month) according to:

Bl=Mm'+ > H+r/- > D]
me{malls} be{banks}

2.3. DETAILED BALANCE SHEETS FOR EACH AGENT TYPE 15

Table 2.4: Firm cash flow (CGP and IGP differ only in the item Investment costs or Energy
costs).

] Ingoing ‘ Outgoing
péRf Sales revenues W Labour costs
Sf Subsidies I7 Investment costs
Trf Transfers En' Energy costs (IGP)
X7 Output Tf Tax payment
AD{; (4+) New credit from banks AD{: (—) Debt installment payments
r M7 Interest on deposits rbD{: Interest payment
df NT Dividend payment
Total income Total expenses

pé: firm price level of consumption goods.

pi: single price of capital goods (single IGFirm).

N7: Total number of outstanding shares.

e d/: Dividend per share.

16 CHAPTER 2. BALANCE SHEETS AND THE SYSTEM OF NATIONAL ACCOUNTS

Bank balance sheet (b)

Table 2.5: Bank balance sheet.

Assets Liabilities
M?: liquidity (cash reserves) M ,’i: households’ deposits at the bank
(deposited at the central bank) +AM"?
+AM" + AMY
—rb (M} + le) M}’: firms’ deposits at the bank
+ALP(-) +AM/ (withdrawals/deposits)
—AL*(+)
+537b L?c DPb: standing facility
—rCD[’f (debts to the central bank)
+reMP +AD?(+)
—T° —ADb(-)
—d°N®
+AD(+) E®: equity
~ADY(-) —rb(Mp + M)
. +> TBI;LI}
Ll}: outstanding loans to firms —r°D
—AL(—) +re M
+ALb(+) —T® — @*N?

Table 2.6: Bank cash flow.
] Ingoing ‘ Outgoing

AM", AM/T Deposits mutation
AL’(—) Firm loan installments ALb(+) New loans to firms
> TZLZ} Firm interest payments

AD®(+) New ECB debt (standing facility) | AD?(—) Reduction ECB debt
r°M? Interest received from ECB r¢DP Interest payment on ECB debt
(M} + le) Interest on deposits d’N® Dividend payout

TP Tax payment
Total income Total expenses

2.3. DETAILED BALANCE SHEETS FOR EACH AGENT TYPE 17

Explanation:

. M;Z, MJZ?, L’J’c updated daily following the private sector deposits changes and the credit
market outcomes.

N7: Total number of outstanding shares.

e df: Dividend per share.

Cash reserves M’ and equity E? updated daily following the bank’s cash flows.

The balance sheet identity reads:

MP=D'+ Y Mp+ > Mp+E' - > I}
he{households} fe{firms} fe{firms}

ECB interest on bank cash reserves:

e Interest received: the bank receives interest on overnight deposits from the Central Bank:
reMPb.

e Interest paid: the bank pays interest on its ECB debt: r¢DPb.

Loans to firms are created ex nihilo:

e When a new credit is created it reduces the bank’s liquidity. New loans are added to the
asset Ll} (loans to firms) and subtracted from the asset M’ (cash reserves).

e When credit is repaid it is added to the bank’s cash reserves. Debt installments are a
reduction from the asset LZ}, and credited to the bank’s liquidity M? (cash reserves).

e Note that the bank providing the loan may not be the same as the bank at which a firm
has deposits.

ECB debt and cash reserves: limited by a minimum cash reserve requirement

e There is a minimum cash reserve ratio R™" that bank’s have to respect.

e If cash reserves M’ drop below the minimum Rmm(M]l? + M) (based on current deposit
levels) then M? is set equal to the minimum cash reserve level: M® = Rmi”(M]lZ + M)).

The bank’s ECB debt D’ is automatically increased by the difference: ADP(+) is added
to bank liquidity (cash reserves).

o If M? superceedes the minimum cash reserve requirement and the bank has positive ECB
debt D’ then ECB debt is partially or totally repaid. ADY(—) is subtracted from the
bank’s cash reserves, and the debt of the bank is reduced.

e As a consequence, also the balance sheet of the Central Bank is reduced (see Central Bank
balance sheet).

18 CHAPTER 2. BALANCE SHEETS AND THE SYSTEM OF NATIONAL ACCOUNTS

Government balance sheet (g)

Table 2.7: Government balance sheet.
Assets Liabilities
M9 liquidity deposited at the D9: standing facility with the
central bank central bank
+ ien s T+ 0 B +ADI
- Zieh,f St — Zieh,f Tr' =32, uh
—r9INY
+ADY
+Angp?
NY: number of outstanding bonds
+ANY

Table 2.8: Government cash flow.
’ Ingoing ‘ Outgoing

Cash flow from public sector activities:

Eieh,f,b T? Tax revenues Zz’eh,f S Subsidy payments
> ich, g Tr' Transfer payments
> R" Restitution payment >, U" Unemployment benefit payments

Cash flow from deficit financing:
A DY Monetization of deficit r9NY Bond coupon payments
Angp? Bond financing of deficit

Total income Total expenses

Explanation:
e Revenues: taxes on corporate profits and household labour and capital income;
e Expenses: unemployment benefits, subsidies and transfers.

e Restitution payment: Unemployed workers receive a monthly unemployment benefit. If
they become re-employed on a different day than they were fired on, they should restitute
a proportion of the monthly benefit already received.

2.3. DETAILED BALANCE SHEETS FOR EACH AGENT TYPE

Central Bank balance sheet (c)

Table 2.9: Central Bank balance sheet.

Assets

Liabilities

M¢€: liquidity/cash
AMI + AMP
—T‘CMb
+reLy
+rd n_f]

Ly: loans to banks
~ADY(-)
+AD(+)

Lg: loans to governments

Mg: Governments liquidity
+AM9I
+Angp?

Mg Bank cash reserves
AMP
+ADb(+)

Me¢: fiat money (due to QE, bank bailouts)

ADY ADY
~ADY(-)
+AD(+)
ng: Government bonds (QE) | E°: equity
Angp? —Dive
Table 2.10: Central Bank cash flow.
’ Ingoing ‘ Outgoing

AM?I Gov cash deposits
AM?® Bank cash deposits
r°Li Interest from banks
AD®(—) Bank debt reduction
+rIng Govmnt coupons

ADY Gov fiat money (standing facility)
AD®(+) Bank new ECB debt (standing facility)
r¢MP? Interest to banks

Angp? Gov bond purchases

Div® Dividend payment to govs

Total income

Total expenses

19

20 CHAPTER 2. BALANCE SHEETS AND THE SYSTEM OF NATIONAL ACCOUNTS

Explanation:

e With quantitative easing (QE), the central bank purchases government bonds using money
it creates ez nihilo (fiat money), and so expands its balance sheet.

e Since the Central Bank is not allowed to make a profit, its revenues from government
bonds and bank advances are distributed to the government in the form of a dividend.

e In case of multiple governments, the total dividend payment is equally divided among the
governments.

Bank bailouts:

e New bank loans do not come from ECB liquidity/cash reserves, but are directly financed
by creating fiat money. Therefore, AD? is added to the asset L (loans to banks), and to
the liabilities M€ (fiat money) and M’ (Bank cash reserves). The "missing” fourth item is
found on the asset side of the bank’s balance sheet, that receives the high powered money

(AD*(+)).

Chapter 3

Consumption Goods Market
Documentation

3.1 Messages

wage_payment
e Message from consumption goods producers to households. It contains the monthly wage
that an individual household earns in the current production cycle.
quality_price_info_1

e Message from malls to household. Before a household starts her weekly shopping at the
mall, she gets information from the mall about the range goods available at the beginning
of the current day and the corresponding prices.

e Due to the asynchronized consumption of the of households the mall sends this message
every day.
quality_price_info_2
e Message from malls to household. If a household was rationed in the regular shopping she
has the opportunity to pass a second purchasing process. Since the offer has changed after
the first purchasing loop the mall sends a updated information message.

update_mall_stock

e Message sent from firms to malls. After the production the output is distributed among
the malls. The update_mall_stock message contains the delivery volume for an individual
mall.

e The mall uses the information in order to update the current mall stock.

consumption_request_1

e This message is sent from households to malls. After a household has made her purchasing
decision she sends the desired quantity of the selected consumption good to the mall.

e Before starting to serve the households the malls collect all orders first.

21

22 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

accepted_consumption_1

e Message sent from malls to households containing the amount of the consumption good
that an individual household gets from the mall.

e After the mall has collected all consumption requests it checks whether the demand for
each good can be satisfied without rationing. In case of excess demand the accepted
delivery quantities are lower than the desired quantities.

consumption_request_2
e This message (sent from households to malls) contains the requested amount of the good
that is selected in a second consumption decision making in case of rationing in the first
purchasing process.
accepted_consumption_2
e This message contains the accepted consumption quantity if a household has been rationed
in the first consumption loop.
sales

e The message is sent from malls to consumption goods producing firms at the end of each
day. It contains information concerning the daily sales and whether or not the mall stock
is sold out.

specific_skill_update

e This message is sent from firms to its employees. It contains the current value of the
productivity of firm’s capital stock, which is needed for the specific skill adaptation.

3.2 Firm

3.2.1 Activities

The (consumption goods producing) firms performs the following activities at the consumption
goods market:

e The firm computes the planned production quantity.
e [t determines the required input factors for producing the planned output.

e After passing the factor markets it produces and distributes the output among the malls.

3.2.2 Functions
Firm_calc_production_quantity

In this function, the firms compute the planned production quantity and the planned delivery
volumes for the malls. The determination of the planned delivery volume of firm 4 for mall r
is based on a standard inventory rule with uncertain demand. The inventory rule is a classical
newsboy problem with a critical (inventory) stock Y, up to which the mall is refilled at the

3.2. FIRM 23

beginning of each selling cycle. The demand is estimated using a standard linear regression
model.
The (estimated) demand of firm 4 in mall r of the last 7 periods is given by {f)mt_ﬂ ey lA?i,,«’t_l}
Y »¢ is chosen such that the firm expects to be able to satisfy the market demand with some
probability 1 — x, where x is the stock-out probability. Y; ,; is computed by

Yirt =Gire+ (7 + I)I;i,r,t +q1 -/ 8i,r,t7 (3.1)

where @ and b are linear regression coefficients, § is the estimated demand variance, and q1—, is
the 1 — y-quantile of the standard normal distribution.
For b we have

B' = TE;:I Sﬁi,T,t—T-‘rS - %((+ 1))Dzrt T4+s (3 2)
1,rt T Pl .
§(R2(r+ 127 +1)) — (72T +1)?)
and for a
1.
azrt— ZDzrt T4s — b“«t(T—i-l) (33)
and for the variance
J R .
8% = T Z;(Di,r,t—ﬂ-s — (Gt + 5 birt))? (3.4)
s=

//Compute the estimators for each mall

for(i=0; i< MALLS_SALES STATISTICS.size; i++)
{
sum_1=0;
sum_2=0;

(j=0;j<FIRM_PLANNING_HORIZON; j++)

sum_14= (FIRM_PLANNING_HORIZON + 1 —
MALLS_SALES_STATISTICS . array[i].sales.array[j]. period)x
MALLS_SALES_STATISTICS . array[i].sales.array[]j].sales;

sum_2+= MALLS_SALES_STATISTICS . array[i].sales.array[]j].sales;
}

regressor = (FIRM_PLANNING_HORIZON x sum_1 —
0.5%FIRM_PLANNING_HORIZON x (FIRM_PLANNING_HORIZON+1)*sum_2)/
(1/6.0%pow (FIRM_PLANNING_HORIZON, 2) % (FIRM_PLANNING_HORIZON+1)*
(2*FIRM_PLANNING_HORIZON+1)—
1/4.0%(pow(FIRM_PLANNING_HORIZON, 2) *

pow ((FIRM_PLANNING_HORIZON+1),2)));

intercept = 1/(1.0xFIRM_PLANNING_HORIZON)#*sum_2 —
0.5xregressor *(FIRM_PLANNING_HORIZON +1);

variance = O0;

for (j=0; j< FIRM_PLANNING_HORIZON; j++)
{

variance+=
pow (MALLS_SALES_STATISTICS . array[i].sales.array[j].sales—

24 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

(intercept+ (FIRM_PLANNING_HORIZON + 1 —
MALLS_SALES_STATISTICS . array[i].sales.array[j]. period)
* regressor),2)/(FIRM_PLANNING_HORIZON-1);

}
for (k=0; k< LINEAR_REGRESSION_ESTIMATORS.size ;k++)

if (MALLS_SALES_STATISTICS . array[i]. mall_id=
LINEAR_REGRESSION_ESTIMATORS . array [k]. mall_id)

{
LINEAR_REGRESSION_ESTIMATORS . array [k]. intercept=intercept;
LINEAR_REGRESSION_ESTIMATORS . array [k]. regressor=regressor ;
LINEAR_.REGRESSION_ESTIMATORS . array [k]. variance=variance;

}

}
}

/+xSetting the critical valuesx/
for(int i = 0; i < CURRENT_MALL.STOCKS.size ;i++)

for(int j = 0; j < LINEAR_REGRESSION_ESTIMATORS. size; j++)

if (CURRENT_MALL.STOCKS. array[i]. mall_id=
LINEAR_REGRESSION_ESTIMATORS . array [j]. mall_id)

CURRENT_MALL_STOCKS . array[i]. critical_stock =
LINEAR_REGRESSION_ESTIMATORS . array [j].intercept
+ (14+FIRM_PLANNING_HORIZON)
LINEAR_REGRESSION_ESTIMATORS . array [j]. regressor
+ QUANTIL_.NORMAL_DISTRIBUTIONx*
pow (LINEAR_REGRESSION_ESTIMATORS . array [j]. variance ,0.5);

}

From the newsboy rule it follows for the desired delivery volume for mall r :

? 0 if SLi,r,t > Y;,r,t

Tyt = . . (3.5)
7,7 Y;’r,t - SLi’T,t if SLi,T,t < }/;,T,ty

/+*checking whether or not the current mall stocks are
below the critical values (sS—Rule). If this is
the case refill the stock up to the max stock x/

for(int i = 0; i < CURRENT_MALLSTOCKS.ssize; i++)

if (CURRENT_MALL.STOCKS. array[i].current_stock <=
CURRENT_MALL STOCKS . array[i]. critical_stock)
{

/% If stocks are left at the beginning of a new production cycle
x then firms produce the difference between these stocks and the
x critical stock for this mallx/

prod_vol = CURRENT_MALL.STOCKS. array[i]. critical_stock —
CURRENT_MALL_STOCKS. array [i].current_stock;

PLANNED_DELIVERY_VOLUME. array[i]. mall_id
CURRENT_MALL_STOCKS . array [i]. mall_id;

3.2. FIRM 25

PLANNED_DELIVERY_VOLUME. array [i]. quantity = prod_.vol;
production_volume = production_volume + prod_vol;

}

else

/*1f stocks are higher than the critical value
no production takes place for this mallx/

PLANNED_DELIVERY_VOLUME. array[i]. mall_id=
CURRENT_MALL.STOCKS. array[i]. mall_id;
PLANNED_DELIVERY_VOLUME. array [i]. quantity= 0;
}
}

Finally, in order to avoid a highly volatile production quantity, the planned total production
volume is smoothed. It is computed by a linear combination of the sum of planned delivery
volumes for the malls and the mean planned production quantities of the last N periods,

N
- - 1 ~
Qi = A%: Diri+(1—X)- N lz; Qi t—1- (3.6)

/*Smoothing of production quantity in
order to avoid high fluctuationsx/

double mean_production_quantity=0;
for(int i = 0; i < LAST_.PLANNED_-PRODUCTION_QUANTITIES. size; i++)
{
mean_production_quantity +=
LAST_PLANNED_PRODUCTION_QUANTITIES . array [i];

mean_production_quantity = mean_production_quantity/
LAST_PLANNED_PRODUCTION_QUANTITIES . size ;

PLANNED_PRODUCTION_QUANTITY = LAMBDAx*production_volume +
(1-LAMBDA)* mean_production_quantity ;

//Set planned production value that
//is retained in memory during the month:
PLANNED_OUTPUT = PLANNED_PRODUCTION_QUANTITY;

Firm_calc_input_demands

The first action of this function is to update the range of investment goods vintages and the
corresponding prices. Therefore, the firm reads a message sent by the IG firm that contains this
information.

//Clean the array of vintages
for (i=TECHNOLOGY_VINTAGES . size —1; i>=0;i——)

{
}

remove_adt_technology_vintages(&TECHNOLOGY_VINTAGES, i);

/+* Getting information about the offered vintagesx/
START_PRODUCTIVITY_MESSAGE_LOOP

add_adt_technology_vintages(&TECHNOLOGY_VINTAGES

26 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

,productivity_message—>cap_productivity ,
productivity_message—>cap._good_price ,0.0);
FINISH_.PRODUCTIVITY_MESSAGE_LOOP

Consumption goods producers need physical capital and labor to produce the consumption
goods. A firm 4 has a capital stock Kj;; that is composed of different vintages of the production
technology V = {V},

Vmax
Kiy=)Y K} (3.7)
V=1
The accumulation of physical capital by a consumption goods producer follows
Vmax Vmax
K=Y, 1=K+ Y I (3.8)
V=1 V=1

where ¢ is the depreciation rate and Ii"/; > 0 is the gross investment in vintage V.

/*Depreciation of the capital stockx/
double depreciation;

TOTAL_CAPITAL_DEPRECIATION_UNITS=0;
TOTAL_VALUE_CAPITAL_STOCK=0;
TOTAL_UNITS_CAPITAL.STOCK=0;
EFFECTIVE_CAPITAL.STOCK = 0.0;

for (i=0;i<CAPITAL.STOCK_VINTAGES . size ; i++)

{
depreciation = CAPITAL.STOCK_VINTAGES. array[i].amount
*DEPRECIATION_RATE;

TOTAL_CAPITAL_.DEPRECIATION_UNITS += depreciation;
CAPITAL.STOCK_VINTAGES . array [i].amount—=depreciation;
TOTAL_UNITS_CAPITAL.STOCK+=

CAPITAL.STOCK_VINTAGES . array [i].amount;

EFFECTIVE_CAPITAL.STOCK +=
CAPITAL.STOCK_VINTAGES . array [i].amountx
CAPITAL.STOCK_VINTAGES . array [i]. productivity;

for (j=0;j<TECHNOLOGY.VINTAGES. size ; j++)

{

if (CAPITAL.STOCK_VINTAGES . array[i]. productivity=—
TECHNOLOGY_VINTAGES. array[j]. productivity)

TOTAL_CAPITAL_.DEPRECIATION_VALUE += ~
TECHNOLOGY_VINTAGES . array[j]. pricexdepreciation;

TOTAL_VALUE_CAPITAL_.STOCK+=
TECHNOLOGY_VINTAGES . array[j]. pricex
CAPITAL.STOCK_VINTAGES . array [i].amount;

The production technology in the consumption goods sector is represented by a Leontief type
production function with complementarities between the qualities of the different vintages of the

3.2. FIRM 97

investment good and the specific skill level of employees for using these types of technologies.
Vintages are deployed for production in descending order by using the best vintage first. For
each vintage the effective productivity is determined by the minimum of its productivity and
the average level of relevant specific skills of the workers. Accordingly, output for a consumption
goods producer is given by

Vmaz Vmazx
Qi = Z min [Ki‘ft,max 0, Liy — Z sz,t]] - min [AV, B@t] , (3.9)
V=1 k=V+1

where AV is the productivity of vintage V and B;; denotes the average specific skill level in
firms.

Let int be the planned production quantity of firm ¢ in ¢ and Qi,t the feasible output that
can be produced with the current capital stock. This potential output is computed according to

Vmaz

Qie= Y (1)K}, -min[A”, B,,]. (3.10)
V=1

Two cases have to be considered for the factor demand determination:
1. If int > int : In that case the desired output can be produced with the current capital

stock and no additional investments are necessary. We have I;; = 0 and the labor input
is computed by taking the labor productivity of the last month into account:

Lii

Liy = Qiy -
N Qi1

(3.11)

2. If Qi,t < int : Here we have positive investments I; ; > 0; the amount depends on the
outcome of the vintage choice (see next section). If V' is the selected vintage, the investment

volume is ~ .
Qit — Qi
L= ———— 3.12
"7 min [AY, By (3:12)
and the labor demand)
Liy = Kig—1(1 = 0) + Lis. (3.13)
/#¥———————Determination of input needs: */

/*1. Compute the feasible output given the capital stockx/

double feasible_output=0.0;
int employees_needed_last_month;

for (i=0;i<CAPITAL.STOCK_VINTAGES . size ; i++)
{
feasible_output+=CAPITAL.STOCK_VINTAGES. array[i].amountx
min (CAPITAL.STOCK_VINTAGES . array[i]. productivity
,MEAN_SPECIFIC_SKILLS);

}

/+*2. Check if additional investments are necessaryx/
if (feasible_output >= PLANNED_PRODUCTION_QUANTITY)

{

28 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

DEMAND_CAPITAL.STOCK=0.0;
VINTAGE_CHOICE_TAKEN = 0;

if (NO_LEMPLOYEES>0)

{
employees_needed_last_month = NO_EMPLOYEES;
EMPLOYEES_NEEDED =
round_double_to_int (PLANNED_PRODUCTION_QUANTITY /OUTPUT x
employees_needed_last_month);
telse
EMPLOYEES_NEEDED
round_double_to_int (PLANNED_.PRODUCTION_QUANTITY/
MEAN_SPECIFIC_SKILLS);
}
NEEDED_CAPITAL.STOCK = EMPLOYEES_NEEDED;
telse
{

/+* Technology choicex/
/*For each vintage compute...x/

VINTAGE_CHOICE_TAKEN = 1;

double sum_eff_productivites [TECHNOLOGY_VINTAGES. size |;
double productivity_price_ratio [TECHNOLOGY.VINTAGES. size];

double specific_skills;

for (i=0;i <TECHNOLOGY_VINTAGES. size ; i++)

{

/* ...the sum of discounted effective productivities.

This means the min of the productivity of the capital good
and the mean specific skills where the

later converges to the A.i,t x/

specific_skills = MEAN_SPECIFIC_SKILLS;
sum_eff_productivites[i] = 0;

for (j=0;j<24;j++)

/+*Update the specific skill: depends on the actual specific skill,
the gap between the actual specific skills and the actual
productivity of the employer,

and the general skill which determines the speed of

closing the this gap.x/

specific_skills = max(specific_skills , specific_skills+
(TECHNOLOGY.VINTAGES. array [i]. productivity —specific_skills)
#*((1—pow(0.5,1/(204+0.25+%(AVERAGE_G_SKILL—1)%(4—-20))))));

sum_eff_productivites [i]+= pow(1/(1+DISCONT_RATE),)=
min (TECHNOLOGY_VINTAGES . array [i]. productivity ,specific_skills);

}

productivity_price_ratio[i]= sum_eff_productivites[i]/
TECHNOLOGY_VINTAGES . array[i]. price;

TECHNOLOGY_VINTAGES . array[i]. sum_effective_productivities =
sum_eff_productivites|[i];

3.2. FIRM 29

}

/*A Logit model used for vintage choicex/

double sum=0;
double logit [TECHNOLOGY_VINTAGES. size |;

i f (DAY>=TRANSITION_PHASE)
{

/*Summing for logit denominatorx/
for (i=0; i<TECHNOLOGY.VINTAGES.size ;i++)

{
}

/* Computing the logitsx/
for (i=0; i<TECHNOLOGY.VINTAGES.size ;i++)
{

sum += exp (GAMMA_LOGIT_VINTAGE_CHOICExlog (productivity_price_ratio[i]));

logit[i]= exp(GAMMA_LOGIT_VINTAGE_.CHOICExlog(productivity_price_ratio[i]))/su
logit_for_print_debug[i]=logit[i];

}

/+random generator and selection of logitx/
double rnd_number = (double)random_int(0,100)/100.0;

for (i=0; i<TECHNOLOGY.VINTAGES.size ;i++)
{

if (rnd_number<logit[i])

VINTAGE_SELECTED = i;
break;

telse

{
if (i<TECHNOLOGY_VINTAGES. size —1)
logit[i+1]+=logit[i];

}

}
}

/+*Imput factor determinationx/

DEMAND_CAPITAL.STOCK = (PLANNED_PRODUCTION_QUANTITY—feasible_output)
/min (TECHNOLOGY_VINTAGES . array [VINTAGE_SELECTED]. productivity ,
MEAN_SPECIFIC_SKILLS);

EMPLOYEES_NEEDED = round_double_to_int (TOTAL_UNITS_CAPITAL.STOCK

+ DEMAND_CAPITAL.STOCK);

NEEDED_CAPITAL.STOCK = EMPLOYEES_NEEDED;

3

Firm_calc_production_quantity_2

After passing the firm financial management role and, if an external financing is needed, entering
the credit and financial market, the firm has calculated its total liquidity requirements and how
much of these are covered by the internal and externally obtained resources. Because financial
obligations have a higher priority than achieving the production plan, the firm has to reduce
the production plan if the resources are not sufficient to satisfy both.

The firm compares the available resources for production with the money that is needed for

30 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

the production plan. If the available resources do not cover the planned expenditures the firm
has to reduce the production quantity decrementally as long as the financial requirements are
sufficient.

Qz‘,t _ {Qi,t, if FinProd%EEDED(Q) < FinProd; (3.14)

Qii-(1— ADAP_PROD), else.

double decrement;
double diff;
diff = PLANNED_PRODUCTION_QUANTITY;

//Here we set a fraction of the planned production quantity
decrement = ADAPTION_PRODUCTION_VOLUME_DUE_TO_INSUFFICIENT_FINANCES*
PLANNED_PRODUCTION_QUANTITY ;

if (FINANCIAL_.RESOURCES_FOR_PRODUCTION>0.0)

{
while (PLANNED_PRODUCTION_COSTS > FINANCIAL_RESOURCES_FOR_PRODUCTION)

PLANNED_PRODUCTION_QUANTITY —= decrement;
Firm_calc_input_demands_2 ();

}

telse

PLANNED_PRODUCTION_QUANTITY=0.0;
Firm_calc_input_demands_2 ();

}

//Compute the diff
diff —= PLANNED_PRODUCTION_QUANTITY;

//Set planned production value that is retained in memory during the month:
PLANNED_OUTPUT = PLANNED_PRODUCTION_QUANTITY;

Firm_calc_input_demands_2

In this function the firm recalculates the input factor demand if the production volume has
to be decremented in case of financial shortcomings. The function is repetitively called by
Firm_calc_production_quantity_2 at each time when the firm decrements the output. The source
code of this function is very close to the code of Firm_calc_input_demands.

Firm_send_capital_demand

This function sends a message to the capital goods producer containing the capital good demand
Kldfmand'

if ((NEEDED_-CAPITAL.STOCK > 0) && (NEEDED_CAPITAL.STOCK >
TOTAL_UNITS_CAPITAL.STOCK))

{
}

add_capital_good_request_message (ID,DEMAND_CAPITAL.STOCK);

3.2. FIRM 31

Firm_receive_capital_goods

In this function the consumption goods producing firm receives the capital goods delivery from
the investment goods producer. It reads a message containing the amount of delivered capital
goods IX; and it updates the capital stock accordingly:

KY, = kY, + IV, (3.15)

The value of the new capital stock is computed by

Vmaw

Kyfte = 3" plnv K7, (3.16)
v=1

The nominal investment in the physical capital for that production period is the capital bill

Iy = fi‘ft . pﬁ”. The acquisition costs of the investment are distributed among the length of the

repayment period for external financing, TFOANS | regardless if the investment was externally

or internally financed. This means that in the next TFO4ANS periods a fraction W of the
investment I;; is apportioned as capital costs for each period.

CAPITAL_COSTS = 0.0;
// EFFECTIVE_LINVESTMENTS is set to 0 in Firm_calc_input_demands

START_CAPITAL_.GOOD_DELIVERY_MESSAGE_LOOP
/*Determine the weighted average productivity of the total capital stockx/
/*Update of productivityx/

/+«Update of current value of capital stockx/

for (i=0;i<CAPITAL.STOCK_VINTAGES. size ; i++)

{
if(capital_good_delivery_message —>productivity=—
CAPITAL.STOCK_VINTAGES . array[i]. productivity)
CAPITAL.STOCK_VINTAGES . array [i].amount +=
capital_good_delivery_message —>capital_good_delivery_volume;
TOTAL_UNITS_CAPITAL.STOCK+=capital_good_delivery_message —
capital_good_delivery_volume;
EFFECTIVELINVESTMENTS = capital_good_delivery_message —>
capital_good_delivery_volume x
CAPITAL.STOCK_VINTAGES . array [i]. productivity;
TOTAL_VALUE_CAPITAL_.STOCK+=
capital_good_delivery_message —>capital_good_pricex
capital_good_delivery_message —>capital_good_delivery_volume;
EFFECTIVE_CAPITAL.STOCK += capital_good_delivery_message —>
capital_good_delivery_volumexCAPITAL.STOCK_VINTAGES. array[i]. productivity;
flag=1,
break;
}
}

/% If new capital vintage is purchased add new vintage to arrayx/
if (flag==0)

add_adt_capital_stock_vintages(&CAPITAL.STOCK_VINTAGES,

32

CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

capital_good_delivery_message —>capital_good_delivery_volume ,
TECHNOLOGY_VINTAGES. array [VINTAGE_SELECTED]. productivity);

TOTAL_UNITS_CAPITAL.STOCK+=capital_good_delivery_message
—>capital_good_delivery_volume;

/*Sorting the array from low to highx/
for (i=0;i<CAPITALSTOCK_VINTAGES. size ; i++)

{
for (j=0;j<i;j++)

if (CAPITAL.STOCK_VINTAGES. array[i]. productivity
<CAPITAL.STOCK_VINTAGES . array [j]. productivity)
{
double x =CAPITAL.STOCK.VINTAGES. array[i]. productivity;
double y =CAPITAL.STOCK_VINTAGES. array[i].amount;
CAPITAL.STOCK_VINTAGES . array [i]. productivity=
CAPITAL.STOCK_VINTAGES . array [j]. productivity;

CAPITAL.STOCK_VINTAGES . array[i].amount= CAPITAL.STOCK_VINTAGES. array[j].ampunt;

CAPITAL.STOCK_VINTAGES . array[]j]. productivity=x;
CAPITAL.STOCK_VINTAGES . array [j].amount=y;

}
}
}

/* Computing the capital billx/
CAPITAL_COSTS += capital_good_delivery_message

—>capital_good_delivery_volumex TECHNOLOGY_VINTAGES. array [VINTAGE_SELECTED]. pri
capital_good_price = capital_good_delivery_message —>capital_good_price;
capital_good_delivery_volume = capital_good_delivery_message

—>capital_good_delivery_volume;
FINISH_CAPITAL_.GOOD_DELIVERY_MESSAGE_LOOP
if (CAPITAL.COSTS>0.0)

add_financing_capital (&CAPITAL_FINANCING, CAPITAL_.COSTS/
CONST_INSTALLMENT_PERIODS, CONST_INSTALLMENT_PERIODS) ;

Firm_execute_production

This function computes the realized output of the firm ¢, @Q;;. If the planned output szt # 0,
the output is computed according to the production function

Vmaz Vmaz
Q=3 min [Km [o,L@-,t— 3 K” win[A7 B @
V=1 k=V+1

otherwise the production quantity is @;; = 0. Additionally, the productivity of the deployed
capital stock is computed. We have:

Vmaz v % v

A, = Dl AV Ki,t
ht — vaaz R’U
=1 ;

2t

(3.18)

)

where f(gt is the amount of capital units of vintage v deployed for the production in t.

3.2. FIRM 33

i f (PLANNED_PRODUCTION_QUANTITY != 0)
{

double sum_already_used_vintages=0.0;
double technology =0.0;
PRODUCTION_QUANTITY=0.0;

for (i=CAPITAL.STOCK_VINTAGES . size —1;i >=0;i ——)

{
/*Here the production quantity is computedx/
PRODUCTION_QUANTITY4= min (CAPITAL.STOCK_VINTAGES. array[i].amount,
max (0 ,NO_EMPLOYEES—sum _already_used_vintages))
xmin (CAPITAL.STOCK_VINTAGES . array[i]. productivity , MEAN_SPECIFIC_SKILLS);
/*Here we compute the productivity of the used capital stock.
This is sent to workers thus the specific skills converges to this valuex/
technology += min(CAPITAL.STOCK_VINTAGES. array[i].amount,max(0,NO_EMPLOYEES
—sum_already_used_vintages))
*CAPITAL.STOCK_VINTAGES . array[i]. productivity;
/*Sum up the used vintages:x/
sum_already_used_vintages+=min(CAPITAL.STOCK_VINTAGES. array[i].
amount ,max(0,NO_EMPLOYEES—sum _already_used_vintages));
}
if(sum_already_used_vintages >0)
technology = technology/sum_already_used_vintages;
TECHNOLOGY = technology;

}
if (TOTAL_.UNITS_CAPITAL_STOCK)

UTILIZATION_CAPACITY = sum_already_used_vintages/TOTAL_UNITS_CAPITAL.STOCK;
telse

UTILIZATION_CAPACITY =0.0;
}

}

else

PRODUCTION_QUANTITY=0.0;
UTILIZATION_CAPACITY =0.0;

Firm_calc_pay_costs

This function computes and pays the production costs and sets the price of the good by applying
a mark-up pricing rule.

1. The firm computes the total labor costs as the sum of the individual worker wages,

CiP = " wiy (3.19)
VkeW;

and sends a message to the workers with the individual wage payment.

34 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

LABOUR_COSTS=0.0;

for(int i=0; i<EMPLOYEES.size;i++)
LABOUR_COSTS += EMPLOYEES. array [i].wage;
add_wage_payment_message(ID,

EMPLOYEES. array [i].id ,EMPLOYEES. array [i].wage,
TECHNOLOGY, MEAN_SPECIFIC_SKILLS);

2. Capital cost accounting: Determining the capital costs I; ; and the the costs of using firm’s
capital stock, Cgtap . These calculatory capital costs are the sum of Wth of the invest-
ments carried out within the last T*O4NS periods (see also function Firm_receive_capital_goods),

t—TLOANS

c 1
Cp = Z TLOANS Te-1- (3.20)
1=0

add_pay_capital_goods_message (ID,CAPITAL_.COSTS);
i f (PRODUCTION_QUANTITY!=0)

CALC_CAPITAL_COSTS = 0;
for(int i = 0; i<CAPITAL_FINANCING. size; i++)

{
if (CAPITAL_FINANCING. array[i].nr_periods_before_repayment==0)

{
remove_financing_capital (&CAPITAL_FINANCING, i);

telse

CAPITAL_FINANCING. array[i]. nr_periods_before_repayment ——;
CALC_CAPITAL_COSTS+= CAPITAL_FINANCING. array[i].financing_per_month;

}
}

}

3. The labour costs, nominal investments and calculatory capital costs are used to compute
the total amount of transactions related to production in that period, the production costs
and unit costs. By multiplying the unit costs with the mark-up, the firm sets the price of
its consumption good. The total transactions or expenditures related to production are

Eaplrot = clb + I, (3.21)

the total production costs are
Ciz = CHb O, (3.22)

2,t

The unit costs additionally take into account the interest payments Int; s, thus it holds
cit = (Cip + Intiz)/ Qi (3.23)

For the price we have then
pit = (L + p)cig. (3.24)

3.2. FIRM 35

UNIT_COSTS=(LABOUR_COSTS + CALC_CAPITAL_COSTS + TOTAL_INTEREST_PAYMENT)
/ PRODUCTION_QUANTITY

PRICE_LAST_MONTH = PRICE;
PRICE = UNIT_COSTS#(1 + MARK.UP);
}

PRODUCTION_COSTS = CAPITAL_.COSTS + LABOUR_COSTS;
CALC_PRODUCTION_COSTS= LABOUR_COSTS + CALC_CAPITAL_COSTS;
PAYMENT_ACCOUNT —= PRODUCTION_COSTS;

remove_double(&LAST_PLANNED_PRODUCTION_QUANTITIES,0);
add_double(&LAST_PLANNED_-PRODUCTION_QUANTITIES, PLANNED_PRODUCTION_QUANTITY);

Firm_send_goods_to_mall

In this function the firm distributes the output among the malls. It sends a messages to the
malls containing the volume and the current price. Since the realized output does not neces-
sarily correspond to the planned quantity the firms determines the actual delivery quantities
proportionally to the intended volumes:

Qi ~

Diri = = Diyit (3.25)
7,T. ZR Di7r7t 2,T.

NOMINAL_EXPORTS = 0.0;
REAL_EXPORTS = 0.0;
double delivery_volume=0;

for(int i=0; i<PLANNED_DELIVERY_.VOLUME. size; i++)

{
delivery_volume+=PLANNED_DELIVERY_VOLUME. array[i]. quantity;
}
for(int i = 0; i < PLANNED_DELIVERY_.VOLUME. size; i++)
{

for(int j = 0; j < DELIVERY.VOLUME. size; j++)

if (DELIVERY_VOLUME. array[j]. mall_id =
PLANNED_DELIVERY_VOLUME. array [i]. mall_id)

/% 1f planned prod vol > realized prod vol —> curtain the delivery volx/
if(delivery_volume >PRODUCTION_QUANTITY)
{

DELIVERY_VOLUME. array[]j]. quantity =

PRODUCTION_QUANTITY / delivery_volume x

PLANNED_DELIVERY_VOLUME. array [i]. quantity;

telse /xotherwise planned = realized del volx/
i f (PRODUCTION_QUANTITY > delivery_volume &&
delivery_volume !=0)

DELIVERY_VOLUME. array [j]. quantity = PRODUCTION_.QUANTITY /
delivery_volume«PLANNED_DELIVERY_VOLUME. array [i]. quantity;

telse if (PRODUCTION_QUANTITY > delivery_volume &&
delivery_volume ==0)

{

36 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

DELIVERY_.VOLUME . array [j]. quantity =
PRODUCTION_QUANTITY / (DELIVERY_VOLUME . size);
}

else

{
DELIVERY_VOLUME. array[]j]. quantity =
PLANNED_DELIVERY_VOLUME. array [i]. quantity;

}

DELIVERY_VOLUME. array [j]. quality=
PLANNED_DELIVERY_VOLUME . array [j]. quality ;

DELIVERY_VOLUME. array [j]. price=
PLANNED_DELIVERY_VOLUME. array [j]. price;

add_update_mall_stock_message (DELIVERY_VOLUME. array [j]. mall_id ,ID,
DELIVERY_VOLUME. array[j]. quantity ,QUALITY, PRICE);

}

Firm_calc_revenue

The firm receives messages containing information on the daily revenues at each mall. This data
is used to compute monthly mall sales, which is required for the production planning.

REVENUE_PER_DAY =0.0;
TOTAL_SOLD_QUANTITY=0.0;

/+xcalc the daily revenue and sum up the monthly revenuex/
START_SALES_MESSAGE_LOOP

for(int i=0; i< SOLD_QUANTITIES. size; i++)

{
if (sales_.message—>mall_id = SOLD_QUANTITIES. array[i]. mall_id)

{
SOLD_-QUANTITIES. array [i].sold_quantity 4+=

sales_message —>revenue /PRICE;

REVENUE_PER_DAY += sales_message —>revenue;
CUM_REVENUE += sales_message —>revenue;
TOTAL_SOLD_QUANTITY+=sales_message —>revenue /PRICE;

}
}
//Update mall stocks
for(int i=0; i< CURRENT_MALLSTOCKS. size; i++)

if (sales_.message—>mall_id = CURRENT_MALL.STOCKS. array[i]. mall_id)
{

}

FINISH_.SALES_MESSAGE_LOOP

CURRENT_MALL.STOCKS. array[i]. current_stock= sales_message—>current_stock;

PAYMENT_ACCOUNT += REVENUE_PER_DAY

Firm_compute_sales_statistics

For the inventory rule applied in Firm_calc_production_quantity, firms need for each mall the
sold quantities of the last T periods. For that purpose they remove the sold quantity of period

3.2. FIRM 37

t — T and store the current sold quantity. If a mall stock is completely sold out then in order to

estimate the real demand the sold quantity is adapted by a percentage of the sales of the last
month.

int remove_index;
for(int j=0; j < MALLS_SALES_STATISTICS.size; j++)

for(int k = 0; k < MALLS_SALES_STATISTICS. array[]j].sales.size; k++)
{
if (MALLS_SALES_STATISTICS . array[j].sales.array[k]. period=
FIRM_PLANNING_HORIZON)

{
remove_index = k;
remove_data_type_sales(&(MALLS_SALES_STATISTICS . array[]j].sales),
remove_index);
k——;
lelse
{
MALLS_SALES_STATISTICS . array[j].sales.array[k]. period++;
}
}
}
for(int i=0; i< SOLD_QUANTITIES. size ; i++)
{

for(int j=0; j<MALLS_SALES_STATISTICS.size; j++)

if (MALLS_SALES_STATISTICS . array [j]. mall_id =
SOLD_QUANTITIES . array [i]. mall_id)

if (SOLD_QUANTITIES. array [i].stock_empty==0)

add_data_type_sales (&(MALLS_SALES_STATISTICS . array[j].sales), 1
SOLD_QUANTITIES . array [i].sold_quantity);

}

else

{

add_data_type_sales (&(MALLS_SALES_STATISTICS. array[]j].sales), 1

SOLD_QUANTITIES. array[i].sold_quantityx
(1 + ADAPTION_DELIVERY_VOLUME));

SOLD_QUANTITIES . array[i].sold_quantity=0;
SOLD_QUANTITIES . array [i]. stock_empty=0;

Firm_update_specific_skills_of_workers

In this function the firm updates the employee array concerning the individual specific skills.

START_SPECIFIC_SKILL_.UPDATE_MESSAGE_LOOP

for(int i=0; i<EMPLOYEES.size;i++)
{
if (specific_skill_update_message —>id=—EMPLOYEES. array[i].id)

EMPLOYEES. array [i]. specific_skill=

38 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

specific_skill _update_message—>specific_skills;

}

}
FINISH_SPECIFIC_SKILL_.UPDATE_MESSAGE_LOOP

3.3 Household

3.3.1 Activities

The activities of a household in the consumption goods market are:
e The household determines the monthly and weekly consumption budgets.

e The household visits a outlet mall in order to

1. Collect information on the range of provided goods and their prices

2. decide and purchase a good for the weekly consumption.

3.3.2 Functions
Household _determine_consumption_budget

In this function the household computes the monthly consumption budget. Households have a
target wealth income ratio and if the current income wealth ratio matches the target value then
the consumption budget equals the mean income of a certain number of previous periods. In
case of a deviation of the current compared to the target ratio, the consumption budget deviates
from the mean income as long as the two values are coincident.

/+xCompute the wealth income ratiox/
WEALTH_INCOME_RATIO_ACTUAL = WEALTH/ MEAN_NET_INCOME;

asset_wealth = ASSETSOWNED. units*ASSETSOWNED. lastprice ;

CONSUMPTION_BUDGET = MEAN_NET_INCOME +
CARROL_CONSUMPTION_PARAMETER+PAYMENT_ACCOUNT +
TRADING_ACTIVITY % CARROL_.CONSUMPTION_PARAMETER
(asset_wealth — WEALTH_INCOME_RATIO_TARGET+MEAN_NET_INCOME) ;

/+* Simple case: no selling of assets is possible, so do not consume

more than your liquid assets x/

if ((TRADING_ACTIVITY==0)&&(CONSUMPTION_.BUDGET > PAYMENT_ACCOUNT))
CONSUMPTION_BUDGET = PAYMENT_ACCOUNT;

CONSUMPTION_BUDGET_IN.MONTH = CONSUMPTION_BUDGET;

A household goes shopping once a week but the consumption budget is determined after a
household has received the wage/ unemployment benefit. The total monthly budget is equally
distributed among the four weeks of a month such that the household can spend the same
amount of money in each week.

WEEKLY_BUDGET = CONSUMPTION_BUDGET /4;
WEEK_.OF_.MONTH = 4;

3.3. HOUSEHOLD 39

Household _rank _and_buy_goods_1

The household goes shopping to the closest located mall, where the household gets an overview
concerning the range of provided goods at the mall and the prices.

/*Household reads quality price info messages sent by malls */
START_QUALITY_PRICE_LINFO_1_.MESSAGE_LOOP

add_mall_quality_price_info(&mall_quality_price_info_list ,
quality_price_info_.l_message —>mall_id ,
quality_price_info_l_message —>firm_id ,

quality_price_info_l_message —>mall_region_id ,
quality_price_info_.l_message —>quality , quality_price_info_l_message —>price,
quality_price_info_l_message —>available);

FINISH_.QUALITY_PRICE_INFO_1_.MESSAGE_LOOP

The household tries to spend the weekly budget for one of the provided goods. The decision
making relies on a logit model which takes the prices of the goods as an important factor
of households selection decision into account. The strength of the price sensitivity is thereby
represented by a parameter. The probability for choosing good i from the set of provided goods
Gr,weekt is

exp(Af " - (—1) In(piz))
S e o, DO (1) In(p;2))

Proby;; = (3.26)

/*Sum of weighted exponents of quality price ratiosx/
for(i = 0; i < mall_quality_price_info_list.size;i++)
{
sum_weighted_qual_pric_ratios += (mall_quality_price_info_list.array|[i]
.available) % exp(log(mall_quality_price_info_list.array[i].price)*GAMMA);

/* Compute logits and add on temporary logit array */

for(i = 0; i < mall_quality_price_info_list.size;i++)

{
logit = (mall_quality_price_info_list.array[i].available) =x
exp(log(mall_quality_price_info_list.array[i]. price)*GAMMA) /

sum_weighted_qual_pric_ratios;
logit = logit = 100;
if(logit > 0)

add_logit_firm_id(&logit_firm_id_list , logit,

mall_quality_price_info_list.array[i].firm_id);
}
}
if(sum_weighted_qual_pric_ratios > 0)
{
MALL_COMPLETELY_SOLD_OUT = 0;
int random_number = random_int(0,100);
i=0;

int x =0, index_selected_good=j;

40 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

for(j = 0; j < logit_firm_id_list.size;j++)

{

/*if random number <= logit then select the corresponding good x/
if ((random_number < logit_firm_id_list.array[j].logit) && (x != 1))

ORDER_QUANTITY [0]. firm_id = logit_firm_id_list.
array[j]. firm_id;

x = 1;
index_selected_good= j;
}
/*else sum logits and go to the next iteration step x/
else
{
if((j < logit_firm_id_list.size—1))
{
logit_firm_id_list.array[j+1].logit =
logit_firm_id_list.array[j+1]. logit+
logit_firm_id_list.array[j].logit;
}
}
}

After the household has decided for one good she sends an order message to the mall.

Cons

1 k, k
OQk’,i,r,weekt = pu‘)ie t' (327)
z?

/* This computes and stores the order quantity of the selected good and
saves the price in memory x/

ORDERQUANTITY [0]. quantity = WEEKLY.BUDGET/ mall_quality_price_info_list
.array[index_selected_good]. price;

ORDERQUANTITY [0]. price = mall_quality_price_info_list.
array[index_selected_good]. price;

/+*The consumption request message is sent x/
add_consumption_request_1_message(
mall_quality_price_info_list.array[index_selected_good]. mall_id ,ID,
ORDER_QUANTITY [0]. firm_id ,

ORDER_QUANTITY [0]. quantity);

}

else

{
EXPENDITURES=0;
MALL_COMPLETELY_SOLD_OUT =1;
ORDER_QUANTITY[0]. quantity =0;
ORDER_QUANTITY [0]. price=0;
ORDER_QUANTITY [0]. firm_id =0;

Household_receive_goods_read_rationing

In this function the household gets the quantity of the ordered consumption good which has
been accepted by the malls. In case of an excess demand for the ordered good the mall has

3.3. HOUSEHOLD 41

rationed the requested quantities and the received quantity is smaller than the ordered.

The expenditure for the consumption is subtracted from the weekly budget, such that in
case of no rationing the left over budget is 0. Otherwise, the remaining budget is used for a
second consumption loop where the household tries to spend the budget for another good.

EXPENDITURES = 0;

/*Household reads messages containing the realized consumption of the first roundx
START_ACCEPTED_CONSUMPTION_1_MESSAGE_LOOP

RATIONED = accepted_consumption_l_message—>rationed;

/+*Update of Budget =/

WEEKLY_BUDGET = WEEKLY_BUDGET — accepted_consumption_l_message
—>offered_consumption_volume x ORDER.QUANTITY[O]. price;

EXPENDITURES =accepted_consumption_1l_message
—>offered_consumption_volume x ORDER.QUANTITY[O]. price;

RECEIVED_QUANTITY [0]. quantity = accepted_consumption_1l_message
—>offered_consumption_volume;

RECEIVED_QUANTITY [0]. firm_id = ORDER.QUANTITY[O]. firm_id ;

FINISH.ACCEPTED_CONSUMPTION_1_MESSAGE_LOOP

Household _rank_and_buy_goods_2

If the household has been rationed in the first shopping loop, she tries to spend the remaining
budget in a second loop. The purchasing decision is analog to the decision making in the first
loop. First, the household updates the information concerning the availability of the goods.

/*The updated quality price message is read x/
START_QUALITY_PRICE_.INFO_2_.MESSAGE_LOOP

add_mall_quality_price_info(&mall_quality_price_info_list ,

quality_price_info_2_message —>mall_id ,
quality_price_info_2_message —>firm_id ,
quality_price_info_2_message —>mall_region_id ,
quality_price_info_2_message —>quality ,
quality_price_info_2_message —>price ,
quality_price_info_2_message —>available);

FINISH_QUALITY_PRICE_INFO_2_MESSAGE_LOOP

Then, she chooses one good according to the same logit model as in function Household_rank_and_buy_goods_1.

/*Sum of weighted exponents of quality price ratios */
for(i = 0;i < mall_quality_price_info_list.size; i++)
{
sum_weighted_qual_pric_ratios +=(mall_quality_price_info_list
.array[i].available) =«
exp(log(mall_quality_price_info_list.array[i]. price)*GAMMA);

/* This computes the logits x/
for(i = 0; i < mall_quality_price_info_list.size; i++)

{

42

CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

logit = (mall_quality_price_info_list.array[i].available) x
exp(log(mall_quality_price_info_list.array[i]. price)*GAMMA) /
sum_weighted_qual_pric_ratios;

logit = logit*100;

add_logit_firm_id(&logit_firm_id_list , logit,
mall_quality_price_info_list.array[i].firm_id);

}

if(sum_weighted_qual_pric_ratios >0)

{
int random_number = random_int(0,100);
i=0;
int x = 0, index_selected_good=j;

for(j = 0; j < logit_firm_id_list.size;j++)

{
/*if random number <= logit then select the corresponding good
if ((random_number < logit_firm_id_list.array[j].logit)

&& (x!=1))
{
ORDER_QUANTITY [1]. firm_id = logit_firm_id_list
.array[j].firm_.id; //Selected Good
x =1;
index_selected_good= j;
}
/*else sum logits and go to next iteration step x*/
else
{
if((j < logit_firm_id_list.size—1))
logit_firm_id_list.array[j+1].logit =
logit_firm_id_list.array[j+1]. logit+
logit_firm_id_list.array[j].logit;
}
}

}

/* This computes the order quantity and store the price x/
ORDERQUANTITY [1]. quantity = WEEKLY_BUDGET/
mall_quality_price_info_list.array[index_selected_good]. price;

ORDERQUANTITY [1]. price = mall_quality_price_info_list
.array[index_selected_good]. price;

/+*Sending the second consumption request message x/
add_consumption_request_2_message(
mall_quality_price_info_list.array[index_selected_good]. mall_id ,
ID,ORDER.QUANTITY[1]. firm_id ,

ORDER_QUANTITY [1]. quantity);

}

else

ORDERQUANTITY [1]. quantity = O0;
ORDER_QUANTITY [1]. firm_id= 0;
ORDER_QUANTITY [1]. price= 0;

3.3. HOUSEHOLD 43

Household _receive_goods_read_rationing_2

Here, a household gets the accepted consumption good delivery for the second loop, and com-
putes the expenditures and the remaining budget.

if (RATIONED ==1)
{

/*Read the message about accepted consumption %/
START_ACCEPTED_CONSUMPTION_2_MESSAGE_LOOP

RATIONED = accepted_consumption_2_message—>rationed;

RECEIVED_QUANTITY [1]. quantity=
accepted_consumption_2_message—>offered_consumption_volume;

RECEIVED_QUANTITY [1]. firm_id =
ORDER_QUANTITY [1]. firm_id ;

FINISH.ACCEPTED_CONSUMPTION_2_MESSAGE_LOOP
}

else

{
RECEIVED_QUANTITY [1]. quantity =0.0;

RECEIVED_QUANTITY [1]. firm_id =0;
}

WEEKLY_BUDGET = WEEKLY_BUDGET — RECEIVED_QUANTITY [1]. quantity
*ORDER_QUANTITY [1]. price

EXPENDITURES += RECEIVED_QUANTITY[1]. quantity * ORDER.QUANTITY[1]. price

Household_handle_leftover_budget
The purpose of this function is
1. to subtract the consumption expenditures from the payment account

2. to handle the left over budget if the household was rationed in both shopping loops. How
the household proceeds, depends on the week of the months when the rationing occurs.
In the last week of the month (i.e. at the next activation day the household determines
the budget for the following month) there is no need for a special treatment since the
left over money remains at the payment account and goes trough the wealth into the
determination of the next monthly budget. For the other months, the left over budget is
equally distributed among the remaining weekly budgets.

CONSUMPTION_BUDGET —= EXPENDITURES;
MONTHLY_EXPENDITURES += EXPENDITURES;

i f (WEEK.OF MONTH 1=1)
{
PAYMENT_ ACCOUNT —= EXPENDITURES ;

WEEK_OF_MONTH——;
WEEKLY_BUDGET = CONSUMPTION_BUDGET / WEEK_OF_MONTH;

44 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

}

else

PAYMENT_ACCOUNT =PAYMENT_ACCOUNT — EXPENDITURES;
WEEK_OF_MONTH——;

}

//set rationed back to zero:
RATIONED = 0;

add_bank_account_update_message(ID, BANK.ID, PAYMENT.ACCOUNT);

3.4 Mall

3.4.1 Activities
The mall activities at the consumption goods market are:
e regional market platform for the consumption goods.

e The malls store local inventories of all consumption goods firm. When a firm finishes its
production, it distributes the output over all malls.

e The mall collects all consumption requests, and handles the sale of goods. If necessary it
rations the consumption.

e It collects the revenues and sends them to the consumption goods firm.

3.4.2 Functions
Mall _update_mall _stock

At that day when consumption goods producers finish their production processes and deliver the
goods to the malls, they send a message to the malls containing the individual delivery volume
, such that the mall can update firm’s local inventory stock and the current goods price.

START_UPDATE_MALL_STOCK_MESSAGE_LOOP
// Message filter used: if(a.id=m.mall_id)

for(int j=0; j < CURRENTSTOCK.size; j++)
{

if (update_mall_stock_message—>firm_id=—
CURRENT.STOCK. array [j]. firm_id)

{
CURRENT.STOCK. array [j]. stock=CURRENT_STOCK. array [j].

stock + update_mall_stock_message—>quantity;

CURRENT.STOCK. array[j]. firm_id=
update_mall_stock_message—>firm_id;

CURRENT.STOCK. array[j]. quality=
update_mall_stock_message—>quality;

CURRENT.STOCK. array[j]. price=
update_mall_stock_message—>price;

3.4. MALL 45

//Counting the daily imports
if (REGION_ID != CURRENT.STOCK. array[j].region_id)

{

daily_imports_nominal += update_mall_stock_message—>quantity*
update_mall_stock_message—>price;
daily_imports_real 4= update_mall_stock_message—>quantity;

}
}
}

FINISH.UPDATE_MALL_STOCK_MESSAGE_LOOP

Mall_send_quality_price_info_1

The mall sends a daily message to the household that informs the consumers about the available
range of goods. This message contains the information whether a good is available, and its
corresponding price.

int i;
int available;
for (i=0;i <CURRENTSTOCK. size ; i++)

if (CURRENTSTOCK. array[i].stock > 0)

{

available= 1;
telse
{

available= 0;
}

add_quality_price_info_1_message (ID,REGION.ID,
CURRENT.STOCK. array [i]. firm_id ,

CURRENT.STOCK. array[i]. quality ,

CURRENT.STOCK. array[i]. price ,available);

Mall _update_mall stocks_sales_sales_1

The first action of this function is the the mall collects all consumption requests related to the
first shopping loop.

START_CONSUMPTION_REQUEST _1_MESSAGE_LOOP
add_consumption_request(&consumption_request_list ,
consumption_request_1l_message—>worker_id ,
consumption_request_1_message—>firm_id ,
consumption_request_1l_message—>quantity);

FINISH_.CONSUMPTION_REQUEST_1_MESSAGE_LOOP

By summing all individual requests the mall determines for each of the provided goods the total
demand in the first shopping loop. If there is a excess demand (summed demand>supply) for a
good, the mall has to ration the accepted quantities. Therefore, it computes a quota indicating
how much of the total demand is covered by the actual supply. Each demander for a rationed
good receives the percentage of her ordered quantity that corresponds to the rationing quota.

46 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

The mall sends messages to the costumers containing the actual delivery volumes and com-
putes the firm specific sales after shopping round 1, and finally it subtracts the sold quantities

from the local inventories.
At the end the mall sends a new message to households with the updated mall stocks.

/xAggregation of demand per firmx/
for(int i = 0; i < CURRENTSTOCK. size;i++)
{
aggregated_demand =0.0;
for(int j = 0; j < consumption_request_list.size; j++)
{
if (CURRENT.STOCK. array [i]. firm_id =
consumption_request_list.array[j].firm_id)

{
aggregated_demand4+= consumption_request_list.array[j]. quantity;
}
}
/x1f aggregated demand > current stock . Rationingx/
if (aggregated_demand> CURRENT.STOCK. array[i].stock)

{

rationing_rate= CURRENT.STOCK. array[i].stock/ aggregated_demand;

for(int k=0; k<consumption_request_list.size;k++)

{
if (CURRENTSTOCK. array[i]. firm_id =
consumption_request_list.array[k].firm_id)
{
/xSend accepted consumption volumex/
add_accepted_consumption_1_message (ID,
consumption_request_list.array[k].worker_id ,
consumption_request_list.array[k]. quantity=*
rationing_rate , 1);
}
}

CURRENT.STOCK. array[i].sales = CURRENT.STOCK. array[i]
.stock*CURRENT.STOCK. array[i]. price;

/+*mall stock completely sold outx/
CURRENT.STOCK. array [i].stock=0.0;

else /«Otherwise no rationingx/

{

for(int k=0; k<consumption_request_list.size;k++)

if (CURRENTSTOCK. array[i]. firm_id =

consumption_request_list.array[k]. firm_id)

{ /*Send accepted consumption volumex/
add_accepted_consumption_1_message(ID,
consumption_request_list.array[k]. worker_id ,
consumption_request_list.array[k].quantity , 0);

}

/+* Calc and store revenues per firmx/
CURRENT.STOCK. array[i].sales =
aggregated_demand *CURRENT.STOCK. array[i]. price ;
/*remaining mall stockx/
CURRENT.STOCK. array[i].stock—=aggregated_demand;

3.4. MALL 47

}

free_consumption_request_array(&consumption_request_list);

/+«Send second price infox/

int i;

int available;

for (i=0;i<CURRENT.STOCK. size ; i++)

{
if (CURRENTSTOCK. array[i].stock > 0)
{
available= 1;
telse
{
available= 0;
}
add_quality_price_info_2_message (ID,REGION.ID,
CURRENT.STOCK. array [i]. firm_id ,
CURRENT_STOCK. array[i]. quality ,
CURRENT_STOCK. array[i]. price ,available);
}

Mall_update_mall_stocks_sales_sales_2

Just like in Mall_update_mall_stocks_sales_sales_1, the mall receives a message with information
about the order quantities of households, sums them up and determines, if necessary, a rationing
quota. It then sends the accepted consumption goods to the households and computes the sales.

/*Read the requestx/
START_CONSUMPTION_REQUEST_2_MESSAGE_LOOP
// Message filter used: if(a.id=m.mall_id)

add_consumption_request(&consumption_request_list ,
consumption_request_2_message—>worker_id ,

consumption_request_2_message—>firm_id ,

consumption_request_2_message—>quantity);

FINISH.CONSUMPTION_REQUEST_2_MESSAGE_LOOP

/xAggregation of demandx/
for(int i = 0; i < CURRENTSTOCK.size;i++)

{
aggregated_demand=0;
for(int j = 0; j < consumption_request_list.size; j++)

if (CURRENTSTOCK. array[i]. firm_id =
consumption_request_list.array[j].firm_id)

{

aggregated_demand+= consumption_request_list.array[j]. quantity;

}
}
/xIf agg demand > mall stocks . Rationingx/
if (aggregated_demand > CURRENT.STOCK. array[i].stock)

rationing_rate= CURRENT.STOCK. array[i].stock/ aggregated_demand;

48 CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

for(int k=0; k<consumption_request_list.size;k++)

if (CURRENTSTOCK. array[i]. firm_id =

consumption_request_list.array[k].firm_id)

{
add_accepted_consumption_2_message(ID,
consumption_request_list.array[k].worker_id ,
consumption_request_list.array[k].quantity=*
rationing_rate , 1);

}

}

/+* Revenues and final mall stockx/

CURRENT.STOCK. array[i].sales += CURRENT.STOCK. array[i]
.stock *CURRENT_STOCK. array [i]. price;

CURRENT.STOCK. array[i].stock=0;

else /«Otherwise no rationgx/

{

for(int k=0; k<consumption_request_list.size;k++)
{
if (CURRENTSTOCK. array[i].firm_.id =
consumption_request_list.array[k]. firm_id)
{
add_accepted_consumption_2_message(ID,
consumption_request_list.array[k]. worker_id ,
consumption_request_list.array[k].quantity , 0);
}
}
/*revenues and final stocksx/

CURRENT.STOCK. array[i].sales += aggregated_demand =
CURRENT.STOCK. array [i]. price;

CURRENT.STOCK. array[i].stock——=aggregated_demand;

}
}

free_consumption_request_array(&consumption_request_list);

Mall_pay _firm

Here, the mall sends a daily message to the consumption goods producers containing the revenue
and the current mall stock.

TOTAL_SUPPLY=0.0;
int stock_empty;
for(int i=0; i<CURRENTSTOCK.size;i++)
{
TOTAL_SUPPLY4+=CURRENT_STOCK. array[i]. stock;
if (CURRENTSTOCK. array[i].stock ==0)

{

stock_empty =1,
telse
{

stock_empty =0;

add_sales_message (ID, CURRENT.STOCK. array[i].firm_id,

3.4. MALL

CURRENT_STOCK. array[i].sales ,stock_empty ,CURRENTSTOCK. array[i].stock);
}

49

50

CHAPTER 3. CONSUMPTION GOODS MARKET DOCUMENTATION

3.5 Stategraph

layer 0

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

layer 10

layer 11

layer 12

layer 13

layer 14

layer 15

layer 16

layer 17

Firm_Start_Credit_Role

idle

Firm_Credit_00

Firm_receive_account_interest

Firm_Credit_01

Firm_ask_loan <
Firm_Credit_02

Firm_get_loan

Firm_End_Credit_Role

Bank_accounting

Bank_update_ech_account

Bank_stocks_and_flows

Bank_update_policy_rate start_Central_Bank

Start_Government_accounting

not (Periodicity: monthly Periodicity: monthiy\ not (Periodicity: monthly
: Phase: 1)
idle Central_Bank_reset_variables idle Government_monthly_budget_accounting
B
Periodicity: monthly
Phase: 1
Central_Bank_monetary_policy Government_send_account_update
CB_market_operations policy_rate
not (Periodicity: monthly
Phase: 0)
Bank_read_policy_rate < — idle
|
Bank_start_credit_market_role
|
Bank_communicate_identity
|
Bank_01 |
Periodicity: monthiy) not (Periodicity: monthly |
Phase: 1)
Bank_send_dividend_payment Bank_set_quantities_zero |
Bank_01b |
Bank_send_account_interest bank_identity
Bank_02 account_interest
a.equity LEQ 0.0 |
idle |
a.equity GT 0.0
a.external_financial_needs GT 0.0 request_fiat_money
loan_request
- o
Bank_decide_credit_conditions eriodicity: monthly
decide_credt_ Phase: 0
loan_conditiofs gov_to_central_bank_account_update
Bank_03
loan_acceptance|
N
Bank_give_loan
Bank_04
Bank_receive_installment
bank_interest_payment
Bank_05
Bank_account_update_deposits
Bank_06
Periodicity: monthly/not (Periodicity: monthly |
Phase: 0 Phase: 0)
Bank_idle
Bank_07
Bank_08 request_fiat_money
> «
bank_to_central_bank_account_update ~Central_Bank_read_fiat_money_requests
. - -
Central_Bank_read_account_update
ech_dividend

Government_compute_balance_sheet

End_Government_accounting

Chapter 4

Labour Market Documentation

4.1 Firm

4.1.1 Activities

Firms are active on the labour market after the production planning but before the production
takes place. Firms perform the following activities on a monthly base:

e Lay off workers if number of employees is bigger than the actual labour demand.

e Employ workers if number of employees is smaller than the actual labour demand. Deter-
mine wage offers, post vacancies, and select among applicants.

4.1.2 Functions
Firm calculate specific skills and wage offer

1. The firms calculate the average specific skills of each general skill group »9" € {1,2,...5}
in order to determine wage offers for each group. Therefore in a first step the specific skills
b+ with k € {1;2;...5} of each general skill group are summed up.

//For each employee.
for(int n = 0; n < EMPLOYEES. size; n++)
{
/*For each general skill level (1-5)x/
switch (EMPLOYEES. array [n]. general_skill)
{
case 1:/xIf employee has general skill level 1
add specific skill to suml.x/
sum_1 = sum_1 + EMPLOYEES. array [n]. specific_skill;
break ;
case 5:/xIf employee has general skill level 5
add specific skill to sum5.x/
sum_5 = sum_5 + EMPLOYEES. array [n].specific_skill;
break;
}
}

51

52 CHAPTER 4. LABOUR MARKET DOCUMENTATION

2. Afterwards the average specific skills of each general skill group are calculated. If there is no
employee in one of the general skill groups the average specific skills of this group is replaced
by the average specific skills in the population. This information is sent by the Eurostat
agent. The general skill depending wage offers are determined by the product of the base
wage offer wgt which is the price of one unit of specific skills times the effective productivity
min [A@t, B@k,t] of the skill group k. The effective productivity is the minimum of the
technolgy A;; and the average specific skills of the general skill group B; 1 ;.

0 o) : A
wiy = wiy X min [Ai s, Bij]

/*For each general skill group:
calculate the average specific skillsx/
for(m=1; m< 6;mt+)
{
switch (m)
{
/+xIf general skill level 1x/
case 1:

/% If there are employees with general skill
level 1 replace the average specific skills of
the population by the skills inside the firm.x/

if (NO_LEMPLOYEES_SKILL-1 > 0)

{

/* Calculate average specific skill group 1.x/
AVERAGE_S_SKILL_OF_.1 = sum_1/NO_EMPLOYEES_SKILL_1;

}

WAGE_OFFER_FOR_SKILL.-1 =

WAGE_OFFER% min (TECHNOLOGY, AVERAGE_S_SKILL_OF_1);

break;

case b5:

/+xIf there are employees with general skill
level 5 replace the average specific skills of
the population by the skills inside the firm.x/
if (NO_LEMPLOYEES_SKILL.5 > 0)

{

/* Calculate average specific skill group 5.x/
AVERAGE_S_SKILL_OF.5 =
sum_5/NO_EMPLOYEES_SKILL_5;

}

WAGE_OFFER_FOR_SKILL.5 =

WAGE_OFFER*min (TECHNOLOGY, AVERAGE_S_SKILL_OF_5);
break;

}
}

Firm send redundancies

If the firms have more employees than needed they have to lay off employees. The number
of redundancies is the difference between the number of employees and the number of needed
employees. The number of needed employees is determined in the function Firm calc input

4.1. FIRM

53

demands in the Consumption Goods Market. The employees are fired randomly (alternative:

lowest specific skills first) and are notified via a firing message.

no_redundancies = NO_EMPLOYEES — EMPLOYEES_NEEDED;

for(int i = 0; i < (no_redundancies); i++)

{
/*Firing: randomlyx/
j = random_int (0,(EMPLOYEES. size —1));
add_firing_message (ID, EMPLOYEES. array[j].id);

/*Firing: lowest specific skillx/
/*j = EMPLOYEES. size —1;

//Send quitting to employee.
add_firing_message (ID, EMPLOYEES. array[j].id);*/

//Adjust the workforce.
switch (EMPLOYEES. array[j]. general_skill)
{
/*1f employee has skill level 1 reduce the
number of employees with skill level 1 by 1.x/
case 1:
NO_EMPLOYEES_SKILL_1——;
break ;

/% If employee has skill level 5 reduce the number
of employees with skill level 5 by 1.x/
case 5:

NO_EMPLOYEES_SKILL_5——;

break;

}

remove_employee(&EMPLOYEES, j);
NO_EMPLOYEES——;

Firm send random redundancies

Additionally to the workers dismissed because of a necessary adjustment of the workforce, the
firms fire a random number of workers. This reflects the normal fluctuations of workers in a
firm. The number of fired workers is a random number that is equally distributed between the

boundaries LOWER_BOUND_FIRING and UPPER_BOUND_FIRING. The boundaries

are constants during the simulation. The workers are notified via a firing message.

//Draw a random number.
int random_num = random_int (LOWER_.BOUND_FIRING, UPPER_.BOUND_FIRING) ;

/+* The random number s the percentage of employees
who are laid off.x/
int no_redundancies

(random_num«NO_EMPLOYEES) /100;

for(int i = 0; i < (no_redundancies); i++)
{

/*Firing: randomlyx/

j = random_int (0,(EMPLOYEES. size —1));

54 CHAPTER 4. LABOUR MARKET DOCUMENTATION

add_firing_message (ID, EMPLOYEES. array[j].id);

//Send quitting to employee.
add_firing_message (ID, EMPLOYEES. array[j].id);x/

//Adjust the workforce.
switch (EMPLOYEES. array[j]. general_skill)
{
/+xIf employee has skill level 1 reduce the
number of employees with skill level 1 by 1.x/
case 1:
NO_EMPLOYEES_SKILL_1——;
break;

/+*If employee has skill level 5 reduce the number
of employees with skill level 5 by 1.x/
case 5:

NO_EMPLOYEES_SKILL_5——;

break;

}

remove_employee(&EMPLOYEES, j);
NO_EMPLOYEES——;

Firm send vacancies

In the case that firms want to hire new workers they calculate the number of vacancies v which
is the difference between the number of needed employees and the number of employees. The
number of needed employees is determined in the function Firm calc input demands in the
Consumption Goods Market. Firms send one vacancy message which is read by unemployed
households containing wage offers w?,k,t for each general skill group.

/*Number of vacancies/additional employees wanted.x/
VACANCIES = EMPLOYEES_NEEDED — NO_EMPLOYEES;

/+*Send vacancy message with wage offers.x/
add_vacancies_message (ID, REGION.ID,
WAGE_OFFER_FOR_SKILL_-1, WAGE_OFFER_FOR_SKILL_2,
WAGE_OFFER_FOR_SKILL_.3, WAGE_OFFER_FOR_SKILL 4,
WAGE_OFFER_FOR_SKILL.5);

Firm read job applications send job offer or rejection

In the first step of this function firms receive the applications from unemployed workers con-
taining their workerID, specific skills, and the general skill level.

START_JOB_APPLICATION_MESSAGE_LOOP

/* Read job application messages for this Firm. x/
if(job_application_message—>firm_id =— ID)
{
/*Add application to a list (array).x/
add_job_application(&job_application_list ,

4.1. FIRM 95

job_application_message —>worker_id ,
job_application_message —>region_id ,
job_application_message —>general_skill ,
job_application_message—>specific_skill);

}

FINISH_JOB_APPLICATION_MESSAGE_LOOP

//Number of applicants.
no_applications = job_application_list.size;

After counting the number of applications there are two cases:

1. In the first case the number of applications is equal or smaller than the number of vacancies.
In this case the firms send job offers to each applicant on the application list.

if(no_applications <= VACANCIES)

for(i = 0; i < (job_application_list.size); i++)
{
/+«For each genral skill level (1-5) x/
switch(job_application_list.array[i]. general_skill)
{
/xIf general skill level of the applicant is 1 send
job offer with wage offer for general skill level 1x/
case 1:
add_job_offer_message(ID,
job_application_list.array[i].worker_id,
REGION_ID , WAGE_OFFER_FOR_SKILL_1);
break ;

/+xIf general skill level of the applicant is 5 send
job offer with wage offer for general skill level 5x/
case 5:
add_job_offer_message (ID,
job_application_list.array[i].worker_id,
REGION_ID , WAGE_OFFER_FOR_SKILL.5);
break;

2. In the second case the number of applicants is bigger than the number of vacancies. In this
case the firms send as many job offers to applicants as it has vacancies to fill. The selection
is based on a standard logit model that takes into account the general (or optionally the
specific) skill level. Applicants with high general skills have a higher probability to be
chosen.

if(no_applications > VACANCIES)
{
//For each vacancy.
for(i = 0; i< VACANCIES; i++)
{
logit_array logit_applications_list;
init_logit_array(&logit_applications_list);

56

CHAPTER 4. LABOUR MARKET DOCUMENTATION

/+* Computing the denominator of the logit.x/
double denominator_logit = 0;

double logit = 0.0;

double sum_of_logits;

double random_number;

for(j = 0; j< job_application_list.size;j++)

{
denominator_logit+=exp (LOGIT_-PARAMETER_GENERAL_SKILLS*
job_application_list.array[j]. general_skill +
LOGIT_PARAMETER_SPECIFIC_SKILLS
job_application_list.array[j].specific_skill);

}

/* Compute the logits and store them at the temporary array
logit_applications_list .x/

if (denominator_logit >0)

{
for(j = 0; j< job_application_list.size;j++)
{
logit = exp (LOGIT_.PARAMETER_GENERAL_SKILLS:x
job_application_list.array[]j]. general_skill +
LOGIT_.PARAMETER_SPECIFIC_SKILLS *
job_application_list.array[j].specific_skill)
/denominator_logit;
add_logit(&logit_applications_list , 100xlogit ,
job_application_list.array[]j].worker_id,
job_application_list.array[j]. general_skill);
}
}
/+*Draw a random number.x/
random_number = (double)random_int(0,100);
sum_of_logits = 0;

for(j = 0; j< logit_applications_list.size;j++)

sum_of_logits 4=
logit_applications_list.array[]j].logit_value;

if (random_number < sum_of_logits)

/x1f condition is true, the firm chooses this
worker and send a job offer with the
corresponding wage offer.x/

switch(logit_applications_list.array[j]. general_skill)
{
/+xIf general skill level of the applicant is 1
send job offer with wage offer for
general skill level 1.x/
case 1:
add_job_offer_message (ID,
logit_applications_list.array[]]
.worker_id ,REGION_ID, WAGE_OFFER_FOR_SKILL_1);
break ;

4.1. FIRM
/% If general skill level of the applicant is 5
send job offer with wage offer for
general skill level 5.x/
case b:
add_job_offer_message (ID,
logit_applications_list.array[]]
.worker_id ,REGION_ID, WAGE_OFFER_FOR_SKILL.5);
break;
}
/*The chosen worker has to be removed from
the application list.x/
for(k = 0; k< job_application_list.size;k++)
if(job_application_list.array[k].worker_id =
logit_-applications_list.array[j]. worker_id)
remove_job_application(&job_application_list ,k);
break;
}
}
break;
}
}
/+* Free the job application dynamic array */
free_logit_array(&logit_applications_list);
}
}

57

Firm read job responses

The firms read the accepted job offers and adds the worker and his characteristics (ID, wage,

general, and specific skill) to its workforce.

START_JOB_ACCEPTANCE_MESSAGE_LOOP

/* Read job acceptance messages for this Firm x/
if (job_acceptance_message—>firm_id = ID)
{

/*Reduce number of vacancies and

increase number of employeesx/

VACANCIES——;

NO_EMPLOYEES++;

switch (job_acceptance_message—>general_skill)

/% If new employee has general skill level 1x/

case 1:
add_employee(&EMPLOYEES,
job_acceptance_message—>worker_id ,
job_acceptance_message—>region_id ,
WAGE_OFFER_FOR_SKILL_1,
job_acceptance_message—>general_skill ,
job_acceptance_message—>specific_skill);

NO_EMPLOYEES_SKILL_1+4+;

58 CHAPTER 4. LABOUR MARKET DOCUMENTATION

break ;

/*If new employee has general skill level 5%/
case b:
add_employee(&EMPLOYEES,
job_acceptance_message—>worker_id ,
job_acceptance_message—>region_id ,
WAGE_OFFER_FOR_SKILL_5,
job_acceptance_message—>general_skill ,
job_acceptance_message—>specific_skill);

NO_EMPLOYEES_SKILL_5++;
break;

Firm update wage offer

If the firms have still vacancies to fill and the number of vacancies is higher than a threshold v
they increase the wage offer for each skill group by ¢ hence wiok i1 = wl-Ok 1+ ;). vand ¢
are constant during the simulation.

if (VACANCIES > MIN_VACANCY)

{
//Increase base wage offer for the next period.
WAGE_OFFER = WAGE_OFFERx(1+WAGE_UPDATE) ;

//Increase actual wage offers for the second loop.
WAGE_OFFER_FOR_SKILL_1 =
WAGE_OFFER_FOR_SKILL_1x(1+WAGE_UPDATE);

WAGE_OFFER_FOR_SKILL.5 =
WAGE_OFFER_FOR_SKILL_5%(1+WAGE_UPDATE);

}

Remark: The last four functions (Firm send vacancies to Firm update wage offer) constitute
a loop which is ran two times each month on the activation days of the firms.
Firm compute mean wage specific skills

After the firms finished their basic labour market activities they calculate the mean wage and
specific skills mainly for activities (production) in the Consumption Goods Market.

/*Sum up the wage and the specific skills of each worker.x/
for (i=0;i<EMPLOYEES. size ; i++)
{
ave_specific_skills += EMPLOYEES. array[i].specific_skill;
ave_general_skills += EMPLOYEES. array[i]. general_skill;
}

/% If the firm has no employeesx/
double no_employees = (double) NO_.EMPLOYEES;
if (no_employees==0)

4.2. HOUSEHOLD 59

MEAN.WAGE = WAGE_OFFER;
MEAN_SPECIFIC_SKILLS = AVERAGE_S_SKILL_OF_1;

}

/*1f the firm has employees calculate the mean wage and mean specific skills.
else
{

MEAN.WAGE = ave_wage /(no_employees);

MEAN_SPECIFIC_SKILLS =ave_specific_skills/no_employees;

}

4.2 Household
4.2.1 Activities
Households perform the following activities in the labour market:
e If employed: receive a wage from the current employer, read firing message.

e If unemployed: receive unemployment benefits from the government, send job applications
to firms that have opened vacancies.

4.2.2 Functions
Household read firing message

If households/workers are employed they have to check if they are fired by reading firing messages
on the activation day of the employer. Fired workers set EMPLOYEE_FIRM_ID to —1 to
indicate that they are unemployed.

/* Check for firing message */
START_FIRING_MESSAGE_LOOP

/xIf employee is firedx/

if (firing_.message—>worker_id = ID)
EMPLOYEE_FIRM_ID = -1,
LAST_LABOUR_INCOME = WAGE;
WAGE = 0;

FINISH_FIRING_.MESSAGE_LOOP

Household unemployed read job vacancies and send applications

The probability of an unemployed worker to search for a new job on the actual day/iteration is

p = NUMBER_APPLICATIONS/(20+APPLICATIONS_PER_DAY)

Number _applications is the the number of applications an unemployed worker is allowed to send
in one month while Application_per_day is the maximum number on one day. They are constant
during the simulation. In the model 20 days are one month.

/

60

CHAPTER 4. LABOUR MARKET DOCUMENTATION

1. The unemployed households are searching for a new job. Therefore they read vacancy
messages from firms and compare the wage offer with its reservation wage w,ft. If the
vacancy is not in the domestic region the household has to take commuting costs into
consideration. The information about the vacancies are stored in a vacancy-list if the

wage offer (net of commuting costs) is higher than reservation wage.

START_VACANCIES_-MESSAGE_LOOP

/+*Unemployed check the wage offer for their skill group.x/
if (GENERAL_SKILL = 1)
{
wage_offer =
vacancies_message—>firm_wage_offer_for_skill_1;

if (GENERAL_SKILL = 5)

{
wage_offer =
vacancies_message—>firm_wage_offer_for_skill_5;

}

/+*Wage offer has to be equal or higher
than the reservation wage.x/
if (wage_offer >= WAGE_RESERVATION)

/+*Same region: Firm and Household.x/

if (REGION_ID = vacancies_message—>region_id)

{
add_vacancy(&vacancy_list ,
vacancies_message—>firm_id ,
vacancies_message—>region_id ,
wage_offer);

else /«Different regions: Firm and Household.x/
{
/*For every neighboring regionx/
for(i = 0;i < NEIGHBORING_REGION_IDS . size; i++)
{
/*If vacancy is in a neighboring region.x/
if(vacancies_message—>region_id
=—NEIGHBORING_REGION_IDS . array[i])
{
//Commuting costs.
if ((wage_offer—REGION_COST)
>= WAGE_RESERVATION)
{
add_vacancy(&vacancy_list ,
vacancies_message—>firm_id ,
vacancies_message—>region_id ,
(wage_offer — REGION_COST));

}
break ;

}

FINISH_.VACANCIES_MESSAGE_LOOP

4.2. HOUSEHOLD 61

2. The household sends an exogenously determined number of applications (applications_per_day)
to randomly chosen vacancies from the vacancy list.

if(vacancy_list.size > APPLICATIONS_PER_DAY)

{
/xRemove vacancies from the list randomly until
the list contains as many vacancies as a
household can send applicationsx/
while(vacancy_list.size > NUMBER_APPLICATIONS)
{
j = random_int (0, (vacancy_list.size —1));
remove_vacancy(&vacancy_list, j);
}
}

/% If the vacancy list is bigger than zero then send
a job application to every vacancy on the list.x/
for(i = 0; i < (vacancy_list.size); i++)
{
add_job_application_message (ID,
vacancy_list.array[i].firm_id ,
REGION_ID, GENERAL_SKILL, SPECIFIC_SKILL);

Household read job offers send response

1. The households receive the job offers containing the ID and the regionlD of the employer
and the wage offer. If they receive more than one job offer they rank the incoming offers
regarding the wage offer (net of commuting costs) accept the job offer with highest wage.

START_JOB_OFFER_-MESSAGE_LOOP
/+* Read job offer.x/
if (job_offer_message—>worker_id = ID)
{
/*Job offers of firms in the same regionx/
if (REGION_ID = job_offer_message—>region_id)
{
add_job_offer(&job_offer_list ,
job_offer_message —>firm_id ,
job_offer_message —>region_id ,
job_offer_message —>wage_offer);
}
else /xJob offers of firms in different regionsx/
{
add_job_offer(&job_offer_list ,
job_offer_message —>firm_id ,
job_offer_message —>region_id ,
(job_offer_message —>wage_offer —
REGION_COST);
}
}
FINISH_JOB_OFFER_MESSAGE_LOOP

62 CHAPTER 4. LABOUR MARKET DOCUMENTATION

2. If they receive more than one job offer they rank the incoming offers regarding the wage
offer (net of commuting costs) accept the job offer with highest wage. They send a job
acceptance message containing their ID, general, and specific skills.

if(job_offer_list.size > 0)

{
add_job_acceptance_message(ID,
job_offer_list.array [0]. firm_id ,
REGION_ID, GENERAL_SKILL, SPECIFIC_SKILL);

EMPLOYEE_FIRM_.ID = job_offer_list.array[0].firm_id;
EMPLOYER_REGION.ID = job_offer_list.array[0].region_id;
DAY_OF_MONTH_RECEIVE_INCOME = DAY%VIONTH;

/+*Update some memory variables because of the new jobx/
if (REGION.ID = job_offer_list.array [0].region_id)

WAGE = job_offer_list.array [0]. wage_offer;
WAGE_RESERVATION = WAGE;
}

else

{
/* Commuting costs. Add commuting costs to wage offer.
Commuting costs were substracted from the wage offer
when they were ranked.x/
WAGE =
(job_offer_list.array [0]. wage_offer + REGION_COST);

/* Reservation wage is the wage net of commuting costsx/
WAGE_RESERVATION = WAGE — REGION_COST;

Household update wage reservation

If the household is still unemployed it adjusts the reservation wage downwards by a certain
fraction w,lf’t 1= wﬁt(l +1). 1 is constant during the simulation. The reservation wage cannot
be lower than the unemployment benefits.

WAGE_RESERVATION = WAGE_RESERVATION —
WAGE_RESERVATION«WAGE_RESERVATION_UPDATE;

/* Don’t let wage reservation be
below the current unemployment benefit pct.x/
i f (WAGE_.RESERVATION < LAST_LABOUR_INCOME*UNEMPLOYMENT_BENEFIT_PCT)

{
WAGE_RESERVATION = LAST_LABOUR_INCOME*UNEMPLOYMENT_BENEFIT_PCT;

}

REMARK: The last three functions (Household unemployed read vacancies and send ap-
plications to Household update wage reservation) constitute a loop which is ran two times a day
when the unemployed household is searching for a new job.

Household send unemployment notification

If households are unemployed they they send an unemployment notification message to the
government on the day when they received their last wage in each month. If their last wage is

4.2. HOUSEHOLD

higher than the mean wage in the economy (or region) they receive a fraction unemployment\
_benefit\ _pct of their last wage. The parameter unemployment)\ _benefit_pct is constant during
the simulation. If their last wage is lower than the mean wage they recive 50% of the mean

wage.

/* Compute the individual unemployment benefit payment
as a fraction of the last labour income
if unemployment benefit is larger than the mean wage:x/

if (LAST_LABOUR.INCOMEx*UNEMPLOYMENT_BENEFIT_PCT >
REGION_WIDE_.MEAN_WAGE 0.5)

UNEMPLOYMENT_PAYMENT =
LAST_LABOUR_INCOME+*UNEMPLOYMENT _BENEFIT_PCT ;
}
else
{
//if unemployment benefit is below the
mean wage: pay 0.5 x MEAN.WAGE
UNEMPLOYMENT_PAYMENT =
REGION_WIDE_.MEAN_WAGE %0.5;
}

/*Add unemployment_benefit message */
add_unemployment_notification_message (GOV.ID,
UNEMPLOYMENT_PAYMENT);
HOUSEHOLD_INFLOWS_CALENDAR. unemployment_benefit 4=
UNEMPLOYMENT_PAYMENT ;

/*Add unemployment_benefit to account x/
PAYMENT_ACCOUNT += UNEMPLOYMENT_PAYMENT ;

TOTALINCOME= UNEMPLOYMENT_PAYMENT +
CUM_TOTAL_DIVIDENDS + MONTHLY_BOND_INTEREST_INCOME;

//Set the benefit reception day
DAY_OF_MONTH_RECEIVE_BENEFIT = DAY_OF_MONTH_RECEIVE_INCOME;

Household receive wage

If households are employed they receive the wage on the activation day of the employer in each

month. The wage messages contain also the productivity of the employer.

/*Household reads the wage messages if employed.x/
START _WAGE_PAYMENT_MESSAGE_LOOP

/+Set wage and reservation wage.x/
WAGE = wage_payment_message—>payment;
WAGE_RESERVATION = WAGE;

HOUSEHOLD_INFLOWS_CALENDAR . wage +=
wage_payment_message—>payment;

/+x Calculate the total income.x/

TOTALINCOME= wage_payment_message—>payment +
CUM_TOTAL_DIVIDENDS +

64 CHAPTER 4. LABOUR MARKET DOCUMENTATION

MONTHLY_BOND_INTEREST_INCOME;

/*Add wage to payment account.x/
PAYMENT_ACCOUNT += wage_payment_message—>payment;

/+*Store the productivity of the employer in order
to update the specific skills later.x/

CURRENT_PRODUCTIVITY_EMPLOYER =
wage_payment_message—> productivity;

FINISH-WAGE_PAYMENT_MESSAGE_LOOP

Household update specific skills

If households are employed they update their specific skills on the activation day of the employer
in each month. They send the updated specific skills to their employer. The specific skills evolve

according to
buwt+1 = buwe + X (05") - (Aix — bwy),

where by, are the specific skills of the worker, b7, is the general skill level, x() is a function
which increases with the general skill level, and A;; is the average quality /productivity of the
capital stock. The function x is increasing in the general skill level of the worker. The higher
the genarel skill level the faster is the learning process. Negative learning, i.e. a decrease of the
specific skill level, is not possible.

/% If the specific skill of household is lower than

the productivity of the employer

— no negative effect: no forgetting.x/

if (SPECIFIC.SKILL < CURRENT_PRODUCTIVITY_EMPLOYER)

{
/*Update the specific skill: depends on the actual
specific skill , the gap between the actual specific
skills and the actual productivity of the employer,
and the general skill which determines the speed of
closing the this gap.x/

SPECIFIC_SKILL = SPECIFIC_SKILL +
(CURRENT_PRODUCTIVITY_EMPLOYER — SPECIFIC_SKILL)x
((1—pow (0.5,1/(2040.25%(GENERAL_SKILL —1)*(4 —20)))));

}

/+«Send specific skill to employer.x/
add_specific_skill_update_message (1D,
EMPLOYEE_FIRM_ID, SPECIFIC_SKILL);

4.2. HOUSEHOLD

4.3 Stategraph

ayer 0

layer 1

layer2

ayer 3

ayer ¢

layer 5

layer 6

ayer 7

layer 8

layer 9

tayer 10

ayer 11

layer 12

layer 13

ayer 14

layer 15

layer 16

layer 17

ayer 18

layer 19

layer 20

layer 21

layer 22

Tausehold start_ Labour_Roe

Household ide
employee_rm (4 NEQ 1
Household_read fiing_messages <+———
a employee._firm id €0 -1
Household ide Household ide
D

Household_UNEMPLOYED_read job_vacancies_and_send applications

Household_read Job_ffers. send response

employee frm id NEQ .employee.firm 14 £Q -1

Household_fnsh Iabour_market Household_read_applcation_efection_update_wagereservation

Household UNEMPLOYED.resd ob_vacancies_and_send.applications 2

Household_read job_offers send_response 2

@ employee.fim. i EQ TN g employee_fim 4 NEQ 1

Household.read_appication_rejecion_ update_ wage_reservation 2

Household ide

Househoid_receive_dvidends_cummy

perodicty: monthly

y ot Periodicty: monthly
Phase: a->day_of month recaive.income.

prase: a->day_of month,

Household ide

&

Household_send_subsiy_notification

&

Householdsend_transfer_naification

Househald_ide

@ employee.fim 4 NEQ g employee.fim d £Q 1

Household_receive wage.

Household_update_speciic sl

Household send_unemployment_benef_notifcation

Household send tax_payment

oo

Household_determine_consumption_ budget

Figure 4.1: Stategraph

o employee_firm 16 NEQ -1

o

receiva income)

Firm stare_ Labour_Roe

Firm_ calclate_specic sils_and_wage.offer

Firm_send_redundances

Fim_ide

Fim_send_random_redundances

Fim_send_ vacandes

ication

Firm_read.jobapplicatins.send job,ofer_or_rejection

———Taboffer
ob_acceptance

Firm,_read job_responses

.n0_employees £Q a.employees needed .no_empoyees T a.employees needed

Firm_finsh labour_market_first_round Fim_update_wage_ofer

Firm_send vacancis_2

- =
—_job applcatfor2 ,

Fim_read_job_ applications_send Job offer_or_rejection 2

job_acceptance

Fim_read_job_responses. 2.

de

Mot (2.n0_employees LT 2 empoyees_needed | \a.no_employees LT 3.employees_needed

Firm e

Firm_update_wage_ofer 2

65

o_employees LEQ a employees needed

g

- fring

h.no_emloyees LT a.employees_needed\a.no_empioyees GEQ a.employees_needed)

Firm_compute_mean_wage_specitc sils

CFm_End Labour fole >

for the labour market.

66

CHAPTER 4. LABOUR MARKET DOCUMENTATION

Chapter 5

Financial Management
Documentation

5.1 Firm

5.1.1 Activities

The Firm’s main activities in the Financial Management role are:

1. Computing financial payments and external financing; interfacing between the real and
financial economy.

2. Checking for bankruptcy: insolvency and illiquidity (see the bankruptcy documentation).
3. Performing accounting routines.

Note that the external financing is performed only once at the start of the production cycle
and involves both the financing of the financial commitments inherited from the previous pro-
duction cycle and the liquidity needs for the upcoming production cycle this month. We have
chosen to finance these two categories simultaneously to prevent the firms from having to enter
the credit market twice during one cycle.

In the stategraph the functions of the firm are separated into two main branches:

1. Active branch: the firm is not bankrupt and starts the normal production routine (see the
left and centre branch in the stategraph).

2. Inactive branch: the firm is one of the bankruptcy states and executes its bankruptcy
routines (see the right-most branch in the stategraph).

When the firm is active, its activites are separated into three parts:

Part 1: Production planning and external financing
1. Compute financial needs for production.

2. Compute financial needs to pay for previous financial commitments: debt installments,
interests, and tax payments from the previous cycle.

3. Enter the credit market for external financing of these financial liquidity needs.

67

68 CHAPTER 5. FINANCIAL MANAGEMENT DOCUMENTATION

Part 2: Post-external financing After the external financing is finished, we check for
illiquidity bankruptcy. This occurs if insufficient external financing could be obtained from the
credit market. Two possible continuations exist:

1. Enter the bankruptcy illiquidity state immediately and do not start production (see the
left-most branch in the stategraph).

2. Proceed with normal operations of the production cycle (see centre branch in the state-
graph).
Part 3: Post-production and post-selling.
e The firm performs end-of-production-cycle accounting.
e Compute the income statement, balance sheet and dividends

e Check for insolvency bankrupty.

5.1.2 Functions
Firm compute total liquidity needs

This function is to determine the liquidity needs for production and for financing the inherited
financial commitments of the previous cycle.

PRODUCTION_LIQUIDITY_NEEDS = PLANNED_PRODUCTION_COSTS;
FINANCIAL_LIQUIDITY_NEEDS = TOTAL.INTEREST_.PAYMENT
+ TOTAL_DEBT_INSTALLMENT_PAYMENT
+ TAX_PAYMENT;

//Check if additional external financial needs are required
TOTAL_FINANCIAL_NEEDS = PRODUCTION_LIQUIDITY_NEEDS

+ FINANCIAL_LIQUIDITY_NEEDS

+ TOTAL_DIVIDEND_PAYMENT ;

//CASE 1: No external financing needed
if (PAYMENTACCOUNT >= TOTAL_FINANCIAL_NEEDS)

{
EXTERNAL_FINANCIAL_NEEDS = 0.0;

//CASE 2: External financing needed
else

EXTERNAL_FINANCIAL.NEEDS = TOTAL_FINANCIAL_.NEEDS — PAYMENT_ACCOUNT;

Firm execute financial payments

The following financial payments are executed:
1. tax payment
2. debt installments and interest payments on all outstanding loans

3. dividend payment

5.1. FIRM 69

All payments are subtracted from the payment account and the appropriate messages are send.
After these payments have been exectued, the payment account can be used to pay for factor
inputs for production.

Tax payment

add_tax_payment_message (GOV_ID, TAXPAYMENT);
PAYMENT_ACCOUNT —= TAX_PAYMENT;

Debt installments and interest payments

e reduce the number of debt periods remaining
e reduce the residual value-at-risk with the var per installment
e decrease loan value with the principle repaid (installment amount)

e per loan: send a message to the bank at which the loan was obtained

After this, check if the loan has reached maturity, and if so, remove from the loan portfolio.

for (i=LOANS.size —1; i>-1; i—)
{
LOANS. array[i]. nr_periods_before_repayment —= 1;
LOANS. array[i]. residual_var —= LOANS. array[i].var_per_installment;

//decrease payment_account with the installment payment
PAYMENT_ACCOUNT —= LOANS. array[i].installment_amount;

//decrease the value of the loan with the installment_payment:
LOANS. array[i].loan_value —= LOANS. array[i].installment_amount;

//pay interest
temp_interest=(LOANS. array[i].interest_rate /12.0)

* LOANS. array[i].loan_value;
PAYMENTACCOUNT —= temp_.interest;

add_installment_message (LOANS. array[i]. bank_id,
LOANS. array[i].installment_amount ,
temp_interest ,
LOANS. array[i].var_per_installment);

if (LOANS.array[i].nr_periods_before_repayment==0)
remove_debt_item (&LOANS, i);

Firm compute financial payments

This function serves to compute the previous financial commitments:
e total debt installment payments on all loans

e total interest payments on all loans (each loan has a different interest rate)

70 CHAPTER 5. FINANCIAL MANAGEMENT DOCUMENTATION

for (i=0; i<LOANS.size; i++)

{
TOTAL_INTEREST_PAYMENT += (LOANS. array[i].interest_rate /12.0)
* LOANS. array[i].loan_value;
TOTAL_DEBT_INSTALLMENT_PAYMENT += LOANS. array[i].installment_amount;
}

Firm compute income statement

//Compute net earnings
EARNINGS = CUM_REVENUE — TOTAL_NTEREST_PAYMENT — CALC_PRODUCTION_COSTS;

if (EARNINGS>0.0)

TAX PAYMENT = TAX_RATE_CORPORATE x EARNINGS:
else

TAX_ PAYMENT = 0.0;

PREVIOUS_NET_EARNINGS = NET_EARNINGS;
NET_EARNINGS = EARNINGS — TAX_PAYMENT;

//continue balance sheet (data pertaining to the period that just ended)
PREVIOUS_EARNINGS_PER_.SHARE = EARNINGS_PER_SHARE;
if (CURRENT_SHARES_OUTSTANDING>0)

EARNINGS_PER_.SHARE = NET_EARNINGS/CURRENT_SHARES_OUTSTANDING;

Firm compute dividends

The dividend payout rule is: as long as earnings are positive, keep earnings per share constant.
This yields the following dividend rule:

e If previous dividend was positive: the total divided payment increases with same rate as
the earnings per share.

e If previous dividend was zero, and net earnings are positive: set new divided payment
equal to a given fraction of net earnings.

e If net earnings are negative: set divided payment to zero.

if ((PREVIOUS_LEARNINGS_PER_SHARE>0.0)&& (PREVIOUS_SHARES_OUTSTANDING>0))

TOTAL_DIVIDEND_PAYMENT %= (EARNINGS_-PER_.SHARE/PREVIOUS_EARNINGS_PER_SHARE);
}

//Determine total_dividend if it was zero, and there are positive net earnings.
if (TOTAL_DIVIDEND_PAYMENT<1e—6 && NET_EARNINGS>0.0)

TOTAL_DIVIDEND_PAYMENT = CONST_DIVIDEND_EARNINGS_RATIO x NET_EARNINGS;
}

//In case of negative earnings:
if (EARNINGS<0.0)
TOTAL_DIVIDEND_PAYMENT = 0.0;

5.1. FIRM

Firm compute balance sheet

We compute these values:
e total value capital stock
e total value inventory stock

total assets

e equity

financial indicators

71

TOTAL_VALUE_LOCAL_INVENTORY =0.0;

for (i=0; i<CURRENT_MALLSTOCKS.size; i++)

{
TOTAL_VALUE_LOCAL_INVENTORY

TOTAL_ASSETS

EQUITY
DEBT_EQUITY_RATIO
DEBT_EARNINGS_RATIO
EQUITY_ASSET_RATIO

+= PRICE_INDEX*CURRENT_MALL.STOCKS. array[i].

PAYMENT_ACCOUNT + TOTAL_VALUE_CAPITAL.STOCK
+ TOTAL_VALUE_LOCAL_INVENTORY ;

TOTAL_ASSETS — TOTAL_DEBT;

TOTAL.DEBT/EQUITY ;

TOTAL_-DEBT/NET_EARNINGS;

EQUITY/TOTAL_ASSETS;

current

_stock;

72

5.2 Stategraph

layer 0

layer 1

layer 2
layer 3
layer &
layer

layer 6
layer 7
layer 8
layer s
layer 10
layer 11
layer 12

layer 13

layer 14

layer 15

layer 16

layer 17

layer 18

CHAPTER 5. FINANCIAL MANAGEMENT DOCUMENTATION

ide Firm bankruptcy_idie_counter

& bankruptcy_illiquidity_state EQ 1 AND
bankruptcy_insolvency_state Q 0 AND
‘. bankruptcy_idle_counter £Q 239

p bankruptcy_insolvency state EQ 1 AND
a.bankruptcy_idie_counter EQ 239

abankruptcy_idle_counter NEQ 239

Firm_Production_Planning_Functions

Firm_End_Production_Planning

Firm_bankruptey_illquidity_procedure Idle Firm_bankruptey_insolvency_procedure

Firm_bankruptcy_state_0

Periodicity: monthiy \ not (Periodicity: monthly.
Phase: 1 Phase: 1)

Firm_compute_total_liquidity_needs ide

Firm_Start_Credit_Role

ot (a.external_finandial_needs GT 0.0

Firm_bankruptcy_reset_delayed

Firm_bankruptcy_state_L

o external_financial_needs GT 0.0 \a.external_financial_needs GT 0.0001\ot (3 external_financial_needs GT 0.0001)

de Firm_Credit_Market_Functions. Firm_remains_in_bankruptey ide

Firm_End_Credt_Role

a external financial_needs GT 0.0 got (2.external_financial_needs GT 0.0 /& bankruptcy_idle_counter EQ O)iot (a.bankruptcy_idie_counter £Q 0)

Firm_check_finandial_and_bankruptcy_state

Firm_bankruptcy_checked

[a bankruptey_illiquidity_state £Q MNa.bankruptey_iliauidity_state £ 0

ide Firm_reset_bankruptcy_flags

ide

Firm_set_bankruptcy_illiquicity Firm_not._in_bankruptcy.

Firm_checks_finandal_crisis

© financial_crisis state £Q 1

Firm_variables_reset2

afinancial_crisis_state £Q 0

Firm_bankruptcy_reset_immediately

—

Firm_in_financial_crisis Idle

Firm_End_External Financing

Firm_execute_financial_payments.

Firm_Start_Labour_Role

Firm_Labour_Market_Functions

Firm_End_Labour_Role

Firm_Consumer_Market_Functions

Firm_ Start_Public_Sector_Role

Firm_send_subsidy_notification

Firm_send_transfer_notification

Firm_compute_financial_payments.

&

Firm_compute_income_statement

5

Firm_compute._dvidends

S

Firm_compute_total_financial_payments

&

Firm_compute_balance._sheet

Firm_Bankruptey_check

eauity 1T 0.0

ide Firm_set_bankruptey_insolvency.

Firm_bankruptcy_reset_immediately

Firm_End_Financial_Management_Role

Figure 5.1: Stategraph.

Chapter 6

Bankruptcy Documentation

Acknowledgement

This text was written in collaboration with Marco Raberto, Andrea Teglio and Saul Desiderio.

This work was carried out in conjunction with the EURACE project (EU IST FP6 STREP
grant 035086) which is a consortium lead by S. Cincotti (Universita di Genova), H. Dawid
(Universitaet Bielefeld), C. Deissenberg (Université de la Méditerranée), K. Erkan (TUBITAK
National Research Institute of Electronics and Cryptology), M. Gallegati (Universita Politecnica
delle Marche), M. Holcombe (University of Sheffield), M. Marchesi (Universita di Cagliari), C.
Greenough (STFC - Rutherford Appleton Laboratory).

73

74 CHAPTER 6. BANKRUPTCY DOCUMENTATION

6.1 Introduction

The Eurace model considers two types of bankruptcy:

e Illiquidity bankruptcy: firm equity is positive but, after the ACM role and the AFM role,
the firm is still unable to pay its financial commitments, i.e., taxes, debt instalments and
interests; The firm is illiquid and has to find funds to resurface.

e Insolvency bankruptcy: the firm equity becomes negative. The firm is insolvent and has
to perform a debt-to-equity transformation to become solvent again.

Both types of bankruptcy may occur in the Eurace economy. At first, we thought to address the
two types of bankruptcy in the same way. However, during further discussions, it was clear that
there were fundamental differences, e.g., the necessity of debt renegotiation in the insolvency
bankruptcy case, which could not have been combined with the illiquidity bankruptcy in a
unified bankruptcy model.

6.1.1 Effects on the markets

As soon as the firm declares bankruptcy, this has the following effects:
e All production activities are suspended.
e All workers are fired.
e The capital stock remains in place (and does not depreciate).

e The firm may enter into debt renegotiations with the banks at which it has outstanding
loans, and some part of the loans may be written down (bad debt).

During the bankruptcy period:

e The firm remains idle for some time; this is an exogenous period of one year after which
the firm is re-activated.

e The period can also be made endogenous, depending on some event-based activity of the
firm, related to the financial market activities. For example the raising of new equity may
take some time. In this case, the firm does not restart until all financial conditions are
met.

e There is a memory variable in the firm: ‘active’ that takes on binary values 0 or 1. It is
set to 1 when the firm’s production role is active. When a firm is ‘“inactive’ it executes its
bankruptcy procedures.

6.2 Bankruptcy in the full-fledged version of Eurace
Consider the following variable names for each firm:
e K: nominal value of physical capital at market prices

e [: market value of mall inventories

e (' payment account

6.2. BANKRUPTCY IN THE FULL-FLEDGED VERSION OF EURACE 75

e [: total loan

o Ty =K+ 1+ C (total assets)

o £ =T4 — L (equity)
Consider two parameters w and ¢, which are constant both in time and among firms; w sets the
debt renegotiation factor and £ the target leverage ratio of the restructured firm after bankruptcy.

6.2.1 Insolvency bankruptcy

The insolvency bankruptcy process of a firm consists of three main steps:

1. stop any business activity, fire all workers and cancel all equity shares among present
shareholders;

2. debt renegotiation with the bank(s) at which the firm has current loans;
3. recapitalization of the firm by the issuance of new shares.

Debt renegotiation is addressed by re-scaling L, which is greater than T4 in the insolvency
bankruptcy case, to a new value L* lower than T4, i.e., a value compatible with firms normal
operations,

L*=wly with w<1. (6.1)

Accordingly, we state that each bank j lending to the bankrupted firm is subject to a write-off
wj, i.e. a reduction of its assets (and consequently of its equity) proportional to the value of the
loan L; granted to the bankrupted firm. Given that the total amount of write-off among banks
must be L — L* and that >, L; = L, we have:

L-L*
wj: I

L. (6.2)

Recapitalization is addressed by the issue of new shares. The rationale for raising new capital
is twofold. First, it is intended to further strengthen the financial structure of the firm after
the debt renegotiation, second, it is a simple way to allocate the claims on the equity capital of
the restructured firm among new shareholders. The second issue could have been addressed by
letting the creditor banks be the new shareholders, as a partial compensation for the write-off
in their balance sheets, but this possibility was judged an unuseful complication and has been
discarded. Furthermore, the chosen solution may set an endogenous idle time for the firm vefore
restarting normal business operations, by letting the restart of production activity be contingent
on having raised a sufficient amount of new capital on the stock market.

The sufficient amount of money is set by ¢. Given the total firm assets before recapitalization
T4 and the amount of money raised in the stock market m, ¢ sets the target leverage value of
the restructured firm, i.e.,
L*
where E* = T4 + m — L*. The value of m is then derived accordingly, i.e.,

*

m = max (O, L? +L* — TA> . (6.4)

76 CHAPTER 6. BANKRUPTCY DOCUMENTATION

6.2.2 Illiquidity bankruptcy

The second form of bankruptcy is the illiquidity bankruptcy. The illiquidity bankruptcy process
of a firm consists of two main steps:

1. stopping any business and firing of all workers (shareholders now retain their equity shares).
2. recapitalization of the bankrupt firm by the issue of new shares.

The illiquidity bankruptcy case is then similar in some respect to the insolvency bankruptcy
case. The main difference is that here, L being already lower then T4, the firm does not need
to renegotiate its debt. Further, existing shareholders are no longer wiped out. However, due to
the liquidity crisis which causes the firm to be unable to pay its financial commitments, business
operations are stopped until the firm is able to raise a sufficient amount of funds m in the stock
market by means of the issuing of new shares. We state that m must be equal to « times
the difference between the firms financial commitments and its payment account, where « is a
parameter (the target liquidity ratio).

6.3 Scaled down version of Eurace@Unibi

In the simplified version used in the Eurace@Unibi model we do treat both types of bankruptcy
similarly. This has to do with the fact that in the simplified version of the financial market there
are no individual firm stocks, only a market index. We do not allow firms to issue new shares,
and no shares are cancelled. This has several consequences for the treatment of bankruptcy in
the scaled-down version:

1. Existing shareholders retain their shares in the insolvency bankruptcy case. They continue
to receive dividends when the firm resurfaces if it becomes solvent again.

2. Debt renegotiation with the bank (bad debt write-downs) also occurs in the case of illig-
uidity bankruptcy.

3. There is no recapitalization by issuing new shares in either insolvency or illiquidity bankruptcy.

6.4 Functions

6.4.1 Firm check financial and bankruptcy state

The first check for bankruptcy occurs inside the function Firm_check_financial_and_bankruptcy_
state, which sets the following flags:

BANKRUPTCY_ILLIQUIDITY_.STATE = 0 or 1
FINANCIAL_CRISIS.STATE =1 or 0

//Check bankrupcy condition for illiquidity case
if (PAYMENTACCOUNT < TOTAL_FINANCIAL_NEEDS)

//Code: check if payment account is also less than financial payments
if (PAYMENTACCOUNT >= TOTAL_INTEREST_PAYMENT

+ TOTAL_DEBT_INSTALLMENT_PAYMENT + TAX_PAYMENT—1e—5)
{

//Financial crisis condition
FINANCIAL_CRISIS_.STATE=1;

6.4. FUNCTIONS 77

lelse

BANKRUPTCY_ILLIQUIDITY_STATE=1;

}

If the condition BANKRUPTCY_ILLIQUIDITY_STATE==0 is true, the execution flow con-
tinues to the function Firm_in_financial_crisis to resolve the financial crisis by reducing divi-
dends. Otherwise, BANKRUPTCY_ILLIQUIDITY_STATE==1 and the flow goes to the function
Firm_set_bankruptcy_illiquidity.

6.4.2 Firm in financial crisis

int Firm_in_financial_crisis ()

{

double payment_account_after_compulsory_payments;

payment_account_after_.compulsory_payments = PAYMENT_ACCOUNT
— (TOTALINTEREST_PAYMENT + TOTAL_DEBT_INSTALLMENT_PAYMENT
+ TAX_PAYMENT);

//Try to resolve the crisis by lowering dividends
TOTAL_DIVIDEND_PAYMENT = max(0, payment_account_after_compulsory_payments
— PLANNED_PRODUCTION_COSTS);

//Set flag if resolved:

if (PAYMENTACCOUNT >= TOTAL_INTEREST_PAYMENT
+ TOTAL_DEBT_INSTALLMENT_PAYMENT + TAX_PAYMENT
+ TOTAL_DIVIDEND_PAYMENT)

FINANCIAL_CRISIS_.STATE=0;
BANKRUPTCY_STATE=0;

6.4.3 Firm set bankruptcy illiquidity

This function sets the following flags:

ACTIVE=0

BANKRUPTCY_IDLE_.CCOUNTER = CONST_BANKRUPTCY_IDLE_PERIOD
BANKRUPTCY_INSOLVENCY.STATE = 0
BANKRUPTCY_ILLIQUIDITY_STATE =1

//Send msg to malls to remove inventory stock:
add_bankruptcy_illiquidity_message (ID);

and then goes directly to the end of the iteration. In the next iteration the flag BANKRUPTCY_
ILLIQUIDITY_STATE=L1 causes the actual bankruptcy procedure to be executed for the case of
the illiquidity bankruptcy. See the function Firm_bankruptcy_illiquidity_procedure for details.

6.4.4 Firm set bankruptcy insolvency

The second check for bankruptcy occurs later on in the iteration, after the function Firm_
compute_balance_sheet has been executed. That function computes the value of equity. If equity<
0 the function Firm_set_bankruptcy_insolvency is run, which sets the following flags:

78 CHAPTER 6. BANKRUPTCY DOCUMENTATION

ACTIVE=0

BANKRUPTCY_IDLE_.COUNTER = CONST_BANKRUPTCY_IDLE_PERIOD
BANKRUPTCY_INSOLVENCY.STATE =1
BANKRUPTCY_ILLIQUIDITY_STATE = 0

//Send msg to malls to remove inventory stock:
add_bankruptcy_insolvency_message(ID);

and then goes directly to the end of the iteration. In the next iteration the flag BANKRUPTCY_
INSOLVENCY _STATE=1 causes the actual bankruptcy procedure to be executed for the case of
the insolvency bankruptcy. See the function Firm_bankruptcy_insolvency_procedure for details.

6.4.5 Firm bankruptcy insolvency/illiquidity procedure

The procedure consists of the following steps:
1. Effect on the credit market by renegotiating all bank loans:

(a) Debt-to-equity transformation: The old debt is rescaled to a fraction of the current
total assets.

(b) Defaulting on a fraction of each bank loan by the write_off _ratio. This is the bad debt
that should be written off from the bank’s balance sheet.

2. Effect on the labour market by firing all workers.
3. Effect on the goods market: all local inventory stock at the mall is destroyed.

The first step is to set the new target debt as a ratio of the resulting total assets:

//We only perform these calculations once, at the start of the bankruptcy procedure

if (BANKRUPTCY_IDLE_.CCOUNTER = CONST_BANKRUPTCY_IDLE_PERIOD — 1)

{
//Recompute total assets after inventory stock has been deleted
TOTAL_ASSETS = TOTAL_VALUE_CAPITAL.STOCK + PAYMENT_ACCOUNT;

//Set the target debt
target_debt = DEBT_RESCALING_FACTOR*TOTAL_ASSETS;
write_off_ratio = (TOTAL.DEBT — target_debt)/TOTAL.DEBT;

The DEBT_RESCALING_FACTOR is an environment constant that is the same for all firms
and is set globally. It sets the ratio of target_debt/total_assets at the beginning of the debt-to-
equity transformation procedure. This constant is not a decision variable since it is exogenously
given.

We assume there is a debt renegotiation with the bank. For each loan, the firm computes the
fraction of the loan that should be written-off from the bank’s balance sheet. The write_off _ratio
is given by the fraction (L — L*)/L of the loan value L;.

Listing 6.1: Bankruptcy procedure, step 1: Effect on credit market.

//We only perform these calculations once, at the start of the bankruptcy procedur
if (BANKRUPTCY_IDLE_.COUNTER =— CONST_BANKRUPTCY_IDLE_PERIOD — 1)
{

//Effect on credit market:

//Renegotiating debt: refunding credit, computing bad debt

for (i=0; i<LOANS.size; i++)

6.5. STATEGRAPH 79

//Computing bad debt
bad_debt = write_off_ratio*LOANS. array[i].loan_value;

//Compute value at risk to be written off:

writeoff_var = write_off_ratio =
LOANS. array [i].var_per_installment * LOANS.array[i].nr_periods_beforelrepayment;
LOANS. array[i].var_per_installment = (l1—write_off_ratio)
*LOANS. array [i].var_per_installment;
LOANS. array[i].loan_value = (l—write_off_ratio)*LOANS. array[i].loan_value;
LOANS. array[i].installment_amount = LOANS. array[i].loan_value

/LOANS. array[i]. nr_periods_before_repayment;

//Send the bankruptcy_message to write off the bad debt
//add_bankruptcy_message(firm_id, bank_id, bad_debt, credit_refunded, writeoff]
add_bankruptcy_message (ID, LOANS. array[i].bank_.id, bad_.debt, credit_refunded,

//Recompute balance sheet after the write—off
TOTAL.DEBT = target_debt;
EQUITY = TOTAL_ASSETS — TOTAL_DEBT;

}

var);
writeoff_var

Listing 6.2: Bankruptcy procedure Step 2: Effect on labour market.

//Effect on labour market
//Firing all employees
for (i=0;i<EMPLOYEES. size ;i++)
{
add_firing_message (ID, EMPLOYEES. array[i].id);
remove_employee(&EMPLOYEES, i);

Firm remains in bankruptcy

e Function to signal that a firm remains in bankruptcy if the debt write-off is not enough
to get the equity positive. The firm cannot issue new shares on the financial market.

6.5 Stategraph

See the Financial Management documentation.

80

CHAPTER 6. BANKRUPTCY DOCUMENTATION

Chapter 7

Credit Market Documentation

Acknowledgement

The description of the credit market is largely adapted from documentation provided by our
colleagues at the Universita Polytechnica de la Marche in Ancona (UPM).

7.1 Bank

7.1.1 Activities

Banks perform the following activities in the credit market:

e Manage payment accounts for households and firms; the deposits pay an interest rate
slightly below the base rate.

e Provide credit to firms, at an interest rate that is slightly above the base rate and depends
on the firm’s credit worthiness.

e Access a standing facility at the Central Bank, allowing them to borrow when their cash
reserves become negative. The bank pays the base rate on overnight loans, and receives
the base rate on overnight deposits at the Central Bank.

7.1.2 Functions
Bank read policy rate

The ECB base interest rate is a constant in the model. The banks use this base rate to set two
interest rates:

e the interest rate on firm loans: the bank uses the ECB base rate plus a firm specific markup
that depends on the firms balance sheet.

e the interest rate on deposits from households and firms.

DEPOSIT_INTEREST_RATE = (1—ECB_NTEREST_RATE_.MARKDOWN) = ECB_INTEREST_RATE;

81

82 CHAPTER 7. CREDIT MARKET DOCUMENTATION

Bank send account interest

Step 1. The bank has to pay daily interest at the base rate on its outstanding ECB debt,
respectively it receives interest at the base rate on its overnight deposits at the ECB. It
sends a message to the ECB to this affect.

//Pay interests to ecb on ECB debt of day before
int_to_ecb = ECB.DEBT+ECB_INTEREST_RATE/240.0;

//Receive interest on cash held at ECB
int_-from_ecb = CASH+ECB_INTEREST_RATE/240.0;

//Flow accounting
ECB_INTEREST_PAYMENT = int_to_ecb — int_from_ecb;
BANK_OUTFLOWS_CALENDAR. ecb_interest_payment += int_to_ecb — int_from_ecb

//Subtract interest paid to ECB on ECB debt

PROFITS[0] —= int_to_ecb;
CASH —= int_to_echb;
EQUITY —= int_to_echb;

//add interest received from ECB on deposits
PROFITS[0] += int_from_ecb;

CASH += int_from_ecb;

EQUITY += int_from_ecb;

//send interest to ECB
add_bank_interest_payment_message(int_to_ecb — int_from_ecb);

Step 1. The bank pays a daily deposit interest rate (base rate minus a markdown) on house-
hold and firm accounts by sending the account_interest message. The bank does not have
knowledge of each individual account, but if agents know the interest rate they know the
new level of their own account.

//Pay daily deposit interest
interest = (1/240.0)«DEPOSIT_INTEREST_RATE*DEPOSITS;
CASH —= interest;
EQUITY —= interest;

//Send interest
add_account_interest_message (ID, DEPOSITIINTEREST_RATE);

Bank decide credit conditions

Every day the banks receive messages from firms with loan requests. For each individual request
the bank records several firm characteristics: equity (e), debt (d), and credit demand (c).

If the bank has no debt with the Central Bank and meets the Basel II capital requirements
(the value-at-risk is below some threshold level), it decides on the credit conditions for the
applying firm. This consists of the amount of credit provided and the interest rate on the new
loan. The bank’s ability to provide credit is constrained by the minimal capital requirement
(defines the available excess VaR) and by the minimal cash reserve ratio (defines the available
excess liquidity).

EXCESS_VAR = ALFA*EQUITY — VALUE_AT_RISK;
EXCESS_LIQUIDITY = CASH — MIN_CASH_RESERVE_RATIO«DEPOSITS;

7.1. BANK 83

START_LOAN_REQUEST_MESSAGE_LOOP

equity = loan_request_message—>equity;
debt = loan_request_message—>total_debt;
credit_requested = loan_request_message—>external_financial_needs;

MIN_INTEREST = ECB_INTEREST_RATE;
bankruptcy_prob = l—exp(—(debt+credit_request)/equity);
new_value_at_risk = bankruptcy_probxcredit_requested;

//1. VaR of requested loan is within available excess VaR of bank
if (new_value_at_risk <= EXCESS_VAR)

{
credit_allowed = credit_requested;
EXCESS_VAR —= new_value_at_risk;
telse
{

//2. VaR of requested loan exceeds available excess VaR of bank
credit_allowed = EXCESS_.VAR/bankruptcy_prob;
}
interest = MIN_LINTEREST + BANK.GAMMA[O]* new_value_at_risk
* 0.0lxrandom_double (0.0,1.0);

//Send response to firm with credit conditions
//constrained to the excess liquidity still available
if (EXCESS_LIQUIDITY>credit_allowed)
{
//credit_allowed = credit_allowed;
EXCESS_LIQUIDITY —= credit_allowed;
}

else

{
credit_allowed = EXCESS_LIQUIDITY;

EXCESS_LIQUIDITY =0.0;
}
//Only make loan offers for positive credit request
if (credit_allowed > le—6)

value_at_risk_of_loan = rx(credit_allowed/c);
add_loan_conditions_message(loan_request_message—>firm_id, ID, i, credit_allowe
value_at_risk_of_loan); }

FINISH_LOAN_REQUEST_MESSAGE_LOOP

Bank give loan

The bank provides a loan to all firms that have accepted the loan conditions (firms may have
applied to multiple banks for the same loan, so they either accept or reject the loan conditions,
see the Firm functions). If the loan is granted, the bank updates its balance sheet (loans are
provided out of cash reserves), their loan portfolio (total amount of credit outstanding) and the
value-at-risk is increased with the loan specific value.

START_LOAN_ACCEPTANCE_MESSAGE_LOOP
if (loan_acceptance_message—>bank_id=ID)
{
CASH —= loan_acceptance_message—>credit_amount_taken;
TOTAL_CREDIT 4= loan_acceptance_message—>credit_amount_taken;
VALUE_AT_RISK += loan_acceptance_message—>loan_total_var;

84 CHAPTER 7. CREDIT MARKET DOCUMENTATION

}
FINISH.LOAN_ACCEPTANCE_MESSAGE_LOOP

Bank receive installment

Loan installments are received as cash payments, so the bank accounts them on its cash reserves
(liquidity). The interest is accounted on the profit and equity of the bank.

Step 1. With daily frequency banks receive messages with interest and debt installment pay-
ments from debtor firms. Internal bank variables and the balance sheet are updated
accordingly.

START_INSTALLMENT_MESSAGE_LOOP
if (installment_message—>bank_id=ID)

{
//Add debt installment
CASH 4= installment_message —>installment_amount;

//Add interest:

CASH 4= installment_message—>interest_amount;
PROFITS[0] += installment_message—>interest_amount;
EQUITY 4= installment_message—>interest_amount;

//Subtract debt installment (payment of principle)
TOTAL_CREDIT —= installment_message—>installment_amount;
VALUE_AT_RISK —= installment_message—>var_per_installment;

}
FINISH_INSTALLMENT_MESSAGE_LOOP

Step 2. A second purpose of this function is to record if some of the borrowing firms have
entered bankruptcy. If this happens the client firm defaults on its debt and the bank
suffers a bad debt that has to be written down on the bank’s balance sheet.

START_BANKRUPTCY_MESSAGE_LOOP
if (bankruptcy_message—>bank_id=ID)
{
total_bad_debt 4= bankruptcy_message—>bad_debt;
EQUITY —= bankruptcy_message—>bad_debt;
TOTAL_CREDIT —= bankruptcy_message—>bad_debt;
VALUE_AT_RISK —= bankruptcy_-message—>residual_var;
}
FINISH_.BANKRUPTCY_MESSAGE_LOOP

Bank account update deposits

At the end of ever iteration (daily) the banks need to update the balance of the payment accounts
of households and firms according to their transactions that occurred during the day. At the
end of every day all money in the private sector is therefore deposited in the banking system.

DEPOSITS=0;
START_BANK_ACCOUNT_UPDATE_MESSAGE_LOOP
if (bank_account_update_message—>bank_id=ID)

{
}

DEPOSITS 4= bank_account_update_message—>payment_account;

7.1. BANK

FINISH_.BANK_ACCOUNT_UPDATE_MESSAGE_LOOP

if (DEPOSITS — old_deposits >= 0)
{

}

else

{

BANK_INFLOWS_CALENDAR. deposit_inflow += (DEPOSITS — old_deposits);

BANK_OUTFLOWS_CALENDAR. deposit_outflow += —(DEPOSITS — old_deposits);

//Add deposit mutation to cash reserves
CASH += (DEPOSITS — old_deposits);

85

Bank accounting

At the end of the month the bank does basic accounting.

Step 1. Computing profits, set dividend payments, and pay taxes.

if (PROFITS[1]>0)

growth=((PROFITS[0] —PROFITS[1])/PROFITS[1]);
}
else

growth=0;

q=BANK_.GAMMA[0];
c=BANK.GAMMA[1];

//Behavioral parameters:

BANKGAMMA[1]= q;

BANK_GAMMA[0] = (q+(BANK_LAMBDA* (q—c) * growth)+0.01% random_double (0.0,1.0);
if (BANK.GAMMA[0] <0.02)

{
}

BANK_GAMMA[0]=0.02;

Step 2. Pay taxes and dividends.

//Dividend rate
if (EQUITY<VALUE_AT_RISK/ALFA)
BANK_DIVIDEND_RATE = 0.0;
else
BANK_DIVIDEND_RATE = 1.0;

if (PROFITS[0]>0)

TAXES — TAX_RATE_CORPORATE+PROFITS [0];
PROFITS[0] —= TAXES;

EQUITY —= TAXES;

CASH —= TAXES;

add_tax_payment_message (GOV_ID, TAXES);

TOTAL_DIVIDEND_PAYMENT = BANK_DIVIDEND_RATE«PROFITS[0];
}

86 CHAPTER 7. CREDIT MARKET DOCUMENTATION

Bank send dividend payment

The bank sends its monthly dividend payments to the Clearinghouse, who centrally pays divi-
dends on the market index (see financial market documentation).

add_dividend_info_message (ID, TOTAL_DIVIDEND_PAYMENT);
EQUITY —= TOTAL_DIVIDEND_PAYMENT ;
CASH —= TOTAL_DIVIDEND_PAYMENT ;

Bank update ecb account

If the bank’s cash outflows exceeds its cash inflow it may occur that the cash reserves drop below
the minimin cash reserve requirement and the bank is illiquid. It is then forced to resort to the
Central Bank and rely on a standing facility, i.e. ECB debt to replenish its cash reserves. We
assume the Central Bank is fully commodating the banks’ demand for liquidity and a flow of
money from the Central bank to such illiquid commercial banks is generated.

// Procedure to add ECB debt daily
EXCESS_LIQUIDITY = CASH — MIN_CASH_RESERVE_RATIO«DEPOSITS;

if (EXCESS_LIQUIDITY <0.0)

//Monetary base is increased
ECB_DEBT += —EXCESS_LIQUIDITY;
CASH += —EXCESS_LIQUIDITY;
EXCESS_LIQUIDITY = 0.0;

// Procedure to reduce ECB debt
else if ((ECB.DEBT>0.0)&& (EXCESS_LIQUIDITY>0.0))

{
//Case 1: Sufficient excess liquidity to fully repay ECB debt
a=1.0;
if (EXCESS_LIQUIDITY>=ECB_DEBT)
{
CASH —= axECB_DEBT;
ECB.DEBT = (1—a)+ECB._DEBT;
EXCESS_LIQUIDITY = CASH — MIN_CASH_RESERVE_RATIO«DEPOSITS;
}
//Case 2: Insufficient excess liquidity: repay partially , deplete excess
b=1.0;
if (EXCESS_LIQUIDITY<ECB_DEBT)
CASH —= bxEXCESS_LIQUIDITY;
ECB.DEBT —= b*xEXCESS_LIQUIDITY;
EXCESS_LIQUIDITY = CASH — MIN_CASH_RESERVE_RATIO«DEPOSITS;
}
}
7.2 Firm

Firms need to enter the credit market whenever their internal resources are insufficient to cover
their planned expenditures. They switch from the financial management role to the credit role.

7.2. FIRM 87

7.2.1 Activities

Firms (and IGFirm) perform the following activities in the credit market:

e Access a bank account to deposit all liquid funds, on which they receive the deposit interest
rate.

e Request credit from banks, on which they pay an interest rate that is firm specific and
can differ per loan. A firm can request loans at multiple banks, and decides to accept or
reject a loan depending on the credit conditions.

7.2.2 Functions
Firm receive account interest

Firms receive the deposit interest rate on their money holdings. Although the interest is an
annual rate, they receive a daily interest depending on the daily level of the payment account.

START_ACCOUNT_INTEREST_MESSAGE_LOOP
if (account_interest_message —>bank_id = BANKLID)
interest_rate = account_interest_message—>interest_rate;
FINISH_.ACCOUNT_INTEREST_MESSAGE_LOOP

// Add daily interest on deposits: (1/240) of the interest rate
interest = (1/240.0)xinterest_rate «PAYMENT_ACCOUNT;
PAYMENT_ACCOUNT 4= interest;

Firm ask loan

Whenever a firm needs external financing, it searches for the active banks that are able to lend
to them. This function creates the list of potential lending banks that the firm can contact. It
creates the firm-bank credit network in which every firm can contact up to N, banks.

//Search for active banks' name

START_BANK_IDENTITY_MESSAGE_LOOP
add_potential_lender(&SET_OF_LENDERS, bank_identity_message —>bank_id ,0);
NUMBER_OF_BANKS_ASKED++;

FINISH_BANK_IDENTITY_MESSAGE_LOOP

if (EXTERNAL_FINANCIAL.NEEDS>0.0)
{

connected =0;

//Create bank network for this firm
while (connected <NUMBER_OF_BANKS_TO_APPLY)

j= rand () % CONST_NUMBER.OF_BANKS; //choose banks randomly
add_loan_request_message(ID, SET_OF_.LENDERS. array[]j].bank_name, EQUITY,
TOTAL.DEBT, EXTERNAL_FINANCIAL_NEEDS);
connected++;
}
}

88 CHAPTER 7. CREDIT MARKET DOCUMENTATION

Firm get loan

This is the firm’s procedure for obtaining a new loan.

Step 1. Firms receive loan conditions from all banks to which is sen a loan request message.

//Read messages from banks
START_LOAN_CONDITIONS_MESSAGE_LOOP
if (loan_conditions_message—>firm_id=ID)

{
bk = loan_conditions_message—>bank_id;
interest_array [bk] = loan_conditions_message—>proposed_interest_rate;
credit_offer_array [bk] = loan_conditions_message—>amount_offered_credit;
rate_order_array [bk] = loan_conditions_message—>bank_id;
value_at_risk_array [bk] = loan_conditions_message—>value_at_risk;

}

FINISH_.LOAN_CONDITIONS_MESSAGE_LOOP

Step 2. Firms examine the loan conditions stated by banks and sort them according to interest
rates (lowest interest first):

for (i=0;i<CONST_NUMBER_OF_BANKS—1; i++)
{
for (k=i+1; k<CONST-NUMBER.OF_BANKS; k++)
{
if (interest_array[i]>interest_array [k])
{
aux=interest_array[i];
interest_array[i]=interest_array[k];
interest_array [k]=aux;
aux=credit_offer_array|[i];
credit_offer_array[i]=credit_offer_array[k];
credit_offer_array [k]=aux;
aux=value_at_risk_array[i];
value_at_risk_array[i]=value_at_risk_array[k];
value_at_risk_array [k]=aux;
nl=rate_order_array[i];
rate_order_array[i]=rate_order_array[k];
rate_order_array [k]=nl;
}
}
}

Step 3. Accept loans in order of rank, lowest interest rate first, and continue to take out loans
until the external financial needs are satisfied, or the loan offers are exhausted.

// Travers the banks according to the order in the rate_order_array,
//obtain a loan if credit_.demand >= credit_offer
for (i=0; i<NUMBER.OF_BANKS_ASKED; i++)
{
if (rate_order_array[i]l=-1)
{
credit_.demand = EXTERNAL_FINANCIAL_NEEDS — total_credit_taken;
//Accept the credit:
if (credit.demand >= credit_offer_array[i])

7.3. CENTRAL BANK

{
}

else

{

}
//Set loan values:

total_credit_taken 4= credit_accepted;

bank_id rate_order_array[i];

loan_value credit_accepted;

interest_rate = interest_array[i];

installment_amount credit_accepted /CONST_INSTALLMENT_PERIODS;
interest_amount interest_ratexinstallment_amount;

credit_accepted credit_offer_array[i];

credit_accepted=credit_.demand;

residual_var value_at_risk_array[i]

x(credit_accepted/credit_offer_array[i]);
var_per_installment residual_var/CONST_INSTALLMENT_PERIODS;
bad_debt = 0.0;

nr_periods_before_repayment = CONST_INSTALLMENT_PERIODS+1;

89

Step 4. Firms add to their loan portfolio a new ’debt’ item with all the relevant attributes of

the loan they are about to accept:

if (credit_accepted >0.0)
{
add_debt_item (&LOANS, bank_id, loan_value, interest_rate , installment_amount
var_per_installment , residual_var, bad_debt, nr_periods_before_repayment);
}

Step 5. Finally, the firm communicates the decision to accept the loan to the issuing bank:

add_loan_acceptance_message(bank_id, credit_accepted, residual_var);

7.3 Central Bank

7.3.1 Activities

The Central Banks performs the following activities in the credit market:

e Manage payment accounts for the banks and Governments.

the banks’ requests for liquidity.

Pay interest on banks’ overnight deposits.

Provide fiat money to government (in case of direct monetization of debt)

Provide standing facilities for the banks. We assume the Central Bank fully accommodates

90 CHAPTER 7. CREDIT MARKET DOCUMENTATION

7.3.2 Functions
Central Bank read fiat money requests

CB search for liquidity requests from commercial banks and Government:

START_REQUEST_FIAT_MONEY_MESSAGE_LOOP
FIAT_MONEY_GOVS += request_fiat_money_message—>nominal_value;
FIAT_MONEY += request_fiat_money_message—>nominal_value;
FINISH.REQUEST_FIAT_MONEY_MESSAGE_LOOP

Central Bank read account update

Step 1. Update the current account of all banks at the Central Bank.

START_BANK_TO_CENTRAL_.BANK_ACCOUNT_UPDATE_MESSAGE_LOOP
ECB_DEPOSITS += bank_to_central_bank_account_update_message —>payment_account;

//Search for the correct account and update the value
for (i=0;i<ACCOUNTS.BANKS.size ;i++)

{
i f (ACCOUNTS.BANKS. array[i].id = bank_to_central_bank_account_update_messalge —>id)
ACCOUNTS_BANKS. array[i]. payment_account =

bank_to_central_bank_account_update_message—>payment_account;

FINISH.BANK_TO_CENTRAL_BANK_ACCOUNT_UPDATE_MESSAGE_LOOP

Step 2. Add interest payments from bank to ECB. This is the net interest between interest on
ECB debt and interest on Bank cash reserves held as overnight deposits at ECB.

interest = 0.0;
START_BANK_INTEREST_PAYMENT_MESSAGE_LOOP

interest += bank_interest_payment_message—>bank_interest_amount;
FINISH_BANK_INTEREST_PAYMENT_MESSAGE_LOOP

CASH += interest;

Step 3. Update the current account of all Governments at the Central Bank.

START_GOV_TO_CENTRAL_BANK_ACCOUNT_UPDATE_MESSAGE_LOOP
ECB_DEPOSITS += gov_to_central_bank_account_update_message—>payment_account;

//Search for the correct account and update the value
for (i=0;i<ACCOUNTS.GOVS.size;i++)

{

i f (ACCOUNTS_GOVS. array[i].id = gov_to_central_bank_account_update_message|—>id)

ACCOUNTS_GOVS. array[i]. payment_account =
gov_to_central_bank_account_update_message—>payment_account;
}

FINISH_.GOV_TO_CENTRAL_BANK_ACCOUNT_UPDATE_MESSAGE_LOOP

Step 4. In case of positive ECB equity, the ECB makes a profit, and should distribute this
evenly among governments.

7.3.

CENTRAL BANK

91

no_govs = TOTAL_REGIONS/NO_REGIONS_PER_GOV;

//ECB pays out all CASH as dividends
dividend_per_gov = CASH/no_govs;

//ECB adds dividends to Governments' payment accounts
for (j=0; j<ACCOUNTS.GOVS.size; j++)
ACCOUNTS_GOVS. array[j]. payment_account += dividend_per_gov;

//ECB sends ecb_dividend_payment_msg, Governments adjust payment accounts
add_ecb_dividend_message(dividend_per_gov);

92 CHAPTER 7. CREDIT MARKET DOCUMENTATION

7.4 Stategraph

Firm_Start_Credit_Role Bank_update_policy_rate start_Central_Bank

not (Periodicity: monthly
Phase: 1)

Start_Government_accounting

not (Periodicity: monthly
Phase: 1)

feriodicity: monthly
Phase: 1

CY)
layer 1 Central_Bank_monetary_policy Government_send_account_update
not (Periodicity: monthly
layer 2 -) idle
Bank_01b
oyers ety — bonk idntity |
layer 6 Firm receive_account_interest < idle.
layer 7 Firm_ask_loan <
layer 10 Firm_End_Credit_Role Bank_give_loan
Phase: 0 Phase: 0)
|
layer 14 Bank_update_ecb_account
;

End_Government_accounting

Figure 7.1: Stategraph for the credit market.

Chapter 8

Financial Market Documentation

8.1 Messages
Household order message:
e Households send trading orders to the financial market on their activation day.

e Every day the Clearinghouse reads the trading orders, computes the aggregate demand and
supply for index shares, performs market rationing, and sends back order status messages
to the individual traders.

Dividend message:

e Firms determine their total dividend payment on their day of month to act (first day of
their production cycle).

e Firms send the dividend info message (containing the total dividend) to the Clearinghouse
on the day of month to act. The Clearinghouse then aggregates the total dividends during
the calendar month and computes the dividend that is paid on the market index shares.

e Since the subjective month and the calendar month differ by maximum 19 days, there is
asynchronicity between the time at which firms subtract the dividend payments from their
bank account (on their day of month to act) and the time at which households add the
dividends to their bank accounts (on teh first day of the calendar month).

Market index info message:

e First day of the calendar month: Given the index composition, the Clearinghouse computes
the dividend per index share, given the current information it has on the firms’ dividend
payment.

e On the first day of the calendar month the Clearinghouse sends the index info message
containing the dividend per share.

e Households read this message and given the number of index shares they own, add the
total amount of dividend to their bank account.

93

94 CHAPTER 8. FINANCIAL MARKET DOCUMENTATION

Market index price message:
e The Clearinghouse sends a daily price info message containing the price of the index shares.

e Households read this message on their activation day, before they revise their planned
asset portfolio. This daily index price affects the current market value of the current asset
portfolio, which counts as wealth, and hence influences the asset allocation decision.

8.2 Constants

trading_activity Swithes on/off trading activity in index shares:

e trading activity=0: trading of shares is off. The asset trading branch is not executed.
Household do receive dividends on the index shares they own.

e trading activity=1: trading of shares is on. Households read the index price and submit
orders on their monthly activation day only.

trading_random Sets the asset allocation decision to random orders or to orders according
to the logit choice model.

e trading random=1: Households allocate a random fraction (0,1) of their asset budget to
the index. The remainder is deposited on the bank account.

e trading random=0: households use a method to determine the fraction of their asset
budget to allocate to the index.

index_price_adj Parameter for index price adjustment. Sets the speed of adjustment in the
price updating mechanism.

e index_price_adj=1: Scaling parameter.
e index_price_adj min=0.90: floor level on price decrease —10%.

e index_price_adj max=1.10: ceiling level on price increase +10%.

8.3 Firm

8.3.1 Activities

e Firms (f = 1,..., F) have a fixed number of outstanding equity shares, but do not issue
new shares. The outside supply of shares is therefore zero.

e Firms pay out a dividend on their shares y{ that depends on their profits.

8.3.2 Functions
Firm execute financial payments

Runs monthly, on the firm’s activation day.

8.4. HOUSEHOLDS 95

e Firms send a dividend_info message that contains the total dividend payment to the Clear-
inghouse. This message is sent in the function Firm_execute_financial_payments that is in
the financial management of the firm, at the same location where the firm subtracts the
total dividend payment from the payment account.

//send total_dividend_payment and decrease payment_account
add_dividend_info_message (ID, TOTAL_DIVIDEND_PAYMENT);
PAYMENT_ACCOUNT —= TOTAL_DIVIDEND_PAYMENT ;

8.4 Households

8.4.1 Activities

e Households save or withdraw deposits from their bank acount.

e Households (h = 1,..., H) can invest in equity shares by submitting buy and sell orders to
the Clearing house.

e Households decide their asset allocation after their consumption budget is determined: the
total monetary value they want to hold in their asset portfolio (s,a) is determined in the
consumption model. This leads to re-adjustment of their current asset portfolio.

e Households receive a dividend income depending on the number of index shares they hold
in portfolio.

8.4.2 Functions

Household receive index info

Runs monthly, on first day of the calendar month.
e Set the monthly consumption counter to zero at the first day of the month.
e Set the deposit interest rate to ECB base rate.

e Read the index info message from the Clearinghouse, add dividend income to bank account.

RECEIVED_DIVIDEND=0;

//Household sets its monthly consumption counter to zero at the first day of the m
i f (DAYYVIONTH==1)
MONTHLY_CONSUMPTION_EXPENDITURE = 0.0;

//Set deposit rate to ECB base rate
RISK_FREE_.RATE = ECB_INTEREST_RATE;

START_INDEX_INFO_MESSAGE_LOOP
dividend = index_info_message—>dividend_per_share+«ASSETSOWNED. units;
FINISH_INDEX_INFO_MESSAGE_LOOP

onth

96 CHAPTER 8. FINANCIAL MARKET DOCUMENTATION
Household receive index price
Runs monthly, on household’s activation day.

e Read index info message from Clearinghouse.

e Store current index price and the moving average price.

START_INDEX_PRICE_.MESSAGE_LOOP

ASSETSOWNED. lastprice = index_price_message—>price;

ASSETSOWNED. moving_avg_price = index_price_message—>moving_avg_price;
FINISH_INDEX_PRICE_MESSAGE_LOOP

Household revises expected portfolio
Runs monthly, on household’s activation day.
Input: payment_account, consumption_budget.

Purpose: Determine the value of the planned asset portfolio, to be allocated among the risk-
free and risky asset (can be negative if shares need to be sold to accomodate for the
consumption budget).

Step 1. Compute the value of the planned asset portfolio (deposits + index).

portfolio_budget = PAYMENT_ACCOUNT
+ ASSETSOWNED. lastprice *ASSETSOWNED. units
— CONSUMPTION_BUDGET;

Step 2. Compute composition of the new planned portfolio, using mean-variance maximization
framework.

1. Update beliefs on excess return Ep[pi+1] — 7, and volatility Vi[pi41 — 7).

BELIEFS . expected_return
BELIEFS. expected_volatility

2. Set the optimal proportion 7, of the portfolio budget to invest in the index (the
risky asset). This is the net investment, the remainder stays in deposits.

_ Entlpis1] —
Vitlpi41 — 7]
E + — R
— ht[pt+1 Yt+1 pt] — pr2s. (8.2)
Vi1 + yer1 — Ry

(8.1)

Tht

BELIEFS. fraction_to_invest = (BELIEFS. expected_return — RISK_.FREE_RATE)/
BELIEFS. expected_volatility;

3. Add restrictions on trade:

e Investors cannot go short: m; > 0.

e Investors cannot have a negative payment account (borrow from a bank to buy
shares): 7y < 1.

8.4. HOUSEHOLDS 97

This implies that the proportion to invest is restricted to lie between 0 and 1:

7pe = min{max{0, 7 }, 1}. (8.3)

The solution to the asset allocation problem is now that the investor invests (1 —
7ht)Whe in the risk-free asset and 7, Wp, in the risky asset. Note that, in principle,
any type of belief formation procedure can be substituted for the beliefs Ep[psi1]
and Vht [pt-i—l]‘

Step 3. Demand for index shares: Set monetary value of the planned asset portfolio (planned
value of index shares after transactions).

1. Option 3a: Mean-Variance: the proportion of the portfolio budget to be invested in
the index is derived by Mean-Variance theory.

monetary_value = BELIEFS. fraction_to_invest*portfolio_budget;

2. Option 3b: Random value: a random fraction of the portfolio_budget is to be invested
in the index.

monetary_value = random_unif()* portfolio_budget;

3. Option 3c: The full portfolio_budget is to be invested in the index, no deposits (this
is a testing option).

monetary_value = portfolio_budget;

Step 4. Net demand for index shares: Transform the monetary value to a net investment, based
on the current market value of the asset portfolio.

net_investment = monetary_value — ASSETSOWNED. lastprice*ASSETSOWNED. units ;
planned_shares = (int) (monetary_value /ASSETSOWNED. lastprice);
net_shares = (int) (net_investment/ASSETSOWNED. lastprice);

Step 5. Check if units to sell is larger than units owned; if so, sell all units in portfolio.

if ((net_investment <0.0) && (ASSETSOWNED. units + net_shares <0))
net_investment = —ASSETSOWNED. lastprice*ASSETSOWNED. units;

Step 6. Send market order: negative value means sell, positive means buy.

add_order_message(ID, net_investment);

Household update portfolio

Step 1. Read order status message

Step 2. Update assetsowned, payment account, and wealth

ASSETSOWNED . units += order_status_message—>quantity;
PAYMENT_ACCOUNT —= order_status_message —>value;
WEALTH = PAYMENT_ACCOUNT + ASSETSOWNED. lastprice *ASSETSOWNED. units ;

98

Step

CHAPTER 8. FINANCIAL MARKET DOCUMENTATION

3. Determine cash flow of the transaction and add to flow variables (for stock-flow con-
sistency checks).

if (order_status_message—>quantity < 0)

HOUSEHOLD_INFLOWS_CALENDAR. asset_sales += —(order_status_message —>value);
else

HOUSEHOLD_OUTFLOWS_CALENDAR. asset_purchases += (order_status_message —>value);

8.5

8.5.1

8.5.2

Clearinghouse
Activities

The Clearinghouse determines the dividend per share of the market index, based on the
information it receives from the firms and banks on the total dividend payments.

Clearinghouse asset price mechanism. The price of a share in the market index depends
on the asset trading of households and is computed by the Clearinghouse. No equilibrium
pricing is used, but a cautious price adjustment process with ceilings and floors on the
price growth rate (this reflects so called circuit breakers).

Clearinghouse asset transaction mechanism. The Clearinghouse determines transactions
in the market index shares. A simple proportional rationing mechanism is used. There is
conservation of the total number of index units bought and sold.

Functions

ClearingHouse send index price

Runs

daily, at start of iteration.

Sends the index price message with the current index price and moving average price (this
is computed by the ClearingHouse).

ClearingHouse send index info

Runs

monthly, on first day of the calendar month.

Start of calendar month: given monthly counter of total dividends, compute dividend per
share for the stock market index.

Send index info message with dividend per share and the current share price.

ClearingHouse receive orders

Runs

daily.
Reset the pending orders array.

Add all incoming orders to the pending orders array.

8.5. CLEARINGHOUSE

99

reset_order_array (&PENDING_ORDERS);

START_ORDER_MESSAGE_LOOP
quantity = (int)((order_message—>value)/STOCK_INDEX. price);
add_order(&PENDING_ORDERS, order_message—>trader_id , order_message—>value,
FINISH_.ORDER_MESSAGE_LOOP

qua

ntity);

ClearingHouse compute transactions

Runs daily. Process the pending orders array, produce the processed orders array.

Step 1. Compute aggregate demand and supply (in units):

e Transform requested value to units: integer conversion may cause some orders to now

have 0 quantity.

o If total demand or supply is zero: Add zero processed orders for all, and exit.

//Process the pending_orders array, produce processed_orders
reset_order_array (&PROCESSED_ORDERS);

//Step 1: Compute aggregates
demand = 0;

supply = 0;

//Step la: Transform requested value to units
for (i=0; i<PENDING.ORDERS.size; i++)

{

value = PENDING_ORDERS. array[i].value;

if (value>0.0)

{
demand += (int)(value/STOCK.INDEX. price);
PENDING_ORDERS . array [i]. quantity = (int)(value/STOCK.INDEX. price);
}
else
{
supply += —1x(int)(value /STOCK.INDEX. price);
PENDING_ORDERS . array [i]. quantity = (int)(value/STOCK.INDEX. price);
}
}
//Step 1b: Check for zeros and break
if (demand==0 || supply ==0)
DSRATIO = 1;

//Add zero orders for all orders

for (i=0; i<PENDING_ORDERS.size; i++)

{
trader_id = PENDING_.ORDERS. array[i].trader_id;
add_order(&PROCESSED_ORDERS, trader_id, 0.0, 0);

//Transform requested value to units: set PENDING.ORDERS. array[i]. quantity

100

CHAPTER 8. FINANCIAL MARKET DOCUMENTATION

Step 2. If both demand and supply are positive, continue with rationing of the long side of the
market:

e Set Demand/Supply ratio.
e Compute transacted buy/sell units.

e Add new processed order to processed orders array.

{

if (demand>0 && supply >0)

//Demand/Supply ratio
DSRATIO = (double)demand/(double)supply;

//Demand rationing
if (DSRATIO>1.0)
for (i=0; i<PENDING_ORDERS.size; i++)

{
//Trader is buyer
if (PENDING_ORDERS. array[i].quantity >0)
{
quantity = (int)((1/DSRATIO)*PENDING_ORDERS. array[i].quantity);
sum_units_bought += quantity;
}
//Trader is seller
if (PENDING_.ORDERS. array[i].quantity <=0)
{
quantity = PENDING_.ORDERS. array[i]. quantity;
sum_units_sold += —quantity;
}
//Add new processed order
value = quantity*STOCK_INDEX. price;
sum_value += value;
sum_quantity += quantity;
add_order(&PROCESSED_ORDERS, PENDING_ORDERS. array[i].trader_id , value
}
else

//Supply rationing
for (i=0; i<PENDING.ORDERS. size; i++)
{
//Trader is buyer
if (PENDING.ORDERS. array[i].quantity >0)
{
quantity = PENDING_.ORDERS. array [i]. quantity;
sum_units_bought += quantity;
}
//Trader is seller
if (PENDING.ORDERS. array[i]. quantity <=0)
{
quantity = (int)(DSRATIO«xPENDING_.ORDERS. array[i]. quantity);
sum_units_sold += —quantity;

}

//Add new processed order

value = quantity*STOCK_INDEX. price;
sum_value += value;

sum_quantity += quantity;

add_order(&PROCESSED_ORDERS, PENDING.ORDERS. array[i].trader_id , value,

quantity);

quantity);

8.5. CLEARINGHOUSE 101

Step 3. Post-rationing diagnosis: check conservation of units bought and sold. See the auxiliary
functions for details. The algorithm monotonically converges to a state in which no further
rationing is required.

if (sum_value > le—1 || sum_value < —le—1 || sum_quantity!=0)
{
if (sum_quantity >0)
ClearingHouse_correct_rationing_positive (sum_quantity);
if (sum_quantity <0)
ClearingHouse_correct_rationing_negative(sum_quantity);
//Check consistency:
ClearingHouse_diagnosis ();

ClearingHouse send transaction info

Runs daily.

e Send order status messages for all orders in the processed orders array.

ClearingHouse update price

Runs daily.

Step 1. Update the price of the stock market index using the latest supply/demand ratio,
subject to the ceilings and floors on price changes.

The price of the market index is updated using a cautious price adjustment based on the
ratio between demand and supply, limited by floors and ceilings on the growth rate of

prices.
D\
II = = 8.4
<5t> ’ (8.4)

TPt IT S r,
Pt+1 - Hpt7 r S II S R7 (85)
Rpt, R < II.

where A > 0 is a price adjustment speed, r and R are lower and upper bounds on the price
growth rate, respectively. Typical values are A = 0.5, » = 0.90 and R = 1.10.

//Update the price of the stock market index using the latest supply/demand data.
coeff = pow(DSRATIO, INDEX_PRICE_ADJ);

if (coeff > INDEX_PRICE_ADJ_MAX)
coeff = INDEX_PRICE_ADJ_MAX;

else if (coeff < INDEX_PRICE_LADJ_MIN)
coeff = INDEX_PRICE_ADJ_MIN;

STOCK_INDEX. price = coeff*xSTOCK_INDEX. price;

102 CHAPTER 8. FINANCIAL MARKET DOCUMENTATION

Step 2. Update the price history and compute the new moving average price (being sent to the
households in the index info message at the start of the next iteration).

//Shift the price history and determine the moving average:

//remove the oldest price at the front of the list, reduce array size by 1
remove_double(&STOCK_INDEX. price_history , 0);

//add new price at the end of the list, increase array size by 1
add_double(&STOCK_INDEX. price_history , STOCK.INDEX. price);

sum=0.0;
for (i=0;i<STOCK_INDEX. price_history.size;i++)
sum += STOCK._INDEX. price_history .array[i];

if (STOCK.INDEX. price_history .size >0)
STOCK_INDEX. moving_avg_price = sum/STOCK_INDEX. price_history .size;

ClearingHouse receive dividend info

Runs daily, at end of iteration.
e Every day (end of iteration): Read dividend info messages from firms during the month
and add to a monthly counter of total dividends for the stock market index.
8.5.3 ClearingHouse auxiliary functions
ClearingHouse correct rationing positive(int total rationing)

e Goal: Correct the overshooting of the first rationing round.

e The positive side of the market needs to be rationed by a given amount of units R =total_rationing.

Step 1. Traverse the PROCESSED _ORDERS array, and ration subsequent long orders by a
random amount.

Step 2. Draw a uniformly random integer x € [1, R].

Step 3. Ration the buy order to By := Bj — x units (or to 0 if B, < x) and decrease to-
tal_rationing to R := R — z.

Step 4. Continue as long as there is rationing left-over or the end of PROCESSED_ORDERS
is reached.

void ClearingHouse_correct_rationing_positive(int total_rationing)

int i;
int x, rationed_units;

i=0;
while ((total_rationing >0)&&(i<PROCESSED_ORDERS. size))

//Only consider positive orders:
if (PROCESSED_ORDERS. array[i]. quantity >0)

//Ration this order by random x units, if the order has at least x units

8.5. CLEARINGHOUSE 103

x=random_int (1, total_rationing);
if (x<=PROCESSED_ORDERS. array[i].quantity)
{
// ation this order by random x
PROCESSED_ORDERS. array [i]. quantity —= x;
rationed_units = x;
if (PRINT_DEBUGAFM_CH) printf(”case_1\t");
}
else
//Fully ration this order to O0:
rationed_units = PROCESSED_ORDERS. array[i].quantity;
PROCESSED_ORDERS. array [i]. quantity =O0;
}
total_rationing —= rationed_units;
}Y//order—loop
i+
Y//while—loop

ClearingHouse correct rationing negative(int total rationing)

e Goal: Correct the overshooting of the first rationing round.

e The negative side of the market needs to be rationed by a given amount of units R =total_rationing.

Step 1. Traverse the PROCESSED _ORDERS array, and ration subsequent long orders by a
random amount.

Step 2. Draw a uniformly random integer = € [1, R].

Step 3. Ration the sell order to S, := Sp + z units (or to 0 if z < S, < 0) and decrease
total_rationing to R := R — .

Step 4. Continue as long as there is rationing left-over or the end of PROCESSED_ORDERS
is reached.

void ClearingHouse_correct_rationing_negative(int total_rationing)

{
int i;
int x, rationed_units;
i=0;
while ((total_rationing <0)&&(i<PROCESSED_ORDERS. size))
{

//Only consider negative orders:
if (PROCESSED_ORDERS . array [i]. quantity <0)
{

//Ration this order by random x units, if the order has at least x units
x=random_int(l,—total_rationing);

if (x<= —PROCESSED_ORDERS. array[i].quantity)
{

// ation this order by random x: a negative order is increased
PROCESSED_ORDERS . array [i]. quantity += x;

rationed_units = x;

104 CHAPTER 8. FINANCIAL MARKET DOCUMENTATION

}

else
//Fully ration this order to 0:
rationed_units = —PROCESSED_ORDERS. array[i].quantity;
PROCESSED_ORDERS . array[i]. quantity =O0;

}

//increase to—ration units towards O0:
total_rationing += rationed_units;
}Y//order—loop
i++;
Y//while—loop

8.5. CLEARINGHOUSE 105

8.6 Stategraph

Household_Start_Financial_Market_Role

not (Periodicity: monthly

start_Clearinghouse

Periodicity: monthly

not (Periodicity: monthly

Phase: 1) Phase: 1 Phase: 1)
layer O idle ClearingHouse_send_index_info idle
Periodicity: monthl
Phase: 1
@ index_info
layer 1 Household_receive_index_info ClearingHouse_send_index_price
AFM_000 index_price
Periodicity: monthly not (Periodicity: monthly
Phase: a->day_of _month_to_act AND |Phase: a->day_of month_to_act) OR AFM_01
TRADING_ACTIVITY EQ 1 TRADING_ACTIVITY EQ 0
layer 2 Household_receive_index_price idle
layer 3 Household_revises_expected_portfolio
order
layer 4 ClearingHouse_receive_orders
layer 5 ClearingHouse_compute_transactions
layer 6 ClearingHouse_send_transaction_info
order_status
layer 7 Household_update_portfolio ClearingHouse_receive_dividend_info

Household_Start_Labour_Role

layer 8 ClearingHouse_update_price

-

end_Clearinghouse

Figure 8.1: Stategraph for the financial market.

106 CHAPTER 8. FINANCIAL MARKET DOCUMENTATION

Chapter 9

Government Documentation

9.1 Messages

e Data for Government message: start of the year.

At the start of the year Eurostat sends multiple data_for_Government messages, one for each
region, that contains the GDP and other macrodata for that region. The Governments
read these messages only for those regions that belong to them, and compute their national
GDP. The national GDP is then used by the Governments to compute their budget forecast
and to set policies. The message contains region data:

region_id

gdp
mean,wage

e FEurostat send macro data message: start of the year. At the start of the year Eurostat
sends one message that contains global economic data: economy-wide GDP, inflation and
unemployment rate. All Governments can read this message.

e Policy announcement message: start of the year. At the start of the year, the Government
announces new tax rates and new percentages for subsidies and transfers. Agents read
these messages at the start of the year.

e Unemployment notification messages: daily. Send as soon as a household becomes unem-
ployed. Government needs to read these messages daily.

e Subsidy and transfer notification messages: daily. At the start of the agent’s own month,
each firm and household determines whether it wants to make use of a certain announced
subsidy or transfer. If an agent makes use of a policy, it sends the notification message
on the 1st day of its month. Government needs to read these messages daily, since agents
have different activation days.

107

108 CHAPTER 9. GOVERNMENT DOCUMENTATION

9.2 Eurostat

9.2.1 Activities
9.2.2 Functions
Eurostat send data

At the start of the year Eurostat sends multiple data_for_Government messages (one for each
region) that contains the GDP and other macrodata for each region. The Governments read
these messages only for those regions that are associated to them, and compute their national
GDP. The national GDP is then used by the Governments to compute their budget forecast and
to set policies.

9.3 Firm, Household, Bank

9.3.1 Activities
Households:

e Households pay personal income tax on wage and dividend income.

e Households decide whether or not to apply for a subsidy or transfer payments, and unem-
ployment benefits when unemployed.

Firms:
e Firms pay corporation tax on income.
e Firms decide whether or not to apply for a subsidy or transfer payments.
Banks:

e Banks pay corporation tax on profits.

9.3.2 Functions
Read policy announcements

At the start of the year all agents read the Government policy announcements (only from their
own Government), and store that information in memory variables for later use.

Send subsidy/transfer /unemployment notification

When an agent applies for any payment (benefits, subsidies, or transfers) it sends a notification
message to its Government that contains only the ID of the Government and the payment
amount (tax, unemployment benefit, or subsidy payment). These notification messages have
a daily frequency. From the name of the notification message it becomes clear what type of
payment is referred to, and since the amount is known by both sides the government can now
compute sums for the separate payment items. The list of notification messages is (can be
expand as needed):

9.4. GOVERNMENT 109

add_unemployment_notification_message(gov_id, last_income)
add_hh_subsidy_notification_message(gov_id, subsidy_payment)
add_firm_subsidy_notification_message (gov_id, subsidy_payment)
add_hh_transfer_notification_message (gov_id, transfer_payment)
add_firm_transfer_notification_message(gov_id, transfer_payment)

Send tax payment

All agents in the private sector pay taxes to Government. However, these payments are not
synchronized at the end of a calendar month, since the firms have different days of the month
to start production.

e Firms: Tax payment occurs at the end of the production cycle, which includes the selling
of output i.e. after one month has passed since production has commenced.

e Households: Tax payment occurs at the moment households receive their income, which
consists of labour wage, dividends, and interest on bank deposits.

e Banks: Tax payment occurs at the end of the calander month.

add_tax_payment_message(gov_id, tax_payment)

9.4 Government

9.4.1 Activities

e Government mainly has redistributive functions, such as taxation (income and corporate
taxes, social security contributions) and unemployment benefit payments.

e The provisional Government budget is given by the total sum of subsidies and unemploy-
ment benefits.

e The Government uses a naive expectation at the start of the year: the projected Gov-
ernment income is equal to last year’s income times 1 + an anticipated growth rate; the
projected Government expenditures are equal to last year’s expenditures times 1 + an
anticipated growth rate.

e Any surplus is deposited at the central bank. Any deficit is covered by loans from the
central bank.

e the Government also distributes subsidies. Subsidies are conditional, they must be used
for the specific purpose under which they are granted. E.g., a firm can receive a subsidy to
pay for internal training schemes that will raise the general skills of (part of) its employees.

e The subsidies are non-discriminatory: they are available to all firms or households. This
does not preclude the possibility of regional policies: some subsidies are available in one
region, not in the other.

e Government performs budget accounting: end of the month.

110 CHAPTER 9. GOVERNMENT DOCUMENTATION

e Bond market opens: daily. The Government tries to finance its budget deficit of the
previous month during the following month, in which the bond market is open each day,
and the Government can spread out its monthly liquidity needs across 20 days. If after
20 days the Government has not managed to attain all of its liquidity requirements the
remainder is carried over to the following month.

e Government policy making: Government decides on new policies together with the budget-
ing at the end of the year (i.e., new tax rates, unemployment benefit percentage, subsidy
percentage, transfer lump-sum payment). The announcement of the new policies occurs
at the start of the new year.

e Government policies remain unaltered during the year (total government consumption and
investments, tax rates, subsidies and transfers all remain fixed) and may only be changed
at the end of the year.

e Government decides monetary policy: end of the year. After computing the budget deficit,
the Government tries to finance it, either through bond financing or by money financing
(quantitative easing). In the case of bond financing, the Government first issues bonds
on the bond market and tries to sell to households. If this fails, the remaining bonds can
be sold to the Central Bank. This involves the issue_bonds_to_ecb message. In the case of
direct money financing, the Government instructs the Central Bank to print fiat money.
This involves the request_fiat_money message.

e The Government computes its budget deficit once per month, but enters the bond market
on a daily basis. This is due to liquidity reasons since it will be probable that if the
Government enters the bond market only once per month there is insufficient demand
for the bonds, and the Government may fail to attain its liquidity target. So basically
the monthly budget deficit will be financed by bonds on a monthly basis, but there is a
smoothing across the month.

e Consequently, the Government runs the budget accounting function each month, instead
of each year, to determine the monthly budget deficit.

e By default, the budget deficits are 100% financed by bonds. This due to the fact that in the
EU context, the national Central Banks have lost the authority to control the money stock,
so budget deficits can no longer be financed by money creation. However, the Government
does have a limited standing facility with the Central Bank on which it can draw freely
during the month. This can effectively be considered as temporary money creation. The
Government repays the borrowed amount to the Central Bank as soon as it has financed
all its monthly expenditures by issuing bonds. If due to rationing on the bond market the
Government does not manage to finance all its liquidity needs the remainder is carried
over to the next month. In the meantime, the Government has a standing facility at the
Central Bank that functions as a buffer account to finance ongoing payments.

9.4.2 Functions
Government read data from Eurostat

At the start of the year the Government(s) read the regional and economy-wide macroeconomic
data from Eurostat, to determine the policy for the upcoming year.

9.4. GOVERNMENT

111

Step 1. The government reads all regional data for those regions that are in its list of regions.

GDP=0.0;
COUNTRY_WIDE_.MEAN_-WAGE=0.0;

START_DATA_FOR_.GOVERNMENT_MESSAGE_LOOP
for (i=0; i<NO_REGIONS_PER.GOV; i++)

FINISH.DATA_FOR_.GOVERNMENT_MESSAGE_LOOP

//Set country—wide mean wage as avg of region’'s mean wages
COUNTRY_WIDE_.MEAN_WAGE = COUNTRY_WIDE_MEAN_WAGE/NO_REGIONS_PER_GOV;

//Set GDP growth rate

if (old_gdp > 0.0)
GDP_GROWTH = GDP/old_gdp;

else GDP.GROWTH = 1.0;

if(data_for_government_message—>region_id=—LIST_OF_REGIONS . array ||

[a—
~

{
//Read region mean wage
COUNTRY_WIDE_MEAN_WAGE += data_for_government_message—>mean_wage;
//Read region GDP
GDP += data_for_government_message —>gdp;
}

Step 2. The government reads the global economic data to retrieve the economy-wide inflation

and unemployment rates:

START_EUROSTAT_SEND_-MACRODATA_MESSAGE_LOOP
INFLATION_RATE = eurostat_send_macrodata_message—>inflation;

FINISH.EUROSTAT_SEND_MACRODATA_MESSAGE_LOOP

UNEMPLOYMENT RATE = eurostat_send_macrodata_message—>unemployment_rateg;

Government set policy

The Government sets new policies based on the previous year’s budget deficit, national GDP,

and its forecasted next year’s GDP.

Step 1. Set a GDP forecast equal to an extrapolation of the previous year’s GDP growth rate.
Set an income forecast assuming that next year’s income will grow at the same rate as last
year’s GDP, and set an expenditure budget allowing yearly expenditure to grow with the

GDP growth rate. Finally, determine the budget balance forecast.

GDP_FORECAST = GDP_GROWTH=GDP;
YEARLY_INCOME_FORECAST = GDP_-GROWTH=+YEARLY_INCOME;
YEARLY_EXPENDITURE_BUDGET = GDP_GROWTHx*YEARLY_EXPENDITURE;

BUDGET_BALANCE_FORECAST = YEARLY_INCOME_FORECAST — YEARLY_EXPENDITURE_.BUDGET;

Step 2. Determine government consumption and investment, as fractions of GDP.

MONTHLY_CONSUMPTION_BUDGET = YEARLY_CONSUMPTION_BUDGET /12;

MONTHLY_INVESTMENT_BUDGET = YEARLY_INVESTMENT _BUDGET /12;

YEARLY_CONSUMPTION_BUDGET = GOV_POLICY_GDP_FRACTION_CONSUMPTION x GDP_FORECAST;

YEARLY_INVESTMENT_BUDGET = GOV_POLICY_GDP_FRACTION_INVESTMENT = GDP_FORE(QAST;

112 CHAPTER 9. GOVERNMENT DOCUMENTATION

Government send policy announcements

At the start of the year the Government announces new policies by sending a general policy_
announcement_message. The message contains the id of the Government, information for each
type of policy (benefit, transfer, subsidy), and whether the payment is a percentage or a lump-
sum payment. The variables in the announcement message are (can be expanded as needed):

gov_id
tax_rate_corporate
tax_rate_hh_labour
tax_rate_hh_capital
tax_rate_vat
unemployment_benefit_pct
hh_subsidy_pct
firm_subsidy_pct
hh_transfer_payment
firm_transfer_payment

The global environment constant gov_policy_unemployment_benefit_pct can be fixed, but the
Government can also use the variable unemployment_benefit_pct to announce an endogenous
policy that deviates from the global policy parameter.

Government read subsidy notification

Computation of the monthly and yearly totals of subsidy payments to households and firms.
The Government computes total payments by looping over these notification messages each day
and also computes the monthly and yearly sums:

tax_payment_message(gov_id, tax_payment)
unemployment_notification_message(gov_id, last_income)
hh_subsidy_notification_message(gov.id, subsidy_payment)
firm_subsidy_notification_message (gov_id, subsidy_payment)
hh_transfer_notification_message(gov_id, transfer_payment)
firm_transfer_notification_message (gov_id, transfer_payment)

Step 1. Sum over all household subsidy payments (as reported by households in the message)
and compute the total subsidy payments to households.

sum=0;
START_HH_SUBSIDY_NOTIFICATION_MESSAGE_LOOP
if (hh_subsidy_payment_notification_message —>gov_id=—ID)
sum+=hh_subsidy_payment_notification_message —>subsidy_payment;
FINISH_.HH_SUBSIDY_NOTIFICATION_MESSAGE_LOOP

MONTHLY_SUBSIDY_PAYMENT += sum;
YEARLY_SUBSIDY_PAYMENT += sum;
PAYMENT_ACCOUNT —= sum;

Step 2. Sum over all firm subsidy payments and compute the total subsidy payment to firms.

sum=0;
START_FIRM_SUBSIDY_NOTIFICATION_MESSAGE_LOOP
if(firm_subsidy_payment_notification_message —>gov_id=—ID)
sum+=firm _subsidy_payment_notification_message —>subsidy_payment;
FINISH_FIRM_SUBSIDY_NOTIFICATION_MESSAGE_LOOP

9.4. GOVERNMENT 113

MONTHLY_SUBSIDY_PAYMENT += sum;
YEARLY_SUBSIDY_PAYMENT += sum;
PAYMENT_ACCOUNT —= sum;

Government read transfer notification

Computation of the monthly and yearly totals of the transfer payments.

Step 1. Sum over all household transfer notifications and compute the total transfer payments
to households.

sum=0;
START_HH_TRANSFER_NOTIFICATION_MESSAGE_LOOP
if(hh_transfer_notification_message —>gov_id=ID)
sum—++;
FINISH_.HH_TRANSFER_NOTIFICATION_MESSAGE_LOOP

MONTHLY_TRANSFER_PAYMENT += sumsHH_TRANSFER_PAYMENT ;
YEARLY_TRANSFER_PAYMENT += sumxHH_TRANSFER_PAYMENT;
PAYMENT-ACCOUNT —= sum+HH_TRANSFER_.PAYMENT ;

Step 2. Sum over all firm transfer notifications and compute the total transfer payments to
firms.

sum=0;
START_FIRM_TRANSFER_NOTIFICATION_MESSAGE_LOOP
if(firm_transfer_notification_message —>gov_id=ID)
sum—++;
FINISH_FIRM_TRANSFER_NOTIFICATION_MESSAGE_LOOP

MONTHLY_TRANSFER_PAYMENT += sumx*FIRM_TRANSFER_PAYMENT;
YEARLY_TRANSFER_PAYMENT += sumx*FIRM_TRANSFER_PAYMENT ;
PAYMENT-ACCOUNT —= sum=*FIRM_TRANSFER_PAYMENT ;

Government read unemployment benefit notifications

(Related: Household send unemployment benefit notifications)
Function to compute monthly and yearly totals of the unemployment benefit payments.
Monthly counter of the unemployment messages.

e When households become unemployed during the month, they send an unemployment_
notification message to their Government at the beginning of their own private month,
on the day on which they normally would have received their next wage. The message
contains their last received wage. Their Government reads this message, computes the
cost of the entitlement and also computes the total monthly payments for unemployment
benefits. The total value of all unemployment benefits received that day is subtracted from
the Government’s payment account, and added to the total monthly and yearly sums.

e The Government does not need to send an unemployment benefit payment message to each
unemployed household individually. Instead, the households receive the information at the
start of the year containing the net replacement rate (the percentage of their last earned
wage). The value of the unemployment benefit can then be computed by the households
themselves without any need for a message interaction.

114 CHAPTER 9. GOVERNMENT DOCUMENTATION

e From then onwards, the household receives the benefit on the same day as it normally
would have received its wage from the firm, by sending the unemployment notification

message on the same every month.

e A problem occurs when a household gets re-employed by a different firm: the new firm’s day
of the month to pay wages may differ from the household’s day it receives unemployment
benefits. This can be resolved by letting the household repay the excess in benefits as a
restitution payment to the Government, given by:

restitution_payment = (1/20)*((day-of_month_receive_benefit + (20 — day_of_month_receive_n

* unemployment_benefit

Example 1: A household is fired on day 5 (the last day the firm paid the wage was on day
4). Tt receives its monthly unemployment benefit on day 5 each month. It is re-employed
on day 14 and so it starts earning a wage on day 14. It already received a month worth
of benefits. It now has to repay that part starting from day 14 up until day 4 the next
month. That is: 5+ (20 — 14) = 11 out of 20 days. The household repays the Government
(11/20) of the received benefit in additional taxes at the end of the month.

Example 2: The same household is re-employed on day 4. Then it needs to repay (1/20):
5+ (20 —4) = 21, but we take 21(mod20) = 1.

Example 3: The same household is re-employed on day 3. Then it needs to repay (2/20):
5+ (20 — 3) = 22, but we take 22(mod20) = 2.

So the correct code is:

restitution_payment = (1/20)*((day_-of_month_receive_benefit + (20 — day_-of_month_receive_n

* unemployment_benefit

e If the household remains unemployed, it should resend the unemployment notification
message on the same day of the month. In effect, we force the unemployed households to
re-apply for unemployment benefits every month.

Step 1. Compute the individual unemployment benefit payment as a fraction of the last labour
If the computed unemployment benefit is greater
than the mean wage, this amount is used as the benefit payment. Otherwise, the benefit
payment is set equal to half the mean wage.

income (the net replacement rate).

NUM_UNEMPLOYED = O0;

sum=0.0;

NUM_UNEMPLOYED++;

{

unemployment_payment
}
else
{

unemployment_payment
}

MONTHLY_UNEMPLOYMENT _BENEFIT_PAYMENT=0.0;

START_.UNEMPLOYMENT_NOTIFICATION_MESSAGE_LOOP

if(unemployment_notification_message—>last_labour_income«*UNEMPLOYMEN
> COUNTRY_WIDE_.MEAN_-WAGE=*0.5)

unemployment_notification_message—>last_lab

COUNTRY_WIDE_.MEAN_WAGE x0.5;

sum += unemployment_payment;
FINISH_.UNEMPLOYMENT_NOTIFICATION_MESSAGE_LOOP

I_BENEFIT_PCT

our_income %L

9.4. GOVERNMENT 115

Step 2. The total benefit payments are computed and subtracted from the payment account.

MONTHLY_UNEMPLOYMENT_BENEFIT_PAYMENT += sum;
YEARLY_UNEMPLOYMENT _BENEFIT_PAYMENT += sum;
PAYMENT_ACCOUNT —= sum;

Government read tax payments

At the end of the subjective month all agents send their tax_payment message, read by the
Government daily and added to the Government’s payment account. The monthly tax revenues
are added to the yearly tax revenues. At the end of the month, the monthly tax revenues are
reset to zero to restart the count for the next month.

//Reset the monthly tax counter
MONTHLY_TAX_REVENUES =0.0;

START_TAX_.PAYMENT_MESSAGE_LOOP
MONTHLY_TAX_REVENUES += tax_payment_message—>tax_payment;
FINISH_TAX_PAYMENT_MESSAGE_LOOP

PAYMENT_ACCOUNT += MONTHLY_TAX_REVENUES;
YEARLY_TAX_REVENUES += MONTHLY_TAX_REVENUES;

Government monthly budget accounting

At the end of the year the Government does some essential budget accounting: it computes the
total unemployment benefit payments, total transfer payments, total bond coupon payments,
total interest payment on the public debt, total Government investment and consumption. Then
it computes the budget deficit and executes the monetary policy rule to determine the money
financing and bond financing amounts. Next, it executes the fiscal policy rule to adjust the
tax rates for the following year. The fiscal policy rule is currently very simple: if the payment
account of the Government was negative, increase taxes a bit, if it was positive, decrease taxes
a bit.

Step 1. Compute the monthly income, expenditures, and budget balance.

YEARLY_TAX_REVENUES += MONTHLY_TAX_REVENUES;

in = MONTHLY_TAX_REVENUES;
MONTHLY_NCOME = in;

out = MONTHLY_UNEMPLOYMENT_BENEFIT_PAYMENT +
MONTHLY_TRANSFER_ PAYMENT +
MONTHLY_BOND_COUPON_PAYMENT +
MONTHLY_INVESTMENT_EXPENDITURE +
MONTHLY_CONSUMPTION_EXPENDITURE;

MONTHLY_EXPENDITURE = out;

MONTHLY_BUDGET_BALANCE = in — out;

Step 2. Subtract the monthly budget balance from the cumulated deficit. In case the balance
is a surplus the cumulative deficit decreases, otherwise it increases. The total debt is
computed as the face value of all outstanding government bonds.

116 CHAPTER 9. GOVERNMENT DOCUMENTATION

CUMULATED_DEFICIT —= MONTHLY_BUDGET_BALANCE;
TOTAL.DEBT = BOND. nr_outstanding+*BOND. face_value;

Step 3. Set a monetary policy rule to finance the current deficit.

TOTAL_MONEY_FINANCING=0;
TOTAL_BOND_FINANCING=0;
if (PAYMENT_ACCOUNT<O0)
{
TOTAL_MONEY_FINANCING = GOV_POLICY_MONEY_FINANCING_FRACTION
« abs (PAYMENT_ACCOUNT);
TOTAL_BOND_FINANCING = (1—GOV_POLICY_MONEY_FINANCING_FRACTION)
« abs (PAYMENT_ACCOUNT);
}

Step 4. The part of the deficit that is directly financed by fiat money requires a message to the
Central Bank.

add_request_fiat_money_message (TOTAL.MONEY_FINANCING);
PAYMENT_ACCOUNT += TOTAL_-MONEY_FINANCING;

Government send account update

Government sends the payment account value to the Central Bank.

Government compute balance sheet

Monthly computation of the Government balance sheet.

Government yearly budget accounting

At the end of the year the Government computes the yearly income, expenditures, and budget

balance.

in = YEARLY_TAX_REVENUES;
YEARLY_INCOME = in;

out = YEARLY_.UNEMPLOYMENT_BENEFIT_PAYMENT +
YEARLY_TRANSFER_PAYMENT +
YEARLY_BOND_COUPON_PAYMENT +
YEARLY_INVESTMENT_EXPENDITURE +
YEARLY_CONSUMPTION_EXPENDITURE;
YEARLY_EXPENDITURE = out;

YEARLY_BUDGET_BALANCE = in — out;

9.4. GOVERNMENT 117

9.5 Stategraph

start_Government

not (Periodicity: yearly
Phase: 1)

start_Household

not (Periodicity: yearl
Phase: 1)

Periodicity: yearly not (Periodicity: yearly
Phase: 1 Phase: 1)

. Periodicity: yearly L Periodicity: yearly
layer 0 Government_idle Government_send_policy_announcements Household_idle AR Firm_idle e
(policy_announcement | policy_announcement
layer 1 ° ~1> Household_read_policy_announcements Firm_read_policy_announcements
layer 2 Household_send_tax_payment Firm_send_tax_payment
e tax_payment

layer 3 Government_read_tax_payments Household_send_subsidy_notification Firm_send_subsidy_notification

° ° firm_subsidy_notification
layer 4 - read_subsidy_notifications i Household_send_transfer_notification Firm_send_transfer_notification
e hh_transfer_notification @ _firm_transfer_notification
Periodicity: monthly not (Periodicity: monthly
Phase: a->day_of_month_receive_income Phase: a->day_of_month_receive income)) /

- B
layer 5 Government_read_transfer_notifications Id_send_ _benefit_r

Household_idle

layer 6 Government_read _benefit_notifications <

not (Periodicity: monthly ™\ Periodicity: monthly
se: 0) Phase: 0

layer 7 Government_idle Government_monthly_budget_accounting

layer 8 Government_monthly_resetting
layer 9 Government_send_account_update
start_Central_Bank Gov_Start_Yearly_Loop _ central_bank_account_update
not (Periodicity: yearly\ Periodicity: yearly
Phase: 0) Phase: 0
L R
layer 10 Central_Bank_read account_update ide Government_yearly budget_accounting
end_Central_Bank
layer 11 Government_read data from Eurostat
layer 12 Government_set._policy
layer 13 Government_yearly_resetting

118 CHAPTER 9. GOVERNMENT DOCUMENTATION

Chapter 10

Model 1nitialization

119

120 CHAPTER 10. MODEL INITIALIZATION

10.1 Population initialization

In general there are several considerations that constrain the initialization of the agent’s state
variables. First and foremost, we cannot initialize the variables completely at random. This
would violate the internal logic of the model, since in order to obtain a working simulation we
have to initialize the agent’s balance sheets according to the criterion of stock-flow consistency.
This means that we are constrained to set the initial values such that the balance sheet rela-
tionships between agents hold. If the balance sheets would be inconsistent from the start they
would remain so throughout the entire simulation.

The second consideration is that we start with reasonable or plausible values. This is in order
to alleviate the initial transient effects that any initialization invariably has. In our experience
large path dependencies can be generated by such initial transients, so it is important to carefully
consider the interdependencies between the initial values.

10.1.1 IGFirm values

Step 0. IGFirm constant initialization values

IGFirm.wage_offer 1.0
IGFirm . capital_good_store 100
IGFirm. productivity 1.7
IGFirm.payment_account 0.0

Step 1. IGFirm capital goods price and unit costs

IGFirm . capital price initial_capital_price_wage_ratio * IGFirm.wage_offer
IGFirm.unit_costs initial_capital_price_wage_ratio =« IGFirm.wage_offer
Argumentation:

e capital price: The initial capital price is assumed to be in a fixed relation to the initial
wage that is on average paid in the economy. Even if the IG firm does not employ workers
it has a memory variable wage offer that is used only for the initialization.

e unit costs: The price setting of the IG firm is a combination of value and cost based pricing.
For the cost based price component the IG firm takes virtual unit costs into account, i.e. a
variable called unit costs that is a proxy for the costs which would arise in the production
process. Since the costs usually change over time (mainly due to increasing labor costs)
this change has to be incorporated in the evolution of the unit costs. In order to have a
stable capital goods price in the first months, the unit costs have to be initialized at the
same level as the initial capital goods price.

10.1.2 Firm values

Step 0. Firm constant initialization values

Firm. mean_specific_skills
Firm.wage_offer
Firm.technology

— e
o1 o o

10.1. POPULATION INITIALIZATION 121

Step 1. Firm output and units of capital stock needed

Firm.output (Nr.Household/Nr.Firm)

x min(Firm.technology, Firm.mean_specific-skills)
Firm.total_units_capital_stock Firm.output/min(technology , mean_specific_skills)
Argumentation:

e output: We set the output of a firm at a level such that the total labor demand that
is needed for producing the cumulated output would correspond to full employment.

e total units capital stock: The capital stock is set to have a sufficient capital stock in
order that the initial production quantity can be produced without additional capital

investments.

Step 2. Set firm balance sheet: asset side.

Firm.actual_cap_price IGFirm . capital price
Firm.total_value_capital_stock Firm.actual_cap_pricextotal_units_capital_stock
Firm.payment_account 1.0xtotal_value_capital_stock
Firm_total_value_local_inventory 0.0
Firm.total_assets payment_account 4+ total_value_capital_stoclk

+ total_value_local_inventfory

Argumentation:

e total value capital stock: This is an asset on the balance sheet of the firm.

e payment account: The value of the firm’s payment account is set to equal the value
of its capital stock, such that the firm has sufficient liquidity in the first month to
start repaying the initial loan that was inherited from historical investments.

e total value local inventory: The firm has no initial inventory stock.

Step 3. Set firm balance sheet: liability side.

const_firm_leverage 2.0

Firm.initial_loan (const_firm_leverage/(l+const_firm_leverage))
* Firm.total_assets

Firm.total_debt Firm.initial_loan

Firm.equity Firm.total_assets — Firm.total_debt

Argumentation:

o initial loan: We start the firms with an initial loand in order to approximate plausible
leverage ratios. This will alleviate initial transient effects. The initial loan is set
according to a constant leverage ratio of 2.0. This implies that the initial loan is
(2/3) of total assets and equity is (1/3) of total assets.

Step 4. Capital financing of the existing capital stock.

installment_periods 24
depreciation_rate 0.01
Firm.capital_financing [24] total_units_capital_stock % depreciation_rate
x IGFirm.capital_good_price/(2*xinstallment_pefiods)

122 CHAPTER 10. MODEL INITIALIZATION

Argumentation:

e capital financing per month: We assume that the firm has invested in capital during
its history before day 0 (the start of the simulation). The investments are exactly
that amount which is necessary to compensate for the monthly depreciation of capital
such that the capital stock remains constant. In order to stabilize the simulation with
regard to bankruptcies at the beginning we deviate from the usual assumption that
the loan obtained for the investments has to be repaid in the standard repayment
period of a loan. Instead we allow the initial loan to be repaid in twice the length of
time (24 months).

10.1.3 Household values

Step 0. Household constant initialization values

wealth_income_ratio_target 16.67
target_savings_rate 0.10
carrol_consumption_parameter 0.01

Household . employee_firm_id —1 (unemployed)
Argumentation:

o wealth income ratio target: Household consumption and savings behavior is driven

by a target wealth income ratio.

e target savings rate: We assume a target savings rate of 10%.

e carrol consumption parameter: The constant from buffer stock saving theory. If total
wealth (liquid and illiquid, i.e. payment account plus asset wealth) exceeds the target

wealth level, the households consumes an extra 1% of the excess and saves the rest.

o employee firm id: We assume all households are initially unemployed.

Step 1. Set Household wage and income

Household . wage_reservation min(Firm.technology ,specific_skill)x1.0
Household . mean_net_income Household . wage_reservation
Argumentation:

e wage reservation: The reservation wage is set equal to the firms wage offer, such that

households accept job offers in the first month.

e mean net income: Mean net income is set equal to the reservation wage.

Step 2. Set Household balance sheet: asset side.

Household . payment_account Household . mean_net_income

* target_savings_rate/carrol_consumption_paran
Household . assetsowned_units Clearinghouse . nr_shares/Households
Household . assetsowned_price 10/ units

Household . wealth payment_account + assetsowned_unitsxassetsown

neter

ed_price

10.2. REALIZATION OF INITIAL VALUES 123

Argumentation:

e payment account: Households have an initial payment account equal to 15 monthly
wages, to represent a plausible savings buffer.

e assetsowned: The households asset portfolio is scaled to yield a wealth level that is
reasonable. Each household is endowed with an equal number of index shares, with
a price such that the total value of the initial portfolio is 10 (each household has
risky-asset wealth equal to 10 monthly mean wages).

e wealth: Households’ initial total wealth consists of liquid money holdings in the pay-
ment account and illiquid asset holdings. Together with the payment account of 15
monthly wages the initial total wealth of each household is 25.

10.1.4 Clearinghouse values

Step 1. Clearinghouse initialization of stock market index

Clearinghouse.index
nr_shares (F+1G)*H
price 10%H/nr_shares
weight 1/(F+IG)
Argumentation:

e number of shares: The number of index shares is scaled to the total number of firms
and households.

e price: The price of index shares is chosen such that each household initially has an
asset portfolio with a value of 10.

o weight: The weight of the firms in the index share is uniform. This is needed to
compute the dividend per index share from the total dividend payment of the firms.

10.2 Realization of initial values

installment_periods 12
initial_capital_price_wage_ratio 30.0

IGFirm.capital price 30
IGFirm.wage_offer 1.0
IGFirm.capital_good_store 100
IGFirm. productivity 1.7
IGFirm . payment_account 0.0
IGFirm.unit_costs 30
Firm .output 30

Firm.total_units_capital_stock 20
Firm.total_value_capital_stock 600

Firm.payment_account 600
Firm.total_assets 1200
Firm.initial_loan 800
Firm.debt_installments [24] 33.3
Firm.equity 400

Firm.capital_financing [24] 0.25

124

CHAPTER 10.

MODEL INITIALIZATION

Household . mean_net_income 1.5
Household . payment_account 15
Household . wealth 25
Household . wealth_income_ratio_actual 16.67
Household.consumption_budget 1.5
Household . assetsowned
price 0.12345679
units 81
Clearinghouse . index
nrFirm 80
nrliGFirm 1
nrHousehold 1600
nr_shares 129600
price 0.12345679

Chapter 11

Model validation

11.1 Validation rules

To validate the internal consistency of the model we list 33 rules that we have successfully tested.
On the one hand these rules are balance sheet accounting identities, and on the other they are
conservation rules for material quantities and monetary values. Having thus validated the model
we are confident that the EURACE model is stock-flow consistent, and can form a solid basis
for further extensions in the future.

Examples of validation rules

e Balance sheet accounting identities can be devised across agents and used to validate the
model.

e Examples:

— Total amount of loans on the balance sheets of the banks equals total debts on the
balance sheet of the firms:

Syu-rTe

— Total money holdings on the balance sheets of households equals total household
deposits on the balance sheets of the banks (summed across all banks):

T -TTm

— Total government bonds equals total bond holdings by all households, plus bond
holdings of the Central Bank (due to QE):

g _ h c
n—g ng+ng
h

125

126 CHAPTER 11. MODEL VALIDATION

Monetary aggregates and invariants

e In the EURACE model we have a monetary conservation rule (invariant quantity):

(%:Mthzf:Mf) + (zb:M”) + (%:MQJFMC)

private sector deposits + bank cash reserves + public sector deposits

(Mc+zb:Dg+2g:_L;) + (Zb:;ql)

fiat money —+ credit money

11.2 List of tested rules

Balance sheet identities
Rule 1

Firm balance sheet: assets and liabilities.

firm_payment_account-firm_total_value_local_inventory+firm_total_value_capital_stock=firm_total_
debt+firm_equity

Rule 2

IGFirm balance sheet: assets and liabilities.

igfirm_payment_account+igfirm_total_value_local_inventory+igfirm_total_value_capital_stock=igfirm_
total_debt+igfirm_equity

Rule 3

Bank balance sheet: assets and liabilities.

bank_cash+bank_total_credit=bank_deposits+bank_equity+bank_ecb_debt

Rule 4

Government balance sheet: assets and liabilities.

gov_payment_account=gov_value_bonds_outstanding+gov_ecb_debt+gov_equity

Rule 5

Central bank balance sheet: assets and liabilities.

The issued fiat money to government(s) equals the total value of bond purchases by the ECB
(open market operations). Note that the value of bond holdings is valued at the face value, while
the bonds were purchased against the market bond price. The difference in value is subsumed
in the ECB equity.

ecb_cash+ecb_gov_bond_holdings+ecb_fiat_money_banks=ecb_payment_account_banks+ecb_payment_
account_govs—+ecb_fiat_money+ecb_equity

11.2. LIST OF TESTED RULES 127

Internal acounts: updating stocks with flows
Rule 6

Firm internal accounting of monetary flows.
firm_net_inflow=firm_payment_account_day_20-firm_payment_account_day_1

Rule 7

IGFirm internal accounting of monetary flows.
igfirm_net_inflow=igfirm_payment_account_day_20-igfirm_payment_account_day_1

Rule 8

Household internal accounting of monetary flows.
household_net_inflow=household_payment_account_day_20-household_payment_account_day_1

Rule 9

Bank internal accounting of monetary flows.
bank_net_inflow=bank_cash_day_20-bank_cash_day_1

Rule 10

Government internal accounting of monetary flows.
gov_net_inflow=gov_payment_account_day_20-gov_payment_account_day_1

Aggregate monetary flows between agents (or across sectors)

Banking sector

Rule 11

Payment accounts: aggregate bank deposits equals the sum of payment accounts in agent mem-
ory.

bank_deposits=firm_payment_account—+igfirm_payment_account+hh_payment_account
Rule 12
Credit money: aggregate Bank credit outstanding equals total loans to firms.
bank_credit=firm_total_debt+igfirm_total_debt
Rule 13
Net inflows: the change in banks deposits equals the sum of the agents net inflows

bank_net_deposit_inflow=firm_net_inflow+igfirm_net_inflow+household_net_inflow

128 CHAPTER 11. MODEL VALIDATION

Rule 14

Debt installment payments by firms to banks and the payments received by banks are equal.
firm_debt_installments+igfirm_debt_installment=bank_received_loan_installment

Rule 15

Interest payments by firms to banks are equal to interest payments received.

firm_interest_payment+igfirm_interest_payment=bank_received_interest_payment

Real sector
Rule 16

Dividend payments send and received are equal.

firm_dividend_payment+igfirm_dividend_payment+bank_dividend_payment=household_total_dividends

Rule 17

Consistency between IGFirm sales revenues and Firm capital costs.

firm_capital_costs=igfirm_revenue

Rule 18

Consistency between IGFirm and Firm labour costs and Households received wages.

household_wage=firm_labour_costs+igfirm_labour_costs

Rule 19

Consistency between Firm revenues and Households consumption expenditures

household_consumption_expenditure=firm_revenue

Eurostat
Rule 20
Definition of GDP.

eurostat_gdp=eurostat_investment_value+household_consumption_expenditure+gov_consumption_
expenditure

Rule 21

Check the number of active firms:

eurostat_no_firms=firm_active—+igfirm_active4eurostat_no_firm_bankruptcies

11.2. LIST OF TESTED RULES 129

Rule 22

Material quantity conservation rule: Eurostat total sold quantity compared with firm data on
number of goods sold (in volume).

eurostat_sold_quantity=firm_total_sold_quantity_volume

Rule 23

Investments in monetary value: Eurostat data (aggregated across the firms’ investment costs)
equals the IGFirm revenues.

eurostat_investment_value=igfirm_revenues

Government
Rule 24

Taxes paid equal tax revenues.

gov_tax_revenue=firm_tax_payment+igfirm_tax_payment—+household_tax_payment+bank_tax_payment

Rule 25

Consistency of unemployment benefits paid by governments and received by households.

gov_benefit_payment-gov _restitution_payment=household _unemployment_benefit-household_restitution_
payment

Rule 26

Total number of shares outstanding equals the total number of shares in household and ECB
portfolios.

household_nr_assets—+ecb_nr_gov_bonds=firm_outstanding_shares+igfirm_outstanding_shares+bank_
outstanding_shares+gov_nr_bonds_oustanding

Central Bank
Rule 27

Deposits at ECB are consistent with memory contents of bank and government.

bank_cash+gov_payment_account=ecb_payment_account_banks+ecb_payment_account_govs

Rule 28

ECB fiat money is by definition the sum of the fiat money created for governments and for
banks.

ecb_fiat_money=ecb_fiat_money_govs+ecb_fiat_money_banks

130 CHAPTER 11. MODEL VALIDATION

Rule 29

ECB fiat money banks is by definition the fiat money created for banks when they take on ECB
debt.

ecb_fiat_money_banks=bank_ecb_debt

Rule 30

The interest payments by banks on central bank loans equals the ECB’s interest receipts.

bank_ecb_interest_payment=ecb_bank_interest

Rule 31

The ECB dividend payment to Governments equals the dividend received.

ecb_dividend_payment=gov_ecb_dividend

Rule 32

Monetary conservation rule: credit money plus fiat money. All deposits in the banking sector
plus bank equity, plus all idle cash balances held in the public sector (government payment
account and ECB cash), equals all the credit money created by the banks plus all the fiat money
created by the central bank.

bank_deposits+bank_equity+gov_payment_account+ecb_cash=bank_credit+ecb_fiat_money

Rule 33

Simplified monetary conservation rule: fiat money. Leaving out bank deposits, bank equity,
ECB cash and bank total credit. The idle cash balances of bank and government equals the
total fiat money created for the government.

bank_cash+gov_payment_account=ecb_fiat_money_govs

Why certain rules fail

Note that there is a slight difference between the LHS and RHS of rule 20 which compares the
monthly consumption expenditures of households to Eurostat GDP. The difference is maximally
0.66. We assume this is a statistical error in aggregating over 1600 household values.

Iteration 800: OK
LHS RHS

0.660142000002 1.0

A

eurostat gdp = 1977.246489
household consumption expenditure = 1977.906631

11.2. LIST OF TESTED RULES 131

The rules 32 and 33 that measure the total outstanding fiat and credit money in the economy
fail due to this difference in the monetary flows, but the error is accumulatived in the stocks over
time. It takes on the value 37.7 at iteration 800. If in every month there is a flow difference of
0.66, then after 40 months this accumulates to 26.7, which is very close to the observed difference
of 37.7.

Iteration 800 : FAIL

LHS RHS

37.721527 >= 1.0
bank_deposits = 18762.661212
bank_equity = 2243.575997
gov_payment_account = 1382.172985
ecb_cash = 0.000000

bank_total_credit 13194.607750
ecb_fiat_money = 9231.523971

CHAPTER 11. MODEL VALIDATION

SA03-Aouow}RIJ (o0 = junoode juswAed-A08 4 yYsed yurq
Aouow~3eIJ (20 4+ JIpoId~jurq = [SeO 2o + junoode juowided-a08 + Ajmbo-jyueq + sjrsodep-yueq
puepIAIp~qoe-A08 = juswAed puUspIAIP (Do

1soI0guUI~ueQq Qoo = juowded)soI0jUI oo JUR(

1qep Qoo yurR(q = SYURQ ASUOW }RIJ (0o

sjyue(q-AouUOW }RIJ (QO0 + SAOF-AoUOW)RIJ-qd0 = AsUOW }RIJ (O

sao3-junoooe-juowded-qoo + syueq-junodode-juswled-qoo = junodde-juowdAed-A03 4+ yYseo urq

DURISNO~SPUOQ~IU~A 4 SoIRUS 3UIPURISINO-YUR(+ SOIRYS - SUIPURISINO WIIJST + SoIRYS SUIPURISINO WIIJ] = SPUOQ A0S IU (Od + S)9SSR-IU P[OYdSNOY
jusowAed-uoringryser-proyesnoy — jijeusaq-juswAojduweun-poyssnoy = juswAed-uoringr)sei -a038 — juewded-jijeusaq-A03
juomwAed-xe)-jueq + juowrded-xe) ployesnoy + juomwrAed-xe) wWIry31 + juowded Xe) WIJ] = ONUIADI"XR]I“ A0S

SOMUOASI WIIJST = ON[RA-JUSUWISOAUI JRISOIND

swinjoA-Ajrjuenb-pios-[ejo0)-wiry = Ajryuenb-pjos-jeisorns

s0103dnIyURq - WIIJ OU)RISOIND + OAT}OR-WIIJST + OATIOR-WII] = SWIIJ OU JRISOIND

oinjipusadxo-uor}dwnsuod-A08 + oInjrpusdxo-uor}dwWINSUOI~"P[OYLSNOY + ON[BRA-JUSW)SOAUI JRISOINS = dp8-jelsorns
ONUOAdI“WIl] = odInjipuadxo-uol}dwWNsSuUOd " P[oYasnoy

§1500-IN0OQR[WIIJ3T + $3S00-INOQR[WIIJ] = 93vM pP[OoYasnoy

ONUOASI WIIJII = s9so0d-[errdedo-wiIlj

SpuspIAIp-[RlO0}-p[OoYasnoy = juswAed -puspraip-jureq + juswAed - puspralp - wirjs8r + juowrAed - pUspIATP WIL]
juowrAed-1s010)UI"poATodaI~urq = juowAed 3soI0)uUl WIlJIT + JuomwArRd 1S0I0)UT" WIT]

JUQW[[RISUI"URO[POAISIOI~NUR(Y = JUQW[[R)SUI")OpP WIIJ3T + SIUSW[[RISUI JQoP WILJ

MO[JUI™)0U P[OYOSNOY + MO[JUI P2U-WIIJST + MO[JUI"joU-WII] = MmoJjur-jisodop-jou-syueq

1qep [e103 WITJST + 3gqOpP [BI0) WII]J

junoode - jusmwAed -yy 4+ junodode juowdAed -wiIry3r + junodde juewAed-wirj

1-Aep-junoode-juowAed-A08 — (g Aep junoosoe-jusmwiAed-A03 =

1-Aep-yseo yureq — (g LAep ysed jueq =

I~ Aep-junoooe-juswAed -wily — (g Aep junodode juomwhAed wily =

[

= JIpald~yueq

sprsodop-yurq

MO[jur-3eu-A0S3

MO[JuUl~jou-yuRq
T-Aep-junoooe-juowed-pjoygssnoy — (g Aep junoooe juowAed ploYesnoy = MO[JUI }8U P[OYESNOY
T-Aep-junoodse-juewAed-wirydr — (g Aep-junododoe juewAed WIIJST = MO[JUI"}oU - WIIJSI
MOTJUI™ 30U WIIT]
Aymmbe-qoo + Asuomw~3evIJ Qo0 + sAo3 junodde juowrAed-qoo 4 syurq-junodde-juowWArRd I (Oe = syuUR|-AoUOW }RIJ qO0 + SSUIP[OY PUOQ-A03-(d0 + [YsSeO~ Qoo
A3mnbo-A08 + 1qop-qoe-A03 + Juipue}sino-spuoq-on[eA-A03 = junooor-jusowied-ao3

1qop-qoo~yueq + Ajmnbo~jyueq + sjrtsodep yurq = 3IpeId~[B)0}-JURG + [YSed JURQ

Aymnbo-wary81 + 1gqep [e101 WITFST = 00315 [v)TdRO-ON[RAT[RI0)- WIIJST + AIOJUSAUI [ROO[ON[RA-[R)O0) WIIJST 4 junodsde juowAed warysr

& A3mmboe-wily + 3qep-[®I0) WII] = 209s [eG1dBO ON[BAT[B}0) WII] + AIOJUSAUI [BIO[ON[BAT[€}0} - WII] + junodsde juswled wirj
—

O AN M FIO O~V 4 ANM IO O©I~-00H0DO =M
oA A o A H = A AN ANAAN NN Mmoo

— AN <f 1O O b~ 00D

11.3. VALIDATION OUTPUT

11.3 Validation output

We show the rule validation output for every rule, for iterations 80, 320, 560, 800.

133

RULE 1 : abs (firm_payment_account

+ firm_value_capital_stock -—

+ firm_value_local_inventory
firm_total_debt — firm_equity)

——— [lteration 80 oK]| —
LHS RHS
3.30000002577e—-05 < 1.0
0.0033% 99.9967%
firm_payment_account = 1743.418907
firm_value_local_inventory = 1848.125816
firm_value_capital_stock = 16950.137440
firm_total_debt = 12939.987931
firm_equity = 7601.694199
——— [lteration 320 OK] —
LHS RHS
3.99998589273e—06 < 1.0
0.0004% 99.9996%
firm_payment_account = 3304.877863
firm_value_local_inventory = 1585.217715
firm_value_capital_stock = 15042.124810
firm_total_debt = 12940.009153
firm_equity = 6992.211239
—— [lteration 560 OK] —
LHS RHS
4.70000040877e—05 < 1.0
0.0047% 99.9953%
firm_payment_account = 2330.215346
firm_value_local_inventory = 1808.648398
firm_value_capital_stock = 13356.469262
firm_total_debt = 12980.886231
firm_equity = 4514.446822
—— [lteration 800 OK] —
LHS RHS
1.30000048557e—05 < 1.0
0.0013% 99.9987%

< PRECISION

134

CHAPTER 11. MODEL VALIDATION

firm_payment_account
firm_value_local_inventory
firm_value_capital_stock
firm_total_debt
firm_equity

= 1759.440843

1816.642874
11944.331841
13194.607752
= 2325.807793

RULE 2 : abs (igfirm_payment_account + igfirm_value_local_inventory
+ igfirm_value_capital_stock — igfirm_total_debt — igfirm_equity) < PRECISION
——— [Iteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%

igfirm_payment_account = 0.000000
igfirm_value_local_inventory = 0.000000
igfirm_value_capital_stock = 0.000000
igfirm_total_debt = 0.000000
igfirm_equity = 0.000000
——— [Iteration 320 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
igfirm_payment_account = 0.000000
igfirm_value_local_inventory = 0.000000
igfirm_value_capital_stock = 0.000000
igfirm_total_debt = 0.000000
igfirm_equity = 0.000000
——— [Iteration 560 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%

igfirm_payment_account
igfirm_value_local_inventory
igfirm_value_capital_stock
igfirm_total_debt
igfirm_equity

= 0.000000
0.000000
0.000000
0.000000
= 0.000000

11.3. VALIDATION OUTPUT 135

——— [lteration 800 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
igfirm_payment_account = 0.000000
igfirm_value_local_inventory = 0.000000
igfirm_value_capital_stock = 0.000000
igfirm_total_debt = 0.000000
igfirm_equity = 0.000000
RULE 3 : abs (bank.cash + bank_total_credit — bank_deposits — bank_ecb_debt
— bank_equity) < PRECISION
——— [Ilteration 80 : OK] ——
LHS RHS
9.99997610052e—07 < 1.0
0.0001% 99.9999%
bank_cash = 7732.945957
bank_total_credit = 12939.987927
bank_deposits = 18435.183686
bank_ecb_debt = 0.000000
bank_equity = 2237.750197
——— [Iteration 320 : OK | ——
LHS RHS
1.81898940355e—12 < 1.0
0.0000% 100.0000%
bank_cash = 9181.479966
bank_total_credit = 12940.009149
bank_deposits = 19883.738862
bank_ecb_debt = 0.000000
bank_equity = 2237.750253
——— [Ilteration 560 : OK | ——
LHS RHS
4.09272615798e—12 < 1.0
0.0000% 100.0000%

bank_cash 8595.186580

136

bank_total_credit
bank_deposits
bank_ecb_debt

CHAPTER 11. MODEL VALIDATION

12980.886226
19337.916998
0.000000

bank_equity = 2238.155808
——— [lteration 800 OK] ——
LHS RHS
1.00000033854e—06 < 1.0
0.0001% 99.9999%

bank_cash
bank_total_credit
bank_deposits
bank_ecb_debt
bank_equity

= 7811.629460
= 13194.607750
= 18762.661212
= 0.000000
= 2243.575997

RULE 4

abs (
gov_equity)

gov_payment_account
< PRECISION

— gov_value_bonds_outstanding

——— [Iteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
gov_payment_account = —212.079110
gov_value_bonds_outstanding = 3545.500000
gov_ecb_debt = 0.000000
gov_equity = —3757.579110
—— [lteration 320 OK] —
LHS RHS
1.81898940355e—12 < 1.0
0.0000% 100.0000%
gov_payment_account = —63.143590
gov_value_bonds_outstanding = 10773.300000
gov_ecb_debt = 0.000000
gov_equity = —10836.443590
——— [Iteration 560 oK]| —
LHS RHS
1.81898940355e—12 < 1.0

gov_ecb_debt

11.3. VALIDATION OUTPUT

0.0000%

100.0000%

gov_payment_account
gov_value_bonds_outstanding
gov_ecb_debt

= 606.808140
= 12410.100000
0.000000

gov_equity - ~11803.291860
——— [lteration 800 OK] ——
LHS RHS
1.81898940355e—12 < 1.0
0.0000% 100.0000%

gov_payment_account
gov_value_bonds_outstanding
gov_ecb_debt

gov_equity

RULE 5 abs (ecb_cash +
— ecb_payment_account_banks —
< PRECISION

ecb_gov_bond_holdings +
ecb_payment_account_govs —

1382.172985

= 12410.100000
0.000000

= —11027.927015

ecb_fiat_money_banks
ecb_fiat_money

——— [Iteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_cash = 0.000000
ecb_gov_bond_holdings = 345.500000
ecb_fiat_money_banks = 0.000000
ecb_payment_account_banks = 7732.945957
ecb_payment_account_govs = —212.079110
ecb_fiat_money = 7540.836535
ecb_equity = —14716.203382
—— [lteration 320 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%

ecb_cash = 0.000000
ecb_gov_bond_holdings = 7573.300000
ecb_fiat_money_banks = 0.000000
ecb_payment_account_banks = 9181.479967
ecb_payment_account_govs = —63.143590

137

ecb_equity)

CHAPTER 11. MODEL VALIDATION

—+

138
ecb_fiat_money = 9143.066199
ecb_equity = —10688.102576
—— [lteration 560 OK] —
LHS RHS
1.81898940355e—12 < 1.0
0.0000% 100.0000%
ecb_cash = 0.000000
ecb_gov_bond_holdings = 9210.100000
ecb_fiat_money_banks = 0.000000
ecb_payment_account_banks = 8595.186580
ecb_payment_account_govs = 606.808140
ecb_fiat_money = 9231.523971
ecb_equity = —9223.418691
——— [lteration 800 OK] ——
LHS RHS
1.00000033854e—06 < 1.0
0.0001% 99.9999%
ecb_cash = 0.000000
ecb_gov_bond_holdings = 9210.100000
ecb_fiat_money_banks = 0.000000
ecb_payment_account_banks = 7811.629460
ecb_payment_account_govs = 1382.172985
ecb_fiat_money = 9231.523971
ecb_equity = —9215.226417
RULE 6 abs (firm_net_inflow — firm_payment_account_day_20

< PRECISION

——— [Ilteration 80 OK]| —
LHS RHS
7.99999975243e—06 < 1.0
0.0008% 99.9992%
firm_net_inflow = 202.854799
firm_payment_account_day_20 = 1743.418907
firm_payment_account_day_1 = 1540.564116
——— [Iteration 320 OK] —

LHS

RHS

firm_payment_account_day_1

11.3. VALIDATION OUTPUT 139

3.99999817091e—06 < 1.0
0.0004% 99.9996%
firm_net_inflow = 63.881017
firm_payment_account_day_20 = 3304.877863

firm_payment_account_day_1 = 3240.996842

—— [Iteration 560 : OK] ——

LHS RHS
6.99999918652e—06 < 1.0
0.0007% 99.9993%
firm_net_inflow = —77.922143
firm_payment_account_day_20 = 2330.215346
firm_payment_account_day_1 = 2408.137482

——— [Iteration 800 : OK | ——

LHS RHS
3.00000033349e—06 < 1.0
0.0003% 99.9997%
firm_net_inflow = 66.101219
firm_payment_account_day_20 = 1759.440843
firm_payment_account_day_1 = 1693.339621
RULE 7 : abs (igfirm_net_inflow — igfirm_payment_account_day_20

+ igfirm_payment_account_day_-1) < PRECISION

——— [Ilteration 80 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
igfirm_net_inflow = 0.000000
igfirm_payment_account_day_20 = 0.000000
igfirm_payment_account_day_1 = 0.000000

——— [Ilteration 320 : OK] ——

LHS RHS

0.0 < 1.0

140 CHAPTER 11. MODEL VALIDATION

0.0000% 100.0000%
igfirm_net_inflow = 0.000000
igfirm_payment_account_day_20 = 0.000000
igfirm_payment_account_day_1 = 0.000000

——— [lteration 560 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
igfirm_net_inflow = 0.000000
igfirm_payment_account_day_20 = 0.000000
igfirm_payment_account_day_1 = 0.000000

——— [lteration 800 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
igfirm_net_inflow = 0.000000
igfirm_payment_account_day_20 = 0.000000
igfirm_payment_account_day_1 = 0.000000
RULE 8 : abs (household_net_inflow — household_payment_account_day_20

+ household_payment_account_day_-1) < PRECISION

——— [lteration 80 : OK] ——

LHS RHS
8.30000353744e—-05 < 1.0
0.0083% 99.9917%
household_net_inflow = 4.732117
household_payment_account_day_20 = 16691.764841

household_payment_account_day_1 = 16687.032641

—— [Iteration 320 : OK] ——

LHS RHS

5.00003079651e—06 < 1.0
0.0005% 99.9995%

11.3. VALIDATION OUTPUT 141

household_net_inflow = 25.835734
household_payment_account_day_20 = 16578.861019
household_payment_account_day_1 16553.025280

——— [lteration 560 : OK | ———

LHS RHS
1.99999340111e—-06 < 1.0
0.0002% 99.9998%
household_net_inflow = 73.080692
household_payment_account_day_20 = 17007.701652
household_payment_account_day_1 = 16934.620962

——— [Iteration 800 : OK] ——

LHS RHS
1.60000199685e—05 < 1.0
0.0016% 99.9984%
household_net_inflow = —10.519701
household_payment_account_day_20 = 17003.220363
household_payment_account_day_1 = 17013.740080
RULE 9 : abs (bank_net_inflow — bank_cash_day_20 + bank_cash_day_-1) < PRECISION

——— [lteration 80 : OK] ——

LHS RHS
9.99999429041e—-07 < 1.0
0.0001% 99.9999%
bank_net_inflow = 207.586918
bank_cash_day_20 = 7732.945957
bank_cash_day_1 = 7525.359040

—— [Iteration 320 : OK] ——

LHS RHS
1.99999885808e—06 < 1.0
0.0002% 99.9998%
bank_net_inflow = 89.702946

bank_cash_day_20 = 9181.479966

CHAPTER 11. MODEL VALIDATION

142
bank_cash_day_1 = 9091.777022
——— [lteration 560 OK] ——
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
bank_net_inflow = —19.160433
bank_cash_day_20 = 8595.186580
bank_cash_day_1 = 8614.347013
—— [lteration 800 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
bank_net_inflow = 27.395144
bank_cash_day_20 = 7811.629460
bank_cash_day_1 = 7784.234316
RULE 10 abs (gov_net_inflow — gov_payment_account_day_20

< PRECISION

——— [Ilteration 80 OK] —
LHS RHS
9.99999976159e—-07 < 1.0
0.0001% 99.9999%
gov_net_inflow = —149.997474
gov_payment_account_day_-20 = —212.079110
gov_payment_account_day_1 = —62.081635
——— [Iteration 320 OK] —
LHS RHS
7.1054273576e—15 < 1.0
0.0000% 100.0000%

gov_net_inflow
gov_payment_account_day_20
gov_payment_account_day_1

= —79.655002
—63.143590
= 16.511412

+ gov_payment_account_day_.1)

11.3. VALIDATION OUTPUT 143

—— [lteration 560 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
gov_net_inflow = 18.681237
gov_payment_account_day_20 = 606.808140
gov_payment_account_day_1 = 588.126903

——— [Iteration 800 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
gov_net_inflow = —28.055276

1382.172985
1410.228261

gov_payment_account_day_20
gov_payment_account_day_1

RULE 11 : abs (firm_payment_account_day_20 + igfirm_payment_account_day_20 +
household_payment_account_day_20 — bank_deposits) < PRECISION

——— [Iteration 80 : OK] ——

LHS RHS
6.19999882474e—05 < 1.0
0.0062% 99.9938%
firm_payment_account_day_20 = 1743.418907

0.000000
16691.764841
18435.183686

igfirm_payment_account_day_20
household_payment_account_day_20
bank_deposits

—— [Iteration 320 : OK] ——

LHS RHS
2.00000358745e—-05 < 1.0
0.0020% 99.9980%

firm_payment_account_day_20 3304.877863
igfirm_payment_account_day_20 0.000000
household_payment_account_day_20 = 16578.861019
bank_deposits 19883.738862

144

CHAPTER 11. MODEL VALIDATION

—— [lteration 560 OK] —
LHS RHS
1.09139364213e—-11 1.0
0.0000% 100.0000%
firm_payment_account_day_20 = 2330.215346
igfirm_payment_account_day_20 = 0.000000
household_payment_account_day_20 = 17007.701652
bank_deposits = 19337.916998
——— [lteration 800 OK] ——
LHS RHS
5.99999839324e—-06 1.0
0.0006% 99.9994%

firm_payment_account_day_20
igfirm_payment_account_day_20
household_payment_account_day_20

bank_deposits

RULE 12 : abs (bank_total_credit

PRECISION

= 1759.440843
= 0.000000
= 17003.220363
= 18762.661212

firm_total_debt —

——— [Ilteration 80 OK] —
LHS RHS
3.99998862122e—06 1.0
0.0004% 99.9996%
bank_total_credit = 12939.987927
firm_total_debt = 12939.987931
igfirm_total_debt = 0.000000
——— [Iteration 320 OK] —
LHS RHS
3.99998862122e—06 1.0
0.0004% 99.9996%

bank_total_credit
firm_total_debt
igfirm_total_debt

12940.009149
= 12940.009153
= 0.000000

igfirm_total_debt

)

<

11.3. VALIDATION OUTPUT

—— [lteration 560 OK] —
LHS RHS
4.99999259773e—06 < 1.0
0.0005% 99.9995%
bank_total_credit = 12980.886226
firm_total_debt = 12980.886231
igfirm_total_debt = 0.000000
——— [Iteration 800 OK] —
LHS RHS
1.99999158212e—-06 < 1.0
0.0002% 99.9998%

bank_total_credit
firm_total_debt
igfirm_total_debt

= 13194.607750
= 13194.607752
= 0.000000

RULE 13 abs (firm_net_inflow igfirm_net_inflow +
bank_net_deposit_inflow) < PRECISION
——— [Iteration 80 OK] —
LHS RHS
1.29999998819e—-05 < 1.0
0.0013% 99.9987%
firm_net_inflow = 202.854799
igfirm_net_inflow = 0.000000
household_net_inflow = 4.732117
bank_net_deposit_inflow = 207.586929
—— [lteration 320 OK] —
LHS RHS
8.00000003665e—06 < 1.0
0.0008% 99.9992%
firm_net_inflow = 63.881017
igfirm_net_inflow = 0.000000
household_net_inflow = 25.835734
bank_net_deposit_inflow = 89.716743

household_net_inflow

145

146

CHAPTER 11. MODEL VALIDATION

—— [lteration 560 OK] —
LHS RHS
2.99999989295e—-06 < 1.0
0.0003% 99.9997%
firm_net_inflow = —77.922143
igfirm_net_inflow = 0.000000
household_net_inflow = 73.080692
bank_net_deposit_inflow = —4.841448
——— [lteration 800 OK] ——
LHS RHS
2.00000001627e—06 < 1.0
0.0002% 99.9998%
firm_net_inflow = 66.101219
igfirm_net_inflow = 0.000000
household_net_inflow = —10.519701
bank_net_deposit_inflow = 55.581516

RULE 14 : abs (firm_debt_installment + igfirm_debt_installment

— bank_received_loan_installment)

< PRECISION

——— [Iteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_debt_installment = 0.000000
igfirm_debt_installment = 0.000000
bank_received_loan_installment = 0.000000
——— [Iteration 320 OK] —
LHS RHS
le—06 < 1.0
0.0001% 99.9999%
firm_debt_installment = 0.002316
igfirm_debt_installment = 0.000000

bank_received_loan_installment

= 0.002315

11.3. VALIDATION OUTPUT 147

—— [lteration 560 : OK] ——

LHS RHS
9.99999999252e—07 < 1.0
0.0001% 99.9999%
firm_debt_installment = 9.228251
igfirm_debt_installment = 0.000000
bank_received_loan_installment = 9.228252

——— [Ilteration 800 : OK | ——

LHS RHS
9.99999983264e—07 < 1.0
0.0001% 99.9999%
firm_debt_installment = 66.613417
igfirm_debt_installment = 0.000000
bank_received_loan_installment = 66.613418

RULE 15 : abs (firm_interest_payment + igfirm_interest_payment
— bank_received_interest_payment) < PRECISION

——— [Ilteration 80 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_interest_payment = 0.000000
igfirm_interest_payment = 0.000000
bank_received_interest_payment = 0.000000

——— [Iteration 320 : OK | ——

LHS RHS
6.77626357803e—-21 < 1.0
0.0000% 100.0000%
firm_interest_payment = 0.000031
igfirm_interest_payment = 0.000000
bank_received_interest_payment = 0.000031

—— [Iteration 560 : OK] ——

148

CHAPTER 11. MODEL VALIDATION

LHS RHS

1e—06 < 1.0

0.0001% 99.9999%
firm_interest_payment = 0.116475
igfirm_interest_payment = 0.000000
bank_received_interest_payment = 0.116476

——— [lteration 800 OK] ——

LHS RHS

2.00000000006e—06 < 1.0

0.0002% 99.9998%
firm_interest_payment = 0.826099
igfirm_interest_payment = 0.000000
bank_received_interest_payment = 0.826101

RULE 16 : abs (firm_dividend_payment + igfirm_dividend_payment

— household_total_dividends) < PRECISION

——— [lteration 80 OK] ——
LHS RHS
0.000389999999982 < 1.0
0.0390% 99.9610%
firm_dividend_payment = 19.350010
igfirm_dividend_payment = 0.000000
bank_dividend_payment = 0.000000
household_total_dividends = 19.350400
——— [Iteration 320 OK] —
LHS RHS
0.000202000000364 < 1.0
0.0202% 99.9798%
firm_dividend_payment = 42.916598
igfirm_dividend_payment = 0.000000
bank_dividend_payment = 0.000000
household_total_dividends = 42.916800
—— [lteration 560 OK] —

+

bank_dividend_payment

11.3. VALIDATION OUTPUT

LHS RHS

0.000103999999386 < 1.0

0.0104% 99.9896%
firm_dividend_payment = 25.830504
igfirm_dividend_payment = 0.000000
bank_dividend_payment = 0.000000
household_total_dividends = 25.830400

—— [lteration 800 OK] —

LHS RHS

0.000531000000087 < 1.0

0.0531% 99.9469%
firm_dividend_payment = 4.117869
igfirm_dividend_payment = 0.000000
bank_dividend_payment = 0.000000
household_total_dividends = 4.118400

RULE 17 : abs (firm_capital_costs

— igfirm_revenue)

——— [lteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_capital_costs = 0.000000
igfirm_revenue = 0.000000
—— [lteration 320 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_capital_costs = 0.000000
igfirm_revenue = 0.000000
—— [lteration 560 OK] —
LHS RHS

< PRECISION

149

CHAPTER 11. MODEL VALIDATION

igfirm_labour_costs)

150
0.0 < 1.0
0.0000% 100.0000%
firm_capital_costs = 0.000000
igfirm_revenue = 0.000000
——— [lteration 800 oK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_capital_costs = 0.000000
igfirm_revenue = 0.000000
RULE 18 : abs (household_.wage — firm_labour_costs —
PRECISION
——— [lteration 80 OK] —
LHS RHS
0.000274000007266 < 1.0
0.0274% 99.9726%
household_wage = 1273.394386
firm_labour_costs = 1273.394660
igfirm_labour_costs = 0.000000
——— [Iteration 320 OK] —
LHS RHS
2.7000000955e—05 < 1.0
0.0027% 99.9973%
household_wage = 1622.990863
firm_labour_costs = 1622.990836
igfirm_labour_costs = 0.000000
——— [Ilteration 560 oK]| —
LHS RHS
9.00000100046e—06 < 1.0
0.0009% 99.9991%

<

11.3. VALIDATION OUTPUT 151

household_wage 1941.965082
firm_labour_costs 1941.965073
igfirm_labour_costs = 0.000000

——— [lteration 800 : OK | ——

LHS RHS
2.00000226869e—06 < 1.0
0.0002% 99.9998%

1903.243356
1903.243358

household_wage
firm_labour_costs

igfirm_labour_costs = 0.000000
RULE 19 : abs (household_consumption_expenditure — firm_revenue) < PRECISION
—— [Ilteration 80 : OK] ——
LHS RHS
0.0667990000006 < 1.0
6.2616% 93.7384%
household_consumption_expenditure = 1505.850472
firm_revenue = 1505.783673
—— [Iteration 320 : OK] ——
LHS RHS
0.610714000002 < 1.0
37.9157% 62.0843%
household_consumption_expenditure = 1758.049286
firm_revenue = 1757.438572
—— [Iteration 560 : OK] ——
LHS RHS
0.479193999999 < 1.0
32.3956% 67.6044%
household_consumption_expenditure = 1910.539720
firm_revenue = 1910.060526

—— [Ilteration 800 : OK] ——

152 CHAPTER 11. MODEL VALIDATION

LHS RHS
0.660147000003 < 1.0
39.7644% 60.2356%
household_consumption_expenditure = 1977.906631
firm_revenue = 1977.246484
RULE 20 : abs (eurostat.gdp — eurostat_investment_value
— household_consumption_expenditure — gov_consumption_expenditure) < PRECISION

—— [Ilteration 80 : OK] ——

LHS RHS
0.0668010000006 < 1.0
6.2618% 93.7382%
eurostat_gdp = 1505.783671
eurostat_investment_value = 0.000000
household_consumption_expenditure = 1505.850472
gov_consumption_expenditure = 0.000000

——— [lteration 320 : OK | ———

LHS RHS
0.610710000002 < 1.0
37.9156% 62.0844%
eurostat_gdp = 1757.438576
eurostat_investment_value = 0.000000
household_consumption_expenditure = 1758.049286
gov_consumption_expenditure = 0.000000

——— [Ilteration 560 : OK | ——

LHS RHS
0.479192999999 < 1.0
32.3956% 67.6044%
eurostat_gdp = 1910.060527
eurostat_investment_value = 0.000000
household_consumption_expenditure = 1910.539720
gov_consumption_expenditure = 0.000000

—— [Ilteration 800 : OK] ——

11.3. VALIDATION OUTPUT

LHS RHS
0.660142000002 < 1.0
39.7642% 60.2358%

eurostat_gdp
eurostat_investment_value

household_consumption_expenditure

gov_consumption_expenditure

RULE 21 : abs (

eurostat_active_firms

firm_active

1977.246489
0.000000
1977.906631
0.000000

——— [Iteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_active_firms = 81.000000
firm_active = 80.000000
igfirm_active = 1.000000
——— [lteration 320 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_active_firms = 80.000000
firm_active = 79.000000
igfirm_active = 1.000000
—— [lteration 560 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_active_firms = 79.000000
firm_active = 78.000000
igfirm_active = 1.000000
——— [Ilteration 800 OK] —

LHS

RHS

igfirm_active)

153

< PRECISION

154 CHAPTER 11. MODEL VALIDATION
0.0 < 1.0
0.0000% 100.0000%
eurostat_active_firms = 72.000000
firm_active = 71.000000
igfirm_active = 1.000000
RULE 22 abs (eurostat_sold_quantity firm_total_sold_quantity_volume) <
PRECISION
——— [lteration 80 OK] —
LHS RHS
1.99999931283e—-06 < 1.0
0.0002% 99.9998%
eurostat_sold_quantity = 2418.120105
firm_total_sold_quantity_volume = 2418.120103
——— [lteration 320 OK] —
LHS RHS
4.54747350886e—13 < 1.0
0.0000% 100.0000%
eurostat_sold_quantity = 2940.147077
firm_total_sold_quantity_volume = 2940.147077
——— [lteration 560 OK] —
LHS RHS
1.00000079328e—06 < 1.0
0.0001% 99.9999%
eurostat_sold_quantity = 3150.449715
firm_total_sold_quantity_volume = 3150.449714
——— [Iteration 800 oK]| —
LHS RHS
2.99999874187e—06 < 1.0
0.0003% 99.9997%

11.3. VALIDATION OUTPUT 155

3022.819609
3022.819612

eurostat_sold_quantity
firm_total_sold_quantity_volume

RULE 23 : abs (eurostat_investment_value — igfirm_revenue) < PRECISION

——— [lteration 80 : OK]| ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_investment_value = 0.000000
igfirm_revenue = 0.000000

——— [Iteration 320 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_investment_value = 0.000000
igfirm_revenue = 0.000000

——— [Iteration 560 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_investment_value = 0.000000
igfirm_revenue = 0.000000

——— [Ilteration 800 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
eurostat_investment_value = 0.000000
igfirm_revenue = 0.000000
RULE 24 : abs (gov_tax_revenue — firm_tax_payment — igfirm_tax_payment

— household_tax_payment — bank_tax_payment) < PRECISION

CHAPTER 11. MODEL VALIDATION

——— [lteration 80 oK]| —
LHS RHS
0.000214000000327 < 1.0
0.0214% 99.9786%
gov_tax_revenue = 73.853949
firm_tax_payment = 10.184216
igfirm_tax_payment = 0.000000
household_tax_payment = 63.669947
bank_tax_payment = 0.000000
——— [Iteration 320 OK] —
LHS RHS
1.3999999856e—05 < 1.0
0.0014% 99.9986%
gov_tax_revenue = 108.813462
firm_tax_payment = 27.663922
igfirm_tax_payment = 0.000000
household_tax_payment 81.149552
bank_tax_payment = 0.000002
——— [Iteration 560 OK] —
LHS RHS
1.29999998575e—05 < 1.0
0.0013% 99.9987%
gov_tax_revenue = 133.665222
firm_tax_payment = 34.500250
igfirm_tax_payment = 0.000000
household_tax_payment = 99.159135
bank_tax_payment = 0.005824
——— [Ilteration 800 OK] —
LHS RHS
3.60000000855e—05 < 1.0
0.0036% 99.9964%
gov_tax_revenue = 129.342269
firm_tax_payment = 31.929109
igfirm_tax_payment = 0.000000
household_tax_payment = 97.371891

11.3. VALIDATION OUTPUT 157

bank_tax_payment = 0.041305

RULE 25 abs (gov_benefit_payment —
— household_unemployment_benefit +

gov_restitution_payment

household_restitution_payment) < PRECISION

——— [lteration 80 oK]| —
LHS RHS
6.09999994623e—05 < 1.0
0.0061% 99.9939%
gov_benefit_payment = 386.597037
gov_restitution_payment = 119.756064
household_unemployment_benefit = 386.596974
household_restitution_payment = 119.756062
—— [lteration 320 OK] —
LHS RHS
6.99999964127e—-06 < 1.0
0.0007% 99.9993%
gov_benefit_payment = 552.052624
gov_restitution_payment = 367.592169
household_unemployment_benefit = 552.052632
household_restitution_payment = 367.592170
——— [lteration 560 OK] —
LHS RHS
6.00000055329e—-06 < 1.0
0.0006% 99.9994%
gov_benefit_payment = 541.968845
gov_restitution_payment = 441.651527
household_unemployment_benefit = 541.968851
household_restitution_payment = 441.651527
——— [Iteration 800 OK] ——
LHS RHS
7.99999963874e—06 < 1.0
0.0008% 99.9992%
gov_benefit_payment = 572.877247

158 CHAPTER 11. MODEL VALIDATION
gov_restitution_payment = 430.146368
household_unemployment_benefit = 572.877250
household_restitution_payment = 430.146363

RULE 26 abs (firm_outstanding_shares + igfirm_outstanding_shares

4+ bank_outstanding_shares + gov_nr_bonds_oustanding — household_nr_assets —

ecb_nr_gov_bonds) < PRECISION

——— [lteration 80 oK]| ——
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_outstanding_shares = 1280000.000000
igfirm_outstanding_shares = 16000.000000
bank_outstanding_shares = 32000.000000
gov_nr_bonds_oustanding = 35455.000000
household_nr_assets = 1360000.000000
ecb_nr_gov_bonds = 3455.000000
——— [lteration 320 OK] ——
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_outstanding_shares = 1280000.000000
igfirm_outstanding_shares = 16000.000000
bank_outstanding_shares = 32000.000000
gov_nr_bonds_oustanding = 107733.000000
household_nr_assets = 1360000.000000
ecb_nr_gov_bonds = 75733.000000
—— [lteration 560 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%

firm_outstanding_shares
igfirm_outstanding_shares
bank_outstanding_shares
gov_nr_bonds_oustanding
household_nr_assets
ecb_nr_gov_bonds

= 1280000.000000
= 16000.000000
= 32000.000000
= 124101.000000
= 1360000.000000
= 92101.000000

11.3. VALIDATION OUTPUT 159

——— [lteration 800 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
firm_outstanding_shares = 1280000.000000
igfirm_outstanding_shares = 16000.000000

bank_outstanding_shares 32000.000000
gov_nr_bonds_oustanding 124101.000000
household_nr_assets 1360000.000000

ecb_nr_gov_bonds = 92101.000000

RULE 27 : abs (bank.cash + gov_payment_account — ecb_payment_account_banks —
ecb_payment_account_govs) < PRECISION

——— [lteration 80 : OK] ———

LHS RHS
3.12638803734e—-13 < 1.0
0.0000% 100.0000%
bank_cash = 7732.945957
gov_payment_account = —212.079110
ecb_payment_account_banks = 7732.945957
ecb_payment_account_govs = —212.079110

——— [Iteration 320 : OK | ——

LHS RHS
9.99998192697e—07 < 1.0
0.0001% 99.9999%
bank_cash = 9181.479966
gov_payment_account = —63.143590
ecb_payment_account_banks = 9181.479967
ecb_payment_account_govs = —63.143590

—— [Iteration 560 : OK] ——

LHS RHS
7.95807864051e—13 < 1.0
0.0000% 100.0000%
bank_cash = 8595.186580

gov_payment_account = 606.808140

160 CHAPTER 11. MODEL VALIDATION

ecb_payment_account_banks = 8595.186580
ecb_payment_account_govs = 606.808140

—— [Ilteration 800 : OK] ——

LHS RHS
6.8212102633e—13 < 1.0
0.0000% 100.0000%
bank_cash = 7811.629460
gov_payment_account = 1382.172985
ecb_payment_account_banks = 7811.629460
ecb_payment_account_govs = 1382.172985
RULE 28 : abs (ecb_fiat_-money — ecb_fiat_money_banks — ecb_fiat_money_govs)

< PRECISION

——— [Iteration 80 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%

7540.836535

ecb_fiat_money

ecb_fiat_money_banks = 0.000000
ecb_fiat_money_govs = 7540.836535
——— [Ilteration 320 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_fiat_money = 9143.066199
ecb_fiat_money_banks = 0.000000
ecb_fiat_money_govs = 9143.066199
—— [Iteration 560 : OK] ——
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_fiat_money = 9231.523971

ecb_fiat_money_banks = 0.000000

11.3. VALIDATION OUTPUT

ecb_fiat_money_govs

= 9231.523971

—— [lteration 800 OK] ——
LHS RHS
0.0 < 1.0
0.0000% 100.0000%

ecb_fiat_money
ecb_fiat_money_banks
ecb_fiat_money_govs

RULE 29 : abs (

ecb_fiat_money_banks

= 9231.523971
= 0.000000
= 9231.523971

— bank_ecb_debt)

——— [Iteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_fiat_money_banks = 0.000000
bank_ecb_debt = 0.000000
——— [Iteration 320 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_fiat_money_banks = 0.000000
bank_ecb_debt = 0.000000
——— [Iteration 560 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_fiat_money_banks = 0.000000
bank_ecb_debt = 0.000000
——— [Ilteration 800 OK] —
LHS RHS

< PRECISION

161

162

CHAPTER 11. MODEL VALIDATION

0.0 <
0.0000%

1.0
100.0000%

ecb_fiat_money_banks
bank_ecb_debt

= 0.000000
= 0.000000

RULE 30 : abs (

bank_ecb_interest_payment —

ecb_bank_interest

——— [lteration 80 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
bank_ecb_interest_payment = 0.000000
ecb_bank_interest = 0.000000
—— [lteration 320 oK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
bank_ecb_interest_payment = 0.000000
ecb_bank_interest = 0.000000
—— [lteration 560 OK] —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%
bank_ecb_interest_payment = 0.000000
ecb_bank_interest = 0.000000
—— [Ilteration 800 OK]| —
LHS RHS
0.0 < 1.0
0.0000% 100.0000%

bank_ecb_interest_payment
ecb_bank_interest

= 0.000000
= 0.000000

< PRECISION

11.3. VALIDATION OUTPUT 163

RULE 31 : abs (ecb_dividend_payment — gov_ecb_dividend) < PRECISION

——— [lteration 80 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_dividend_payment = 1.243000
gov_ecb_dividend = 1.243000

——— [lteration 320 : OK | ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_dividend_payment = 34.010625
gov_ecb_dividend = 34.010625

——— [lteration 560 : OK | ———

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_dividend_payment = 42.212958
gov_ecb_dividend = 42.212958

—— [Ilteration 800 : OK] ——

LHS RHS
0.0 < 1.0
0.0000% 100.0000%
ecb_dividend_payment = 42.212958
gov_ecb_dividend = 42.212958

RULE 32 : abs (bank_deposits + bank_equity + gov_payment_account + ecb_cash
— bank_total_credit — ecb_fiat_money) < PRECISION

164 CHAPTER 11.
——— [lteration 80 FAIL | ——
LHS RHS
19.969689 >= 1.0
95.2312% 4.7688%
bank_deposits = 18435.183686
bank_equity = 2237.750197
gov_payment_account = —212.079110
ecb_cash = 0.000000
bank_total_credit = 12939.987927
ecb_fiat_money = 7540.836535
—— [lteration 320 FAIL | ——
LHS RHS
24.729823 >= 1.0
96.1135% 3.8865%
bank_deposits = 19883.738862
bank_equity = 2237.750253
gov_payment_account = —63.143590
ecb_cash = 0.000000
bank_total_credit 12940.009149
ecb_fiat_money = 9143.066199
——— [Iteration 560 FAIL | ——
LHS RHS
29.529251 >= 1.0
96.7245% 3.2755%
bank_deposits = 19337.916998
bank_equity = 2238.155808
gov_payment_account = 606.808140
ecb_cash = 0.000000
bank_total_credit = 12980.886226
ecb_fiat_money = 9231.523971
——— [Iteration 800 FAIL | ——
LHS RHS
37.721527 >= 1.0
97.4175% 2.5825%

bank_deposits
bank_equity
gov_payment_account

= 18762.661212
= 2243.575997
= 1382.172985

MODEL VALIDATION

11.3. VALIDATION OUTPUT

ecb_cash
bank_total_credit
ecb_fiat_money

= 0.000000
= 13194.607750
= 9231.523971

RULE 33 abs (bank_cash 4 gov_payment_account —
—— [lteration 80 FAIL] ——
LHS RHS
19.969688 >= 1.0
95.2312% 4.7688%
bank_cash = 7732.945957
gov_payment_account = —212.079110
ecb_fiat_money_govs = 7540.836535
—— [lteration 320 FAIL | —
LHS RHS
24.729823 >= 1.0
96.1135% 3.8865%
bank_cash = 9181.479966
gov_payment_account = —63.143590
ecb_fiat_money_govs = 9143.066199
——— [Iteration 560 FAIL | ——
LHS RHS
29.529251 >= 1.0
96.7245% 3.2755%
bank_cash = 8595.186580
gov_payment_account = 606.808140
ecb_fiat_money_govs = 9231.523971
——— [Iteration 800 FAIL | ——
LHS RHS
37.721526 >= 1.0
97.4175% 2.5825%

bank_cash
gov_payment_account
ecb_fiat_money_govs

= 7811.629460
= 1382.172985
= 9231.523971

ecb_fiat_money_govs) < PRECISION

166 CHAPTER 11. MODEL VALIDATION

SUMMARY: 33 rules tested, 2 failed

Bibliography

Macedo e Silva, A., Dos Santos, C. H., 2008. The Keynesian Roots of Stock-flow Consistent
Macroeconomic Models. Levy Institute of Economics of Bard College, Working Paper no.
537, URL: http://www.levy.org/pub/wp_537.pdf.

Squazzoni, F., 2010. The impact of agent-based models in social sciences after 15 years of
incursion. History of Economic Ideas 8 (2), 197 — 233.

Wolf, S., Bouchaud, J.-P., Cecconi, F., Cincotti, S., Dawid, H., Gintis, H., van der Hoog, S.,
Jaeger, C. C., Kovalevsky, D. V., Mandel, A., Paroussos, L., 2013. Describing economic agent-
based models — Dahlem ABM documentation guidelines. Complexity Economics 2 (1).

167

