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Abstract

In this thesis we exhibit an obstruction group for the following deformation theoretic problem.
Given a diagram and a subdiagram of ringed topoi over a fixed ringed topos S and given a
deformation £ of the subdiagram, what is an obstruction group for finding a deformation of the
diagram reducing to the given deformation £ of the subdiagram? We will calculate this obstruction
group for a large variety of interesting cases as explicitly as possible. The results hold as well in

the case of diagrams and subdiagrams of schemes over a fixed scheme S.
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Introduction

Deformation theory of diagrams of schemes is the infinitesimal study of a family of diagrams in
the neighborhood of a given point. For instance, if we are given a morphism of schemes f: X — Y
considered as a diagram over a fixed parameter scheme T, we may think of f as a family of
diagrams f;: Xy — Y; for t € T. Fixing a fibre fy: X¢ — Y{ over some point 0 € T', deformation
theory of diagrams helps us to study infinitesimal properties of the family near the fibre fy such
as smoothness and properness.

Moreover, there is a connection between deformation theory of diagrams of schemes and the
moduli problem of classifying isomorphism classes of diagrams of schemes of a fixed type with
certain additional conditions. If k is a field, we may ask the question whether there is a coarse or
even a fine moduli space parametrising isomorphism classes of diagrams f: X — Y over Spec k
with prescribed conditions such as, for example, the dimension, the Euler characteristic and the
regularity of X and Y, amongst others. Deformation theory gives us some insight into properties
of the moduli space and is still very powerful concerning questions on the classification problem
even if there is no moduli space.

It turns out that deformation theoretic questions concerning diagrams of schemes over a fixed
scheme S can be answered by constructing a ringed topos to the diagram. This is the reason
why we generalize our framework by considering diagrams and subdiagrams of ringed topoi over
a fixed ringed topos S. Formally, a diagram is a functor I: €°P — RTop/S from the dual of a
finite index category € to the category of ringed topoi over S and a subdiagram is the restriction
of I to a subcategory © of €. As already mentioned, it is possible to associate a ringed topos X
to the diagram and a ringed topos Y to the subdiagram together with morphisms of ringed topoi
my: X — S and my: Y — S as shown in [Buc81, Chapitre I1.2.1.]. Let Ly,s and Ly s be the
cotangent complexes of X and Y over S, respectively, as defined in [I1I71, Equation I11.1.2.7.1].
Assume that X and Y are flat over S and let

0—>J =05 —Os—0

be an extension of Og giving rise to a closed embedding & — &’. Then there is an obstruction
in the group Ext3 (Ly /s, M3 J) whose vanishing is necessary and sufficient for the existence
of a deformation of X over &’. If the obstruction vanishes, the set of isomorphism classes of
deformations of X over &’ is a torsor under Extﬁc(LX/S, m*%J) by [II71, Théoréme II1.2.1.7.] and
the analog statements hold for ).
Fix a diagram and a subdiagram with associated ringed topoi X and ), respectively. Let us
pose the following two questions.
i) Given a deformation £ of Y over &', what is an obstruction group for the existence of a
deformation of X over &’ inducing the given deformation £ of Y?
ii) If the obstruction in this group vanishes, how many different isomorphism classes of defor-

mations of X inducing & are there?



These questions are answered for arbitrary diagrams and subdiagrams in the following result.

Theorem 2.13. There is an exact sequence of abelian groups
0 — Ext%(Cone(m), m%J) — Ext% (Lx/s, myJ) — Ext$,(Ly,s,m3J)
— Exty (Cone(m),m%J) = Exty (Lx/s, myJ) = Ext},(Ly,s, m5J)
= Ext% (Cone(m), m%J) = Ext% (Lx /s, myJ) — Ext3,(Ly,s,m3J)
— ...

where Cone(m) is the cone of a certain morphism m of complexes of Ox-modules. The morphism
T is the forgetful morphism sending a deformation of X to the induced deformation of Y. Given

a deformation £ of the subdiagram ) over ', there is an obstruction
w(&) € Ext3 (Cone(m), m%J)

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over §' reducing to £. If the obstruction w(€) is zero, then the set of isomorphism classes of

deformations of X over 8’ reducing to £ is a torsor under the image of

o Ext} (Cone(m), myJ) — Exty (Ly/s, miJ).

The above exact sequence holds as well for the case of diagrams and subdiagrams of schemes
over a fixed scheme S.

Section 1 gives some preliminaries concerning the category of ringed topoi, the cotangent
complex and deformations of ringed topoi and schemes, amongst others.

In Section 2 we will construct a left adjoint of the forgetful functor u: X — Y which we will
use in the proof of Theorem 2.13. Under weak conditions on the subdiagram ), the obstruction

group Ext3 (Cone(m), m%J) is isomorphic to
Ext% (Ln, myJ)

as shown in Theorem 2.20 where L; is the cotangent complex of a certain ring morphism
h: u='Oy — Oy as defined in Proposition 2.16.

Since Ly, is the cotangent complex of a ring morphism, it consists of free O y-modules in contrast
to Cone(m) and the obstruction group may be calculated more explicitly for many interesting cases
as done in Section 3. We will introduce several types of subdiagrams such as well-positioned and

full subdiagrams in the first two subsections. For example, if we consider the diagram

N,
h
y o h=eel

=go

Z

in the category of schemes over a fixed scheme S together with the three subdiagrams

subdiagram 1 subdiagram 2 subdiagram 3

Y Y

X /
h=gof

Z X—>2Z X




then each subdiagram is well-positioned and full.

Given a subdiagram )), we may associate its complementary subdiagram ) as defined in
Definition 3.17. We will see in Corollary 3.26 that for well-positioned and full subdiagrams ), the
obstruction group is given by

Ex%(aLh, RG(m3J))

where @: X — ) is the forgetful functor and RG is the total right derived functor of the functor
G in Lemma 3.23. Hence the obstruction group is only concentrated on the complementary
subdiagram Y of ).

Continuing the above example, if ¢ x is the structure morphism of X over S, then the respective

complementary subdiagrams and obstruction groups are given as follows.

complementary complementary complementary
subdiagram 1 subdiagram 2 subdiagram 3
Y
X A
obstruction group 1 obstruction group 2 obstruction group 3

Subsection 3.4 deals with subdiagrams obtained from the diagram by omitting a target, a
source or a bridge in which case the obstruction group in concentrated on the omitted ringed
topos. In the above example, Z is a target, X is a source and Y is a bridge of the commutative
triangle.

The other extreme of the discrete subdiagram is treated as well. Here, the subdiagram is
obtained from the diagram by keeping all ringed topoi, but by omitting all morphisms except for
the identities.

Section 4 gives an overview of all the subdiagrams of a single morphism and of a commutative
triangle of schemes together with their respective obstruction groups. We will get back some
obstruction groups already known for particular cases. Moreover, we will derive the cotangent
braid of [Buc81, Diagramme I1.2.4.3.2] by a different approach. Considering the second subdiagram
of the above example again, we will give a sufficient criterion for the obstruction group to vanish
if h: X — Z is the Albanese map of a nonsingular projective variety X and Y is the image of the
Albanese map.

Section 5 deals with deformations of diagrams and subdiagrams of Og-modules for a fixed
ringed topos §. We will see that there is a relation between the notions of “graded extensions of
diagrams of ringed topoi” and “deformations of diagrams of Og-modules” which is a generalization
of the ideas in [I1171, Chapitre IV.3.1.]. This relation allows us to answer the two analogue questions
for diagrams of Og-modules in Theorem 5.10. Basically, the answer is given by a graded analogue

of the above long exact sequence.






1 Preliminaries

All sheaves of rings on any topos and in particular the structure sheaves of all ringed topoi occuring

in the following are assumed to be associative, commutative and unitary.

1.1 The categories of topoi and ringed topoi

In this section we recall the notion of topoi and ringed topoi according to [SGA41, Exposé IV ],

where all of the following definitions can be found. Let us fix once and for all a universe U.

Definition 1.1. A category X is called a topos if there is a site C such that X is equivalent to
the category of sheaves of sets on C. A ringed topos (X, Oy) is a pair consisting of a topos X and

a sheaf of rings Ox of X, called the structure sheaf of X

Example 1.2. Let X be a topological space and let C be the small site associated to X, i.e., the
underlying category of the site C has all open subsets of X as objects and all inclusions of open
sets as morphisms. Given an open subset U of X, a family of inclusions {V; C U},¢s is a covering
family of U if and only if U = J;c; Vi. Then the topos X, the category of sheaves of sets on C,
is the category of sheaves of sets on X in the usual sense. We call X’ the associated topos of the
topological space X.

Let (X,0x) be a scheme and let X’ be the topos associated to the topological space X. We
take Oy to be the contravariant functor Ox from C to the category of sets. Then (X,Ox) is a

ringed topos.

If the structure sheaf Oy of X is clear from the context, we will omit it and just write X for
the ringed topos (X, Oy). Similarly, if A is a sheaf of abelian groups (of rings, of Oy-modules,
etc.) of X, we will usually omit the word sheaf and just write that A is an abelian group (a ring,

an Oy-module, etc.) of X.

Definition 1.3. A morphism of topoi v: X — ) of a topos X to a topos ) is a triple
v = (vs,v7 1, ) where
ve: X =Y and v Y 5 X

1

are adjoint functors such that v~! is left exact, i.e., v™! commutes with finite limits, and

o

YAB: Homy (v 'B, A) — Homy(B,v,A)

is an isomorphism of adjunction, bifunctorial in B € ob(Y) and A € ob(X'). This means that for
every morphism a: A — A’ in X and for every morphism 8: B — B’ in Y, the square

Pa B

Homy (v=1B’, A) Homy (B’ v, A)

Homx(v_lﬁ,a)l lHomy(Bﬂ)*a)

Homy (v™1B, A") e Homy (B, v.A’)

is commutative.
A morphism of ringed topoi v: (X,0x) — (I, 0y) is given by a quadruple v = (v.,v™%, ¢, )
where (v.,v71, ) is a morphism of the underlying topoi and 6: v='0y — Ox is a morphism of

sheaves of rings.



By abuse of notation we will denote a morphism of ringed topoi by v: X — ). Notice
that giving a morphism of rings 0: v=10y — Oy is equivalent to giving a morphism of rings

gad Oy — v,.Ox by the adjunction of v, and vl

Example 1.4. If f: X — Y is a continuous map of topological spaces, then as explained in
[SGA41, Exposé IV.4.1.1.], it is possible to construct a morphism of topoi between the associated
topoi X and Y of X and Y, respectively, which we denote f: X — ) by abuse of notation.

Similarly, if f: X — Y is a morphism of schemes, it is possible to construct a morphism of
ringed topoi between the associated ringed topoi X and )Y of X and Y, respectively. Again by
abuse of notation we denote it by f: X — ).

Remark 1.5. If v™1: Y — X is a functor between topoi and commutes with arbitrary colimits
and with finite limits, then v~! has a right adjoint v,: X — ) which is unique up to unique
isomorphism of functors. Then after choosing a right adjoint v,, the functor v~! may be regarded
as the inverse image functor of a morphism of topoi v: X — ).

Similarly, if v,: X — ) is a functor between topoi and commutes with arbitrary limits, then
v, has a left adjoint v=1': Y — X which is unique up to unique isomorphism. If in addition v—!
commutes with finite limits, then v, may be regarded as the direct image functor of a morphism

of topoi v: X — Y by [SGA41, Exposé 1V.3.1.3.].
Let (X,0x) be a ringed topos. Then the category Ox-mod of Oy-modules is an abelian
category having enough injectives by [Stal3, Theorem 18.9.4.]. Let

(vx,071,,0): (X,0x) = (¥, 0y)

be a morphism of ringed topoi, let further M be an Oy-module and N be an Oy-module. Then
veM is a v,Oyx-module and we define the Oy-module structure of wv.,M by the map
03d: Oy — v.0x. On the other hand, v~"!N is a v~!Oy-module which is not an Ox-module
in general. Using §: v™10y — Oy we define v*N = Ox ®y-10,, v~!N which is an Ox-module.

With these definitions we have a canonical isomorphism
Homo y-mod (v* N, M) = Homo,,-moa (IV, v+ M),

bifunctorial in M € ob(Ox-mod) and N € ob(Oy-mod) by [SGA41, Proposition IV.13.4].


http://stacks.math.columbia.edu/tag/01DU

1.2 Extensions of algebras

We will present the notion of extensions of algebras. Let T be a topos, let A and C be sheaves of
rings of 7 and let ¢: A — C be a morphism of sheaves of rings which will be fixed for the whole

section. Usually, we just speak of a morphism of rings instead of a morphism of sheaves of rings.

Definition 1.6. An A-extension of C' by I is an A-algebra E together with a surjective map of
A-algebras p: E — C whose kernel [ is an ideal of square zero. We denote such an extension by
E: (0—1I1—E C—0). Given another A-extension F: (0 — I — F % C — 0) of C by I,

an isomorphism from E to F' is given by an isomorphism of A-algebras g: ' — F' such that

0 I E—s(C 0
gl
q
0 I F C 0

is commutative. If A = C and the A-algebra structure of C' is given by the identity, we just speak

of an extension of C by I.

Since I? = 0 we may give I a structure of C-module by setting ci = ei for ¢ € C, 5 € I and
e € E such that p(e) = c.
Let I be a C-module. Let C®I be the A-algebra whose underlying abelian group is C @ I,

whose ring multiplication is given by
(Cé]) X (Cé[) — Cé] y ((01, il), (CQ,iQ)) — (0102,012'2 + Cgil)

and whose A-algebra structure is defined by (¢]0): A — C®I. The sequence

01 o1 P o

is an A-extension of C' by I where pr; is the projection to the first direct summand.

The set of isomorphism classes of A-extensions of C' by a C-module I will be denoted Exal4(C, I)
which by [II71, Chapitre I11.1.1.5.1] is an abelian group whose zero element is the class of the
above trivial extension defined by C®I.

Now let E: (0 - I — E % C — 0) be an A-extension of C and f: B — C a morphism of

A-algebras. Then there is an induced A-extension
Exf: (01— ExcB— B—=0)
of B by I and a commutative diagram

0——=I—>Ex¢cB—=B—=>0

L, )

0 1 E C 0.

Proposition 1.7. [IlI71, Chapitre I11.1.1.5.2] Let f: B — C be a morphism of A-algebras. Then
Exalys(C,I) — Exala(B,I), E— Ex f

is a well-defined group homomorphism.



1.3 The cotangent complex and its main properties

Let 2l be an abelian category. By a theorem of Dold-Kan (see for example [Wei94, Dold-Kan
Theorem 8.4.1]), the category of simplicial objects in 2 is equivalent to the category of chain
complexes C. in & with C,, = 0 for n < 0. This category is equivalent to the category of cochain
complexes C" in A with C™ = 0 for n > 0.

Let T be a topos and let ¢»: A — B be a morphism of sheaves of rings of 7. Then we may

associate the cotangent complex L, = Lp,4 of B over A which is a bounded above cochain
complex
Lpja: = (Lpja) "' = (Lpa) ™" = (Lpja) "' = ... = (Lp/a)~" = (Lpsa)°

consisting of free B-modules (Lp/4)~". Its definition can be found in [I1171, Chapitre 11.1.2.3.1]
where the cotangent complex is introduced as a simplicial object in the category of B-modules.
Using the above equivalence of categories, we will always think of it as a cochain complex.

Let v: (X,0x) — (¥,0y) be a morphism of ringed topoi with ring morphism
0: v710y — Ox. Then we define the cotangent complex of v to be Lxy=Lg=Loy/m-10y-

If Ch(2) is the category of cochain complexes of objects of 2, if L, M € ob(Ch(2)) and i € Z
and if D(2() is the derived category of 2, we define

Exty (L, M) = Homg( (L, M([i]) = Homp g (L, M[i])

to be the morphisms in D(2() from L to the complex M[i] where M[i]"* = M for alln € Z. If 2 is
the category B-mod of modules over a ring B, we will write Ext%; (—, —) instead of Ext’y (-, —).
The cotangent complex has several relations to the theory of extensions and to deformation

theory.

Theorem 1.8. The cotangent complex L, possesses the following properties.
i) There is a natural morphism of compleves L s — QlB/A which is a quasi-isomorphism if B
is the symmetric algebra of a flat A-module.

ii) Given a commutative diagram

B—— B’

I

A——A
of sheaves of rings of T, there is a natural morphism of complexes of B-modules
Lpja — Lprjar
and by adjunction a natural morphism of complexes of B'-modules
Lpja®pB" = Lpar.

If f: T — T is a morphism of topoi and A — B a morphism of sheaves of rings of T, there

is a natural isomorphism of complezes of f~' B-modules

f ' Lpsa = Ly-15/5-14,



functorial in A — B in the sense that if
f—lB N f—lB/
fflA N f—lA/

is the pullback of Square (1.1) under f, then

fﬁlLB/A - 5 Lfle/fflA
fﬁlLB//A/ i Lf—lB//f—lA/

s commutative.

1) For each B-module M, there are canonical isomorphisms
Dera (B, M) — Exty(Lp 4, M)

and
Exala(B, M) — Extp(Lp/a, M)
where Der 4 (B, M) is the group of A-derivations of B to M.

i) If A— B — C are morphisms of sheaves of rings of T, there is a distinguished triangle

Lo/

N

Lp/ja®pC Leya

in the derived category D(C) of the category of C-modules.
v) If A — B — C are morphisms of sheaves of rings of T and F € ob(D(C)), then for each

n € Z there is a natural isomorphism of groups
Ext(Lp/a @ C, F) = Extg(Lp/a, F),

functorial in F'.
vi) Let

By ——C

]

A——> By

with C = By @4 By be a cocartesian diagram of sheaves of rings of T. Let furthermore
Lp,ja ®p; C = Lgya be the natural morphisms of complexes of C-modules for j = 1,2.
Assume Tor{(By, By) = 0 for all i > 0. Then the sum morphism

(Lp,ja ®B, C)® (Lp,ja ®B, C) = Lcya

is a quasi-isomorphism.



Proof. All proofs can be found in [IlI71].
i) [I71, Proposition I1.1.2.4.4.].
ii) [II71, Equation 11.1.2.3.2] and [I1I71, Equation I1.1.2.3.5].
ii) [II71, Corollaire I11.1.2.4.3.] and [IlI71, Théoréme I11.1.2.3.].
iv) [II71, Proposition 11.2.1.2.].
)
) |

iii
v) [II71, Proposition 1.3.3.4.4.].
1171, Corollaire 11.2.2.3.].

V1

O

The following theorem will help us several times to calculate the groups Ext%(Lg /4, M) if M
is a complex of B-modules. Let 2 be an abelian category with enough injectives and let K(2()
be the category whose objects are cochain complexes of objects of 2 and whose morphisms are
morphisms of complexes up to homotopy. Let K* () the full subcategory of K(2() whose objects
are bounded below complexes. If L € ob(K(2()) and M € ob(K*(2l)), then by [Wei94, Theorem

10.7.4] there are canonical isomorphisms
Exty (L, M) = H" (RHomy (L, M))

for all n > 0. Thus in order to calculate the groups Ext;(Lp/a, M), we may use the total
right derived functor of Homp(Lp 4, —) and the following theorem which is a weak version of
[Wei94, Composition Theorem 10.8.2].

Theorem 1.9. Let A, B and € be abelian categories having enough injectives and suppose given

morphisms of triangulated categories

K+ (B).

Then there is a natural transformation
¢: R(FG) —» R(F) o R(G)

of functors from DT () to D(€). Suppose furthermore that there is a triangulated subcategory K
of K*(B) with the following properties:
i) Each object of KT (B) admits a quasi-isomorphism to an object of K.
ii) Every exact complexr L of K is F-acyclic, i.e., H'(F(L)) =0 for all i.
iii) The full subcategory of KT (L) consisting of complexes of injectives is sent to K by G.
Then ¢: R(FG) — R(F) o R(G) is an isomorphism.

10



1.4 Deformations of ringed topoi and schemes

Suppose given morphisms

X

1| j

S§—=8

of ringed topoi where f is flat, i.e., Oy is a flat f~'Og-module via the ring morphism

f~'Os — Oy of f, and j is a closed embedding induced by an extension
0—-J =05 —0Os5—0

of Og by an Og-module J.

Definition 1.10. Given the above situation, a deformation of X over S’ is a commutative diagram

X —=x

T

S—1sg5

of ringed topoi such that f’ is flat, ¢ is a closed embedding and the morphism X — X’ xgs S

induced by the above square is an isomorphism. Two deformations

X%X{ XLXZT
fJ/ lf{ and fl lfé
S— g S— g

of X over &’ are isomorphic if there is an isomorphism g: X] — X3 of ringed topoi such that

X
YN
X g X}
fl A
S/

is commutative.

In general there is an obstruction for the existence of a deformation of X over §’. Using the
cotangent complex Ly /s, it is possible to give an obstruction group and to determine all possible

isomorphism classes of deformations of X' over S'.

11



Theorem 1.11. [III71, Théoreme I11.2.1.7.] Assume given the above situation.

i) There is an obstruction for the existence of a deformation of X over S’ lying in
Ext% (Lx/s, [*T).

it) If this obstruction vanishes, then the set of isomorphism classes of deformations of X over

S’ is a torsor under

Exty (Lx/s, f*J).

i1i) The automorphism group of any fized deformation of X over 8’ is canonically isomorphic to
Ext% (Ly/s, [*T).

Remark 1.12. Suppose that X i> S is a morphism of schemes and that J is a quasi-coherent
Og-module. If X 4, S is the associated morphism of ringed topoi as in Example 1.4, then by
[[l171, Chapitre I11.2.1.9.] the ringed topos &’ ”is” a scheme, i.e., S’ is the ringed topos associated
to a scheme S’ and S 2> &' is induced from a morphism of schemes S 7y §'. Bach deformation X"

of X over 8§’ comes from a scheme X’ and the morphisms of ringed topoi

X —ts

|k

S—1>g

are the morphisms associated to morphisms

X —=x

|,

§—1sg

of schemes. In particular, if J is a quasi-coherent Og-module, then each deformation in the

category of schemes is again a scheme and Theorem 1.11 still holds for schemes.

Let 7 be a topos and let A — B I € be morphisms of sheaves of rings of 7. By Theorem

1.8.iv) these morphisms yield a distinguished triangle

Lo/

N

LB/A ®pC LC/A

in the derived category D(C). Let M be a C-module. Together with the canonical isomorphism
Extg (Lp/a®pC, M) =N Ext%(Lp/a, M) in Theorem 1.8.v), the triangle induces an exact sequence

0 — Extg (Lo p, M) — Extg(Loya, M) — Exty (L a, M)
— Ext&(Leyp, M) = Exté(Leja, M) — Extp (L a, M)
— Extg(Leyp, M) — ...

of abelian groups.

12



Proposition 1.13. [IlI71, Equation II1.1.2.5.3] Using the isomorphisms in Theorem 1.8.iii), the

above exact sequence is given by

0 — Derg(C, M) 2 Dera(C, M) 25 Der (B, M)
2, Exalp(C, M) 2 Exals (C, M) < Exala(B, M)
— Extg:(Leyp, M) — ...

whose first five morphisms are defined as follows.

(67

B
gl

considers a B-derivation from C to M as an A-derivation.
sends an A-derivation C — M to the A-derivation B — C — M.

sends an A-deriwation u: B — M to the isomorphism class of the B-extension

0 MY cgn P oo

of C by M whose B-algebra structure is given by (f| —u): B — C @ M. Here pry is the
projection to the first direct summand and the ring structure of C' ® M is the ring structure
of the trivial C-algebra COM as defined in Subsection 1.2.

considers a B-extension of C by M as an A-extension.

is the group homomorphism
Exals(C,M) — Exals(B,M), E— Ex f

in Proposition 1.7.
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1.5 Diagrams of ringed topoi and schemes
Now we come to the notion of diagrams of ringed topoi and their associated topoi.

Definition 1.14. Let € be a finite category, i.e., the morphisms of € and thereby the objects
of € are finite sets. Let further S be a ringed topos. A diagram of ringed topoi over S of type
¢ is a contravariant functor I from € to the category RTop/S of ringed topoi over S, denoted
I:C°P — RTop/S.

Thus for any ¢ € ob(€) there is a ringed topos X, = I(c) over S and for any o € Home/(cq, ¢2)
there is an S-morphism f, = I(a): X., — X, of ringed topoi such that for any composition
= g c3 in € we have fgo = fo 0 fg: Xy = Xy = Aoy

Let I: €°P — R%op/S be a diagram. Following [Buc81, Chapitre 11.2.1.5], we may associate a
category X7 to I.

An object F of X consists of the following data.

i) For any ¢ € ob(€) there is a sheaf F, € ob(X,).

ii) For any a € Homg(c1, ¢a) yielding the morphism f,: X., — X, of ringed topoi, there is a
morphism of sheaves F,: f'F., — Fe, such that for any composition ¢; — ¢, LN c3 in €,

the diagram

f5 ' Fa

foaFey = f5 f1 Fey f5' Fe,

= A (1.2)

Fes

is commutative.
A morphism [ € Homy, (F, G) from an object F to an object G of X} is given, for any ¢ € ob(€),
by a morphism of sheaves [.: F. — G. of X, such that for any a € Home(c1, c2), the diagram

F
—1 o
.fa ‘Fcl > ]:02

fallcli llcz

is commutative.

Notice that giving a morphism of sheaves F: f51F., — Fe, of X, is equivalent to giving a
morphism F24: F.. — fo.Fe, of X., by the adjunction of f;! and f,«, since f, is a morphism of
ringed topoi.

Now by [11172, Chapitre V1.5.2.,V1.5.3.] we have the following result.

Proposition 1.15. For any diagram I: €°P — RTop/S the category X; is a topos, called the

associated topos to I.

We make X7 into a ringed topos by taking the structure sheaf Oy, to be the collection of
all structure sheaves Oy, for ¢ € ob(€) together with the ring morphisms 6, : f(;l(?XCl — Ox,,
belonging to the morphism of ringed topoi fo: X., — X, for @ € Homg(cy,c2). By abuse of

notation we also call (X7, Oy,) a diagram.

14



Notation 1.16. For any diagram I: €°P — RTop/S, the ringed topoi X, for ¢ € ob(€) are called
the levels of X;. If | € Homy, (F,G), then we say that [ is given levelwise by the morphisms
le: Fo — G, for all ¢ € ob(€).

By [Buc81, Chapitre I1.2.1.6] the topos X7 is an S-topos.

Lemma 1.17. For any diagram I: €°P — RTop /S, there is a canonical morphism of ringed topoi
m: X — S.

Let us describe the functors m,: X1 — S and m~': S — A7 as well as the ring morphism
0: m 10s — Ox,:

Let t.: X, — S be the structure morphisms of the diagram for ¢ € ob(€). If F € ob(X7), we
define m,F = Liiltc*fc to be the limit of the system consisting of the sheaves t...F. € ob(S) and
the sheaf morphisms t., . F24: toxFoy = teys fasFes = teguFe, for a € Home (cy, ).

For G € ob(8S) let m~1G € ob(X;) be the collection of all ¢S G € ob(X,) with identity as sheaf
morphisms.

The ring morphism 6: m~'0s — Oy, is given, for ¢ € ob(€), by the ring morphisms
0.:t7'0s — Oy, belonging to t.. In particular, if each t.: X. — S is flat, it follows that

m: Xr — S is flat as well.

Lemma 1.18. Let I: €°P — RTop/S be a diagram and let j: S — S’ be a closed embedding of

ringed topoi induced by an extension
0—)]%05!%05—)0
of Os. Let t.: X, — S be flat for every c € ob(€). Then giving a deformation

XI*z>XI/

mi | im' (1.3)

S—1sg

of X1 over 8’ is equivalent to giving, for each ¢ € ob(€), a deformation

i
X, ——= X!

l | l (1.4)

S—lsg

of X, over 8’ together with, for each o € Home(c1,c2), a morphism of ringed topoi fl,: X, — X/,
such that

X, 2 X,
NS
tes Xey — Xél te, (1'5)
-,
s—1 o g

18 commutative.
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Proof. Giving Diagram (1.3) where X7 is a deformation of X7 is equivalent to giving a commutative

diagram

0 m*J Ox; Ox, 0

]

0—=m 17 —=m 10y —>m 105 —=0

whose rows are m~!(Os-extensions, whose right and middle vertical morphisms are flat and whose
square of rings is cocartesian (see [[1171, Diagramme I11.2.1.6.2]). By definition of the ringed topos

X5 and the morphism m: X; — S, this is equivalent to giving, for each ¢ € ob(€), a commutative

diagram
0 T Ox: Ox, 0
B
0 t;lj t;los/ Htglo‘s —0

whose rows are t_!Og-extensions, whose right and middle vertical morphisms are flat and whose
square of rings is cocartesian, together with, for each o« € Home(c1,c2), a morphism
6‘;: f(;IOXcll — OXC/Q such that

0— fa't5,J — fa'Ox;) — fi'Ox,, —0

A AN

0 5T — Ox; ’ Ox,,
/OCI

| c2
/

T / %T Jo, eczT
/ /
t2105*>0

t;los/

0——t'J

is commutative. But giving these data is equivalent to giving Diagrams (1.4) and (1.5) where X

is a deformation of X,. O

It follows that deformation theory of diagrams of ringed topoi is accessible to calculations using
Theorem 1.11 where we have to take the cotangent complex Ly, s = LOX, /m-10s Of my. From

Remark 1.12 we get the analogue result for schemes.

Corollary 1.19. In the situation of the above lemma, assume that the diagram consists of
schemes and morphisms of schemes over a fixed scheme S. Let furthermore J be a quasi-coherent
Og-module. Then each deformation of the diagram over S’ is a diagram consisting of schemes

and morphisms of schemes over S’.
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2 Deformations of diagrams and subdiagrams of ringed topoi

We fix the following notation.

General assumption 2.1. Let I: €°°? — RTop/S be a diagram with associated ringed topos
(X, Ox) in the sense of Proposition 1.15 where the index I is omitted for simplicity. Let further ©
be a subcategory of € and let J: D°P — RTop/S be the diagram obtained by restricting I to D°P.
Let (¥, Oy) be the ringed topos associated to J. By abuse of notation we call (X, Oy) the diagram
and (), Oy) the subdiagram (with respect to I and J, respectively). For ¢ € ob(€) let t.: X, - S
be the structure morphisms with ring morphisms 6.: t;10s — Ox,. For a € Homg(cy,c2)
let 0o: fo 10;(61 — Oux,, be the ring morphisms belonging to the morphism of ringed topoi
far Xy = Xey. Let my: & - S and my: Y — S be the morphisms of ringed topoi by Lemma
1.17 with ring morphisms 6y : m;(l(’)g — Ox and 60y: m;,lOg — Oy, respectively. Assume that
all structure morphisms ¢.: X, — S are flat for ¢ € ob(€). Let further

0—-J =05 —0Os—0
be an extension of Og by an Og-module J.

We will answer the following two questions on deformation theory of diagrams of ringed topoi:
i) Given a deformation £ of the subdiagram ), what is an obstruction group for the existence
of a deformation of the diagram X inducing the given deformation & of )7
ii) If the obstruction in this group vanishes, how many different isomorphism classes of defor-
mations of X inducing & are there?
For this purpose we construct a left adjoint to the forgetful functor in Subsection 2.1. This
construction will be applied, amongst others, to the forgetful functor Ox-mod — Oy-mod from
the category of Ox-modules to the category of Oy-modules in order to get a long exact sequence
of abelian groups in Theorem 2.13 where we will read off the answers to the above two questions

in Subsection 2.2. Since we do not know the cone of m in the obstruction group
Ext? (Cone(m), m%J)

in general, we will derive, under some mild conditions on the subdiagram, another long exact

sequence in Theorem 2.20 in Subsection 2.3. The complex Lj occurring in the obstruction group
Ext} (Ln, m%J)

there has the advantage of being the cotangent complex of a ring morphism A as defined in
Proposition 2.16. In particular, Lj, consists of free O x-modules in contrast to Cone(m) which will
help us to determine the obstruction group more explicitly in Section 3.

Finally Subsection 2.4 deals with the relationship between a diagram X, a subdiagram ) of
X and a subdiagram Z of ). We will see in Proposition 2.22 that there is a braid containing the
long exact sequences for the pairs (X,)), (X, Z) and (), 2).
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2.1 The construction of a left adjoint to the forgetful functor

Assume given the situation of General assumption 2.1. Let a € Homg(c,cz) yielding an
S-morphism of ringed topoi fo: A, — A;,. If A, is a sheaf of tc_ll(’)g—algebras, then applying
fo ! to the given ring morphism

t.'0s — A,

and using fa_ltc_ll = tc_zl we get a ring morphism tC_ZIOS — foYA.,, thus f,1A., is a sheaf of
tc_zl(’)g-algebras.

Similarly, if R is a sheaf of rings of X and if M., is a module or a complex of modules over
Re,, then f 1M, is a module or a complex of modules over f;!R.,, respectively. Using the given

ring morphism Ry : f 'Re, — Re,, We see that
f(;lMCI ®f(:1Rcl RCz

is a module or a complex of modules over R.,. In the special case R = Oy we write fXM,., for
this module or complex of modules, respectively.
Let 2y be one of the following categories:
i) The category X,
ii) the category of sheaves of m}lOS—algebras of X,
iii) the category of R-modules for a given sheaf of rings R of X" or
iv) the category of complexes of R-modules for a given sheaf of rings R of X.
In any of these four cases an object A of Ay is a collection of objects A. € ob(2.) for ¢ € ob(€)
where (. is
i) the category X,
ii) the category of sheaves of t_ !Og-algebras of X,
iii) the category of R.-modules for the given sheaf of rings R. of X, or
iv) the category of complexes of R.-modules for the given sheaf of rings R. of X, respectively,
together with, for each & € Homg(c1,c2), a morphism A,: fi 1A, — A., in 2., such that for
any composition ¢; —» ¢y LR c3 in €, the triangle

f5 ' Aa
fﬁa}Acl fﬁ 1f 1A61 ’

\/

A morphism [ € Homg, (4, B) from an object A to an object B of 2y is given, for any

——f; A,

is commutative in 2.

¢ € ob(€), by a morphism [l.: A, — B, in 2. such that for any o € Homg(c1, ¢2), the diagram

A
—1 a
fa ACl > ACz

fall‘lll llcz

B
-1 o
fa Bcl BC2

is commutative in 2., .
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If 2y is the category of R-modules or the category of complexes of R-modules, we must replace
fotA, by fi1A., ®;-1g,, Re, and similarly for fa'Beys fgaAc, and f5'Ac,. In order to treat
the four cases simultaneously, we will keep on writing f~! by abuse of notation.

The category 2y is defined analogously, we restrict to those categories 2. such that ¢ € ob(D)

and to all morphisms a € Homg (c1, ¢3). Let
u: le — Qly

be the forgetful functor which maps an object A € ob(2(x) to the collection of all A. € ob(2.) such
that ¢ € ob(D) together with all morphisms A, : f, ' A, — A, in 2., whenever o € Homg (c1, c2).

The aim of this subsection is to construct a left adjoint
-1 Ay — Ax

of u. The construction depends on the index categories €°P and ®°P. For simplicity we omit the
brackets and write uA for the image of A € ob(2(x) under u.

Notice that if Ay = X and Ay = Y, then since v commutes with arbitrary limits, it has a left
adjoint by [SGA41, Exposé IV.3.1.3.] which is unique up to unique isomorphism. Nevertheless,
in any of the above four cases for the category 2y, we will give an explicit construction of u~!
which we will use for all following considerations, in particular for the explicit calculations of the

obstruction group.

Proposition 2.2. The functor u=t: 2y — Ay in Proposition 2.11 is left adjoint to the forgetful
functor u: Ay — Ay, i.e., for every A € ob(Ax) and every B € ob(Uy), there is a natural

isomorphism of adjunction
Homg, (u™' B, A) = Homy,, (B, uA),
bifunctorial in B and A.

The rest of this subsection is devoted to construct the functor v~! in Proposition 2.11 and to

give the proof of the above proposition on page 26.

Definition 2.3. Let ¢ € ob(€). We define the category ¢ as follows.
i) The objects of ¢ are morphisms v: d — ¢ in € such that d € ob(D).

ii) The morphisms from an object v1: di — ¢ to an object y2: do — ¢ of ¢ are those morphisms

p: dy — dg in ® such that

dy ———=d
is commutative in €.

Notice that ¢ is a comma category (see for example [Mac71, Chapter I11.6.]). If i: © — € is the
inclusion functor, then ¢ is the category (i | ¢) of objects i-over ¢, but we will keep on writing ¢

for this category.
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Now fix B € ob(2y) and let ¢ € ob(€). Then for any (y:d — c¢) € ob(c) there is a
morphism of ringed topoi f,: X, — Xy and we get an object f;le of 2A.. For every
¢ € Hom,((y1: di = ¢), (72 d2 — ¢)) we have a commutative diagram

Xe
I
Xy ~—5 A,

of ringed topoi over S. Applying f;! to the given morphism B, : f'Bg, — Ba, in 2a,, we get a
morphism

f2'Be: [, Bay, = f5,' Ba,

inA,.. If (’yl: di — c) &(72: dy — c) i)(vg: ds — c) is a composition in ¢, then

15 By
f' By, = f:.'Ba,
fw% /41/)
[ B,
is commutative in 2. because
Xe
Fas f”l Fn
f Ju
X, i X, X,

Fye

is commutative by definition.

Definition 2.4. For ¢ € ob(€) and B € ob(2y) we define

(u'B)e= lim f7'By
Y€Eob(c)
to be the colimit in 2. of the system consisting of all f.~ LB, for (7: d— c) € ob(c¢) together with
the morphisms f1,' By : f5.'Ba, — f;,' Ba, for ¢ € Hom((71: di — ¢), (721 d2 = ¢)).

Remark 2.5. Notice that in each of the four cases considered, the colimit always exists: In the
category X, each finite colimit exists by [SGA41, Théoréme 11.4.1.].

If A is an associative, commutative and unitary ring in the usual sense, then the category
of associative, commutative and unitary A-algebras has all finite coproducts and all coequalizers
by [Eis95, Proposition A6.7.], and since each finite colimit is the coequalizer of two morphisms
between finite coproducts by [Eis95, Proposition A6.1.], it follows that the category of A-algebras
has all finite colimits. Now if we consider the category of sheaves of ¢, 1Og-algebras on the ringed
topos X., we may take the colimit of the respective system as a presheaf of t_!Og-algebras and

its sheafification is the colimit in the category of sheaves of ¢t !Og-algebras of X..
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Finally in the category of R.-modules and in the category of complexes of R.-modules, each
finite colimit exists by [Stal3, Lemma 17.14.2.]. Notice that if ¢ is the empty category, then
(u~!B). is the initial object of A, i.e., the empty set in the category X, the algebra t.'Os in
the category of t 'Ogs-algebras of X, the zero module in the category of R.-modules and the zero

complex in the category of complexes of R.-modules.

Example 2.6. Let 2y be the category of m/;lOg—algebras of X and thus 2y the category of
m;,lOS—algebras of ). Consider the example

diagram in RTop/S subdiagram in RTop/S

S|

Xo X
with no other morphisms involved except for the identities and denote the objects of ) as
(]-'o,}'l,]-"g,f_l]-'l — ]-'0) where F; is a sheaf of X;. Let

go

4
Oy :(OXO, Ox,,0x,, [ Ox, RN OXo)

be the structure sheaf of ) which is an object of 25, by the ring morphism 6y : mJ_,IOS — Oy
given by

_ _ _ _1.,— (00,01,0 _ 6
(t5 08,17 05,151 05, f 17105 L 15105) L2222 (04 O, Oy, 7102, 25 O).

We will calculate the object (u=1Oy). of 2., the category of t;1Os-algebras of X,, for each
c=0,1,2.
By definition (u~'Qy)o is the colimit in the category of ¢, ' Os-algebras of Xy of the system

f_loxl h_10X2,

Oux,

that is, (u"1O0y)g = h 104, ®y=10, Ox,. Similarly, (u=1Oy); is the colimit in the category of
t7 ' Ogs-algebras of &; of the system

9_10X2 OXl?

that is, (u"10y); = g7 104, ®-105 Ox,. Finally, (u=1Oy)s is the colimit in the category of
t; 'Os-algebras of Xy of the system consisting only of O,, whence (u='0y)s = Ox,.

Let us proceed with the construction of u=1. On each level X, for ¢ € ob(€), we have defined an
object (u™!B). of A.. In order to get a well defined object u~! B of A, we have to define, for each
a € Homg(cq, ¢2), a morphism (u™1B),: £ (u™1B),, — (u=!B)., in 2., subject to the compat-
ibility condition (1.2) on page 14.
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So let v € Home (e, ¢2). For any (v: d — c1) € ob(cy) let pi: f7'Ba — ligv@b(ﬂ) f 1 Bq be
-1

the natural morphisms. Then by the universal property of hﬂyéob (e1) f

o Iy 1B, there is a unique

morphism
pla): lim  fI'f7'Ba = fit lim f'Ba
y€ob(c1) y€ob(e1)
in 2, such that

fo f B d fa £ By

\L lfa lpFlY

: —1p-1 p(a)  p—17; -1
ooy o o Be—— o lim o) fy Ba

is commutative for every (y:d — ¢1) € ob(ci) where the left vertical maps are the natural
morphisms. Since f, is a morphism of ringed topoi, we have that f;! is left adjoint to fau,
hence f, ! commutes with arbitrary colimits by [Stal3, Lemma 4.23.3.]. It follows that p(a) is
an isomorphism. Now notice that each f;! Iy !B, is part of the system in 2., defined by co,
so there are natural morphisms f;'f;'Bq — ligéeOb(@ f5 'Bg. By the universal property of

. 71 71 . . .
hﬁ)ﬁq{@b (e0) Jo f " Ba there is a unique morphism

gla): lim fIUf7'Be - lim fi7'Bg

~€ob(c1) d€ob(c2)
in A, such that
[ By < f 7 Ba < [ Ba
ifalp? i l (2.1)
Fo g e B iy S Bt S

commutes for every (fy: d— cl) € ob(c;) where the middle and right vertical maps are the natural

morphisms.
Definition 2.7. For oo € Home(c1,¢2) and B € ob(y) we define

(W 'B)a: ;' (W Bl = f3' lim f;'Ba— lm [y By (u'B).,
~y€ob(c1) d€ob(cz)

to be the composition of the two lower horizontal morphisms ¢(a) o p(a)~! in 2., .

Lemma 2.8. Let B € ob(2ly). The collection u='B of all objects (u=1B). € ob(.) for ¢ € ob(€)
together with the morphisms (W™ 1B)y: fol(u™1B)e, — (u™1B),, for a € Homg(c1,ca) is a well-
defined object of Ay .

Proof. Let ¢1 = ¢ g c3 be a composition in €. We have to show that

_ _ S5t (W B)a
fﬁal(uilB)q :fg 1f(;1(u71B)C1 d

m (w'B)s

(u™'B).

fﬂ_l(uilB)Cz

3
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is commutative in 2.,. By definition of all the occurring morphisms, the above diagram is com-

mutative if and only if

£5 ' p(a)™t £5 (@)

—1p-1y; -1 —1y —1p-1 —1y —1
o fa hﬂw@b(g)fv Ba fs hﬂyeob(g)fa £y Ba fs hﬂa@b(cj)fé Ba

J{p(ﬂ)l

p(Ba) 00 ob(e) f5'f5 ' Ba

J{q(ﬁ)

a(Ba) : —1
h%InEEOb(ci) f5 By

. —1p-1p-1
hﬂ’YEOb(ﬂ) f,@ foc f'y Bd
is commutative. For any (y:d — ¢1) € ob(cy) let

S Ba = lm f7'Bg o and  fitfoN S Ba— lim f5tfot S Ba
e€ob(csz) ~y€ob(c1)

be the natural morphisms. Now by construction both of the above morphisms in 2., from

@veob(g) fﬁ_lfglf,y’le to liﬂanb(Cj) 1B, form a commutative triangle

f5 f 7 Ba

T

. —1p,-1,p-1 i —1
h—I)HWEOb(ﬂ) fﬁ fa fw By hﬂf@b(gﬁ) Je Ba

for every (7: d— cl) € ob(cy), thus they are equal by the universal property of the colimit

lig  f5' £ f5 " Ba.

y€ob(c1)

Example 2.9. Let us continue Example 2.6 with the diagrams

diagram in RTop/S subdiagram in RToep/S
Xl Xl
h=go f
Xo — Xy Xo Ao

with no other morphisms involved except for the identities. We have already seen that
(’u_loy)o = h_10X2 ®t5108 Oux, , (u_10y>1 = g_10)(2 ®t;1(95 Ox, and (U_loy)z = Ou,.

Remember that f~1¢;'0s = t;'0s, g7 't5'O0s = t;'Os and h='t;'Os = t;'Os by definition
of m3'Os in Lemma 1.17. The morphism f~!(u"'0y); — (u='Oy)o is given by

_ _ ~ 7 — _ id®(9f _
f 1(9 'Ox, Oir10g O?ﬁ) = h~ 'O, D10 F710x — W Ox, D10 Ox,
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the morphism ¢~ (u~'Oy)s — (u=*Oy); is given by
_ -®1 _
g 102(2 —g 1(9;(2 ®t;105 Ox,
and the morphism h=1(u=10y)2 — (u=10y)o is given by
W 0x, =55 B0, @41, Oy
We see that h=1(u=1O0y)s — (u=10y)g is equal to the composition
W (w1 Oy)a = g7 (w Oy)a = 1w Oy — (u™'Oy)o.

We come back to the construction of the functor u~!. So far we have defined an association
B +— u™1B from ob(2ly) to ob(™Ax). Now fix a morphism I: B — B in Ay. Let ¢ € ob(€) and
(’y: d— c) € ob(c¢). Then the given morphism

ld: Bd*)Ed

in 24 defines a morphism f;lld: f;le — f;lﬁd in 2. If o € Home((y1: di — ¢), (y2: d2 — ),

then there is a commutative diagram

-1p By B
fcp dy > Ddy

fglldll lldz

1B B, _
fga Bdl — Bd2

in 24, by definition of I: B — B. Applying f.! we get a commutative diagram

Y2
—1 f"TZIB"’ —1
f'yl Bd1 f'yg de
Sl l lf;;z@
_ f3 Bo _
f%lel f“/ledz
(u'B).

in 2A. where the diagonal morphisms are the natural ones. By the universal property of (u=!B).
there is a unique morphism
(™ )e: (u'B)e = (u'B).

in A, such that

[ ' Ba f7'Ba

| |

. -1 (uill)c . -1
h—n;l’yeob(g) fy Ba hg'yeob(g) £y Ba

fytla

commutes for every (7: d— c) € ob(c) where the vertical morphisms are the natural ones.
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Lemma 2.10. Let l: B — B be a morphism in 2Ay. Then the collection of all morphisms (u='1),
in 2. for ¢ € ob(€) defines a morphism u=ll: u™'B = u 1B in Ay.

Proof. If oo € Home(cq, ¢2) we have to show that

1 -1 (u™'B)a : -1
fa h—n>qyeob(g)fv By hﬂaeob(g) fs " Ba
fal(ull)cli i(“ll)CQ
1y 1 (W 'B)a . 15
fo i ey f7 B M0 ey f5 B
is commutative in .. By definition both morphisms from f, 111_1)117601)(61) f7'Ba to

@5€Ob(2) f({lgd fit into a commutative triangle

fa'f7 Ba

fa'rl \

—17: 1 . 15
fa hﬂveob(g) £y Ba hﬂ(seob(@)ﬁS Ba

for every (v: d — ¢1) € ob(cy) where pJ: f7'Bg — @veob(@) f7 1By is the natural morphism

—14-1 ; 15 "
and fo " f; Bqg — h_H>16€Ob(072) fs5 “Ba is the composition of

fat i e £ fy Ba = £ £ Ba
and the natural morphism f;! Iy 'By — @5@1; (c2) fs 'By. Thus by the universal property of
: “1g-1p, ~ g—17: -1
hglveob(cil) Jfo [y Ba= fo H%ob(g) [y " Ba they are equal. O

Proposition 2.11. There is a functor u=': 2y — Ax mapping an object B of Ay to the object
u~'B of Ax as defined in Lemma 2.8 and mapping a morphism |: B — B in Ay to the morphism
uH:u'B = u'B in Ay as defined in Lemma 2.10.

Proof. If I: B — B is the identity in 2y, then u='l: u=!B — u~ !B is the identity in Axy.
Moreover, if

BLBL B
is a composition in 2y, we get, for every fixed ¢ € ob(€) and for every (fy: d — c) € ob(e), a

diagram

it f ka R

[ Ba f7'By £ By

| | |

: —1 (uill)c : —17 (uilk)c . 1D
Mmoo B M cob(e fr Ba ————1lim__ . fy" Ba
(u™t (kD))e
in %A, where the vertical morphisms are the natural ones. By the universal property of

H&“&/EOb(g) f;le, both morphisms from li—n)l"/EOb(g) f;le to thEOb(g) fA,_le are equal. Con-

sequently, the composition is sent to
uk

S _ .
uwH(kD): u'B L Ly B B

and so u~': 2y — Ay is indeed a functor. O
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Lemma 2.12. For every object B of 2y, there is a natural morphism
nf:B—w 'B

in Ay, functorial in B. Similarly, for every object A of Ux, there is a natural morphism
mA:uuAd = A

in Ay, functorial in A. The compositions

-1

u B
tvu'B——u'B (2.3)

uA A —-1,B
uA — wutud s uA and w Bl um
are the identities for every object A of Ay and every object B of Ay, respectively. In particular,

the functor u™! is left adjoint to w as claimed in Proposition 2.2.

Proof. We will divide the proof in four steps. In the first two steps we define the morphisms n?

and m* and in the last two steps we verify that the compositions

1

uA u~ B
— m —
w B — sy B

n

A —1_B
uAd 22— yutud 2 uA and w Byt

are the identities.

Step 1: Notice that for every d € ob(®), the identity d — d is an object of d. Hence for every
B € ob(2y) and d € ob(D) there is a natural morphism nZ: By — hﬂy@b(g) [ !By in 24 where
we write v: d’ — d in order to avoid confusion with the fixed d. If @ € Homg(d1,ds), then we

have a diagram

B,
f(;lel de

falnfli \ J{m%

11 1 (u_lB)a . -1
f()c hﬂ'yéob(dil) f’y Bd/ —>h—r>n6eob(@) f§ Bd'

in 24, whose diagonal morphism is the natural one. The right upper triangle is commutative by
definition of @kob(@) f(;l By and the left lower triangle is commutative by definition of (u=!B),.
Hence the square is commutative as well and the collection of all nZ for d € ob(®) defines a natural
morphism

n?:B—uw'B
in 2Ay. The commutativity of Diagram (2.2) on page 24 in the special case v = id in the upper
horizontal morphism shows that n? is functorial in B.

Step 2: If A € ob(™Ax) and ¢ € ob(€), then for every ¢ € Hom.((v1: di — ¢), (v2: d2 — ¢))

there is a commutative square

—1

-1 —1p-1 Fia Ae -1
[ Aa = 15, fcp Ad, fre Ady

A’Yl A’YQ
Ac
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in .. Consequently, by the universal property of hﬂy@b © Iy 1A, there is a unique morphism

ma: hﬂyeob(c) fi1Aq — Ac in 2. such that

ftAq

| T »

; 1
. con(e Fv~Ad —a A
is commutative for every (7: d— c) € ob(c). If @ € Home(c1, ¢2), we have a diagram

(™t uA)y

11 1
fa hﬂ’YEOb(ﬂ) f'y Ad

-1, A
i mcll

foatAc,

e

. -1
hﬂaeob(g) fs A

A
\LmC2

Aa
A,

in 2., both of its morphisms from f;* @yeob (&) [t Aq to A, fit into a commutative square

F T A i fartAg

falplyi lAav

fat h_n},yEOb(ﬂ) f»?lAd A,

2

for every (y:d — ¢1) € ob(c1) where p]: [t A — ligve()b(ﬂ) f;71Aq is the natural morphism.

Hence both morphisms from f ! ligveob (e) f71Ag to A., are equal by the universal property of
e

~

it B obien) f71Ag. Thus the collection of all mZ for ¢ € ob(€) defines a natural morphism
ob(er

mA:uuAd = A
in 2Ay. IfI: A — A is a morphism in Ay, then for every c € ob(€) the diagram

(u™tul), —

. -1 : -1
h—n}"/EOb(Q) f7 Ad h—n>1“/€0b(£) f7 Aa
lmA \LmA
lo _
A, A,

commutes by the universal property of lig%ob © Iy 1A,. Tt follows that m4 is functorial in A.

A

Step 3: Given A € ob(2y), we may apply u to the morphism m*: u='uAd — A in Ay to get

a morphism um?: uu"'uA — uA in Ay. The object uA € ob(RAy) yields a morphism
' ud — wutuA

in /Ay and the composition

uA A
uwd 2 wu ud 2 uA

is the identity since by definition it is levelwise given, for d € ob(®), by the composition

nuA mA
Ad L) llg'l f,y_lAd/ —d> Ad
y€ob(d)
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which is the identity as follows from Triangle (2.4) for v =id: d — d.

Step 4: Similarly, given B € ob(2ly), we may apply u~! to the morphism n?: B — vu~'B
in 2y to get a morphism u !B M) uluu~1B in 2Ay. The object u~!B € ob(Ay) yields a
morphism

1 L B
m* B:utwu'B—>u !B

in Ay and it remains to show that the composition

w—1lnB mu 1B
v !By tvu' B E—— u'B
is the identity. For ¢ € ob(€) the composition is given by
—1 (u™'n"P), . “1/ -1 my B —1
(u'B)g —— lim fs (" B)gy ———— (u " B).. (2.5)

(6:d"—c)€ob(c)

Now fix (y: d — ¢) € ob(c). There is a diagram

-1 —1(,,—1 -
f5 " Ba P [ (w™ ' B)a =y (u™'B),
l i \Lid
1 @ 'n%e s —1¢, -1 my 1
(u_ B)C - h—I)n(6: d’—c)€ob(c) f§ (U B)d, - (’LL_ B)C

all of whose three nameless morphisms are the respective natural ones. The left hand square is
commutative by definition of n?, the right hand square is commutative as follows from Triangle
(2.4) for A ="' B and the top part is commutative by definition of (u~!B),. Hence the identity

on (u~!B), and the morphism in Equation (2.5) fit into a commutative diagram

[ By

TN

(u™1B),. (u='B),

for every (y: d — ¢) € ob(c), so they are equal by the universal property of the colimit (u~!B)..

Finally, it follows that u~" is left adjoint to u because by [Mac71, Theorem IV.1.2.], it suffices
to give the above adjunction morphisms such that the compositions in Equation (2.3) are the
identities. O
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2.2 The long exact sequence associated to the diagram and its subdia-

gram

We keep the notations of General assumption 2.1. Let v: Ox-mod — Oy-mod be the forgetful
functor from the category of Ox-modules to the category of Oy-modules. By Proposition 2.2
there is a left adjoint functor

v™: Oy-mod — Oyx-mod

of v and an isomorphism of adjunction
Homo -mod (v* L, M) = Homo,,-mod (L, v M) (2.6)

for M € ob(Ox-mod) and L € ob(Oy-mod). If L € ob(Oy-mod), then v*L is given levelwise, for
¢ € ob(€), by

(v*L). = limy (leLd D10, Ox,)
v€ob(c)

where the colimit is taken in the category Ox, -mod. By abuse of notation we denote by v
and v* the functors between the categories Ch(X) and Ch()) of complexes of Ox-modules and
Oy-modules, respectively, as well. Remember that vLy,s = Ly,s because by Corollary A.3
the complex Ly /s is given levelwise by the collection of all complexes of Ox,-modules Ly, s for
¢ € ob(€) together with the natural morphisms f;Lx, /s = Lx,, s for a € Home(cy, c2).

Now we may state the long exact sequence for the diagram and its subdiagram.

Theorem 2.13. Assume given the situation of General assumption 2.1. Let
m: ’U*’ULx/S = U*Ly/s — Lx/g

be the adjunction morphism in Lemma 2.12 of the cotangent compler Ly ;s and let Cone(m) be

the cone of m. Then the distinguished triangle

Cone(m)

N

in the derived category D(X) yields a long exact sequence

m

’U*Ly/g LX/S

0 — Ext% (Cone(m), m%J) — Ext% (Lx/s, myJ) — Ext$(Ly /s, m3J)
— Extly (Cone(m),m%J) % Exty (Lx/s, m5%J) = Ext),(Ly,s,m3J)
= Ext% (Cone(m), m%J) = Ext3 (Lys, myJ) = Ext3,(Ly,s,myJ)

of abelian groups. The morphism T is the forgetful morphism sending a deformation of X to
the induced deformation of ). Given a deformation & of the subdiagram ) over S', there is an
obstruction

w(&) € Ext3 (Cone(m), m%J)
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whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over §' reducing to £. If the obstruction w(€) is zero, then the set of isomorphism classes of

deformations of X over 8’ reducing to £ is a torsor under the image of
o Ext} (Cone(m), myJ) — Exty (Ly/s, miJ).

In the next subsection we will see two important cases when the cone of m is isomorphic in
D(X) to the cotangent complex of a certain ring morphism. This will help a lot to control the
obstruction group Ext3,(Cone(m), m%J) better. The rest of this section deals with the proof of
the above theorem on page 32.

The adjunction in Equation (2.6) gives rise to an isomorphism
Homy (v* L, M) = Hom),(L,v M)

of complexes of abelian groups, functorial in M € ob(Ch(&X)) and L € ob(Ch(Y)), where
Hom'(—, —) is the complex as defined in [Har66, Chapter 1.§6.]. Hence if 2b is the category
of abelian groups and if KT (X) and K ()) are the categories of bounded below complexes of

Ox-modules and Oy-modules, respectively, up to homotopy, then the diagram

K*(X) s K*(Y)

Homy, (L,—)

K(2(b)
is commutative up to natural isomorphism of functors for fixed L € ob(Ch(})).

Proposition 2.14. Let L € ob(Ch ())) be a bounded above complex consisting of free

Oy -modules. Then there is a natural isomorphism of functors
RHom) (v*L, —) = RHom),(L,v(—))

from DT (X) to D(2b). In particular, for each M € ob(DT (X)) and i € Z, there are natural

isomorphisms of abelian groups
Exth (v*L, M) = Ext’,(L,vM)
which are functorial in M.
Proof. By Theorem 1.9 there is a natural transformation of functors
RHom) (v* L, —) — RHom),(L, Rv(—))

from DT (X) to D(2(b). But since the functor v is exact, the natural transformation of functors

v(—) — Rw(—) is an isomorphism. Hence there is a natural transformation of functors
¢: RHom (v*L,—) — RHomy,(L, v(—))
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from DT(X) to D(2b). Now we take K = KT ()) in the notations of Theorem 1.9. In order
to show that ¢ is an isomorphism, it remains to show that each exact complex E of K*()) is
Hom),(L, —)-acyclic, i.e., H' (Hom), (L, E)) = 0 for all i. But

H (Hom'y(L, E)) = Homg y) (L, E[i])

by definition of Hom),(L, E) (see for example [Wei94, Chapter 10.7]) and Homg y) (L, E[i]) is zero
because each morphism of complexes from a bounded above complex of free modules to an exact
complex is homotopic to the zero morphism.

Now if M € ob(Ch™ (X)), we get a natural isomorphism
Exth (v*L, M) = Ext’,(L,vM)

of abelian groups by taking the i-th cohomology of RHom, (v*L, M) =N RHom),(L,vM) by
[Wei94, Theorem 10.7.4]. O

Notice that the above proposition holds in particular if L = Ly /s is the cotangent complex of
the subdiagram ) over S.

If M € ob(Ch™ (X)), then applying the functor Ext% (—, M) to the morphism of complexes of
O y-modules

m: ’U*’ULx/S = 'U*Ly/s — Lx/g

in Theorem 2.13, we get a morphism of abelian groups
7;: Extly (L /s, M) = Extiy(v* Ly s, M) =5 Extd,(Ly s, vM)
where the last isomorphism is the one of the above proposition.
Lemma 2.15. For each M € ob(Ch" (X)) and i € Z the morphism
7t Exthy (Lays, M) — Ext},(Ly,s,vM)
is the forgetful morphism, i.e., if | € JExté((LX/S, M) is represented by

Ly;s M{i]
N

where N is a complex of Ox-modules, s is a morphism of complexes of Ox-modules and s’ is a

quasi-isomorphism, then 7;(1) € Ext},(Ly s, vM) is represented by

Ly/s = ’UL)(/S UM[’L]

vIN
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Proof. Let | € Ext% (Lx,s, M) be represented by

Lx/s MTi].
A

Then Ext, (m, M)(1) € Exty (v*Ly /s, M) is represented by

U*Ly/g L>Lx/s M[’L]
N

and 7;(1) € Ext%,(Ly,s,vM) is represented by

ntlx/s

’L)U*Ly/s ﬂ) Q)Lx/s = Ly/g UM[Z]

S A

vIN

Ly/g = ULX/S

by definition of the adjunction between v and v* in Lemma 2.12. But
n"tx/s % vm
Ly/s = ULX/S —> VU Ly/g — ’UL/y/S = Ly/s
is the identity by Lemma 2.12. O
Proof of Theorem 2.13. We apply the functor Hompx)(—, m%J) to the distinguished triangle

Cone(m)

N

m

Lx/s

’U*Ly/s
in D(X) to get a long exact sequence

0 — Ext%(Cone(m), m%J) — Ext% (Lx/s, myJ) — Ext% (v*Ly,s, m%J)

— Ext (Cone(m), m%J) = Exty (Lx/s, myJ) — Extl (v* Ly s, m%J)
— Ext} (Cone(m), m%J) = Ext% (Lx/s, myJ) — Ext} (v*Ly,s,m%J)

of abelian groups. We have vm% J = m3,J since v is the forgetful functor. By Proposition 2.14

there are natural isomorphisms
Ext (v* Ly/s,m3J) = Exty,(Lys, vm3J) = Exty,(Ly s, m3J)
for each i € Z. Let

vy Exal, -1, (Ox,m5J) — Exalmglos (Oy,m3J)
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be the group homomorphism which maps the isomorphism class of an m}l Og-extension
0—-myJ - A—0Ox =0
by restricting to the isomorphism class of the m;l(’)s—extension
0—m})J — vA— Oy —0.
Then using the canonical isomorphisms of abelian groups
Exal,, 10, (Ox,myJ) = Exth(Ly/s,m%J) and Exal,, 10, (Oy,m}.J) = Ext(Ly,s,m3J)
in Theorem 1.8, the diagram

EXt;{'(LX/S7mTKX‘7) e Ethl))(Ly/Sam?)c}j)

:T T:

Exal,, 10, (Ox,mfJ) > Exal, 10, (Oy,m3J)

is commutative because the left vertical isomorphism restricts to the right vertical isomorphism as
follows from its definition in [I1171, Théoreme ITI.1.2.3.]. Together with Lemma 2.15 this shows that
7 maps the isomorphism class of a deformation of X’ to the isomorphism class of the deformation
of ) induced by restricting. All deformation theoretic assertions follow from the exactness of the

long exact sequence. O
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2.3 The simplification of the obstruction group

We keep the notations of General assumption 2.1. In the last subsection we have seen that
Ext% (Cone(m), m%J) is an obstruction group for extending a given deformation of the subdia-
gram to a deformation of the diagram. We will see in Theorem 2.20 that Cone(m) is isomorphic
in D(X) to the cotangent complex Lj of a certain ring morphism defined in Proposition 2.16 if
some additional weak assumption on the left adjoint of the forgetful functor is satisfied. Thus
the obstruction group Ext3 (L, m%J) may be calculated more efficiently in a large variety of
interesting cases as done in Section 3.

Let u: m}l Os-alg — m§1(93—alg be the forgetful functor from the category of m;(l Os-algebras
of X to the category of m;los—algebras of Y. By Proposition 2.2 there is a left adjoint functor

ul: m;,l(’)g—alg — m}log—alg

of u which is given levelwise, for ¢ € ob(€), by

(u'B).= lm f7'By
y€ob(c)

where B € ob(m§1(95—alg) and the colimit is taken in ¢ 'Og-alg, the category of ¢ 'Os-algebras.

Proposition 2.16. With the above notations there is a natural factorization

m}los Ox
\ /
u_l(’)y
of Ox all of whose morphisms are ring morphisms in X.

Proof. Taking A = Oy in the adjunction morphism m# in Lemma 2.12, we get a morphism
(@]
h:u w0y = u_l(’)y u) Oy

and we take I: m3'Os — u~'Oy to be the structure morphism of u~'Oy as an m3'Os-algebra.
O

By definition the morphism h: =10y — Oy is given levelwise, for ¢ € ob(€), by the unique
t-1Os-algebra morphism

he: hﬂ f;loxd*)OXc
Y€ob(c)

such that
[ 0x,
9’Y
(2.7)

: -1
hg'yeob(g) 15 Ox, — Ox,

c

is commutative in the category of ¢t !Og-algebras for every (7: d— c) € ob(¢).

34



Remark 2.17. The triangle in Proposition 2.16 can be described alternatively as follows. We have
u*1m§1(95 = m3'Os by definition since m;}lOs is the collection of all t;1Og for ¢ € ob(D)
together with identities as sheaf morphisms for each a € Homg (c1,¢2). We may apply u~! to the

. . — 0 . .
ring morphism myIOS -5 0y = uOyx to get a ring morphism
= u_lﬁy: m;(IOS = u_1m§1(93 - u Oy

which is just the structure morphism of u='uOy as an m;(l(’)g—algebra. Hence the triangle in

Proposition 2.16 is given by

Ox

— -1 -1
u 1my 03 =My 03 OX.

m Aj?{

u luOy

By Lemma 2.12 we have a commutative diagram

_ 0
m3y'Os > Oy
L )
uu—l@y / (2.8)
0y T o / id
n-y /
Oy

of m;,l Os-algebras.

Example 2.18. Let us continue Example 2.9 with the diagrams

diagram in RTop/S subdiagram in RToep/S
Xl Xl
Xy — =Ty, Xo Xs

with no other morphisms involved except for the identities. We have already seen that
(’LL_IOy)O = h_10X2 ®t0_105 Ox, , (U_IOy)1 = g_1(9X2 ®t1—1(95 Ox, and (U_IOy)Q = Ou,.

In this example h: u=10y — Oy is given levelwise as follows. ho: (u=1Oy)o — Oy, is the unique

morphism such that

0 OXO

/

h_10X2 — hiloxz ®t0—105 OXU

id
hIQQT T !

to'Os Ox,
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is commutative in Xo. Similarly, hy: (u='Oy)1 — Ok, is the unique morphism such that

4710, —= 07 0x, @10, O,

id
!]192T T '

t7'0s

is commutative in X;. Finally, ha: (u™1O0y)2 — Ou, is the identity Ox, — Oux,.

We come back to the general case. The composition of rings O : m;cl(’)s KN u~ 10y LN Ox

N 59

Ly ®y-10, Ox ———— > Lxys

yields a distinguished triangle

in D(X) by Theorem 1.8.iv).

After stating the following lemma, we will formulate the main result of this subsection.
Lemma 2.19. There is a natural morphism of complexes of Ox-modules
a:v'Ly/s = Ly ®y-10, Ox
such that
v*Ly)s —"— Lx/s

:

Ly ®y-10, Ox — Lx/s

is commutative in the category of complexes of Ox-modules.

Besides the forgetful functors u: m;(l(’)g—alg — m;,l(’)g—alg and v: Ox-mod — Oy-mod, let
w: X — Y be the forgetful functor from the ringed topos X to the ringed topos Y.

Theorem 2.20. Assume given the situation of General assumption 2.1. Let further
a: U*Ly/g — I Ru-10y, Ox

be the natural morphism of complexes of Ox-modules in Lemma 2.19. Assume that one of the
following two conditions holds:
1 The left inverse w™': Y — X of the forgetful functor w: X — Y commutes with finite limits
(satisfied for example if the category c in Definition 2.3 is filtered for each ¢ € ob(€)).
2 For each ¢ € ob(€) we have (u=10y), = Qi-10s [ Ox, where the tensor product over
t-1Os is taken over a (possibly empty) set of objects (’y: d— c) € ob(c).
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Then a is a quasi-isomorphism.
If a is a quasi-isomorphism, then for each i € Z and M € ob(D* (X)) it induces a natural

isomorphism of abelian groups
Ext’ (Li ®,-10, Ox, M) = Ext},(Ly,s,vM),

functorial in M. Furthermore, if a is a quasi-isomorphism, then the application of the functor

HomD(X)(—,m}J) to the distinguished triangle

h

N

Lx/s

L ®y-10, Ox
yields a long exact sequence

0 — Ext% (Ln, m5J) = Ext%(Ly s, m5J) = Ext$(Ly,s,m3J)
— Extl (Ln, myJ) = Exthy (La /s, myJ) = Exty,(Ly,s,m3J)
= Ext% (Lp, myJ) — Ext% (La /s, myJ) = Ext3,(Ly /s, m3J)

of abelian groups. The morphism T is the forgetful morphism sending a deformation of X to
the induced deformation of ). Given a deformation & of the subdiagram ) over S', there is an

obstruction
w(€) € Ext3 (L, m%J)

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over 8" reducing to . If the obstruction w(&) is zero, then the set of isomorphism classes of

deformations of X over 8’ reducing to & is a torsor under the image of
o: Bxty (Lp, m%J) — Extk(LX/S,m}j).
Remark 2.21. Using the natural isomorphisms
Exty (Lp, m5yJ) = Exal,-10,(Ox,m3J) and Extﬁg(LX/S, myJ) = Exalm;1os((’)x,m§(J)

in Theorem 1.8.iii), we see from Proposition 1.13 that the image of o may be described as the sub-
group of Exalmyo‘S (Ox, m%J) consisting of all those m}l Os-extensions of Ox by m% J which
are already u !Oy-extensions of Ox by m%J under the ring morphism
I: my'Os — u=10y.

We use the rest of this subsection to give the proof of the above lemma and theorem.

Proof of Lemma 2.19. By Corollary A.3 we know that the complexes Ly,s and Ly,s are given
levelwise by the collection of all Ly, /s and Ly, ;s for ¢ € ob(€) and d € ob(®D), respectively. Now
fix ¢ € ob(€). We have

(U*Ly/s)c = 11%"1( )(f'y_lLXd/S ®f‘y_1OXd OXC)7
y€ob(c
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the colimit being taken in the category of complexes of O, -modules. Again by Corollary A.3 we

know that the complex of (u™!'Oy).-modules (L;), is given by

(L)e=1L =1I,.

c

(u=10y)/t ' Os

Let ¢ € Hom((71: di — ¢), (y2: d2 — ¢)). By definition of (u='Oy), we know that

-1
f’YQ OXdz

i

t;los f;zlgw (uiloy)c

\/

—1
f’Yl OXCH

is commutative where the two right hand side diagonal morphisms are the natural ones. Moreover,
both of the above compositions from t;1Os to (u"10y). are .. The above diagram gives rise to

a commutative diagram

(U_loy)c

-1
Li0x, stt0s @p5tox, (U O Lyton, /17105 © 15} 0n,,

\/

L

of morphisms of complexes of (u~10y).-modules. Whence by the universal property of the colimit

there is a unique morphism of complexes of (u~10y).-modules

be: hgl (LfJIOXd/tZIOs ®f~7102(d (u_loy)c) — L, (2.10)
y€ob(c)

such that

1
Liioy jt-r0s @10y, (47 Op)e

|

. —1
i conte) (Lfs10x, /17105 Df710, (47 OV):)

b(‘
] Ll

c

is commutative for every (v: d — ¢) € ob(c) where the colimit is taken in the category of complexes
of (u='0y).modules and the vertical morphisms are the natural ones.

Considering the ring morphism h: (u™'Oy). — Ox,, the functor — ®(,-10,,), O, from the
category of complexes of (u~10y).-modules to the category of complexes of O -modules is left ad-
joint to the functor which considers a complex of Ox,-modules as a complex of
(u™1Oy)-modules via h.. It follows that — ®u-10y). Ox, commutes with arbitrary colimits

by [Stal3, Lemma 4.23.3.] and tensoring b, with Oy, yields a morphism

. -1
hﬂ( )(Lf§1OXd/t21(93 D10y, (U 10)e Bu-10y). Ox.) = Li, ®w-10y), Ox.-
y€ob(c
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By Diagram (2.7) on page 34 the composition f'Ox, — (v 'Oy). Loy O, is 6, for each
(’y: d— c) € ob(c), hence the above morphism simplifies to

liﬂ (Lf;1oxd/t;105 ®f;10Xd OXC) — L, Bu-10y), Ox..
y€ob(c)

Finally, by Theorem 1.8.ii) for each (v: d — ¢) € ob(c) there is a natural isomorphism of complexes

of f71Ox,-modules f;'Ly,;s — Li-1p, i-10s- Tensoring with Ox,, we get isomorphisms of
alte ’

complexes of Oy, -modules f,y’lLXd/s ®f§10xd Ox. — Lf;lOXd/tc—los ®f$1oxd Ox, which are

compatible with the morphisms defined by the index category c¢. Consequently, for each ¢ € ob(€)

there is a natural morphism

ac: lim (f ' Ly,s D10y, Ox.) = Li. ®w-104), Ox,
y€ob(c)

and the naturalness and functoriality of all steps used in their construction show that their col-

lection defines a morphism of complexes of O y-modules
a: U*Ly/s — I Qu-10y, Ox.

. . . . 71 .
From the universal property of the colimit hﬂy@ob © ( Iy Lays® flox, OXC) it follows that the

square
v*Ly)s — " Lx/s
|
Ly ®y-10, Ox — Lx/s
is commutative. O

Proof of Theorem 2.20. If a is a quasi-isomorphism and thus an isomorphism in D(X), then it

induces natural isomorphisms
Ext’ (L ®y-10, Ox, M) = Extiy(v*Ly/S,M) = ]Extg,(Ly/S, vM)

of abelian groups, functorial in M € ob(D™ (X)), where the second isomorphism is the one in
Proposition 2.14. Applying the functor Hompx(—,m3J) to the distinguished triangle (2.9) on

page 36, we get a long exact sequence

0 — Ext%(Ln,m5J) = Exty (Lys, myT) = Exty (L ®y-10, Ox,myJ)
— Exty (Ln, myJ) = Exth (Lx /s, m5%J) = Exty (L ®,-10, Ox,m3J)
— Ext} (Ln, myJ) = Ext} (Lx s, myJ) = Ext3 (L ®,-10, Ox, myJ)

of abelian groups. For each ¢ € Z the composition

Extiy (L /s, mipJ) = Extiy (Li®y 10, Ox, mypT) — Exthy (v* Ly s, miyJ) = Extly(Ly s, mT)
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is the forgetful morphism as follows from Lemma 2.15 and the commutativity of the square

U*Ly/s L) L_/y/s

.

L, ®u*10y Oy ——> Lx/g.

It remains to show that a is a quasi-isomorphism if condition 1 or 2 is satisfied.

Assume that condition 1 is satisfied. Then w: X — ) is a morphism of topoi and since
w™! commutes with arbitrary colimits and with finite limits, it preserves, amongst others, alge-
bra structures (see for example [SGA41, Exposé IV.3.1.2.]). This means that if B is a sheaf of
ml_,log—algebras of Y, then w™'B is a sheaf of m}l(’)g—algebras of X. It follows that we may

identify the functor u~*

: m§1(’)5—alg — m}l Os-alg with the restriction of w™! to the subcategory
m;,lOS—alg of YV because both functors are left adjoint to the forgetful functor
m}l(’)s—alg — m;,lOS—alg. Taking h: w™ 'Oy — Ox as ring morphism, we see that
w: X — )Y is even a morphism of ringed topoi.

Since w~! preserves module structures we have that w='M is a complex of w~!0y-modules
whenever M is a complex of Oy-modules, hence w*M = w™'M ®u-10, Ox is a complex of
Ox-modules. Hence we may identify the functors w* and v* from Ch(Y) to Ch(X) since they are
both left adjoint to the forgetful functor Ch(X’) — Ch()’). Now since w is a morphism of ringed

topoi we know from Theorem 1.8.ii) that the natural morphism of complexes of w~!Oy-modules
-1 -1
w Ly/s =w L(Qy/'rn;los — Lw_loy/m;1(95 =1
is an isomorphism and tensoring with Oy shows that
a: w*Ly/s = wilLy/g Rw-10y, Ox — L Rw=-10y, Ox

is an isomorphism as well. Notice that there is a commutative diagram of ringed topoi

and the distinguished triangle of the ring composition in Proposition 2.16 is by definition the

distinguished triangle

Ly

N

w*Ly/g LX/S

of the above composition of morphisms of ringed topoi.
If the category ¢ in Definition 2.3 is filtered for each ¢ € ob(€), then w™! commutes with
finite limits because w™! is given levelwise by taking the colimit over the categories ¢ and because

filtered colimits commute with finite limits by [Stal3, Lemma 4.18.2.].
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Now assume that condition 2 is satisfied and let ¢ € ob(€). Then (u™'Oy). = Q. f;'Ox,
is a coproduct in the category t;!Os-alg where I'. C ob(c) is a possibly empty subset of ob(c)
depending on c¢. Since the left adjoint Ay — Ax of any of the forgetful functors A — Ay at the
beginning of Subsection 2.1 is defined levelwise by taking the colimit over the index category c for
¢ € ob(€), it follows that it is given levelwise by taking the coproduct over T, in the respective

category. In particular, for every ¢ € ob(€) the colimit

. —1
hﬂ (quloxd/tglos ®f;1(9,(d (u Oy)c),
y€ob(c)
taken in the category of complexes of (u =10y ).-modules, is a coproduct, i.e., a finite direct sum,

and the morphism
: -1
be: D(Lss10m, 12105 ©1s 10, W 'O)e) = L,

Te
in Equation (2.10) on page 38 is given by the sum morphism of the morphisms
-1
Lictoy 17105 @ptoy, (W Ov)e = Li

for ('y: d — c) € T'.. But since all structure morphisms ¢.: X, — S for ¢ € ob(€) are flat by
General assumption 2.1 it follows that b, is a quasi-isomorphism for each ¢ € ob(€) by Proposition
A.1. Since b, is a quasi-isomorphism between complexes consisting of free (u=!0y).-modules, we

may tensor with Oy, and still get a quasi-isomorphism by [I1171, Lemme 1.3.3.2.1.]. Tt follows that

ac: lim (leLXd/S ®f10x, Ox,) = Li, @w-10y). Ox.
y€ob(c) '

is a quasi-isomorphism for every ¢ € ob(€), hence a is a quasi-isomorphism. O
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2.4 Relations between a diagram, a subdiagram and a subsubdiagram

Under General assumption 2.1 let furthermore & be a subcategory of ©® and let Z be the ringed
topos associated to the restriction of J: P — RTop/S to E°P. Let mz: Z — S be the mor-
phism of ringed topoi in Lemma 1.17. Thus we have the diagram X with index category €°P its
subdiagram ) with index category ©®°P and its subsubdiagram Z with index category €°P. We
will derive a commutative braid for the triple (X,), Z).

Proposition 2.22. Assume given the above situation. For distinction of the three different mor-
phisms m in Theorem 2.13, let myy be the morphism for the pair (X,)), let mxz be the morphism
for the pair (X, Z) and myz be the morphism for the pair (Y, Z).

Then there is a commutative braid

REE AR

// \ / \\

7 ~N
\

2| Ext% (Cone(muyz), myJ) 1
AN / \ /
N Ve
S | .-
Ext},(Cone(myz), m3,J) Ext (Lx,s, m%J)
- P L _
- | -
4 EXt:Zy(Ly/S,m;;j) 3
\\\& Lo STz ////
Extgjl(Cone(me),m}j) ]Extzz(LZ/s,m*ZJ)
- - \ / >~ ~
Ve N
/ _ \
11 Ext4 ! (Cone(myz), m%J) |2
\ /
~ / \ v
T : P
Exti ™ (Lays, myJ) Extgjrl(Cone(myZ),m;j)
/ -l 2o
/ T o =z — -
3 ]Extg}"l(Ly/S,m;J) 4
270 IR
, - ST
ExtZ ' (Lz/s, m%J) Ext’?(Cone(mxy), m%J)
Z - \ / ~ ~
/ \
2 '\ Ext4?(Cone(mxz), m%J) /' 1

containing four long exact sequences of abelian groups. Sequences 1, 2 and 3 are the long exact
sequences of the pairs (X,Y), (¥, Z) and (X, Z) in Theorem 2.13, respectively.
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Proof. For distinction let vyy be the forgetful functor from Ch(X) to Ch()), let vyz be the
forgetful functor from Ch(X) to Ch(Z) and let vyz be the forgetful functor from Ch(}) to
Ch(Z). Then there are three distinguished triangles

% m (id|0) pr *

vyyLy/s i Lx;s Cone(myy) -z o UXyLy/S[H,
% m (id|0) r .

vyzLz/s e Ly;s Cone(myz) — vizLzs(1],
. m (idj0) r .

UyZLZ/S Yz Lys Cone(myz) e 'UyZLZ/S[l]v

the first and the second in K(&X') and the third in K()), all of whose displayed morphisms are in
Ch(X) and Ch()), respectively. Since v%,: Ch(Y) — Ch(&X) is induced from the left adjoint
Oy-mod — Ox-mod of the forgetful functor Ox-mod — Oy-mod, we may apply vy, to the last

of the above triangles and still get a distinguished triangle

Vrymyz (id|0)

pr
ViyVyzlz/s ———— viyLlys ———— vy Cone(myz) =

ViyvyzLz)s(l]

in K(X). Since both functors v3yv3,z and vy z from Ch(Z) to Ch(X) are left adjoint to the
forgetful functor Ch(X) — Ch(Z) there is a natural isomorphism of functors between them and

we will identify v3,,03,z with v} z. Furthermore the composition

’U;vamyz

mxy
vyzlz/s —— vxyLly;s — Lx;s

is mxz by definition.

Visualizing the three distinguished triangles in K(X) in an octahedron

Cone(myz)

(id|0)

- N
vy Cone(myz) GdI10) lepe Cone(mxy)
pry \ \ (id|0)
vxzLlzs Lx/s

mxz /
(idj0) pry
Vxymyz mxy

vxyLyys
we see that there are morphisms

[+ vyyCone(myz) — Cone(myz) and g: Cone(mxyz) — Cone(muxy)
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in K(X) such that

(id|0)[1]opry

vyyCone(myz) AN Cone(maz) —— Cone(maxy) v’y Cone(myz)[1]

is a distinguished triangle in K(X) by the octohedral axiom (see for example [Har66, Chapter I.1.
Axiom (TR4)]). Applying Hompx)(—,m%J) to the triangle

Vyymyz (id|o) pr

v%yCone(myz) ————= viyv5zLz/s[1]

VryvyzLlzys vryLyss
in D(X) and applying Homp y)(—,m}J) to the triangle

(id]0) Ty .
Cone(myz) — vyzLz)s(1]

'Uf)k;ZLZ/S myz Ly/g

in D(Y) yield a commutative diagram

Extix(v}yLy/S,m}j) Extg,(Ly/s,mﬁ,j)

Exth (vizLz/s,myJ) Ext (Lz/s, m5J)

Ext’ ! vy Cone(myz), myJ) — }Extgfl (Cone(myz), m3J)

Ext’ ™ (viey Ly s, myJ) Ext{ ™ (Ly,s, m3J)

Exti ' (vizLz/s, miJ) Extd ' (Lzs,m5J)

of abelian groups where the first and forth horizontal isomorphisms are the ones in Proposition
2.14 for the functor vyy and for the complex Ly /s and where the second and fifth horizontal
isomorphisms are the ones in Proposition 2.14 for the functor vxz and for the complex Lz/s.

From the exactness of the two columns it follows that
Exty! (vyyCone(myz), m3J) —= Extg;"l (Cone(myz), m3,J)

is an isomorphism as well for every ¢ € Z. Consequently, the braid in the proposition is obtained
by applying the functor Hompy)(—, m%J) to the above octohedron where all morphisms are

considered in D(X). O
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Notice that the isomorphisms in Proposition 2.14 do not hold a priori for the complex Cone(my z)
because it does not consist of free Oy-modules in general. Therefore we have to argue as done
above.

From the commutativity and the exactness of the four sequences in the braid of Proposition
2.22 we immediately get a proof of the following plausible idea. Given a deformation £z of Z over
S’ such that the obstruction in Ext3,(Cone(myz), m3}.J) vanishes, we may choose a deformation
&y of Y over S’ extending £z. Assuming further that the obstruction in Ext3,(Cone(mxy), m%J)
for finding a deformation &y of X over &’ extending &y, vanishes, we may choose such a deformation
£x. Then the obstruction in Ext% (Cone(myz), m%J) for finding a deformation £y of X over S’

extending £z vanishes as well.

Remark 2.23. 1t follows that if we are only interested in extending a given deformation of the
subdiagram to a deformation of the diagram, then we may always assume that © is obtained from
¢ either by omitting exactly one level 0 € ob(€) (and all morphisms from and to 0) or by omitting

exactly one morphism in € (such that © is a category).

The following section deals with the calculation of the obstruction group Ext3 (L, m%J)

found in Theorem 2.20 for many particular cases.
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3 Calculations of the obstruction group for particular cases

We keep the notations of General assumption 2.1. Assuming that the morphism a in Lemma 2.19
is a quasi-isomorphism, the obstruction group Ext2.(Lp,m%J) for the problem of extending a
given deformation of ) to a deformation of X will be calculated more explicitly in this section for
some particular cases. Therefore we have to introduce several types of subdiagrams.

The first three subsections are kept rather abstract and explain the techniques necessary for
the simplification. We will apply these results to many concrete cases in the last two subsections.

Subsection 3.1 considers well-positioned subdiagrams, characterised by the property that each
morphism between two levels not belonging to the subdiagram must not factor through some level
of the subdiagram. Many subdiagrams possess this property, for example all subdiagrams such
that ob(®) = ob(€).

Subsection 3.2 explains the notion of a full subdiagram in which case ® is a full subcategory
of €. Corollary 3.16 shows that if ) is a full and well-positioned subdiagram, then the obstruction
group is given by

Ext} (Lj, my )

where (L}). = (Ly). for all ¢ € ob(€)\ ob(D), but (L;},)qs = 0 is the zero complex for all d € ob(D).
After introducing the complementary subdiagram ) of a given subdiagram )’ in Subsection
3.3, we will see in Corollary 3.26 that if ) is full and well-positioned, then the obstruction group
simplifies to
Ext3(aLp, RG(m%yJ))

where w: X — Y is the forgetful functor and RG(m%J) is a certain complex of Oy -modules.
Thus we see that the obstruction group is actually concentrated on the ringed topos ) instead of
the ringed topos X'. Appendix B describes a procedure for finding certain injective resolutions of
modules on a diagram which are adequate to calculate RG(m%J) in many cases.

As already mentioned above, the next subsections consider concrete examples. Subsection 3.4
treats subdiagrams obtained by omitting a single level of the diagram and all morphisms from
and to this level. The obstruction group is then concentrated on the omitted ringed topos. The
other extreme is considered as well where the subdiagram is obtained from the diagram by keeping
all levels, but by omitting all morphisms except for the identities. We call this subdiagram the

discrete subdiagram of X.
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3.1 Well-positioned subdiagrams

This subsection treats some technical results on well-positioned subdiagrams which we will need
in Subsections 3.2 and 3.3. We will see that if X' is a diagram and if L is the cotangent complex
of a ring morphism of X such that L, is an exact complex for each d € ob(®), then we may
replace L in the derived category D(X) by a complex L* such that LY is the zero complex for
each d € ob(®). This will help us to calculate the obstruction group Ext3 (L, m%J) of Theorem
2.20 more explicitly in Subsection 3.3.

Definition 3.1. Let X be a diagram. A subdiagram ) of X is called well-positioned (with respect
to &) if each o € Home(cyq, c2) between objects ¢1,ca € ob(€) \ ob(®) does not factor through
some object d € ob(D), i.e., for each a € Homg(cy, ¢2) such that ¢1,co € ob(€) \ ob(D), there is

no triangle

C1 —a> C2
d
in € such that d € ob(D).

Example 3.2. Consider the example

diagram in RTop/S subdiagram 1 in SR%op/S
X s}
RN 7
Xy =Ty, X, X,
subdiagram 2 in RTop/S subdiagram 3 in R%op/S
e

X()%XQ

with no other morphisms involved except for the identities. Then subdiagram 1 which we have
already considered in Example 2.18 is well-positioned since ob(€) \ ob(®D) is the empty set. Sub-
diagram 2 is also well-positioned but subdiagram 3 is not well-positioned because h: Xy — Xo

factors through 7.

Now let ) be a well-positioned subdiagram of X and let A — B a morphism of sheaves of
rings of X'. By Corollary A.3 the cotangent complex L of A — B is given by the collection of all
cotangent complexes L. = Lp_s4, of the ring morphisms A. — B, of X, for ¢ € ob(€) together

with, for o € Homg(cq, ¢2), the natural morphisms
Nt folem ®f';13¢1 302 — ch

of complexes of B.,-modules. We will construct two complexes of B-modules I’ and L* and two
morphisms
p:L—L and q:L* =L
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of complexes of B-modules such that L is the zero complex for each d € ob(®). The construction

of L' and p: L — L’ is very similar to the construction of L* and ¢: L* — L’, respectively.

Definition 3.3. Let L be the cotangent complex of a ring morphism A — B in X. For ¢ € ob(€)
let
L. if c € ob(€) \ ob(D)
L.=1{ L. if c€ob(®)and Home(c,¢) is empty for every ¢ € ob(€) \ ob(D)

0 else

and for @ € Home (e, ¢2) let

0— L, if 1, =0
(fo'Lt, ®j1p,, Bey = Ly,) = fo'LL, @s1p,, Bey =0 if L, =0

[e3

flLle, ® j=1p., Bea 2oy L, else.

Remark 3.4. Let Y be a well-positioned subdiagram of X. Let ¢; € ob(®) such that Home (¢, ¢1)
is nonempty for some ¢’ € ob(€)\ob(®). By definition we have L], = 0. Now let & € Homg(cy, ¢z).
If c; € ob(€)\ ob(D) then we have a factorization ¢’ — ¢; < ¢; between two objects not in ob(D)
through the object ¢; € ob(®D). But since ) is well-positioned, we must have ¢y € ob(®) and the

composition ¢ — ¢1 — ¢ shows that L, =0.

Lemma 3.5. Let Y be a well-positioned subdiagram of X. The collection of all L., for ¢ € ob(€)
together with all morphisms

/

.or—177/ /
ot fo 'Ll ®pap, Be = L,

of complezes of B.,-modules for a € Home(c1,c2) defines a complex L' of B-modules. There is a
natural morphism
p: L — L'

of complexes of B-modules.

Proof. Let ¢1 = ¢y LA c3 be morphisms in €. We have to show that the morphisms

!
Nga

—17/ /
fﬁa LCl ®fﬂ_(ch1 BC3 LC3

and

(5 'nt,@id)
AN

-1 -1 —177/ s
fBa Lgl ®fﬁ;alBC1 fﬂ BC? ®fl;lBCQ BC3 'fB LC? ®f[;IBCQ Bc3 — Lé‘s

are equal.

If ¢; € ob(®) and if Home(c', 1) is nonempty for some ¢’ € ob(€) \ ob(®), we have L, =0
and the above morphisms agree since they have the zero complex as source.

If L, = L.,, we have to examine L, .

If c; € ob(®) and if Home(c', c2) is nonempty for some ¢’ € ob(€) \ ob(D), we have L, = 0.
By Remark 3.4 it follows L'CS = 0. Thus the above morphisms are equal since they have the zero
complex as target.

If L, = Le,, we have to examine L.
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If L}, = 0, the above morphisms are equal since they have the zero complex as target.
If Li, = Lc,, then by definition the above morphisms are the ones belonging to L. Since L is
a well-defined complex of B-modules, the above morphisms are equal as well.

Now for ¢ € ob(€) we define

L% L, if ¢ € ob(€) \ ob(D)
(pe: Le = L) = ¢ L, Mo, ifce ob(®) and Home (¢, ¢) is empty for every ¢’ € ob(€) \ ob(D)

L.—0 else.

For each a € Home (c1, ¢2) the square

foleCl (X)fa—lB01 B, e L.,

lfalpcl ®id Deoy

n’

f(;lLiil ®fc‘leCl BC2 N L’C2
is commutative as follows again by a distinction of cases.

If c; € ob(®) and if Home(c', c2) is nonempty for some ¢’ € ob(€) \ ob(®), we have L, =0
and the above square is commutative since it has the zero complex as target.

If L}, = L., and thus p., = id, we have to examine L, .

If ¢; € ob(®) and if Home(c', ¢1) is nonempty for some ¢’ € ob(€) \ ob(D), we have L, = 0.
By Remark 3.4 it follows L,, = 0. Thus the above square is commutative since it has the zero
complex as target.

If L], = Lc,, we have p., = id and n], = n,. It follows that the above square is commutative

as well. O

Definition 3.6. Let L be the cotangent complex of a ring morphism A — B in X. For ¢ € ob(€)
let

I L. if c€ob(€)\ ob(D)

‘ 0 else

and for a € Home(cy, ¢2) let

0— L, if Lr, =0
(fa'Li ®po1p, Beo == Li) =1 fa'Lr @yorp,, Bes =0 if L7, = 0

«

falle, ® o1, Be, 2oy L, else.

Lemma 3.7. Let Y be a well-positioned subdiagram of X. The collection of all L for c € ob(€)
together with all morphisms

* —1 7 *
nh: fo ' LY ® g, Be, = L,

of complexes of B.,-modules for a € Homg (c1,c2) defines a complex L* of B-modules. There is a
natural morphism
qg: L* = L'

of complexes of B-modules.
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Proof. Let ¢; 2 g c3 be morphisms in €. We have to show that the morphisms
,1L* B n;;(y L*
fﬁa c1 ®fﬁ_(jBC1 c3 > L,

and

(5 nz@id)
AN

—1 -1 -1 g
fBa Lzl ®fﬁ;alBC1 fﬂ BC2 ®fl;lBCQ BC3 'fB LZ? ®f§ch2 Bc3 — L:J

are equal.

If ¢; € ob(®), we have L} = 0 and the above morphisms agree since they have the zero
complex as source.

If ¢; € ob(€) \ ob(D), then L} = L., and we have to examine L} .

If c; € ob(D), we have L = 0. Assume c3 € ob(€) \ ob(®D). Then ¢; > c» LA c3 is a
factorization between the objects c1,c3 € ob(€) \ ob(D) through the object ca € ob(®). But since
Y is well-positioned we must have c3 € ob(®D), hence L, = 0. Thus the above morphisms are
equal since they have the zero complex as target.

If ¢z € ob(€) \ ob(D), then L7, = L., and we have to examine L.

If c3 € ob(®), we have L}, = 0 and the above morphisms are equal since they have the zero
complex as target.

If c3 € ob(€) \ ob(®), then L7 = L.,. By definition the above morphisms are the ones
belonging to L. Since L is a well-defined complex of B-modules, the above morphisms are equal
as well.

Now for ¢ € ob(€) we define

id .
L.— L. if c€ob(€)\ ob(®
(0 Lt ) (€)\ ob(®)
0— L else.

For each o € Homg(cy, ¢2) the square

—17=* N *
fa L01 ®f§13c1 B, > ch

lf;lqc1 ®id Gy

’
n

fole/C1 ®f§13c1 B, ———= > L’CQ
is commutative as follows again by a distinction of cases.

If c; € ob(®) and if Home (¢, c2) is nonempty for some ¢’ € ob(€) \ ob(D), we have L, =0
and the above square is commutative since it has the zero complex as target.

If ¢; € ob(€) \ ob(D), then L}, = L, = L., and g, = id. We have to examine c;.

If ¢; € ob(®D) and if Home(c', ¢1) is nonempty for some ¢’ € ob(€) \ ob(D), we have L, = 0.
By Remark 3.4 it follows L;, = 0. Thus the above square is commutative since it has the zero
complex as target.

If ¢; € ob(€) \ ob(®), then L} = L, = L., and ¢, = id and n}, = n;, = ne. It follows that

the above square is commutative as well. O
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Remark 3.8. Let Y be a well-positioned subdiagram of X. Then the above constructions are
in particular valid for the cotangent complex Lj of the ring morphism h: v 'Oy — Oy in

Proposition 2.16. Thus there are complexes of Oy-modules L) and L; and morphisms
p: Ly — L), and q: Ly — L),

of complexes of Ox-modules by Lemma 3.5 and Lemma 3.7, respectively, such that (L} )q is the
zero complex for each d € ob(D). We will need these morphisms in Proposition 3.15 where they

are quasi-isomorphisms.

Example 3.9. Consider the example

diagram in RTop/S subdiagram in RTop/S

VN h

Xo—2L S x, X ——4&

with no other morphisms involved except for the identities and let L be the cotangent complex of

Ox: m}los — Oy, denoted
L :(L-Xoa LXN LXQ, f*L;\{1 — LXD, g*LX2 — LX17 h*sz — LXQ)

where Ly, is the cotangent complex of 0; : t;lOS — Ogx,;. Then Y is a well-positioned subdiagram

of X as we have seen in Example 3.2 and the complexes of Oy-modules L’ and L* are given by
L/:( 0 s LX“ LXZ, f*LX1 — 0 s g*LX2 *)LX“ h*LX2 — 0)

and
L*=(0 ,Lx, O, f'Lyy > 0 ,4g°0 =Ly, B*0 = 0),
respectively. The morphisms of O y-modules p = (po, p1,p2): L — L' and ¢ = (g0, q1,92): L* — L'
are given by
L=(Lx,, Lx,, Lx,, f*Lx, = Lx,, 9"Lx, = Lx,, h*Lx, = Lx,)
J{p—(O,ide)
(0 Iz Loy Pl =+ 0, 812y = Iy KLy = 0)
Tq (0,id,0)

Ly, 0, f*Ly,— 0 ,g°0 — Ly, h*0 — 0).

Notice in particular that (0,id,0): L — L* is no well-defined morphism of complexes of

O y-modules because

g"Ly, — Lx,

g*0 —— Ly,

o1



is not commutative. Similarly, (0,id,0): L* — L is no well-defined morphism of complexes of

O y-modules either because

f*LX1 —

f*Lx, — L,

is not commutative. This example shows that in general there is neither a morphism L — L* nor

a morphism L* — L of complexes of Oy-modules, even if ) is well-positioned.

Example 3.10. Consider the example

diagram in RTop/S subdiagram in RTop/S

/:f\ X

with no other morphisms involved except for the identities and let again

go

L=(Lx,, Lx,, Lx,, f*Lx, = Lx,, 9"Lx, = Lx,, h*Lx, = Lx,)

be the cotangent complex of 6y : m;(l Os — Oy. This time Y is not a well-positioned subdiagram

of X as pointed out in Example 3.2. By definition we have
L* =1L =(Lxy, 0, La,, f*0% Ly, ¢*Lx, >0, h*Lx, — Lu,)

which is not a Well defined complex of Oy-modules since h*Ly, — Ly, is not the composition
f* *LX2 f*O —) LXO
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3.2 Full subdiagrams

We will see that if ) is a full and well-positioned subdiagram of X', then the cotangent complex
Lj, of the ring morphism h in Proposition 2.16 may be replaced in D(X) by the complex L} as
defined in Lemma 3.7. The replacement of L, by Lj will facilitate the calculation of the obstruction
group Ext3 (L, m% J) as pointed out in Proposition 3.25 if the morphism a in Lemma 2.19 is a

quasi-isomorphism.

Definition 3.11. Let © be a full subcategory of €, i.e., Homg(d1,d2) = Home(d1,ds) for any
objects dy,ds of ®. Then we call ) a full subdiagram of X.

If © is obtained from € by omitting exactly one object 0 € ob(€) and all morphisms from and
to 0, then Y is a full subdiagram of X. Notice that this is one of the two types of subdiagrams
in Remark 2.23 we have to consider if we want to extend a given deformation of an arbitrary
subdiagram “step by step” to a deformation of the given diagram, whence it is important to

understand the resulting obstruction group.

Example 3.12. Consider the diagram and subdiagrams

diagram in RTop/S subdiagram 1 in SR%op/S
X1 X1
PR 7
Xy ——1 ok, Xo Xy
subdiagram 2 in RTop/S subdiagram 3 in R%op/S
9]

Xo—h>X2

of Example 3.2 with no other morphisms involved except for the identities. Then subdiagram 1
which we have already considered in Example 2.18 is not a full subdiagram because the morphism
g does not occur between the ringed topoi X7 and &X5. Subdiagram 2 and Subdiagram 3 are full

subdiagrams.
Lemma 3.13. Let Y be a full subdiagram of X. Then
(u™'Oy)a = O,

for every d € ob(®). Furthermore, if di,ds € ob(D) and a € Home(d1,d2) = Homg (d1, d2), then

the morphism of t;;(’)g-algebms
(uiloy)(x: fojloz‘-’dl - OXd2
in Definition 2.7 is the ring morphism 0 : f,;lOXdl = Ox,, of fa: Xa, = Xy, .

Proof. Since D is a full subcategory of €, each ('y: d — d) € ob(d) is an element of Homg (d', d).
In particular, we have v € Homg((v: d’ — d), (id: d — d)) and so the ring morphism

972 f;l(’)xd, — OXd
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belongs to the system of all f; 1Oxd, defined by d. It follows that

(u'O0y)a= lim f'Ox, =Ox,

~€ob(d)

because Oy, is the final object in the system of all f;l(’)xd, defined by d.
Now if dy,ds € ob(D) and a € Home(dy, d2) = Homgp (d1, d2), then Diagram (2.1) on page 22

is given by

1 p— id 1 p— id S
fo¢ 1f'y 10Xd’ i fa 1ffy 10Xd/ ' fa 1ffy 1OXd/
lfﬂ)w ifﬁew leaw
— id - o
fa 10Xd1 fa 10/’\?.11 OXd2

and is commutative for every (y: d" — dy) € ob(dy). Since (u7'Oy), is the composition of the

two lower horizontal morphisms by Definition 2.7 we see that the morphism of t;zl Ogs-algebras

(W 'Oy)a: fo'Oxy = fo' lm f'O0x, = lim f7'Ox, =Ou,
~vEob(d1) deob(dz)

is the ring morphism 6, : f;l(QXdl — OXd2 of fo: Xa, = Xy, O
Thus if Y is a full subdiagram of X, the morphism of m;l(?g—algebras
h:u 'Oy = Ox
in Proposition 2.16 is given by the identity hq: Ox, 1, Oy, for d € ob(D).

Lemma 3.14. Let Y be a full subdiagram of X and let Ly be the cotangent complex of the ring
morphism h: w10y — Ox in Proposition 2.16. Then the cotangent complex (Ly)q is ezact for
each d € ob(D).

Proof. By Corollary A.3 the cotangent complex Ly is given by the collection of all cotangent
complexes of h.: (u=10y). — O, for ¢ € ob(€). But hy is the identity for d € ob(D) and the

cotangent complex of the identity is exact. O

Proposition 3.15. Let Y be a full and well-positioned subdiagram of X. Then the natural mor-

phisms of complexes of Ox-modules
p: Ly — L), and q: L} — L),
of Remark 3.8 are quasi-isomorphisms. In particular, there is a natural isomorphism
L, 5 L), a L}

in the derived category D(X) which yields, for each cochain complex M € ob(Ch(X)) and each

i € Z, a natural functorial isomorphism
Extb (Ly, M) = Ext’y (L}, M)

of abelian groups.
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Proof. Let ¢ € ob(€). Remember that by definition we have

(Ln)e % (Lp)e  if ¢ € ob(€) \ ob(D)

(Lp)e i, (Lp). if ¢ € ob(®) and Home(c', ¢) is empty
for every ¢’ € ob(€) \ ob(D)

(Lp)e — 0 else

(p(,': (Lh)c — (Llh)(‘) —

and
Li)e id Ly). ife b(e&) \ ob(D
(gc: (Lp)e — (L)) = (Ln)e = (Ln) € ob(€) \ ob(D)
0= (Lp)e else.

If ¢ € ob(€) \ ob(D), then p. and ¢. are the identity and in particular quasi-isomorphisms of
complexes of Oy, -modules.

If ¢ € ob(D), then since Y is a full subdiagram it follows that (L), is an exact complex of
Ox, -modules by Lemma 3.14.

If (L})e = (Lp)e, then pe: (Lp)e — (Lp)c is the identity and ¢.: 0 — (Lp). is a quasi-
isomorphism.

If (L},)c =0, then p.: (L), — 0 is a quasi-isomorphim and g.: 0 — 0 is the identity. O

Corollary 3.16. In the situation of General assumption 2.1, let Y be a full and well-positioned
subdiagram of X. Assume that the morphism a in Lemma 2.19 is a quasi-isomorphism. Given a

deformation & of the subdiagram ) over ', there is an obstruction
w(€) € Ext3(Ly, myJ)

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8" reducing to €.

Proof. By Theorem 2.20 we know that Ext2.(Lp, m?%J) is an obstruction group and by Proposition

3.15 there is a natural isomorphism of abelian groups Ext3, (L, m%J) = Ext3 (L, m%J). O

Since (L})q is the zero complex in D(X,) for each d € ob(®), we may calculate
RHom), (L}, m%J) better than RHom) (Ly, m%J). Thus using the natural isomorphism of
groups

Ext% (Lj, m%J) = H*(RHomy (L}, m%J))

by [Wei%4, Theorem 10.7.4], it is possible to calculate the obstruction group more explicitly in the

case of full and well-positioned subdiagrams. This is the subject of the next subsection.
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3.3 Complementary subdiagrams

In order to calculate the obstruction group Ext? (Ly,m%J) in Corollary 3.16, we will introduce

the notion of complementary subdiagrams.

Definition 3.17. Let © be a subcategory of € such that ob(®D) # ob(€) and let D be the full
subcategory of € with objects ob(€)\ob(D). Let ) be the ringed topos associated to the restriction
of I: €°P — RTop/S to D°". Then we call Y the complementary subdiagram of ).

Notice that if Y is a full subdiagram of X and if ) is the complementary subdiagram of ),
then Y is the complementary subdiagram of J by definition.

Example 3.18. Let f: Xy — X} be a morphism of ringed topoi over S and let X be the associated
ringed topos. Then the subdiagrams X and X; of X’ are complementary to each other.

We denote the objects F of X in the form F = (Fy, F1, f~1F; — Fy) where F; is a sheaf of
&X;. Letting ) be the full and well-positioned subdiagram Xj, we have

_ 1. _ 0
'Oy = (O, 171 Os, f 17105 = t5 105 5 Ox,)
by definition, hence condition 2 in Theorem 2.20 is fulfilled. L} is given by
LZ = (07 LX1/57 f*LXl/S — 0)

To calculate Extgf(L;‘“m}j) we may first consider HomCh(X)(L;‘L,m}j). By definition this
group consists of all morphisms of complexes of Oy,-modules a: 0 — t§J and all morphisms of

complexes of Oy,-modules b: Ly, s — t]J such that
f*Lx, ;s —0
T
VAR
is commutative. Hence if K is the kernel of the morphism of complexes of Ox,-modules
t1J — fit§J corresponding to f*t7J , tyJ by adjunction, it follows that

Homgn(x)(Ly,, myJ) = Homen () (La, /s, K).
We would like to have a similar isomorphism
Ext% (L}, m%J) = Ext}, (Lx, /s, K)

for the obstruction group and we will see in Corollary 3.26 at the end of this section that there
is indeed such an isomorphism where K is a certain complex of Oy,-modules. Notice that X} is
the subdiagram considered here and the obstruction group is concentrated on the complementary
subdiagram X;. Notice further that uLj = 0 where u: Ox-mod — Ox,-mod is the forgetful

functor.

We come back to the general case. Let ) be a subdiagram of X with complementary subdia-
gram Y, let
u: Oyx-mod — Oy-mod and u: Ox-mod — (’)y—mod
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be the forgetful functors from the category of Ox-modules to the category of Oy-modules and to
the category of Oy;-modules, respectively. Let further L € ob(Ox-mod) such that uL = 0.
We will construct a functor G: Ox-mod — Os-mod in Lemma 3.23, sending a module

M € ob(Ox-mod) to a certain module M € ob(Oy;-mod), and an isomorphism
Homo ,-mod (L, M) = Homoy_mod (wL, M)

of abelian groups.
Fix ¢ € ob(®). Let v € Homg(c,d) such that d € ob(®). The morphism of Ox,-modules

My fiMe — My
corresponds by adjunction to a morphism of Oy, -modules
M2 Mo — frMg.
Definition 3.19. Let M € ob(Ox-mod) and ¢ € ob(D). We define

M.= () ker (M2 M, — f1.My) € M,
yEHomg (c,d),
deob(D)
to be the Ox_ -module obtained by intersecting in M, all kernels of M,ay‘d for v € Home (e, d) such
that d € ob(®). This is a submodule of M..
Notice that if ¢ € ob(D) and if Home(c, d) is empty for every d € ob(®D), then M, = M,.

Remark 3.20. If ¢ € ob(D) and dy,ds € ob(D) and if there is a commutative triangle

(il - > (i2

\/

in €, then the triangle

fw1*
j&l*ﬂ4d1 f}1*fk*ﬂ4d2 j&z*ﬂ4d2

ad d
Ln\ %

is commutative and the kernel of Mﬁj‘f is contained in the kernel of M,‘;f Thus in the definition
of M. we may restrict to those v € Home (¢, d) with d € ob(®) which do not factor through some
object d’ € ob(®) except for the trivial factorization ¢ - d M4

Now let ¢i,co € ob(®) and a € Homsg(cy,c2). In order to get a well-defined module

M € ob(O5;-mod), we have to define a morphism
jviaf:.f;jvic1 — 7ET62
of Oy,,-modules. By adjunction we may equivalently define a morphism

M M, — oD

57



of OXcl -modules. Since fo: X, = X, is a morphism of ringed topoi, fo«: Xz, — Xe, commutes
with arbitrary limits. In particular the functor fo.: Ox,,-mod — Ox, -mod, again denoted fo.
by abuse of notation, is left exact. Consequently, if 0 — M’ — M — M" — 0 is a short
exact sequence in Oy, -mod, then 0 — fasM' = fouM — fo.M" is exact in Ox, -mod by
[Stal3, Lemma 11.5.1.]. Tt follows that we have naturally

fa*MQ = fa* ﬂ ker (M(?d: MC2 — fé*Md>

§€Homg (co,d),
deob(D)

ﬂ fasker (MY M., — f5. M) (3.1)

S€Homg (cg,d),
deob(D)

= m ker (fa*M(?d: fOé*MCQ — fa*fé*Md) g fa*Mcz~

S€Homg (co,d),
deob(D)

So to define a morphism Mzd from

M., = ﬂ ker (M29: M, — f,.My)

yEHomg (cq,d),
deob(D)

to foxM.,, we take an element z of M.,. Let y be the image of x under M2d: M., — fo.M,,.
Let 6 € Homg(ca,d) with d € ob(®) and set v = da. The commutativity of

ad

M
Mc1 f'y*Md = fa*fé*Md
fOL*MCQ

shows that y is sent to zero under fa*Mg‘d: fosxMe, = fou f5: Mg because x is sent to zero under
M34: M., — fyMjy. Since this is true for all § € Home(cp,d) with d € ob(D) we see that

Y € faxM,., is actually an element of the submodule fu.M., of fu.«M., by Equation (3.1).
Definition 3.21. Let M € ob(Ox-mod), let ¢1, ¢z € ob(D) and let a € Homzg(cy, c2). We define
M Mo, = fo Mo,
to be the restriction of M3d: M, — fa.M,, to the submodule M, of M,,.

Lemma 3.22. Let M € ob(Ox-mod). The collection of all Ox,-modules

M.= () ker (M2%: M, — f,.My) C M,

y€Homg (c,d),
deob(D)

for ¢ € ob(D) together with all morphisms of Ox,, -modules
M M., — fou M,

for o € Homzg (1, ¢2) defines a module M € ob(Os;-mod).
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Proof. Let ¢1 = ¢y g c3 be a composition in ®. The commutativity of

S rad
Mg,

Mcl f,@a*M03 = fOt*fB*MC'g,
N Fon M5
fa*Mcz

follows from the commutativity of

ad

fﬂa*MCg. = fa*fﬂ*M03

M
Ba
M.,

fa*Mcz

because
—ad =+ - —ad =+ - —ad —— -
My Me = fasxMe,, Mg Me, = fpMe, and Mgy Me, — fpaxMe,
are by definition the restrictions of

MY Moy = fouMey, MEY: M, — faiMc, and  M3E: Mo, — faanMe,

29

to the submodules MCI, HQ and Mc3 of M.,, M., and M,

C3 9

respectively. O

Now let v: M; — M be a morphism in Ox-mod. We will describe a morphism 7: M; — My

in Oy-mod. Let ¢ € ob(®) and let v € Homg(c, d) with d € ob(®). Then the commutativity of

(M)2e
(Ml)c f’y*(Ml)d
l/cl lf’y*l’d
(M )ad
(M) ———— f1-(M2)q

shows that the restriction of v.: (M;). — (M3). to the submodule (M), defines a morphism of
Ox,-modules U..: (M), — (Ms)..

If o € Homz(cy, ¢2), then the commutativity of

(M)
(Ml)cl foé*(Ml)Cz
Vey \L \Lfa* Veg
(M3
(M2)Cl foé*(MQ)Cz
implies by restriction the commutativity of
— (My)2! —
(Ml)cl fa*(Ml)c2

Vcll lfﬂ*l’cz
v ()2 A
(M2)61 foé*(MQ)Cz

which shows that the collection of all 7.: (M;). — (Ms). for ¢ € ob(®) defines a morphism
7: My — Ms in (’)y—mod.
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Lemma 3.23. Let ) be a subdiagram of X with complementary subdiagram Y. The association
M M, (vi My — M)~ (v: My — M)
defines an additive, left exact functor

G: Oy-mod — (’)y -mod.

In particular, there is an induced additive functor G: K(X) — K()), denoted again G by abuse

of notation.

Proof. Tt follows by construction that the identity M — M is sent to the identity M — M and
that a composition M; = My & My in Ox-mod is sent to the composition M; = M, & M; in

Oy -mod. Thus the association defines a functor
G: Ox-mod — (’)y—mod.
Since all operations in the definition of M are compatible with addition, it follows that the maps
Homo y-mod (M1, M2) — Homoy, -mod (M, M)

are group homomorphisms for every M, My € ob(Ox-mod), i.e., G is additive. It remains to
show that G is left exact. Let
0— M 5 My 5 My — 0

be an exact sequence in Oy-mod. We show that the sequence
0— M, %M, 50y

is exact in Oy—mod. Since M; z, M, is the restriction of the injective morphism M; Z My, it
follows that 7 is injective as well. Furthermore, since G is a functor and since p o v is the zero
morphism, we have that fio7 is zero as well, thus it is left to show that the kernel of z is contained
in the image of 7.

So let y € My such that fi(y) = 0. From the commutativity of

0 M, 2=, ——= 115
L
0 My —2= M, - Ms

whose vertical morphisms are the inclusions and from the exactness of the lower row, we get an

element © € M; such that v(xz) = iz2(y). Let ¢ € ob(D). Let v € Home(c,d) with d € ob(D).

Since y. is sent to zero under (M3)2%: (My)e — fys(My)q it follows from the commutativity of

Ve He

0—— (M) ——————— (My) ————— > (M3).
l(Ml):d l(Mz):d J{(Mw:d
v Sy
0 ——> foul(My)g T fre(Ma)g B fon (M)
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and the injectivity of f,.v4 that x. is sent to zero under (Ml)fyd: (M1)e = foyu(My)q as well. This
shows that z € M; and 7(z) = y.
Now G: Ox-mod — Oy-mod induces a functor Ch(X) — Ch(Y) and since it preserves

homotopy equivalences, there is an induced functor G: K(X') — K(J). O

Now let L € ob(Ox-mod) such that uL = 0 and let M € ob(Ox-mod). We will construct a
natural isomorphism

Homox_mod(L, M) = Homoy_mod (EL, M)

of abelian groups, functorial in M.
Let ¢ € Homo y-mod(L, M), given by a collection of elements 1. € Homo,, -mod(Lc, M) for
¢ € ob(€). If ¢ € ob(D), we have L. = 0 since uL = 0, thus ¢.: 0 — M, is the zero morphism. If

¢ € ob(®) and if v € Home(c, d) with d € ob(D), there is a commutative square

ad

L. - f'y*Ld =0
%l lf‘y*"/’d
M3
Mc f’y*Md

of Oy, -modules. It follows that 1¢.: L. — M, factors through the kernel of Mﬁ;‘d for each
v € Home(c, d) with d € ob(®), i.e., ¥.: L. — M, factors through the submodule M, of M,. If
ic: M, — M, is the inclusion, then there is a morphism of Ox, -modules @C: L. — M, such that

is commutative.
If @ € Homz(cy, ¢2), then the commutativity of

ad
a
Lcl —— fa*L02

o | |t
Mad

MCl —_— fa*Mcz

implies the commutativity of

ad
o

Lcl —_— fa*L02

s,
Mad

Mcl fa*MCQ

showing that the collection of all ¥,: L. — M. for ¢ € ob(®) defines an element

E S HOHlOy—mod (ﬂL, M)
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Lemma 3.24. Let Y be a subdiagram of X with complementary subdiagram Y, let L € ob(Ox-mod)
such that uL = 0. Let further M € ob(Ox-mod). Then the map

g HOmoX_mOd(L, M) — Homoy_mod(ﬂL,M), w — a

is an isomorphism of abelian groups. Furthermore, if v: My — Ms is a morphism in Oy -mod,
then

1% —
Homo y-mod (L, M) ————— Homo_, moa (7L, M)
HomoX_mod(L,v)l iHomoy -mod (TL,D) (3.2)
KMo

Homox—mod(Lv M2) —— Hom(ﬂy -mod (EIM HZ)

s commutative.

Proof. By definition pps sends ¥ to the collection of those ¥.: L. — M, such that ¢ € ob(®) and
omits all irrelevant ¢.: 0 — M, for ¢ € ob(D). Thus pps is an injective homomorphism of groups.
On the other hand, given x € Homo; -mod (WL, M), we take the composition v..: L. Xy M, fey M,
for ¢ € ob(®) and the zero morphisms ¢.: 0 — M, for ¢ € ob(®) which together define a preimage
of x under pps. Thus pyys is surjective.

Since 7: M; — M, is obtained by restricting v: M; — My to the submodule M; we see that

Square (3.2) is commutative. O

Since @ is the forgetful functor, pas is functorial in L for every M € ob(Ox-mod). It follows

that there is a natural isomorphism
Homgp(xy (L, M) = Hom gy, 35 (WL, M)

of abelian groups, functorial in M € ob(Ch(X)) and L € ob(Ch(X’)) whenever uL = 0 in Ch(}).
For fixed L € ob(Ch(X)) such that uL = 0 in Ch()), there are natural isomorphisms

Homy (L, M) = Hom'y(HL, M)

of complexes of abelian groups, functorial in M, i.e., if 2b is the category of abelian groups, then

the diagram

K™ (X)

K*())

Homy (L,—) Hom'y(ﬁL,—)

K (2b)

is commutative up to natural isomorphism of functors where G': K*(X) — K*()) is the functor

in Lemma 3.23.

Proposition 3.25. Let Y be a subdiagram of X with complementary subdiagram Y and let

u: Ch(X) — Ch(Y) and u:Ch(X)— Ch())
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be the forgetful functors. Let L € ob(Ch™ (X)) be a bounded above cochain complex all of whose
components are free Oy-modules such that uL = 0. Then there is a natural isomorphism of
functors

RHom) (L, —) = RHom;(uL, RG(-))
from DT (X) to D(2Ab). In particular, for each M € ob(DT (X)) and i € Z, there are natural

isomorphisms of abelian groups
Extly (L, M) = Ext{;(ul, RG(M))
which are functorial in M.

Proof. We proceed similarly as in the proof of Proposition 2.14. By Theorem 1.9 there is a natural

transformation of functors

¢: RHom (L, —) — RHomg;(uL, RG(-))
from DT(X) to D(2Ab). We take K = K*()) in the notations of Theorem 1.9. In order to

show that ¢ is an isomorphism, it remains to show that each exact complex E of KT () is
Hom'y(ﬂ[/7 —)-acyclic, i.e., H (Homi(ﬂL, E)) =0 for all 4. But

H'(Homi;(uL, E)) = Homy v (@L, Eli])

which is zero because each morphism of complexes from a bounded above complex of free modules

to an exact complex is homotopic to the zero morphism. O

Corollary 3.26. Under General assumption 2.1, let Y be a full and well-positioned subdiagram
of X with complementary subdiagram Y. Assume that the morphism a in Lemma 2.19 is a quasi-

isomorphism. Then given a deformation & of the subdiagram ) over S', there is an obstruction
w(€) € Ext3(uLy, RG(myJ))

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8" reducing to &.

Proof. By Corollary 3.16 there is an obstruction in Ext3 (L}, m%J). The complex L of Remark
3.8 satisfies the conditions of Proposition 3.25, furthermore, we have wLj = L) by definition of

L;. It follows from Proposition 3.25 that there is a natural isomorphism
Ext (Ly, myJ) & Ext3(aLy, RG(m3J))
of abelian groups. O

Hence for full and well-positioned subdiagrams ) such that the morphism a in Lemma 2.19 is a
quasi-isomorphism, the obstruction group actually lives on the smaller diagram ), at the expense
of the complex of O3-modules RG(m%J) which is in general more difficult to handle then the
Ox-module m¥% 7. Appendix B deals with the calculation of RG(m% J) by using certain injective
resolutions of m% . J. Corollary 3.36 will give an example where RG(m% J) may be calculated
explicitly.

Notice that we may not apply Proposition 3.25 to the complex Cone(m) in the obstruction

group in Theorem 2.13 because it does not consist of free O y-modules in general.
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3.4 Particular cases

Using injective resolutions as in Corollary B.4, we are able to calculate the complexes RG(m% J)
of Corollary 3.26 for the following particular cases.
The first three subsections deal with subdiagrams obtained from the diagram by omitting

exactly one level. For example, if we consider the diagram

VN
X h=gof 7

3

we will deal with the subdiagrams obtained by omitting the target Z, the source X and the bridge
Y and their respective obstruction groups. The notions of target, source and bridge will be defined
in the subsections. Motivated by deformation theoretic considerations, we will distinguish between
cyclic and non-cyclic subdiagrams in Subsections 3.4.1 and 3.4.2.
Subsection 3.4.4 is devoted to another extreme case. If the subdiagram is obtained by keeping
all levels, but by omitting all morphisms except for the identities, we get the discrete subdiagram.
We will consider several diagrams and subdiagrams with more than 3 levels, amongst them for

example

diagram in RTop/S

subdiagram 1 in R%op/S

X—h>Z

X

f i
L — Y
subdiagram 2 in RTop/S
X Z

Y

f

Ww—" Y
subdiagram 3 in RTop/S

X Z

w Y

with no other morphisms except for the identities where j =ho f =iog.




3.4.1 Omitting a target

Definition 3.27. Let X be a diagram. A target of X' is an element 0 € ob(€) such that Home (0, 0)
consists only of the identity and such that there are only morphisms from 0, i.e., Home(c, 0) is
empty for ¢ # 0. Equivalently, the corresponding level Xy has only morphisms of ringed topoi over
S from the other levels and the only morphism from Xj is the identity. By abuse of notation we
call X a target of X.

A target Xy of X may be visualized in RTop/S as

Xe, X,

- A,

Proposition 3.28. Assume given the situation of General assumption 2.1. Let Xy be a target of X
and let © be the full subcategory of € with objects ob(€)\ {0}. Then Y is a full and well-positioned
subdiagram of X with complementary subdiagram Y equal to Xy and condition 2 in Theorem 2.20
is fulfilled.

Let Ly, ;s be the cotangent complex of Xy over S and let

Xe,

G: K(X) = K(X)

be the functor in Lemma 3.23. Given a deformation & of the subdiagram Y over S, there is an
obstruction
w(§) € Ext}, (L, s, RG(m5T))

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8" reducing to &.

Proof. Since ® is a full subcategory of € it follows that ) is a full subdiagram of . Furthermore,
Y is well-positioned in X since we have omitted a target of X and Y is the ringed topos X because
Home (0,0) = {id}.

As 0 is a target of X, the category 0 defined in Definition 2.3 is empty, whence

(u'Oy)o =t;'Os

by Remark 2.5. On the other hand we have (u=10y)4 = Oy, for every d # 0 by Lemma 3.13. It
follows that condition 2 in Theorem 2.20 is satisfied.

By Corollary 3.26 there is an obstruction lying in Ext%(ﬂLh, RG(m%J)). The ring morphism
ho: (u™1Oy)o — Oy, is just fp: tal(’)g — Ou,, the ring morphism of to: Xy — S. Therefore we

have uwLy = Lp, = Lx,;s an the obstruction lies in

Ext3(aLn, RG(m% J)) = Ext}, (L, /s, RG(m5J))
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In general, we are able to control the cotangent complex Ly,,s in practice since it is the
cotangent complex of the structure morphism ty: Ay — S. But it is more difficult to control
RG(m% J). We will use injective resolutions as in Corollary B.4.

Let X be a target of a diagram X and let M be an Ox-module. Then G(M) is the submodule

My = m ker (M?d: My — fyMg) C My

yEHom (0,d)
d#0

of My by Definition 3.19.

Notation 3.29. Let I' be the set of those morphisms v: 0 — d in € with d # 0 which do not
factor in € through some d’ € ob(€) \ {0} except for the trivial factorization 0 - d 4 d.

By Remark 3.20 we may restrict to all morphisms in I' when calculating Mg, i.e., we have

Mo = () ker (M2%: My — f,.Mqy) C M.
yel
For each ¢ € ob(€) choose an injection jO: M, — J? to an injective Oy -module JO. Let I° be

the injective Ox-module consisting of the modules

= @ fao

§eHomg (c,c’),
c/ €ob(€)

as in Lemma B.2 and i°: M — I° the injection as in Proposition B.3. Let Q be the cokernel of
i M — I° and choose injections jl: Q. — J! to injective Ox_-modules J! as in the proof of

Proposition B.3. Continuing this way, we get an injective resolution

(R VA LNy gy Ry SR
of M as in Corollary B.4. Now fix v € Home (0, d) such that d # 0 and v € I'. Then the chosen

injective resolution of M yields morphisms

i = D i o D Lt 2h( D fdE) =i

§€Hom g (0,c’), e€Homg (d,c’), e€Homg (d,c’),
c/ €ob(€) c/ €ob(€) c/ €ob(€)

of Ox,-modules given by projecting whenever 0 9 ¢ factors through v as 0 5 d < ¢ and a

commutative diagram

i9 0 iy 1 ig 5
0 My I8 1 I3
\L M’Y i prg l pr}r \L pr?y
fw*i?i f’v*ié f"(*ifl
0 JrxMa JyeI fredy fv*lg -

of Oy,-modules. Now for a finite family of Ox,-modules (By)xea and Ogx,-linear morphisms
cx: A — By let

D(CA): A— @B)\
AEA
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be the composition

A%@AM@B,\, avr (a,...,a) —(ca(a))
A€A AEA

AEA”

Taking A =T', we get a commutative diagram

;0 i1 2
O MO 0 Ig 0 I& 0
lD(M'y) J{D(prg) iD(Pri)
@, fruil ., fouil @, fr-i2
0H®7 f’Y*Md ! @"/ f’Y*I((i) ! @'\/ f’Y*Ic} !

whose first row is exact and whose second row is not exact in general. Let us exhibit the kernel
and the cokernel of

Dprh): Iy = B fodi = D D fendl = D FHeLl

§€Hom (0,c¢/), V€L,  ecHomg (d,c’), vy€er,
¢/ €ob(e) : 0—d ¢’ €ob(e) ~y: 0—=d

Since each fs5,J!, for 6 € Home(0,¢") with ¢ # 0 occurs somewhere among the f...J), we see
that the kernel of D(pr’}) is just the direct summand belonging to the identity 0 — 0, i.e.,
ker(D(prY)) = Jg- (3.3)

For 6 € Home (0, ¢') with ¢ # 0 let p(d) be the number of factorizations

0—2 ¢
\ / (3.4)
d
in € such that d # 0 and v: 0 — d does not factor in € through some d’ € ob(€) \ {0} except
for the trivial factorization 0 % d % d, i.e., such that v € I'. These are the relevant v we have
restricted our attention to. Notice that u(d) > 1 and that the given ¢: 0 — ¢’ might have several
factorizations through the same v: 0 — d, i.e., there might be different €1,e2: d — ¢’ such that
€17 = 8 = €977. By construction p(J) is equal to the number of times the direct summand f. . JJ

occurs in €P., fy«Ij whenever § = ev. Notice that for each § € Home (0, ¢’) with ¢’ # 0, the direct

summand f5.J7; always occurs with multiplicity one in I}

Lemma 3.30. The cokernel of D(pr’}) is isomorphic to

n(d)—1

@ @ Joudl.

§€Homg (0,¢/) j=1
c/ #0

In particular, D(pr?}) is surjective if and only if 1(6) = 1 for all 6 € Home(0,c’) with ¢’ # 0.

Proof. For every § € Home (0, ¢’) with ¢’ # 0, the restriction of D(prl}) to f5.JJ is given by

o u(9)
Foudl 5 @D 5B, v (x,.. 1)
j=1
n(d)—1
and has cokernel €@ f5.J%. O
=1
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We have a commutative diagram

0 0 0
_ Jo Iz, il 59 L idl s
0 M J J}
’LO il 742
0 MO 0 Ig 0 Iol 0
D(M5) D(pr?) D(pr?) (3.5)
D, freig D, freiy D, fr-15
0—— EE)W-fV*lxld : - Ef)w jZY*ljg : - Ef)w jZY*]g - :
cok(D(M,)) cok(D(pry)) ———— cok(D(pr})) ——
0 0 0

of Oy,-modules all of whose columns are exact. The direct sums are taken over the index set I.

Furthermore, the second row
-0 -1
0— My ~% 19 % 1t — ...
is exact because it is the part on the level 0 of the chosen injective resolution of M. Remember
that the second row is not an injective resolution of Mj since the I} are no injective O x,-modules

in general. Moreover, the first, third and forth row are not exact in general.

-0 1
Since 0 — M “ 19 =5 I' — ... is an injective resolution of M, we have

i8] 50 a5l igl 2
RG(M) = (J§ —% 53 =% J§ = J3 )

In order to calculate this complex, we distinguish between two cases. The case u(d) =1 for every

0 € Home (0, ') with ¢/ # 0 is particularly interesting.

Definition 3.31. Let X be a target of X. Then € is called non-cyclic (with respect to 0) if
every 6 € Home (0, ¢') with ¢/ # 0 has a unique factorization in € of the form 0 2 d = ¢/ where
d € ob(€) \ {0} and v € T'. The case ¢ = id is possible. Otherwise € is called cyclic (with respect
to 0). The diagram X is called non-cyclic (with respect to Xp) if € is non-cyclic with respect to

0. Otherwise X is called cyclic (with respect to Xp).

So X is non-cyclic if and only if p(§) =1 for every 6 € Home (0, ¢’) with ¢ # 0.
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Example 3.32. Let €, &, €3 and €4 be the categories

Qtl @2 @3 64

AN AN

00— =¢3 00—
C2

with no other morphisms besides the identities such that v and " in €, are distinct and such that

Cq Cq

in each category, the composition of any two consecutive morphisms is the displayed morphism.

Then €; and €, are non-cyclic and €3 and €4 are cyclic.

A non-cyclic category € might be visualized as

-

C3 Cyq
. \ dy cs
2 dq 0 ds Co

4 .

C1
with no other morphisms involved except for the identities and the composition of any consecutive

morphisms. Notice that the notion “non-cyclic with respect to 0” does not necessarily mean that

the directed graph is a tree with root 0 because, for instance, the directed graph
0——=d=<—"7-nc

is not a tree, but the corresponding category € is non-cyclic with respect to 0.

Our next aim is to show that in the case of non-cyclic diagrams, we may restrict to the relevant
morphisms v € T’ not only for calculating G(M) as we have already seen in Remark 3.20, but also
for calculating RG (M) which is not clear a priori. The idea behind the possibility of this restriction

is the following. Suppose given the two pairs

and

diagram in RTop/S subdiagram in RTop/S
Xl Xl
X3 fo Xo X3
e
XQ X2
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diagram in RTop/S

subdiagram in RTop/S

X1

X

with no other morphisms involved except for the identities where the subdiagrams are obtained
by omitting the target Xy in both cases. Each diagram is non-cyclic with respect to Xy. The
obstruction for extending a given deformation of the subdiagram to a deformation of the diagram
should be the same because in both cases we only have to find a deformation Xj of &, and

deformations of f and g from the given deformations of A} and X to A{j, respectively. On the

other hand, if we are given the two pairs

and

diagram in RTop/S

subdiagram in RTop/S

X3

X
e
N

Xy

subdiagram in RTop/S

X1

i N

where the first diagram is cyclic, then the obstructions should be different because in the first case

we have to make sure that the commutativity still holds whereas in the second case this problem

does not occur.

Definition 3.33. Let X be non-cyclic with respect to the target X;. We define €1 to be the
subcategory of € with objects

ob(€r) = {0} U {d € ob(€) | there exists (y: 0 — d) € I'}

and morphisms
Home,. (0,d) = {y € Home(0,d) | vy € T}

for d # 0, besides the identities.
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This category may be visualized as

dy do ds e dm
0

where the objects d; do not have to be pairwise distinct, but if d; = d; for ¢ # j then ; # ;.
Let AT be the ringed topos associated to the restriction of the diagram I: €°P — RTop/S to the
subcategory €7P of €°P. Let

ur: X = Ar (3.6)

be the forgetful functor from & to the subdiagram AT and let Gr: Ox.-mod — Ox,-mod be the

functor in Lemma 3.23. Then by construction we have commutative diagrams

ur

Ox-mod Oxp-mod K(X)* K(Xp)*

O x,-mod K(X).

Proposition 3.34. Let X be non-cyclic with respect to the target Xy. Then there is a natural
isomorphism of functors
RG(—) = RGr(ur(-))

from DT(X) to D(X). In particular, for every Ox-module M there is a natural isomorphism
RG(M) = RGr(ur(M)) in D(Xp).

Proof. By Proposition 1.9 there is a natural transformation of functors
RG(-) - RGr(Rur(-))

from DT (X) to D(X,). We have seen in Proposition B.3 that each O y-module admits an injection
to an injective Oxy-module I of the form in Lemma B.2. Furthermore the natural morphism of
functors ur(—) — Rur(—) is an isomorphism because ur is exact. Thus by [Wei94, Corollary
10.8.3] it is enough to show that each injective Ox-module I of the form in Lemma B.2 is sent
under ur to a Gr-acyclic object.

So let I be an injective Ox-module built from injective Oy, -modules J, for ¢ € ob(€) as in

Lemma B.2. Then M = up(I) is given levelwise by

MO = @ fé*Jc’

§€Homg (0,¢’),
¢/ €ob(€)

and

Md = @ fs*Jc’

e€Homg (d,c’),
c/ €ob(€)
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for d € ob(€r), d # 0. For every v € Home.(0,d), d # 0, we have a morphism
M’y: MO = @ f&*Jc’ - @ fs’y*Jc’ = ffy*( @ fs*Jc’) = f’y*Md

§€Homg (0,c), ecHomg (d,c’), e€Homg (d,c’),
c/ €ob(€) c/ €ob(€) c/ €ob(€)

given by projecting whenever § factors as 0 - d — ¢ and these projections define a morphism

D(MV)Z Mo = @ fJ*Jc’ — @ @ fs’y*Jc/ g@f'y*Md

§€Homg (0,¢), YEL,  ecHomg (d,c’), ~el
c/ €ob(€) 7: 0—d c/€ob ()

as in Diagram (3.5) on page 68. Since X is non-cyclic with respect to the target Xp, it follows
that D(M,,) is surjective by Lemma 3.30. Moreover we have ker(D(M,)) = Jy as we have seen in
Equation (3.3) on page 67. Now for every d € ob(€r) with d # 0 choose an injective resolution

~0 . ~1 . ~9 .
0— My 2% J9 24 gt 20 j2 5
of My and choose an injection j9: My — J3 of My to an injective Ox,-module J3. Let I° be the
injective Ox.-module built from the jg and jg, let i°: M — I° be the injection of Proposition
B.3 and let Q° be the cokernel of i°. Since there are no morphisms from d # 0 in Cr except for
the identities, we have by definition
I =Jg

for every d € ob(€r) \ {0} and QY, the cokernel of 1%: My — I9, is isomorphic to the cokernel of
j’g: My — jg. After choosing an injection Qg — j& to an injective Ox,-module j(}, let I be the
injective O x,.-module built from the J! and J¢. Continuing this way and choosing I = .J% for

all n € N and all d € ob(€r) \ {0}, we get an injective resolution
in ~ 7?1 ~ %2 ~
0—-MI0 1t 12—

of M and for every v € Home,. (0, d), d # 0, we have a commutative diagram

=0 21 22
710 AO ZO ,\1 ZO ,\2
0 My IO IO IO
M ipr?, ipri \Lpr?y
Fywig . Fywig - Fywig .
0 1 2
0 freMa Jryelg fyedg Jyedg —

of Ox,-modules which together induce a commutative diagram

0 0 0

0 I 8 !
o ) i ) 2
0 My 0 0
D(My) D(pr:) D(pr,ly)
D, fr+i o B, Faeia . D, faria

O - ®7 f’Y*Md @'\/ f'Y*Ig @*\/ f’Y*Idl

0 0 0
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whose first column is exact because D(M,,) is surjective, all of whose other columns are exact by
Lemma 3.30 since AT is non-cyclic with respect to the target Aj, and whose middle row is exact
because it is the part on the level X of the injective resolution of M.

Remember that each injective module is flasque by [SGA42, V.4.6.] and the direct image
functor of a morphism of ringed topoi sends flasque modules to flasque modules by [SGA42,
Proposition V.4.9.]. In particular, for each d € ob(€r) the Ox,-module

My = 6{) fé*JL’

ec€Homg (d,c’),
¢/ €ob(€)

is flasque. Thus the chosen injective resolutions
30 .0 Gl 4 52 4
0— My =% JS =5 J; =5 J3 — ...

yield exact sequences

Fye33 20 Fywdd 21 Fyeda 5
0 = fruMyg = fv*Jc(lJ e fv*Jc}w—%fw*Jg_)'“

for each v € Homg,(0,d), d # 0. But since [ = J7 for all n € N and all d € ob(€r) \ {0} by
our choice, we see that the lower row of the above commutative diagram is exact as well. The
exactness of the middle and the lower row imply the exactness of the first row, therefore the i-th

cohomology
H'(Gr(ur(I))) = H (Gr(M)) = H (Gr(I*)) = H ((J3 — J§ — Jg — ...))
is zero for i > 0, showing that M = ur([) is acyclic for Gr. O

Consequently, if we are only interested in calculating RG(M) for an Oy-module M, we may
always assume that the category € defining the given non-cyclic diagram X is equal to its subcat-
egory €. In general this strongly simplifies the calculation of

7:(1)‘]8 i(2)|Jé igng

RG(M) = (J§ g J2 g3 )

from Diagram (3.5) on page 68 because if € = €, we may start with injective resolutions
430 4 32
0— M, = JO =% Jr = J2 — ..
of M. for every c € ob(€) \ {0}.

Proposition 3.35. Let X be non-cyclic with respect to the target Xy. Let M be an Ox-module.

If the third row of Diagram (8.5) is exact, then there is a natural isomorphism
RG(M) (Mo 2 cok(D(M,)) = 0 — 0 — )
in D(Xy), where M is placed in degree 0. In particular, there is a natural isomorphism

]Eth(o (LX0/57 RG(M)) = ]EXt2X0 (LXO/S7MO) S5 EXt‘lXO (LX0/37 COk(D(M’)’)))
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Proof. Since X' is non-cyclic, it follows that cok(D(pr}})) = 0 for all n > 0 by Lemma 3.30. Each

column and the second and third row of Diagram (3.5) are exact. From the short exact sequence

of complexes
D(pr?
0—Js =13 M@quﬁo
¥

defined by
0 0 0
ifl) g9 13 I3 i g2

T Jo Jg

2 .3

18 ) Iol %0 102 )

D(pr9) D(pr}) D(pr?)
D, fy+ig D, fy«ig D, fy«ia
@’y f’Y*Ig - @fy f"/*Ié . @fy f’Y*ICQI -

0 0 0

we get a long exact sequence of cohomology groups
0 ——= H(J§) — HO(I§) — H(D, [ 1) — H'(J§) — H'(I§) — -
and by exactness of the second and third row of Diagram (3.5) we have

HY(13) = (@) 1,.13) = 0

for all n > 1. From the exactness of the above cohomology sequence it follows H™(J3) = 0 for all

n > 2 and the cohomology sequence is given by

— D(M.,)
0 My Moy @7 f’Y*MdHCOk(D(M,Y))HOH... .

In particular, the complex J$ is exact except for the places J and Ji and the morphism of

complexes

_— 0
0 0
. . -3 -4
Zé e ’g g ol 2 3 tolsg

T —Jg g Jo

is a quasi-isomorphism, i.e., an isomorphism in D(Xp). Hence we have

]EXt%(o (LX0/57 RG(M)) = EXt.%(O (LX0/57 MO) @ Eth{g (LXO/S> COk<D(M’Y))[_1])
= Ext?, (L, /s, Mo) & Extl, (L, /s, cok(D(M,))).
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Corollary 3.36. Let X be non-cyclic with respect to the target Xy and let M be an Ox-module.
If R f My =0 for alli >0 and all (y: 0 — d) € T, then there is a natural isomorphism

RG(M) = (m 9 cok(D(M,)) = 0 = 0 — )
in D(Xy), where My is placed in degree 0. In particular, there is a natural isomorphism
]Ethco (Lxys, RG(M)) = Ethco (Lxys, Mo) ® ]EX@(O(LXO/& cok(D(M,))).

Proof. By Proposition 3.34 we may assume € = €p. Moreover in this case the construction of

Diagram (3.5) may be started with injective resolutions
40 4 2
0— M, =% JO = JH =5 J2 — .

of M, for every ¢ € ob(€) \ {0}. Since R'f,.M. = 0 for all i > 0 and all ¢ € ob(€) \ {0}, the

sequences

Fynd2 Fyeil A
0= fouMe = frudd = Sredd 5 frdE =

are exact. Hence the third row of Diagram (3.5) is exact and the claimed isomorphism follows

from Proposition 3.35. O

Example 3.37. Let us consider one example of a cyclic diagram. Assume given the pair

diagram in RTop/S subdiagram in RTop/S
X—" sz X

f g i !

w— Y i — Y

with no other morphisms besides the identities where ho f = j = i o g. The ringed topos Z
is a target of X and X is cyclic with respect to Z since j has two different factorizations. Let
M = m%J. With the notations of the injective resolution on page 66, we choose injectives modules

Sy, J%, Jy and J7 over Ow, Ox, Oy and Oy, respectively, and we have
Ly =Ty Ii=Jp @ fly . =Jp@gdy ad If=JpehJy ey el

for all n. Diagram (3.5) on page 68 is given by

(0]



0 My JY
0 My JY®heJY @ 5.JY ®inJy ——— -
D (M) D(prg)

cok(D(M,)) J TS

0 0

and the cokernel of D(pr?) is given by j.Jy, for all n by Lemma 3.30. The second row of the
above diagram is exact but the third row is not exact, even if R‘h,Mx =0 and R%,.My = 0 for

all ¢ > 0 since we may not start with injective resolutions
0= Mx = J% = Jx =J%—... and 0— My = Jy = Jp = J — ...

of Mx and My, respectively. Altogether, it is very difficult to control the obstruction group even
for one of the simplest cases of a cyclic diagram.

Nevertheless, under our General assumption 2.1, if we are given a deformation

X/ X
f’T of fT
WLy w—2sy

over &', we may first try to find a deformation j': W/ — Z’ of j: W — Z and then try to find
a deformation h': X’ — Z’/ of h: X — Z and a deformation ¢': Y’ — Z’ of i: Y — Z such that
hof =3 =1o0g. We will calculate the corresponding obstruction groups in Proposition 4.5

and Proposition 4.8.
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3.4.2 Omitting a source

Definition 3.38. Let X be a diagram. A source of X is an element 0 € ob(€) such that Home (0, 0)
consists only of the identity and such that there are only morphisms to 0, i.e., Homg (0, ¢) is empty
for ¢ # 0. Equivalently, the corresponding level X has only morphisms of ringed topoi over S to
the other levels and the only morphism to Xy is the identity. By abuse of notation we call Ay a

source of X.
A source X of X may be visualized in SRTop/S as

Xe, X,

/

Xy s X,

Proposition 3.39. Assume given the situation of General assumption 2.1. Let Xy be a source of
X and let D be the full subcategory of € with objects ob(€)\{0}. Then Y is a full and well-positioned

subdiagram of X with complementary subdiagram Y equal to Xj.

X,

Assume furthermore that the morphism a in Lemma 2.19 is a quasi-isomorphism and let L be

the cotangent complex of the ring morphism

ho: (u’l(’)y)o = hg f;loxd — OX()
~v€0b(0)

in Proposition 2.16. Given a deformation £ of the subdiagram Y over S’', there is an obstruction
w(§) € Ext%, (L, t5J)

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8’ reducing to &.

Proof. Similarly as in the proof of Proposition 3.28, we have that ) is a full subdiagram since ©
is a full subcategory of €, furthermore ) is well-positioned since we have omitted a source of X
and the complementary subdiagram ) is Xy because Homg (0,0) = {id}.

Now we come to the obstruction group. By Corollary 3.26 there is an obstruction lying
in Ext%(ﬂLh,RG(m}J )). Since Y = X, we have that uL, = L, the cotangent complex of
ho: (u='Oy)o — Ox,. The functor

G: Ox-mod — Oy—mod = Ox,-mod
in Lemma 3.23 maps an Ox-module M to the Ox,-module

Mo= ()  ker (M2: My— f,.Ma) € M.

yEHomg (0,d),
d#0

But Homg (0, d) is empty for d # 0 since Xj is a source of X. It follows that My = My and G

is just the forgetful functor @w: Ox-mod — Ox,-mod. In particular, G is exact and the natural
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morphism of functors G(—) — RG(—) from DT (X) to D (Xp) is an isomorphism. Consequently

the obstruction lies in
Ext%, (L RG(m3J)) = Ext}, (L, G(m% 7)) = Extd, (L 15.7):
O

Notice that in contrast to the analogue statement in Proposition 3.28 for omitting a target,
we have to assume that the morphism a in Lemma 2.19 is a quasi-isomorphism. We will see in
Proposition 3.43 that condition 2 in Theorem 2.20 is satisfied for a certain class of subdiagrams
obtained by omitting a source, hence for this class the morphism «a is a quasi-isomorphism.

In practice, we are generally able to control ¢5J because to: Ay — S is the given structure
morphism of the source. But the cotangent complex L of hg might be hard to control. In order to
calculate L more precisely, we continue similarly as in the case of omitting a target in Subsection
3.4.1.

Notation 3.40. Let X be a diagram having a source Xy. Let I' be the set of those morphisms
v:d — 0 in € with d # 0 which do not factor in € through some d’ € ob(€) \ {0} except for the
trivial factorization d % d 2 0.

Definition 3.41. Let Ay be a source of X. Then € is called non-cyclic (with respect to 0) if
every § € Home(c/,0) with ¢/ # 0 has a unique factorization in € of the form ¢ = d % 0 where
d € ob(€) \ {0} and v € I". The case ¢ = id is possible. Otherwise € is called cyclic (with respect
to 0). The diagram X is called non-cyclic (with respect to Xp) if € is non-cyclic with respect to
0. Otherwise X is called cyclic (with respect to Xp).

Example 3.42. Let €, €, €3 and €4 be the categories

Qtl €2 @3 Q:4
c3 c3 C1 C1
'Y/
Cl4>0<62 Cl4>0:<02 C34/>0 Cg ———>(
Cy Cyq C2

with no other morphisms besides the identities such that v and 4" in €, are distinct and such that
in each category the composition of any two consecutive morphisms is the displayed morphism.

Then €; and €, are non-cyclic and €3 and €4 are cyclic.
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A non-cyclic category € might be visualized as

C3 Cyq / ‘e
.. \ d2 Cs
C2 dy 0 ds Ce

.

with no other morphisms involved except for the identities and the composition of any consecutive

C1

morphisms.

If (yv: d — 0) € T', we may consider v as on object of the category 0. By definition of T' we
have
id ify1 =

Homg((’yl: d1 — 0), (’722 dg — O)) =
0 else

for each (y1: dqy — 0), (y2: d2 — 0) € I'. Hence we may consider I' as a discrete subcategory of 0
and we write again I' for this subcategory by abuse of notation.

We will see that in the case of a non-cyclic diagram X', we may restrict to all morphisms v € I'

for the calculation of

(w'O0y)o = lim f7'Ox,.

vE€ob(0)
The idea behind this possibility comes again from deformation theoretic considerations. Suppose

given the two pairs

diagram in RTop/S

subdiagram in RTop/S

X Xy
SNC |
hof
X3 Xo X3
A
XQ X2

and

diagram in RTop/S

subdiagram in RToep/S

&1

X
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with no other morphisms involved except for the identities where the subdiagrams are obtained
by omitting the source Xy in both cases. Each diagram is non-cyclic with respect to Xp. The
obstruction for extending a given deformation of the subdiagram to a deformation of the diagram
should be the same because in both cases we only have to find a deformation Xj of Xy and
deformations of f and g from A} to the given deformations of X; and Xa, respectively. On the

other hand, if we are given the two pairs

diagram in RTop/S subdiagram in RTop/S
Xl Xl
2N 4
X3 Ao A3
XQ XZ
and
diagram in RTop/S subdiagram in RToep/S
X X
y
Xo
S
X
X, ’

where the first diagram is cyclic, then the obstructions should be different because in the first case
we have to ensure that the commutativity still holds whereas in the second case this problem does

not occur.

Proposition 3.43. Let Xy be a source of X and assume that X is non-cyclic with respect to Xj.

Then condition 2 in Theorem 2.20 is satisfied and there is a natural isomorphism

iy f710x, % T £70x, =@ 70x,

y€0b(0) y€ob(T) ver
of to_l(’)g-algebms. In particular, the cotangent complex L of ho: (u=10y)o — Oy, is isomorphic

to the cotangent complex of the natural ring morphism

®f7_1(’)xd = Ox,

~el

defined by all talog—algebm morphisms 0. : f,y’lOXd — Oy, for (’y: d— 0) € ob(I"), the tensor

product being taken over tal(’)g.

Proof. We know that (u='0y)s = Oy, for d # 0 by Lemma 3.13 since ) is a full and well-
positioned subdiagram of X by Proposition 3.39. Thus once the isomorphism
(ut0y)p = Qner [y 1Oy, is shown, it follows that condition 2 in Theorem 2.20 is satisfied.
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By the universal property of the colimit li_n%Eob ) I 1O, there is a unique morphism of

talog—algebras ¢: lig’ye()b(r) f;lOXd — lig%ob(g) f;loxd such that

f510x, < f510x,

| i

. ¢
f510x, —— lim

[0k,

h—r)n"/eob(F) ~y€ob(0)

is commutative for every (7: d— 0) € ob(I") where the vertical morphisms are the natural ones.

If (6: d — O) € ob(0), then since X is non-cyclic with respect to Xy there is a unique factorization

o—2 50
N
d
in € for some d # 0 such that (fy: d — 0) € ob(T"). Since v, € and d depend uniquely on §, we
write v = v(0), € = £(d) and d = d(§). The factorization yields a morphism

_ 1 70
f5 1OXC/ = f’y 1f5 1OXC/ ’Y—> f’Y 10Xd

of t; ' Os-algebras. If ¢ € Homg((d1: ¢} — 0),(d2: ¢y — 0)) and if ¢y = d 25 0 is the unique

factorization of LEN 0, then it follows from the commutativity of

o1
T T
! !
C C
1= C
ep
d

and the uniqueness of the factorization of ¢ 9%, 0 that either ¢ = id or ¢ = id. In any case we
have (d1) = v(d2) = 7, d(01) = d(d2) = d and €(d2) = €, €(d1) = ep. Hence the triangle

0

f5,'00

—1 —1
i1On, fil0x,
7 e frte.
[0k,
is commutative which shows that the morphisms
-1 f;é)ef(é) -1 . -1
f(S OXC/ f.y((s)OXd(g) — hg f-y OXd
~yEob(T")

are compatible with the morphisms defined by 0 for every (§: ¢ — 0) € ob(0). Consequently, by

. . . -1 . . .
the universal property of the colimit hﬂéeob(g) f5 Ox, there is a unique morphism of
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talOS—algebras ¢: hgéeob(g) fgloxc, — ligve()b(r) f;lOXd such that

-1 1) f;(fs)ge(é) 1
f,y(g) Xa(s) f(s OXC,

| |

. -1 13 . -1
hgve)ba") fy Oy <= lﬂaeob(g) fs Ox,

is commutative for every (5 i — O) € ob(0) where the vertical morphisms are the natural ones.
o, (o Ll . _1 . _1 .
By definition both morphisms id and £C from hg%ob(r) [y Ox, to hgl%ob(r) [5 7 Ox, fit into a

commutative diagram

£710x, a f710x,

| l

. -1 . —1
hg’ya)b(f‘) [ Ox, >hﬂyeob(r) [ Ox,

for every (’y: d — 0) € ob(I"), hence id = £( by the universal property of li_r)nweob(r) fw_l(QXd.

Similarly, it follows id = (£. Hence there is a natural isomorphism

lim £ O, = ling f10x,

~yEob(0) ~y€ob(I")
and since I is a discrete subcategory of 0, we have @weob(r) f,y’loxd = ®7€F f;l Oy,. O

Our next aim is to show that the obstruction group IEExtf\‘,(J (L, t5J) in Proposition 3.39 is always
part of an exact sequence different from the exact sequence in Theorem 2.20.

In any case, whether X is non-cyclic or cyclic with respect to &p, the factorization

0
t510s -

S

Ox,
ho
)

(U_IOJJ 0

of 6y, where s is the structure morphism of (u=10y)g as a t; 1Os-algebra, yields a distinguished

N @

Ls ®w-10y), Ox, Lx,/s

triangle

in the derived category D(AXp) by Theorem 1.8.iv). This triangle gives rise to an exact sequence
0 — Ext%, (L, t57) 2 Ext%, (L, /s t0T) 2 Ext%, (Ls @10y Qs 157)
* 3 * € *
L Extly, (L, t57) = Exth, (Lay /s, t5T) = Extl, (Ls @u-105) O t5T) (3.8)

— Ext%, (L, t5J) — Exty, (Lay /s, t6T) = Ext3, (Ls @u-10y) Oxg: t6T)
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of abelian groups and the morphisms «, 3,7, and € may be described as in Proposition 1.13.
Now if X is non-cyclic with respect to Ay, we may assume that I' = 0 by Proposition 3.43,

hence we may assume that the diagram and the subdiagram are given by

diagram in RTop/S subdiagram in RTop/S

Xl XQ X3 U Xm Xl XQ X3 e Xm
\ J//f
Xo

with no other morphisms besides the identities where the levels X; do not have to be pairwise
distinct, but if A; = &} for ¢ # j, then f; # f;. Since all structure morphisms t.: X, — S are flat

by our General assumption 2.1, it follows from Proposition A.1 that the natural morphism
m
—1
@ijloxj/tglos B ton, (u™"Oy)o = Ls
j=1
of complexes of (u~10y)¢-modules is a quasi-isomorphism. Since both complexes of the above

quasi-isomorphism consist of free (u='0y)o-modules, we may tensor with Oy, and still get a

quasi-isomorphism
m m
@f;LXj/S = @Lf;loxj/tglos ®f;1c9xj Ox, = Ls @wu-10y), Ox, (3.9)
j=1 j=1

by [I171, Lemme 1.3.3.2.1.] where the first isomorphism is induced from the natural isomorphism

fiLlx;)s & Lfl—lox Jt:10s Of10x Ox, by Theorem 1.8.ii). Consequently, we have that
: J J J J

m m
EXt;go (LS Bu=10y)0 Ox,, taj) = EXt‘lXO (@ f;‘kLXj/Sa téj) = @EX‘C‘ZXO (f;LXj/Sv tgj)

j=1 j=1

for all ¢ € Z and there is an exact sequence

0 — Ext%, (L, t5.7) — Ext%, (La, /s, t5T) = D ExtS, (f L, . t5.T)
j=1

— Extl, (L, t5J) = BExth, (Lx, s, t67) = @D Bxth, (f; L, /s:t5T) (3.10)
j=1

— Ext%, (L, t5J) = Ext, (Lays: t6J) = @D Ext3, (f5 L, /s: t5T)

j=1
Now if .
Ext%,(Lx,/s:t57) =0 and @D Exth, (fLx,/s: t5J) =0, (3.11)

j=1
then Extgfo (L, t5J) = 0 by the exactness of the sequence.
We will see in Example 3.60 that @;nzl Ext}o(f;fLXj/S, t5J) is an obstruction group for the

pair
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diagram in RTop/S subdiagram in RTop/S

2C'l XQ X3 o Xm Xl XQ X3 e Xm
Xo

and we know from Theorem 1.11 that Ext3, (Lx,/s,t5J) is an obstruction group for finding a

Xo

deformation of Xy over §’. Whence if Equation (3.11) holds and if we are given a deformation of
the subdiagram ) obtained by omitting the source Xy, then we may choose a deformation X} of Xy
and then a deformation f}: X5 — X of f;: Xy — X for every j where X is the given deformation
of X;. We have already encountered Sequence (3.10) in the disguise of the long exact sequence 4
of the braid in Proposition 2.22. The diagram there is the local diagram X, the subdiagram there
is the local diagram Y [ Xy and the subsubdiagram there is the local diagram ).

Nevertheless, if X is non-cyclic or cyclic with respect to Ay and if the morphism @ in Lemma 2.19
is a quasi-isomorphism, we might get some information about the obstruction group ]ETxti/O (L, t5T)

from Sequence (3.8) on page 82.

Example 3.44. Let us consider one example of a cyclic diagram, similarly as in Example 3.37.

Assume given the pair

diagram in RTop/S subdiagram in RTop/S
X h A X L A

f J i %
W————>Y Y

with no other morphisms except for the identities such that ho f = j =iog. Then W is a source
of X and X is cyclic with respect to W since j has two factorizations. Let ty: W — S and
tz: Z — 8 be the structure morphisms of W and Z over S, respectively. By definition u=*0y is
given on the level W by the colimit of the system

f1Ox
g
j 0z
g7 10;
g 0y

in the category of t;; Os-algebras where 0),: h"'Oz — Ox and 6;: i 'Oz — Oy are the ring
morphisms of h and i, respectively. This colimit is f~'Ox ®j-10, g 'Oy considered as a
t;VlOS-algebra. It follows that condition 2 in Theorem 2.20 is not fulfilled. Condition 1 is not

fulfilled either because this type of colimit does not commute with finite limits.
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But there is a possibility to find a remedy in this example. If we are given a deformation

XI L Z/ X $ Z
Ti/ of the subdiagram Tz
v Y

over §&’, we may fix the given extension
0— t}j — OZ’ — OZ —0 (312)

of Oz. Assume that h: X — Z,i: Y — Z and j: W — Z are flat. Then finding an extension

Xl L Z/ X/ L Zl
f,T i’ Ti/ of the given deformation Ti/
e v

of Y to X over &' is equivalent to finding an extension of
X’ X'
to a deformation f’T
Y/ W/ g’ > Y/
over Z' with respect to Extension (3.12) where we have to consider h: X — Z, i: Y — Z and

j: W — Z as structure morphisms. Hence if these structure morphisms are flat and if we consider

Extension (3.12), then we may assume the situation

diagram in RTop/Z subdiagram in RTop/Z
X X

f

w 7 Y Y

where the subdiagram is now non-cyclic with respect to the source W and we know from the

non-cyclic case in Proposition 3.43 that the corresponding obstruction group is given by
Extd, (L, j*t5yJ) = Bxty, (L, 65 J).
Here L is the cotangent complex of the ring morphism
f1O0x ®-10, 'Oy = Ow , a®b 0s(a) - 0,(b)

where 0;: f7'Ox — Ow and 0,: g~ 'Oy — Ow are the ring morphisms of f and g, respectively.
Notice that the additional assumptions made are satisfied if Z = S and if t;: Z — S is the
identity.
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3.4.3 Omitting a bridge

Definition 3.45. Let X be a diagram. A bridge of X is a quintuple 2 % 1 Py 0 in € with
Home(1,1) = {id} such that each morphism in € to 1 apart from the identity factors through «
and each morphism in € from 1 apart from the identity factors through 5. The identity 1 — 1 does
not factor. Equivalently, denoting f = fg and g = f, and regarding the corresponding quintuple
X ER X L X, over S, each morphism occuring in the diagram other than the identity from
X, factors through g and each morphism occuring in the diagram other than the identity to X}
factors through f, while the identity &7 — A&j is the only S-morphism from &} to itself and does
not factor. By abuse we call X i> X EN X5 a bridge of X.

A bridge X} ER X, 4 X, of X may be visualized in R%op/S as

e M\
VAN

Proposition 3.46. Assume given the situation of General assumption 2.1. Let Xj ER x L,
be a bridge of X and let D be the full subcategory of € with objects ob(€) \ {1}. Then Y is a full
and well-positioned subdiagram of X with complementary subdiagram Y equal to X; and condition
2 in Theorem 2.20 is satisfied.

Let G: K(X) — K(&X1) be the functor of Lemma 3.23 and let Ly, /x, be the cotangent complex

of X1 L Xy. Given a deformation € of the subdiagram Y over S', there is an obstruction
w(§) € Ext%, (L, x,, RG(m%J))

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8" reducing to &.

Proof. Y is a full subdiagram since ® is a full subcategory of €. Furthermore, ) is well-positioned
since ob(€) \ ob(®) = {1} and the only morphism 1 — 1 in € is the identity which by assumption
does not factor in €. The complementary diagram ) is &7 because Homg(1,1) = {id}.

Since Y is a full subdiagram of X we have that (u=10y). = Oy, for all ¢ € ob(€) \ {1} by
Lemma 3.13. Hence in order to verify condition 2 in Theorem 2.20 we have to calculate

(U_loy)l = h_I)n f;lc’);(d.
~y€Eob(1)

Since X, EN XL X is a bridge of X, each morphism (7: d— 1) € ob(1) admits a factorization

d— 1

N

2
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through a. Because © is the full subcategory of € with objects ob(€) \ {1} it follows that
e € Homy((y: d — 1),(a: 2 — 1)). Moreover, for each f7'Ox, with (y: d — 1) € ob(1),
there is a morphism of t;l(’)s—algebras

—1

fa 0
[ 0x, = 3171 Ox, f31O0x,

belonging to the system defined by the index category 1. Consequently,
(v Oy)1 = lim f710x, = £ Ox,.
y€ob(1)
Now we come to the obstruction group. By Corollary 3.26 there is an obstruction lying in
Ext%(ﬂLh,RG(m}j ). Since Y = A& it follows that uL; is the cotangent complex of
hi: (wOy)1 — Ox, and hy is just the ring morphism 6,: f,*

(e

Ox, — Oy, whence

ﬂLh:LXI/XQ- O

Let us consider the two pairs

diagram in RTop/S

7 X h

h Xy Xo

subdiagram in RTop/S

Xo

Xo

and

diagram in RTop/S

subdiagram in R%op/S

NS

X3

Xy X1 Xs
h
Xo X5

X, Xs

N /

XO h Xy

NS

X3

with h = go f and with no other morphisms except for the identities and except for the composition
of any two consecutive morphisms. Then in both cases the obstruction for extending a given
deformation of the subdiagram to a deformation of the diagram should be the same since in
both cases, if h': X — A4 is the given deformation of h: Xy — X2 over S’, we have to find
a deformation X] of X} and deformations f’: X — X and ¢': X — X of f: Xy — A} and
g: X1 — Xy, respectively, such that

X
N
h/

is commutative. These considerations are similar to the ones we have stated in Subsections 3.4.1

2

A

and 3.4.2, but this time we do not have to distinguish between two cases which we called non-cyclic
and cyclic. The obstruction group only depends on the bridge X i> X, % X, made precise by

the following lemma and corollary.
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Lemma 3.47. Assume given the assumptions and notations of Proposition 3.46. Let T (f) be the
ringed topos associated to the diagram Xy ER X1 over § and let u: Ox-mod — O (s)-mod be the
forgetful functor. If G': Ory)-mod — Ox,-mod is the functor in Lemma 3.23, then there are

commutative diagrams

Ox-mod = O (p)-mod K(x)* = K(T(f)*

Oy, -mod K(X1)

and there is a natural isomorphism of functors
RG(-) 2 RG (u(-))

from DH(X) to D(X1). In particular, if M € ob(Ch™ (X)) is a bounded below cochain complex,
then the complex RG(M) only depends on X ER Xy and its part uM, up to natural isomorphism
in D(XY).

Proof. The functor G: Oy-mod — Oy,-mod is given by

M~ My= () ker (M2: My — f.My) C M

yE€Homg (1,d),
d#1

by definition in Lemma 3.23. But since 2 % 1 B 0isa bridge of X', each morphism v € Home(1, d)
with d # 1 factors through 3, hence by Remark 3.20 we have that

M7 = ker (Mgd: My — fg.Mo) C M.

On the other hand, since f = f the functor G’': O7(y)-mod — Ox,-mod sends the O7(y)-module
uM to the same submodule ker (Mgd: M, — fB*Mo) of M;. It follows that

(’)X-mod = OT(f)—mOd

S

. -mmod

is indeed commutative and

K(x)* “ K(T(f)*
K(&)

yields an isomorphism of functors RG(—) & RG'(u(—)) from DT (X) to D(X;) exactly as in
Proposition 3.34. O
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Corollary 3.48. Under the assumptions and notations of Proposition 3.46, the obstruction group
Ext%, (L, /2, RG(m%J)) only depends on the bridge Xy ER x4 X,

Proof. The first entry of the obstruction group Ly, /x, only depends on X} 2y X, and the second
entry RG(m% J) only depends on X ER X1 by the above lemma. O

Corollary 3.49. Under the assumptions and notations of Proposition 3.46, set M = m%J and
let K and Q be kernel and cokernel of

M3 My — fa.Mo,
respectively. If Rifg*Mo =0 for all i > 0, then there is a natural isomorphism of abelian groups
Ext%, (Lx, /2, RG(my J)) = Ext%, (L, /2y, K) @ Extly, (L, /x5 Q)

Proof. By Lemma 3.47 and its notations the complex RG(M) only depends on Xy EN X1 and
uM and we may calculate it in D(X;) as RG'(uM). But by Corollary 3.36 there is a natural

isomorphism

RG' (uM) = (KgQ—>0—>O—>...)

in D(X;) which gives rise to the claimed isomorphism.
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3.4.4 The discrete subdiagram

In this subsection we consider another extreme case. The subdiagram is obtained from the diagram
by keeping all levels X, for ¢ € ob(€) and by omitting all morphisms between them except for the
identities. We will show that condition 2 in Theorem 2.20 is satisfied for this type of subdiagram
and we will simplify the obstruction group Ext3 (Lp,m%J) in Proposition 3.55 and Corollary
3.59. Four examples exemplifying the new notions will be given at the end of the subsection.

Moreover, we will derive a result of [Ran89] in one of the examples.

Definition 3.50. Let X be a diagram. If © is the discrete subcategory of €, i.e., ob(D) = ob(€)

and the only morphisms in ® are the identities, then ) is called the discrete subdiagram of X.

Lemma 3.51. Let ) be the discrete subdiagram of a diagram X. Then condition 2 in Theorem
2.20 is satisfied.

Proof. Let ¢ € ob(€). Since ) is discrete we have that the category c is discrete, hence

W '0y)e= Q) f70x, = Q [f'0x,

yEob(c) ~vEHomg (c/,¢),
¢/ €ob(€)
by definition of u~*(0y in Proposition 2.16 where the tensor product is taken over ¢, 1Os. O

Let Y be the discrete subdiagram of a diagram X’. Our aim is to show that there is a complex
L% of free Ox-modules and a natural isomorphism L4[1] & L;, in D(X) such that the obstruction

group
Ext? (L, m%J) = Ext% (LU1], m%J) = Exty (L, m%J)

in Theorem 2.20 may be calculated better by using the complex L%. The superscript d stands for
discrete.

By Diagram (2.8) on page 35 there are morphisms of m&log—algebras
n®y -1 uh
Oy — Uu Oy — Oy

whose composition is the identity. Because ) is discrete this just means that we have, for each
¢ € ob(€), morphisms of ¢ Os-algebras Ox, — (u"10y). 2% O, where the first morphism is

the natural one. For each a € Home (c1, ¢2) the diagram

O
Ox

c2

folOx,,

| |

_ _ (v '0y)a _
fat ®7€0b(g) 5 10&/ > ®5eOb(@) s 10&/

whose vertical morphisms are the natural ones is commutative by definition of (u='0y),. Hence

the collection of all Oy, — (u=10y). LN Oy, for ¢ € ob(€) defines a morphism of m 3! Os-algebras

Oy — uiloy i) Oy
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whose composition is the identity. Now for ¢ € ob(€) we define

To= & [0«

vEHomg (c/,¢),
c/ €ob(€),y#id

to be the t;!Ogs-algebra obtained from (u='Oy). by omitting the factor corresponding to the

identity. There is a natural morphism of t;!'Og-algebras 7. — (u~'Oy). and a cocartesian

diagram
Te (u™'Oy)e
t. 1 Os OXC .

Since the tensor product is a special colimit, we may imitate the construction given in Definition
2.7 to see that for each o € Homg(cy, c2) there is a morphism of tc_QlC’)S—algebras iTe, — To,
fulfilling the compatibility condition (1.2) on page 14 for a composition ¢; = ¢y LR cg in €.

Definition 3.52. We define 7 to be the m}l(’)g—algebra which is given levelwise by the
t-1Os-algebras
To= & [0«
yEHomg (¢/,¢),

c’ €ob(€),y#id

together with the morphisms f;'7., — T, for a € Homg/(c1, c2) as described above.

The construction in Definition 2.7 shows that the collection of all natural morphisms

T. — (u=1Oy). defines a natural morphism
T— u_l(’)y

of m;(l Ogs-algebras. Consequently there is a commutative diagram

Ox
/
T u™'Oy id
_I Ox T /
mX OS OX

of my' Os-algebras whose square is cocartesian.

Lemma 3.53. In the situation of General assumption 2.1, let ) be the discrete subdiagram of X .

Then there is a natural isomorphism
(L7 /myr0s ©T Ox)[1] = L

in D(X).
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Proof. The factorization Ox — u~1Oy LN Oy of the identity yields a distinguished triangle

PN

Lufloy/OX ®u710y OX

Liq
in D(X). Since Liq is an exact complex, it follows that Liq is isomorphic to the zero complex in

D(X), hence the natural morphism Ly, —(Ly,-10,, /0, ®u-10, Ox)[1] in D(X) is an isomorphism.

Because my: X — S is flat we have that the natural morphism of complexes of u~!Oy-modules

LT/m}los QT u_loy — Lufl(ﬂy/(’)x

is a quasi-isomorphism by [I171, Corollaire 11.2.2.3.]. This is a quasi-isomorphism between com-

plexes of free u~1Oy-modules, so tensoring with Oy yields a quasi-isomorphism

LT/T)’LEIOS ®T OX - Lufloy/OX ®u710y OX
of complexes of Ox-modules by [I171, Lemme 1.3.3.2.1.]. The composition
(LT/m;los @7 Ox)[1] %(Lu—loy/ox ®u-10y Ox)[1] = Ly,
is an isomorphism in D(&X). O

Our next aim is to simplify the complex L. /mytos OT Ox by defining the complex L? an-
nounced at the beginning of this subsection. Fix ¢ € ob(€). Then for each v € Home (¢, ¢), v # id,

the morphism

F70.
t:'0s = 71, 0s = ' Ox,

is flat and it follows from Proposition A.1 that the natural morphism

D  Liow nios @pton, To = Lyjziog

yEHomg (¢/,c¢),
c/ €ob(€),v#id

is a quasi-isomorphism. Since this is a quasi-isomorphism between complexes of free 7.-modules,

we get a quasi-isomorphism

D Lision, ji710s @r0x, O = Ly 10 ®7. O,

yEHomg (¢/,¢),
¢/ €ob(€),y#id

by tensoring with O, by [III71, Lemme 1.3.3.2.1.] where we have used the natural isomorphism

S, Lisioy, piit0s @ftox, O ( D Liron, nitos @ftox, Tc) @7, O,

~yEHomyg (c/,c), yEHomg (c/,c),
c/ €ob(€),v#id ¢/ €ob(€),y#id

1%

of complexes of Oy, -modules. Since f, is a morphism of ringed topoi, the natural morphism of
complexes fv_lLXc, /s — Lﬁlox /t=10s is an isomorphism by Theorem 1.8.ii). Hence for each

¢ € ob(€) there is a quasi-isomorphism

*
@ fSLlx, s = L j-10s OT. Ox,.
yEHomg (c/,c),
¢/ €ob(€),y#id
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Abbreviating L¢ = @ - crome (o0, f3Lx, s for c € ob(€), we may again imitate the construction
¢/ €ob(),y#id .
in Definition 2.7 since the direct sum is a special colimit.

Definition 3.54. We define the complex of Oy-modules L? to be the collection of all complexes

L= @ fiLx, s

~yEHomg (¢/,c),
¢/ €ob(€),y#£id

of Oy -modules for ¢ € ob(€) together with, for each o € Homg(cy, ¢2), the morphisms
Jale, = L,
of complexes of O, -modules in Definition 2.7.

The collection of all the above quasi-isomorphisms L¢ — Ly 10 @7 Ox, for ¢ € ob(C)
defines a quasi-isomorphism

d
LY — LT/m;,lOs QT Oy
of complexes of Ox-modules.

Proposition 3.55. Assume given the situation of General assumption 2.1 and let ) be the discrete
subdiagram of X. Then there is a natural isomorphism Lj, = L[1] in D(X). In particular, there

s an exact sequence

0 = Ext% (Lxs, myJ) = Ext$,(Ly /s, m3T) — Ext% (L4, m%J)
— Exty (L /s, m5%J) — Ext},(Ly s, myJ) < Exth (LY, m%J)
— Ext3 (Lx/s, myJ) — Ext3,(Ly,s,m3J) — Ext} (LY, m5J)

of abelian groups. Given a deformation & of the subdiagram Y over S’, there is an obstruction
w(€) € Bxth (LY, m%J)

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8" reducing to &.

Proof. By Lemma 3.53 there is a natural isomorphism (LT/m;,‘OS QT OX) [1] = Lj, in D(X) and
we have seen above that there is a natural quasi-isomorphism L%[1] _>(LT/m;1(Ds ®7 Ox)[1],
whence Ly, = L%[1] in D(X).

The long exact sequence is obtained from the long exact sequence in Theorem 2.13. Since

condition 2 in Theorem 2.20 is fulfilled by Lemma 3.51 we may use the isomorphisms
Ext’y (Cone(m), myJ) = Exthy (Ly, m3yJ) = Exth (LY[1],m%J) =2 Exty (LY, m%J)
of abelian groups for each i € Z. Furthermore, we have

Ext% (Lp, myJ) = Ext (L[1], m%J) = Ext 3 (LY, myJ) = 0.
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Since ) is the discrete subdiagram of X we have natural isomorphisms

Exty(Ly,s,m3J) = @ Extly, (Lx,/s,t:J) (3.13)
c€ob(€)
of abelian groups for each ¢ € Z because the topos ) is the disjoint union of the topoi X..

Before giving some examples we will simplify the obstruction group Ext}(Ld, m%J) in Propo-
sition 3.55 even further. We will see that it is easier to calculate the obstruction group by using
L?[1] rather than L. The replacement of Lj, by L¢[1] for the discrete subdiagram is similar to
the replacement of Lj; by L;j for full and well-positioned subdiagrams as in Proposition 3.15.

Let us recall the situation in the case of full and well-positioned subdiagrams ). If Y is the
complementary subdiagram of )V and if u: X = Y and u: X — ) are the forgetful functors, then

we have uLj = 0 by definition of L} and we know that the obstruction lives in
ExtS(aLp, RG(m%J))

by Corollary 3.26. Similarly, if ) is the discrete subdiagram of X', we will define a certain subdia-
gram Z of X with complementary subdiagram Z and forgetful functors w: X = Z andw: X — Z

such that wL% = 0 and such that the obstruction lives in
ExtL(wWL?, m%J)

in Corollary 3.59.
If ¢ € ob(€), then

= @ fiLxs

~yEHomyg (c/,c),
¢/ €ob (), y#id

is the zero complex if and only if the only morphism to c is the identity.

Notation 3.56. Let ) be the discrete subdiagram of X'. Let & be the discrete subcategory of €
with objects

ob(€&) = {c¢ € ob(€) | the only morphism to ¢ in € is the identity}

and let € be the full subcategory of € with objects ob(€) \ ob(€). Let Z be the ringed topos
associated to the restriction of I: €% — RTop/S to € and let Z be the ringed topos associated
to the restriction of I: €°P — RTop/S to €.

Notice that we may assume ob(€) \ ob(€) # () because otherwise € would be discrete itself and
we would have X = ). Notice further that Z is the complementary subdiagram of Z.

Let w: X = Z and w: X — Z be the forgetful functors. By abuse of notation we denote
w: Ox-mod — Oz-mod and w: Ox-mod — Oz -mod the forgetful functors between the categories

of modules as well. Let G: Ox-mod — Oz-mod be the functor in Lemma 3.23.
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Lemma 3.57. The functors G: Ox-mod — Oz -mod and w: Ox-mod — Oz -mod are naturally

isomorphic. In particular, G is exact.

Proof. The functor G maps an Ox-module M to the Oz-module M defined levelwise by

M, = ﬂ ker (M2%: M, — f,.My) C M,

wGHomQ-(c,d),
deob(e)

for ¢ € ob(€). Since Home(c, d) is empty for d € ob(€) and ¢ € ob(&) by definition of &, it follows
that M. = M. for every ¢ € ob(€). Since the morphism

MM, — fouu Mo,

for o € Homg(ci,cz) in Lemma 3.22 is defined to be the restriction of the given morphism
M2d: M., — fosxM,,, it follows that Mzd = M24 for all @ € Homg(cy, c2). Hence we see that G

and w are naturally isomorphic. The exactness of w implies the exactness of G. O

Corollary 3.58. Let X be a diagram and let ) be the discrete subdiagram of X. Then for each
M € ob(D* (X)) and for each i € Z there are natural isomorphisms

Extly (LY, M) = Ext_(wL®, wM)
of abelian groups which are functorial in M.

Proof. By definition of L% we have wL? = 0. Moreover, L% is a bounded above complex consisting
of free Ox-modules. Hence L? satisfies the conditions in Proposition 3.25 and applying this
proposition to L%, the subdiagram Z and the complementary subdiagram Z, we get natural

isomorphisms
Extl (LY, M) = Exto(wL?, RG(M)),

functorial in M. Since G is exact by the above lemma, the natural morphism of functors

G(—) — RG(—) from DT(X) to D'(Z) is an isomorphism. Moreover, G and w are naturally

isomorphic, hence there are natural and functorial isomorphisms
Ext_(wL!, RG(M)) = Ext_(wL*, wM).
O

Corollary 3.59. Assume given the situation of General assumption 2.1 and let' ) be the discrete

subdiagram of X. Given a deformation & of the subdiagram Y over §’, there is an obstruction
w(§) € BxtL (WL, m%.T)

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X

over 8' reducing to €. Here Z is the ringed topos in Notation 3.56.

Proof. By Proposition 3.55 there is an obstruction in Ext}, (L%, m% J) and by the above corollary

there is a natural isomorphism
Exty (L4, m%J) = Exto (WL, wm% J)

of abelian groups. Since wW: X — Z is the forgetful functor we have wm%.J = mzJ. O
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Let us consider four examples.

Example 3.60. Assume given the situation

diagram in SR%op/S subdiagram in RTop/S
X Xo X3 e X, X Xo X3 e X
XQ XO

with no other morphisms involved except for the identities. The ringed topoi &) do not have to
be pairwise distinct, but if X; = &}, for some j # k, then we assume that f; # fi. By definition

we have L? =0 for ¢ = 1,...,m, hence Z = X, and
wL' = L§ = @) f{Lx,;s aswellas WM = M,
j=1
for every Oy-module M. Thus we have naturally
Extly (LY, M) = Extl, ( @ fiLx, s, Mo) = @ Extly, (f; Lx, /s, Mo)
j=1 j=1

for every complex M € ob(Ch™ (X)) and every i € Z by Corollary 3.58.

The long exact sequence in Proposition 3.55 is given by

0 — Bxt (L s, m5J) — Ext$,(Ly,s, m3J) — @ Ext, (f5 L, /s toT)
j=1

— Extl (Lxs,myJ) — Ext},(Ly/s,m3J) — @ Exth, (f; L, /s, t67)
j=1

— Bxt% (Ls, m5J) — Ext}(Ly,s,m3J) — @ Ext, (f; L, /s, t6T)
j=1

and we have

Ext},(Ly,s,myJ) = @Eth/C(LXC/s, t2J)
=0

for all ¢ € Z by Equation (3.13) on page 94.

In particular, for m = 1 the above sequence is given by

0— EXt?Y(LX/S7mej) — EXtOXo (LX0/$7t8\7) S3) EXtoXl (LX1/$7tT\7) - EXt?YD(fTL?ﬁ/S)tSj)
— Bxty (Ly/s, myJ) = Extly, (L, /s, t6T) @ Extl, (Lx, /s, t1T) = Exth, (ff Lx, /s, t67)
— Bxt} (Lyss, myJ) = Exti, (L, s, t6T) ® Ext%, (Lx, s, t1T) — Ext, (ff L, /s, t6T)

which has been described in [Ran89, Section 2.2.2] if f1: Xy — A} is a morphism of ringed spaces.
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Example 3.61. Next we consider the dual problem. Assume given the situation

diagram in R%op/S subdiagram in RTop/S
Xy X X3 e X X1 X X3 e X
XO XO

with no other morphisms involved except for the identities. Again the ringed topoi &; do not have
to be pairwise distinct, but if X; = &), for some j # k, then we assume that f; # fi. By definition

we have L? = 0 and the ringed topos

m
z=]]~
j=1
is the disjoint union of the topoi &; for j =1,...,m. Moreover,

@Ld:(ffLXo/Sw“af:;zLXo/S) and wM:(le--aMm)

for every Oy-module M. Thus we have naturally
Exth (LY, M) 2 BxtC ((fi Lay/ss- - faLaoys), (M, ..., My,)) = @ Exthy (f] Ly s, M;)
j=1

for every complex M € ob(Ch™' (X)) and every i € Z by Corollary 3.58.

The long exact sequence in Proposition 3.55 is given by

0 = Bxt% (L s, m5J) — Ext$,(Ly,s,m3J) — @D Ext (f; Lay/s: t]T)
j=1

— Bxty (L s, myJ) — Ext},(Ly,s,m3J) — € Exth (f; Lay/s. tJ)
j=1

— Bxt3 (L s, m5J) — Ext}(Ly,s,m3J) — @D Ext (f; Lay/s. )

j=1
Example 3.62. Now let us consider the pair
diagram in RTop/S subdiagram in RTop/S
Y Y
VN,
h=go
G L X Z

with no other morphisms except for the identities and let ¢t x, ty and tz be the structure morphisms
of X, Y and Z over S, respectively. By definition Z is the ringed topos associated to the diagram
X Ly, We denote the objects of Z in the form

(Fx,Fy, ['Fy = Fx)
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where Fx and Fy are sheaves of X and Y, respectively, and f~!Fy — Fx is a sheaf morphism

of X. If w: X — Z is the forgetful functor, then the complex wWL? is given by

* * * * % * (id]0) * *
(h*Lzs ® f*Lyys,9"Lzys, f*9"Lzys = h"Lzis — h*Lz/s ® f"Ly/s)

which naturally decomposes as L1 @ Ly in the category of complexes of Oz-modules where
Ly = (f"Ly;s,0, f*0 = f*Ly/s)
and
* * * ok * id *
Ly=(h"Ly/s,9"Lz)s,["9"Lz/s =h"Lys — h"Lys).
Hence the obstruction group in Corollary 3.59 is given by

ExtL(wL?, m%J) & BxtL(Ly, mzJ) @ ExtL(Ly, mLJ).

We may apply Proposition 3.25 to the diagram Z, the subdiagram Y and the complex L; to
see that there is a natural isomorphism Extlg(Ll,m%J) =~ Exty (f*Ly/s,t%J). It remains to
simplify the second direct summand.

If M € ob(Ch(Z)), then by definition the group Homgy, 7 (L2, M) consists of all morphisms

a € Homey(x)(h*Lz/s, Mx) and b€ Homeny)(9"Lz/s, My)
such that

f*9"Lz;s =h"Ly;s 4 h*Lzs

A

f*My —— Mx
is commutative in Ch(X). It follows that b uniquely determines a, whence we have naturally
Homgy, 3, (L2, M) = Homeny) (9" Lz/s, My),

functorial in M, and there is a diagram of functors

K*(Z) v K*(Y)

Horn'j(Lz,—) Horrl'},(g*Lz/S,—)

K (2b)

commutative up to natural isomorphism of functors where 2b is the category of abelian groups and
v is the forgetful functor. Now exactly as shown in Proposition 2.14 we get natural isomorphisms
Exti(Lg, M) = Exti- (9" Ly/s, My) for each i € Z, functorial in M € ob(D"(Z)). In particular,
we have

ExtL(Ly, m%LJ) = Exty (9" Ly/s, tyJ)
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and the obstruction group is given by Extﬁc(f*Ly/S, t5J) @ Ext%,(g*LZ/S, t3J). The first sum-
mand contains the obstruction for finding a deformation f/: X’ — Y’ of f: X — Y over &
between the given deformations X’ and Y’ of X and Y, respectively, and the second summand
contains the obstruction for finding a deformation ¢’: Y’ — Z’ of g: Y — Z over S’ between
the given deformations Y’ and Z’ of Y and Z, respectively. The composition of f’ and ¢’ is a

deformation A’ of h.

Example 3.63. Now let us consider the pair

diagram in RTop/S subdiagram in RTop/S
X—" sz X Z
f J i
9
w Y w Y

with no other morphisms except for the identities such that ho f = j = iog. Let ty,tx,ty and tz
be the structure morphisms of W, X,Y and Z over S, respectively. By definition Z is the ringed

topos associated to the diagram

X

d

W —L>Y.
Let wW: X — Z the forgetful functor. Denoting the objects of Z as
(Fw, Fx, Fy, [ " Fx = Fw.g ' Fy = Fw)
where Fyr, Fx and Fy are sheaves of W, X and Y, respectively, WL? is by definition given by

(J"Lz/s © f*Lx/s ® 9" Ly;s,h*Lys,i"Lys,

(id[0]0) ., . "
——J Lz/s® f"Lx;s ® g Lyys,

(id[0]0)

f*h*Lz;s =j"Lzs
g*i*Lz/s = j*Lz/s j*LZ/S SB) f*LX/S D g*LY/S)-

There is a natural decomposition WL? = L(f) @& L(g) ® L(j) of WL? as complexes of Oz -modules

where

L(f) = (f*LX/S7OaOa f*o — f*LX/Sag*O — f*LX/S)a
L(g) = (9"Ly/s,0,0, f*0 — g*Ly;s,9"0 = g" Ly/s),
) . . . . x . d . o . d .
L(j) = (j"Lzss,h*Lzs,i"Lz/s, f*h"Lz/s = j"Lzis — j"Lz;s,9%" Lz)s = j"Lz;s — j"Lz;s)-

Hence the obstruction group Extlg(@[/d, mzJ ) in Corollary 3.59 is given by

ExtL(WL?, mEJ) = ExtL(L(f),m%J) ® ExtL(L(g), meJ) @ ExtL(L(j), m%J).
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Let us simplify the direct summands further. If V is the ringed topos associated to the di-
agram consisting of X and Y, we may apply Proposition 3.25 to the diagram Z, the subdi-
agram V and to the complex L(f). Since G: Oz-mod — Ow-mod is the forgetful functor
Oz-mod — Ow-mod and since the forgetful functor is exact, it follows from Proposition 3.25
that there is a natural isomorphism ExtL(L(f), mLJ) = Extyy, (f*Lx/s, tjyJ). Similarly, there is
a natural isomorphism Extlg(L(g), mzJ ) Ext‘l,v(g*Ly/S, tyJ), whence the obstruction group

is given by
ExtL(WL?, m%J) = Exty, (f*Lx/s, tiyJ) @ Extyy (9% Lys, ti J) ® BxtL(L(j), m%T).

Let us exhibit these three direct summands. If we are given deformations W/, X' Y’ and Z’ of
W, X,Y and Z over &', respectively, then the first direct summand contains the obstruction for
extending W', X’ to a deformation f': W' — X’ of f: W — X and the second direct summand
contains the obstruction for extending W', Y’ to a deformation ¢': W/ — Y’ of g: W — Y by

Example 3.60. The third direct summand contains the remaining obstruction for extending

X’ zZ' X' b > 7/ X h 7
f’T to a deformation f,T i’ Ti, of fT / Tl
W=y WLy Wy,

By definition the group HomCh(g) (L(5), m*zj ) consists of all morphisms
a e HomCh(W)(j*LZ/Sat;Vj); be HomCh(X)(h*LZ/S,t}j), cE HomCh(y)(i*Lz/S,t;j)
such that

f*h*Lys = j*Lys -S> j*Ly/s <9 j*Ly/s = ¢"i*Lyys

f*bl l lg*c

[T =ty — Sty ~——tiyJ = g'5.T

is commutative in Ch(W). Hence b uniquely determines a and ¢ uniquely determines a and we
must have f*b = g*c. Thus if

f* i Homen(x)(h*Lz;s,txJ) — Homenw) (§*Lz/s, tiy J)

and

g": Homegny) (" Lz;s,ty J) — Homenw) (5" Lz/s, tiw T )

denote the pullback morphisms by abuse of notation, we have that Homg,, 7 (L(j), m%J) is the

kernel of the difference morphism
Homen(x)(h*Lz/s,txJ) ® Homeny)(i* Lzys, ty T ) — Homenw) (5" Lz/s, tiv T ),

defined by (b, ¢) — f*b—g*c. But it is not clear a priori how to simplify Extlz(L(j), m%j) further.
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4 Diagrams with at most three levels

This section considers diagrams consisting of at most three levels. The first subsection deals with

a single morphism f: X — Y whereas the second subsection treats a commutative triangle

Y
N
X h=gof

Z.

We will derive the cotangent braid of a morphism f: X — Y of ringed topoi over a ringed
topos S and show that it coincides with the cotangent braid in [Buc81, Diagramme I1.2.4.2.1] if
S = Spec k is the spectrum of a field k. For this purpose, we consider the three subdiagrams
X, Y and (X,Y) of the ringed topos Z associated to the diagram f: X — Y. We will get two
morphisms of distinguished triangles between the three corresponding distinguished triangles in
D(Z). The braid in [Buc81, Diagramme I1.2.4.2.1] is, however, obtained from four distinguished
triangles which are part of a certain octahedron, similarly as we obtained the braid in Proposition
2.22 in Subsection 2.4.

Afterwards, we consider all subdiagrams of a single morphism f: X — Y and the respective
obstruction groups using results of Section 3. We will restrict to the case of schemes in order
to replace certain cotangent complexes by modules, if some additional conditions on X, Y or
the morphism f are satisfied. For example, if f is a smooth morphism of schemes, then the
natural morphism of complexes of Ox-modules Lx,y — Qﬁ( Iy is a quasi-isomorphism by [Il171,
Proposition 111.3.1.2.].

It turns out that there are fifteen non-empty proper subdiagrams of the above commutative
triangle. The obstruction groups for ten of them may be derived easily from the obstruction groups
of a single morphism, but for the other five subdiagrams, this is not possible. Four of these five
subdiagrams are even not full. Nevertheless, we will calculate the obstruction groups as explicitly
as possible.

Finally, we will give an example of a triangle where the obstruction group for the subdiagram
obtained by omitting Y vanishes. Let X be a nonsingular projective variety over the complex
numbers C, let h: X — Z = Alb(X) be the Albanese map of X and let Y denote the image of
h. Considering only extensions where J = Ogpec ¢, it turns out that the obstruction group for
extending a deformation of h to a deformation of the triangle is zero if f is a flat morphism such

that R f,Ox = 0 for all i > 0 and if Y a product of nonsingular projective curves.
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4.1 A single morphism
4.1.1 The cotangent braid of a morphism of ringed topoi

Let f: X — Y be a morphism of ringed topoi over a ringed topos S such that the structure
morphisms tx: X — Sand ty: Y — S are flat. Let furthermore j: S — S’ be a closed embedding
induced by an extension

0—-J—=0g —0s5—0

of Og by an Og-module 7. Using the results of Sections 2 and 3, we will derive the cotangent
braid in [Buc81, Diagramme I1.2.4.3.2] which can also be found in [GLS07, Corollary C.5.2.].
Let Z be the ringed topos associated to the diagram X 1 Y. We denote the objects of Z in

the form
(Fx < Fy)

where Fy is a sheaf of X, Fy is a sheaf of Y and v: f~'Fy — Fx is a sheaf morphism. If v is
clear from the context we will omit it and simply write (F X — Fy).
The three different subdiagrams X, Y and (X,Y) of Z yield three m3'Og-algebras

u Tt Ox = (Ox + 15'0s),u™ Oy = (f 'Oy = Oy) and v 'O(xy) = (Ox @410, f 'Oy + Oy),

respectively, by Proposition 2.16 where we have written u for the forgetful functor in all three

cases by abuse of notation. Notice that
10 =u 'O -10
u (X,Y) = U X ®m;105 u Y

by [I1171, Equation III.4.3.1] since the tensor product commutes with the inverse image functor of
a morphism of ringed topoi. Furthermore, letting [(X), [(Y), I(X,Y) and h(X), h(Y), h(X,Y)

denote the morphisms [ and h in Proposition 2.16 for the different subdiagrams, the diagram

1(X) h(X)

m5'Os u"'0x Oz
-
X,y h(X,Y
m;(’)s ( ) uflo(ny) ( ) Oz (41)
-
Uy) h(Y)

-1 —
my Og ———————u 10y ————— 0%z

of m}los-algebras is commutative. Since X and Y are flat over S we have that
I(X): mz'0s = u'O0x and [(Y): mz'Os — u~ 'Oy are flat as well. Hence by Theorem 1.8.vi)

the natural morphism of complexes
(Lix) @u-r0x v Ox ) @ (Liy) @u—roy v Oxyy) = Lixy)

is a quasi-isomorphism. Since both of the complexes in its definition consist of free

uilO( x,y)-modules, we still get a quasi-isomorphism
(Li(x) ®u-10x Oz2)&(Lityy @u-10, Oz) = Lix,y) Qu-10x.y, Oz
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by tensoring with Oz by [IlI71, Lemma 1.3.3.2.1.]. By [IlI71, Chapitre I1.2.1.] Diagram (4.1)

induces two morphisms of distinguished triangles

(id|o) (0lid)
Lix)y @u-10x Oz — (Li(x) @u-10x Oz)®(Liy) @u-10y Oz) < Liy) @u-10, Oz

o

Lix,y) ®u-10.x.y, Oz

LZ/S LZ/S: LZ/S

Lpx) Lyxy) Lh(4y)

in D(Z). Notice that condition 2 in Theorem 2.20 is satisfied for all three subdiagrams.

Proposition 4.1. The above morphisms of distinguished triangles induce a commutative diagram

of abelian groups

; ‘ i
1) § | 2
EXtZZ(Lh(X), m*ZJ) EXtZZ (Lh(X,Y)7 m*Zj) EXtZZ (Lh(Y)a m*zj)
|

! {

1] ¢ |2
v ¥ %
Exty(Lz/s,mszJ) =—————=Ext;(Lz/s,m3J) =———=Ext3(Lz/5,m%J)
| ) |
1| ¢ |2
% o 4 o %
Extl (Lx/s,tJ) <—— Ext(Lx/s, t%J) & Extl (Ly/s, t3J) —— Extl (Ly/s, t5J)
| ) |
1l ¢ | 2
y ¥ y
ExtZ (Li(x), m%J) ExtZ ' (Lix,v), msJ) ExtZ ' (Lywyy, msJ)
| ) |
1l ¢ |2
% v %

(4.3)

whose columns are the long exact sequences associated to the subdiagrams X, Y and (X,Y) of Z

by Theorem 2.20, respectively.
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Proof. We apply the functor Hompz)(—, m%J) to Diagram (4.2) and use the natural isomorphism

Ext% (Lix,y) ®u-10.x.y, Oz, mET)

i:

Ext% ((Lix) ®u-10x Oz) @ (Liyy @u-10y Oz),m%J)

lz

]EXtiZ(Ll(X) Qu-10x Oz, m*Zj) D EXtiZ(Ll(y) Ru-10y Og,m*zj)

induced from (Ll(X) Ou-10x (’)z)@(Ll(y) Qu-10y Oz) =N Lix,y) Qu-10x.v) Oz and the natural

isomorphisms
Ext’ (Li(x) ®u-10, Oz,m5J) = Exty (Lx;s,txJ)
and
Ext% (Liy) ®y-10y Oz, m5T) = Exty (Ly/s, tyJ)
in Theorem 2.20. U

Now we are able to derive the cotangent braid.
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Corollary 4.2. Let f: X — Y be a morphism of ringed topoi over a ringed topos S such that the
structure morphisms tx: X — S and ty: Y — S are flat and let Z be the ringed topos associated

to the diagram X Ly, Let j: S — 8" be a closed embedding induced by an extension
0T =05 =05 —0

of Og by an Og-module J. Then there is a commutative braid, the cotangent braid

/ i \
1l Extz (Li(x,y), mzJ) 2
\ 3 4 /
o N / \ g g
Ext’s (L (x), m%J) Extly (Ln(yv), m5J)
~ <. s 2 =T

/ \\\*, -7
3( Extt(Lz/s,m5J) 4
2_ -7 S~ 1
\ = - T s N /
Ext} (Ly;s, t3J) Ext’y (Lx/s,t%J)
" \ / o
4 \
2 ExtZ ' (Lix, vy, msJ) 1
\ R / \ . /
~ o -
Ext ™ (Lny), m5J) ExtS ! (Lix), msJ) (4.4)
/ R —
- P
4| ExtZ ' (Lz/s,m5J) 3
\ 1_-~" . T _2
<= B T~ N
Exti ! (Lx/s, %) Exty ! (Ly/s, t5 )
- - \ / > }

/ \
1l ExtZ?(Ly(x, vy, msJ) 2
\ . / \ . /
~ o -
Ext?(Ly(x), m5J) Ext?(Lycyy, m5J)

T~ 1 2_ -~ - \
5 / T~ > -7 \
\ ExtZ(Lz/s,m%J) 4
2o Tt
\\ P ~< - - o = = PR /

containing four long exact sequences. The sequences 1 and 2 are the long exact sequences of
Diagram (4.8) in Proposition 4.1, i.e., the long exact sequences associated to the subdiagrams X
and Y of Z by Theorem 2.20, respectively.
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Proof. We define the morphisms of the third sequence 3 to be certain compositions in Diagram

(4.3). Take Ext% (Lp(x),m5J) 3, Ext{ (Ly/s,tyJ) to be the composition of the curved arrows

m

‘ i
1] § | 2
' Y 4 v . v
EXtZZ(Lh(X), m*zj) EXtZZ (Lh(X,Y)7 m*zj) EXtZZ(Lh(y), m}j)
| >> ) I
1] id ! id |2
_ Y S 4 D = Y
Ext%(Lz/s, m5J) == Ext;(Lz/s,m53J) =———=Ext3(Lz/s,m%J)
| 72
. : ( 2
. | pri . & . pro . v
Ext’y (Lx/s, t%J) <—— Extly (Lx/s, t%x J) ® Bxty (Ly/s, t3.J) —= Exty (Ly/s,t3-7)
| ) I
1l { |2
y 14 v

let Ext, (Ly,s,t3J) 3, EXtig_l(Lh(X,y), m%J) be the composition of the curved arrows in

1] S |2
; Y pr1 - / ; pra -
Extly (Lx/s, % J) <—— Ext’ (Lx/s,txJ) ® Exty (Ly)s, 13 T) —— Exty (Lyys, 5. J)
1l N// 5 (0]id) 12
4 v . Y v . v
ExtZ ! (Lix), mJ) ExtZ ! (Lix,y), msJ) ExtZ ! (Li(y), msJ)
| |
1l S |2
v v v
and set Extigl(Lh(X,y), m5J) 3, Extigl(Lh(X), m%J) to be the curved arrow in
| ) |
1] ¢ | 2
v v v
i * br1 % * i * pr2 i «
EXtX(LX/S7 tXJ) <~ EXtX(LX/S7 th) D EXty(Ly/S, tyj) EXty(Ly/S7 tyj)
I J |
1l , 12
_ v ' v _ Y
Ext (Ln(x) m5J) ExtZ (Lnx.y),m5J) ExtZ (Lngy), m5J)-
| |
1l § |2
v v v

The exactness of sequence 3 follows from the exactness of the columns of Diagram (4.3) and all
parts of the braid containing morphisms of Sequences 1, 2 and 3 are commutative by definition.

By interchanging the roles of X and Y we define the forth sequence 4 analogously. O
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Remark 4.3. Notice that backwards one may derive Diagram (4.3) from the braid (4.4). We take
sequences 1 and 2 of the braid to be the left and right column of Diagram (4.3), respectively.

For Ext%(Lp(x,y),m%J) ~~=Ext%(Lz/s,m%J) we take either of the compositions in

EXtiZ (Lh(X,Y)7 m%j)

/ \
Ext% (Ln(x), mzJ) Ext% (Lycyy, m5J)

~
~

~ 1 2 —

- —
~ —

EN £

EXtiZ(Lz/S,m*ZJ)

and Ext%(Lz/s,m5J) ~~Exty (Lx/s,t5%J) ® Ext} (Ly,s,t3J) is defined to have compo-

nent morphisms
EXtiZ(Lg/S,m*ZJ) — 1 > EXt:LX(Lx/S,t;(j) and EXt’LZ(LZ/S,m*Zj) — E >EXt§/(Ly/S7t*YJ),

respectively. Finally, ]Extg((LX/&t}j) D ]Ext%,(Ly/S, 13y J) ~s Ext’;l(Lh(X,y),mfzj) is the

sum morphism of

ExtY(Ly/S,th EXtX LX/S,th)

\/

EXtZ Lh(X y),mzj

Hence giving the braid (4.4) is equivalent to giving Diagram (4.3) and both are obtained from the
two morphisms of distinguished triangles in Diagram (4.2) on page 103.

Proposition 4.4. If S = Spec k is the spectrum of a field k, then the cotangent braid (4.4) is
naturally isomorphic to the cotangent braid in [Buc81, Diagramme II.2.4.3.2].

Proof. Some of the six complexes of Oz-modules Lz,s, Lpy), Lix) @u-10x Oz, Lnx)s
Liyy ®,-10, Oz and Lj(x,y) may be simplified in D(Z) by results of Section 3 as shown in
the following table.

cotangent complex naturally isomorphic to by
Lz/s = (Lx/s < Ly;s) (Lx/s < Ly/s)
Linyy = (Lxyy < Lyyy) (Lx/y +0) Proposition 3.15
Lix) ®y-10y Oz = (Lx/s < Ly)y) (Lx;s < 0) Proposition 3.15
Lyxy = (LX/X — Ly/s) (0 — Ly/s) Proposition 3.15
Liy) ®u-10y Oz = (f*Lyjs < Ly;s) (f*Ly;s < Ly/s)
Lixyy = (Lox/f-10y00x < Lyy) (f*Ly;s < 0)[1] Proposition 3.55.

If S = Spec k, then the six complexes of the middle column are just the cotangent complexes
L%, ..., L? of [Buc81, Chapitre 11.2.4.2] and the morphisms 1% of [Buc81, Diagramme 11.2.4.2.1]
coincide, up to natural isomorphism, with the corresponding morphisms in Diagram (4.2) on page
103. O
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4.1.2 The subdiagrams of a single morphism of schemes

We will list all subdiagrams of a single morphism of schemes and detect the corresponding ob-
struction groups in Theorem 2.20 using the results of Section 3. Assume given the situation in
General assumption 2.1. The obstruction groups will be calculated as explicitly as possible for the
different cases.

We restrict to the case of schemes in order to replace some cotangent complexes by modules
under certain conditions. Let f: X — Y be a morphism of schemes over the fixed scheme S
with structure morphisms tx: X — S and ty: Y — S which are assumed to be flat by General
assumption 2.1. Assume furthermore that J is quasi-coherent such that each deformation of

f: X =Y over & is given by a morphism of schemes f': X’ — Y’ by Remark 1.12.

Proposition 4.5. The following chart is a list of all subdiagrams of

X*f>Y

and the corresponding obstruction groups as found in Theorem 2.20:

subdiagram condition or notation obstruction group
RG as in Proposition 3.25 for
G: KT (X) = K*(Y) as in Lemma 3.23

Ext} (Ly/s, RG(m%J))

1 X ty smooth, R'f.(t5J) = 0 for all i > 0, Ext} (055, K)
K and Q kernel and cokernel of @
ty T — fo(t%T), respectively Exty (Qy/5, Q)
none Ext% (Lx)y,txJ)
5 v f smooth Ext% (Q% v, t%J)

f a closed embedding Extl (/2. %.7)
X )
with regular ideal sheaf 7 X X

none Ext (f*Lys,t%xJ)
ty smooth Ext) (f*Q5 $txT)

Proof. If g: W — Z is a smooth morphism of schemes, then the natural morphism of complexes
Lw,z — Q%/V/Z is a quasi-isomorphism by [I1171, Proposition I11.3.1.2.]. We will use this result
several times.

Subdiagram 1: By Proposition 3.28 the obstruction group is given by
Ext} (Ly/s, RG(m%J))

without any supplementary conditions. If R'f.(t5%J) = 0 for all i > 0, then the obstruction
group is isomorphic to Ext} (Ly,s,K) & Exty (Ly/g, Q) by Corollary 3.36 where K and Q are
kernel and cokernel of t3,J — f.(t%J), respectively. If ty is smooth, then Ly,g — Q%,/S is a
quasi-isomorphism.

Subdiagram 2: Similarly, without any further conditions, the obstruction group is
]EXt‘QX(Lx/y, t}j)
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by Proposition 3.43 and Proposition 3.39. If f is smooth, then Lx,y — Qﬁ(/y is a quasi-
isomorphism and if f is a closed embedding with regular ideal sheaf Z, then the natural morphism
of complexes Ly,y — Z/Z?[1] is a quasi-isomorphism by [I171, Proposition II1.3.2.4.].

Subdiagram 3: The obstruction group is
Exti (f*Ly;s, txJ)

by Corollary 3.59 or by Example 3.60 for m = 1. If ¢y is smooth, then Ly,g — Q%//s is a quasi-
isomorphism and Q%//S is locally free of finite type by [I71, Proposition 111.3.1.2.], in particular
Q%/ /s is a flat Oy-module. Since the complex Ly, s consists of free Oy-modules, it follows that the

induced morphism f*Ly /g — f*Q%,/S is still a quasi-isomorphism by [I1171, Lemme 1.3.3.2.1.]. O

The obstruction groups Ext% (Lx/y,txJ) and Ext (f*Ly,s,t%J) for subdiagrams 2 and
3 have been calculated in [I1171, Théoréme I11.2.1.7.] and [IlI71, Proposition II1.2.2.4.], respec-
tively, by using different argumentations. But the obstruction group Ext3 (Ly,s, RG(m%.J)) for

subdiagram 1 does not occur there.

Remark 4.6. Notice that the above chart contains the obstruction groups for extending the given
deformation of the respective subdiagram to a deformation of the diagram in one step. It is also
possible to try to extend the given deformation of the respective subdiagram to a deformation of the
diagram in two steps, at least for subdiagrams 1 und 2. For example, if we consider the subdiagram
X and if we fix a deformation X’ of X over S/, we may first search for a deformation of Y (with
obstruction in Ext3 (Ly,s,t}J) by Theorem 1.11) and then, having chosen a deformation Y’ of Y/
if possible, search for a deformation of f from X’ to Y’ (with obstruction in Ext (f*Ly/s,txJ)
by the above proposition). The problem of this “two-step-obstruction” is the choice of Y’ because
for some choices of Y, the two-step-obstruction in Ext3- (Lyys,tyJ) @ Extl (f*Ly;s,t%xJ) might

vanish and for other choices of Y, it might not.

Example 4.7. Let S = Spec k be the spectrum of a field k, let J = Ogpec 1 and let f: X =Y
be a closed embedding of schemes such that Y is nonsingular and projective. Assume that the
ideal sheaf 7 of the embedding is regular. Then t% 7 = Ox and t3.J = Oy and Rif.Ox =0 for
all 4 > 0 since f is a closed embedding. Moreover, the morphism ¢37 — f.(t%J) is just the ring
morphism Oy — f,Ox and since Q%, Ik is locally free, the obstruction group for the subdiagram

X is given by
Ext3 (Qy 4, K) = Ext3 (5, 7) = Exty Oy, Tye © T) = HA(Y, Ty, © T)

where Ty, = Homy (Q%,/k, Oy ) is the tangent sheaf of Y over k. This result is stated in [Ser06,
Proposition 3.4.23.]. If additionally X is smooth such that Z/Z? is a locally free Ox-module
and if N' = Homx(Z/Z?,Ox) is the normal sheaf of X in Y, then the obstruction group for the
subdiagram Y is given by

Ext (Z/7% Ox) = Extk (Ox,N) = H' (X, N)

which is as well stated in [Ser06, Proposition 3.4.23.].
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4.2 A commutative triangle
4.2.1 The subdiagrams of a commutative triangle of schemes
We will list all subdiagrams of a commutative triangle

y 2>z

i

X

of schemes over a fixed scheme S and detect the corresponding obstruction groups in Theorem
2.20 using some results of Section 3. Assume given the situation in General assumption 2.1 and
let tx: X = S,ty:Y — S and tz: Z — S be the structure morphisms of X, Y and Z over S,
respectively. Assume that J is quasi-coherent.

There are 15 non-empty proper subdiagrams of this commutative triangle, numbered in the

following table.

Yy A Y Y Z
d |

X 1 2 3 X 4 X 5

Y Y A Y Z y 2z y sz

X 6 7 X 8 9 X 10

A VA Y A y 27 Y VA

X 11 X 12 X 13 X 14 X 15

The calculation of the obstruction groups for the first 10 subdiagrams may be traced back to
the calculations for the subdiagrams of a single morphism, as exhibited in Proposition 4.5. For
example, suppose given the subdiagram X of the triangle. If 7(g) denotes the ringed topos asso-
ciated to the diagram Y % Z with structure morphism my(g): T(g) — S, then the commutative

triangle gives rise to a morphism of ringed topoi

(f.h)
X————=T(9)

over S by [III71, Chapitre I11.4.12.]. Extending a given deformation X’ of X over S’ to a deforma-

h
tion of the triangle is equivalent to extending X’ to a deformation of the morphism X M T(g).
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Hence from Proposition 4.5 we see that the obstruction lives in ExtQT(g)(LT(g) /s, RG(m%J)) with
G: KT (X) = K*(T(g)) as in Lemma 3.23. Subdiagram 8 has been treated in Example 3.62.

Consequently, it suffices to calculate the obstruction group for subdiagrams 11 to 15. Let T (f)
and T (g) be the ringed topoi associated to the diagrams

X *f> Y and Y *g> VA
over S, respectively. The commutative diagram

X*f>

D-<

f

-
)

y —L~

N

yields a morphism of ringed topoi (f,g): T(f) — T (g) over S by [llI71, Chapitre 111.4.12.].
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Proposition 4.8. The following chart is a list of subdiagrams 11 to 15 of the above table of the

diagram

and the corresponding obstruction groups as found in Theorem 2.13 or Theorem 2.20.

subdiagram condition or notation obstruction group

7 0,: h~ 10z — Ox the ring morphism of A,

: 110 On on, | Bt (612 (5 5.7)
X a®b Op(a)d
RG as in Proposition 3.25 for EXt%(Ly/Z RG(m= . 7))
G: K (T(f)) — K*(Y) as in Lemma 3.23 ’ 2
g smooth, R'f,(t%J) =0 for all i > 0, ExtQY(Q;/Z, K)
7 K and Q kernel and cokernel of @

12 /
h

t5 T — fo(t%J), respectively

Exty (55, Q)

g a closed embedding with

t5J — fo(t%J), respectively

X regular ideal sheaf Z, Extl (Z/7%K)
Rif.(t5%J) =0 for all i >0, ®
K and Q kernel and cokernel of Homy (Z/72, Q)
3T — fo(t% T), respectively
Y Z Lr(gs = (Lyss,Lz/s,9*Lz/s — Lys)
13 / the cotangent complex of Extlr(f) ((f, 9) L1(g)/s> m*T(f)j)
X mrg): T(g9) = S
none Extk (f*Ly/z.t%xJ)
y 2>z g smooth Extl (f*QL, ., t5%.J)
14 / g a closed embedding with
X regular ideal sheaf Z and Homy (f*Z/Z°,t5%J)
e 7/Z? flat over Oy or e f flat
RG as in Proposition 3.25 for Extl (¢° L5, RG(m2 . 7))
Y Z | G:KT(T(f)) = KT (Y) as in Lemma 3.23 Y /5 T
15 fT / tz smooth, R f,(t5J) = 0 for all i > 0, Ext%,(g*le/S,lC)
X K and Q kernel and cokernel of D

Homy (g*Q7,, 4, Q)
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Notice that only the twelfth subdiagram is well-positioned and full. Thus for the other subdia-
grams Corollary 3.26 is not applicable. We will use similar argumentations pointed out in Section
3 for the simplification of the respective obstruction group. Condition 2 in Theorem 2.20 will

always be fulfilled except for subdiagram 14.

Proof. If1: W — W' is a smooth morphism of schemes (respectively a closed embedding of schemes
with regular ideal sheaf 7), then the natural morphism of complexes Ly /w — Q‘l,v W (respec-
tively Ly w: — T/7%[1]) is a quasi-isomorphism by [I1171, Proposition I11.3.1.2.] (respectively by
[I1I71, Proposition II1.3.2.4.]). We will use these results several times.

Let h: u=1Oy — Oy be the ring morphism in Proposition 2.16. We will denote the objects of X
in the form (Fx, Fy, Fz) if the sheaf morphisms f~1Fy — Fx, g~ Fz — Fy and h" 1 Fy; — Fx
are clear from the context.

Subdiagram 11: By definition we have u=!1Oy :(hfl(’)z ®t}_(1os (’)Xuq*l(’)Z,OZ), hence
condition 2 is satisfied and

Ln=(L,Ly;z,Lzz)

by Corollary A.3. The morphism
(id,id,0): (L, Ly,z,0) =(L,Ly,;z,Lz/z)

in Ch(X) is a quasi-isomorphism by the exactness of Lz,z. It follows that we may replace Ly,
by (L,Ly;z,0) in D(X) for the calculation of the obstruction group. Since the forgetful functor
K*(X) — KT (T(f)) is exact and since there is a natural isomorphism

Homen(x) (L, Lyyz,0), m%J) 2= Homen(r (1)) (L, Lyyz), M) T)
of abelian groups, we get a natural isomorphism
Ext%(((L, Ly/z, 0), m;gj) = EXt%-(f) ((La LY/Z)7 m;—(f)J)

by the same argument as used in the proof of Proposition 3.25.

Subdiagram 12: Since X Ly % Zisa bridge of X we know by Proposition 3.46 and
Lemma 3.47 that the obstruction lives in Ext} (Ly,z, RG(miy ) J)) for G: K*(T(f)) — K*(Y)
as in Lemma 3.23. If R'f,(t%J) = 0 for all i > 0 then we have naturally

Ext3 (Ly;z, RG(miy 1 J)) = Ext3 (Ly;z, K) @ Exty (Ly,z, Q)

by Corollary 3.49. If g is smooth (respectively if g is a closed embedding with regular ideal sheaf

T), then the natural morphism of complexes
Ly/z — Q%//Z (respectively Ly,z — T/T?[1])

is a quasi-isomorphism.
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Subdiagram 13: By definition we have
u—loy :(f—l(f)y ®t;105 OX,g_loZ ®t;105 Oy, Oz),
hence condition 2 is fulfilled and

L =(Loy/t-10y00x: Loy 110,00y Lz/z).

The same argument as in the proof for subdiagram 11 shows that we may replace Lj by

(Lox/fflo'{@Ox7L(9Y/g’loz®0y70)

in D(X). Now as in the proof of Proposition 3.55 this complex is naturally isomorphic in D(X)

to

(f*Ly;s:9*Lz/s,0)[1]
where the morphism of complexes of Ox-modules f*g*Lz,s — f*Ly g is the pullback under f of
the natural morphism of complexes of Oy-modules g*Lyz,5 — Ly,s. Since the forgetful functor
K*(X) — KT(T(f)) is exact and since there is a natural isomorphism

Homen(x) ((F*Ly/s: 9" Lzss,0), m5xT) = Homenr(s) (f*Ly;s, 9" Lzys), miy 5 J)

of abelian groups, we get a natural isomorphism

Ext% ((f*Ly/s: 9" Lzys,0)[1],m3J) = ExtTp ((f*Lyss, 9" Lzys) 1], mi 5 T)
by the same argument as used in the proof of Proposition 3.25. Moreover, we have naturally
ExtZ s ((F*Ly;s,9* Lzys) (1, miy 5T ) = Extir 5 ((FLyys, 9 Lzys), mi 5 J)
= Bxtir ) ((f:9) Lr(g)/: M1y T )-

Subdiagram 14: By definition we have =10y :(ffloy ®p-10, Ox, Oy, (’)Z), hence con-
dition 2 is not satisfied. If w: X — Y is the forgetful functor with left adjoint w=': Y — X as in
Proposition 2.11 and if B € ob())), then (w™!B)x, the part of w™!B on the level X, is given by
the colimit in X of the system

Bx

7

hilBZ
f

and this colimit does not commute with finite limits. Thus condition 1 is not satisfied either.

Nevertheless, we are able to calculate the obstruction group by Theorem 2.13. Assume given a

deformation
Y’/ > 7/ Y 49) 7
/ of the subdiagram /
n' h
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over S’ and let

0=t >0z -0z —0

be the extension of Oz where t;: Z — S is the structure morphism. Now we consider h: X — Z
and g: Y — Z as (not necessarily flat) structure morphisms. We define X to be the ringed
topos associated to the diagram f: X — Y in the category BTop/Z of ringed topoi over Z.
Similarly, let ) be the ringed topos associated to the diagram (X,Y’) in the category RTop/Z
of ringed topoi over Z and let v: Ox-mod — Oy-mod be the forgetful functor with left adjoint
v*: Oy-mod = Oy-mod as in Proposition 2.11. Letting

C: f*Ly/Z — LX/Z

be the natural morphism of complexes of O x-modules induced from the composition X Ly %7

and denoting the objects of X' in the form
(-FXv-Fva_l-FY _>~FX)a

we have
v'Ly,z = (f"Ly/z ® Lx/z,Ly;z, [*Ly/z o), f"Ly)z ® Lx/z)
and
Lz =(Lx/z,Lyz, [*Ly;z < Lx;z)
by definition of v* and by Corollary A.3. Now the morphism m: v* Ly 7 — Lx,z of complexes of
O x-modules in Theorem 2.13 is given levelwise by

mx: f*LY/Z@LX/Z —)Lx/z, (a,b) i—>C(a)+b and my : Ly/Z El—)Ly/Z.

Since mx is surjective with kernel isomorphic to f*Ly,7 and since the cone of the identity is

homotopic to the zero complex, we have
Cone(m) = (f*LY/Z[l]a 07 f*O — f*LY/Z[l])

in D(X). By Theorem 2.13 there is an obstruction for finding an extension

’ /

Y/ 9 > Z/ Y/ 9 > Z/
5 of
R’ R’
X' X'

with respect to the extension
0—-t3J -0z -0z —0

of Oz in the group Ext% (Cone(m), m%t5J) where my: X — Z is the morphism of ringed topoi
in Proposition 1.17 (we did not need the flatness of the structure morphisms h: X — Z and
g:Y — Z in Theorem 2.13).

Now considering Y as a subdiagram of X’ with the complementary subdiagram X, the functor
G: Ox-mod — Ox-mod in Lemma 3.23 is the forgetful functor Ox-mod — Ox-mod, in particular,

it is exact. Since Cone(m) is a bounded above complex consisting of free Oy-modules it follows
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from Proposition 3.25, applied to the diagram X, the subdiagram Y and the complementary

subdiagram X, that we have naturally
Ext? (Cone(m), mit3J) = Exti (f*Ly,z[1], W't )

which may be simplified to Extg((f*Ly/Z[l],t}j) = Ext}((f*Ly/ZJ}j).

Notice that if Z = S and tz is the identity, then this is just the obstruction group of Subdiagram
3 in Proposition 4.5 and the proof there shows the simplification of the obstruction group if g is
smooth. If g is a closed embedding with regular ideal sheaf Z, then the natural morphism of
complexes of Oy-modules Ly,; — Z/I%[1] is a quasi-isomorphism. If Z7/Z? is a flat Oy-module
or if f is flat, then the induced morphism f*Ly,; — f*Z/T%[1] is still a quasi-isomorphism by
(171, Lemme 1.3.3.2.1.] because Ly, consists of free Oy-modules.

Subdiagram 15: By definition we have u=*0y :(Ox,g’loz ®t;1os Oy, OZ), hence con-
dition 2 is satisfied and

Ly :(LX/X7L0Y/9*IOZ®(’)y7LZ/Z)

which may be replaced in D(X) by (O7 LOY/QAOZ@@),,O) using the quasi-isomorphisms

(id,id,0): (Lx/x, Loy /g-10,90y:0) = (Lx/x, Loy jg-10,00y,Lz/2)
and
(0, ld7 O) : (LX/X7 LOy/g’l(')Z®(')y s 0) —)(0, L(’)y/gfloz(@(')y s O) .
Since the forgetful functor K+ (X) — KT (7(f)) is exact and since there is a natural isomorphism
Homen(x) ((0, Loy /g-10,00y ,0), myJT) = Homen(r(s)) (0, Loy /g-10,00y ) M5 T )

of abelian groups, we get a natural isomorphism

]EXt%( ((07 LOY/9_1(92®OY ) 0)7 mﬁfj) = IEXt%'(f) ((07 LOY/Q_10Z®OY)’ m;’(f)j)

by the same argument as used in the proof of Proposition 3.25. Now if G: KT (T (f)) — KT (Y)

is the functor in Lemma 3.23 we get a natural isomorphism

I['?‘Xt%'(f) ((07 Loy/g’loz@)oy)’ m;’(f)j) = EXt%’(Loy/g’loz@)OyvRG(m;’(f)j))

by Proposition 3.25. By an analogue argumentation as given in the proof of Proposition 3.55 there

is a natural isomorphism Lo, /4-10,80, = g*Lz/s[1] in D(Y), hence the obstruction lives in
Exty (9" Lz;s, RG(mi 1 T))-

The simplification of the obstruction group if ¢z is smooth and if R’ f,(t5%J) = 0 for all i > 0 is

shown as in the case of subdiagrams 12 and 14. O
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Remark 4.9. The obstruction groups for Subdiagrams 11 and 13 are difficult to control in practice
since they are concentrated on the ringed topos T (f). In this case we may consider “two-step”
obstruction groups similarly as in Remark 4.6.

Assume given deformations X’ and Z’ of X and Z, respectively. Let us consider an example
of a two-step obstruction. There is an obstruction for finding a deformation h': X' — Z’ of
h: X — Z lying in Extﬁ((h*Lz/S, t% J) by Proposition 4.5 Subdiagram 3. If it vanishes, there is
an obstruction in Ext$ (Ly,z, RG(mZ ) J)) for extending #': X — Z' to a deformation of the
triangle by Proposition 4.8 Subdiagram 12.

Now assume given a deformation Y', h/: X’ — Z’ of Subdiagram 13. There is, for example,
an obstruction in Ext{ (¢*Ly/s,t3J) for finding a deformation ¢': Y — Z’ of g: Y — Z by
Proposition 4.5 Subdiagram 3. If it vanishes, there is an obstruction in Ext} (f*Lyz,t5xJ) for
extending h': X’ — Z’ and ¢': Y’ — Z’ to a deformation of the triangle by Proposition 4.8
Subdiagram 14.
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4.2.2 Deformations of the image of the Albanese map

We refer to [B&d01, Chapter 5] for the definition of the Albanese variety and its properties.

We consider only extensions of Og by the module J = Og, i.e., those extensions of Og of the
form 0 - Og — Os» — Og — 0. Let S = Spec C be the spectrum of the field C of complex
numbers. By a variety over C we mean an integral separated scheme of finite type over C.

Let X be a nonsingular projective variety over C and let Z = Alb(X) be the Albanese variety
of X. Then Z is a nonsingular projective abelian variety of dimension ¢ = dim H' (X, Ox). Fixing

a closed point xg € X, we may consider the Albanese map
h: X - Z =Ab(X)

of X and its image Y. The morphism /A and the image Y of h are independent of the chosen closed
point zg, up to translation in the abelian variety Z, so we need not care about this choice.

Now if Z is the kernel of the ring morphism 6,: Oz — h,.Ox, we make Y into a scheme by
taking the structure sheaf Oy = O4/Z. This is just the reduced induced subscheme structure of
Y in Z. We get two morphisms of schemes f: X — Y and g: Y — Z with ring morphisms 6; and

6, and two short exact sequences of sheaves
9y 0
00y 5 f,Ox Q=0 and 07— Oy -5 g.Oy — 0.

By definition there is a commutative triangle

of schemes over C.

Remember that if R'f.Ox = 0 for all i > 0 and if Y is smooth, then Homy (Z/Z?2, Q) is an
obstruction group for extending a given deformation of h: X — Z to a deformation of the triangle
by Proposition 4.8 Subdiagram 12.

The aim of this subsection is to proof the following result.

Proposition 4.10. With the notations at the beginning of this section, assume that the following
conditions hold.
i) f is flat.
ii) R'f.Ox =0 for all i > 0.
i) Y = Cy x...x Cy, is a finite product of nonsingular projective curves C; of genus g(C;) > 2
for all j.
Then
Homy (Z/7%, Q) = 0,

hence each deformation h': X' — Z' of h: X — Z extends to a deformation

Y’ Y
7’ \ of / X
W X—h>Z.

Z/

X/
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We need a preliminary lemma before giving the proof.

Lemma 4.11. With the notations at the beginning of this subsection, assume only that Y is a
nonsingular variety and let Alb(Y') be the Albanese variety of Y. Then g: Y — Alb(X) induces
an tsomorphism

Alb,: Alb(Y) =5 Alb(X)

of abelian varieties.

Proof. Since Alb(X) is projective and since Y is a closed subscheme of Alb(X), it follows that ¥’
is projective as well. Thus Y is nonsingular and projective, hence we may consider its Albanese
variety Alb(Y).

For distinction, let ax: X — Alb(X) and ay: Y — Alb(Y) be the Albanese maps of X and
Y with respect to the closed points g € X and f(zg) € Y, respectively. We have ax(xg) = 0 and
ay (f(z¢)) = 0 by definition of the Albanese map. Now since g: Y — Alb(X) is a morphism from
Y to the Abelian variety Alb(X) and since g(f(z¢)) = 0, by the universal property of Alb(Y)
there is a unique morphism of abelian varieties Alb,: Alb(Y) — Alb(X) such that Alb,(0) = 0
and such that

Alb(Y

Y/
RS
X ax Alb(

is commutative. Similarly, since the composition ¢: X Ly o, Alb(Y) is a morphism from X
to the Abelian variety Alb(Y) and since c(xg) = 0, by the universal property of Alb(X) there is
a unique morphism of abelian varieties Alb.: Alb(X) — Alb(Y") such that Alb.(0) = 0 and such
that

Al
X

)
by
)

is commutative. Now both morphisms Alb, o Alb, and the identity from Alb(X) to Alb(X) are

morphisms of abelian varieties sending 0 to 0, furthermore,

X

Alb,oAlb,

Alb(X) Alb(X)
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is commutative, hence Alb, o Alb. = id by the universal property of Alb(X). If y € Y, we may
choose © € X such that f(x) =y since f is surjective. Thus

Alb. (Albg(ay (y))) = Albc(g(y)) = Albe(g(f(2))) = Albe(ax (z)) = ay (f(x)) = ay(y),

whence Alb,. o Alb, o oy = ary. Now similarly, since both morphisms Alb. o Alb, and the iden-
tity from Alb(Y') to Alb(Y) are morphisms of abelian varieties sending 0 to 0, it follows that
Alb. o Alb, = id by the universal property of Alb(Y), whence Albg: Alb(Y) — Alb(X) is an

isomorphism of abelian varieties. O

Proof of Proposition 4.10. Let pr;: Y — C; be the projection to C; and let f;: X — C; be
the composition X i> y 2 C;. We will divide the proof into three steps. We will see that
[i+Ox = O¢, and pr;,Q = 0 for all j. Finally, we conclude that Homy (Z/Z?, Q) = 0.

Step 1: Let us show that f;.Ox = Oc, for all j. Consider the Stein factorization

X ! Y
! T pr;
Cr—2 ¢y

of f; where €} = Spec f;.Ox and f; has connected fibres and c; is a finite morphism. f; is
surjective and C’; is normal by [Stal3, Lemma 33.36.1.]. Since fJ’ is surjective and X is irreducible,
we have that C’j’v is irreducible as well. Since C;» is a normal curve, it is nonsingular, furthermore,
C'j'- is projective because C; is projective by assumption and c¢; is finite. We conclude that C'j'- is a
nonsingular projective variety with Albanese variety Alb(C?).

Then abbreviating Y/ = C{ x ... x C/_, there is a commutative diagram

X

c1 X...Xc
Y'=0C) x...xCl, “>Y=Cix...xCp

of schemes. Since c; is surjective for all j, we have that ¢; X ... X ¢, is surjective as well.
Similarly, since f is surjective, we conclude that (f1]...|f;,) is surjective as well because Y’ and
Y are irreducible of the same dimension m.

Consequently, the pullback morphisms
HO(Y,Qyjc) = HO(Y', Q5 /) and  HO(Y', Q30 c) = H(X, Q)

are injective, but their composition H°(Y, Q%,/C) — HO(Y', Q%/,/C) — H(X, Q}(/C) is an isomor-

phism by Lemma 4.11, thus each pullback morphism is an isomorphism. In particular, we have
dimA(Y) = 2°(Y, Q3 c) = h°(Y', Qy, ) = dim Alb(Y”).
It follows that c; is an isomorphism for every j. Otherwise, without loss of generality, ¢; would

have degree at least 2. Since g(C7) > 2 by assumption, it follows from Hurwitz formula that
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g(C1) > g(Cy) (see for example [Har77, Example IV.2.5.4.]) and we get the contradiction

m m

dim Alb(Y) = Em: dim AIb(Cy) = Y " g(Cj) <> g(C)) = i dim Alb(C}) = dim Alb(Y”).
i=1 ‘

Jj=1 Jj=1 Jj=1

Whence from the Stein factorization we conclude that f;,Ox = Ocj for all j.

Step 2: We show that pr;, @ = 0 for all j. Applying prj. to the short exact sequence
0
0— Oy 5 f.Ox - Q—0

of sheaves on Y, we get a long exact sequence

0
0 — pr; Oy RAELLEN pri« fOx — prjxQ — R'prj.Oy — R'pri.(f.0x) — R'prj.Q — ...
of sheaves on €. We have pr;.Oy = O¢; and pr;. f.Ox = f;xOx = O¢, by step one, moreover,

from the five-term-exact-sequence
0 — R'prj.(f.0x) = R f;.0x — prjxR' f.Ox — R*prj.(f.Ox) — R?f;.0x

of the Leray spectral sequence and from the hypothesis R'f,.Ox = 0, it follows that

R'prj,(f+Ox) — R f;,Ox is an isomorphism. Hence the long exact sequence simplifies to
0= Oc, = Oc;, = prjxQ — R'prj,Oy = R' f;,0x — R'prj,Q — ... .

It remains to show that R'pr;,Oy — R!f;,Ox is injective for each j. We treat the case j = 1,
the case j # 1 is analogous.

The fibre of pr; over y € Cy is F = Cy x ... X C,,,, whence it is independent of y and the
function y +— h'(F, OF) is constant. Since pry is flat, it follows that R'pr;,Oy is locally free and
that the natural morphism

R'pr1.0y @ C(y) — H'(F,OF)

is an isomorphism for each y € C; (see for example [Har77, Corollary II1.12.9]).
For y € C; let f; ' (y) C X be the fibre of f; over y. Define

U={yeC | hl(fl_l(y),Offl(y)) is minimal}.

Then U is a non-empty open subset of C; because the function C; — N,y — R (f; *(y), Ofl—l(y))
is upper semicontinuous. Since f is flat by assumption, we deduce that R! f;,Ox |U is locally free

and that the natural morphism

R' f1.0x|,; @ Cly) = H' (7 (9), O5-1(,)

is an isomorphism for each y € U.

Consequently, on U the morphism R'pr;,Oy — R!'f1,Ox is given fibrewise by the natu-
ral morphism H'(F,Or) — H'(f; *(y), Ofl—l(y)) which by complex conjugation is given by the
pullback morphism HO(F, Q}?/c) — Ho(ffl(y),Q}l,l(y)/C). Since the morphism f; '(y) — F is

121



surjective for all y € C as follows from the commutativity of

Gy

pri
;

Y=Cx...xCy,

\ ipmx...xprm

F=Cy x...xCp,,

X

we see that HO(F, Qp ¢) — HO(f7(y), Q}fl(y)/(c) is injective. Hence R'pr1.Oy |, — R' f1.0x|,,
is injective. It follows that the support of the kernel K of R'pri,Oy — R!f1,Ox is contained in
the finite set C; \ U, hence K is a torsion sheaf. But since R!pry,Oy is locally free, it follows that
K =0 and so R'pr,Oy — R'f,,Ox is injective. We conclude that pr;xQ =0 for all j.

Step 3: Finally, we show that Homy(Z/Z?,Q) = 0. Since Y = C; x ... x Cp, we have
that Alb(Y) = Alb(C1) x ... x Alb(C,,) and we know from Lemma 4.11 that Alb(X) = Alb(Y)
naturally, hence the normal bundle Ny of Y in Z = Alb(X) is given by Ny = @;nzl pr;Nc; where
N¢, is the normal bundle of C; in Alb(C}). It follows

HOIHY(I/IQ, Q) = HOIHY(Oy, Q®NY) = HO(K Q@NY) = HO(Y7 Q® (@pr;ch))
j=1

=P H"(Y, Q@ prjNe,) = P H(C), prj. (Q @ priNg, ).
j=1

j=1

But since Nc; is locally free, pr;.(Q ® priNc;) = pr;jx»Q ® N, by projection formula which is
zero because pr;.Q = 0 by step 2. We conclude that Homy (Z/Z2, Q) = 0. O
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5 Deformations of diagrams of modules

In Section 2 we have dealt with deformations of diagrams and subdiagrams of ringed topoi. Simi-
larly, if (S, Og) is a ringed topos, we will now describe deformations of diagrams and subdiagrams
of Os-modules. We will use many notions and some results of [I1171, Chapitre IV], for example
graded extensions, the graded cotangent complex, the derived category of graded modules over a
graded ring.

In the first subsection we describe a way of turning the given diagram of modules into a
diagram of ringed topoi. Taking the ringed topos X associated to the diagram of ringed topoi as
in Proposition 1.15, we will show that giving a deformation of the diagram of modules is equivalent
to giving a certain graded extension of the structure sheaf Oy.

In the second subsection we will answer the two analogue questions for deformations of diagrams
and subdiagrams of modules posed at the beginning of Section 2. Basically the answers are given
by a graded analogue of Theorem 2.13 where all complexes occurring there are replaced by their
graded analogues.

Finally in the last subsection we give an overview of all subdiagrams of a single morphism of
modules and the respective obstruction groups.

For the whole section we fix an extension
0—-J =05 —-0Os5—0
of Og by an Os-module J.

Definition 5.1. Let F be a flat Og-module. A deformation of F over Og/ is a short exact
sequence of Og/-modules
F: (0T ®os F—F & F—0)

such that 7 is a flat Os/-module and such that the morphism of Os-modules 7' ®p,, Os — F
corresponding to p by adjunction is an isomorphism.

Given another deformation
F: (0= T @os F—F B F—0)

of F over Og, an isomorphism of deformations F — F is an isomorphism of Os,-modules F/ — F’
such that

0——J ®os F F! F 0

0——J ®os F F! F 0

is commutative.
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Proposition 5.2. [IlI71, Proposition IV.3.1.5.] Let F be a flat Os-module.

i) There is an obstruction for the existence of a deformation of F over Og/ lying in
Ext3(F,J ®og F).

i) If this obstruction vanishes, then the set of isomorphism classes of deformations of F over

Os: is a torsor under
EXté(f,j RKog .F)

111) The automorphism group of any fized deformation of F over Qg is canonically isomorphic

to
Homgs(F,J ®og F).

Now we come to the notion of diagrams of Og-modules.

Definition 5.3. Let € be a finite category, i.e., the morphisms of € and thereby the objects of
¢ are finite sets. Let further (S,Os) be a ringed topos. A diagram of sheaves of Og-modules of
type € is a covariant functor I from € to the category of Og-modules, denoted I: € — Og-mod.

Thus for any ¢ € ob(€) there is an Og-module I(c) and for any o € Home(c1, ¢2) there is an
Os-linear morphism I(a): I(c;) — I(cy) such that for any composition ¢; — co 2N c3 in € we
have I(Ba) = I(B) o I(a): I(c1) — I(c2) — I(c3). Notice that in contrast to the case of diagrams
of ringed topoi in Definition 1.14, we define this functor I to be covariant from € to Og-mod. The

reason will become clear in Definition 5.6.

Definition 5.4. Let I: € — Og-mod be a diagram of Og-modules. Assume that each Ogs-module
I(c) is flat for ¢ € ob(€). A deformation of I over Og is a functor I’: € — Og/-mod together

with, for each ¢ € ob(€), a deformation

Pc

0—J ®os I(c) = I'(c) =3 1I(c) =0

of I(c) such that for every a € Homeg(c1, ¢2) the diagram

0—— j@@s I(Cl) I’(Cl) Per I(Cl) —(
id®1(a)l I'(a)l i[(a)
0—— j®08 I(CQ) I/(Cg) Pez I(CQ) —(

is commutative. Two deformations I’ and I’ of I over Og are called isomorphic if there is a

natural isomorphism of functors ¢: I’ — I’ such that

0——J ®o; I(c) I'(c) I(c) 0
v(C)l
00— J ®og 1(¢) () 2> I(c) 0

is commutative for every ¢ € ob(€).
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5.1 The relation between diagrams of modules and diagrams of ringed

topoi
We restrict to the following case for the rest of this section.

General assumption 5.5. Let (S,Os) be a ringed topos and 0 — J — Os: — Os — 0 an
extension of Og. Let I: € - Os-mod be a diagram of Os-modules such that 7. = I(c) is flat over
Ogs for every ¢ € ob(€) and let D a subcategory of €. By restricting I to D we get a subdiagram
J: D — Og-mod of I.

We may ask the analogue two questions at the beginning of Section 2 for the case of diagrams
of Og-modules:
i) Given a deformation J’ of the subdiagram J, what is an obstruction group for the existence
of a deformation of the diagram I inducing the given deformation J' of J?
ii) If the obstruction in this group vanishes, how many different isomorphism classes of defor-
mations of I inducing the given one of J are there?
To answer these questions we will construct for I, as already mentioned at the beginning of this
section, a diagram of ringed topoi over & with associated ringed topos X such that giving a
deformation of the diagram of modules over Og: is equivalent to giving a graded extension of Oy
over m;(l(’)s/.
For each ¢ € ob(€) the Og-module F, = I(c) gives rise to the Os-algebra Ogs & F. which is a
graded Ogs-algebra having Os in degree 0 and F, in degree 1 with ring multiplication

(Os ® Fe) x (Os @ Fe) = Os @ Fe ', ((s1,/1), (52, f2)) = (5182, 51f2 + s2.1)

and with structure morphism
(id|0): Os — Os & F..

Each a € Home(c1, ¢2) yielding the Og-linear morphism

Fo=1I(a): Foy = Fo,

id 0
gives rise to a morphism of graded Os-algebras 0,: Os ® F., = Os ® F., defined by (10 P > .
«
For each ¢ € ob(€) there is a morphism of ringed topoi
te: (S, Os @ .7:6) — (S, 03)

whose underlying morphism of topoi is the identity and whose ring morphism is the above mor-
phism (id|0): t;los =05 — 0Os & F..

Definition 5.6. We define (X, Oy) to be the ringed topos associated to the following diagram
of ringed topoi over S of type € (in the sense of Proposition 1.15): The levels are the ringed
topoi (S,0s @ F.) for ¢ € ob(€), the morphisms of topoi f,: & — S are the identities for each

a € Homg (¢, ¢2) and the ring morphisms are the above morphisms of graded Og-algebras
Oo: 2 (Os ® Fe,) = Os & Fe, = Os & Fo,

for « € Homg(cy, ¢2). The ringed topos (), Oy) is defined analogously be restricting to the objects

and morphisms of ©.
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Notice that there are natural morphisms of ringed topoi my: X — S and my: Y — S by
Lemma 1.17 and the ring morphisms 6y : m;cl Os — Oy and 0y : ml_,lOS — Oy are morphisms of
graded rings since levelwise they are given by the morphisms of graded rings (id|0): Os — Os® F.
for ¢ € ob(€) and ¢ € ob(D), respectively. Moreover, the collection F of all Os-modules F, for
¢ € ob(€) together with the Og-linear morphisms F, : F., — Fe, for a € Home(cq, ¢2) is a module

over m;lOS and 0y may be written as
0 = (id]0): m3'Os = Ox = m3p'Os © F
where m;(l(’)g is placed in degree 0 and F in degree 1.

Lemma 5.7. In the situation of General assumption 5.5, the morphisms my: X — S and

my: Y — S are flat. In particular, X and Y satisfy all conditions of General assumption 2.1.

Proof. For each ¢ € ob(€) there is a short exact sequence of Og-modules

0 7 9 050 F 2 05 0.
Since F, is a flat Os-module by assumption and since Og is a flat Og-module, it follows that
(id]|0): Os — Os @ F. is flat as well. O

Applying m;(l to the fixed extension 0 = J — Ogs: — Os — 0 of Og we get an extension
0—=my' T = my'Os = my'Os — 0

of m;\_,l(?g. Furthermore, by definition of the ringed topos X, giving (an isomorphism class of) a
deformation of the diagram I: € — Og-mod of Og-modules over Og: in the sense of Definition
5.4 is equivalent to giving (an isomorphism class of) a deformation of the m;(l Os-module F over
m}l(’)gz in the sense of Definition 5.1.

Now if A is a graded sheaf of rings on a topos 7 and if B is a graded A-algebra, we define
the graded cotangent complex Lg /4 88 in [I171, Equation IV.2.2.1]. Taking the concept of graded
extensions and graded deformations as presented in [I1171, Section IV.2.4.], it is possible to define
the derived category D(A),, of the category of graded A-modules as in [I1171, Section IV.1.2.] and
abelian groups

EX&IA(B, M)gr and IEthB (Lg/A7

M)gr
for M a graded B-module which are naturally isomorphic by [I171, Equation IV.2.4.2] just as their
analogues Exala (B, M) = Ext}B(LB/A,M) in the ungraded case in Theorem 1.8.iii). The group
Exala (B, M)g, is by definition the group of isomorphism classes of graded A-extensions of B by
the fixed graded B-module M.

The crucial point is that there is a relation between the two notions “deformations of the

)

my'Os-module F over m3'Os” in the sense of Definition 5.1 and “m ' Og-extensions of Ox”

in the sense of Definition 1.6, stated after the following lemma.
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Lemma 5.8. Let T be a topos, let A = @nZO A, be a graded ring of T and let B = @nzo B, be
a graded A-algebra. For M,L € ob(D(A)g) and i € Z let

Ext’ (M, L) = Hompy A)ge (M, LIi]).

i) For each E € ob(D(A)g) and F € ob(D(Ay)) and for each i,n € Z there is a natural
isomorphism
ExtYy, (En, F) = Exty (E, F(—n))g:

of abelian groups, functorial in E and F', where E, is the homogeneous part of degree n of
E.

it) There is a natural functorial isomorphism

(L5 4)0 = Ly /4,
in D(By). If A= Ay and By = Ao, then there are natural isomorphisms

(Lg/A)O = 0 (J/ﬂd (Lg/A)l = Bl

in D(A), functorial in B in the sense that if f: B = @,50Bn = C = D,5,Cn is a
morphism of graded A-algebras such that By = Ag = Cy, then the degree 1 morphism
(Lg/A)l — (L%r/A)l of the natural morphism of graded B-modules ng;/A — L%r/A is identified
with the degree 1 morphism fi1: By — Cy of f: B— C.

Proof. Assertion 4) is shown in [II71, Equation IV.1.2.2.1] and assertion 4) in [II71, Equation
IV.2.2.4] and [1lI71, Equation IV.2.2.5] together with the functoriality of [I1171, Equation IV.2.1.5].
O

Proposition 5.9. Under the conditions of General assumption 5.5, let X be the ringed topos
associated to I as in Definition 5.6. Then for each i € Z there is a natural isomorphism of abelian
groups
; -1 ~ ; -1
EXt;;105<‘F’ my J @p-iog F) ExtIX(Lg/S,mX T O p=10s F)ar

where m}lj ®m;105 F on the right hand side is considered as a graded O x-module concentrated
in degree 1.

In particular, for i = 1, it follows that there is a natural one-to-one correspondence between
isomorphism classes of deformations of F over m}l(’)g/ and isomorphism classes of graded ex-
tensions of Ox over m;(log/ by the graded O x-module m}lj ®m;105 F, considered as module

concentrated in degree 1.

Before giving the proof, let us describe the above natural one-to-one correspondence which is
proved in [I1171, Equation IV.3.1.2] together with [[1171, Equation IV.2.4.2]: Let

0— m}lj — m}l(’)gf kN m}los — 0
be the extension of m;(lOg considered. Given the isomorphism class of a deformation
-1 % ) P
0—my j@m;los}"%]—" - F =0
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of F over m3'Os:, we get an induced isomorphism class of a graded my'Os:-extension of
Oy = mEIOS @ F by the graded Ox-module 0 & m)—{lj ®m;105 F which is represented by

00 id 0
0 i 0 p
my'Os & F' my'Os & F —0.

0
m T(‘ﬂ )

—1
my 05/

0—=08mz'T @10, F

Here we have written explicitly 0 ® m}lj Omzlos F to indicate that this module is concentrated
in degree 1. On the other hand, given the isomorphism class of a graded m}l Os-extension of Oy

by the graded Oxy-module 0 & m;(lj ®m;105 F represented by

0—=00mz'T @, 10, F my'O0s @ F ————=m3'Os ® F —0,

—

-1
my Os/

we get an isomorphism class of a deformation of F over m}l Ogs/ by taking the class represented

by the degree 1 sequence
0— m}1j®m;105 F—=F = F—=0.
Proof of Proposition 5.9. By Lemma 5.8.1) we have naturally
EXt‘zX (L§/37 m;(lj ®m;€105 ]:)gr = EXtin;los ((Lg/':\f'r/3>1’ m:t'lj ®m;los ]:)

because m;(lj ®m;105 F is concentrated in degree 1. By Lemma 5.8.ii) there is a natural iso-

morphism (L%;/S)l =~ F in D(m3' Os), hence

Ext,, 1o (LY /s)1my' T @, 10, F) 2Ext, o (Fomy' T @210, F)

my Os

= Ext:n;los (]:7 my J ®m;€105 ]:)
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5.2 The long exact sequence of a diagram and a subdiagram of modules

Assume given the situation of General assumption 5.5 and let X and ) be the ringed topoi for I
and J as in Definition 5.6. As done in Subsections 2.2 and 2.3 for the ungraded case, we will derive
a long exact sequence for diagrams and subdiagrams of modules containing all groups relevant for
deformation theoretic considerations.

Let Ny be the set of nonnegative integers. If A is an Ny-graded ring of a topos 7, we denote
by A-modgr the category of Ny-graded A-modules whose morphisms are A-linear morphisms pre-
serving the grading. We will omit Ny in the notations and just speak of a graded module. The
category A-modgr has all finite colimits. To see this, notice that if we are given a finite system
of graded modules over A, we may disregard the grading and take the colimit in the category of
modules. This colimit has a natural grading and regarding it as a graded module, we see that the
category A-modgr has all finite colimits.

Let D(A)g, be the derived category of the category of graded A-modules as defined in [Il71,
Section IV.1.2.]. For L, M € ob(D(A)g,) and i € Z we define

Ext'y (L, M)g: = Hompya),, (L, M][i]).

Now let
v: Ox-modgr — Oy-modgr

be the forgetful functor. As in the ungraded case, there is a left adjoint
v™: Oy-modgr — Oy-modgr
of v. For L € ob(Oy-modgr) it is defined levelwise by

* _ . —1
(1} L)c = 11& (fV Ly ®f—71(9xd OXC)
y€ob(c)
for ¢ € ob(€) where the colimit is taken in the category Oy -modgr. This makes sence because
if Ly is a graded Ox,-module for (vy: d — ¢) € ob(c), then f,Y*lLd ®f§10xd Oy, is a graded
Ox, -module. By abuse of notation we denote by v and v* the functors between the categories
Ch(X),, and Ch())g, of complexes of graded Ox-modules and graded Oy-modules, respectively,
as well.

Let L5 /s be the graded cotangent complex of the morphism of graded rings

O = (id]0): m3'Os = Ox =m3'Os © F
of my: X — § as defined in [III71, Equation IV.2.2.1].

Theorem 5.10. Assume given the situation of General assumption 5.5 and let X and ) be the
ringed topoi for I and J as in Definition 5.6. Let

=o*L8

gr. , %, 78°
mé': v vl y/

gr
X/S s L

x/S

be the adjunction morphism in Lemma 2.12 of the graded cotangent complex L‘d}r/s and let Cone(ms")

be the cone of m8". Let M = m}lj Opm=los F, considered as graded Oxy-module concentrated in
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degree 1. Then the distinguished triangle

* T 8r me" ar
v'Lys L

in the derived category D(X)g yields a long exact sequence

0 — Extyy (Cone(m®), Mgy — Exth (LY 5, M)gr — ExtS, (LY g, vM g

y/s
— Ext} (Cone(m#"), M)g, = Ext}Y(Lir/S, M)y = Exti,(Lir/s, VM ) gy

= Ext% (Cone(m®), M)y — Ext? (LY 5, M)gr — Ext3, (LY 5, vM g

y/s

of abelian groups. The morphism 7 is the forgetful morphism sending a deformation of the diagram
I of Os-modules to the induced deformation of J. Given a deformation J' of the subdiagram J

over QOg:, there is an obstruction
w(J') € Ext3 (Cone(m&"), M)g

whose vanishing is necessary and sufficient for the existence of a deformation I' of the diagram I
over Og: reducing to J'. If the obstruction w(J') is zero, then the set of isomorphism classes of

deformations I' of I over Og: reducing to J' is a torsor under the image of
o: Ext} (Cone(m®), M)y — Extk(Lir/S, M)gy.

Proof. We apply the functor Homp ), (—, M) to the above distinguished triangle to get an exact

sequence
0— Ext(/{g(Cone(mgr), M)g — Ext?\g(Lir/S, M)gr — Extg/(v*L%f/s,

— Ext% (Cone(m®"), M) g — Extﬁg(Lif/s, M)g — EX’C;(U*L%}Y/S,

— Ext% (Cone(m®"), M) gy — Ext (LY 5, M)gr — Exti (v°LE s,

M)gr
M)g:
M)gr

of abelian groups. As in the ungraded case in Theorem 2.13, one shows that for each ¢ € Z there

is a natural isomorphism

Extly (v* LY g, M)gr = Ext), (L

y/s,vM)gr

and that the composition

Ext’ (L8

%5 M)gr — Ext’ (v* L&

V/S» UM)gr

M) = Ext}, (LS,

is the forgetful morphism. We know that Ext}, (L5, /52 M)gr and Ext}, (L), 5, vM)g: classify isomor-

y/s?
phism classes of deformations of I and J over Og:, respectively, by Proposition 5.9 and Theorem

5.2. All deformation theoretic assertions follow from the exactness of the sequence. O
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Our next aim is to state a graded analogue of Theorem 2.20. If A is an Ny-graded ring of a
topos T, we denote by A-alggr the category of Ny-graded A-algebras with morphisms of A-algebras
preserving the grading. Again we omit the prefix Ny in the notations. The category A-alggr has
all finite colimits. Similarly as in the case of the category A-modgr, if we are given a finite system
of graded A-algebras, we may omit the grading and take the colimit in the category of algebras.
This colimit has a natural grading as A-algebra, so it is the colimit in the category A-alggr.

Now let u: m;lOs—alggr — m§105—alggr be the forgetful functor. This functor has a left
adjoint

TR m}lOs—alggr — m}log—alggr

which is given levelwise, for ¢ € ob(€), by
(uilB)c = hgq f;le
~€Eob(c)
where B € ob(mil(’)g—alggr) and the colimit is taken in the category t;'Og-alggr. Remember
that t.: (S,0s & F.) — (S,0s) has the identity as underlying morphism of topoi, thus this
colimit is taken in the category Og-alggr. Imitating the construction in Proposition 2.16, we get

the following result.

Corollary 5.11. With the above notations there is a natural factorization

m}l Os
N d
u 0y
of the graded ring morphism 0y all of whose morphisms are morphisms of graded m;(l Ogs-algebras.
Before stating the graded analogue of Theorem 2.20, let us examine three different examples.

Example 5.12. Consider the examples

diagram in Og-mod subdiagram 1 in Og-mod
F——>G F
subdiagram 2 in Og-mod subdiagram 3 in Os-mod
g F g

with no other morphisms involved except for the identities. Here F and G are Os-modules and

p: F — G is Og-linear. The corresponding diagram in $3%op/S is given by
f1(X,0x):=(5,0s®G) = (S,0s & F) =: (Y,Oy)
whose underlying morphism of topoi is the identity and whose ring morphism is

id@(p:@s@f—)@g@g.
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Let further tx: (X,0x) — (§,0s) and ty : (Y,Oy) — (S, Os) be the structure morphisms whose
underlying morphisms of topoi are the identity and whose ring morphisms are (id|0): Os — Os®G
and (id|0): Os — Os @ F, respectively. Now let X’ be the ringed topos associated to the diagram
f: X =Y in RTop/S as defined in Definition 5.6. We denote the objects of X in the form

(Hx,Hy, Hy = Hx)
where Hx and Hy are sheaves of X and Y, respectively. The structure sheaf of X is given by
Ox =(0s®G,05 & F,05 & F 224 05 @ G).
Subdiagram 1: By definition we have
w0y =(0s ® F,05 ® F,05 & F 229 05 @ F)

and h: u='Oy — Oy is given by h :(id D p,id EBid).

Subdiagram 2: Similarly, we have
Cim (id|0)
u Oy —(05 ©G,0s5,0s —= Og @g)
and h: u='Oy — Oy is given by h =(id @ id, (id|0)).
Subdiagram 3: This time (u~1Oy)x is the tensor product of Os & F and Os & G over Og,

considered as a graded Og-algebra, i.e.,
(u'0y)x =05 & (F®G) D (F ®0s G).

whose degree 0 part is Og, whose degree 1 part is F & G and whose degree 2 part is F ®o4 G.

Hence we have

ide (id|0)
e

u 'Oy =(0s® (F®G)® (F®osG),0s ®F,0s®F Os® (FaG)® (F ®os G)).

If I: F® G — G is the morphism (f,g9) — ¢(f) + g, then h: u=10y — Oy is given by
h=(d®!l®0,id®id).

We come back to the general case. Each composition of graded rings gives rise to a distinguished
triangle between the graded cotangent complexes by [Il171, Diagramme IV.2.3.4]. Hence as in the

ungraded case, we have a distinguished triangle

N ]

L%r ®u—1(’)y Oy ——mM > LX/S

in D(X)g, induced from the composition of graded rings 6 : m}log LN u 0y LN Ox in Corol-
lary 5.11.
Now as in Lemma 2.19 we define a natural morphism of complexes of graded O y-modules

a8 v*L8

Ys = LY @10, Ox
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such that

* T 87 mB* gr
v Ly/s 4>LX/S

a®” \L

ngr ®u—1oy OX e L%(r/s

is commutative in the category Ch(&X)s of complexes of graded Ox-modules.

Theorem 5.13. Assume given the situation of General assumption 5.5 and let X and ) be the
ringed topoi for I and J as in Definition 5.6. Let M = m;(lj Bmzlos F, considered as graded
Ox-module concentrated in degree 1. If a®" is a quasi-isomorphism, then for each i € Z it induces
a natural isomorphism of abelian groups

Exth (L8 @y-10, Ox, N)g = Ext}, (L5

y/saUN)gm

functorial in N € ob(D*(X)g). Furthermore, if a®" is a quasi-isomorphism, then the application

of the functor Hompxy,, (—, M) to the distinguished triangle

gr

L%r ®u710y Ox
yields a long exact sequence
0 — Extl (LY, M)gr — Ext (LY 5, M)gr — Ext5,(LY s,

— Exty (LY, M)gr = Exty (LY 5, M)gr — Exty (L5 s,

25 Bt} (L5, M) — Ext} (LY g, M) g — BExt} (L5,

VM ) gy
v M) g
VM ) gy
of abelian groups. The morphism 7 is the forgetful morphism sending a deformation of the diagram

I of Os-modules to the induced deformation of J. Given a deformation J' of the subdiagram J

over Og:, there is an obstruction
w(J') € Ext3 (LY, M) g

whose vanishing is necessary and sufficient for the existence of a deformation I' of the diagram I
over Qg reducing to J'. If the obstruction w(J') is zero, then the set of isomorphism classes of
deformations I' of I over Os: reducing to J' is a torsor under the image of

o1 Exth (L, M)g — Extif(Lfg/S,M)gr.

Proof. We just imitate the proof of Theorem 2.20. O
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Notice that a®": v*L5 s LY ®y-10, Ox is a quasi-isomorphism of complexes of graded
Ox-modules if and only if the underlying morphism a: v*Ly ;s — Li ®,-10,, Ox of complexes
of Ox-modules disregarding the grading in Lemma 2.19 is a quasi-isomorphism by [I1171, Section
IV.1.2.1.]. Hence we may use the sufficient conditions 1 or 2 in Theorem 2.20 to verify if a8 is a
quasi-isomorphism.

Notice further that

Extiy (L, Mg = Exty (L, my' T @210 Flae 2 Ext, 1 (LF)1,my T @100 F)

for all i € Z by Lemma 5.8.1). Thus in contrast to the ungraded case in Theorem 2.20, we
do not need to know the graded cotangent complex L§" to understand the obstruction group
Ext3 (L}, M)gy, but only its degree 1 component (L§");. The following lemma is a generalization
of [III71, Equation IV.3.2.10].

Lemma 5.14. Let hy: (u=t0y)1 — F be the degree 1 morphism of the morphism
h:u Oy = Ox =m3'Os & F

of graded m}los-algebms in Corollary 5.11. Consider hy as a morphism of m}l(’)s-modules. If

Cone(hy) is the cone of hy, then there is an isomorphism
(L§")1 = Cone(hq)
in D(m3'Os).

Notice that the m}log—linear morphism h;: (u"!Oy); — F and thereby its cone depend
only on the chosen diagram I: € — Og-mod and the chosen subdiagram J:® — Og-mod of

/ %r\

ngr w— 1Oy OX%LX/S

Og-modules.

Proof. The distinguished triangle

in D(X),, induced by the composition of graded rings m;(l(’)g 4 u 10y LN Oy gives rise to a

(L} ®@u-10, Ox ) (L% sh

distinguished triangle

in D(m3'Os) by taking the degree 1 components. Remember that (u"'0y)y = m3'Os and

Oy = m}l Os @ F, hence we have

(LF" @u-10y Ox)1 =((LF")o ®u-104)0 (Ox)1)S((LF)1 @10y, (Ox)o)
=((LF)0 Optog F)B(LF)1 @10, my' Os)
=((LE)o @ptog F) @ (L)1
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By Lemma 5.8 ii) there are natural functorial isomorphism
(Lf)o=0, (Lf)1=(u 'Oy and (L%, sh =F

in D(m>'Os). Thus (L' ®,-10, Ox)1 = (u"'Oy); and the functoriality of all isomorphisms

used shows that there is a distinguished triangle

Lih
] \
(u™'Oy) : F
in D(m3'Os). In particular, there is an isomorphism (L$"); 2 Cone(h1) in D(m3'Os). O
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5.3 The subdiagrams of a single morphism of modules

In this example we keep the situation of General assumption 5.5. We consider two flat Os-modules
F and G and the diagram
p: F—G

of Os-modules in Example 5.12. Similarly as in Subsection 4.1.2, we treat all three possible
subdiagrams and calculate the obstruction groups for the problem of extending a given deformation
of the subdiagram to a deformation of the diagram as explicitly as possible.

We keep the notations of Example 5.12, in particular the corresponding diagram
[1(X,0x) = (5,058 G) = (5,0s & F) = (Y,O)
in MTop/S whose underlying morphism of topoi is the identity and whose ring morphism is
idop:0OsdF - 0sDG.
Let Z be the ringed topos associated to the diagram f: X — Y in RTop/S.

Proposition 5.15. The following chart is a list of all subdiagrams of p: F — G and the corre-

sponding obstruction groups as found in Theorem 5.13:

subdiagram condition or notation obstruction group
C(p) the cone of ¢ Ext%(C(¢), J ®0s G)
1 F ¢ surjective with kernel K Ext§ (K, J ®0s G)
¢ injective with cokernel Q Ext%(Q,J ®os G)
2 g H,: G775 0) Ext? _, (F,mz'J ©,,-10, H)
F = (0,F,F —0) 2'0s z
3| F G none Exts(F,J ®os G)

Proof. First notice that considering the subdiagrams F, G and (F,G) of ¢: F — G corresponds
to considering the subdiagrams Y, X and (X,Y) of f: X — Y respectively. We have seen in the
proof of Proposition 4.5 that condition 2 in Theorem 2.20 is satisfied in each of the three cases.
We will use some graded versions of results of Section 3.
Subdiagram 1: Keeping F and omitting G corresponds to omitting the source (X, Ox) of f.
By a graded analogue of the calculations for the obstruction group for subdiagram 2 in Proposition

4.5, there is an obstruction in
Ext (L% y tx' J 105 e = Ext% (L% )y, J ®0s Gar

for extending a given graded extension of (Y, Oy) to a graded extension of f. Here J ®o, G is

considered as graded Ox-module concentrated in degree 1. By Lemma 5.8.i) we have naturally
EXti(L%E/Y, J ®os g)gr = EXt‘QS((L‘g);E/y)la J ®os g)
We have seen in Example 5.12 that the morphism h; in Lemma 5.14 is given by

hy = (¢,id): (F,F,F %5 F) = (G.F.F 5 0)
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and we have (L% )1= (L)1) x = (Cone(h1)) y = C(p) in D(S) by Lemma 5.14. If ¢ is sur-
jective with kernel K (respectively if ¢ is injective with cokernel Q) it follows that C'(¢) = K[1]
(respectively C(p) = Q) naturally in D(S).

Subdiagram 2: Abbreviating H = (G, F, F 2 G), we know from Theorem 5.13 that the ob-
struction group is given by Ext% (L8, mz'J ®mzl0s H) g where mz'J ®,210, M is concentrated

in degree 1. By Lemma 5.8.i) this group is isomorphic to
EXt?n;lOs ((L%,r)l’ m%lj ®m’:’10$ H)
By Example 5.12 the morphism h; is given by
hy = (id,0): (G,0,0 = G) — (G, F,F 5 G)

and we see that Cone(hy) = (0, F,F — 0) in D(m3'Os) since the cone of the identity G — G is
homotopic to zero. Hence abbreviating F' = (0, F, F — 0), it follows from Lemma 5.14 that

]Ethnglos((L%r)l’mglj ®m;105 H) =~ EXtQ .

mz Os

((vaaf — O)a mglj ®m;105 H)
= Ethngl(?g (_7:/’ m;lj ®m§108 'H)

>~ Ethn;1O$ (‘F/’ m;lj ®m;1os H)

Subdiagram 3: Keeping both F and G but omitting ¢ corresponds to keeping (X, Ox) and
(Y, Oy) but omitting f. By a graded analogue of the calculations for the obstruction group for

subdiagram 3 in Proposition 4.5, there is an obstruction in
EXt%{ (f*L%fr/Sv t)_(lj ®t}105 g)gr = Extk(f*Lf/r/S, J Ros g)gr

for extending a given graded extension of (X, Ox) and (Y, Oy) to a graded extension of f where

J ®o, G is again concentrated in degree 1. By Lemma 5.8.1) we have naturally
EXt%((f*L%/r/y J ®0s g)gr = EXt.ls‘((f*L%/r/s)lv J ®0s g)
By definition we have isomorphisms of Og-modules
(f* LY, 51 = (LY )5 ®oy Ox)1 =((LF,5)0 ®os G) ® (LY /g)1-

From Lemma 5.8.ii) it follows that (LY, g)o = 0 and (L}, g

)1 = F in D(S), whence
Exty (f*LY, g, T ®0s G)gr = Extg(F, T @05 G) = Extg(F,J ®0s G).-
O

Remark 5.16. The obstruction groups for subdiagrams 1 and 3 can also be found in [IlI71, Propo-
sition IV.3.2.3.] and [Il171, Proposition IV.3.2.12.], respectively, where they are calculated without
using the corresponding obstruction groups for subdiagrams 1 and 3 in Proposition 4.5. But the

obstruction group for subdiagram 2 does not occur in [I1I71].
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A Further properties of the cotangent complex

All sheaves of rings of any topos are assumed to be associative, commutative and unitary.

Proposition A.1. Let T be a topos, A a sheaf of rings of T and By, ..., B, sheaves of A-algebras
of T. Let C,, = B1®4...®4 B, and Lp,/a®B; Cn — Le,, /4 the natural morphisms of complexes

of Cp-modules. Assume that each Bj is flat over A. Then the sum morphism

n

Cn: @(LBJ-/A ®B,; Cn) — LCH/A

Jj=1

is a quasi-isomorphism.

Proof. We proceed by induction on n. For n = 1 we have C; = B; and (; is the identity. So let
n > 1. Since Torf‘ (Cn-1,B,) =0 for all ¢ > 0 by the flatness of A — B,,, the cocartesian diagram

Cn—l I Cn

]

A Bn

yields a quasi-isomorphism

¢: (Le,_yya ®c,_, Cn)®(Lp,ja ©8, Cn) = L, ja

by Theorem 1.8.vi). By induction hypothesis the sum morphism

n—1

Cn—1: @(LBj/A ®p, Cpn-1) = Lc, ,/a

=1
is a quasi-isomorphism of complexes of C,,_1-modules. Since this is a quasi-isomorphism of com-
plexes consisting of free modules, the morphism

n—1

Gn—-1®c,_, Cn: @(LBJ-/A ®B, Cn) - LCn,l/A ®c,_, Cn
j=1

obtained by tensoring with C,, is a quasi-isomorphism as well by [I171, Lemme 1.3.3.2.1.]. But the
composition of (Ql_l ®c, _, Cn) @ id and ¢ is (,, showing that (, is a quasi-isomorphism. O

Lemma A.2. Let (X,0x) be the ringed topos associated to the diagram f: Xy — Xy in RTop/S
in the sense of Proposition 1.15. Denote the objects of X in the form

C = (Co,Ch, f7'C1 5 Cy)
where Cj is an object of X; and f~1Cy 5 Cy is a sheaf morphism of Xy. Let
A= (Ao, A1, f' AL % Ag) and B = (By, By, [ Bi % By)

be sheaves of rings of X and let q: A — B be a ring morphism of X, given by the ring morphisms
g Aj = Bj of X together with the commutative diagram

14, —2 5 A
flqll lQO (Al)
f71B1 $B0
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Let f‘ngl/A1 ®s-1p, Bo LN Lp,/a, be the natural morphism of complexes of Bo-modules defined

by the above square as in Theorem 1.8.1i). Then there is a natural isomorphism

LB/A - (LB[)/A()?LBl/Al?filLBl/Al ®f7131 BO l> LBO/AO)
in the derived category D(B) of the category of B-modules.

Proof. Let (Xy, Ao), (Xo, Bo), (X1, A1), (X1,B1), (X, A) and (X, B) be the ringed topoi whose
underlying topoi is the respective first entry and whose structure sheaf is the respective second

entry. Then the commutative square (A.1) defines a commutative square of ringed topoi

(f:b)
(Xo, By) ————— (X1, By)

(idaQO)i i(idafh)

(f,a)
(Xo, Ao) ‘ (X1, Ar)

where the first entries of the maps are the underlying morphisms of topoi and the second entries
of the maps are the ring morphisms of the structure sheaves. By [Il171, Chapitre I111.4.12.] there

is a commutative diagram

ix,,id ix ,id
(X07Bo) (/\604)> (X,B) <L (X1,Bl)
(id,qO)l (id»Q)i J{(idm)
(ix,,id) (ix; ,id)
(X0, Ao) > (X,A) : (X1, Ay)

of ringed topoi where
iyt X = &), (Co,Cr, f71C1 5 Co) = G

are the forgetful functors. The assertion follows from [Il171, Proposition I11.4.12.2.]. O

Corollary A.3. Let (X,0x) be the ringed topos associated to the diagram I: €°P — RTop/S in
the sense of Proposition 1.15, let q: A — B be a ring morphism of X consisting of ring morphisms

gc: Ac — Be of X; for ¢ € ob(€). For a € Homg(c1,ca) the commutative diagram

A

f(;lAcl — Acz

faqull lq%

Ba
fﬁlBC1 I BC2

«

yields natural morphisms of complezxes of B.,-modules

-1
ot fo L., /A, @pip,, Beo = L.,yja.,

Then the cotangent compler L, = Lp/a is given, up to natural isomorphism in D(B), by the

collection of all cotangent complexes Ly, = Lp_ /4, for ¢ € ob(€) together with the natural

morphisms of complexes of B.,-modules ng: fa_lLBq/Ac1 Qp-1p B., — Lp,/a., for
a c1

a € Homg (¢, ¢2).
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Proof. For fixed @ € Homg(cy, ) denote by X, the ringed topos associated to the diagram
fai Xoy — X., in MTop/S. Let

e} — Aa « - Ba
A :(ACQaAclvfalAC1—>A02) and B :<Bcszclvfa1B01—>B02)

and let (X, A%), (X, B*), (X, A) and (X, B) be the ringed topoi whose underlying topoi is the
respective first entry and whose structure sheaf is the respective second entry. Since the forgetful
functor X — X, commutes with arbitrary limits and colimits, we may choose a right adjoint
ix,«: Xo = X of it by Remark 1.5 and we may regard the forgetful functor as the inverse image
functor z;(i : X = &, of a morphism of topoi ix, : Xy — X. There is a commutative diagram of

ringed topoi

ix. id
(Ao, B — 22 (. B)
(id’(chqcl))l i(idm
(ixa,id)
(X, A%) (X, A).

Now by [Il171, Proposition 111.4.12.2.] the natural morphism of complexes of B¢-modules

Z.t\(aLB/A — LBa/Aa

is a quasi-isomorphism, whence an isomorphism in the derived category D(B?%) of the cate-
gory of B“-modules. Notice that this isomorphism does not depend on the chosen right adjoint
Ty, «: Xo = & of the forgetful functor z}i X = X,

By Lemma A.2 there is a natural isomorphism

Lpojan 2 (Lp,, /., Lo ja s fa' Lo, ja., ®p1p, Beo = Lp,,/a.,)

in D(B®). Hence for every ¢ € ob(€) we may choose a morphism a € Home(c,c3) to get an
isomorphism (Lp/a)c = Lp, /4, in D(B.) and it suffices to show that the collection of these
isomorphisms (Lp/a)c = Lp, /4, in D(B,) for ¢ € ob(€) we have constructed so far is independent
of the choice of . But if ¢ € ob(€) and if o and § are morphisms in € having ¢ either as source

or target, then the diagram of functors
X
Xa s
Xe

all of whose functors are the forgetful functors is commutative. It follows that (Lp/a)c = Lp, /4.

is independent of the choice of «. O

140



B Injective resolutions of modules on a diagram

Let X be the ringed topos associated to a diagram I: €°P — RTop/S in the sense of Proposition
1.15. Given an Oy-module M, we will describe an injective resolution of it in terms of injective
Oy, -modules for ¢ € ob(€) which we will use to calculate the complex RG(m%J) in Corollary
3.26. Remember that if (7,O7) is an arbitrary ringed topos, then the category of Or-modules
has enough injectives by [Stal3, Theorem 18.9.4.].

For each ¢ € ob(€) let J. be an injective Oy, -module. Define

L= @ fHde=( D fHde)od

yEHomg (c,c’), yE€Homg (c,¢’),
c/ €ob(€) c’ €ob(€),y#id

to be the Oy, -module obtained by all not necessarily injective modules f.,J for v € Home(c, ')

and ¢ € ob(€). For a € Homg(cq, ¢2) we have a natural isomorphism

forles =fou( B Fude) = D e

yEHom g (eg,c’), ~yEHomg (cg,c’),
¢/ Eob(€) ¢/ €ob(€)

of Oy, -modules. If § € Home (1, ¢') factors as ¢; > ¢y 2 ¢/, we have f5, = frax and we define

Iy: Icl = @ fé*Jc’ — @ f’ya*Jc’ %Jfa*( @ f’Y*Jc’) :fa*lcz

S€Homg (eq,¢/), vyEHomg (eg,¢’), yEHomg (cg,¢’),
¢’/ €ob(€) c/€ob(€) ¢’/ €ob(€)

to be the composition of the projection and the natural isomorphism.

If ¢1 = ¢y g c3 is a composition in €, then the triangle

Ba

fﬂa* c3 fa*fﬂ* c3

fa* ca

of morphisms of Oy, -modules is commutative because the morphisms are defined by projecting.

Example B.1. Consider the diagram

VN,

Xy — =L,

in ®Top/S with no other morphisms except for the identities and choose an injective Ox,-module
Jj for j =0,1,2. Then we have

Iy=Jo, h=fiJo®J1 and Iy =h,Jo®g.J1 D Jo
and the projections
I =fido®J1 = fudo= filo s Io = hoJo @ guJ1 @ J2 = hyJy = hidy
and

IZ == h*JO @Q*Jl S5 JQ — h*JO @g*Jl = g*(f*JO D Jl) == g*Il
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Lemma B.2. For each ¢ € ob(€) let J. be an injective Ox, -module. Then the collection I of all

Ic = @ f’y*Jc’

vEHomg (c,c’),
¢’/ €ob(€)

Ox,_ -modules

for ¢ € ob(€) together with the morphisms of Ox,, -modules I I, = foxlc, fora € Homg (cq, ¢2)

is an injective O x-module.

Proof. Let 0 = M 2 N be an exact sequence of O y-modules and let p: M — I be a morphism
of Ox-modules. We have to show that there is a morphism of Oy-modules g: N — I such that

N
M T> I
is commutative. For ¢ € ob(€) and v € Home(c, ') let

pry: I, = @ fyeder = fyxde

~yEHomg (c,c’),
¢/ €ob(€)

be the projection to the summand corresponding to . By definition of I, the triangle

Iy
Ic f’y*Ic’
x Kprij}
f’y*Jc’

is commutative for every ¢ € ob(€) and v € Home/(c, ¢’). Since J. is an injective Oy, -module, we

may choose, for every ¢ € ob(€), a morphism of O, -modules ¢d: N, — J, such that

N,
Sc
M, ——1I. . Je

is commutative. Now fix ¢ € ob(€). Then for every v € Home(c, ') the diagram

f’y*Mc’

f‘Y*Sc’
Sryxper
N’Y

f'y*Nc’

f'y*-[c/
f’y*prl(}

f’y*Jc’

id
f’y*CIL/
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of morphisms of Oy ,-modules is commutative by assumption. Thus the morphism

s N’Y f’y*qjjl
q): Ne —> f’y*Nc/ — [y

makes the triangle

N,
T a)
Se
Mo~ I —— frudo
c r

c

commutative. We define g.: N. — I.. to be the direct sum of all morphisms ¢) for v € Home (¢, ¢’).

Then ¢, is a morphism of Oy, -modules. Now fix o € Homg(cq, ¢2). It remains to show that

Na
Nep —— faxNe,

l lf (B.1)
I

I, — fa*I@

is commutative because then the collection of all ¢. for ¢ € ob(€) defines a morphism ¢q: N — I

of Ox-modules which makes the triangle

N
1N
MT>I

commutative by definition.

Let us show that Diagram (B.1) is commutative. Let v € Home(c1,¢’). If v does not factor
through «, then the restriction of I: I.;, — fa«lc, to the direct summand f,.J- is the zero
morphism by definition of I,,. If v factors through « as v: ¢; — ¢z — ¢, then

Na

Ncl fOé*NCQ

// iNV fa*Nsl \

qzl \ f“/*Nc’ i f”/*NC’ = fa*fe*Nc’ }fa*qi2

\ iqufj fa*f“quj/ /

f’Y*Jc’ #' f’Y*Jc/ = fa*fs*Jc’

is commutative because the upper square commutes since N is an Oy-module and the lower square
commutes since foufex = fy«. Since gc,: Noy, — I, and gc,: N, — I, are the direct sum of
all morphisms ¢7, for v € Home(c1,¢’) and ¢, for ¢ € Home(ca, ¢'), respectively, it follows that

Diagram (B.1) is commutative. O

Proposition B.3. Let M be an Ox-module, let j.: M. — J. be an injection of Ox, -modules for
¢ € ob(€) such that J. is injective. If I is the injective Ox-module built from the J. as in Lemma
B.2, then there is an injection i: M — I of Ox-modules.
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Proof. Let ¢ € ob(€) and v € Home(c, ¢’). We define

ic: Mo»Io = @ frude
vyEHomg (c,¢’),
¢/ €ob(€)
to be the composition of

M, — @ M., m (m,...,m)

yEHomg (c,c’),

¢/ €ob(€)
@M‘Y @f’Y*jc’ :
and M, — D f1«Me ——= @ fy+Jo where the direct sums are taken over all

v € Homg(e, ') with ¢ € ob(€). The component morphism of i.: M, — I. of the identity
v =1id: ¢ — c is just the injection j.: M, — J. which shows that i.: M, — I, is injective.
If o € Home(cq, ¢2), then

Ma
M., —> foxM,,

I

JEI — fa*lhg

is commutative by definition of I,. Thus the collection of the injective morphisms i.: M, — I. of

Ox,-modules for ¢ € ob(€) defines an injective morphism ¢: M — I of Ox-modules. O

Corollary B.4. Let M be an Ox-module. Then there is an injective resolution
0-M—=1°T" 12— ...

of M where all injective O x-modules I™ are modules of the form I in Lemma B.2.

Proof. For each ¢ € ob(€) chooce an injection M, — JO of M, to an injective Ox,-module JO. By
Proposition B.3 there is an induced injection M — I° of M to the injective O x-modules I° built
from the JO. Let Q be the cokernel of M — I°. For each ¢ € ob(€) chooce an injection Q. — J}
of Q. to an injective Oy, -module J! and let I' be the injective Ox-module built from the J2.
By Proposition B.3 there is an injection  — I'. Repeating this procedure we get an injective
resolution

0—-M—=1"=T1T" 51— -

of M of the desired form. O

We will see in Example B.6 that in general it is not possible to start with an injective resolution
0= M, —J) = J = J% = ...
of M, for every ¢ € ob(€) and to build an injective resolution
0—M—=1°=T" 17— ...

of M such that I" is the injective Oy-module built from the JJ' as in Lemma B.2 because in

general, the cokernel of M. — J? is not the cokernel of M, — I°.
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Corollary B.5. Let M € ob(Ch™ (X)) be a bounded below complex and let a € 7 such that
M™ =0 for all n < a. Then there is a bounded below complex I € ob(Ch™ (X)) such that I"™ = 0
for all n < a and a quasi-isomorphism l: M — I such that each I"™: M™ — I™ is injective and

such that each I™ is an injective O x-module of the form in Lemma B.2 for all m > a.
Proof. This is a special case of [Stal3, Lemma 12.15.4.]. O
Example B.6. Let X be the ringed topos associated to the diagram

f: X =X

in ®Top/S. Let M be an Ox-module, denoted in the form M = (M,, M, M, LN f«M,) where

Mj, is an Oy, -module. Now choose injections
GO M, —J°  and  G): My — J)

where J{ is an injective Ox,-module. Then the injective Ox-module I° built from the J} is given
by
1= (0, fJe@ T, fIS @ T) =2 £.J7)

and the injection i®: M — I9 in Proposition B.3 is given levelwise by

Q=40 My —J?  and i = (fjlop|jy): My — fIl@ I,

respectively, and the square

(f*j,(:op | Jl[a)

0 M, fJ0® JE
\LP iprl
fuda 0
0 f*Ma f*Ja
0
is commutative and has exact rows. Let Q° = (Q2%, @Y, QP 2 £.Q% be the cokernel of

i%: M — I°. We have exact sequences
01 0 i, 0 0
0—-M, =1,—-Q,—0 and 0—=>My,—= 1) = Qp =0
of Ox, -modules and O y,-modules, respectively, and a commutative square

(f*jsop ‘ ]1(7])

0 M, [ d @ JP QY 0
lp iprl J{qo
0= fuMy — 0 g0 P Q) s R M,

of Ox,-modules with exact rows. Now choose injections
Jar Qo= Jy and G QY oy
where J! is an injective Oy, -module. The injective Oy-module I' built from the J} is given by

I'=(JL, fJle gl fdle b 2 b
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and the injection #*: Q° — I'' in Proposition B.3 is given levelwise by
to=Jo: Qo= o and = (fggod” | 5): Q= £y @y,
respectively, and the square

(f:3a0d° | 3y

0 Q Ll e

P

0— = fQ0— T p

21
is commutative and has exact rows. So far, letting i' be the composition I — Q — I', we have
found an exact sequence
.0 .1
0> M =11

of O x-modules which may be completed to an injective resolution of M. Since i¥ = j9 the injective

module J! may be chosen to be part of an injective resolution
jO jl
0— M, = J0 =% Jl = J2 — ...

of M,. If we choose J! like that, then we see from the commutativity of

f IO @ JP 0 s fIle g}

P

fodd — [.Q4 fds

feiy

that we have a commutative diagram with exacts rows

(f*]g © p)
I3

fedd
0 f*Ma ’ f*J(?

[T @ T e [T}
fsja 0
( *1 o *2

fede

fida

A1
where the unknown entries *; and o are the restrictions of f.J? @& J) — QY S J} to f.J? and
JY, respectively.
Now let

-0 -1 0 1
]a, ]a, ] J
0— M, =% J2 =% J = J2 — ... and 00— My =5 J) > T = T2 — ...

be injective resolutions of M. We have seen in Proposition B.3 that we may take the injective

Ox-module I° built from the Jp as in Lemma B.2 as the beginning of an injective resolution

0-M—=I1°>sT" 17— ...
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of M. But in this example it is not possible to take I' to be the injective Ox-module built from
the J} as in Lemma B.2. If QY denotes again the cokernel of i) = (f.j%op | 70): My — f.JO & J?

and if Qg is the cokernel of j9: M — J?, the commutativity of

0 0
0 -0
O Mb (f*]a P | ]b) f*Jg@JI? Qg O
pro
iy J
0 M, - Jp QY 0
0 0

shows that Qg — Qg is not injective, hence we cannot continue with the given embedding Qg — Jbl.
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List of notations

a the morphism v*Ly /s — L; ®,-10,, Ox in Lemma 2.19 36
af* the morphism v*L%,r/S = L' ®y-10, Ox 132
A-alg the category of A-algebras over the commutative unitary ring A
A-alggr the category of Ny-graded A-algebras over

the commutative unitary Ny-graded ring A 131
A-mod the category of modules over the commutative unitary ring A
A-modgr the category of Ny-graded modules over

the commutative unitary Ny-graded ring A 129
2Ab the category of abelian groups
Alb(X) the Albanese variety of the nonsingular projective variety X 118
Ax, Ay one of the four categories defined in Section 2.1 18
bridge a certain quintuple 2 % 1 LN 0in € 86
C the field of complex numbers
c the comma category associated to ¢ € ob(€) 19
¢ a finite category 14
Cr a subcategory of € 70
Ch(A) the category of cochain complexes of modules over the

commutative and unitary ring A

Ch(X) the category of cochain complexes of Ox-modules

of the ringed topos (X, Ox)
Ch(X)gr the category of cochain complexes of graded O x-modules

of the ringed topos (X, Ox) 129
Cone(hy) the cone of hy: (u™1O0y); — F 134
Cone(m) the cone of m: v*Ly /s — Lx/s 29
Cone(m#r) the cone of m#': v* LY o — L 129
cyclic a type of subdiagrams defined in Definitions 3.31 or 3.41 68, 78
0 a subcategory of € 17
D(A) the derived category of the category A-mod
D(A)g the derived category of the category A-modgr 129
D(M,), D(prh) the morphisms in Diagram (3.5) 68
D(X) the derived category of the ringed topos or of the scheme X
Dera(B, M) the group of A-derivations of the A-algebra B to the B-module M
¢ the subcategory of € in Notation 3.56 94
¢ the subcategory of € in Notation 3.56 94
Exals(C, 1) the group of A-extensions of C by the C-module 7
Exté (L, M) the group Homp g (L, M[i]) where 2 is an abelian category 8
Ext’y (L, M )gr the group Homp ), (L, M][i]) 129
F the m ' Os-module built from all F, for ¢ € ob(€) 126
F a deformation of the Og-module F 123
Foi Fey = Foy the morphism of Og-modules I(«) for a € Home(cq, ¢2) 125

148



I: m3'Os = u=10y
Ld

Ly,

L%

(Ly

Ly, Lj,
L
ngr
Ly;s
LE

X/S
levels

1

lignveob(g) £y Ba
m
me’

mA:ulud - A
M

may: X =S
my' Os-alg

my: Y —S

1(0)

nB: B = uwu"'B
Np

non-cyclic

o,

Ox

the Og-module I(c) for ¢ € ob(€)

the morphism of ringed topoi I(«) for & € Home/(cy, c2)
the functor G: Ox-mod — Oy -mod in Lemma 3.23

a subset of the morphisms in € in Subsections 3.4.1 or 3.4.2
one of the ring morphisms in the factorization of 6y

the degree 1 morphism of h in Lemma 5.14

the functor €°P — RTop/S defining the diagram X or
the functor € — Og-mod in Definition 5.3

the restriction of I: €°P — RTop/S to D°P or

the restriction of I: € — Og-mod to ©

a fixed Og-module

the category of cochain complexes of modules over the
commutative and unitary ring A up to homotopy

the category of cochain complexes of Ox-modules

of the ringed topos (X, Ox) up to homotopy

one of the ring morphisms in the factorization of 6y

a certain complex of Oy-modules for the discrete subdiagram
the cotangent complex of h: u=t0y — Ox

the graded cotangent complex of h: u=10y — Oy

the degree 1 component of L§", considered as a complex
of my* Os-modules

the modified cotangent complexes of h: u=10y — Oy
the cotangent complex of [: m;(l(’)g —u"10y

the graded cotangent complex of I: m;(l(’)g —u 10y

the cotangent complex of a morphism of ringed topoi X — S

the graded cotangent complex of a morphism of ringed topoi X — S

the ringed topoi X, for ¢ € ob(€) of the diagram [

the levelwise definition of u~!

the morphism of complexes v*Ly /s — Lx,s in Theorem 2.13

the morphism of complexes v* L5 /s L5 /s in Theorem 5.10

adjunction morphism of A € ob(™y) for v and its left inverse u~

the Oy -module defined by the Ox-module M
the structure morphism of X over S

the category of sheaves of m}lOS—algebras of X
the structure morphism of ) over S

the number of factorizations of 6: 0 — ¢’ as in Diagram (3.4)

adjunction morphism of B € ob(2ly) for u and its left inverse u~

the set of nonnegative integers

a type of subdiagrams defined in Definitions 3.31 or 3.41
the B-module of Kéhler differentials

of the ring morphism A — B on a topos

the structure sheaf of the ringed topos or of the scheme X
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125
15
60
66, 78
34
134
17
124
17
125
17

34
93
36
133

134
o1
36
133

129
15
20
29
129
26
o8
15

15
67

26

68, 78



Ox-alg

O xy-alggr

O x-mod

O x-modgr
p: Ly — Lj,
pr;

q: Ly — L),
RG(-)
RTop/S

S

source

T

target

te: Xo. — S
t710s-alg
O.:t;10s — Ox,

aa : f(;loxcl —> OXCQ

Or: m}lOS — Oy

93}2 m§105 — Oy

u
u-!

u 10y

v

X

w: X = Z
WX = Z

Xe

Ar
XL S oa,
Yy

Yy

zZ

Z

the category of Oy-algebras

the category of Ng-graded Oy-algebras

the category of Ox-modules

the category of Ny-graded O y-modules

the morphism in Remark 3.8

the projection of a direct sum to the j-th direct summand
the morphism in Remark 3.8

the total right derived functor of G

the category of ringed topoi over &

the ringed topos consider as a base ringed topos

a certain object of €

the m}l Ogs-algebra in Definition 3.52

a certain object of €

the structure morphism of &, over S for ¢ € ob(€)
the category of sheaves of t,1Os-algebras of X,

the ring morphism of ¢.: X, — S for ¢ € ob(€)

the ring morphism of f,: X., — X, for a € Home(c1, ¢2)
the ring morphism of my: X — S

the ring morphism of my: Y — &

the forgetful functor between the respective categories
the left adjoint of the forgetful functor u

the m;(lOg—algebra in Proposition 2.16

the forgetful functor Ox-mod — Oy-mod

the ringed topos associated to the diagram I

the forgetful functor in Notation 3.56

the forgetful functor in Notation 3.56

the levels of X for ¢ € ob(C)

the ringed topos associated to the index category €r
a bridge of X

the ringed topos associated to the diagram J

the complementary subdiagram of Y

the ringed topos in Notation 3.56

the complementary subdiagram of Z
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131

129
o1

o1
62
14
14
T
91
65
17

17
17
17
17

19
34

17
94
94
15
71
86
17
56
94
96, 94
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