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Abstract

In this thesis we exhibit an obstruction group for the following deformation theoretic problem.

Given a diagram and a subdiagram of ringed topoi over a fixed ringed topos S and given a

deformation ξ of the subdiagram, what is an obstruction group for finding a deformation of the

diagram reducing to the given deformation ξ of the subdiagram? We will calculate this obstruction

group for a large variety of interesting cases as explicitly as possible. The results hold as well in

the case of diagrams and subdiagrams of schemes over a fixed scheme S.
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Introduction

Deformation theory of diagrams of schemes is the infinitesimal study of a family of diagrams in

the neighborhood of a given point. For instance, if we are given a morphism of schemes f : X → Y

considered as a diagram over a fixed parameter scheme T , we may think of f as a family of

diagrams ft : Xt → Yt for t ∈ T . Fixing a fibre f0 : X0 → Y0 over some point 0 ∈ T , deformation

theory of diagrams helps us to study infinitesimal properties of the family near the fibre f0 such

as smoothness and properness.

Moreover, there is a connection between deformation theory of diagrams of schemes and the

moduli problem of classifying isomorphism classes of diagrams of schemes of a fixed type with

certain additional conditions. If k is a field, we may ask the question whether there is a coarse or

even a fine moduli space parametrising isomorphism classes of diagrams f : X → Y over Spec k

with prescribed conditions such as, for example, the dimension, the Euler characteristic and the

regularity of X and Y , amongst others. Deformation theory gives us some insight into properties

of the moduli space and is still very powerful concerning questions on the classification problem

even if there is no moduli space.

It turns out that deformation theoretic questions concerning diagrams of schemes over a fixed

scheme S can be answered by constructing a ringed topos to the diagram. This is the reason

why we generalize our framework by considering diagrams and subdiagrams of ringed topoi over

a fixed ringed topos S. Formally, a diagram is a functor I : Cop → RTop/S from the dual of a

finite index category C to the category of ringed topoi over S and a subdiagram is the restriction

of I to a subcategory D of C. As already mentioned, it is possible to associate a ringed topos X
to the diagram and a ringed topos Y to the subdiagram together with morphisms of ringed topoi

mX : X → S and mY : Y → S as shown in [Buc81, Chapitre II.2.1.]. Let LX/S and LY/S be the

cotangent complexes of X and Y over S, respectively, as defined in [Ill71, Equation II.1.2.7.1].

Assume that X and Y are flat over S and let

0→ J → OS′ → OS → 0

be an extension of OS giving rise to a closed embedding S → S ′. Then there is an obstruction

in the group Ext2
X (LX/S ,m

∗
XJ ) whose vanishing is necessary and sufficient for the existence

of a deformation of X over S ′. If the obstruction vanishes, the set of isomorphism classes of

deformations of X over S ′ is a torsor under Ext1
X (LX/S ,m

∗
XJ ) by [Ill71, Théorème III.2.1.7.] and

the analog statements hold for Y.

Fix a diagram and a subdiagram with associated ringed topoi X and Y, respectively. Let us

pose the following two questions.

i) Given a deformation ξ of Y over S ′, what is an obstruction group for the existence of a

deformation of X over S ′ inducing the given deformation ξ of Y?

ii) If the obstruction in this group vanishes, how many different isomorphism classes of defor-

mations of X inducing ξ are there?
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These questions are answered for arbitrary diagrams and subdiagrams in the following result.

Theorem 2.13. There is an exact sequence of abelian groups

0→ Ext0
X (Cone(m),m∗XJ )→ Ext0

X (LX/S ,m
∗
XJ )→ Ext0

Y(LY/S ,m
∗
YJ )

→ Ext1
X (Cone(m),m∗XJ )

σ−→ Ext1
X (LX/S ,m

∗
XJ )

τ−→ Ext1
Y(LY/S ,m

∗
YJ )

ω−→ Ext2
X (Cone(m),m∗XJ )→ Ext2

X (LX/S ,m
∗
XJ )→ Ext2

Y(LY/S ,m
∗
YJ )

→ . . .

where Cone(m) is the cone of a certain morphism m of complexes of OX -modules. The morphism

τ is the forgetful morphism sending a deformation of X to the induced deformation of Y. Given

a deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext2
X (Cone(m),m∗XJ )

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ. If the obstruction ω(ξ) is zero, then the set of isomorphism classes of

deformations of X over S ′ reducing to ξ is a torsor under the image of

σ : Ext1
X (Cone(m),m∗XJ )→ Ext1

X (LX/S ,m
∗
XJ ).

The above exact sequence holds as well for the case of diagrams and subdiagrams of schemes

over a fixed scheme S.

Section 1 gives some preliminaries concerning the category of ringed topoi, the cotangent

complex and deformations of ringed topoi and schemes, amongst others.

In Section 2 we will construct a left adjoint of the forgetful functor u : X → Y which we will

use in the proof of Theorem 2.13. Under weak conditions on the subdiagram Y, the obstruction

group Ext2
X (Cone(m),m∗XJ ) is isomorphic to

Ext2
X (Lh,m

∗
XJ )

as shown in Theorem 2.20 where Lh is the cotangent complex of a certain ring morphism

h : u−1OY → OX as defined in Proposition 2.16.

Since Lh is the cotangent complex of a ring morphism, it consists of freeOX -modules in contrast

to Cone(m) and the obstruction group may be calculated more explicitly for many interesting cases

as done in Section 3. We will introduce several types of subdiagrams such as well-positioned and

full subdiagrams in the first two subsections. For example, if we consider the diagram

Y
g

��@@@@@@@

X

f
>>~~~~~~~ h=g◦f // Z

in the category of schemes over a fixed scheme S together with the three subdiagrams

subdiagram 1 subdiagram 2 subdiagram 3

Y
g

��@@@@@@@

Z X
h=g◦f // Z

Y

X

f
>>~~~~~~~

2



then each subdiagram is well-positioned and full.

Given a subdiagram Y, we may associate its complementary subdiagram Y as defined in

Definition 3.17. We will see in Corollary 3.26 that for well-positioned and full subdiagrams Y, the

obstruction group is given by

Ext2
Y(uLh,RG(m∗XJ ))

where u : X → Y is the forgetful functor and RG is the total right derived functor of the functor

G in Lemma 3.23. Hence the obstruction group is only concentrated on the complementary

subdiagram Y of Y.

Continuing the above example, if tX is the structure morphism of X over S, then the respective

complementary subdiagrams and obstruction groups are given as follows.

complementary complementary complementary

subdiagram 1 subdiagram 2 subdiagram 3

X

Y

Z

obstruction group 1 obstruction group 2 obstruction group 3

Ext2
X(LX/Y , t

∗
XJ )) Ext2

Y (LY/Z ,RG(m∗XJ )) Ext2
Z(LZ/S ,RG(m∗XJ ))

Subsection 3.4 deals with subdiagrams obtained from the diagram by omitting a target, a

source or a bridge in which case the obstruction group in concentrated on the omitted ringed

topos. In the above example, Z is a target, X is a source and Y is a bridge of the commutative

triangle.

The other extreme of the discrete subdiagram is treated as well. Here, the subdiagram is

obtained from the diagram by keeping all ringed topoi, but by omitting all morphisms except for

the identities.

Section 4 gives an overview of all the subdiagrams of a single morphism and of a commutative

triangle of schemes together with their respective obstruction groups. We will get back some

obstruction groups already known for particular cases. Moreover, we will derive the cotangent

braid of [Buc81, Diagramme II.2.4.3.2] by a different approach. Considering the second subdiagram

of the above example again, we will give a sufficient criterion for the obstruction group to vanish

if h : X → Z is the Albanese map of a nonsingular projective variety X and Y is the image of the

Albanese map.

Section 5 deals with deformations of diagrams and subdiagrams of OS -modules for a fixed

ringed topos S. We will see that there is a relation between the notions of “graded extensions of

diagrams of ringed topoi” and “deformations of diagrams of OS -modules” which is a generalization

of the ideas in [Ill71, Chapitre IV.3.1.]. This relation allows us to answer the two analogue questions

for diagrams of OS -modules in Theorem 5.10. Basically, the answer is given by a graded analogue

of the above long exact sequence.
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1 Preliminaries

All sheaves of rings on any topos and in particular the structure sheaves of all ringed topoi occuring

in the following are assumed to be associative, commutative and unitary.

1.1 The categories of topoi and ringed topoi

In this section we recall the notion of topoi and ringed topoi according to [SGA41, Exposé IV.],

where all of the following definitions can be found. Let us fix once and for all a universe U .

Definition 1.1. A category X is called a topos if there is a site C such that X is equivalent to

the category of sheaves of sets on C. A ringed topos (X ,OX ) is a pair consisting of a topos X and

a sheaf of rings OX of X , called the structure sheaf of X .

Example 1.2. Let X be a topological space and let C be the small site associated to X, i.e., the

underlying category of the site C has all open subsets of X as objects and all inclusions of open

sets as morphisms. Given an open subset U of X, a family of inclusions {Vi ⊆ U}i∈I is a covering

family of U if and only if U =
⋃
i∈I Vi. Then the topos X , the category of sheaves of sets on C,

is the category of sheaves of sets on X in the usual sense. We call X the associated topos of the

topological space X.

Let (X,OX) be a scheme and let X be the topos associated to the topological space X. We

take OX to be the contravariant functor OX from C to the category of sets. Then (X ,OX ) is a

ringed topos.

If the structure sheaf OX of X is clear from the context, we will omit it and just write X for

the ringed topos (X ,OX ). Similarly, if A is a sheaf of abelian groups (of rings, of OX -modules,

etc.) of X , we will usually omit the word sheaf and just write that A is an abelian group (a ring,

an OX -module, etc.) of X .

Definition 1.3. A morphism of topoi v : X → Y of a topos X to a topos Y is a triple

v = (v∗, v
−1, ϕ) where

v∗ : X → Y and v−1 : Y → X

are adjoint functors such that v−1 is left exact, i.e., v−1 commutes with finite limits, and

ϕA,B : HomX (v−1B,A)
∼=−→ HomY(B, v∗A)

is an isomorphism of adjunction, bifunctorial in B ∈ ob(Y) and A ∈ ob(X ). This means that for

every morphism α : A→ A′ in X and for every morphism β : B → B′ in Y, the square

HomX (v−1B′, A)
ϕA,B′ //

HomX (v−1β,α)

��

HomY(B′, v∗A)

HomY(β,v∗α)

��
HomX (v−1B,A′)

ϕA′,B // HomY(B, v∗A
′)

is commutative.

A morphism of ringed topoi v : (X ,OX )→ (Y,OY) is given by a quadruple v = (v∗, v
−1, ϕ, θ)

where (v∗, v
−1, ϕ) is a morphism of the underlying topoi and θ : v−1OY → OX is a morphism of

sheaves of rings.
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By abuse of notation we will denote a morphism of ringed topoi by v : X → Y. Notice

that giving a morphism of rings θ : v−1OY → OX is equivalent to giving a morphism of rings

θad : OY → v∗OX by the adjunction of v∗ and v−1.

Example 1.4. If f : X → Y is a continuous map of topological spaces, then as explained in

[SGA41, Exposé IV.4.1.1.], it is possible to construct a morphism of topoi between the associated

topoi X and Y of X and Y , respectively, which we denote f : X → Y by abuse of notation.

Similarly, if f : X → Y is a morphism of schemes, it is possible to construct a morphism of

ringed topoi between the associated ringed topoi X and Y of X and Y , respectively. Again by

abuse of notation we denote it by f : X → Y.

Remark 1.5. If v−1 : Y → X is a functor between topoi and commutes with arbitrary colimits

and with finite limits, then v−1 has a right adjoint v∗ : X → Y which is unique up to unique

isomorphism of functors. Then after choosing a right adjoint v∗, the functor v−1 may be regarded

as the inverse image functor of a morphism of topoi v : X → Y.

Similarly, if v∗ : X → Y is a functor between topoi and commutes with arbitrary limits, then

v∗ has a left adjoint v−1 : Y → X which is unique up to unique isomorphism. If in addition v−1

commutes with finite limits, then v∗ may be regarded as the direct image functor of a morphism

of topoi v : X → Y by [SGA41, Exposé IV.3.1.3.].

Let (X ,OX ) be a ringed topos. Then the category OX -mod of OX -modules is an abelian

category having enough injectives by [Sta13, Theorem 18.9.4.]. Let

(v∗, v
−1, ϕ, θ) : (X ,OX )→ (Y,OY)

be a morphism of ringed topoi, let further M be an OX -module and N be an OY -module. Then

v∗M is a v∗OX -module and we define the OY -module structure of v∗M by the map

θad : OY → v∗OX . On the other hand, v−1N is a v−1OY -module which is not an OX -module

in general. Using θ : v−1OY → OX we define v∗N = OX ⊗v−1OY v
−1N which is an OX -module.

With these definitions we have a canonical isomorphism

HomOX -mod(v∗N,M) ∼= HomOY -mod(N, v∗M),

bifunctorial in M ∈ ob(OX -mod) and N ∈ ob(OY -mod) by [SGA41, Proposition IV.13.4].

6
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1.2 Extensions of algebras

We will present the notion of extensions of algebras. Let T be a topos, let A and C be sheaves of

rings of T and let ϕ : A→ C be a morphism of sheaves of rings which will be fixed for the whole

section. Usually, we just speak of a morphism of rings instead of a morphism of sheaves of rings.

Definition 1.6. An A-extension of C by I is an A-algebra E together with a surjective map of

A-algebras p : E → C whose kernel I is an ideal of square zero. We denote such an extension by

E : (0 → I → E
p→ C → 0). Given another A-extension F : (0 → I → F

q→ C → 0) of C by I,

an isomorphism from E to F is given by an isomorphism of A-algebras g : E → F such that

0 // I // E
p //

g

��

C // 0

0 // I // F
q // C // 0

is commutative. If A = C and the A-algebra structure of C is given by the identity, we just speak

of an extension of C by I.

Since I2 = 0 we may give I a structure of C-module by setting ci = ei for c ∈ C, i ∈ I and

e ∈ E such that p(e) = c.

Let I be a C-module. Let C⊕̃I be the A-algebra whose underlying abelian group is C ⊕ I,

whose ring multiplication is given by

(C⊕̃I)× (C⊕̃I)→ C⊕̃I ,
(
(c1, i1), (c2, i2)

)
7→ (c1c2, c1i2 + c2i1)

and whose A-algebra structure is defined by (ϕ|0) : A→ C⊕̃I. The sequence

0→ I
(0|id)−−−→ C⊕̃I pr1−−→ C → 0

is an A-extension of C by I where pr1 is the projection to the first direct summand.

The set of isomorphism classes ofA-extensions of C by a C-module I will be denoted ExalA(C, I)

which by [Ill71, Chapitre III.1.1.5.1] is an abelian group whose zero element is the class of the

above trivial extension defined by C⊕̃I.

Now let E : (0 → I → E
p→ C → 0) be an A-extension of C and f : B → C a morphism of

A-algebras. Then there is an induced A-extension

E ∗ f : (0→ I → E ×C B → B → 0)

of B by I and a commutative diagram

0 // I // E ×C B //

��

B //

f

��

0

0 // I // E
p // C // 0.

Proposition 1.7. [Ill71, Chapitre III.1.1.5.2] Let f : B → C be a morphism of A-algebras. Then

ExalA(C, I)→ ExalA(B, I), E 7→ E ∗ f

is a well-defined group homomorphism.
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1.3 The cotangent complex and its main properties

Let A be an abelian category. By a theorem of Dold-Kan (see for example [Wei94, Dold-Kan

Theorem 8.4.1]), the category of simplicial objects in A is equivalent to the category of chain

complexes C· in A with Cn = 0 for n < 0. This category is equivalent to the category of cochain

complexes C · in A with Cn = 0 for n > 0.

Let T be a topos and let ψ : A → B be a morphism of sheaves of rings of T . Then we may

associate the cotangent complex Lψ = LB/A of B over A which is a bounded above cochain

complex

LB/A : · · · → (LB/A)−n−1 → (LB/A)−n → (LB/A)−n+1 → . . . → (LB/A)−1 → (LB/A)0

consisting of free B-modules (LB/A)−n. Its definition can be found in [Ill71, Chapitre II.1.2.3.1]

where the cotangent complex is introduced as a simplicial object in the category of B-modules.

Using the above equivalence of categories, we will always think of it as a cochain complex.

Let v : (X ,OX ) → (Y,OY) be a morphism of ringed topoi with ring morphism

θ : v−1OY → OX . Then we define the cotangent complex of v to be LX/Y = Lθ = LOX /v−1OY .

If Ch(A) is the category of cochain complexes of objects of A, if L,M ∈ ob(Ch(A)) and i ∈ Z
and if D(A) is the derived category of A, we define

ExtiA(L,M) = HomA(L,M [i]) = HomD(A)(L,M [i])

to be the morphisms in D(A) from L to the complex M [i] where M [i]n = M i+n for all n ∈ Z. If A is

the category B-mod of modules over a ring B, we will write ExtiB(−,−) instead of ExtiB-mod(−,−).

The cotangent complex has several relations to the theory of extensions and to deformation

theory.

Theorem 1.8. The cotangent complex LB/A possesses the following properties.

i) There is a natural morphism of complexes LB/A → Ω1
B/A which is a quasi-isomorphism if B

is the symmetric algebra of a flat A-module.

ii) Given a commutative diagram

B // B′

A //

OO

A′

OO

(1.1)

of sheaves of rings of T , there is a natural morphism of complexes of B-modules

LB/A → LB′/A′

and by adjunction a natural morphism of complexes of B′-modules

LB/A ⊗B B′ → LB′/A′ .

If f : T̃ → T is a morphism of topoi and A→ B a morphism of sheaves of rings of T , there

is a natural isomorphism of complexes of f−1B-modules

f−1LB/A
∼=−→ Lf−1B/f−1A,

8



functorial in A→ B in the sense that if

f−1B // f−1B′

f−1A //

OO

f−1A′

OO

is the pullback of Square (1.1) under f , then

f−1LB/A
∼= //

��

Lf−1B/f−1A

��
f−1LB′/A′

∼= // Lf−1B′/f−1A′

is commutative.

iii) For each B-module M , there are canonical isomorphisms

DerA(B,M)→ Ext0
B(LB/A,M)

and

ExalA(B,M)→ Ext1
B(LB/A,M)

where DerA(B,M) is the group of A-derivations of B to M .

iv) If A→ B → C are morphisms of sheaves of rings of T , there is a distinguished triangle

LC/Byy

yyrrrrrrrrrr

LB/A ⊗B C // LC/A

ccGGGGGGGG

in the derived category D(C) of the category of C-modules.

v) If A → B → C are morphisms of sheaves of rings of T and F ∈ ob(D(C)), then for each

n ∈ Z there is a natural isomorphism of groups

ExtnC(LB/A ⊗B C,F )→ ExtnB(LB/A, F ),

functorial in F .

vi) Let

B1
// C

A //

OO

B2

OO

with C = B1 ⊗A B2 be a cocartesian diagram of sheaves of rings of T . Let furthermore

LBj/A ⊗Bj C → LC/A be the natural morphisms of complexes of C-modules for j = 1, 2.

Assume TorAi (B1, B2) = 0 for all i > 0. Then the sum morphism

(LB1/A ⊗B1 C)⊕ (LB2/A ⊗B2 C)→ LC/A

is a quasi-isomorphism.

9



Proof. All proofs can be found in [Ill71].

i) [Ill71, Proposition II.1.2.4.4.].

ii) [Ill71, Equation II.1.2.3.2] and [Ill71, Equation II.1.2.3.5].

iii) [Ill71, Corollaire II.1.2.4.3.] and [Ill71, Théorème III.1.2.3.].

iv) [Ill71, Proposition II.2.1.2.].

v) [Ill71, Proposition I.3.3.4.4.].

vi) [Ill71, Corollaire II.2.2.3.].

The following theorem will help us several times to calculate the groups ExtiB(LB/A,M) if M

is a complex of B-modules. Let A be an abelian category with enough injectives and let K(A)

be the category whose objects are cochain complexes of objects of A and whose morphisms are

morphisms of complexes up to homotopy. Let K+(A) the full subcategory of K(A) whose objects

are bounded below complexes. If L ∈ ob(K(A)) and M ∈ ob(K+(A)), then by [Wei94, Theorem

10.7.4] there are canonical isomorphisms

ExtnA(L,M) ∼= Hn
(
RHom·A(L,M)

)
for all n ≥ 0. Thus in order to calculate the groups ExtnB(LB/A,M), we may use the total

right derived functor of Hom·B(LB/A,−) and the following theorem which is a weak version of

[Wei94, Composition Theorem 10.8.2].

Theorem 1.9. Let A, B and C be abelian categories having enough injectives and suppose given

morphisms of triangulated categories

K+(A)
G //

FG $$HHHHHHHHH
K+(B).

Fzzuuuuuuuuu

K(C)

Then there is a natural transformation

ζ : R(FG)→ R(F ) ◦R(G)

of functors from D+(A) to D(C). Suppose furthermore that there is a triangulated subcategory K

of K+(B) with the following properties:

i) Each object of K+(B) admits a quasi-isomorphism to an object of K.

ii) Every exact complex L of K is F -acyclic, i.e., Hi(F (L)) = 0 for all i.

iii) The full subcategory of K+(A) consisting of complexes of injectives is sent to K by G.

Then ζ : R(FG)→ R(F ) ◦R(G) is an isomorphism.

10



1.4 Deformations of ringed topoi and schemes

Suppose given morphisms

X
f

��
S

j // S ′

of ringed topoi where f is flat, i.e., OX is a flat f−1OS -module via the ring morphism

f−1OS → OX of f , and j is a closed embedding induced by an extension

0→ J → OS′ → OS → 0

of OS by an OS -module J .

Definition 1.10. Given the above situation, a deformation of X over S ′ is a commutative diagram

X

f

��

i // X ′

f ′

��
S

j // S ′

of ringed topoi such that f ′ is flat, i is a closed embedding and the morphism X → X ′ ×S′ S
induced by the above square is an isomorphism. Two deformations

X

f

��

i1 // X ′1
f ′1
��

S
j // S ′

and

X

f

��

i2 // X ′2
f ′2
��

S
j // S ′

of X over S ′ are isomorphic if there is an isomorphism g : X ′1 → X ′2 of ringed topoi such that

X
i1

~~}}}}}}}
i2

  AAAAAAA

X ′1
g //

f ′1   @@@@@@@@
X ′2

f ′2~~~~~~~~~~

S ′

is commutative.

In general there is an obstruction for the existence of a deformation of X over S ′. Using the

cotangent complex LX/S , it is possible to give an obstruction group and to determine all possible

isomorphism classes of deformations of X over S ′.
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Theorem 1.11. [Ill71, Théorème III.2.1.7.] Assume given the above situation.

i) There is an obstruction for the existence of a deformation of X over S ′ lying in

Ext2
X (LX/S , f

∗J ).

ii) If this obstruction vanishes, then the set of isomorphism classes of deformations of X over

S ′ is a torsor under

Ext1
X (LX/S , f

∗J ).

iii) The automorphism group of any fixed deformation of X over S ′ is canonically isomorphic to

Ext0
X (LX/S , f

∗J ).

Remark 1.12. Suppose that X
f−→ S is a morphism of schemes and that J is a quasi-coherent

OS-module. If X f→ S is the associated morphism of ringed topoi as in Example 1.4, then by

[Ill71, Chapitre III.2.1.9.] the ringed topos S ′ ”is” a scheme, i.e., S ′ is the ringed topos associated

to a scheme S′ and S j−→ S ′ is induced from a morphism of schemes S
j−→ S′. Each deformation X ′

of X over S ′ comes from a scheme X ′ and the morphisms of ringed topoi

X

f

��

i // X ′

f ′

��
S

j // S ′

are the morphisms associated to morphisms

X

f

��

i // X ′

f ′

��
S

j // S′

of schemes. In particular, if J is a quasi-coherent OS-module, then each deformation in the

category of schemes is again a scheme and Theorem 1.11 still holds for schemes.

Let T be a topos and let A → B
f−→ C be morphisms of sheaves of rings of T . By Theorem

1.8.iv) these morphisms yield a distinguished triangle

LC/Byy

yyrrrrrrrrrr

LB/A ⊗B C // LC/A

ccGGGGGGGG

in the derived category D(C). Let M be a C-module. Together with the canonical isomorphism

ExtnC(LB/A⊗BC,M)
∼=−→ ExtnB(LB/A,M) in Theorem 1.8.v), the triangle induces an exact sequence

0→ Ext0
C(LC/B ,M)→ Ext0

C(LC/A,M)→ Ext0
B(LB/A,M)

→ Ext1
C(LC/B ,M)→ Ext1

C(LC/A,M)→ Ext1
B(LB/A,M)

→ Ext2
C(LC/B ,M)→ . . .

of abelian groups.
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Proposition 1.13. [Ill71, Equation III.1.2.5.3] Using the isomorphisms in Theorem 1.8.iii), the

above exact sequence is given by

0→ DerB(C,M)
α−→ DerA(C,M)

β−→ DerA(B,M)

γ−→ ExalB(C,M)
δ−→ ExalA(C,M)

ε−→ ExalA(B,M)

→ Ext2
C(LC/B ,M)→ . . .

whose first five morphisms are defined as follows.

α considers a B-derivation from C to M as an A-derivation.

β sends an A-derivation C →M to the A-derivation B → C →M .

γ sends an A-derivation u : B →M to the isomorphism class of the B-extension

0→M
(0|id)−−−→ C ⊕M pr1−−→ C → 0

of C by M whose B-algebra structure is given by (f | − u) : B → C ⊕M . Here pr1 is the

projection to the first direct summand and the ring structure of C ⊕M is the ring structure

of the trivial C-algebra C⊕̃M as defined in Subsection 1.2.

δ considers a B-extension of C by M as an A-extension.

ε is the group homomorphism

ExalA(C,M)→ ExalA(B,M), E 7→ E ∗ f

in Proposition 1.7.
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1.5 Diagrams of ringed topoi and schemes

Now we come to the notion of diagrams of ringed topoi and their associated topoi.

Definition 1.14. Let C be a finite category, i.e., the morphisms of C and thereby the objects

of C are finite sets. Let further S be a ringed topos. A diagram of ringed topoi over S of type

C is a contravariant functor I from C to the category RTop/S of ringed topoi over S, denoted

I : Cop → RTop/S.

Thus for any c ∈ ob(C) there is a ringed topos Xc = I(c) over S and for any α ∈ HomC(c1, c2)

there is an S-morphism fα = I(α) : Xc2 → Xc1 of ringed topoi such that for any composition

c1
α−→ c2

β−→ c3 in C we have fβα = fα ◦ fβ : Xc3 → Xc2 → Xc1 .

Let I : Cop → RTop/S be a diagram. Following [Buc81, Chapitre II.2.1.5], we may associate a

category XI to I.

An object F of XI consists of the following data.

i) For any c ∈ ob(C) there is a sheaf Fc ∈ ob(Xc).
ii) For any α ∈ HomC(c1, c2) yielding the morphism fα : Xc2 → Xc1 of ringed topoi, there is a

morphism of sheaves Fα : f−1
α Fc1 → Fc2 such that for any composition c1

α−→ c2
β−→ c3 in C,

the diagram

f−1
βαFc1 = f−1

β f−1
α Fc1

f−1
β Fα //

Fβα
))SSSSSSSSSSSSSSSSS

f−1
β Fc2

Fβ{{xxxxxxxx

Fc3

(1.2)

is commutative.

A morphism l ∈ HomXI (F ,G) from an object F to an object G of XI is given, for any c ∈ ob(C),

by a morphism of sheaves lc : Fc → Gc of Xc such that for any α ∈ HomC(c1, c2), the diagram

f−1
α Fc1

Fα //

f−1
α lc1

��

Fc2
lc2

��
f−1
α Gc1

Gα // Gc2

is commutative.

Notice that giving a morphism of sheaves Fα : f−1
α Fc1 → Fc2 of Xc2 is equivalent to giving a

morphism Fad
α : Fc1 → fα∗Fc2 of Xc1 by the adjunction of f−1

α and fα∗, since fα is a morphism of

ringed topoi.

Now by [Ill72, Chapitre VI.5.2.,VI.5.3.] we have the following result.

Proposition 1.15. For any diagram I : Cop → RTop/S the category XI is a topos, called the

associated topos to I.

We make XI into a ringed topos by taking the structure sheaf OXI to be the collection of

all structure sheaves OXc for c ∈ ob(C) together with the ring morphisms θα : f−1
α OXc1 → OXc2

belonging to the morphism of ringed topoi fα : Xc2 → Xc1 for α ∈ HomC(c1, c2). By abuse of

notation we also call (XI ,OXI ) a diagram.
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Notation 1.16. For any diagram I : Cop → RTop/S, the ringed topoi Xc for c ∈ ob(C) are called

the levels of XI . If l ∈ HomXI (F ,G), then we say that l is given levelwise by the morphisms

lc : Fc → Gc for all c ∈ ob(C).

By [Buc81, Chapitre II.2.1.6] the topos XI is an S-topos.

Lemma 1.17. For any diagram I : Cop → RTop/S, there is a canonical morphism of ringed topoi

m : XI → S.

Let us describe the functors m∗ : XI → S and m−1 : S → XI as well as the ring morphism

θ : m−1OS → OXI :
Let tc : Xc → S be the structure morphisms of the diagram for c ∈ ob(C). If F ∈ ob(XI), we

define m∗F = lim←− tc∗Fc to be the limit of the system consisting of the sheaves tc∗Fc ∈ ob(S) and

the sheaf morphisms tc1∗Fad
α : tc1∗Fc1 → tc1∗fα∗Fc2 = tc2∗Fc2 for α ∈ HomC(c1, c2).

For G ∈ ob(S) let m−1G ∈ ob(XI) be the collection of all t−1
c G ∈ ob(Xc) with identity as sheaf

morphisms.

The ring morphism θ : m−1OS → OXI is given, for c ∈ ob(C), by the ring morphisms

θc : t−1
c OS → OXc belonging to tc. In particular, if each tc : Xc → S is flat, it follows that

m : XI → S is flat as well.

Lemma 1.18. Let I : Cop → RTop/S be a diagram and let j : S → S ′ be a closed embedding of

ringed topoi induced by an extension

0→ J → OS′ → OS → 0

of OS . Let tc : Xc → S be flat for every c ∈ ob(C). Then giving a deformation

XI
m

��

i // X ′I

m′

��
S

j // S ′

(1.3)

of XI over S ′ is equivalent to giving, for each c ∈ ob(C), a deformation

Xc
tc

��

ic // X ′c
t′c
��

S
j // S ′

(1.4)

of Xc over S ′ together with, for each α ∈ HomC(c1, c2), a morphism of ringed topoi f ′α : X ′c2 → X
′
c1

such that

Xc2

tc2

��1
111111111111111

ic2 //

fα

  BBBBBBBB
X ′c2

t′c2

��f ′α

~~||||||||

Xc1
tc1

��

ic1 // X ′c1
t′c1
��

S
j // S ′

(1.5)

is commutative.
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Proof. Giving Diagram (1.3) where X ′I is a deformation of XI is equivalent to giving a commutative

diagram

0 // m∗J // OX ′I // OXI // 0

0 // m−1J //

OO

m−1OS′ //

θ′

OO

m−1OS //

θ

OO

0

whose rows are m−1OS -extensions, whose right and middle vertical morphisms are flat and whose

square of rings is cocartesian (see [Ill71, Diagramme III.2.1.6.2]). By definition of the ringed topos

XI and the morphism m : XI → S, this is equivalent to giving, for each c ∈ ob(C), a commutative

diagram

0 // t∗cJ // OX ′c // OXc // 0

0 // t−1
c J //

OO

t−1
c OS′ //

θ′c

OO

t−1
c OS //

θc

OO

0

whose rows are t−1
c OS -extensions, whose right and middle vertical morphisms are flat and whose

square of rings is cocartesian, together with, for each α ∈ HomC(c1, c2), a morphism

θ′α : f−1
α OX ′c1 → OX ′c2 such that

0 // f−1
α t∗c1J //

��

f−1
α OX ′c1 //

θ′α
��

f−1
α OXc1 //

θα

��

0

0 // t∗c2J // OX ′c2 // OXc2 // 0

0 // t−1
c J //

OO

[[

t−1
c OS′ //

θ′c2

OO
θ′c1

[[

t−1
c OS //

θc2

OO
θc1

[[

0

is commutative. But giving these data is equivalent to giving Diagrams (1.4) and (1.5) where X ′c
is a deformation of Xc.

It follows that deformation theory of diagrams of ringed topoi is accessible to calculations using

Theorem 1.11 where we have to take the cotangent complex LXI/S = LOXI /m−1OS of mI . From

Remark 1.12 we get the analogue result for schemes.

Corollary 1.19. In the situation of the above lemma, assume that the diagram consists of

schemes and morphisms of schemes over a fixed scheme S. Let furthermore J be a quasi-coherent

OS-module. Then each deformation of the diagram over S′ is a diagram consisting of schemes

and morphisms of schemes over S′.
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2 Deformations of diagrams and subdiagrams of ringed topoi

We fix the following notation.

General assumption 2.1. Let I : Cop → RTop/S be a diagram with associated ringed topos

(X ,OX ) in the sense of Proposition 1.15 where the index I is omitted for simplicity. Let further D

be a subcategory of C and let J : Dop → RTop/S be the diagram obtained by restricting I to Dop.

Let (Y,OY) be the ringed topos associated to J . By abuse of notation we call (X ,OX ) the diagram

and (Y,OY) the subdiagram (with respect to I and J , respectively). For c ∈ ob(C) let tc : Xc → S
be the structure morphisms with ring morphisms θc : t−1

c OS → OXc . For α ∈ HomC(c1, c2)

let θα : f−1
α OXc1 → OXc2 be the ring morphisms belonging to the morphism of ringed topoi

fα : Xc2 → Xc1 . Let mX : X → S and mY : Y → S be the morphisms of ringed topoi by Lemma

1.17 with ring morphisms θX : m−1
X OS → OX and θY : m−1

Y OS → OY , respectively. Assume that

all structure morphisms tc : Xc → S are flat for c ∈ ob(C). Let further

0→ J → OS′ → OS → 0

be an extension of OS by an OS -module J .

We will answer the following two questions on deformation theory of diagrams of ringed topoi:

i) Given a deformation ξ of the subdiagram Y, what is an obstruction group for the existence

of a deformation of the diagram X inducing the given deformation ξ of Y?

ii) If the obstruction in this group vanishes, how many different isomorphism classes of defor-

mations of X inducing ξ are there?

For this purpose we construct a left adjoint to the forgetful functor in Subsection 2.1. This

construction will be applied, amongst others, to the forgetful functor OX -mod → OY -mod from

the category of OX -modules to the category of OY -modules in order to get a long exact sequence

of abelian groups in Theorem 2.13 where we will read off the answers to the above two questions

in Subsection 2.2. Since we do not know the cone of m in the obstruction group

Ext2
X (Cone(m),m∗XJ )

in general, we will derive, under some mild conditions on the subdiagram, another long exact

sequence in Theorem 2.20 in Subsection 2.3. The complex Lh occurring in the obstruction group

Ext2
X (Lh,m

∗
XJ )

there has the advantage of being the cotangent complex of a ring morphism h as defined in

Proposition 2.16. In particular, Lh consists of free OX -modules in contrast to Cone(m) which will

help us to determine the obstruction group more explicitly in Section 3.

Finally Subsection 2.4 deals with the relationship between a diagram X , a subdiagram Y of

X and a subdiagram Z of Y. We will see in Proposition 2.22 that there is a braid containing the

long exact sequences for the pairs (X ,Y), (X ,Z) and (Y,Z).
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2.1 The construction of a left adjoint to the forgetful functor

Assume given the situation of General assumption 2.1. Let α ∈ HomC(c1, c2) yielding an

S-morphism of ringed topoi fα : Xc2 → Xc1 . If Ac1 is a sheaf of t−1
c1 OS -algebras, then applying

f−1
α to the given ring morphism

t−1
c1 OS → Ac1

and using f−1
α t−1

c1 = t−1
c2 we get a ring morphism t−1

c2 OS → f−1
α Ac1 , thus f−1

α Ac1 is a sheaf of

t−1
c2 OS -algebras.

Similarly, if R is a sheaf of rings of X and if Mc1 is a module or a complex of modules over

Rc1 , then f−1
α Mc1 is a module or a complex of modules over f−1

α Rc1 , respectively. Using the given

ring morphism Rα : f−1
α Rc1 → Rc2 , we see that

f−1
α Mc1 ⊗f−1

α Rc1
Rc2

is a module or a complex of modules over Rc2 . In the special case R = OX we write f∗αMc1 for

this module or complex of modules, respectively.

Let AX be one of the following categories:

i) The category X ,

ii) the category of sheaves of m−1
X OS -algebras of X ,

iii) the category of R-modules for a given sheaf of rings R of X or

iv) the category of complexes of R-modules for a given sheaf of rings R of X .

In any of these four cases an object A of AX is a collection of objects Ac ∈ ob(Ac) for c ∈ ob(C)

where Ac is

i) the category Xc,
ii) the category of sheaves of t−1

c OS -algebras of Xc,
iii) the category of Rc-modules for the given sheaf of rings Rc of Xc or

iv) the category of complexes of Rc-modules for the given sheaf of rings Rc of Xc, respectively,

together with, for each α ∈ HomC(c1, c2), a morphism Aα : f−1
α Ac1 → Ac2 in Ac2 such that for

any composition c1
α−→ c2

β−→ c3 in C, the triangle

f−1
βαAc1 = f−1

β f−1
α Ac1

f−1
β Aα //

Aβα
''OOOOOOOOOOOOO

f−1
β Ac2

Aβ
wwooooooooooooo

Ac3

is commutative in Ac3 .

A morphism l ∈ HomAX (A,B) from an object A to an object B of AX is given, for any

c ∈ ob(C), by a morphism lc : Ac → Bc in Ac such that for any α ∈ HomC(c1, c2), the diagram

f−1
α Ac1

Aα //

f−1
α lc1

��

Ac2

lc2

��
f−1
α Bc1

Bα // Bc2

is commutative in Ac2 .
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If AX is the category of R-modules or the category of complexes of R-modules, we must replace

f−1
α Ac1 by f−1

α Ac1 ⊗f−1
α Rc1

Rc2 and similarly for f−1
α Bc1 , f−1

βαAc1 and f−1
β Ac2 . In order to treat

the four cases simultaneously, we will keep on writing f−1 by abuse of notation.

The category AY is defined analogously, we restrict to those categories Ac such that c ∈ ob(D)

and to all morphisms α ∈ HomD(c1, c2). Let

u : AX → AY

be the forgetful functor which maps an object A ∈ ob(AX ) to the collection of all Ac ∈ ob(Ac) such

that c ∈ ob(D) together with all morphisms Aα : f−1
α Ac1 → Ac2 in Ac2 whenever α ∈ HomD(c1, c2).

The aim of this subsection is to construct a left adjoint

u−1 : AY → AX

of u. The construction depends on the index categories Cop and Dop. For simplicity we omit the

brackets and write uA for the image of A ∈ ob(AX ) under u.

Notice that if AX = X and AY = Y, then since u commutes with arbitrary limits, it has a left

adjoint by [SGA41, Exposé IV.3.1.3.] which is unique up to unique isomorphism. Nevertheless,

in any of the above four cases for the category AX , we will give an explicit construction of u−1

which we will use for all following considerations, in particular for the explicit calculations of the

obstruction group.

Proposition 2.2. The functor u−1 : AY → AX in Proposition 2.11 is left adjoint to the forgetful

functor u : AX → AY , i.e., for every A ∈ ob(AX ) and every B ∈ ob(AY), there is a natural

isomorphism of adjunction

HomAX (u−1B,A) ∼= HomAY (B, uA),

bifunctorial in B and A.

The rest of this subsection is devoted to construct the functor u−1 in Proposition 2.11 and to

give the proof of the above proposition on page 26.

Definition 2.3. Let c ∈ ob(C). We define the category c as follows.

i) The objects of c are morphisms γ : d→ c in C such that d ∈ ob(D).

ii) The morphisms from an object γ1 : d1 → c to an object γ2 : d2 → c of c are those morphisms

ϕ : d1 → d2 in D such that

c

d1
ϕ //

γ1

??~~~~~~~
d2

γ2

__@@@@@@@

is commutative in C.

Notice that c is a comma category (see for example [Mac71, Chapter II.6.]). If i : D→ C is the

inclusion functor, then c is the category (i ↓ c) of objects i-over c, but we will keep on writing c

for this category.
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Now fix B ∈ ob(AY) and let c ∈ ob(C). Then for any
(
γ : d → c

)
∈ ob(c) there is a

morphism of ringed topoi fγ : Xc → Xd and we get an object f−1
γ Bd of Ac. For every

ϕ ∈ Homc

(
(γ1 : d1 → c), (γ2 : d2 → c)

)
we have a commutative diagram

Xc
fγ2

!!BBBBBBBB
fγ1

}}||||||||

Xd1
Xd2

fϕoo

of ringed topoi over S. Applying f−1
γ2

to the given morphism Bϕ : f−1
ϕ Bd1

→ Bd2
in Ad2

, we get a

morphism

f−1
γ2
Bϕ : f−1

γ1
Bd1
→ f−1

γ2
Bd2

in Ac. If
(
γ1 : d1 → c

) ϕ−→
(
γ2 : d2 → c

) ψ−→
(
γ3 : d3 → c

)
is a composition in c, then

f−1
γ1
Bd1

f−1
γ2
Bϕ

//

f−1
γ3
Bψϕ $$JJJJJJJJJ

f−1
γ2
Bd2

f−1
γ3
Bψzzttttttttt

f−1
γ3
Bd3

is commutative in Ac because

Xc
fγ1

''OOOOOOOOOOOOO
fγ3

wwooooooooooooo

fγ2

��
Xd1

Xd2

fϕoo Xd3

fψoo

fψϕ

ee

is commutative by definition.

Definition 2.4. For c ∈ ob(C) and B ∈ ob(AY) we define

(u−1B)c = lim−→
γ∈ob(c)

f−1
γ Bd

to be the colimit in Ac of the system consisting of all f−1
γ Bd for

(
γ : d→ c

)
∈ ob(c) together with

the morphisms f−1
γ2
Bϕ : f−1

γ1
Bd1 → f−1

γ2
Bd2 for ϕ ∈ Homc

(
(γ1 : d1 → c), (γ2 : d2 → c)

)
.

Remark 2.5. Notice that in each of the four cases considered, the colimit always exists: In the

category Xc each finite colimit exists by [SGA41, Théorème II.4.1.].

If A is an associative, commutative and unitary ring in the usual sense, then the category

of associative, commutative and unitary A-algebras has all finite coproducts and all coequalizers

by [Eis95, Proposition A6.7.], and since each finite colimit is the coequalizer of two morphisms

between finite coproducts by [Eis95, Proposition A6.1.], it follows that the category of A-algebras

has all finite colimits. Now if we consider the category of sheaves of t−1
c OS -algebras on the ringed

topos Xc, we may take the colimit of the respective system as a presheaf of t−1
c OS -algebras and

its sheafification is the colimit in the category of sheaves of t−1
c OS -algebras of Xc.
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Finally in the category of Rc-modules and in the category of complexes of Rc-modules, each

finite colimit exists by [Sta13, Lemma 17.14.2.]. Notice that if c is the empty category, then

(u−1B)c is the initial object of Ac, i.e., the empty set in the category Xc, the algebra t−1
c OS in

the category of t−1
c OS -algebras of Xc, the zero module in the category of Rc-modules and the zero

complex in the category of complexes of Rc-modules.

Example 2.6. Let AX be the category of m−1
X OS -algebras of X and thus AY the category of

m−1
Y OS -algebras of Y. Consider the example

diagram in RTop/S subdiagram in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X1

X0

f
>>||||||||

X2

with no other morphisms involved except for the identities and denote the objects of Y as(
F0,F1,F2, f

−1F1 → F0

)
where Fi is a sheaf of Xi. Let

OY =
(
OX0

,OX1
,OX2

, f−1OX1

θf−→ OX0

)
be the structure sheaf of Y which is an object of AY by the ring morphism θY : m−1

Y OS → OY
given by(

t−1
0 OS , t

−1
1 OS , t

−1
2 OS , f−1t−1

1 OS
id−→ t−1

0 OS
) (θ0,θ1,θ2)−−−−−−→

(
OX0

,OX1
,OX2

, f−1OX1

θf−→ OX0

)
.

We will calculate the object (u−1OY)c of Ac, the category of t−1
c OS -algebras of Xc, for each

c = 0, 1, 2.

By definition (u−1OY)0 is the colimit in the category of t−1
0 OS -algebras of X0 of the system

f−1OX1

θf

��

h−1OX2
,

OX0

that is, (u−1OY)0 = h−1OX2
⊗t−1

0 OS
OX0

. Similarly, (u−1OY)1 is the colimit in the category of

t−1
1 OS -algebras of X1 of the system

g−1OX2
OX1

,

that is, (u−1OY)1 = g−1OX2 ⊗t−1
1 OS

OX1 . Finally, (u−1OY)2 is the colimit in the category of

t−1
2 OS -algebras of X2 of the system consisting only of OX2 , whence (u−1OY)2 = OX2 .

Let us proceed with the construction of u−1. On each level Xc for c ∈ ob(C), we have defined an

object (u−1B)c of Ac. In order to get a well defined object u−1B of AX , we have to define, for each

α ∈ HomC(c1, c2), a morphism (u−1B)α : f−1
α (u−1B)c1 → (u−1B)c2 in Ac2 subject to the compat-

ibility condition (1.2) on page 14.
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So let α ∈ HomC(c1, c2). For any
(
γ : d→ c1

)
∈ ob(c1) let pγ1 : f−1

γ Bd → lim−→γ∈ob(c1)
f−1
γ Bd be

the natural morphisms. Then by the universal property of lim−→γ∈ob(c1)
f−1
α f−1

γ Bd there is a unique

morphism

p(α) : lim−→
γ∈ob(c1)

f−1
α f−1

γ Bd → f−1
α lim−→

γ∈ob(c1)

f−1
γ Bd

in Ac2 such that

f−1
α f−1

γ Bd
id //

��

f−1
α f−1

γ Bd

f−1
α pγ1
��

lim−→γ∈ob(c1)
f−1
α f−1

γ Bd
p(α) // f−1

α lim−→γ∈ob(c1)
f−1
γ Bd

is commutative for every
(
γ : d → c1

)
∈ ob(c1) where the left vertical maps are the natural

morphisms. Since fα is a morphism of ringed topoi, we have that f−1
α is left adjoint to fα∗,

hence f−1
α commutes with arbitrary colimits by [Sta13, Lemma 4.23.3.]. It follows that p(α) is

an isomorphism. Now notice that each f−1
α f−1

γ Bd is part of the system in Ac2 defined by c2,

so there are natural morphisms f−1
α f−1

γ Bd → lim−→δ∈ob(c2)
f−1
δ Bd. By the universal property of

lim−→γ∈ob(c1)
f−1
α f−1

γ Bd there is a unique morphism

q(α) : lim−→
γ∈ob(c1)

f−1
α f−1

γ Bd → lim−→
δ∈ob(c2)

f−1
δ Bd

in Ac2 such that

f−1
α f−1

γ Bd
id //

f−1
α pγ1
��

f−1
α f−1

γ Bd

��

id // f−1
α f−1

γ Bd

��
f−1
α lim−→γ∈ob(c1)

f−1
γ Bd

p(α)−1

// lim−→γ∈ob(c1)
f−1
α f−1

γ Bd
q(α) // lim−→δ∈ob(c2)

f−1
δ Bd

(2.1)

commutes for every
(
γ : d→ c1

)
∈ ob(c1) where the middle and right vertical maps are the natural

morphisms.

Definition 2.7. For α ∈ HomC(c1, c2) and B ∈ ob(AY) we define

(u−1B)α : f−1
α (u−1B)c1 = f−1

α lim−→
γ∈ob(c1)

f−1
γ Bd → lim−→

δ∈ob(c2)

f−1
δ Bd = (u−1B)c2

to be the composition of the two lower horizontal morphisms q(α) ◦ p(α)−1 in Ac2 .

Lemma 2.8. Let B ∈ ob(AY). The collection u−1B of all objects (u−1B)c ∈ ob(Ac) for c ∈ ob(C)

together with the morphisms (u−1B)α : f−1
α (u−1B)c1 → (u−1B)c2 for α ∈ HomC(c1, c2) is a well-

defined object of AX .

Proof. Let c1
α→ c2

β→ c3 be a composition in C. We have to show that

f−1
βα (u−1B)c1 = f−1

β f−1
α (u−1B)c1

f−1
β (u−1B)α //

(u−1B)βα **TTTTTTTTTTTTTTTT
f−1
β (u−1B)c2

(u−1B)βuukkkkkkkkkkkkkk

(u−1B)c3
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is commutative in Ac3 . By definition of all the occurring morphisms, the above diagram is com-

mutative if and only if

f−1
β f−1

α lim−→γ∈ob(c1)
f−1
γ Bd

f−1
β p(α)−1

// f−1
β lim−→γ∈ob(c1)

f−1
α f−1

γ Bd
f−1
β q(α)

// f−1
β lim−→δ∈ob(c2)

f−1
δ Bd

p(β)−1

��
lim−→δ∈ob(c2)

f−1
β f−1

δ Bd

q(β)

��
lim−→γ∈ob(c1)

f−1
β f−1

α f−1
γ Bd

q(βα) //

p(βα)

OO

lim−→ε∈ob(c3)
f−1
ε Bd

is commutative. For any
(
γ : d→ c1

)
∈ ob(c1) let

f−1
β f−1

α f−1
γ Bd → lim−→

ε∈ob(c3)

f−1
ε Bd and f−1

β f−1
α f−1

γ Bd → lim−→
γ∈ob(c1)

f−1
β f−1

α f−1
γ Bd

be the natural morphisms. Now by construction both of the above morphisms in Ac3 from

lim−→γ∈ob(c1)
f−1
β f−1

α f−1
γ Bd to lim−→ε∈ob(c3)

f−1
ε Bd form a commutative triangle

f−1
β f−1

α f−1
γ Bd

uukkkkkkkkkkkkkk

((QQQQQQQQQQQQ

lim−→γ∈ob(c1)
f−1
β f−1

α f−1
γ Bd // lim−→ε∈ob(c3)

f−1
ε Bd

for every
(
γ : d→ c1

)
∈ ob(c1), thus they are equal by the universal property of the colimit

lim−→
γ∈ob(c1)

f−1
β f−1

α f−1
γ Bd.

Example 2.9. Let us continue Example 2.6 with the diagrams

diagram in RTop/S subdiagram in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X1

X0

f
>>||||||||

X2

with no other morphisms involved except for the identities. We have already seen that

(u−1OY)0 = h−1OX2 ⊗t−1
0 OS

OX0 , (u−1OY)1 = g−1OX2 ⊗t−1
1 OS

OX1 and (u−1OY)2 = OX2 .

Remember that f−1t−1
1 OS = t−1

0 OS , g−1t−1
2 OS = t−1

1 OS and h−1t−1
2 OS = t−1

0 OS by definition

of m−1
X OS in Lemma 1.17. The morphism f−1(u−1OY)1 → (u−1OY)0 is given by

f−1
(
g−1OX2

⊗t−1
1 OS

OX1

) ∼= h−1OX2
⊗t−1

0 OS
f−1OX1

id⊗θf−−−−→ h−1OX2
⊗t−1

0 OS
OX0

,
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the morphism g−1(u−1OY)2 → (u−1OY)1 is given by

g−1OX2

−⊗1−−−→ g−1OX2 ⊗t−1
1 OS

OX1

and the morphism h−1(u−1OY)2 → (u−1OY)0 is given by

h−1OX2

−⊗1−−−→ h−1OX2
⊗t−1

0 OS
OX0

.

We see that h−1(u−1OY)2 → (u−1OY)0 is equal to the composition

h−1(u−1OY)2 = f−1g−1(u−1OY)2 → f−1(u−1OY)1 → (u−1OY)0.

We come back to the construction of the functor u−1. So far we have defined an association

B 7→ u−1B from ob(AY) to ob(AX ). Now fix a morphism l : B → B in AY . Let c ∈ ob(C) and(
γ : d→ c

)
∈ ob(c). Then the given morphism

ld : Bd → Bd

in Ad defines a morphism f−1
γ ld : f−1

γ Bd → f−1
γ Bd in Ac. If ϕ ∈ Homc

(
(γ1 : d1 → c), (γ2 : d2 → c)

)
,

then there is a commutative diagram

f−1
ϕ Bd1

Bϕ //

f−1
ϕ ld1

��

Bd2

ld2

��
f−1
ϕ Bd1

Bϕ // Bd2

in Ad2 by definition of l : B → B. Applying f−1
γ2

we get a commutative diagram

f−1
γ1
Bd1

f−1
γ2
Bϕ

//

f−1
γ1
ld1

��

f−1
γ2
Bd2

f−1
γ2
ld2

��
f−1
γ1
Bd1

f−1
γ2
Bϕ

//

%%JJJJJJJJJ
f−1
γ2
Bd2

yyttttttttt

(u−1B)c

in Ac where the diagonal morphisms are the natural ones. By the universal property of (u−1B)c

there is a unique morphism

(u−1l)c : (u−1B)c → (u−1B)c

in Ac such that

f−1
γ Bd

f−1
γ ld //

��

f−1
γ Bd

��
lim−→γ∈ob(c)

f−1
γ Bd

(u−1l)c // lim−→γ∈ob(c)
f−1
γ Bd

(2.2)

commutes for every
(
γ : d→ c

)
∈ ob(c) where the vertical morphisms are the natural ones.
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Lemma 2.10. Let l : B → B be a morphism in AY . Then the collection of all morphisms (u−1l)c

in Ac for c ∈ ob(C) defines a morphism u−1l : u−1B → u−1B in AX .

Proof. If α ∈ HomC(c1, c2) we have to show that

f−1
α lim−→γ∈ob(c1)

f−1
γ Bd

(u−1B)α //

f−1
α (u−1l)c1

��

lim−→δ∈ob(c2)
f−1
δ Bd

(u−1l)c2
��

f−1
α lim−→γ∈ob(c1)

f−1
γ Bd

(u−1B)α // lim−→δ∈ob(c2)
f−1
δ Bd

is commutative in Ac2 . By definition both morphisms from f−1
α lim−→γ∈ob(c1)

f−1
γ Bd to

lim−→δ∈ob(c2)
f−1
δ Bd fit into a commutative triangle

f−1
α f−1

γ Bd

f−1
α pγ1

vvmmmmmmmmmmmmm

''PPPPPPPPPPP

f−1
α lim−→γ∈ob(c1)

f−1
γ Bd // lim−→δ∈ob(c2)

f−1
δ Bd

for every
(
γ : d → c1

)
∈ ob(c1) where pγ1 : f−1

γ Bd → lim−→γ∈ob(c1)
f−1
γ Bd is the natural morphism

and f−1
α f−1

γ Bd → lim−→δ∈ob(c2)
f−1
δ Bd is the composition of

f−1
α f−1

γ ld : f−1
α f−1

γ Bd → f−1
α f−1

γ Bd

and the natural morphism f−1
α f−1

γ Bd → lim−→δ∈ob(c2)
f−1
δ Bd. Thus by the universal property of

lim−→γ∈ob(c1)
f−1
α f−1

γ Bd ∼= f−1
α lim−→γ∈ob(c1)

f−1
γ Bd they are equal.

Proposition 2.11. There is a functor u−1 : AY → AX mapping an object B of AY to the object

u−1B of AX as defined in Lemma 2.8 and mapping a morphism l : B → B in AY to the morphism

u−1l : u−1B → u−1B in AX as defined in Lemma 2.10.

Proof. If l : B → B is the identity in AY , then u−1l : u−1B → u−1B is the identity in AX .

Moreover, if

B
l−→ B

k−→ B̂

is a composition in AY , we get, for every fixed c ∈ ob(C) and for every
(
γ : d → c

)
∈ ob(c), a

diagram

f−1
γ Bd

f−1
γ ld //

��

f−1
γ Bd

��

f−1
γ kd //

��

f−1
γ B̂d

��
lim−→γ∈ob(c)

f−1
γ Bd

(u−1l)c //

(u−1(kl))c

44
lim−→γ∈ob(c)

f−1
γ Bd

(u−1k)c // lim−→γ∈ob(c)
f−1
γ B̂d

in Ac where the vertical morphisms are the natural ones. By the universal property of

lim−→γ∈ob(c)
f−1
γ Bd, both morphisms from lim−→γ∈ob(c)

f−1
γ Bd to lim−→γ∈ob(c)

f−1
γ B̂d are equal. Con-

sequently, the composition is sent to

u−1(kl) : u−1B
u−1l−−−→ u−1B

u−1k−−−→ u−1B̂

and so u−1 : AY → AX is indeed a functor.
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Lemma 2.12. For every object B of AY , there is a natural morphism

nB : B → uu−1B

in AY , functorial in B. Similarly, for every object A of AX , there is a natural morphism

mA : u−1uA→ A

in AX , functorial in A. The compositions

uA
nuA−−−→ uu−1uA

umA−−−→ uA and u−1B
u−1nB−−−−→ u−1uu−1B

mu
−1B

−−−−−→ u−1B (2.3)

are the identities for every object A of AX and every object B of AY , respectively. In particular,

the functor u−1 is left adjoint to u as claimed in Proposition 2.2.

Proof. We will divide the proof in four steps. In the first two steps we define the morphisms nB

and mA and in the last two steps we verify that the compositions

uA
nuA−−−→ uu−1uA

umA−−−→ uA and u−1B
u−1nB−−−−→ u−1uu−1B

mu
−1B

−−−−−→ u−1B

are the identities.

Step 1: Notice that for every d ∈ ob(D), the identity d→ d is an object of d. Hence for every

B ∈ ob(AY) and d ∈ ob(D) there is a natural morphism nBd : Bd → lim−→γ∈ob(d)
f−1
γ Bd′ in Ad where

we write γ : d′ → d in order to avoid confusion with the fixed d. If α ∈ HomD(d1, d2), then we

have a diagram

f−1
α Bd1

Bα //

f−1
α nBd1

�� **VVVVVVVVVVVVVVVVVVVV Bd2

nBd2
��

f−1
α lim−→γ∈ob(d1)

f−1
γ Bd′

(u−1B)α // lim−→δ∈ob(d2)
f−1
δ Bd′

in Ad2
whose diagonal morphism is the natural one. The right upper triangle is commutative by

definition of lim−→δ∈ob(d2)
f−1
δ Bd′ and the left lower triangle is commutative by definition of (u−1B)α.

Hence the square is commutative as well and the collection of all nBd for d ∈ ob(D) defines a natural

morphism

nB : B → uu−1B

in AY . The commutativity of Diagram (2.2) on page 24 in the special case γ = id in the upper

horizontal morphism shows that nB is functorial in B.

Step 2: If A ∈ ob(AX ) and c ∈ ob(C), then for every ϕ ∈ Homc

(
(γ1 : d1 → c), (γ2 : d2 → c)

)
there is a commutative square

f−1
γ1
Ad1 = f−1

γ2
f−1
ϕ Ad1

f−1
γ2
Aϕ

//

Aγ1
''PPPPPPPPPPPPP

f−1
γ2
Ad2

Aγ2
wwooooooooooooo

Ac
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in Ac. Consequently, by the universal property of lim−→γ∈ob(c)
f−1
γ Ad there is a unique morphism

mA
c : lim−→γ∈ob(c)

f−1
γ Ad → Ac in Ac such that

f−1
γ Ad

��

Aγ

((QQQQQQQQQQQQQQQQQ

lim−→γ∈ob(c)
f−1
γ Ad

mAc

// Ac

(2.4)

is commutative for every
(
γ : d→ c

)
∈ ob(c). If α ∈ HomC(c1, c2), we have a diagram

f−1
α lim−→γ∈ob(c1)

f−1
γ Ad

(u−1uA)α //

f−1
α mAc1

��

lim−→δ∈ob(c2)
f−1
δ Ad

mAc2

��
f−1
α Ac1

Aα // Ac2

in Ac2 both of its morphisms from f−1
α lim−→γ∈ob(c1)

f−1
γ Ad to Ac2 fit into a commutative square

f−1
α f−1

γ Ad
id //

f−1
α pγ1

��

f−1
αγ Ad

Aαγ

��
f−1
α lim−→γ∈ob(c1)

f−1
γ Ad // Ac2

for every
(
γ : d → c1

)
∈ ob(c1) where pγ1 : f−1

γ Ad → lim−→γ∈ob(c1)
f−1
γ Ad is the natural morphism.

Hence both morphisms from f−1
α lim−→γ∈ob(c1)

f−1
γ Ad to Ac2 are equal by the universal property of

f−1
α lim−→γ∈ob(c1)

f−1
γ Ad. Thus the collection of all mA

c for c ∈ ob(C) defines a natural morphism

mA : u−1uA→ A

in AX . If l : A→ A is a morphism in AX , then for every c ∈ ob(C) the diagram

lim−→γ∈ob(c)
f−1
γ Ad

(u−1ul)c //

mAc

��

lim−→γ∈ob(c)
f−1
γ Ad

mAc
��

Ac
lc // Ac

commutes by the universal property of lim−→γ∈ob(c)
f−1
γ Ad. It follows that mA is functorial in A.

Step 3: Given A ∈ ob(AX ), we may apply u to the morphism mA : u−1uA→ A in AX to get

a morphism umA : uu−1uA→ uA in AY . The object uA ∈ ob(AY) yields a morphism

nuA : uA→ uu−1uA

in AY and the composition

uA
nuA−−−→ uu−1uA

umA−−−→ uA

is the identity since by definition it is levelwise given, for d ∈ ob(D), by the composition

Ad
nuAd−−−→ lim−→

γ∈ob(d)

f−1
γ Ad′

mAd−−→ Ad
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which is the identity as follows from Triangle (2.4) for γ = id: d→ d.

Step 4: Similarly, given B ∈ ob(AY), we may apply u−1 to the morphism nB : B → uu−1B

in AY to get a morphism u−1B
u−1nB−−−−→ u−1uu−1B in AX . The object u−1B ∈ ob(AX ) yields a

morphism

mu−1B : u−1uu−1B → u−1B

in AX and it remains to show that the composition

u−1B
u−1nB−−−−→ u−1uu−1B

mu
−1B

−−−−−→ u−1B

is the identity. For c ∈ ob(C) the composition is given by

(u−1B)c
(u−1nB)c−−−−−−→ lim−→

(δ : d′→c)∈ob(c)

f−1
δ (u−1B)d′

mu
−1B
c−−−−−→ (u−1B)c. (2.5)

Now fix
(
γ : d→ c

)
∈ ob(c). There is a diagram

f−1
γ Bd

**

f−1
γ nBd

//

��

f−1
γ (u−1B)d

(u−1B)γ

//

��

(u−1B)c

id

��
(u−1B)c

(u−1nB)c // lim−→(δ : d′→c)∈ob(c)
f−1
δ (u−1B)d′

mu
−1B
c // (u−1B)c

all of whose three nameless morphisms are the respective natural ones. The left hand square is

commutative by definition of nB , the right hand square is commutative as follows from Triangle

(2.4) for A = u−1B and the top part is commutative by definition of (u−1B)γ . Hence the identity

on (u−1B)c and the morphism in Equation (2.5) fit into a commutative diagram

f−1
γ Bd

$$JJJJJJJJJ

zzttttttttt

(u−1B)c // (u−1B)c

for every
(
γ : d→ c

)
∈ ob(c), so they are equal by the universal property of the colimit (u−1B)c.

Finally, it follows that u−1 is left adjoint to u because by [Mac71, Theorem IV.1.2.], it suffices

to give the above adjunction morphisms such that the compositions in Equation (2.3) are the

identities.
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2.2 The long exact sequence associated to the diagram and its subdia-

gram

We keep the notations of General assumption 2.1. Let v : OX -mod → OY -mod be the forgetful

functor from the category of OX -modules to the category of OY -modules. By Proposition 2.2

there is a left adjoint functor

v∗ : OY -mod→ OX -mod

of v and an isomorphism of adjunction

HomOX -mod(v∗L,M) ∼= HomOY -mod(L, vM) (2.6)

for M ∈ ob(OX -mod) and L ∈ ob(OY -mod). If L ∈ ob(OY -mod), then v∗L is given levelwise, for

c ∈ ob(C), by

(v∗L)c = lim−→
γ∈ob(c)

(
f−1
γ Ld ⊗f−1

γ OXd
OXc

)
where the colimit is taken in the category OXc-mod. By abuse of notation we denote by v

and v∗ the functors between the categories Ch(X ) and Ch(Y) of complexes of OX -modules and

OY -modules, respectively, as well. Remember that vLX/S = LY/S because by Corollary A.3

the complex LX/S is given levelwise by the collection of all complexes of OXc -modules LXc/S for

c ∈ ob(C) together with the natural morphisms f∗αLXc1/S → LXc2/S for α ∈ HomC(c1, c2).

Now we may state the long exact sequence for the diagram and its subdiagram.

Theorem 2.13. Assume given the situation of General assumption 2.1. Let

m : v∗vLX/S = v∗LY/S → LX/S

be the adjunction morphism in Lemma 2.12 of the cotangent complex LX/S and let Cone(m) be

the cone of m. Then the distinguished triangle

Cone(m)
yy

yyssssssssss

v∗LY/S
m // LX/S

ddJJJJJJJJJ

in the derived category D(X ) yields a long exact sequence

0→ Ext0
X (Cone(m),m∗XJ )→ Ext0

X (LX/S ,m
∗
XJ )→ Ext0

Y(LY/S ,m
∗
YJ )

→ Ext1
X (Cone(m),m∗XJ )

σ−→ Ext1
X (LX/S ,m

∗
XJ )

τ−→ Ext1
Y(LY/S ,m

∗
YJ )

ω−→ Ext2
X (Cone(m),m∗XJ )→ Ext2

X (LX/S ,m
∗
XJ )→ Ext2

Y(LY/S ,m
∗
YJ )

→ . . .

of abelian groups. The morphism τ is the forgetful morphism sending a deformation of X to

the induced deformation of Y. Given a deformation ξ of the subdiagram Y over S ′, there is an

obstruction

ω(ξ) ∈ Ext2
X (Cone(m),m∗XJ )
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whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ. If the obstruction ω(ξ) is zero, then the set of isomorphism classes of

deformations of X over S ′ reducing to ξ is a torsor under the image of

σ : Ext1
X (Cone(m),m∗XJ )→ Ext1

X (LX/S ,m
∗
XJ ).

In the next subsection we will see two important cases when the cone of m is isomorphic in

D(X ) to the cotangent complex of a certain ring morphism. This will help a lot to control the

obstruction group Ext2
X (Cone(m),m∗XJ ) better. The rest of this section deals with the proof of

the above theorem on page 32.

The adjunction in Equation (2.6) gives rise to an isomorphism

Hom·X (v∗L,M) ∼= Hom·Y(L, vM)

of complexes of abelian groups, functorial in M ∈ ob(Ch(X )) and L ∈ ob(Ch(Y)), where

Hom·(−,−) is the complex as defined in [Har66, Chapter I.§6.]. Hence if Ab is the category

of abelian groups and if K+(X ) and K+(Y) are the categories of bounded below complexes of

OX -modules and OY -modules, respectively, up to homotopy, then the diagram

K+(X )
v //

Hom·X (v∗L,−)

##FFFFFFFFFFFFFFFFFF
K+(Y)

Hom·Y(L,−)

{{xxxxxxxxxxxxxxxxxx

K(Ab)

is commutative up to natural isomorphism of functors for fixed L ∈ ob(Ch(Y)).

Proposition 2.14. Let L ∈ ob(Ch−(Y)) be a bounded above complex consisting of free

OY -modules. Then there is a natural isomorphism of functors

RHom·X (v∗L,−) ∼= RHom·Y(L, v(−))

from D+(X ) to D(Ab). In particular, for each M ∈ ob(D+(X )) and i ∈ Z, there are natural

isomorphisms of abelian groups

ExtiX (v∗L,M) ∼= ExtiY(L, vM)

which are functorial in M .

Proof. By Theorem 1.9 there is a natural transformation of functors

RHom·X (v∗L,−)→ RHom·Y(L,Rv(−))

from D+(X ) to D(Ab). But since the functor v is exact, the natural transformation of functors

v(−)→ Rv(−) is an isomorphism. Hence there is a natural transformation of functors

ζ : RHom·X (v∗L,−)→ RHom·Y(L, v(−))
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from D+(X ) to D(Ab). Now we take K = K+(Y) in the notations of Theorem 1.9. In order

to show that ζ is an isomorphism, it remains to show that each exact complex E of K+(Y) is

Hom·Y(L,−)-acyclic, i.e., Hi
(
Hom·Y(L,E)

)
= 0 for all i. But

Hi
(
Hom·Y(L,E)

)
= HomK(Y)(L,E[i])

by definition of Hom·Y(L,E) (see for example [Wei94, Chapter 10.7]) and HomK(Y)(L,E[i]) is zero

because each morphism of complexes from a bounded above complex of free modules to an exact

complex is homotopic to the zero morphism.

Now if M ∈ ob(Ch+(X )), we get a natural isomorphism

ExtiX (v∗L,M) ∼= ExtiY(L, vM)

of abelian groups by taking the i-th cohomology of RHom·X (v∗L,M)
∼=−→ RHom·Y(L, vM) by

[Wei94, Theorem 10.7.4].

Notice that the above proposition holds in particular if L = LY/S is the cotangent complex of

the subdiagram Y over S.

If M ∈ ob(Ch+(X )), then applying the functor ExtiX (−,M) to the morphism of complexes of

OX -modules

m : v∗vLX/S = v∗LY/S → LX/S

in Theorem 2.13, we get a morphism of abelian groups

τi : ExtiX (LX/S ,M)→ ExtiX (v∗LY/S ,M)
∼=−→ ExtiY(LY/S , vM)

where the last isomorphism is the one of the above proposition.

Lemma 2.15. For each M ∈ ob(Ch+(X )) and i ∈ Z the morphism

τi : ExtiX (LX/S ,M)→ ExtiY(LY/S , vM)

is the forgetful morphism, i.e., if l ∈ ExtiX (LX/S ,M) is represented by

LX/S

s
""DDDDDDDD

M [i]

s′}}{{{{{{{{

N

where N is a complex of OX -modules, s is a morphism of complexes of OX -modules and s′ is a

quasi-isomorphism, then τi(l) ∈ ExtiY(LY/S , vM) is represented by

LY/S = vLX/S

vs
&&MMMMMMMMMMMM vM [i].

vs′{{wwwwwwww

vN
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Proof. Let l ∈ ExtiX (LX/S ,M) be represented by

LX/S

s
""DDDDDDDD

M [i].

s′||zzzzzzzz

N

Then ExtiX (m,M)(l) ∈ ExtiX (v∗LY/S ,M) is represented by

v∗LY/S
m // LX/S

s
""DDDDDDDD

M [i]

s′}}{{{{{{{{

N

and τi(l) ∈ ExtiY(LY/S , vM) is represented by

LY/S = vLX/S
n
vLX/S // vv∗LY/S

vm // vLX/S = LY/S

vs
&&MMMMMMMMMMM

vM [i]

vs′{{xxxxxxxx

vN

by definition of the adjunction between v and v∗ in Lemma 2.12. But

LY/S = vLX/S
n
vLX/S
−−−−−→ vv∗LY/S

vm−−→ vLX/S = LY/S

is the identity by Lemma 2.12.

Proof of Theorem 2.13. We apply the functor HomD(X )(−,m∗XJ ) to the distinguished triangle

Cone(m)
yy

yyssssssssss

v∗LY/S
m // LX/S

ddJJJJJJJJJ

in D(X ) to get a long exact sequence

0→ Ext0
X (Cone(m),m∗XJ )→ Ext0

X (LX/S ,m
∗
XJ )→ Ext0

X (v∗LY/S ,m
∗
XJ )

→ Ext1
X (Cone(m),m∗XJ )→ Ext1

X (LX/S ,m
∗
XJ )→ Ext1

X (v∗LY/S ,m
∗
XJ )

→ Ext2
X (Cone(m),m∗XJ )→ Ext2

X (LX/S ,m
∗
XJ )→ Ext2

X (v∗LY/S ,m
∗
XJ )

→ . . .

of abelian groups. We have vm∗XJ = m∗YJ since v is the forgetful functor. By Proposition 2.14

there are natural isomorphisms

ExtiX (v∗LY/S ,m
∗
XJ ) ∼= ExtiY(LY/S , vm

∗
XJ ) = ExtiY(LY/S ,m

∗
YJ )

for each i ∈ Z. Let

τ ′ : Exalm−1
X OS

(OX ,m∗XJ )→ Exalm−1
Y OS

(OY ,m∗YJ )
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be the group homomorphism which maps the isomorphism class of an m−1
X OS -extension

0→ m∗XJ → A → OX → 0

by restricting to the isomorphism class of the m−1
Y OS -extension

0→ m∗YJ → vA → OY → 0.

Then using the canonical isomorphisms of abelian groups

Exalm−1
X OS

(OX ,m∗XJ )
∼=−→ Ext1

X (LX/S ,m
∗
XJ ) and Exalm−1

Y OS
(OY ,m∗YJ )

∼=−→ Ext1
Y(LY/S ,m

∗
YJ )

in Theorem 1.8, the diagram

Ext1
X (LX/S ,m

∗
XJ )

τ // Ext1
Y(LY/S ,m

∗
YJ )

Exalm−1
X OS

(OX ,m∗XJ ) τ ′ //

∼=

OO

Exalm−1
Y OS

(OY ,m∗YJ )

∼=

OO

is commutative because the left vertical isomorphism restricts to the right vertical isomorphism as

follows from its definition in [Ill71, Théorème III.1.2.3.]. Together with Lemma 2.15 this shows that

τ maps the isomorphism class of a deformation of X to the isomorphism class of the deformation

of Y induced by restricting. All deformation theoretic assertions follow from the exactness of the

long exact sequence.
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2.3 The simplification of the obstruction group

We keep the notations of General assumption 2.1. In the last subsection we have seen that

Ext2
X (Cone(m),m∗XJ ) is an obstruction group for extending a given deformation of the subdia-

gram to a deformation of the diagram. We will see in Theorem 2.20 that Cone(m) is isomorphic

in D(X ) to the cotangent complex Lh of a certain ring morphism defined in Proposition 2.16 if

some additional weak assumption on the left adjoint of the forgetful functor is satisfied. Thus

the obstruction group Ext2
X (Lh,m

∗
XJ ) may be calculated more efficiently in a large variety of

interesting cases as done in Section 3.

Let u : m−1
X OS -alg→ m−1

Y OS -alg be the forgetful functor from the category of m−1
X OS -algebras

of X to the category of m−1
Y OS -algebras of Y. By Proposition 2.2 there is a left adjoint functor

u−1 : m−1
Y OS -alg→ m−1

X OS -alg

of u which is given levelwise, for c ∈ ob(C), by

(u−1B)c = lim−→
γ∈ob(c)

f−1
γ Bd

where B ∈ ob(m−1
Y OS -alg) and the colimit is taken in t−1

c OS -alg, the category of t−1
c OS -algebras.

Proposition 2.16. With the above notations there is a natural factorization

m−1
X OS

θX //

l $$JJJJJJJJJ
OX

u−1OY

h

;;xxxxxxxxx

of θX all of whose morphisms are ring morphisms in X .

Proof. Taking A = OX in the adjunction morphism mA in Lemma 2.12, we get a morphism

h : u−1uOX = u−1OY
mOX−−−→ OX

and we take l : m−1
X OS → u−1OY to be the structure morphism of u−1OY as an m−1

X OS -algebra.

By definition the morphism h : u−1OY → OX is given levelwise, for c ∈ ob(C), by the unique

t−1
c OS -algebra morphism

hc : lim−→
γ∈ob(c)

f−1
γ OXd → OXc

such that

f−1
γ OXd

��

θγ

))RRRRRRRRRRRRRRRRR

lim−→γ∈ob(c)
f−1
γ OXd

hc

// OXc

(2.7)

is commutative in the category of t−1
c OS -algebras for every

(
γ : d→ c

)
∈ ob(c).
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Remark 2.17. The triangle in Proposition 2.16 can be described alternatively as follows. We have

u−1m−1
Y OS = m−1

X OS by definition since m−1
Y OS is the collection of all t−1

c OS for c ∈ ob(D)

together with identities as sheaf morphisms for each α ∈ HomD(c1, c2). We may apply u−1 to the

ring morphism m−1
Y OS

θY−−→ OY = uOX to get a ring morphism

l = u−1θY : m−1
X OS = u−1m−1

Y OS → u−1uOX

which is just the structure morphism of u−1uOX as an m−1
X OS -algebra. Hence the triangle in

Proposition 2.16 is given by

u−1m−1
Y OS = m−1

X OS
θX //

l=u−1θY ((QQQQQQQQQQQQQ
OX .

u−1uOX
h=mOX

::vvvvvvvvvv

By Lemma 2.12 we have a commutative diagram

m−1
Y OS

θY //

ul

%%KKKKKKKKK

θY

''

OY

uu−1OY

uh

;;wwwwwwwww

OY

nOY

OO
id

MM

(2.8)

of m−1
Y OS -algebras.

Example 2.18. Let us continue Example 2.9 with the diagrams

diagram in RTop/S subdiagram in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X1

X0

f
>>||||||||

X2

with no other morphisms involved except for the identities. We have already seen that

(u−1OY)0 = h−1OX2
⊗t−1

0 OS
OX0

, (u−1OY)1 = g−1OX2
⊗t−1

1 OS
OX1

and (u−1OY)2 = OX2
.

In this example h : u−1OY → OX is given levelwise as follows. h0 : (u−1OY)0 → OX0
is the unique

morphism such that

OX0

h−1OX2
//

θh
..

h−1OX2 ⊗t−1
0 OS

OX0

h0

77oooooooooooo

t−1
0 OS

h−1θ2

OO

θ0 // OX0

OO
id

II
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is commutative in X0. Similarly, h1 : (u−1OY)1 → OX1 is the unique morphism such that

OX1

g−1OX2
//

θg
..

g−1OX2
⊗t−1

1 OS
OX1

h1

77oooooooooooo

t−1
1 OS

g−1θ2

OO

θ1 // OX1

OO
id

II

is commutative in X1. Finally, h2 : (u−1OY)2 → OX2 is the identity OX2 → OX2 .

We come back to the general case. The composition of rings θX : m−1
X OS

l−→ u−1OY
h−→ OX

yields a distinguished triangle

Lhxx

xxrrrrrrrrrrr

Ll ⊗u−1OY OX // LX/S

bbEEEEEEEE
(2.9)

in D(X ) by Theorem 1.8.iv).

After stating the following lemma, we will formulate the main result of this subsection.

Lemma 2.19. There is a natural morphism of complexes of OX -modules

a : v∗LY/S → Ll ⊗u−1OY OX

such that

v∗LY/S
m //

a

��

LX/S

Ll ⊗u−1OY OX // LX/S

is commutative in the category of complexes of OX -modules.

Besides the forgetful functors u : m−1
X OS -alg → m−1

Y OS -alg and v : OX -mod → OY -mod, let

w : X → Y be the forgetful functor from the ringed topos X to the ringed topos Y.

Theorem 2.20. Assume given the situation of General assumption 2.1. Let further

a : v∗LY/S → Ll ⊗u−1OY OX

be the natural morphism of complexes of OX -modules in Lemma 2.19. Assume that one of the

following two conditions holds:

1 The left inverse w−1 : Y → X of the forgetful functor w : X → Y commutes with finite limits

(satisfied for example if the category c in Definition 2.3 is filtered for each c ∈ ob(C)).

2 For each c ∈ ob(C) we have (u−1OY)c =
⊗

t−1
c OS f

−1
γ OXd where the tensor product over

t−1
c OS is taken over a (possibly empty) set of objects

(
γ : d→ c

)
∈ ob(c).
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Then a is a quasi-isomorphism.

If a is a quasi-isomorphism, then for each i ∈ Z and M ∈ ob(D+(X )) it induces a natural

isomorphism of abelian groups

ExtiX (Ll ⊗u−1OY OX ,M) ∼= ExtiY(LY/S , vM),

functorial in M . Furthermore, if a is a quasi-isomorphism, then the application of the functor

HomD(X )(−,m∗XJ ) to the distinguished triangle

Lhxx

xxrrrrrrrrrrr

Ll ⊗u−1OY OX // LX/S

bbEEEEEEEE

yields a long exact sequence

0→ Ext0
X (Lh,m

∗
XJ )→ Ext0

X (LX/S ,m
∗
XJ )→ Ext0

Y(LY/S ,m
∗
YJ )

→ Ext1
X (Lh,m

∗
XJ )

σ−→ Ext1
X (LX/S ,m

∗
XJ )

τ−→ Ext1
Y(LY/S ,m

∗
YJ )

ω−→ Ext2
X (Lh,m

∗
XJ )→ Ext2

X (LX/S ,m
∗
XJ )→ Ext2

Y(LY/S ,m
∗
YJ )

→ . . .

of abelian groups. The morphism τ is the forgetful morphism sending a deformation of X to

the induced deformation of Y. Given a deformation ξ of the subdiagram Y over S ′, there is an

obstruction

ω(ξ) ∈ Ext2
X (Lh,m

∗
XJ )

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ. If the obstruction ω(ξ) is zero, then the set of isomorphism classes of

deformations of X over S ′ reducing to ξ is a torsor under the image of

σ : Ext1
X (Lh,m

∗
XJ )→ Ext1

X (LX/S ,m
∗
XJ ).

Remark 2.21. Using the natural isomorphisms

Ext1
X (Lh,m

∗
XJ ) ∼= Exalu−1OY (OX ,m∗XJ ) and Ext1

X (LX/S ,m
∗
XJ ) ∼= Exalm−1

X OS
(OX ,m∗XJ )

in Theorem 1.8.iii), we see from Proposition 1.13 that the image of σ may be described as the sub-

group of Exalm−1
X OS

(OX ,m∗XJ ) consisting of all those m−1
X OS -extensions of OX by m∗XJ which

are already u−1OY -extensions of OX by m∗XJ under the ring morphism

l : m−1
X OS → u−1OY .

We use the rest of this subsection to give the proof of the above lemma and theorem.

Proof of Lemma 2.19. By Corollary A.3 we know that the complexes LX/S and LY/S are given

levelwise by the collection of all LXc/S and LXd/S for c ∈ ob(C) and d ∈ ob(D), respectively. Now

fix c ∈ ob(C). We have

(v∗LY/S)c = lim−→
γ∈ob(c)

(
f−1
γ LXd/S ⊗f−1

γ OXd
OXc

)
,
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the colimit being taken in the category of complexes of OXc-modules. Again by Corollary A.3 we

know that the complex of (u−1OY)c-modules (Ll)c is given by

(Ll)c = L(u−1OY)c/t
−1
c OS = Llc .

Let ϕ ∈ Homc

(
(γ1 : d1 → c), (γ2 : d2 → c)

)
. By definition of (u−1OY)c we know that

f−1
γ2
OXd2

((RRRRRRRRRRRRR

t−1
c OS

66mmmmmmmmmmmmm

((QQQQQQQQQQQQQ (u−1OY)c

f−1
γ1
OXd1

66lllllllllllll

f−1
γ2
θϕ

OO

is commutative where the two right hand side diagonal morphisms are the natural ones. Moreover,

both of the above compositions from t−1
c OS to (u−1OY)c are lc. The above diagram gives rise to

a commutative diagram

Lf−1
γ1
OXd1

/t−1
c OS ⊗f−1

γ1
OXd1

(u−1OY)c

))SSSSSSSSSSSSSSSSS
// Lf−1

γ2
OXd2

/t−1
c OS ⊗f−1

γ2
OXd2

(u−1OY)c

uukkkkkkkkkkkkkkkkk

Llc

of morphisms of complexes of (u−1OY)c-modules. Whence by the universal property of the colimit

there is a unique morphism of complexes of (u−1OY)c-modules

bc : lim−→
γ∈ob(c)

(
Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
(u−1OY)c

)
→ Llc (2.10)

such that

Lf−1
γ OXd/t

−1
c OS ⊗f−1

γ OXd
(u−1OY)c

��
++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

lim−→γ∈ob(c)

(
Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
(u−1OY)c

) bc // Llc

is commutative for every
(
γ : d→ c

)
∈ ob(c) where the colimit is taken in the category of complexes

of (u−1OY)c-modules and the vertical morphisms are the natural ones.

Considering the ring morphism hc : (u−1OY)c → OXc , the functor − ⊗(u−1OY)c OXc from the

category of complexes of (u−1OY)c-modules to the category of complexes ofOXc-modules is left ad-

joint to the functor which considers a complex of OXc-modules as a complex of

(u−1OY)c-modules via hc. It follows that − ⊗(u−1OY)c OXc commutes with arbitrary colimits

by [Sta13, Lemma 4.23.3.] and tensoring bc with OXc yields a morphism

lim−→
γ∈ob(c)

(
Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
(u−1OY)c ⊗(u−1OY)c OXc

)
→ Llc ⊗(u−1OY)c OXc .
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By Diagram (2.7) on page 34 the composition f−1
γ OXd → (u−1OY)c

hc−→ OXc is θγ for each(
γ : d→ c

)
∈ ob(c), hence the above morphism simplifies to

lim−→
γ∈ob(c)

(
Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
OXc

)
→ Llc ⊗(u−1OY)c OXc .

Finally, by Theorem 1.8.ii) for each
(
γ : d→ c

)
∈ ob(c) there is a natural isomorphism of complexes

of f−1
γ OXd -modules f−1

γ LXd/S → Lf−1
γ OXd/t

−1
c OS . Tensoring with OXc , we get isomorphisms of

complexes of OXc -modules f−1
γ LXd/S ⊗f−1

γ OXd
OXc → Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
OXc which are

compatible with the morphisms defined by the index category c. Consequently, for each c ∈ ob(C)

there is a natural morphism

ac : lim−→
γ∈ob(c)

(
f−1
γ LXd/S ⊗f−1

γ OXd
OXc

)
→ Llc ⊗(u−1OY)c OXc

and the naturalness and functoriality of all steps used in their construction show that their col-

lection defines a morphism of complexes of OX -modules

a : v∗LY/S → Ll ⊗u−1OY OX .

From the universal property of the colimit lim−→γ∈ob(c)

(
f−1
γ LXd/S ⊗f−1

γ OXd
OXc

)
it follows that the

square

v∗LY/S
m //

a

��

LX/S

Ll ⊗u−1OY OX // LX/S

is commutative.

Proof of Theorem 2.20. If a is a quasi-isomorphism and thus an isomorphism in D(X ), then it

induces natural isomorphisms

ExtiX (Ll ⊗u−1OY OX ,M) ∼= ExtiX (v∗LY/S ,M) ∼= ExtiY(LY/S , vM)

of abelian groups, functorial in M ∈ ob(D+(X )), where the second isomorphism is the one in

Proposition 2.14. Applying the functor HomD(X )(−,m∗XJ ) to the distinguished triangle (2.9) on

page 36, we get a long exact sequence

0→ Ext0
X (Lh,m

∗
XJ )→ Ext0

X (LX/S ,m
∗
XJ )→ Ext0

X (Ll ⊗u−1OY OX ,m
∗
XJ )

→ Ext1
X (Lh,m

∗
XJ )→ Ext1

X (LX/S ,m
∗
XJ )→ Ext1

X (Ll ⊗u−1OY OX ,m
∗
XJ )

→ Ext2
X (Lh,m

∗
XJ )→ Ext2

X (LX/S ,m
∗
XJ )→ Ext2

X (Ll ⊗u−1OY OX ,m
∗
XJ )

→ . . .

of abelian groups. For each i ∈ Z the composition

ExtiX (LX/S ,m
∗
XJ )→ ExtiX (Ll⊗u−1OYOX ,m

∗
XJ )

∼=−→ ExtiX (v∗LY/S ,m
∗
XJ )

∼=−→ ExtiY(LY/S ,m
∗
YJ )
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is the forgetful morphism as follows from Lemma 2.15 and the commutativity of the square

v∗LY/S
m //

a

��

LX/S

Ll ⊗u−1OY OX // LX/S .

It remains to show that a is a quasi-isomorphism if condition 1 or 2 is satisfied.

Assume that condition 1 is satisfied. Then w : X → Y is a morphism of topoi and since

w−1 commutes with arbitrary colimits and with finite limits, it preserves, amongst others, alge-

bra structures (see for example [SGA41, Exposé IV.3.1.2.]). This means that if B is a sheaf of

m−1
Y OS -algebras of Y, then w−1B is a sheaf of m−1

X OS -algebras of X . It follows that we may

identify the functor u−1 : m−1
Y OS -alg→ m−1

X OS -alg with the restriction of w−1 to the subcategory

m−1
Y OS -alg of Y because both functors are left adjoint to the forgetful functor

m−1
X OS -alg → m−1

Y OS -alg. Taking h : w−1OY → OX as ring morphism, we see that

w : X → Y is even a morphism of ringed topoi.

Since w−1 preserves module structures we have that w−1M is a complex of w−1OY -modules

whenever M is a complex of OY -modules, hence w∗M = w−1M ⊗w−1OY OX is a complex of

OX -modules. Hence we may identify the functors w∗ and v∗ from Ch(Y) to Ch(X ) since they are

both left adjoint to the forgetful functor Ch(X )→ Ch(Y). Now since w is a morphism of ringed

topoi we know from Theorem 1.8.ii) that the natural morphism of complexes of w−1OY -modules

w−1LY/S = w−1LOY/m−1
Y OS

→ Lw−1OY/m−1
X OS

= Ll

is an isomorphism and tensoring with OX shows that

a : w∗LY/S = w−1LY/S ⊗w−1OY OX → Ll ⊗w−1OY OX

is an isomorphism as well. Notice that there is a commutative diagram of ringed topoi

X w //

mX ��???????? Y

mY���������

S

and the distinguished triangle of the ring composition in Proposition 2.16 is by definition the

distinguished triangle

LX/Yzz

zzuuuuuuuuu

w∗LY/S // LX/S

ccGGGGGGGGG

of the above composition of morphisms of ringed topoi.

If the category c in Definition 2.3 is filtered for each c ∈ ob(C), then w−1 commutes with

finite limits because w−1 is given levelwise by taking the colimit over the categories c and because

filtered colimits commute with finite limits by [Sta13, Lemma 4.18.2.].
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Now assume that condition 2 is satisfied and let c ∈ ob(C). Then (u−1OY)c =
⊗

Γc
f−1
γ OXd

is a coproduct in the category t−1
c OS -alg where Γc ⊆ ob(c) is a possibly empty subset of ob(c)

depending on c. Since the left adjoint AY → AX of any of the forgetful functors AX → AY at the

beginning of Subsection 2.1 is defined levelwise by taking the colimit over the index category c for

c ∈ ob(C), it follows that it is given levelwise by taking the coproduct over Γc in the respective

category. In particular, for every c ∈ ob(C) the colimit

lim−→
γ∈ob(c)

(
Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
(u−1OY)c

)
,

taken in the category of complexes of (u−1OY)c-modules, is a coproduct, i.e., a finite direct sum,

and the morphism

bc :
⊕
Γc

(
Lf−1

γ OXd/t
−1
c OS ⊗f−1

γ OXd
(u−1OY)c

)
→ Llc

in Equation (2.10) on page 38 is given by the sum morphism of the morphisms

Lf−1
γ OXd/t

−1
c OS ⊗f−1

γ OXd
(u−1OY)c → Llc

for
(
γ : d → c

)
∈ Γc. But since all structure morphisms tc : Xc → S for c ∈ ob(C) are flat by

General assumption 2.1 it follows that bc is a quasi-isomorphism for each c ∈ ob(C) by Proposition

A.1. Since bc is a quasi-isomorphism between complexes consisting of free (u−1OY)c-modules, we

may tensor with OXc and still get a quasi-isomorphism by [Ill71, Lemme I.3.3.2.1.]. It follows that

ac : lim−→
γ∈ob(c)

(
f−1
γ LXd/S ⊗f−1

γ OXd
OXc

)
→ Llc ⊗(u−1OY)c OXc

is a quasi-isomorphism for every c ∈ ob(C), hence a is a quasi-isomorphism.
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2.4 Relations between a diagram, a subdiagram and a subsubdiagram

Under General assumption 2.1 let furthermore E be a subcategory of D and let Z be the ringed

topos associated to the restriction of J : Dop → RTop/S to Eop. Let mZ : Z → S be the mor-

phism of ringed topoi in Lemma 1.17. Thus we have the diagram X with index category Cop, its

subdiagram Y with index category Dop and its subsubdiagram Z with index category Eop. We

will derive a commutative braid for the triple (X ,Y,Z).

Proposition 2.22. Assume given the above situation. For distinction of the three different mor-

phisms m in Theorem 2.13, let mXY be the morphism for the pair (X ,Y), let mXZ be the morphism

for the pair (X ,Z) and mYZ be the morphism for the pair (Y,Z).

Then there is a commutative braid

. . .

2

((

knpu
��
7

I N P

3

++WWWWWWWWWWWWWWWWWWWWWW . . .

1

vv

S P N I
7

�

�
upn

4

ssgggggggggggggggggggggg

ExtiX (Cone(mXZ),m∗XJ )

3

++VVVVVVVVVVVVVVVVVV
4

sshhhhhhhhhhhhhhhhhh

ExtiY(Cone(mYZ),m∗YJ )

2

**VVVVVVVVV

4

((

ExtiX (LX/S ,m
∗
XJ )

1

tth h h h h h h h h

3

vv

ExtiY(LY/S ,m
∗
YJ )

2

**VVVVVVVVV
1

tth h h h h h h h h

Exti+1
X (Cone(mXY),m∗XJ )

1

''

o
r

w
	

�
5

G
L

O

4

**VVVVVVVVVVVVVVVVVV
ExtiZ(LZ/S ,m

∗
ZJ )

2

ww

O L G
5

�

	
wro

3

tthhhhhhhhhhhhhhhhhh

Exti+1
X (Cone(mXZ),m∗XJ )

4

**VVVVVVVVVVVVVVVVVV
3

tthhhhhhhhhhhhhhhhhh

Exti+1
X (LX/S ,m

∗
XJ )

1

**VVVVVVVVV

3

''

Exti+1
Y (Cone(mYZ),m∗YJ )

2

tth h h h h h h h h

4

ww

Exti+1
Y (LY/S ,m

∗
YJ )

1

**VVVVVVVVV
2

tth h h h h h h h h

Exti+1
Z (LZ/S ,m

∗
ZJ )

3

**VVVVVVVVVVVVVVVVVV

2

))

nqu
�

�
6

I M P R

Exti+2
X (Cone(mXY),m∗XJ )

1

uu

P M I
6

�

�
uqnl

4

tthhhhhhhhhhhhhhhhhh

Exti+2
X (Cone(mXZ),m∗XJ )

3

++WWWWWWWWWWWWWWWWWWWWWW
4

ssgggggggggggggggggggggg

. . . . . .

containing four long exact sequences of abelian groups. Sequences 1, 2 and 3 are the long exact

sequences of the pairs (X ,Y), (Y,Z) and (X ,Z) in Theorem 2.13, respectively.
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Proof. For distinction let vXY be the forgetful functor from Ch(X ) to Ch(Y), let vXZ be the

forgetful functor from Ch(X ) to Ch(Z) and let vYZ be the forgetful functor from Ch(Y) to

Ch(Z). Then there are three distinguished triangles

v∗XYLY/S
mXY // LX/S

(id|0) // Cone(mXY)
pr2 // v∗XYLY/S [1],

v∗XZLZ/S
mXZ // LX/S

(id|0) // Cone(mXZ)
pr2 // v∗XZLZ/S [1],

v∗YZLZ/S
mYZ // LY/S

(id|0) // Cone(mYZ)
pr2 // v∗YZLZ/S [1],

the first and the second in K(X ) and the third in K(Y), all of whose displayed morphisms are in

Ch(X ) and Ch(Y), respectively. Since v∗XY : Ch(Y) → Ch(X ) is induced from the left adjoint

OY -mod→ OX -mod of the forgetful functor OX -mod→ OY -mod, we may apply v∗XY to the last

of the above triangles and still get a distinguished triangle

v∗XYv
∗
YZLZ/S

v∗XYmYZ // v∗XYLY/S
(id|0) // v∗XYCone(mYZ)

pr2 // v∗XYv
∗
YZLZ/S [1]

in K(X ). Since both functors v∗XYv
∗
YZ and v∗XZ from Ch(Z) to Ch(X ) are left adjoint to the

forgetful functor Ch(X )→ Ch(Z) there is a natural isomorphism of functors between them and

we will identify v∗XYv
∗
YZ with v∗XZ . Furthermore the composition

v∗XZLZ/S
v∗XYmYZ−−−−−−→ v∗XYLY/S

mXY−−−→ LX/S

is mXZ by definition.

Visualizing the three distinguished triangles in K(X ) in an octahedron

Cone(mXZ)

g

%%KKKKKKKKKKK��

pr2

�����������������������������������

v∗XYCone(mYZ)

f

88rrrrrrrrrrr

��

pr2

��

Cone(mXY)oo
(id|0)[1]◦pr2

oo
��

�������

pr2

���������

������������������v∗XZLZ/S
mXZ //

v∗XYmYZ

&&LLLLLLLLLLLLLLLLLLLLLL
LX/S

(id|0)

\\999999999999999999999999999999999

(id|0)

OO

v∗XYLY/S

mXY

99sssssssssssssssssssss

::::::::::::::::

(id|0)

:::::::::

]]:::::::

we see that there are morphisms

f : v∗XYCone(mYZ)→ Cone(mXZ) and g : Cone(mXZ)→ Cone(mXY)
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in K(X ) such that

v∗XYCone(mYZ)
f // Cone(mXZ)

g // Cone(mXY)
(id|0)[1]◦pr2 // v∗XYCone(mYZ)[1]

is a distinguished triangle in K(X ) by the octohedral axiom (see for example [Har66, Chapter I.1.

Axiom (TR4)]). Applying HomD(X )(−,m∗XJ ) to the triangle

v∗XYv
∗
YZLZ/S

v∗XYmYZ // v∗XYLY/S
(id|0) // v∗XYCone(mYZ)

pr2 // v∗XYv
∗
YZLZ/S [1]

in D(X ) and applying HomD(Y)(−,m∗YJ ) to the triangle

v∗YZLZ/S
mYZ // LY/S

(id|0) // Cone(mYZ)
pr2 // v∗YZLZ/S [1]

in D(Y) yield a commutative diagram

...

��

...

��
ExtiX (v∗XYLY/S ,m

∗
XJ )

��

∼= // ExtiY(LY/S ,m
∗
YJ )

��
ExtiX (v∗XZLZ/S ,m

∗
XJ )

��

∼= // ExtiZ(LZ/S ,m
∗
ZJ )

��
Exti+1
X (v∗XYCone(mYZ),m∗XJ )

��

// Exti+1
Y (Cone(mYZ),m∗YJ )

��
Exti+1
X (v∗XYLY/S ,m

∗
XJ )

��

∼= // Exti+1
Y (LY/S ,m

∗
YJ )

��
Exti+1
X (v∗XZLZ/S ,m

∗
XJ )

∼= //

��

Exti+1
Z (LZ/S ,m

∗
ZJ )

��
...

...

of abelian groups where the first and forth horizontal isomorphisms are the ones in Proposition

2.14 for the functor vXY and for the complex LY/S and where the second and fifth horizontal

isomorphisms are the ones in Proposition 2.14 for the functor vXZ and for the complex LZ/S .

From the exactness of the two columns it follows that

Exti+1
X (v∗XYCone(mYZ),m∗XJ ) // Exti+1

Y (Cone(mYZ),m∗YJ )

is an isomorphism as well for every i ∈ Z. Consequently, the braid in the proposition is obtained

by applying the functor HomD(X )(−,m∗XJ ) to the above octohedron where all morphisms are

considered in D(X ).
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Notice that the isomorphisms in Proposition 2.14 do not hold a priori for the complex Cone(mYZ)

because it does not consist of free OY -modules in general. Therefore we have to argue as done

above.

From the commutativity and the exactness of the four sequences in the braid of Proposition

2.22 we immediately get a proof of the following plausible idea. Given a deformation ξZ of Z over

S ′ such that the obstruction in Ext2
Y(Cone(mYZ),m∗YJ ) vanishes, we may choose a deformation

ξY of Y over S ′ extending ξZ . Assuming further that the obstruction in Ext2
X (Cone(mXY),m∗XJ )

for finding a deformation ξX of X over S ′ extending ξY vanishes, we may choose such a deformation

ξX . Then the obstruction in Ext2
X (Cone(mXZ),m∗XJ ) for finding a deformation ξX of X over S ′

extending ξZ vanishes as well.

Remark 2.23. It follows that if we are only interested in extending a given deformation of the

subdiagram to a deformation of the diagram, then we may always assume that D is obtained from

C either by omitting exactly one level 0 ∈ ob(C) (and all morphisms from and to 0) or by omitting

exactly one morphism in C (such that D is a category).

The following section deals with the calculation of the obstruction group Ext2
X (Lh,m

∗
XJ )

found in Theorem 2.20 for many particular cases.
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3 Calculations of the obstruction group for particular cases

We keep the notations of General assumption 2.1. Assuming that the morphism a in Lemma 2.19

is a quasi-isomorphism, the obstruction group Ext2
X (Lh,m

∗
XJ ) for the problem of extending a

given deformation of Y to a deformation of X will be calculated more explicitly in this section for

some particular cases. Therefore we have to introduce several types of subdiagrams.

The first three subsections are kept rather abstract and explain the techniques necessary for

the simplification. We will apply these results to many concrete cases in the last two subsections.

Subsection 3.1 considers well-positioned subdiagrams, characterised by the property that each

morphism between two levels not belonging to the subdiagram must not factor through some level

of the subdiagram. Many subdiagrams possess this property, for example all subdiagrams such

that ob(D) = ob(C).

Subsection 3.2 explains the notion of a full subdiagram in which case D is a full subcategory

of C. Corollary 3.16 shows that if Y is a full and well-positioned subdiagram, then the obstruction

group is given by

Ext2
X (L∗h,m

∗
XJ )

where (L∗h)c = (Lh)c for all c ∈ ob(C)\ob(D), but (L∗h)d = 0 is the zero complex for all d ∈ ob(D).

After introducing the complementary subdiagram Y of a given subdiagram Y in Subsection

3.3, we will see in Corollary 3.26 that if Y is full and well-positioned, then the obstruction group

simplifies to

Ext2
Y(uLh,RG(m∗XJ ))

where u : X → Y is the forgetful functor and RG(m∗XJ ) is a certain complex of OY -modules.

Thus we see that the obstruction group is actually concentrated on the ringed topos Y instead of

the ringed topos X . Appendix B describes a procedure for finding certain injective resolutions of

modules on a diagram which are adequate to calculate RG(m∗XJ ) in many cases.

As already mentioned above, the next subsections consider concrete examples. Subsection 3.4

treats subdiagrams obtained by omitting a single level of the diagram and all morphisms from

and to this level. The obstruction group is then concentrated on the omitted ringed topos. The

other extreme is considered as well where the subdiagram is obtained from the diagram by keeping

all levels, but by omitting all morphisms except for the identities. We call this subdiagram the

discrete subdiagram of X .
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3.1 Well-positioned subdiagrams

This subsection treats some technical results on well-positioned subdiagrams which we will need

in Subsections 3.2 and 3.3. We will see that if X is a diagram and if L is the cotangent complex

of a ring morphism of X such that Ld is an exact complex for each d ∈ ob(D), then we may

replace L in the derived category D(X ) by a complex L∗ such that L∗d is the zero complex for

each d ∈ ob(D). This will help us to calculate the obstruction group Ext2
X (Lh,m

∗
XJ ) of Theorem

2.20 more explicitly in Subsection 3.3.

Definition 3.1. Let X be a diagram. A subdiagram Y of X is called well-positioned (with respect

to X ) if each α ∈ HomC(c1, c2) between objects c1, c2 ∈ ob(C) \ ob(D) does not factor through

some object d ∈ ob(D), i.e., for each α ∈ HomC(c1, c2) such that c1, c2 ∈ ob(C) \ ob(D), there is

no triangle

c1
α //

��@@@@@@@@ c2

d

??~~~~~~~~

in C such that d ∈ ob(D).

Example 3.2. Consider the example

diagram in RTop/S subdiagram 1 in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X1

X0

f
>>||||||||

X2

subdiagram 2 in RTop/S subdiagram 3 in RTop/S

X0
h // X2

X1

with no other morphisms involved except for the identities. Then subdiagram 1 which we have

already considered in Example 2.18 is well-positioned since ob(C) \ ob(D) is the empty set. Sub-

diagram 2 is also well-positioned but subdiagram 3 is not well-positioned because h : X0 → X2

factors through X1.

Now let Y be a well-positioned subdiagram of X and let A → B a morphism of sheaves of

rings of X . By Corollary A.3 the cotangent complex L of A→ B is given by the collection of all

cotangent complexes Lc = LBc/Ac of the ring morphisms Ac → Bc of Xc for c ∈ ob(C) together

with, for α ∈ HomC(c1, c2), the natural morphisms

nα : f−1
α Lc1 ⊗f−1

α Bc1
Bc2 → Lc2

of complexes of Bc2 -modules. We will construct two complexes of B-modules L′ and L∗ and two

morphisms

p : L→ L′ and q : L∗ → L′
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of complexes of B-modules such that L∗d is the zero complex for each d ∈ ob(D). The construction

of L′ and p : L→ L′ is very similar to the construction of L∗ and q : L∗ → L′, respectively.

Definition 3.3. Let L be the cotangent complex of a ring morphism A→ B in X . For c ∈ ob(C)

let

L′c =


Lc if c ∈ ob(C) \ ob(D)

Lc if c ∈ ob(D) and HomC(c′, c) is empty for every c′ ∈ ob(C) \ ob(D)

0 else

and for α ∈ HomC(c1, c2) let

(
f−1
α L′c1 ⊗f−1

α Bc1
Bc2

n′α−−→ L′c2
)

=


0→ L′c2 if L′c1 = 0

f−1
α L′c1 ⊗f−1

α Bc1
Bc2 → 0 if L′c2 = 0

f−1
α Lc1 ⊗f−1

α Bc1
Bc2

nα−−→ Lc2 else.

Remark 3.4. Let Y be a well-positioned subdiagram of X . Let c1 ∈ ob(D) such that HomC(c′, c1)

is nonempty for some c′ ∈ ob(C)\ob(D). By definition we have L′c1 = 0. Now let α ∈ HomC(c1, c2).

If c2 ∈ ob(C) \ ob(D) then we have a factorization c′ → c1
α−→ c2 between two objects not in ob(D)

through the object c1 ∈ ob(D). But since Y is well-positioned, we must have c2 ∈ ob(D) and the

composition c′ → c1
α−→ c2 shows that L′c2 = 0.

Lemma 3.5. Let Y be a well-positioned subdiagram of X . The collection of all L′c for c ∈ ob(C)

together with all morphisms

n′α : f−1
α L′c1 ⊗f−1

α Bc1
Bc2 → L′c2

of complexes of Bc2-modules for α ∈ HomC(c1, c2) defines a complex L′ of B-modules. There is a

natural morphism

p : L→ L′

of complexes of B-modules.

Proof. Let c1
α→ c2

β→ c3 be morphisms in C. We have to show that the morphisms

f−1
βαL

′
c1 ⊗f−1

βαBc1
Bc3

n′βα−−→ L′c3

and

f−1
βαL

′
c1 ⊗f−1

βαBc1
f−1
β Bc2 ⊗f−1

β Bc2
Bc3

(
f−1
β n′α⊗id

)
−−−−−−−−→ f−1

β L′c2 ⊗f−1
β Bc2

Bc3
n′β−−→ L′c3

are equal.

If c1 ∈ ob(D) and if HomC(c′, c1) is nonempty for some c′ ∈ ob(C) \ ob(D), we have L′c1 = 0

and the above morphisms agree since they have the zero complex as source.

If L′c1 = Lc1 , we have to examine L′c2 .

If c2 ∈ ob(D) and if HomC(c′, c2) is nonempty for some c′ ∈ ob(C) \ ob(D), we have L′c2 = 0.

By Remark 3.4 it follows L′c3 = 0. Thus the above morphisms are equal since they have the zero

complex as target.

If L′c2 = Lc2 , we have to examine L′c3 .
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If L′c3 = 0, the above morphisms are equal since they have the zero complex as target.

If L′c3 = Lc3 , then by definition the above morphisms are the ones belonging to L. Since L is

a well-defined complex of B-modules, the above morphisms are equal as well.

Now for c ∈ ob(C) we define

(
pc : Lc → L′c

)
=


Lc

id−→ Lc if c ∈ ob(C) \ ob(D)

Lc
id−→ Lc if c ∈ ob(D) and HomC(c′, c) is empty for every c′ ∈ ob(C) \ ob(D)

Lc → 0 else.

For each α ∈ HomC(c1, c2) the square

f−1
α Lc1 ⊗f−1

α Bc1
Bc2

nα //

f−1
α pc1⊗id

��

Lc2

pc2

��
f−1
α L′c1 ⊗f−1

α Bc1
Bc2

n′α // L′c2

is commutative as follows again by a distinction of cases.

If c2 ∈ ob(D) and if HomC(c′, c2) is nonempty for some c′ ∈ ob(C) \ ob(D), we have L′c2 = 0

and the above square is commutative since it has the zero complex as target.

If L′c2 = Lc2 and thus pc2 = id, we have to examine L′c1 .

If c1 ∈ ob(D) and if HomC(c′, c1) is nonempty for some c′ ∈ ob(C) \ ob(D), we have L′c1 = 0.

By Remark 3.4 it follows L′c2 = 0. Thus the above square is commutative since it has the zero

complex as target.

If L′c1 = Lc1 , we have pc1 = id and n′α = nα. It follows that the above square is commutative

as well.

Definition 3.6. Let L be the cotangent complex of a ring morphism A→ B in X . For c ∈ ob(C)

let

L∗c =

Lc if c ∈ ob(C) \ ob(D)

0 else

and for α ∈ HomC(c1, c2) let

(
f−1
α L∗c1 ⊗f−1

α Bc1
Bc2

n∗α−−→ L∗c2
)

=


0→ L∗c2 if L∗c1 = 0

f−1
α L∗c1 ⊗f−1

α Bc1
Bc2 → 0 if L∗c2 = 0

f−1
α Lc1 ⊗f−1

α Bc1
Bc2

nα−−→ Lc2 else.

Lemma 3.7. Let Y be a well-positioned subdiagram of X . The collection of all L∗c for c ∈ ob(C)

together with all morphisms

n∗α : f−1
α L∗c1 ⊗f−1

α Bc1
Bc2 → L∗c2

of complexes of Bc2-modules for α ∈ HomC(c1, c2) defines a complex L∗ of B-modules. There is a

natural morphism

q : L∗ → L′

of complexes of B-modules.
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Proof. Let c1
α→ c2

β→ c3 be morphisms in C. We have to show that the morphisms

f−1
βαL

∗
c1 ⊗f−1

βαBc1
Bc3

n∗βα−−→ L∗c3

and

f−1
βαL

∗
c1 ⊗f−1

βαBc1
f−1
β Bc2 ⊗f−1

β Bc2
Bc3

(
f−1
β n∗α⊗id

)
−−−−−−−−→ f−1

β L∗c2 ⊗f−1
β Bc2

Bc3
n∗β−−→ L∗c3

are equal.

If c1 ∈ ob(D), we have L∗c1 = 0 and the above morphisms agree since they have the zero

complex as source.

If c1 ∈ ob(C) \ ob(D), then L∗c1 = Lc1 and we have to examine L∗c2 .

If c2 ∈ ob(D), we have L∗c2 = 0. Assume c3 ∈ ob(C) \ ob(D). Then c1
α→ c2

β→ c3 is a

factorization between the objects c1, c3 ∈ ob(C) \ ob(D) through the object c2 ∈ ob(D). But since

Y is well-positioned we must have c3 ∈ ob(D), hence L∗c3 = 0. Thus the above morphisms are

equal since they have the zero complex as target.

If c2 ∈ ob(C) \ ob(D), then L∗c2 = Lc2 and we have to examine L∗c3 .

If c3 ∈ ob(D), we have L∗c3 = 0 and the above morphisms are equal since they have the zero

complex as target.

If c3 ∈ ob(C) \ ob(D), then L∗c3 = Lc3 . By definition the above morphisms are the ones

belonging to L. Since L is a well-defined complex of B-modules, the above morphisms are equal

as well.

Now for c ∈ ob(C) we define

(
qc : L∗c → L′c

)
=

Lc
id−→ Lc if c ∈ ob(C) \ ob(D)

0→ L′c else.

For each α ∈ HomC(c1, c2) the square

f−1
α L∗c1 ⊗f−1

α Bc1
Bc2

n∗α //

f−1
α qc1⊗id

��

L∗c2

qc2

��
f−1
α L′c1 ⊗f−1

α Bc1
Bc2

n′α // L′c2

is commutative as follows again by a distinction of cases.

If c2 ∈ ob(D) and if HomC(c′, c2) is nonempty for some c′ ∈ ob(C) \ ob(D), we have L′c2 = 0

and the above square is commutative since it has the zero complex as target.

If c2 ∈ ob(C) \ ob(D), then L∗c2 = L′c2 = Lc2 and qc2 = id. We have to examine c1.

If c1 ∈ ob(D) and if HomC(c′, c1) is nonempty for some c′ ∈ ob(C) \ ob(D), we have L′c1 = 0.

By Remark 3.4 it follows L′c2 = 0. Thus the above square is commutative since it has the zero

complex as target.

If c1 ∈ ob(C) \ ob(D), then L∗c1 = L′c1 = Lc1 and qc1 = id and n∗α = n′α = nα. It follows that

the above square is commutative as well.
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Remark 3.8. Let Y be a well-positioned subdiagram of X . Then the above constructions are

in particular valid for the cotangent complex Lh of the ring morphism h : u−1OY → OX in

Proposition 2.16. Thus there are complexes of OX -modules L′h and L∗h and morphisms

p : Lh → L′h and q : L∗h → L′h

of complexes of OX -modules by Lemma 3.5 and Lemma 3.7, respectively, such that (L∗h)d is the

zero complex for each d ∈ ob(D). We will need these morphisms in Proposition 3.15 where they

are quasi-isomorphisms.

Example 3.9. Consider the example

diagram in RTop/S subdiagram in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X0
h // X2

with no other morphisms involved except for the identities and let L be the cotangent complex of

θX : m−1
X OS → OX , denoted

L =
(
LX0 , LX1 , LX2 , f

∗LX1 → LX0 , g
∗LX2 → LX1 , h

∗LX2 → LX0

)
where LXj is the cotangent complex of θj : t−1

j OS → OXj . Then Y is a well-positioned subdiagram

of X as we have seen in Example 3.2 and the complexes of OX -modules L′ and L∗ are given by

L′ =
(

0 , LX1
, LX2

, f∗LX1
→ 0 , g∗LX2

→ LX1
, h∗LX2

→ 0
)

and

L∗ =
(

0 , LX1
, 0 , f∗LX1

→ 0 , g∗ 0 → LX1
, h∗ 0 → 0

)
,

respectively. The morphisms of OX -modules p = (p0, p1, p2) : L→ L′ and q = (q0, q1, q2) : L∗ → L′

are given by

L =
(
LX0

, LX1
, LX2

, f∗LX1
→ LX0

, g∗LX2
→ LX1

, h∗LX2
→ LX0

)
p=(0,id,id)

��
L′ =

(
0 , LX1

, LX2
, f∗LX1

→ 0 , g∗LX2
→ LX1

, h∗LX2
→ 0

)

L∗ =
(

0 , LX1
, 0 , f∗LX1

→ 0 , g∗ 0 → LX1
, h∗ 0 → 0

)
.

q=(0,id,0)

OO

Notice in particular that (0, id, 0) : L → L∗ is no well-defined morphism of complexes of

OX -modules because

g∗LX2

g∗0

��

// LX1

id

��
g∗0 // LX1
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is not commutative. Similarly, (0, id, 0) : L∗ → L is no well-defined morphism of complexes of

OX -modules either because

f∗LX1

f∗id

��

// 0

0

��
f∗LX1

// LX0

is not commutative. This example shows that in general there is neither a morphism L→ L∗ nor

a morphism L∗ → L of complexes of OX -modules, even if Y is well-positioned.

Example 3.10. Consider the example

diagram in RTop/S subdiagram in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X1

with no other morphisms involved except for the identities and let again

L =
(
LX0 , LX1 , LX2 , f

∗LX1 → LX0 , g
∗LX2 → LX1 , h

∗LX2 → LX0

)
be the cotangent complex of θX : m−1

X OS → OX . This time Y is not a well-positioned subdiagram

of X as pointed out in Example 3.2. By definition we have

L∗ = L′ =
(
LX0

, 0, LX2
, f∗0

0→ LX0
, g∗LX2

0→ 0, h∗LX2
→ LX0

)
which is not a well-defined complex of OX -modules since h∗LX2 → LX0 is not the composition

f∗g∗LX2

f∗0−−→ f∗0
0−→ LX0 .
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3.2 Full subdiagrams

We will see that if Y is a full and well-positioned subdiagram of X , then the cotangent complex

Lh of the ring morphism h in Proposition 2.16 may be replaced in D(X ) by the complex L∗h as

defined in Lemma 3.7. The replacement of Lh by L∗h will facilitate the calculation of the obstruction

group Ext2
X (Lh,m

∗
XJ ) as pointed out in Proposition 3.25 if the morphism a in Lemma 2.19 is a

quasi-isomorphism.

Definition 3.11. Let D be a full subcategory of C, i.e., HomD(d1, d2) = HomC(d1, d2) for any

objects d1, d2 of D. Then we call Y a full subdiagram of X .

If D is obtained from C by omitting exactly one object 0 ∈ ob(C) and all morphisms from and

to 0, then Y is a full subdiagram of X . Notice that this is one of the two types of subdiagrams

in Remark 2.23 we have to consider if we want to extend a given deformation of an arbitrary

subdiagram “step by step” to a deformation of the given diagram, whence it is important to

understand the resulting obstruction group.

Example 3.12. Consider the diagram and subdiagrams

diagram in RTop/S subdiagram 1 in RTop/S

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

X1

X0

f
>>||||||||

X2

subdiagram 2 in RTop/S subdiagram 3 in RTop/S

X0
h // X2

X1

of Example 3.2 with no other morphisms involved except for the identities. Then subdiagram 1

which we have already considered in Example 2.18 is not a full subdiagram because the morphism

g does not occur between the ringed topoi X1 and X2. Subdiagram 2 and Subdiagram 3 are full

subdiagrams.

Lemma 3.13. Let Y be a full subdiagram of X . Then

(u−1OY)d = OXd

for every d ∈ ob(D). Furthermore, if d1, d2 ∈ ob(D) and α ∈ HomC(d1, d2) = HomD(d1, d2), then

the morphism of t−1
d2
OS-algebras

(u−1OY)α : f−1
α OXd1

→ OXd2

in Definition 2.7 is the ring morphism θα : f−1
α OXd1

→ OXd2
of fα : Xd2

→ Xd1
.

Proof. Since D is a full subcategory of C, each
(
γ : d′ → d

)
∈ ob(d) is an element of HomD(d′, d).

In particular, we have γ ∈ Homd

(
(γ : d′ → d), (id : d→ d)

)
and so the ring morphism

θγ : f−1
γ OXd′ → OXd
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belongs to the system of all f−1
γ OXd′ defined by d. It follows that

(u−1OY)d = lim−→
γ∈ob(d)

f−1
γ OXd′ = OXd

because OXd is the final object in the system of all f−1
γ OXd′ defined by d.

Now if d1, d2 ∈ ob(D) and α ∈ HomC(d1, d2) = HomD(d1, d2), then Diagram (2.1) on page 22

is given by

f−1
α f−1

γ OXd′
id //

f−1
α θγ

��

f−1
α f−1

γ OXd′

f−1
α θγ

��

id // f−1
α f−1

γ OXd′

θαγ

��
f−1
α OXd1

id // f−1
α OXd1

θα // OXd2

and is commutative for every
(
γ : d′ → d1

)
∈ ob(d1). Since (u−1OY)α is the composition of the

two lower horizontal morphisms by Definition 2.7 we see that the morphism of t−1
d2
OS -algebras

(u−1OY)α : f−1
α OXd1

= f−1
α lim−→

γ∈ob(d1)

f−1
γ OXd′ → lim−→

δ∈ob(d2)

f−1
δ OXd′ = OXd2

is the ring morphism θα : f−1
α OXd1

→ OXd2
of fα : Xd2 → Xd1

Thus if Y is a full subdiagram of X , the morphism of m−1
X OS -algebras

h : u−1OY → OX

in Proposition 2.16 is given by the identity hd : OXd
id−→ OXd for d ∈ ob(D).

Lemma 3.14. Let Y be a full subdiagram of X and let Lh be the cotangent complex of the ring

morphism h : u−1OY → OX in Proposition 2.16. Then the cotangent complex (Lh)d is exact for

each d ∈ ob(D).

Proof. By Corollary A.3 the cotangent complex Lh is given by the collection of all cotangent

complexes of hc : (u−1OY)c → OXc for c ∈ ob(C). But hd is the identity for d ∈ ob(D) and the

cotangent complex of the identity is exact.

Proposition 3.15. Let Y be a full and well-positioned subdiagram of X . Then the natural mor-

phisms of complexes of OX -modules

p : Lh → L′h and q : L∗h → L′h

of Remark 3.8 are quasi-isomorphisms. In particular, there is a natural isomorphism

Lh
p−→ L′h

q−1

−−→ L∗h

in the derived category D(X ) which yields, for each cochain complex M ∈ ob(Ch(X )) and each

i ∈ Z, a natural functorial isomorphism

ExtiX (Lh,M) ∼= ExtiX (L∗h,M)

of abelian groups.
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Proof. Let c ∈ ob(C). Remember that by definition we have

(
pc : (Lh)c → (L′h)c

)
=



(Lh)c
id−→ (Lh)c if c ∈ ob(C) \ ob(D)

(Lh)c
id−→ (Lh)c if c ∈ ob(D) and HomC(c′, c) is empty

for every c′ ∈ ob(C) \ ob(D)

(Lh)c → 0 else

and (
qc : (L∗h)c → (L′h)c

)
=

(Lh)c
id−→ (Lh)c if c ∈ ob(C) \ ob(D)

0→ (L′h)c else.

If c ∈ ob(C) \ ob(D), then pc and qc are the identity and in particular quasi-isomorphisms of

complexes of OXc-modules.

If c ∈ ob(D), then since Y is a full subdiagram it follows that (Lh)c is an exact complex of

OXc-modules by Lemma 3.14.

If (L′h)c = (Lh)c, then pc : (Lh)c → (Lh)c is the identity and qc : 0 → (Lh)c is a quasi-

isomorphism.

If (L′h)c = 0, then pc : (Lh)c → 0 is a quasi-isomorphim and qc : 0→ 0 is the identity.

Corollary 3.16. In the situation of General assumption 2.1, let Y be a full and well-positioned

subdiagram of X . Assume that the morphism a in Lemma 2.19 is a quasi-isomorphism. Given a

deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext2
X (L∗h,m

∗
XJ )

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ.

Proof. By Theorem 2.20 we know that Ext2
X (Lh,m

∗
XJ ) is an obstruction group and by Proposition

3.15 there is a natural isomorphism of abelian groups Ext2
X (Lh,m

∗
XJ ) ∼= Ext2

X (L∗h,m
∗
XJ ).

Since (L∗h)d is the zero complex in D(Xd) for each d ∈ ob(D), we may calculate

RHom·X (L∗h,m
∗
XJ ) better than RHom·X (Lh,m

∗
XJ ). Thus using the natural isomorphism of

groups

Ext2
X (L∗h,m

∗
XJ ) ∼= H2

(
RHom·X (L∗h,m

∗
XJ )

)
by [Wei94, Theorem 10.7.4], it is possible to calculate the obstruction group more explicitly in the

case of full and well-positioned subdiagrams. This is the subject of the next subsection.
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3.3 Complementary subdiagrams

In order to calculate the obstruction group Ext2
X (L∗h,m

∗
XJ ) in Corollary 3.16, we will introduce

the notion of complementary subdiagrams.

Definition 3.17. Let D be a subcategory of C such that ob(D) 6= ob(C) and let D be the full

subcategory of C with objects ob(C)\ob(D). Let Y be the ringed topos associated to the restriction

of I : Cop → RTop/S to D
op

. Then we call Y the complementary subdiagram of Y.

Notice that if Y is a full subdiagram of X and if Y is the complementary subdiagram of Y,

then Y is the complementary subdiagram of Y by definition.

Example 3.18. Let f : X0 → X1 be a morphism of ringed topoi over S and let X be the associated

ringed topos. Then the subdiagrams X0 and X1 of X are complementary to each other.

We denote the objects F of X in the form F = (F0,F1, f
−1F1 → F0) where Fj is a sheaf of

Xj . Letting Y be the full and well-positioned subdiagram X0, we have

u−1OY = (OX0 , t
−1
1 OS , f−1t−1

1 OS = t−1
0 OS

θf−→ OX0)

by definition, hence condition 2 in Theorem 2.20 is fulfilled. L∗h is given by

L∗h = (0, LX1/S , f
∗LX1/S → 0).

To calculate Ext2
X (L∗h,m

∗
XJ ) we may first consider HomCh(X )(L

∗
h,m

∗
XJ ). By definition this

group consists of all morphisms of complexes of OX0 -modules a : 0 → t∗0J and all morphisms of

complexes of OX1
-modules b : LX1/S → t∗1J such that

f∗LX1/S //

f∗b

��

0

a

��
f∗t∗1J

id // t∗0J

is commutative. Hence if K is the kernel of the morphism of complexes of OX1
-modules

t∗1J → f∗t
∗
0J corresponding to f∗t∗1J

id−→ t∗0J by adjunction, it follows that

HomCh(X )(L
∗
h,m

∗
XJ ) ∼= HomCh(X1)(LX1/S ,K).

We would like to have a similar isomorphism

Ext2
X (L∗h,m

∗
XJ ) ∼= Ext2

X1
(LX1/S , K̃)

for the obstruction group and we will see in Corollary 3.26 at the end of this section that there

is indeed such an isomorphism where K̃ is a certain complex of OX1-modules. Notice that X0 is

the subdiagram considered here and the obstruction group is concentrated on the complementary

subdiagram X1. Notice further that uL∗h = 0 where u : OX -mod → OX0
-mod is the forgetful

functor.

We come back to the general case. Let Y be a subdiagram of X with complementary subdia-

gram Y, let

u : OX -mod→ OY -mod and u : OX -mod→ OY -mod
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be the forgetful functors from the category of OX -modules to the category of OY -modules and to

the category of OY -modules, respectively. Let further L ∈ ob(OX -mod) such that uL = 0.

We will construct a functor G : OX -mod → OY -mod in Lemma 3.23, sending a module

M ∈ ob(OX -mod) to a certain module M ∈ ob(OY -mod), and an isomorphism

HomOX -mod(L,M) ∼= HomOY -mod(uL,M)

of abelian groups.

Fix c ∈ ob(D). Let γ ∈ HomC(c, d) such that d ∈ ob(D). The morphism of OXd -modules

Mγ : f∗γMc →Md

corresponds by adjunction to a morphism of OXc-modules

Mad
γ : Mc → fγ∗Md.

Definition 3.19. Let M ∈ ob(OX -mod) and c ∈ ob(D). We define

M c =
⋂

γ∈HomC(c,d),

d∈ob(D)

ker
(
Mad
γ : Mc → fγ∗Md

)
⊆Mc

to be the OXc-module obtained by intersecting in Mc all kernels of Mad
γ for γ ∈ HomC(c, d) such

that d ∈ ob(D). This is a submodule of Mc.

Notice that if c ∈ ob(D) and if HomC(c, d) is empty for every d ∈ ob(D), then M c = Mc.

Remark 3.20. If c ∈ ob(D) and d1, d2 ∈ ob(D) and if there is a commutative triangle

d1
χ // d2

c

γ2

??~~~~~~~
γ1

__@@@@@@@

in C, then the triangle

fγ1∗Md1

fγ1∗M
ad
χ // fγ1∗fχ∗Md2

= fγ2∗Md2

Mc

Mad
γ1

ddHHHHHHHHH Mad
γ2

44jjjjjjjjjjjjjjjjjj

is commutative and the kernel of Mad
γ1

is contained in the kernel of Mad
γ2

. Thus in the definition

of M c we may restrict to those γ ∈ HomC(c, d) with d ∈ ob(D) which do not factor through some

object d′ ∈ ob(D) except for the trivial factorization c
γ−→ d

id−→ d.

Now let c1, c2 ∈ ob(D) and α ∈ HomD(c1, c2). In order to get a well-defined module

M ∈ ob(OY -mod), we have to define a morphism

Mα : f∗αM c1 →M c2

of OXc2 -modules. By adjunction we may equivalently define a morphism

M
ad

α : M c1 → fα∗M c2
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of OXc1 -modules. Since fα : Xc2 → Xc1 is a morphism of ringed topoi, fα∗ : Xc2 → Xc1 commutes

with arbitrary limits. In particular the functor fα∗ : OXc2 -mod → OXc1 -mod, again denoted fα∗

by abuse of notation, is left exact. Consequently, if 0 → M ′ → M → M ′′ → 0 is a short

exact sequence in OXc2 -mod, then 0 → fα∗M
′ → fα∗M → fα∗M

′′ is exact in OXc1 -mod by

[Sta13, Lemma 11.5.1.]. It follows that we have naturally

fα∗M c2 = fα∗
⋂

δ∈HomC(c2,d),

d∈ob(D)

ker
(
Mad
δ : Mc2 → fδ∗Md

)
=

⋂
δ∈HomC(c2,d),

d∈ob(D)

fα∗ker
(
Mad
δ : Mc2 → fδ∗Md

)
(3.1)

=
⋂

δ∈HomC(c2,d),

d∈ob(D)

ker
(
fα∗M

ad
δ : fα∗Mc2 → fα∗fδ∗Md

)
⊆ fα∗Mc2 .

So to define a morphism M
ad

α from

M c1 =
⋂

γ∈HomC(c1,d),

d∈ob(D)

ker
(
Mad
γ : Mc1 → fγ∗Md

)

to fα∗M c2 , we take an element x of M c1 . Let y be the image of x under Mad
α : Mc1 → fα∗Mc2 .

Let δ ∈ HomC(c2, d) with d ∈ ob(D) and set γ = δα. The commutativity of

Mc1

Mad
γ //

Mad
α ##HHHHHHHHH

fγ∗Md = fα∗fδ∗Md

fα∗Mc2

fα∗M
ad
δ

44jjjjjjjjjjjjjjjj

shows that y is sent to zero under fα∗M
ad
δ : fα∗Mc2 → fα∗fδ∗Md because x is sent to zero under

Mad
γ : Mc1 → fγ∗Md. Since this is true for all δ ∈ HomC(c2, d) with d ∈ ob(D) we see that

y ∈ fα∗Mc2 is actually an element of the submodule fα∗M c2 of fα∗Mc2 by Equation (3.1).

Definition 3.21. Let M ∈ ob(OX -mod), let c1, c2 ∈ ob(D) and let α ∈ HomD(c1, c2). We define

M
ad

α : M c1 → fα∗M c2

to be the restriction of Mad
α : Mc1 → fα∗Mc2 to the submodule M c1 of Mc1 .

Lemma 3.22. Let M ∈ ob(OX -mod). The collection of all OXc-modules

M c =
⋂

γ∈HomC(c,d),

d∈ob(D)

ker
(
Mad
γ : Mc → fγ∗Md

)
⊆Mc

for c ∈ ob(D) together with all morphisms of OXc1 -modules

M
ad

α : M c1 → fα∗M c2

for α ∈ HomD(c1, c2) defines a module M ∈ ob(OY -mod).
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Proof. Let c1
α→ c2

β→ c3 be a composition in D. The commutativity of

M c1

M
ad
α ##GGGGGGGGG

M
ad
βα // fβα∗M c3 = fα∗fβ∗M c3

fα∗M c2

fα∗M
ad
β

44jjjjjjjjjjjjjjjjj

follows from the commutativity of

Mc1

Mad
α ##HHHHHHHHH

Mad
βα // fβα∗Mc3 = fα∗fβ∗Mc3

fα∗Mc2

fα∗M
ad
β

44iiiiiiiiiiiiiiiii

because

M
ad

α : M c1 → fα∗M c2 , M
ad

β : M c2 → fβ∗M c3 and M
ad

βα : M c1 → fβα∗M c3

are by definition the restrictions of

Mad
α : Mc1 → fα∗Mc2 , Mad

β : Mc2 → fβ∗Mc3 and Mad
βα : Mc1 → fβα∗Mc3

to the submodules M c1 , M c2 and M c3 of Mc1 , Mc2 and Mc3 , respectively.

Now let ν : M1 →M2 be a morphism in OX -mod. We will describe a morphism ν : M1 →M2

in OY -mod. Let c ∈ ob(D) and let γ ∈ HomC(c, d) with d ∈ ob(D). Then the commutativity of

(M1)c
(M1)ad

γ //

νc

��

fγ∗(M1)d

fγ∗νd

��
(M2)c

(M2)ad
γ // fγ∗(M2)d

shows that the restriction of νc : (M1)c → (M2)c to the submodule (M1)c defines a morphism of

OXc-modules νc : (M1)c → (M2)c.

If α ∈ HomD(c1, c2), then the commutativity of

(M1)c1
(M1)ad

α //

νc1

��

fα∗(M1)c2

fα∗νc2
��

(M2)c1
(M2)ad

α // fα∗(M2)c2

implies by restriction the commutativity of

(M1)c1
(M1)ad

α //

νc1

��

fα∗(M1)c2

fα∗νc2
��

(M2)c1
(M2)ad

α // fα∗(M2)c2

which shows that the collection of all νc : (M1)c → (M2)c for c ∈ ob(D) defines a morphism

ν : M1 →M2 in OY -mod.
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Lemma 3.23. Let Y be a subdiagram of X with complementary subdiagram Y. The association

M 7→M ,
(
ν : M1 →M2

)
7→
(
ν : M1 →M2

)
defines an additive, left exact functor

G : OX -mod→ OY -mod.

In particular, there is an induced additive functor G : K(X ) → K(Y), denoted again G by abuse

of notation.

Proof. It follows by construction that the identity M → M is sent to the identity M → M and

that a composition M1
ν→ M2

µ→ M3 in OX -mod is sent to the composition M1
ν→ M2

µ→ M3 in

OY -mod. Thus the association defines a functor

G : OX -mod→ OY -mod.

Since all operations in the definition of M are compatible with addition, it follows that the maps

HomOX -mod(M1,M2)→ HomOY -mod(M1,M2)

are group homomorphisms for every M1,M2 ∈ ob(OX -mod), i.e., G is additive. It remains to

show that G is left exact. Let

0→M1
ν→M2

µ→M3 → 0

be an exact sequence in OX -mod. We show that the sequence

0→M1
ν−→M2

µ−→M3

is exact in OY -mod. Since M1
ν−→ M2 is the restriction of the injective morphism M1

ν−→ M2, it

follows that ν is injective as well. Furthermore, since G is a functor and since µ ◦ ν is the zero

morphism, we have that µ◦ν is zero as well, thus it is left to show that the kernel of µ is contained

in the image of ν.

So let y ∈M2 such that µ(y) = 0. From the commutativity of

0 // M1
ν //

i1

��

M2

i2

��

µ // M3

i3

��
0 // M1

ν // M2
µ // M3

whose vertical morphisms are the inclusions and from the exactness of the lower row, we get an

element x ∈ M1 such that ν(x) = i2(y). Let c ∈ ob(D). Let γ ∈ HomC(c, d) with d ∈ ob(D).

Since yc is sent to zero under (M2)ad
γ : (M2)c → fγ∗(M2)d it follows from the commutativity of

0 // (M1)c
νc //

(M1)ad
γ

��

(M2)c
µc //

(M2)ad
γ

��

(M3)c

(M3)ad
γ

��
0 // fγ∗(M1)d

fγ∗νd // fγ∗(M2)d
fγ∗µd // fγ∗(M3)d
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and the injectivity of fγ∗νd that xc is sent to zero under (M1)ad
γ : (M1)c → fγ∗(M1)d as well. This

shows that x ∈M1 and ν(x) = y.

Now G : OX -mod → OY -mod induces a functor Ch(X ) → Ch(Y) and since it preserves

homotopy equivalences, there is an induced functor G : K(X )→ K(Y).

Now let L ∈ ob(OX -mod) such that uL = 0 and let M ∈ ob(OX -mod). We will construct a

natural isomorphism

HomOX -mod(L,M) ∼= HomOY -mod(uL,M)

of abelian groups, functorial in M .

Let ψ ∈ HomOX -mod(L,M), given by a collection of elements ψc ∈ HomOXc -mod(Lc,Mc) for

c ∈ ob(C). If c ∈ ob(D), we have Lc = 0 since uL = 0, thus ψc : 0→Mc is the zero morphism. If

c ∈ ob(D) and if γ ∈ HomC(c, d) with d ∈ ob(D), there is a commutative square

Lc
Lad
γ //

ψc

��

fγ∗Ld = 0

fγ∗ψd

��
Mc

Mad
γ // fγ∗Md

of OXc-modules. It follows that ψc : Lc → Mc factors through the kernel of Mad
γ for each

γ ∈ HomC(c, d) with d ∈ ob(D), i.e., ψc : Lc → Mc factors through the submodule M c of Mc. If

ic : M c →Mc is the inclusion, then there is a morphism of OXc-modules ψc : Lc →M c such that

Lc
ψc //

ψc   BBBBBBBB Mc

M c

ic

=={{{{{{{{

is commutative.

If α ∈ HomD(c1, c2), then the commutativity of

Lc1
Lad
α //

ψc1
��

fα∗Lc2

fα∗ψc2
��

Mc1

Mad
α // fα∗Mc2

implies the commutativity of

Lc1
Lad
α //

ψc1
��

fα∗Lc2

fα∗ψc2
��

M c1

M
ad
α // fα∗M c2

showing that the collection of all ψc : Lc →M c for c ∈ ob(D) defines an element

ψ ∈ HomOY -mod(uL,M).
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Lemma 3.24. Let Y be a subdiagram of X with complementary subdiagram Y, let L ∈ ob(OX -mod)

such that uL = 0. Let further M ∈ ob(OX -mod). Then the map

µM : HomOX -mod(L,M)→ HomOY -mod(uL,M), ψ 7→ ψ

is an isomorphism of abelian groups. Furthermore, if ν : M1 → M2 is a morphism in OX -mod,

then

HomOX -mod(L,M1)
µM1 //

HomOX -mod(L,ν)

��

HomOY -mod(uL,M1)

HomOY -mod(uL,ν)

��
HomOX -mod(L,M2)

µM2 // HomOY -mod(uL,M2)

(3.2)

is commutative.

Proof. By definition µM sends ψ to the collection of those ψc : Lc →Mc such that c ∈ ob(D) and

omits all irrelevant ψc : 0→Mc for c ∈ ob(D). Thus µM is an injective homomorphism of groups.

On the other hand, given χ ∈ HomOY -mod(uL,M), we take the composition ψc : Lc
χc−→M c

ic−→Mc

for c ∈ ob(D) and the zero morphisms ψc : 0→Mc for c ∈ ob(D) which together define a preimage

of χ under µM . Thus µM is surjective.

Since ν : M1 → M2 is obtained by restricting ν : M1 → M2 to the submodule M1 we see that

Square (3.2) is commutative.

Since u is the forgetful functor, µM is functorial in L for every M ∈ ob(OX -mod). It follows

that there is a natural isomorphism

HomCh(X )(L,M) ∼= HomCh(Y)(uL,M)

of abelian groups, functorial in M ∈ ob(Ch(X )) and L ∈ ob(Ch(X )) whenever uL = 0 in Ch(Y).

For fixed L ∈ ob(Ch(X )) such that uL = 0 in Ch(Y), there are natural isomorphisms

Hom·X (L,M) ∼= Hom·Y(uL,M)

of complexes of abelian groups, functorial in M , i.e., if Ab is the category of abelian groups, then

the diagram

K+(X )
G //

Hom·X (L,−)

##FFFFFFFFFFFFFFFFFF K+(Y)

Hom·Y(uL,−)

||xxxxxxxxxxxxxxxxxx

K(Ab)

is commutative up to natural isomorphism of functors where G : K+(X )→ K+(Y) is the functor

in Lemma 3.23.

Proposition 3.25. Let Y be a subdiagram of X with complementary subdiagram Y and let

u : Ch(X )→ Ch(Y) and u : Ch(X )→ Ch(Y)
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be the forgetful functors. Let L ∈ ob(Ch−(X )) be a bounded above cochain complex all of whose

components are free OX -modules such that uL = 0. Then there is a natural isomorphism of

functors

RHom·X (L,−) ∼= RHom·Y(uL,RG(−))

from D+(X ) to D(Ab). In particular, for each M ∈ ob(D+(X )) and i ∈ Z, there are natural

isomorphisms of abelian groups

ExtiX (L,M) ∼= ExtiY(uL,RG(M))

which are functorial in M .

Proof. We proceed similarly as in the proof of Proposition 2.14. By Theorem 1.9 there is a natural

transformation of functors

ζ : RHom·X (L,−)→ RHom·Y(uL,RG(−))

from D+(X ) to D(Ab). We take K = K+(Y) in the notations of Theorem 1.9. In order to

show that ζ is an isomorphism, it remains to show that each exact complex E of K+(Y) is

Hom·Y(uL,−)-acyclic, i.e., Hi
(
Hom·Y(uL,E)

)
= 0 for all i. But

Hi
(
Hom·Y(uL,E)

)
= HomK(Y)(uL,E[i])

which is zero because each morphism of complexes from a bounded above complex of free modules

to an exact complex is homotopic to the zero morphism.

Corollary 3.26. Under General assumption 2.1, let Y be a full and well-positioned subdiagram

of X with complementary subdiagram Y. Assume that the morphism a in Lemma 2.19 is a quasi-

isomorphism. Then given a deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext2
Y(uLh,RG(m∗XJ ))

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ.

Proof. By Corollary 3.16 there is an obstruction in Ext2
X (L∗h,m

∗
XJ ). The complex L∗h of Remark

3.8 satisfies the conditions of Proposition 3.25, furthermore, we have uL∗h = uLh by definition of

L∗h. It follows from Proposition 3.25 that there is a natural isomorphism

Ext2
X (L∗h,m

∗
XJ ) ∼= Ext2

Y(uLh,RG(m∗XJ ))

of abelian groups.

Hence for full and well-positioned subdiagrams Y such that the morphism a in Lemma 2.19 is a

quasi-isomorphism, the obstruction group actually lives on the smaller diagram Y, at the expense

of the complex of OY -modules RG(m∗XJ ) which is in general more difficult to handle then the

OX -module m∗XJ . Appendix B deals with the calculation of RG(m∗XJ ) by using certain injective

resolutions of m∗XJ . Corollary 3.36 will give an example where RG(m∗XJ ) may be calculated

explicitly.

Notice that we may not apply Proposition 3.25 to the complex Cone(m) in the obstruction

group in Theorem 2.13 because it does not consist of free OX -modules in general.
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3.4 Particular cases

Using injective resolutions as in Corollary B.4, we are able to calculate the complexes RG(m∗XJ )

of Corollary 3.26 for the following particular cases.

The first three subsections deal with subdiagrams obtained from the diagram by omitting

exactly one level. For example, if we consider the diagram

Y
g

��@@@@@@@

X

f
??~~~~~~~~ h=g◦f // Z,

we will deal with the subdiagrams obtained by omitting the target Z, the source X and the bridge

Y and their respective obstruction groups. The notions of target, source and bridge will be defined

in the subsections. Motivated by deformation theoretic considerations, we will distinguish between

cyclic and non-cyclic subdiagrams in Subsections 3.4.1 and 3.4.2.

Subsection 3.4.4 is devoted to another extreme case. If the subdiagram is obtained by keeping

all levels, but by omitting all morphisms except for the identities, we get the discrete subdiagram.

We will consider several diagrams and subdiagrams with more than 3 levels, amongst them for

example

diagram in RTop/S subdiagram 1 in RTop/S

X
h // Z

W

f

OO

j

>>~~~~~~~~~~~~~~~~ g // Y

i

OO X

W

f

OO

g // Y

subdiagram 2 in RTop/S subdiagram 3 in RTop/S

X
h // Z

Y

i

OO X Z

W Y

with no other morphisms except for the identities where j = h ◦ f = i ◦ g.
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3.4.1 Omitting a target

Definition 3.27. Let X be a diagram. A target of X is an element 0 ∈ ob(C) such that HomC(0, 0)

consists only of the identity and such that there are only morphisms from 0, i.e., HomC(c, 0) is

empty for c 6= 0. Equivalently, the corresponding level X0 has only morphisms of ringed topoi over

S from the other levels and the only morphism from X0 is the identity. By abuse of notation we

call X0 a target of X .

A target X0 of X may be visualized in RTop/S as

Xc2

((QQQQQQQQQQQQQQQQ Xc1

!!CCCCCCCC

Xc3 // X0.

Xc4

66mmmmmmmmmmmmmmmm
. . .

=={{{{{{{{{

Proposition 3.28. Assume given the situation of General assumption 2.1. Let X0 be a target of X
and let D be the full subcategory of C with objects ob(C)\{0}. Then Y is a full and well-positioned

subdiagram of X with complementary subdiagram Y equal to X0 and condition 2 in Theorem 2.20

is fulfilled.

Let LX0/S be the cotangent complex of X0 over S and let

G : K(X )→ K(X0)

be the functor in Lemma 3.23. Given a deformation ξ of the subdiagram Y over S ′, there is an

obstruction

ω(ξ) ∈ Ext2
X0

(LX0/S ,RG(m∗XJ ))

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ.

Proof. Since D is a full subcategory of C it follows that Y is a full subdiagram of X . Furthermore,

Y is well-positioned in X since we have omitted a target of X and Y is the ringed topos X0 because

HomC(0, 0) = {id}.
As 0 is a target of X , the category 0 defined in Definition 2.3 is empty, whence

(u−1OY)0 = t−1
0 OS

by Remark 2.5. On the other hand we have (u−1OY)d = OXd for every d 6= 0 by Lemma 3.13. It

follows that condition 2 in Theorem 2.20 is satisfied.

By Corollary 3.26 there is an obstruction lying in Ext2
Y(uLh,RG(m∗XJ )). The ring morphism

h0 : (u−1OY)0 → OX0
is just θ0 : t−1

0 OS → OX0
, the ring morphism of t0 : X0 → S. Therefore we

have uLh = Lh0 = LX0/S an the obstruction lies in

Ext2
Y(uLh,RG(m∗XJ )) = Ext2

X0
(LX0/S ,RG(m∗XJ ))
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In general, we are able to control the cotangent complex LX0/S in practice since it is the

cotangent complex of the structure morphism t0 : X0 → S. But it is more difficult to control

RG(m∗XJ ). We will use injective resolutions as in Corollary B.4.

Let X0 be a target of a diagram X and let M be an OX -module. Then G(M) is the submodule

M0 =
⋂

γ∈HomC(0,d)
d 6=0

ker
(
Mad
γ : M0 → fγ∗Md

)
⊆M0

of M0 by Definition 3.19.

Notation 3.29. Let Γ be the set of those morphisms γ : 0 → d in C with d 6= 0 which do not

factor in C through some d′ ∈ ob(C) \ {0} except for the trivial factorization 0
γ−→ d

id−→ d.

By Remark 3.20 we may restrict to all morphisms in Γ when calculating M0, i.e., we have

M0 =
⋂
γ∈Γ

ker
(
Mad
γ : M0 → fγ∗Md

)
⊆M0.

For each c ∈ ob(C) choose an injection j0
c : Mc → J0

c to an injective OXc-module J0
c . Let I0 be

the injective OX -module consisting of the modules

I0
c =

⊕
δ∈HomC(c,c′),
c′∈ob(C)

fδ∗J
0
c′

as in Lemma B.2 and i0 : M → I0 the injection as in Proposition B.3. Let Q be the cokernel of

i0 : M → I0 and choose injections j1
c : Qc → J1

c to injective OXc-modules J1
c as in the proof of

Proposition B.3. Continuing this way, we get an injective resolution

0→M
i0−→ I0 i1−→ I1 i2−→ I2 i3−→ I3 → . . .

of M as in Corollary B.4. Now fix γ ∈ HomC(0, d) such that d 6= 0 and γ ∈ Γ. Then the chosen

injective resolution of M yields morphisms

prnγ : In0 =
⊕

δ∈HomC(0,c′),
c′∈ob(C)

fδ∗J
n
c′ →

⊕
ε∈HomC(d,c′),

c′∈ob(C)

fεγ∗J
n
c′
∼= fγ∗

( ⊕
ε∈HomC(d,c′),

c′∈ob(C)

fε∗J
n
c′

)
= fγ∗I

n
d

of OX0
-modules given by projecting whenever 0

δ−→ c′ factors through γ as 0
γ−→ d

ε−→ c′ and a

commutative diagram

0 // M0

Mγ

��

i00 // I0
0

i10 //

pr0
γ

��

I1
0

i20 //

pr1
γ

��

I2
0

//

pr2
γ

��

. . .

0 // fγ∗Md
fγ∗i

0
d // fγ∗I0

d

fγ∗i
1
d // fγ∗I1

d

fγ∗i
2
d // fγ∗I2

d
// . . .

of OX0
-modules. Now for a finite family of OX0

-modules (Bλ)λ∈Λ and OX0
-linear morphisms

cλ : A→ Bλ let

D(cλ) : A→
⊕
λ∈Λ

Bλ
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be the composition

A
diag−−→

⊕
λ∈Λ

A

⊕
λ∈Λ cλ−−−−−−→

⊕
λ∈Λ

Bλ , a 7→ (a, . . . , a) 7→
(
cλ(a)

)
λ∈Λ

.

Taking Λ = Γ, we get a commutative diagram

0 // M0

D(Mγ)

��

i00 // I0
0

i10 //

D(pr0
γ)

��

I1
0

i20 //

D(pr1
γ)

��

. . .

0 //
⊕

γ fγ∗Md

⊕
γ fγ∗i

0
d //

⊕
γ fγ∗I

0
d

⊕
γ fγ∗i

1
d //

⊕
γ fγ∗I

1
d

⊕
γ fγ∗i

2
d // . . .

whose first row is exact and whose second row is not exact in general. Let us exhibit the kernel

and the cokernel of

D(prnγ ) : In0 =
⊕

δ∈HomC(0,c′),
c′∈ob(C)

fδ∗J
n
c′ →

⊕
γ∈Γ,
γ : 0→d

⊕
ε∈HomC(d,c′),

c′∈ob(C)

fεγ∗J
n
c′
∼=

⊕
γ∈Γ,
γ : 0→d

fγ∗I
n
d .

Since each fδ∗J
n
c′ for δ ∈ HomC(0, c′) with c′ 6= 0 occurs somewhere among the fεγ∗J

n
c′ , we see

that the kernel of D(prnγ ) is just the direct summand belonging to the identity 0→ 0, i.e.,

ker(D(prnγ )) = Jn0 . (3.3)

For δ ∈ HomC(0, c′) with c′ 6= 0 let µ(δ) be the number of factorizations

0
δ //

γ
��======= c′

d

ε

??�������
(3.4)

in C such that d 6= 0 and γ : 0 → d does not factor in C through some d′ ∈ ob(C) \ {0} except

for the trivial factorization 0
γ−→ d

id−→ d, i.e., such that γ ∈ Γ. These are the relevant γ we have

restricted our attention to. Notice that µ(δ) ≥ 1 and that the given δ : 0→ c′ might have several

factorizations through the same γ : 0 → d, i.e., there might be different ε1, ε2 : d → c′ such that

ε1γ = δ = ε2γ. By construction µ(δ) is equal to the number of times the direct summand fεγ∗J
n
c′

occurs in
⊕

γ fγ∗I
n
d whenever δ = εγ. Notice that for each δ ∈ HomC(0, c′) with c′ 6= 0, the direct

summand fδ∗J
n
c′ always occurs with multiplicity one in In0 .

Lemma 3.30. The cokernel of D(prnγ ) is isomorphic to

⊕
δ∈HomC(0,c′)

c′ 6=0

µ(δ)−1⊕
j=1

fδ∗J
n
c′ .

In particular, D(prnγ ) is surjective if and only if µ(δ) = 1 for all δ ∈ HomC(0, c′) with c′ 6= 0.

Proof. For every δ ∈ HomC(0, c′) with c′ 6= 0, the restriction of D(prnγ ) to fδ∗J
n
c′ is given by

fδ∗J
n
c′

diag−−→
µ(δ)⊕
j=1

fδ∗J
n
c′ , x 7→ (x, . . . , x)

and has cokernel
µ(δ)−1⊕
j=1

fδ∗J
n
c′ .
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We have a commutative diagram

0

��

0

��

0

��
0 // M0

��

j00 |M0 // J0
0

i10|J0
0 //

��

J1
0

i20|J1
0 //

��

. . .

0 // M0

D(Mγ)

��

i00 // I0
0

i10 //

D(pr0
γ)

��

I1
0

i20 //

D(pr1
γ)

��

. . .

0 //
⊕

γ fγ∗Md

⊕
γ fγ∗i

0
d //

��

⊕
γ fγ∗I

0
d

⊕
γ fγ∗i

1
d //

��

⊕
γ fγ∗I

1
d

⊕
γ fγ∗i

2
d //

��

. . .

cok(D(Mγ)) //

��

cok(D(pr0
γ)) //

��

cok(D(pr1
γ)) //

��

. . .

0 0 0

(3.5)

of OX0
-modules all of whose columns are exact. The direct sums are taken over the index set Γ.

Furthermore, the second row

0→M0
i00−→ I0

0

i10−→ I1
0 → . . .

is exact because it is the part on the level 0 of the chosen injective resolution of M . Remember

that the second row is not an injective resolution of M0 since the In0 are no injective OX0
-modules

in general. Moreover, the first, third and forth row are not exact in general.

Since 0→M
i0−→ I0 i1−→ I1 → . . . is an injective resolution of M , we have

RG(M) =
(
J0

0

i10|J0
0−−−→ J1

0

i20|J1
0−−−→ J2

0

i30|J2
0−−−→ J3

0 −−−→ . . .
)
.

In order to calculate this complex, we distinguish between two cases. The case µ(δ) = 1 for every

δ ∈ HomC(0, c′) with c′ 6= 0 is particularly interesting.

Definition 3.31. Let X0 be a target of X . Then C is called non-cyclic (with respect to 0) if

every δ ∈ HomC(0, c′) with c′ 6= 0 has a unique factorization in C of the form 0
γ−→ d

ε−→ c′ where

d ∈ ob(C) \ {0} and γ ∈ Γ. The case ε = id is possible. Otherwise C is called cyclic (with respect

to 0). The diagram X is called non-cyclic (with respect to X0) if C is non-cyclic with respect to

0. Otherwise X is called cyclic (with respect to X0).

So X is non-cyclic if and only if µ(δ) = 1 for every δ ∈ HomC(0, c′) with c′ 6= 0.
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Example 3.32. Let C1, C2, C3 and C4 be the categories

C1 C2 C3 C4

c3

c1 0 //oo

??~~~~~~~~

��@@@@@@@@ c2

OO

��
c4

c3

��
c1 0 //oo

??~~~~~~~~

��@@@@@@@@ c2

��
c4

c1

  AAAAAAAA

0

??~~~~~~~~

��@@@@@@@@
// c3

c2

>>}}}}}}}}

c1
ε

  AAAAAAAA

0

γ
??~~~~~~~~ γ′

??~~~~~~~~ // c2

with no other morphisms besides the identities such that γ and γ′ in C4 are distinct and such that

in each category, the composition of any two consecutive morphisms is the displayed morphism.

Then C1 and C2 are non-cyclic and C3 and C4 are cyclic.

A non-cyclic category C might be visualized as

c3 c4 . . .

. . . d2

OO ==|||||||||

``BBBBBBBB
c5

c2 d1
oo

``AAAAAAAAA

~~||||||||
0

OO

//oo

��

d3
//

>>}}}}}}}}

!!CCCCCCCC
c6

c1 . . . . . .

with no other morphisms involved except for the identities and the composition of any consecutive

morphisms. Notice that the notion “non-cyclic with respect to 0” does not necessarily mean that

the directed graph is a tree with root 0 because, for instance, the directed graph

0 // d coo

is not a tree, but the corresponding category C is non-cyclic with respect to 0.

Our next aim is to show that in the case of non-cyclic diagrams, we may restrict to the relevant

morphisms γ ∈ Γ not only for calculating G(M) as we have already seen in Remark 3.20, but also

for calculating RG(M) which is not clear a priori. The idea behind the possibility of this restriction

is the following. Suppose given the two pairs

diagram in RTop/S subdiagram in RTop/S

X1

f

  BBBBBBBB

X3

h

>>|||||||| f◦h // X0

X2

g

>>||||||||

X1

X3

h

>>||||||||

X2

and
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diagram in RTop/S subdiagram in RTop/S

X1

f

  BBBBBBBB

X0

X2

g

>>||||||||

X1

X2

with no other morphisms involved except for the identities where the subdiagrams are obtained

by omitting the target X0 in both cases. Each diagram is non-cyclic with respect to X0. The

obstruction for extending a given deformation of the subdiagram to a deformation of the diagram

should be the same because in both cases we only have to find a deformation X ′0 of X0 and

deformations of f and g from the given deformations of X1 and X2 to X ′0, respectively. On the

other hand, if we are given the two pairs

diagram in RTop/S subdiagram in RTop/S

X1

f1

  BBBBBBBB

X3

g1

>>||||||||
//

g2   BBBBBBBB X0

X2

f2

>>||||||||

X1

X3

g1

>>||||||||

g2   BBBBBBBB

X2

and

diagram in RTop/S subdiagram in RTop/S

X1

f1

  BBBBBBBB

X0

X2

f2

>>||||||||

X1

X2

where the first diagram is cyclic, then the obstructions should be different because in the first case

we have to make sure that the commutativity still holds whereas in the second case this problem

does not occur.

Definition 3.33. Let X be non-cyclic with respect to the target X0. We define CΓ to be the

subcategory of C with objects

ob(CΓ) = {0} ∪ {d ∈ ob(C) | there exists
(
γ : 0→ d

)
∈ Γ}

and morphisms

HomCΓ
(0, d) = {γ ∈ HomC(0, d) | γ ∈ Γ}

for d 6= 0, besides the identities.
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This category may be visualized as

d1 d2 d3
. . . dm

0

γ1

aaDDDDDDDDDDDDDDDDDD

γ2

XX2222222222222

γ3

OO EE��������������

γm

<<yyyyyyyyyyyyyyyyyy

where the objects di do not have to be pairwise distinct, but if di = dj for i 6= j then γi 6= γj .

Let XΓ be the ringed topos associated to the restriction of the diagram I : Cop → RTop/S to the

subcategory Cop
Γ of Cop. Let

uΓ : X → XΓ (3.6)

be the forgetful functor from X to the subdiagram XΓ and let GΓ : OXΓ
-mod→ OX0

-mod be the

functor in Lemma 3.23. Then by construction we have commutative diagrams

OX -mod
uΓ //

G &&MMMMMMMMMM OXΓ
-mod

GΓxxqqqqqqqqqq

OX0
-mod

and

K(X )+ uΓ //

G %%JJJJJJJJJ
K(XΓ)+

GΓyysssssssss

K(X0).

Proposition 3.34. Let X be non-cyclic with respect to the target X0. Then there is a natural

isomorphism of functors

RG(−) ∼= RGΓ(uΓ(−))

from D+(X ) to D(X0). In particular, for every OX -module M there is a natural isomorphism

RG(M) ∼= RGΓ(uΓ(M)) in D(X0).

Proof. By Proposition 1.9 there is a natural transformation of functors

RG(−)→ RGΓ(RuΓ(−))

from D+(X ) to D(X0). We have seen in Proposition B.3 that each OX -module admits an injection

to an injective OX -module I of the form in Lemma B.2. Furthermore the natural morphism of

functors uΓ(−) → RuΓ(−) is an isomorphism because uΓ is exact. Thus by [Wei94, Corollary

10.8.3] it is enough to show that each injective OX -module I of the form in Lemma B.2 is sent

under uΓ to a GΓ-acyclic object.

So let I be an injective OX -module built from injective OXc-modules Jc for c ∈ ob(C) as in

Lemma B.2. Then M = uΓ(I) is given levelwise by

M0 =
⊕

δ∈HomC(0,c′),
c′∈ob(C)

fδ∗Jc′

and

Md =
⊕

ε∈HomC(d,c′),
c′∈ob(C)

fε∗Jc′
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for d ∈ ob(CΓ), d 6= 0. For every γ ∈ HomCΓ(0, d), d 6= 0, we have a morphism

Mγ : M0 =
⊕

δ∈HomC(0,c′),
c′∈ob(C)

fδ∗Jc′ →
⊕

ε∈HomC(d,c′),
c′∈ob(C)

fεγ∗Jc′ ∼= fγ∗

( ⊕
ε∈HomC(d,c′),

c′∈ob(C)

fε∗Jc′
)

= fγ∗Md

given by projecting whenever δ factors as 0
γ−→ d

ε−→ c′ and these projections define a morphism

D(Mγ) : M0 =
⊕

δ∈HomC(0,c′),
c′∈ob(C)

fδ∗Jc′ →
⊕
γ∈Γ,
γ : 0→d

⊕
ε∈HomC(d,c′),

c′∈ob(C)

fεγ∗Jc′ ∼=
⊕
γ∈Γ

fγ∗Md

as in Diagram (3.5) on page 68. Since X is non-cyclic with respect to the target X0, it follows

that D(Mγ) is surjective by Lemma 3.30. Moreover we have ker(D(Mγ)) = J0 as we have seen in

Equation (3.3) on page 67. Now for every d ∈ ob(CΓ) with d 6= 0 choose an injective resolution

0→Md
ĵ0d−→ Ĵ0

d

ĵ1d−→ Ĵ1
d

ĵ2d−→ Ĵ2
d → . . .

of Md and choose an injection ĵ0
0 : M0 → Ĵ0

0 of M0 to an injective OX0-module Ĵ0
0 . Let Î0 be the

injective OXΓ
-module built from the Ĵ0

d and Ĵ0
0 , let î0 : M → Î0 be the injection of Proposition

B.3 and let Q̂0 be the cokernel of î0. Since there are no morphisms from d 6= 0 in CΓ except for

the identities, we have by definition

Î0
d = Ĵ0

d

for every d ∈ ob(CΓ) \ {0} and Q̂0
d, the cokernel of î0d : Md → Î0

d , is isomorphic to the cokernel of

ĵ0
d : Md → Ĵ0

d . After choosing an injection Q̂0
0 → Ĵ1

0 to an injective OX0-module Ĵ1
0 , let Î1 be the

injective OXΓ-module built from the Ĵ1
d and Ĵ1

0 . Continuing this way and choosing Înd = Ĵnd for

all n ∈ N and all d ∈ ob(CΓ) \ {0}, we get an injective resolution

0→M
î0−→ Î0 î1−→ Î1 î2−→ Î2 → . . .

of M and for every γ ∈ HomCΓ(0, d), d 6= 0, we have a commutative diagram

0 // M0

Mγ

��

î00 // Î0
0

î10 //

pr0
γ

��

Î1
0

î20 //

pr1
γ

��

Î2
0

//

pr2
γ

��

. . .

0 // fγ∗Md
fγ∗ î

0
d // fγ∗Î0

d

fγ∗ î
1
d // fγ∗Î1

d

fγ∗ î
2
d // fγ∗Î2

d
// . . .

of OX0
-modules which together induce a commutative diagram

0

��

0

��

0

��
0 // J0

��

// Ĵ0
0

//

��

Ĵ1
0

//

��

. . .

0 // M0

D(Mγ)

��

î00 // Î0
0

î10 //

D(pr0
γ)

��

Î1
0

î20 //

D(pr1
γ)

��

. . .

0 //
⊕

γ fγ∗Md

⊕
γ fγ∗ î

0
d //

��

⊕
γ fγ∗Î

0
d

⊕
γ fγ∗ î

1
d //

��

⊕
γ fγ∗Î

1
d

⊕
γ fγ∗ î

2
d //

��

. . .

0 0 0
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whose first column is exact because D(Mγ) is surjective, all of whose other columns are exact by

Lemma 3.30 since XΓ is non-cyclic with respect to the target X0, and whose middle row is exact

because it is the part on the level X0 of the injective resolution of M .

Remember that each injective module is flasque by [SGA42, V.4.6.] and the direct image

functor of a morphism of ringed topoi sends flasque modules to flasque modules by [SGA42,

Proposition V.4.9.]. In particular, for each d ∈ ob(CΓ) the OXd -module

Md =
⊕

ε∈HomC(d,c′),
c′∈ob(C)

fε∗Jc′

is flasque. Thus the chosen injective resolutions

0→Md
ĵ0d−→ Ĵ0

d

ĵ1d−→ Ĵ1
d

ĵ2d−→ Ĵ2
d → . . .

yield exact sequences

0→ fγ∗Md
fγ∗ ĵ

0
d−−−→ fγ∗Ĵ

0
d

fγ∗ ĵ
1
d−−−→ fγ∗Ĵ

1
d

fγ∗ ĵ
2
d−−−→ fγ∗Ĵ

2
d → . . .

for each γ ∈ HomCΓ
(0, d), d 6= 0. But since Înd = Ĵnd for all n ∈ N and all d ∈ ob(CΓ) \ {0} by

our choice, we see that the lower row of the above commutative diagram is exact as well. The

exactness of the middle and the lower row imply the exactness of the first row, therefore the i-th

cohomology

Hi
(
GΓ(uΓ(I))

)
= Hi

(
GΓ(M)

)
= Hi

(
GΓ(I•)

)
= Hi

(
(Ĵ0

0 → Ĵ1
0 → Ĵ2

0 → . . .)
)

is zero for i > 0, showing that M = uΓ(I) is acyclic for GΓ.

Consequently, if we are only interested in calculating RG(M) for an OX -module M , we may

always assume that the category C defining the given non-cyclic diagram X is equal to its subcat-

egory CΓ. In general this strongly simplifies the calculation of

RG(M) =
(
J0

0

i10|J0
0−−−→ J1

0

i20|J1
0−−−→ J2

0

i30|J2
0−−−→ J3

0 −−−→ . . .
)

from Diagram (3.5) on page 68 because if C = CΓ, we may start with injective resolutions

0→Mc
j0c−→ J0

c

j1c−→ J1
c

j2c−→ J2
c → . . .

of Mc for every c ∈ ob(C) \ {0}.

Proposition 3.35. Let X be non-cyclic with respect to the target X0. Let M be an OX -module.

If the third row of Diagram (3.5) is exact, then there is a natural isomorphism

RG(M) ∼=
(
M0

0−→ cok(D(Mγ))→ 0→ 0→ . . .
)

in D(X0), where M0 is placed in degree 0. In particular, there is a natural isomorphism

Ext2
X0

(LX0/S ,RG(M)) ∼= Ext2
X0

(LX0/S ,M0)⊕ Ext1
X0

(LX0/S , cok(D(Mγ)))
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Proof. Since X is non-cyclic, it follows that cok(D(prnγ )) = 0 for all n ≥ 0 by Lemma 3.30. Each

column and the second and third row of Diagram (3.5) are exact. From the short exact sequence

of complexes

0→ J•0 → I•0
D(pr•γ)
−−−−→

⊕
γ

fγ∗I
•
d → 0

defined by

0

��

0

��

0

��
J0

0

i10|J0
0 //

��

J1
0

i20|J1
0 //

��

J2
0

i30|J2
0 //

��

. . .

I0
0

i10 //

D(pr0
γ)

��

I1
0

i20 //

D(pr1
γ)

��

I2
0

i30 //

D(pr2
γ)

��

. . .

⊕
γ fγ∗I

0
d

⊕
γ fγ∗i

1
d //

��

⊕
γ fγ∗I

1
d

⊕
γ fγ∗i

2
d //

��

⊕
γ fγ∗I

2
d

⊕
γ fγ∗i

3
d //

��

. . .

0 0 0

we get a long exact sequence of cohomology groups

0 // H0(J•0 ) // H0(I•0 ) // H0(
⊕

γ fγ∗I
•
d ) // H1(J•0 ) // H1(I•0 ) // . . .

and by exactness of the second and third row of Diagram (3.5) we have

Hn(I•0 ) = Hn(
⊕
γ

fγ∗I
•
d ) = 0

for all n ≥ 1. From the exactness of the above cohomology sequence it follows Hn(J•0 ) = 0 for all

n ≥ 2 and the cohomology sequence is given by

0 // M0
// M0

D(Mγ) //
⊕

γ fγ∗Md // cok(D(Mγ)) // 0 // . . . .

In particular, the complex J•0 is exact except for the places J0
0 and J1

0 and the morphism of

complexes

M0
0 //

��

cok(D(Mγ))

0

��

// 0 //

��

0 //

��

. . .

J0
0

i10|J0
0 // J1

0

i20|J1
0 // J2

0

i30|J2
0 // J3

0

i40|J3
0 // . . .

is a quasi-isomorphism, i.e., an isomorphism in D(X0). Hence we have

Ext2
X0

(LX0/S ,RG(M)) ∼= Ext2
X0

(LX0/S ,M0)⊕ Ext2
X0

(LX0/S , cok(D(Mγ))[−1])

∼= Ext2
X0

(LX0/S ,M0)⊕ Ext1
X0

(LX0/S , cok(D(Mγ))).
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Corollary 3.36. Let X be non-cyclic with respect to the target X0 and let M be an OX -module.

If Rifγ∗Md = 0 for all i > 0 and all (γ : 0→ d) ∈ Γ, then there is a natural isomorphism

RG(M) ∼=
(
M0

0−→ cok(D(Mγ))→ 0→ 0→ . . .
)

in D(X0), where M0 is placed in degree 0. In particular, there is a natural isomorphism

Ext2
X0

(LX0/S ,RG(M)) ∼= Ext2
X0

(LX0/S ,M0)⊕ Ext1
X0

(LX0/S , cok(D(Mγ))).

Proof. By Proposition 3.34 we may assume C = CΓ. Moreover in this case the construction of

Diagram (3.5) may be started with injective resolutions

0→Mc
j0c−→ J0

c

j1c−→ J1
c

j2c−→ J2
c → . . .

of Mc for every c ∈ ob(C) \ {0}. Since Rifγ∗Mc = 0 for all i > 0 and all c ∈ ob(C) \ {0}, the

sequences

0→ fγ∗Mc
fγ∗j

0
c−−−→ fγ∗J

0
c

fγ∗j
1
c−−−→ fγ∗J

1
c

fγ∗j
2
c−−−→ fγ∗J

2
c → . . .

are exact. Hence the third row of Diagram (3.5) is exact and the claimed isomorphism follows

from Proposition 3.35.

Example 3.37. Let us consider one example of a cyclic diagram. Assume given the pair

diagram in RTop/S subdiagram in RTop/S

X
h // Z

W

f

OO

j

>>~~~~~~~~~~~~~~~~ g // Y

i

OO X

W

f

OO

g // Y

with no other morphisms besides the identities where h ◦ f = j = i ◦ g. The ringed topos Z

is a target of X and X is cyclic with respect to Z since j has two different factorizations. Let

M = m∗XJ . With the notations of the injective resolution on page 66, we choose injectives modules

JnW , JnX , JnY and JnZ over OW , OX , OY and OZ , respectively, and we have

InW = JnW , InX = JnX ⊕ f∗JnW , InY = JnY ⊕ g∗JnW and InZ = JnZ ⊕ h∗JnX ⊕ j∗JnW ⊕ i∗JnY

for all n. Diagram (3.5) on page 68 is given by
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0

��

0

��
0 // MZ

��

// J0
Z

//

��

. . .

0 // MZ

D(Mγ)

��

// J0
Z ⊕ h∗J0

X ⊕ j∗J0
W ⊕ i∗J0

Y
//

D(pr0
γ)

��

. . .

0 // h∗MX ⊕ i∗MY
//

��

(h∗J
0
X ⊕ j∗J0

W )⊕ (i∗J
0
Y ⊕ j∗J0

W ) //

��

. . .

cok(D(Mγ)) //

��

j∗J
0
W

//

��

. . .

0 0

and the cokernel of D(prnγ ) is given by j∗J
n
W for all n by Lemma 3.30. The second row of the

above diagram is exact but the third row is not exact, even if Rih∗MX = 0 and Rii∗MY = 0 for

all i > 0 since we may not start with injective resolutions

0→MX → J0
X → J1

X → J2
X → . . . and 0→MY → J0

Y → J1
Y → J2

Y → . . .

of MX and MY , respectively. Altogether, it is very difficult to control the obstruction group even

for one of the simplest cases of a cyclic diagram.

Nevertheless, under our General assumption 2.1, if we are given a deformation

X ′

W ′

f ′

OO

g′ // Y ′

of

X

W

f

OO

g // Y

over S ′, we may first try to find a deformation j′ : W ′ → Z ′ of j : W → Z and then try to find

a deformation h′ : X ′ → Z ′ of h : X → Z and a deformation i′ : Y ′ → Z ′ of i : Y → Z such that

h′ ◦ f ′ = j′ = i′ ◦ g′. We will calculate the corresponding obstruction groups in Proposition 4.5

and Proposition 4.8.
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3.4.2 Omitting a source

Definition 3.38. Let X be a diagram. A source of X is an element 0 ∈ ob(C) such that HomC(0, 0)

consists only of the identity and such that there are only morphisms to 0, i.e., HomC(0, c) is empty

for c 6= 0. Equivalently, the corresponding level X0 has only morphisms of ringed topoi over S to

the other levels and the only morphism to X0 is the identity. By abuse of notation we call X0 a

source of X .

A source X0 of X may be visualized in RTop/S as

Xc1 Xc2

X0

>>||||||||

66mmmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQQ //

  BBBBBBBBB Xc3 .

. . . Xc4

Proposition 3.39. Assume given the situation of General assumption 2.1. Let X0 be a source of

X and let D be the full subcategory of C with objects ob(C)\{0}. Then Y is a full and well-positioned

subdiagram of X with complementary subdiagram Y equal to X0.

Assume furthermore that the morphism a in Lemma 2.19 is a quasi-isomorphism and let L be

the cotangent complex of the ring morphism

h0 : (u−1OY)0 = lim−→
γ∈ob(0)

f−1
γ OXd → OX0

in Proposition 2.16. Given a deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext2
X0

(L, t∗0J )

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ.

Proof. Similarly as in the proof of Proposition 3.28, we have that Y is a full subdiagram since D

is a full subcategory of C, furthermore Y is well-positioned since we have omitted a source of X
and the complementary subdiagram Y is X0 because HomC(0, 0) = {id}.

Now we come to the obstruction group. By Corollary 3.26 there is an obstruction lying

in Ext2
Y(uLh,RG(m∗XJ )). Since Y = X0 we have that uLh = L, the cotangent complex of

h0 : (u−1OY)0 → OX0 . The functor

G : OX -mod→ OY -mod = OX0
-mod

in Lemma 3.23 maps an OX -module M to the OX0
-module

M0 =
⋂

γ∈HomC(0,d),
d6=0

ker
(
Mad
γ : M0 → fγ∗Md

)
⊆M0.

But HomC(0, d) is empty for d 6= 0 since X0 is a source of X . It follows that M0 = M0 and G

is just the forgetful functor u : OX -mod → OX0 -mod. In particular, G is exact and the natural
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morphism of functors G(−)→ RG(−) from D+(X ) to D+(X0) is an isomorphism. Consequently

the obstruction lies in

Ext2
X0

(L,RG(m∗XJ )) ∼= Ext2
X0

(L,G(m∗XJ )) = Ext2
X0

(L, t∗0J ).

Notice that in contrast to the analogue statement in Proposition 3.28 for omitting a target,

we have to assume that the morphism a in Lemma 2.19 is a quasi-isomorphism. We will see in

Proposition 3.43 that condition 2 in Theorem 2.20 is satisfied for a certain class of subdiagrams

obtained by omitting a source, hence for this class the morphism a is a quasi-isomorphism.

In practice, we are generally able to control t∗0J because t0 : X0 → S is the given structure

morphism of the source. But the cotangent complex L of h0 might be hard to control. In order to

calculate L more precisely, we continue similarly as in the case of omitting a target in Subsection

3.4.1.

Notation 3.40. Let X be a diagram having a source X0. Let Γ be the set of those morphisms

γ : d → 0 in C with d 6= 0 which do not factor in C through some d′ ∈ ob(C) \ {0} except for the

trivial factorization d
id−→ d

γ−→ 0.

Definition 3.41. Let X0 be a source of X . Then C is called non-cyclic (with respect to 0) if

every δ ∈ HomC(c′, 0) with c′ 6= 0 has a unique factorization in C of the form c′
ε−→ d

γ−→ 0 where

d ∈ ob(C) \ {0} and γ ∈ Γ. The case ε = id is possible. Otherwise C is called cyclic (with respect

to 0). The diagram X is called non-cyclic (with respect to X0) if C is non-cyclic with respect to

0. Otherwise X is called cyclic (with respect to X0).

Example 3.42. Let C1, C2, C3 and C4 be the categories

C1 C2 C3 C4

c3

��~~~~~~~~

��
c1 // 0 c2oo

c4

__@@@@@@@@

OO

c3

��~~~~~~~~

c1 // 0 c2

OO

oo

c4

__@@@@@@@@

OO

c1

��@@@@@@@@

c3

>>}}}}}}}}

  AAAAAAAA
// 0

c2

??~~~~~~~~

c1
γ

��@@@@@@@@

γ′ ��@@@@@@@@

c2

ε

>>}}}}}}}}
// 0

with no other morphisms besides the identities such that γ and γ′ in C4 are distinct and such that

in each category the composition of any two consecutive morphisms is the displayed morphism.

Then C1 and C2 are non-cyclic and C3 and C4 are cyclic.
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A non-cyclic category C might be visualized as

c3

  BBBBBBBB c4

��

. . .

}}|||||||||

. . .

  AAAAAAAAA d2

��

c5

~~}}}}}}}}

c2 // d1
// 0 d3
oo c6oo

c1

>>||||||||
. . .

OO

. . .

aaCCCCCCCC

with no other morphisms involved except for the identities and the composition of any consecutive

morphisms.

If (γ : d → 0) ∈ Γ, we may consider γ as on object of the category 0. By definition of Γ we

have

Hom0

(
(γ1 : d1 → 0), (γ2 : d2 → 0)

)
=

id if γ1 = γ2

∅ else

for each (γ1 : d1 → 0), (γ2 : d2 → 0) ∈ Γ. Hence we may consider Γ as a discrete subcategory of 0

and we write again Γ for this subcategory by abuse of notation.

We will see that in the case of a non-cyclic diagram X , we may restrict to all morphisms γ ∈ Γ

for the calculation of

(u−1OY)0 = lim−→
γ∈ob(0)

f−1
γ OXd .

The idea behind this possibility comes again from deformation theoretic considerations. Suppose

given the two pairs

diagram in RTop/S subdiagram in RTop/S

X1

h

~~||||||||

X3 X0

f
``BBBBBBBB

h◦foo

g
~~||||||||

X2

X1

h

~~||||||||

X3

X2

and

diagram in RTop/S subdiagram in RTop/S

X1

X0

g
~~||||||||

f
``BBBBBBBB

X2

X1

X2
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with no other morphisms involved except for the identities where the subdiagrams are obtained

by omitting the source X0 in both cases. Each diagram is non-cyclic with respect to X0. The

obstruction for extending a given deformation of the subdiagram to a deformation of the diagram

should be the same because in both cases we only have to find a deformation X ′0 of X0 and

deformations of f and g from X ′0 to the given deformations of X1 and X2, respectively. On the

other hand, if we are given the two pairs

diagram in RTop/S subdiagram in RTop/S

X1

g1

~~||||||||

X3 X0

f1

``BBBBBBBB

f2~~||||||||
oo

X2

g2

``BBBBBBBB

X1

g1

~~||||||||

X3

X2

g2

``BBBBBBBB

and

diagram in RTop/S subdiagram in RTop/S

X1

X0

f1

``BBBBBBBB

f2~~||||||||

X2

X1

X2

where the first diagram is cyclic, then the obstructions should be different because in the first case

we have to ensure that the commutativity still holds whereas in the second case this problem does

not occur.

Proposition 3.43. Let X0 be a source of X and assume that X is non-cyclic with respect to X0.

Then condition 2 in Theorem 2.20 is satisfied and there is a natural isomorphism

lim−→
γ∈ob(0)

f−1
γ OXd ∼= lim−→

γ∈ob(Γ)

f−1
γ OXd =

⊗
γ∈Γ

f−1
γ OXd

of t−1
0 OS-algebras. In particular, the cotangent complex L of h0 : (u−1OY)0 → OX0

is isomorphic

to the cotangent complex of the natural ring morphism⊗
γ∈Γ

f−1
γ OXd → OX0

defined by all t−1
0 OS-algebra morphisms θγ : f−1

γ OXd → OX0 for
(
γ : d → 0

)
∈ ob(Γ), the tensor

product being taken over t−1
0 OS .

Proof. We know that (u−1OY)d = OXd for d 6= 0 by Lemma 3.13 since Y is a full and well-

positioned subdiagram of X by Proposition 3.39. Thus once the isomorphism

(u−1OY)0
∼=
⊗

γ∈Γ f
−1
γ OXd is shown, it follows that condition 2 in Theorem 2.20 is satisfied.
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By the universal property of the colimit lim−→γ∈ob(Γ)
f−1
γ OXd there is a unique morphism of

t−1
0 OS -algebras ζ : lim−→γ∈ob(Γ)

f−1
γ OXd → lim−→γ∈ob(0)

f−1
γ OXd such that

f−1
γ OXd

��

id // f−1
γ OXd

��
lim−→γ∈ob(Γ)

f−1
γ OXd

ζ // lim−→γ∈ob(0)
f−1
γ OXd

is commutative for every
(
γ : d→ 0

)
∈ ob(Γ) where the vertical morphisms are the natural ones.

If
(
δ : c′ → 0

)
∈ ob(0), then since X is non-cyclic with respect to X0 there is a unique factorization

c′
δ //

ε
��>>>>>>> 0

d

γ

@@�������

in C for some d 6= 0 such that
(
γ : d → 0

)
∈ ob(Γ). Since γ, ε and d depend uniquely on δ, we

write γ = γ(δ), ε = ε(δ) and d = d(δ). The factorization yields a morphism

f−1
δ OXc′ = f−1

γ f−1
ε OXc′

f−1
γ θε−−−−→ f−1

γ OXd

of t−1
0 OS -algebras. If ϕ ∈ Hom0

(
(δ1 : c′1 → 0), (δ2 : c′2 → 0)

)
and if c′2

ε−→ d
γ−→ 0 is the unique

factorization of c′2
δ2−→ 0, then it follows from the commutativity of

c′1

δ1

&&
ϕ
//

εϕ --

c′2
δ2 //

ε
��>>>>>>> 0

d

γ

@@��������

and the uniqueness of the factorization of c′1
δ1−→ 0 that either ε = id or ϕ = id. In any case we

have γ(δ1) = γ(δ2) = γ, d(δ1) = d(δ2) = d and ε(δ2) = ε, ε(δ1) = εϕ. Hence the triangle

f−1
δ1
OXc′1

f−1
δ2
θϕ

//

f−1
γ θεϕ %%JJJJJJJJJ

f−1
δ2
OXc′2

f−1
γ θεyyttttttttt

f−1
γ OXd

is commutative which shows that the morphisms

f−1
δ OXc′

f−1
γ(δ)

θε(δ)
−−−−−−→ f−1

γ(δ)OXd(δ)
→ lim−→

γ∈ob(Γ)

f−1
γ OXd

are compatible with the morphisms defined by 0 for every
(
δ : c′ → 0

)
∈ ob(0). Consequently, by

the universal property of the colimit lim−→δ∈ob(0)
f−1
δ OXc′ there is a unique morphism of
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t−1
0 OS -algebras ξ : lim−→δ∈ob(0)

f−1
δ OXc′ → lim−→γ∈ob(Γ)

f−1
γ OXd such that

f−1
γ(δ)OXd(δ)

��

f−1
δ OXc′

��

f−1
γ(δ)

θε(δ)
oo

lim−→γ∈ob(Γ)
f−1
γ OXd lim−→δ∈ob(0)

f−1
δ OXc′

ξoo

is commutative for every
(
δ : c′ → 0

)
∈ ob(0) where the vertical morphisms are the natural ones.

By definition both morphisms id and ξζ from lim−→γ∈ob(Γ)
f−1
γ OXd to lim−→γ∈ob(Γ)

f−1
γ OXd fit into a

commutative diagram

f−1
γ OXd

��

id // f−1
γ OXd

��
lim−→γ∈ob(Γ)

f−1
γ OXd // lim−→γ∈ob(Γ)

f−1
γ OXd

for every
(
γ : d → 0

)
∈ ob(Γ), hence id = ξζ by the universal property of lim−→γ∈ob(Γ)

f−1
γ OXd .

Similarly, it follows id = ζξ. Hence there is a natural isomorphism

lim−→
γ∈ob(0)

f−1
γ OXd ∼= lim−→

γ∈ob(Γ)

f−1
γ OXd

and since Γ is a discrete subcategory of 0, we have lim−→γ∈ob(Γ)
f−1
γ OXd =

⊗
γ∈Γ f

−1
γ OXd .

Our next aim is to show that the obstruction group Ext2
X0

(L, t∗0J ) in Proposition 3.39 is always

part of an exact sequence different from the exact sequence in Theorem 2.20.

In any case, whether X is non-cyclic or cyclic with respect to X0, the factorization

t−1
0 OS

θ0 //

s
%%KKKKKKKKKK

OX0

(u−1OY)0

h0

::uuuuuuuuu

of θ0, where s is the structure morphism of (u−1OY)0 as a t−1
0 OS -algebra, yields a distinguished

triangle

Lxx

xxpppppppppppp

Ls ⊗(u−1OY)0
OX0

// LX0/S

bbDDDDDDDD
(3.7)

in the derived category D(X0) by Theorem 1.8.iv). This triangle gives rise to an exact sequence

0→ Ext0
X0

(L, t∗0J )
α−→ Ext0

X0
(LX0/S , t

∗
0J )

β−→ Ext0
X0

(Ls ⊗(u−1OY)0
OX0 , t

∗
0J )

γ−→ Ext1
X0

(L, t∗0J )
δ−→ Ext1

X0
(LX0/S , t

∗
0J )

ε−→ Ext1
X0

(Ls ⊗(u−1OY)0
OX0

, t∗0J ) (3.8)

→ Ext2
X0

(L, t∗0J )→ Ext2
X0

(LX0/S , t
∗
0J )→ Ext2

X0
(Ls ⊗(u−1OY)0

OX0 , t
∗
0J )

→ . . .
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of abelian groups and the morphisms α, β, γ, δ and ε may be described as in Proposition 1.13.

Now if X is non-cyclic with respect to X0, we may assume that Γ = 0 by Proposition 3.43,

hence we may assume that the diagram and the subdiagram are given by

diagram in RTop/S subdiagram in RTop/S

X1 X2 X3
. . . Xm

X0

f1

bbEEEEEEEEEEEEEEEEE

f2

YY3333333333333

f3

OO EE��������������

fm

<<yyyyyyyyyyyyyyyyyy

X1 X2 X3
. . . Xm

with no other morphisms besides the identities where the levels Xi do not have to be pairwise

distinct, but if Xi = Xj for i 6= j, then fi 6= fj . Since all structure morphisms tc : Xc → S are flat

by our General assumption 2.1, it follows from Proposition A.1 that the natural morphism

m⊕
j=1

Lf−1
j OXj /t

−1
0 OS

⊗f−1
j OXj

(u−1OY)0 → Ls

of complexes of (u−1OY)0-modules is a quasi-isomorphism. Since both complexes of the above

quasi-isomorphism consist of free (u−1OY)0-modules, we may tensor with OX0
and still get a

quasi-isomorphism

m⊕
j=1

f∗j LXj/S
∼=

m⊕
j=1

Lf−1
j OXj /t

−1
0 OS

⊗f−1
j OXj

OX0
→ Ls ⊗(u−1OY)0

OX0
(3.9)

by [Ill71, Lemme I.3.3.2.1.] where the first isomorphism is induced from the natural isomorphism

f∗j LXj/S
∼= Lf−1

j OXj /t
−1
0 OS

⊗f−1
j OXj

OX0
by Theorem 1.8.ii). Consequently, we have that

ExtiX0
(Ls ⊗(u−1OY)0

OX0 , t
∗
0J ) ∼= ExtiX0

(

m⊕
j=1

f∗j LXj/S , t
∗
0J ) ∼=

m⊕
j=1

ExtiX0
(f∗j LXj/S , t

∗
0J )

for all i ∈ Z and there is an exact sequence

0→ Ext0
X0

(L, t∗0J )→ Ext0
X0

(LX0/S , t
∗
0J )→

m⊕
j=1

Ext0
X0

(f∗j LXj/S , t
∗
0J )

→ Ext1
X0

(L, t∗0J )→ Ext1
X0

(LX0/S , t
∗
0J )→

m⊕
j=1

Ext1
X0

(f∗j LXj/S , t
∗
0J ) (3.10)

→ Ext2
X0

(L, t∗0J )→ Ext2
X0

(LX0/S , t
∗
0J )→

m⊕
j=1

Ext2
X0

(f∗j LXj/S , t
∗
0J )

→ . . . .

Now if

Ext2
X0

(LX0/S , t
∗
0J ) = 0 and

m⊕
j=1

Ext1
X0

(f∗j LXj/S , t
∗
0J ) = 0, (3.11)

then Ext2
X0

(L, t∗0J ) = 0 by the exactness of the sequence.

We will see in Example 3.60 that
⊕m

j=1 Ext1
X0

(f∗j LXj/S , t
∗
0J ) is an obstruction group for the

pair
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diagram in RTop/S subdiagram in RTop/S

X1 X2 X3
. . . Xm

X0

f1

bbEEEEEEEEEEEEEEEEE

f2

YY3333333333333

f3

OO EE��������������

fm

<<yyyyyyyyyyyyyyyyyy

X1 X2 X3
. . . Xm

X0

and we know from Theorem 1.11 that Ext2
X0

(LX0/S , t
∗
0J ) is an obstruction group for finding a

deformation of X0 over S ′. Whence if Equation (3.11) holds and if we are given a deformation of

the subdiagram Y obtained by omitting the source X0, then we may choose a deformation X ′0 of X0

and then a deformation f ′j : X ′0 → X ′j of fj : X0 → Xj for every j where X ′j is the given deformation

of Xj . We have already encountered Sequence (3.10) in the disguise of the long exact sequence 4

of the braid in Proposition 2.22. The diagram there is the local diagram X , the subdiagram there

is the local diagram Y
∐
X0 and the subsubdiagram there is the local diagram Y.

Nevertheless, if X is non-cyclic or cyclic with respect to X0 and if the morphism a in Lemma 2.19

is a quasi-isomorphism, we might get some information about the obstruction group Ext2
X0

(L, t∗0J )

from Sequence (3.8) on page 82.

Example 3.44. Let us consider one example of a cyclic diagram, similarly as in Example 3.37.

Assume given the pair

diagram in RTop/S subdiagram in RTop/S

X
h // Z

W

f

OO

j

>>~~~~~~~~~~~~~~~~ g // Y

i

OO X
h // Z

Y

i

OO

with no other morphisms except for the identities such that h ◦ f = j = i ◦ g. Then W is a source

of X and X is cyclic with respect to W since j has two factorizations. Let tW : W → S and

tZ : Z → S be the structure morphisms of W and Z over S, respectively. By definition u−1OY is

given on the level W by the colimit of the system

f−1OX

j−1OZ

f−1θh
::ttttttttt

g−1θi %%JJJJJJJJJ

g−1OY

in the category of t−1
W OS -algebras where θh : h−1OZ → OX and θi : i

−1OZ → OY are the ring

morphisms of h and i, respectively. This colimit is f−1OX ⊗j−1OZ g−1OY considered as a

t−1
W OS -algebra. It follows that condition 2 in Theorem 2.20 is not fulfilled. Condition 1 is not

fulfilled either because this type of colimit does not commute with finite limits.
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But there is a possibility to find a remedy in this example. If we are given a deformation

X ′
h′ // Z ′

Y ′

i′

OO
of the subdiagram

X
h // Z

Y

i

OO

over S ′, we may fix the given extension

0→ t∗ZJ → OZ′ → OZ → 0 (3.12)

of OZ . Assume that h : X → Z, i : Y → Z and j : W → Z are flat. Then finding an extension

X ′
h′ // Z ′

W ′

f ′

OO

g′ //

j′
=={{{{{{{{
Y ′

i′

OO
of the given deformation

X ′
h′ // Z ′

Y ′

i′

OO

of Y to X over S ′ is equivalent to finding an extension of

X ′

Y ′

to a deformation

X ′

W ′

f ′

OO

g′ // Y ′

over Z ′ with respect to Extension (3.12) where we have to consider h : X → Z, i : Y → Z and

j : W → Z as structure morphisms. Hence if these structure morphisms are flat and if we consider

Extension (3.12), then we may assume the situation

diagram in RTop/Z subdiagram in RTop/Z

X

W

f

OO

g
// Y

X

Y

where the subdiagram is now non-cyclic with respect to the source W and we know from the

non-cyclic case in Proposition 3.43 that the corresponding obstruction group is given by

Ext2
W (L, j∗t∗ZJ ) = Ext2

W (L, t∗WJ ).

Here L is the cotangent complex of the ring morphism

f−1OX ⊗j−1OZ g
−1OY → OW , a⊗ b 7→ θf (a) · θg(b)

where θf : f−1OX → OW and θg : g−1OY → OW are the ring morphisms of f and g, respectively.

Notice that the additional assumptions made are satisfied if Z = S and if tZ : Z → S is the

identity.
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3.4.3 Omitting a bridge

Definition 3.45. Let X be a diagram. A bridge of X is a quintuple 2
α−→ 1

β−→ 0 in C with

HomC(1, 1) = {id} such that each morphism in C to 1 apart from the identity factors through α

and each morphism in C from 1 apart from the identity factors through β. The identity 1→ 1 does

not factor. Equivalently, denoting f = fβ and g = fα and regarding the corresponding quintuple

X0
f−→ X1

g−→ X2 over S, each morphism occuring in the diagram other than the identity from

X1 factors through g and each morphism occuring in the diagram other than the identity to X1

factors through f , while the identity X1 → X1 is the only S-morphism from X1 to itself and does

not factor. By abuse we call X0
f−→ X1

g−→ X2 a bridge of X .

A bridge X0
f−→ X1

g−→ X2 of X may be visualized in RTop/S as

X1

g

  BBBBBBBB

X0
g◦f //

f
>>||||||||

X2

""DDDDDDDD

. . .

<<zzzzzzzz . . .

<<zzzzzzzz . . .

Proposition 3.46. Assume given the situation of General assumption 2.1. Let X0
f−→ X1

g−→ X2

be a bridge of X and let D be the full subcategory of C with objects ob(C) \ {1}. Then Y is a full

and well-positioned subdiagram of X with complementary subdiagram Y equal to X1 and condition

2 in Theorem 2.20 is satisfied.

Let G : K(X )→ K(X1) be the functor of Lemma 3.23 and let LX1/X2
be the cotangent complex

of X1
g−→ X2. Given a deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext2
X1

(LX1/X2
,RG(m∗XJ ))

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ.

Proof. Y is a full subdiagram since D is a full subcategory of C. Furthermore, Y is well-positioned

since ob(C) \ ob(D) = {1} and the only morphism 1→ 1 in C is the identity which by assumption

does not factor in C. The complementary diagram Y is X1 because HomC(1, 1) = {id}.
Since Y is a full subdiagram of X we have that (u−1OY)c = OXc for all c ∈ ob(C) \ {1} by

Lemma 3.13. Hence in order to verify condition 2 in Theorem 2.20 we have to calculate

(u−1OY)1 = lim−→
γ∈ob(1)

f−1
γ OXd .

Since X0
f−→ X1

g−→ X2 is a bridge of X , each morphism
(
γ : d→ 1

)
∈ ob(1) admits a factorization

d
γ //

ε
��>>>>>>> 1

2

α

@@��������
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through α. Because D is the full subcategory of C with objects ob(C) \ {1} it follows that

ε ∈ Hom1

(
(γ : d → 1), (α : 2 → 1)

)
. Moreover, for each f−1

γ OXd with
(
γ : d → 1

)
∈ ob(1),

there is a morphism of t−1
1 OS -algebras

f−1
γ OXd = f−1

α f−1
ε OXd

f−1
α θε // f−1

α OX2

belonging to the system defined by the index category 1. Consequently,

(u−1OY)1 = lim−→
γ∈ob(1)

f−1
γ OXd = f−1

α OX2
.

Now we come to the obstruction group. By Corollary 3.26 there is an obstruction lying in

Ext2
Y(uLh,RG(m∗XJ )). Since Y = X1 it follows that uLh is the cotangent complex of

h1 : (u−1OY)1 → OX1
and h1 is just the ring morphism θα : f−1

α OX2
→ OX1

, whence

uLh = LX1/X2
.

Let us consider the two pairs

diagram in RTop/S subdiagram in RTop/S

X1

g

  BBBBBBBB

X0
h //

f
>>||||||||

X2
X0

h // X2

and

diagram in RTop/S subdiagram in RTop/S

X4

  BBBBBBBB X1

g

  BBBBBBBB X5

~~||||||||

X0
h //

f
>>||||||||

  BBBBBBBB X2

X3

>>||||||||

X4

  BBBBBBBB X5

~~||||||||

X0
h //

  BBBBBBBB X2

X3

>>||||||||

with h = g◦f and with no other morphisms except for the identities and except for the composition

of any two consecutive morphisms. Then in both cases the obstruction for extending a given

deformation of the subdiagram to a deformation of the diagram should be the same since in

both cases, if h′ : X ′0 → X ′2 is the given deformation of h : X0 → X2 over S ′, we have to find

a deformation X ′1 of X1 and deformations f ′ : X ′0 → X ′1 and g′ : X ′1 → X ′2 of f : X0 → X1 and

g : X1 → X2, respectively, such that

X ′1
g′

  @@@@@@@

X ′0

f ′
>>~~~~~~~
h′ // X ′2

is commutative. These considerations are similar to the ones we have stated in Subsections 3.4.1

and 3.4.2, but this time we do not have to distinguish between two cases which we called non-cyclic

and cyclic. The obstruction group only depends on the bridge X0
f−→ X1

g−→ X2, made precise by

the following lemma and corollary.
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Lemma 3.47. Assume given the assumptions and notations of Proposition 3.46. Let T (f) be the

ringed topos associated to the diagram X0
f−→ X1 over S and let u : OX -mod→ OT (f)-mod be the

forgetful functor. If G′ : OT (f)-mod → OX1
-mod is the functor in Lemma 3.23, then there are

commutative diagrams

OX -mod
u //

G &&MMMMMMMMMM
OT (f)-mod

G′xxppppppppppp

OX1
-mod

and

K(X )+ u //

G $$JJJJJJJJJ
K(T (f))+

G′yyrrrrrrrrrr

K(X1)

and there is a natural isomorphism of functors

RG(−) ∼= RG′(u(−))

from D+(X ) to D(X1). In particular, if M ∈ ob(Ch+(X )) is a bounded below cochain complex,

then the complex RG(M) only depends on X0
f−→ X1 and its part uM , up to natural isomorphism

in D(X1).

Proof. The functor G : OX -mod→ OX1-mod is given by

M 7→ M1 =
⋂

γ∈HomC(1,d),
d6=1

ker
(
Mad
γ : M1 → fγ∗Md

)
⊆M1

by definition in Lemma 3.23. But since 2
α−→ 1

β−→ 0 is a bridge of X , each morphism γ ∈ HomC(1, d)

with d 6= 1 factors through β, hence by Remark 3.20 we have that

M1 = ker
(
Mad
β : M1 → fβ∗M0

)
⊆M1.

On the other hand, since f = fβ the functor G′ : OT (f)-mod→ OX1-mod sends the OT (f)-module

uM to the same submodule ker
(
Mad
β : M1 → fβ∗M0

)
of M1. It follows that

OX -mod
u //

G &&MMMMMMMMMM
OT (f)-mod

G′xxppppppppppp

OX1
-mod

is indeed commutative and

K(X )+ u //

G $$JJJJJJJJJ
K(T (f))+

G′yyrrrrrrrrrr

K(X1)

yields an isomorphism of functors RG(−) ∼= RG′(u(−)) from D+(X ) to D(X1) exactly as in

Proposition 3.34.
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Corollary 3.48. Under the assumptions and notations of Proposition 3.46, the obstruction group

Ext2
X1

(LX1/X2
,RG(m∗XJ )) only depends on the bridge X0

f−→ X1
g−→ X2.

Proof. The first entry of the obstruction group LX1/X2
only depends on X1

g−→ X2 and the second

entry RG(m∗XJ ) only depends on X0
f−→ X1 by the above lemma.

Corollary 3.49. Under the assumptions and notations of Proposition 3.46, set M = m∗XJ and

let K and Q be kernel and cokernel of

Mad
β : M1 → fβ∗M0,

respectively. If Rifβ∗M0 = 0 for all i > 0, then there is a natural isomorphism of abelian groups

Ext2
X1

(LX1/X2
,RG(m∗XJ )) ∼= Ext2

X1
(LX1/X2

,K)⊕ Ext1
X1

(LX1/X2
, Q).

Proof. By Lemma 3.47 and its notations the complex RG(M) only depends on X0
f−→ X1 and

uM and we may calculate it in D(X1) as RG′(uM). But by Corollary 3.36 there is a natural

isomorphism

RG′(uM) ∼=
(
K

0−→ Q→ 0→ 0→ . . .
)

in D(X1) which gives rise to the claimed isomorphism.
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3.4.4 The discrete subdiagram

In this subsection we consider another extreme case. The subdiagram is obtained from the diagram

by keeping all levels Xc for c ∈ ob(C) and by omitting all morphisms between them except for the

identities. We will show that condition 2 in Theorem 2.20 is satisfied for this type of subdiagram

and we will simplify the obstruction group Ext2
X (Lh,m

∗
XJ ) in Proposition 3.55 and Corollary

3.59. Four examples exemplifying the new notions will be given at the end of the subsection.

Moreover, we will derive a result of [Ran89] in one of the examples.

Definition 3.50. Let X be a diagram. If D is the discrete subcategory of C, i.e., ob(D) = ob(C)

and the only morphisms in D are the identities, then Y is called the discrete subdiagram of X .

Lemma 3.51. Let Y be the discrete subdiagram of a diagram X . Then condition 2 in Theorem

2.20 is satisfied.

Proof. Let c ∈ ob(C). Since Y is discrete we have that the category c is discrete, hence

(u−1OY)c =
⊗

γ∈ob(c)

f−1
γ OXc′ =

⊗
γ∈HomC(c′,c),

c′∈ob(C)

f−1
γ OXc′

by definition of u−1OY in Proposition 2.16 where the tensor product is taken over t−1
c OS .

Let Y be the discrete subdiagram of a diagram X . Our aim is to show that there is a complex

Ld of free OX -modules and a natural isomorphism Ld[1] ∼= Lh in D(X ) such that the obstruction

group

Ext2
X (Lh,m

∗
XJ ) ∼= Ext2

X (Ld[1],m∗XJ ) ∼= Ext1
X (Ld,m∗XJ )

in Theorem 2.20 may be calculated better by using the complex Ld. The superscript d stands for

discrete.

By Diagram (2.8) on page 35 there are morphisms of m−1
Y OS -algebras

OY
nOY−−−→ uu−1OY

uh−−→ OY

whose composition is the identity. Because Y is discrete this just means that we have, for each

c ∈ ob(C), morphisms of t−1
c OS -algebras OXc → (u−1OY)c

hc−→ OXc where the first morphism is

the natural one. For each α ∈ HomC(c1, c2) the diagram

f−1
α OXc1

θα //

��

OXc2

��
f−1
α

⊗
γ∈ob(c1) f

−1
γ OXc′

(u−1OY)α //
⊗

δ∈ob(c2) f
−1
δ OXc′

whose vertical morphisms are the natural ones is commutative by definition of (u−1OY)α. Hence

the collection of allOXc → (u−1OY)c
hc−→ OXc for c ∈ ob(C) defines a morphism ofm−1

X OS -algebras

OX → u−1OY
h−→ OX
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whose composition is the identity. Now for c ∈ ob(C) we define

Tc =
⊗

γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

f−1
γ OXc′

to be the t−1
c OS -algebra obtained from (u−1OY)c by omitting the factor corresponding to the

identity. There is a natural morphism of t−1
c OS -algebras Tc → (u−1OY)c and a cocartesian

diagram

Tc // (u−1OY)c

t−1
c OS

OO

// OXc .

OO

Since the tensor product is a special colimit, we may imitate the construction given in Definition

2.7 to see that for each α ∈ HomC(c1, c2) there is a morphism of t−1
c2 OS -algebras f−1

α Tc1 → Tc2
fulfilling the compatibility condition (1.2) on page 14 for a composition c1

α−→ c2
β−→ c3 in C.

Definition 3.52. We define T to be the m−1
X OS -algebra which is given levelwise by the

t−1
c OS -algebras

Tc =
⊗

γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

f−1
γ OXc′

together with the morphisms f−1
α Tc1 → Tc2 for α ∈ HomC(c1, c2) as described above.

The construction in Definition 2.7 shows that the collection of all natural morphisms

Tc → (u−1OY)c defines a natural morphism

T → u−1OY

of m−1
X OS -algebras. Consequently there is a commutative diagram

OX

T //

..

u−1OY

h

;;wwwwwwwww

m−1
X OS

OO

θX // OX

OO id

MM

of m−1
X OS -algebras whose square is cocartesian.

Lemma 3.53. In the situation of General assumption 2.1, let Y be the discrete subdiagram of X .

Then there is a natural isomorphism(
LT /m−1

X OS
⊗T OX

)
[1] ∼= Lh

in D(X ).
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Proof. The factorization OX → u−1OY
h−→ OX of the identity yields a distinguished triangle

Lhvv

vvmmmmmmmmmmmmmm

Lu−1OY/OX ⊗u−1OY OX // Lid

``BBBBBBBB

in D(X ). Since Lid is an exact complex, it follows that Lid is isomorphic to the zero complex in

D(X ), hence the natural morphism Lh →
(
Lu−1OY/OX ⊗u−1OY OX

)
[1] in D(X ) is an isomorphism.

Because mX : X → S is flat we have that the natural morphism of complexes of u−1OY -modules

LT /m−1
X OS

⊗T u−1OY → Lu−1OY/OX

is a quasi-isomorphism by [Ill71, Corollaire II.2.2.3.]. This is a quasi-isomorphism between com-

plexes of free u−1OY -modules, so tensoring with OX yields a quasi-isomorphism

LT /m−1
X OS

⊗T OX → Lu−1OY/OX ⊗u−1OY OX

of complexes of OX -modules by [Ill71, Lemme I.3.3.2.1.]. The composition(
LT /m−1

X OS
⊗T OX

)
[1]→

(
Lu−1OY/OX ⊗u−1OY OX

)
[1]→ Lh

is an isomorphism in D(X ).

Our next aim is to simplify the complex LT /m−1
X OS

⊗T OX by defining the complex Ld an-

nounced at the beginning of this subsection. Fix c ∈ ob(C). Then for each γ ∈ HomC(c′, c), γ 6= id,

the morphism

t−1
c OS = f−1

γ t−1
c′ OS

f−1
γ θc′−−−−→ f−1

γ OXc′

is flat and it follows from Proposition A.1 that the natural morphism⊕
γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

Lf−1
γ OXc′ /t

−1
c OS ⊗f−1

γ OXc′
Tc → LTc/t−1

c OS

is a quasi-isomorphism. Since this is a quasi-isomorphism between complexes of free Tc-modules,

we get a quasi-isomorphism⊕
γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

Lf−1
γ OXc′ /t

−1
c OS ⊗f−1

γ OXc′
OXc → LTc/t−1

c OS ⊗Tc OXc

by tensoring with OXc by [Ill71, Lemme I.3.3.2.1.] where we have used the natural isomorphism⊕
γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

Lf−1
γ OXc′ /t

−1
c OS ⊗f−1

γ OXc′
OXc ∼=

( ⊕
γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

Lf−1
γ OXc′ /t

−1
c OS ⊗f−1

γ OXc′
Tc
)
⊗Tc OXc

of complexes of OXc-modules. Since fγ is a morphism of ringed topoi, the natural morphism of

complexes f−1
γ LXc′/S → Lf−1

γ OXc′ /t
−1
c OS is an isomorphism by Theorem 1.8.ii). Hence for each

c ∈ ob(C) there is a quasi-isomorphism⊕
γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

f∗γLXc′/S → LTc/t−1
c OS ⊗Tc OXc .
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Abbreviating Ldc =
⊕

γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

f∗γLXc′/S for c ∈ ob(C), we may again imitate the construction

in Definition 2.7 since the direct sum is a special colimit.

Definition 3.54. We define the complex of OX -modules Ld to be the collection of all complexes

Ldc =
⊕

γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

f∗γLXc′/S

of OXc -modules for c ∈ ob(C) together with, for each α ∈ HomC(c1, c2), the morphisms

f∗αL
d
c1 → Ldc2

of complexes of OXc2 -modules in Definition 2.7.

The collection of all the above quasi-isomorphisms Ldc → LTc/t−1
c OS ⊗Tc OXc for c ∈ ob(C)

defines a quasi-isomorphism

Ld → LT /m−1
X OS

⊗T OX

of complexes of OX -modules.

Proposition 3.55. Assume given the situation of General assumption 2.1 and let Y be the discrete

subdiagram of X . Then there is a natural isomorphism Lh ∼= Ld[1] in D(X ). In particular, there

is an exact sequence

0→ Ext0
X (LX/S ,m

∗
XJ )→ Ext0

Y(LY/S ,m
∗
YJ )→ Ext0

X (Ld,m∗XJ )

→ Ext1
X (LX/S ,m

∗
XJ )→ Ext1

Y(LY/S ,m
∗
YJ )

ω−→ Ext1
X (Ld,m∗XJ )

→ Ext2
X (LX/S ,m

∗
XJ )→ Ext2

Y(LY/S ,m
∗
YJ )→ Ext2

X (Ld,m∗XJ )

→ . . .

of abelian groups. Given a deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext1
X (Ld,m∗XJ )

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ.

Proof. By Lemma 3.53 there is a natural isomorphism
(
LT /m−1

X OS
⊗T OX

)
[1] ∼= Lh in D(X ) and

we have seen above that there is a natural quasi-isomorphism Ld[1] →
(
LT /m−1

X OS
⊗T OX

)
[1],

whence Lh ∼= Ld[1] in D(X ).

The long exact sequence is obtained from the long exact sequence in Theorem 2.13. Since

condition 2 in Theorem 2.20 is fulfilled by Lemma 3.51 we may use the isomorphisms

ExtiX (Cone(m),m∗XJ ) ∼= ExtiX (Lh,m
∗
XJ ) ∼= ExtiX (Ld[1],m∗XJ ) ∼= Exti−1

X (Ld,m∗XJ )

of abelian groups for each i ∈ Z. Furthermore, we have

Ext0
X (Lh,m

∗
XJ ) ∼= Ext0

X (Ld[1],m∗XJ ) ∼= Ext−1
X (Ld,m∗XJ ) = 0.
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Since Y is the discrete subdiagram of X we have natural isomorphisms

ExtiY(LY/S ,m
∗
YJ ) ∼=

⊕
c∈ob(C)

ExtiXc(LXc/S , t
∗
cJ ) (3.13)

of abelian groups for each i ∈ Z because the topos Y is the disjoint union of the topoi Xc.
Before giving some examples we will simplify the obstruction group Ext1

X (Ld,m∗XJ ) in Propo-

sition 3.55 even further. We will see that it is easier to calculate the obstruction group by using

Ld[1] rather than Lh. The replacement of Lh by Ld[1] for the discrete subdiagram is similar to

the replacement of Lh by L∗h for full and well-positioned subdiagrams as in Proposition 3.15.

Let us recall the situation in the case of full and well-positioned subdiagrams Y. If Y is the

complementary subdiagram of Y and if u : X → Y and u : X → Y are the forgetful functors, then

we have uL∗h = 0 by definition of L∗h and we know that the obstruction lives in

Ext2
Y(uLh,RG(m∗XJ ))

by Corollary 3.26. Similarly, if Y is the discrete subdiagram of X , we will define a certain subdia-

gram Z of X with complementary subdiagram Z and forgetful functors w : X → Z and w : X → Z
such that wLd = 0 and such that the obstruction lives in

Ext1
Z(wLd,m∗ZJ )

in Corollary 3.59.

If c ∈ ob(C), then

Ldc =
⊕

γ∈HomC(c′,c),
c′∈ob(C),γ 6=id

f∗γLXc′/S

is the zero complex if and only if the only morphism to c is the identity.

Notation 3.56. Let Y be the discrete subdiagram of X . Let E be the discrete subcategory of C

with objects

ob(E) = {c ∈ ob(C) | the only morphism to c in C is the identity}

and let E be the full subcategory of C with objects ob(C) \ ob(E). Let Z be the ringed topos

associated to the restriction of I : Cop → RTop/S to E and let Z be the ringed topos associated

to the restriction of I : Cop → RTop/S to E.

Notice that we may assume ob(C) \ ob(E) 6= ∅ because otherwise C would be discrete itself and

we would have X = Y. Notice further that Z is the complementary subdiagram of Z.

Let w : X → Z and w : X → Z be the forgetful functors. By abuse of notation we denote

w : OX -mod→ OZ -mod and w : OX -mod→ OZ -mod the forgetful functors between the categories

of modules as well. Let G : OX -mod→ OZ -mod be the functor in Lemma 3.23.
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Lemma 3.57. The functors G : OX -mod→ OZ -mod and w : OX -mod→ OZ -mod are naturally

isomorphic. In particular, G is exact.

Proof. The functor G maps an OX -module M to the OZ -module M defined levelwise by

M c =
⋂

γ∈HomC(c,d),

d∈ob(E)

ker
(
Mad
γ : Mc → fγ∗Md

)
⊆Mc

for c ∈ ob(E). Since HomC(c, d) is empty for d ∈ ob(E) and c ∈ ob(E) by definition of E, it follows

that M c = Mc for every c ∈ ob(E). Since the morphism

M
ad

α : M c1 → fα∗M c2

for α ∈ HomE(c1, c2) in Lemma 3.22 is defined to be the restriction of the given morphism

Mad
α : Mc1 → fα∗Mc2 , it follows that M

ad

α = Mad
α for all α ∈ HomE(c1, c2). Hence we see that G

and w are naturally isomorphic. The exactness of w implies the exactness of G.

Corollary 3.58. Let X be a diagram and let Y be the discrete subdiagram of X . Then for each

M ∈ ob(D+(X )) and for each i ∈ Z there are natural isomorphisms

ExtiX (Ld,M) ∼= ExtiZ(wLd, wM)

of abelian groups which are functorial in M .

Proof. By definition of Ld we have wLd = 0. Moreover, Ld is a bounded above complex consisting

of free OX -modules. Hence Ld satisfies the conditions in Proposition 3.25 and applying this

proposition to Ld, the subdiagram Z and the complementary subdiagram Z, we get natural

isomorphisms

ExtiX (Ld,M) ∼= ExtiZ(wLd,RG(M)),

functorial in M . Since G is exact by the above lemma, the natural morphism of functors

G(−) → RG(−) from D+(X ) to D+(Z) is an isomorphism. Moreover, G and w are naturally

isomorphic, hence there are natural and functorial isomorphisms

ExtiZ(wLd,RG(M)) ∼= ExtiZ(wLd, wM).

Corollary 3.59. Assume given the situation of General assumption 2.1 and let Y be the discrete

subdiagram of X . Given a deformation ξ of the subdiagram Y over S ′, there is an obstruction

ω(ξ) ∈ Ext1
Z(wLd,m∗ZJ )

whose vanishing is necessary and sufficient for the existence of a deformation of the diagram X
over S ′ reducing to ξ. Here Z is the ringed topos in Notation 3.56.

Proof. By Proposition 3.55 there is an obstruction in Ext1
X (Ld,m∗XJ ) and by the above corollary

there is a natural isomorphism

Ext1
X (Ld,m∗XJ ) ∼= Ext1

Z(wLd, wm∗XJ )

of abelian groups. Since w : X → Z is the forgetful functor we have wm∗XJ = m∗ZJ .
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Let us consider four examples.

Example 3.60. Assume given the situation

diagram in RTop/S subdiagram in RTop/S

X1 X2 X3
. . . Xm

X0

f1

bbEEEEEEEEEEEEEEEEE

f2

YY3333333333333

f3

OO EE��������������

fm

<<yyyyyyyyyyyyyyyyyy

X1 X2 X3
. . . Xm

X0

with no other morphisms involved except for the identities. The ringed topoi Xj do not have to

be pairwise distinct, but if Xj = Xk for some j 6= k, then we assume that fj 6= fk. By definition

we have Ldc = 0 for c = 1, . . . ,m, hence Z = X0 and

wLd = Ld0 =

m⊕
j=1

f∗j LXj/S as well as wM = M0

for every OX -module M . Thus we have naturally

ExtiX (Ld,M) ∼= ExtiX0

( m⊕
j=1

f∗j LXj/S ,M0

) ∼= m⊕
j=1

ExtiX0
(f∗j LXj/S ,M0)

for every complex M ∈ ob(Ch+(X )) and every i ∈ Z by Corollary 3.58.

The long exact sequence in Proposition 3.55 is given by

0→ Ext0
X (LX/S ,m

∗
XJ )→ Ext0

Y(LY/S ,m
∗
YJ )→

m⊕
j=1

Ext0
X0

(f∗j LXj/S , t
∗
0J )

→ Ext1
X (LX/S ,m

∗
XJ )→ Ext1

Y(LY/S ,m
∗
YJ )→

m⊕
j=1

Ext1
X0

(f∗j LXj/S , t
∗
0J )

→ Ext2
X (LX/S ,m

∗
XJ )→ Ext2

Y(LY/S ,m
∗
YJ )→

m⊕
j=1

Ext2
X0

(f∗j LXj/S , t
∗
0J )

→ . . . .

and we have

ExtiY(LY/S ,m
∗
YJ ) ∼=

m⊕
j=0

ExtiXc(LXc/S , t
∗
cJ )

for all i ∈ Z by Equation (3.13) on page 94.

In particular, for m = 1 the above sequence is given by

0→ Ext0
X (LX/S ,m

∗
XJ )→ Ext0

X0
(LX0/S , t

∗
0J )⊕ Ext0

X1
(LX1/S , t

∗
1J )→ Ext0

X0
(f∗1LX1/S , t

∗
0J )

→ Ext1
X (LX/S ,m

∗
XJ )→ Ext1

X0
(LX0/S , t

∗
0J )⊕ Ext1

X1
(LX1/S , t

∗
1J )→ Ext1

X0
(f∗1LX1/S , t

∗
0J )

→ Ext2
X (LX/S ,m

∗
XJ )→ Ext2

X0
(LX0/S , t

∗
0J )⊕ Ext2

X1
(LX1/S , t

∗
1J )→ Ext2

X0
(f∗1LX1/S , t

∗
0J )

→ . . .

which has been described in [Ran89, Section 2.2.2] if f1 : X0 → X1 is a morphism of ringed spaces.

96



Example 3.61. Next we consider the dual problem. Assume given the situation

diagram in RTop/S subdiagram in RTop/S

X1

f1

""EEEEEEEEEEEEEEEEE X2

f2

��3
333333333333 X3

f3

��

. . .

���������������� Xm

fm

||yyyyyyyyyyyyyyyyyy

X0

X1 X2 X3
. . . Xm

X0

with no other morphisms involved except for the identities. Again the ringed topoi Xj do not have

to be pairwise distinct, but if Xj = Xk for some j 6= k, then we assume that fj 6= fk. By definition

we have Ld0 = 0 and the ringed topos

Z =

m∐
j=1

Xj

is the disjoint union of the topoi Xj for j = 1, . . . ,m. Moreover,

wLd =
(
f∗1LX0/S , . . . , f

∗
mLX0/S

)
and wM = (M1, . . . ,Mm)

for every OX -module M . Thus we have naturally

ExtiX (Ld,M) ∼= ExtiZ
(
(f∗1LX0/S , . . . , f

∗
mLX0/S), (M1, . . . ,Mm)

) ∼= m⊕
j=1

ExtiXj (f
∗
j LX0/S ,Mj)

for every complex M ∈ ob(Ch+(X )) and every i ∈ Z by Corollary 3.58.

The long exact sequence in Proposition 3.55 is given by

0→ Ext0
X (LX/S ,m

∗
XJ )→ Ext0

Y(LY/S ,m
∗
YJ )→

m⊕
j=1

Ext0
Xj (f

∗
j LX0/S , t

∗
jJ )

→ Ext1
X (LX/S ,m

∗
XJ )→ Ext1

Y(LY/S ,m
∗
YJ )→

m⊕
j=1

Ext1
Xj (f

∗
j LX0/S , t

∗
jJ )

→ Ext2
X (LX/S ,m

∗
XJ )→ Ext2

Y(LY/S ,m
∗
YJ )→

m⊕
j=1

Ext2
Xj (f

∗
j LX0/S , t

∗
jJ )

→ . . . .

Example 3.62. Now let us consider the pair

diagram in RTop/S subdiagram in RTop/S

Y
g

��@@@@@@@

X

f
>>~~~~~~~ h=g◦f // Z

Y

X Z

with no other morphisms except for the identities and let tX , tY and tZ be the structure morphisms

of X, Y and Z over S, respectively. By definition Z is the ringed topos associated to the diagram

X
f−→ Y . We denote the objects of Z in the form

(FX ,FY , f−1FY → FX)
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where FX and FY are sheaves of X and Y , respectively, and f−1FY → FX is a sheaf morphism

of X. If w : X → Z is the forgetful functor, then the complex wLd is given by

(h∗LZ/S ⊕ f∗LY/S , g∗LZ/S , f∗g∗LZ/S = h∗LZ/S
(id|0)−−−→ h∗LZ/S ⊕ f∗LY/S)

which naturally decomposes as L1 ⊕ L2 in the category of complexes of OZ -modules where

L1 = (f∗LY/S , 0, f
∗0→ f∗LY/S)

and

L2 = (h∗LZ/S , g
∗LZ/S , f

∗g∗LZ/S = h∗LZ/S
id−→ h∗LZ/S).

Hence the obstruction group in Corollary 3.59 is given by

Ext1
Z(wLd,m∗ZJ ) ∼= Ext1

Z(L1,m
∗
ZJ )⊕ Ext1

Z(L2,m
∗
ZJ ).

We may apply Proposition 3.25 to the diagram Z, the subdiagram Y and the complex L1 to

see that there is a natural isomorphism Ext1
Z(L1,m

∗
ZJ ) ∼= Ext1

X(f∗LY/S , t
∗
XJ ). It remains to

simplify the second direct summand.

If M ∈ ob(Ch(Z)), then by definition the group HomCh(Z)(L2,M) consists of all morphisms

a ∈ HomCh(X)(h
∗LZ/S ,MX) and b ∈ HomCh(Y )(g

∗LZ/S ,MY )

such that

f∗g∗LZ/S = h∗LZ/S
id //

f∗b

��

h∗LZ/S

a

��
f∗MY

// MX

is commutative in Ch(X). It follows that b uniquely determines a, whence we have naturally

HomCh(Z)(L2,M) ∼= HomCh(Y )(g
∗LZ/S ,MY ),

functorial in M , and there is a diagram of functors

K+(Z)
v //

Hom·Z(L2,−)

""FFFFFFFFFFFFFFFFFF
K+(Y )

Hom·Y (g∗LZ/S ,−)

||xxxxxxxxxxxxxxxxxx

K(Ab)

commutative up to natural isomorphism of functors where Ab is the category of abelian groups and

v is the forgetful functor. Now exactly as shown in Proposition 2.14 we get natural isomorphisms

ExtiZ(L2,M) ∼= ExtiY (g∗LZ/S ,MY ) for each i ∈ Z, functorial in M ∈ ob(D+(Z)). In particular,

we have

Ext1
Z(L2,m

∗
ZJ ) ∼= Ext1

Y (g∗LZ/S , t
∗
Y J )
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and the obstruction group is given by Ext1
X(f∗LY/S , t

∗
XJ )⊕ Ext1

Y (g∗LZ/S , t
∗
Y J ). The first sum-

mand contains the obstruction for finding a deformation f ′ : X ′ → Y ′ of f : X → Y over S ′

between the given deformations X ′ and Y ′ of X and Y , respectively, and the second summand

contains the obstruction for finding a deformation g′ : Y ′ → Z ′ of g : Y → Z over S ′ between

the given deformations Y ′ and Z ′ of Y and Z, respectively. The composition of f ′ and g′ is a

deformation h′ of h.

Example 3.63. Now let us consider the pair

diagram in RTop/S subdiagram in RTop/S

X
h // Z

W

f

OO

j

>>~~~~~~~~~~~~~~~~ g // Y

i

OO X Z

W Y

with no other morphisms except for the identities such that h◦f = j = i◦g. Let tW , tX , tY and tZ

be the structure morphisms of W,X, Y and Z over S, respectively. By definition Z is the ringed

topos associated to the diagram

X

W

f

OO

g // Y.

Let w : X → Z the forgetful functor. Denoting the objects of Z as

(FW ,FX ,FY , f−1FX → FW , g−1FY → FW )

where FW ,FX and FY are sheaves of W,X and Y , respectively, wLd is by definition given by

(j∗LZ/S ⊕ f∗LX/S ⊕ g∗LY/S , h∗LZ/S , i∗LZ/S ,

f∗h∗LZ/S = j∗LZ/S
(id|0|0)−−−−→ j∗LZ/S ⊕ f∗LX/S ⊕ g∗LY/S ,

g∗i∗LZ/S = j∗LZ/S
(id|0|0)−−−−→ j∗LZ/S ⊕ f∗LX/S ⊕ g∗LY/S).

There is a natural decomposition wLd = L(f)⊕L(g)⊕L(j) of wLd as complexes of OZ -modules

where

L(f) = (f∗LX/S , 0, 0, f
∗0→ f∗LX/S , g

∗0→ f∗LX/S),

L(g) = (g∗LY/S , 0, 0, f
∗0→ g∗LY/S , g

∗0→ g∗LY/S),

L(j) = (j∗LZ/S , h
∗LZ/S , i

∗LZ/S , f
∗h∗LZ/S = j∗LZ/S

id−→ j∗LZ/S , g
∗i∗LZ/S = j∗LZ/S

id−→ j∗LZ/S).

Hence the obstruction group Ext1
Z(wLd,m∗ZJ ) in Corollary 3.59 is given by

Ext1
Z(wLd,m∗ZJ ) ∼= Ext1

Z(L(f),m∗ZJ )⊕ Ext1
Z(L(g),m∗ZJ )⊕ Ext1

Z(L(j),m∗ZJ ).
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Let us simplify the direct summands further. If V is the ringed topos associated to the di-

agram consisting of X and Y , we may apply Proposition 3.25 to the diagram Z, the subdi-

agram V and to the complex L(f). Since G : OZ -mod → OW -mod is the forgetful functor

OZ -mod → OW -mod and since the forgetful functor is exact, it follows from Proposition 3.25

that there is a natural isomorphism Ext1
Z(L(f),m∗ZJ ) ∼= Ext1

W (f∗LX/S , t
∗
WJ ). Similarly, there is

a natural isomorphism Ext1
Z(L(g),m∗ZJ ) ∼= Ext1

W (g∗LY/S , t
∗
WJ ), whence the obstruction group

is given by

Ext1
Z(wLd,m∗ZJ ) ∼= Ext1

W (f∗LX/S , t
∗
WJ )⊕ Ext1

W (g∗LY/S , t
∗
WJ )⊕ Ext1

Z(L(j),m∗ZJ ).

Let us exhibit these three direct summands. If we are given deformations W ′, X ′, Y ′ and Z ′ of

W,X, Y and Z over S ′, respectively, then the first direct summand contains the obstruction for

extending W ′, X ′ to a deformation f ′ : W ′ → X ′ of f : W → X and the second direct summand

contains the obstruction for extending W ′, Y ′ to a deformation g′ : W ′ → Y ′ of g : W → Y by

Example 3.60. The third direct summand contains the remaining obstruction for extending

X ′ Z ′

W ′

f ′

OO

g′ // Y ′

to a deformation

X ′
h′ // Z ′

W ′

f ′

OO
j′

=={{{{{{{{ g′ // Y ′

i′

OO
of

X
h // Z

W

f

OO
j
>>|||||||| g // Y.

i

OO

By definition the group HomCh(Z)(L(j),m∗ZJ ) consists of all morphisms

a ∈ HomCh(W )(j
∗LZ/S , t

∗
WJ ), b ∈ HomCh(X)(h

∗LZ/S , t
∗
XJ ), c ∈ HomCh(Y )(i

∗LZ/S , t
∗
Y J )

such that

f∗h∗LZ/S = j∗LZ/S
id //

f∗b

��

j∗LZ/S

a

��

j∗LZ/S = g∗i∗LZ/S
idoo

g∗c

��
f∗t∗XJ = t∗WJ

id // t∗WJ t∗WJ = g∗t∗Y J
idoo

is commutative in Ch(W ). Hence b uniquely determines a and c uniquely determines a and we

must have f∗b = g∗c. Thus if

f∗ : HomCh(X)(h
∗LZ/S , t

∗
XJ )→ HomCh(W )(j

∗LZ/S , t
∗
WJ )

and

g∗ : HomCh(Y )(i
∗LZ/S , t

∗
Y J )→ HomCh(W )(j

∗LZ/S , t
∗
WJ )

denote the pullback morphisms by abuse of notation, we have that HomCh(Z)(L(j),m∗ZJ ) is the

kernel of the difference morphism

HomCh(X)(h
∗LZ/S , t

∗
XJ )⊕HomCh(Y )(i

∗LZ/S , t
∗
Y J )→ HomCh(W )(j

∗LZ/S , t
∗
WJ ),

defined by (b, c) 7→ f∗b−g∗c. But it is not clear a priori how to simplify Ext1
Z(L(j),m∗ZJ ) further.
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4 Diagrams with at most three levels

This section considers diagrams consisting of at most three levels. The first subsection deals with

a single morphism f : X → Y whereas the second subsection treats a commutative triangle

Y
g

  AAAAAAA

X
h=g◦f //

f
>>~~~~~~~

Z.

We will derive the cotangent braid of a morphism f : X → Y of ringed topoi over a ringed

topos S and show that it coincides with the cotangent braid in [Buc81, Diagramme II.2.4.2.1] if

S = Spec k is the spectrum of a field k. For this purpose, we consider the three subdiagrams

X, Y and (X,Y ) of the ringed topos Z associated to the diagram f : X → Y . We will get two

morphisms of distinguished triangles between the three corresponding distinguished triangles in

D(Z). The braid in [Buc81, Diagramme II.2.4.2.1] is, however, obtained from four distinguished

triangles which are part of a certain octahedron, similarly as we obtained the braid in Proposition

2.22 in Subsection 2.4.

Afterwards, we consider all subdiagrams of a single morphism f : X → Y and the respective

obstruction groups using results of Section 3. We will restrict to the case of schemes in order

to replace certain cotangent complexes by modules, if some additional conditions on X, Y or

the morphism f are satisfied. For example, if f is a smooth morphism of schemes, then the

natural morphism of complexes of OX -modules LX/Y → Ω1
X/Y is a quasi-isomorphism by [Ill71,

Proposition III.3.1.2.].

It turns out that there are fifteen non-empty proper subdiagrams of the above commutative

triangle. The obstruction groups for ten of them may be derived easily from the obstruction groups

of a single morphism, but for the other five subdiagrams, this is not possible. Four of these five

subdiagrams are even not full. Nevertheless, we will calculate the obstruction groups as explicitly

as possible.

Finally, we will give an example of a triangle where the obstruction group for the subdiagram

obtained by omitting Y vanishes. Let X be a nonsingular projective variety over the complex

numbers C, let h : X → Z = Alb(X) be the Albanese map of X and let Y denote the image of

h. Considering only extensions where J = OSpec C, it turns out that the obstruction group for

extending a deformation of h to a deformation of the triangle is zero if f is a flat morphism such

that Rif∗OX = 0 for all i > 0 and if Y a product of nonsingular projective curves.
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4.1 A single morphism

4.1.1 The cotangent braid of a morphism of ringed topoi

Let f : X → Y be a morphism of ringed topoi over a ringed topos S such that the structure

morphisms tX : X → S and tY : Y → S are flat. Let furthermore j : S → S′ be a closed embedding

induced by an extension

0→ J → OS′ → OS → 0

of OS by an OS-module J . Using the results of Sections 2 and 3, we will derive the cotangent

braid in [Buc81, Diagramme II.2.4.3.2] which can also be found in [GLS07, Corollary C.5.2.].

Let Z be the ringed topos associated to the diagram X
f−→ Y . We denote the objects of Z in

the form (
FX

v←− FY
)

where FX is a sheaf of X, FY is a sheaf of Y and v : f−1FY → FX is a sheaf morphism. If v is

clear from the context we will omit it and simply write
(
FX ← FY

)
.

The three different subdiagrams X, Y and (X,Y ) of Z yield three m−1
Z OS-algebras

u−1OX =
(
OX ← t−1

Y OS
)
, u−1OY =

(
f−1OY ← OY

)
and u−1O(X,Y ) =

(
OX⊗t−1

X OS
f−1OY ← OY

)
,

respectively, by Proposition 2.16 where we have written u for the forgetful functor in all three

cases by abuse of notation. Notice that

u−1O(X,Y ) = u−1OX ⊗m−1
Z OS

u−1OY

by [Ill71, Equation III.4.3.1] since the tensor product commutes with the inverse image functor of

a morphism of ringed topoi. Furthermore, letting l(X), l(Y ), l(X,Y ) and h(X), h(Y ), h(X,Y )

denote the morphisms l and h in Proposition 2.16 for the different subdiagrams, the diagram

m−1
Z OS

l(X) // u−1OX
h(X) //

−⊗1

��

OZ

m−1
Z OS

l(X,Y ) // u−1O(X,Y )

h(X,Y ) // OZ

m−1
Z OS

l(Y ) // u−1OY
h(Y ) //

1⊗−

OO

OZ

(4.1)

of m−1
Z OS-algebras is commutative. Since X and Y are flat over S we have that

l(X) : m−1
Z OS → u−1OX and l(Y ) : m−1

Z OS → u−1OY are flat as well. Hence by Theorem 1.8.vi)

the natural morphism of complexes(
Ll(X) ⊗u−1OX u

−1O(X,Y )

)
⊕
(
Ll(Y ) ⊗u−1OY u

−1O(X,Y )

)
→ Ll(X,Y )

is a quasi-isomorphism. Since both of the complexes in its definition consist of free

u−1O(X,Y )-modules, we still get a quasi-isomorphism(
Ll(X) ⊗u−1OX OZ

)
⊕
(
Ll(Y ) ⊗u−1OY OZ

)
→ Ll(X,Y ) ⊗u−1O(X,Y )

OZ
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by tensoring with OZ by [Ill71, Lemma I.3.3.2.1.]. By [Ill71, Chapitre II.2.1.] Diagram (4.1)

induces two morphisms of distinguished triangles

Ll(X) ⊗u−1OX OZ
(id|0) //

��

(
Ll(X) ⊗u−1OX OZ

)
⊕
(
Ll(Y ) ⊗u−1OY OZ

)
∼=
��

Ll(Y ) ⊗u−1OY OZ
(0|id)oo

��

Ll(X,Y ) ⊗u−1O(X,Y )
OZ

��
LZ/S

��

LZ/S

��

LZ/S

��
Lh(X)

ZZ

DD

// Lh(X,Y )

AA

]]

Lh(Y )oo
DD

ZZ

(4.2)

in D(Z). Notice that condition 2 in Theorem 2.20 is satisfied for all three subdiagrams.

Proposition 4.1. The above morphisms of distinguished triangles induce a commutative diagram

of abelian groups

...

1

���
�
�

...

�� �O
�O
�O

...

2

���
�
�

ExtiZ(Lh(X),m
∗
ZJ )

1

���
�
�

ExtiZ(Lh(X,Y ),m
∗
ZJ )

�� �O
�O
�O

//oo ExtiZ(Lh(Y ),m
∗
ZJ )

2

���
�
�

ExtiZ(LZ/S ,m
∗
ZJ )

1

���
�
�

ExtiZ(LZ/S ,m
∗
ZJ )

�� �O
�O
�O

ExtiZ(LZ/S ,m
∗
ZJ )

2

���
�
�

ExtiX(LX/S , t
∗
XJ )

1

���
�
�

ExtiX(LX/S , t
∗
XJ )⊕ ExtiY (LY/S , t

∗
Y J )

�� �O
�O
�O

pr2 //pr1oo ExtiY (LY/S , t
∗
Y J )

2

���
�
�

Exti+1
Z (Lh(X),m

∗
ZJ )

1

���
�
�

Exti+1
Z (Lh(X,Y ),m

∗
ZJ )

�� �O
�O
�O

//oo Exti+1
Z (Lh(Y ),m

∗
ZJ )

2

���
�
�

...
...

...

(4.3)

whose columns are the long exact sequences associated to the subdiagrams X, Y and (X,Y ) of Z
by Theorem 2.20, respectively.
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Proof. We apply the functor HomD(Z)(−,m∗ZJ ) to Diagram (4.2) and use the natural isomorphism

ExtiZ(Ll(X,Y ) ⊗u−1O(X,Y )
OZ ,m∗ZJ )

∼=
��

ExtiZ
(
(Ll(X) ⊗u−1OX OZ)⊕ (Ll(Y ) ⊗u−1OY OZ),m∗ZJ

)
∼=
��

ExtiZ(Ll(X) ⊗u−1OX OZ ,m∗ZJ )⊕ ExtiZ(Ll(Y ) ⊗u−1OY OZ ,m∗ZJ )

induced from
(
Ll(X)⊗u−1OX OZ

)
⊕
(
Ll(Y )⊗u−1OY OZ

) ∼=−→ Ll(X,Y )⊗u−1O(X,Y )
OZ and the natural

isomorphisms

ExtiZ(Ll(X) ⊗u−1OX OZ ,m
∗
ZJ ) ∼= ExtiX(LX/S , t

∗
XJ )

and

ExtiZ(Ll(Y ) ⊗u−1OY OZ ,m
∗
ZJ ) ∼= ExtiY (LY/S , t

∗
Y J )

in Theorem 2.20.

Now we are able to derive the cotangent braid.
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Corollary 4.2. Let f : X → Y be a morphism of ringed topoi over a ringed topos S such that the

structure morphisms tX : X → S and tY : Y → S are flat and let Z be the ringed topos associated

to the diagram X
f−→ Y . Let j : S → S′ be a closed embedding induced by an extension

0→ J → OS′ → OS → 0

of OS by an OS-module J . Then there is a commutative braid, the cotangent braid

. . .

1

((

lnqu
�

�
6

I M P

4

**VVVVVVVVVVVVVVVVVV . . .

2

vv

R P M I
6

�

�
uqn

3

tthhhhhhhhhhhhhhhhhh

ExtiZ(Lh(X,Y ),m
∗
ZJ )

4

**TTTTTTTTTTTTTTTT
3

ttjjjjjjjjjjjjjjjj

ExtiZ(Lh(X),m
∗
ZJ )

1

**TTTTTTTT

3

((

ExtiZ(Lh(Y ),m
∗
ZJ )

2

ttj j j j j j j j

4

vv

ExtiZ(LZ/S ,m
∗
ZJ )

1

**TTTTTTTT
2

ttj j j j j j j j

ExtiY (LY/S , t
∗
Y J )

2

''

o
r

w
	

�
5

G
L

O

3

**TTTTTTTTTTTTTTTT
ExtiX(LX/S , t

∗
XJ )

1

ww

O L G
5

�

	
wro

4

ttjjjjjjjjjjjjjjjj

Exti+1
Z (Lh(X,Y ),m

∗
ZJ )

3

**TTTTTTTTTTTTTTT
4

ttjjjjjjjjjjjjjjj

Exti+1
Z (Lh(Y ),m

∗
ZJ )

2

**TTTTTTTT

4

''

Exti+1
Z (Lh(X),m

∗
ZJ )

1

ttj j j j j j j j

3

ww

Exti+1
Z (LZ/S ,m

∗
ZJ )

2

**TTTTTTTT
1

ttj j j j j j j j

Exti+1
X (LX/S , t

∗
XJ )

1

''

o
r

w



�
4

G
L

O

4

**TTTTTTTTTTTTTTT
Exti+1

Y (LY/S , t
∗
Y J )

2

ww

O L G
4

�



wro

3

ttjjjjjjjjjjjjjjj

Exti+2
Z (Lh(X,Y ),m

∗
ZJ )

4

**TTTTTTTTTTTTTTT
3

ttjjjjjjjjjjjjjjj

Exti+2
Z (Lh(X),m

∗
ZJ )

1

**TTTTTTTT

3

))

Exti+2
Z (Lh(Y ),m

∗
ZJ )

2

ttj j j j j j j j

4

uu

Exti+2
Z (LZ/S ,m

∗
ZJ )

1

**VVVVVVVVV
2

tth h h h h h h h h

. . . . . .

(4.4)

containing four long exact sequences. The sequences 1 and 2 are the long exact sequences of

Diagram (4.3) in Proposition 4.1, i.e., the long exact sequences associated to the subdiagrams X

and Y of Z by Theorem 2.20, respectively.
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Proof. We define the morphisms of the third sequence 3 to be certain compositions in Diagram

(4.3). Take ExtiZ(Lh(X),m
∗
ZJ )

3−→ ExtiY (LY/S , t
∗
Y J ) to be the composition of the curved arrows

in

...

1

���
�
�

...

�� �O
�O
�O

...

2

���
�
�

ExtiZ(Lh(X),m
∗
ZJ )

1

���
�
�

~�

ExtiZ(Lh(X,Y ),m
∗
ZJ )

�� �O
�O
�O

//oo ExtiZ(Lh(Y ),m
∗
ZJ )

2

���
�
�

ExtiZ(LZ/S ,m
∗
ZJ )

1

���
�
�

id
'/

ExtiZ(LZ/S ,m
∗
ZJ )

�� �O
�O
�O

id
'/

ExtiZ(LZ/S ,m
∗
ZJ )

2

���
�
�

� 
ExtiX(LX/S , t

∗
XJ )

1

���
�
�

ExtiX(LX/S , t
∗
XJ )⊕ ExtiY (LY/S , t

∗
Y J )

�� �O
�O
�O

pr2 //pr1oo ExtiY (LY/S , t
∗
Y J )

2

���
�
�

...
...

...

let ExtiY (LY/S , t
∗
Y J )

3−→ Exti+1
Z (Lh(X,Y ),m

∗
ZJ ) be the composition of the curved arrows in

...

1

���
�
�

...

�� �O
�O
�O

...

2

���
�
�

ExtiX(LX/S , t
∗
XJ )

1

���
�
�

ExtiX(LX/S , t
∗
XJ )⊕ ExtiY (LY/S , t

∗
Y J )

�� �O
�O
�O

��

pr2 //pr1oo ExtiY (LY/S , t
∗
Y J )

2

���
�
�

(0|id)

hp

Exti+1
Z (Lh(X),m

∗
ZJ )

1

���
�
�

Exti+1
Z (Lh(X,Y ),m

∗
ZJ )

�� �O
�O
�O

//oo Exti+1
Z (Lh(Y ),m

∗
ZJ )

2

���
�
�

...
...

...

and set Exti+1
Z (Lh(X,Y ),m

∗
ZJ )

3−→ Exti+1
Z (Lh(X),m

∗
ZJ ) to be the curved arrow in

...

1

���
�
�

...

�� �O
�O
�O

...

2

���
�
�

ExtiX(LX/S , t
∗
XJ )

1

���
�
�

ExtiX(LX/S , t
∗
XJ )⊕ ExtiY (LY/S , t

∗
Y J )

�� �O
�O
�O

pr2 //pr1oo ExtiY (LY/S , t
∗
Y J )

2

���
�
�

Exti+1
Z (Lh(X),m

∗
ZJ )

1

���
�
�

Exti+1
Z (Lh(X,Y ),m

∗
ZJ )

�� �O
�O
�O

//oo
hp

Exti+1
Z (Lh(Y ),m

∗
ZJ ).

2

���
�
�

...
...

...

The exactness of sequence 3 follows from the exactness of the columns of Diagram (4.3) and all

parts of the braid containing morphisms of Sequences 1, 2 and 3 are commutative by definition.

By interchanging the roles of X and Y we define the forth sequence 4 analogously.
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Remark 4.3. Notice that backwards one may derive Diagram (4.3) from the braid (4.4). We take

sequences 1 and 2 of the braid to be the left and right column of Diagram (4.3), respectively.

For ExtiZ(Lh(X,Y ),m
∗
ZJ ) ///o/o/o ExtiZ(LZ/S ,m

∗
ZJ ) we take either of the compositions in

ExtiZ(Lh(X,Y ),m
∗
ZJ )

4

))TTTTTTTTTTTTTTT
3

uujjjjjjjjjjjjjjj

ExtiZ(Lh(X),m
∗
ZJ )

1

))TTTTTTTT
ExtiZ(Lh(Y ),m

∗
ZJ )

2

uuj j j j j j j j

ExtiZ(LZ/S ,m
∗
ZJ )

and ExtiZ(LZ/S ,m
∗
ZJ ) ///o/o/o ExtiX(LX/S , t

∗
XJ )⊕ ExtiY (LY/S , t

∗
Y J ) is defined to have compo-

nent morphisms

ExtiZ(LZ/S ,m
∗
ZJ )

1 //___ ExtiX(LX/S , t
∗
XJ ) and ExtiZ(LZ/S ,m

∗
ZJ )

2 //___ ExtiY (LY/S , t
∗
Y J ),

respectively. Finally, ExtiX(LX/S , t
∗
XJ )⊕ ExtiY (LY/S , t

∗
Y J ) ///o/o/o Exti+1

Z (Lh(X,Y ),m
∗
ZJ ) is the

sum morphism of

ExtiY (LY/S , t
∗
Y J )

3

))TTTTTTTTTTTTTTT
ExtiX(LX/S , t

∗
XJ )

4

uujjjjjjjjjjjjjjj

Exti+1
Z (Lh(X,Y ),m

∗
ZJ ).

Hence giving the braid (4.4) is equivalent to giving Diagram (4.3) and both are obtained from the

two morphisms of distinguished triangles in Diagram (4.2) on page 103.

Proposition 4.4. If S = Spec k is the spectrum of a field k, then the cotangent braid (4.4) is

naturally isomorphic to the cotangent braid in [Buc81, Diagramme II.2.4.3.2].

Proof. Some of the six complexes of OZ -modules LZ/S , Lh(Y ), Ll(X) ⊗u−1OX OZ , Lh(X),

Ll(Y ) ⊗u−1OY OZ and Lh(X,Y ) may be simplified in D(Z) by results of Section 3 as shown in

the following table.

cotangent complex naturally isomorphic to by

LZ/S =
(
LX/S ← LY/S

) (
LX/S ← LY/S

)
Lh(Y ) =

(
LX/Y ← LY/Y

) (
LX/Y ← 0

)
Proposition 3.15

Ll(X) ⊗u−1OX OZ =
(
LX/S ← LY/Y

) (
LX/S ← 0

)
Proposition 3.15

Lh(X) =
(
LX/X ← LY/S

) (
0← LY/S

)
Proposition 3.15

Ll(Y ) ⊗u−1OY OZ =
(
f∗LY/S ← LY/S

) (
f∗LY/S ← LY/S

)
Lh(X,Y ) =

(
LOX/f−1OY ⊗OX ← LY/Y

) (
f∗LY/S ← 0

)
[1] Proposition 3.55.

If S = Spec k, then the six complexes of the middle column are just the cotangent complexes

L0, . . . , L5 of [Buc81, Chapitre II.2.4.2] and the morphisms ψij of [Buc81, Diagramme II.2.4.2.1]

coincide, up to natural isomorphism, with the corresponding morphisms in Diagram (4.2) on page

103.
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4.1.2 The subdiagrams of a single morphism of schemes

We will list all subdiagrams of a single morphism of schemes and detect the corresponding ob-

struction groups in Theorem 2.20 using the results of Section 3. Assume given the situation in

General assumption 2.1. The obstruction groups will be calculated as explicitly as possible for the

different cases.

We restrict to the case of schemes in order to replace some cotangent complexes by modules

under certain conditions. Let f : X → Y be a morphism of schemes over the fixed scheme S

with structure morphisms tX : X → S and tY : Y → S which are assumed to be flat by General

assumption 2.1. Assume furthermore that J is quasi-coherent such that each deformation of

f : X → Y over S ′ is given by a morphism of schemes f ′ : X ′ → Y ′ by Remark 1.12.

Proposition 4.5. The following chart is a list of all subdiagrams of

X
f // Y

and the corresponding obstruction groups as found in Theorem 2.20:

subdiagram condition or notation obstruction group

1 X

RG as in Proposition 3.25 for
Ext2

Y (LY/S ,RG(m∗XJ ))
G : K+(X )→ K+(Y ) as in Lemma 3.23

tY smooth, Rif∗(t
∗
XJ ) = 0 for all i > 0, Ext2

Y (Ω1
Y/S ,K)

K and Q kernel and cokernel of ⊕
t∗Y J → f∗(t

∗
XJ ), respectively Ext1

Y (Ω1
Y/S ,Q)

2 Y

none Ext2
X(LX/Y , t

∗
XJ )

f smooth Ext2
X(Ω1

X/Y , t
∗
XJ )

f a closed embedding
Ext1

X(I/I2, t∗XJ )
with regular ideal sheaf I

3 X Y
none Ext1

X(f∗LY/S , t
∗
XJ )

tY smooth Ext1
X(f∗Ω1

Y/S , t
∗
XJ )

Proof. If g : W → Z is a smooth morphism of schemes, then the natural morphism of complexes

LW/Z → Ω1
W/Z is a quasi-isomorphism by [Ill71, Proposition III.3.1.2.]. We will use this result

several times.

Subdiagram 1: By Proposition 3.28 the obstruction group is given by

Ext2
Y (LY/S ,RG(m∗XJ ))

without any supplementary conditions. If Rif∗(t
∗
XJ ) = 0 for all i > 0, then the obstruction

group is isomorphic to Ext2
Y (LY/S ,K) ⊕ Ext1

Y (LY/S ,Q) by Corollary 3.36 where K and Q are

kernel and cokernel of t∗Y J → f∗(t
∗
XJ ), respectively. If tY is smooth, then LY/S → Ω1

Y/S is a

quasi-isomorphism.

Subdiagram 2: Similarly, without any further conditions, the obstruction group is

Ext2
X(LX/Y , t

∗
XJ )
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by Proposition 3.43 and Proposition 3.39. If f is smooth, then LX/Y → Ω1
X/Y is a quasi-

isomorphism and if f is a closed embedding with regular ideal sheaf I, then the natural morphism

of complexes LX/Y → I/I2[1] is a quasi-isomorphism by [Ill71, Proposition III.3.2.4.].

Subdiagram 3: The obstruction group is

Ext1
X(f∗LY/S , t

∗
XJ )

by Corollary 3.59 or by Example 3.60 for m = 1. If tY is smooth, then LY/S → Ω1
Y/S is a quasi-

isomorphism and Ω1
Y/S is locally free of finite type by [Ill71, Proposition III.3.1.2.], in particular

Ω1
Y/S is a flat OY -module. Since the complex LY/S consists of free OY -modules, it follows that the

induced morphism f∗LY/S → f∗Ω1
Y/S is still a quasi-isomorphism by [Ill71, Lemme I.3.3.2.1.].

The obstruction groups Ext2
X(LX/Y , t

∗
XJ ) and Ext1

X(f∗LY/S , t
∗
XJ ) for subdiagrams 2 and

3 have been calculated in [Ill71, Théorème III.2.1.7.] and [Ill71, Proposition III.2.2.4.], respec-

tively, by using different argumentations. But the obstruction group Ext2
Y (LY/S ,RG(m∗XJ )) for

subdiagram 1 does not occur there.

Remark 4.6. Notice that the above chart contains the obstruction groups for extending the given

deformation of the respective subdiagram to a deformation of the diagram in one step. It is also

possible to try to extend the given deformation of the respective subdiagram to a deformation of the

diagram in two steps, at least for subdiagrams 1 und 2. For example, if we consider the subdiagram

X and if we fix a deformation X ′ of X over S′, we may first search for a deformation of Y (with

obstruction in Ext2
Y (LY/S , t

∗
Y J ) by Theorem 1.11) and then, having chosen a deformation Y ′ of Y

if possible, search for a deformation of f from X ′ to Y ′ (with obstruction in Ext1
X(f∗LY/S , t

∗
XJ )

by the above proposition). The problem of this “two-step-obstruction” is the choice of Y ′ because

for some choices of Y ′, the two-step-obstruction in Ext2
Y (LY/S , t

∗
Y J )⊕Ext1

X(f∗LY/S , t
∗
XJ ) might

vanish and for other choices of Y ′, it might not.

Example 4.7. Let S = Spec k be the spectrum of a field k, let J = OSpec k and let f : X → Y

be a closed embedding of schemes such that Y is nonsingular and projective. Assume that the

ideal sheaf I of the embedding is regular. Then t∗XJ = OX and t∗Y J = OY and Rif∗OX = 0 for

all i > 0 since f is a closed embedding. Moreover, the morphism t∗Y J → f∗(t
∗
XJ ) is just the ring

morphism OY → f∗OX and since Ω1
Y/k is locally free, the obstruction group for the subdiagram

X is given by

Ext2
Y (Ω1

Y/k,K) = Ext2
Y (Ω1

Y/k, I) ∼= Ext2
Y (OY , TY/k ⊗ I) ∼= H2(Y, TY/k ⊗ I)

where TY/k = HomY (Ω1
Y/k,OY ) is the tangent sheaf of Y over k. This result is stated in [Ser06,

Proposition 3.4.23.]. If additionally X is smooth such that I/I2 is a locally free OX -module

and if N = HomX(I/I2,OX) is the normal sheaf of X in Y , then the obstruction group for the

subdiagram Y is given by

Ext1
X(I/I2,OX) ∼= Ext1

X(OX ,N ) ∼= H1(X,N )

which is as well stated in [Ser06, Proposition 3.4.23.].
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4.2 A commutative triangle

4.2.1 The subdiagrams of a commutative triangle of schemes

We will list all subdiagrams of a commutative triangle

Y
g // Z

X

f

OO

h

>>~~~~~~~

of schemes over a fixed scheme S and detect the corresponding obstruction groups in Theorem

2.20 using some results of Section 3. Assume given the situation in General assumption 2.1 and

let tX : X → S, tY : Y → S and tZ : Z → S be the structure morphisms of X, Y and Z over S,

respectively. Assume that J is quasi-coherent.

There are 15 non-empty proper subdiagrams of this commutative triangle, numbered in the

following table.

X 1

Y

2

Z

3

Y

X

f

OO

4

Y Z

X

f

OO

5

Y

X 6

Y Z

7

Y Z

X 8

Y
g // Z

9

Y
g // Z

X 10

Z

X 11

Z

X

h

>>||||||||
12

Y Z

X

h

>>||||||||
13

Y
g // Z

X

h

>>||||||||
14

Y Z

X

f

OO

h

>>||||||||
15

The calculation of the obstruction groups for the first 10 subdiagrams may be traced back to

the calculations for the subdiagrams of a single morphism, as exhibited in Proposition 4.5. For

example, suppose given the subdiagram X of the triangle. If T (g) denotes the ringed topos asso-

ciated to the diagram Y
g−→ Z with structure morphism mT (g) : T (g)→ S, then the commutative

triangle gives rise to a morphism of ringed topoi

X
(f,h) // T (g)

over S by [Ill71, Chapitre III.4.12.]. Extending a given deformation X ′ of X over S′ to a deforma-

tion of the triangle is equivalent to extending X ′ to a deformation of the morphism X
(f,h)−−−→ T (g).
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Hence from Proposition 4.5 we see that the obstruction lives in Ext2
T (g)(LT (g)/S ,RG(m∗XJ )) with

G : K+(X )→ K+(T (g)) as in Lemma 3.23. Subdiagram 8 has been treated in Example 3.62.

Consequently, it suffices to calculate the obstruction group for subdiagrams 11 to 15. Let T (f)

and T (g) be the ringed topoi associated to the diagrams

X
f // Y and Y

g // Z

over S, respectively. The commutative diagram

X
f //

f

��

Y

g

��
Y

g // Z

yields a morphism of ringed topoi (f, g) : T (f)→ T (g) over S by [Ill71, Chapitre III.4.12.].
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Proposition 4.8. The following chart is a list of subdiagrams 11 to 15 of the above table of the

diagram

Y
g // Z

X

f

OO

h

>>~~~~~~~

and the corresponding obstruction groups as found in Theorem 2.13 or Theorem 2.20.

subdiagram condition or notation obstruction group

11

Z

X

θh : h−1OZ → OX the ring morphism of h,

Ext2
T (f)

(
(L,LY/Z), (t∗XJ , t∗Y J )

)L the cotangent complex of

h−1OZ ⊗t−1
X OS

OX → OX ,

a⊗ b 7→ θh(a)b

12

Z

X

h

>>~~~~~~~

RG as in Proposition 3.25 for
Ext2

Y (LY/Z ,RG(m∗T (f)J ))
G : K+(T (f))→ K+(Y ) as in Lemma 3.23

g smooth, Rif∗(t
∗
XJ ) = 0 for all i > 0, Ext2

Y (Ω1
Y/Z ,K)

K and Q kernel and cokernel of ⊕
t∗Y J → f∗(t

∗
XJ ), respectively Ext1

Y (Ω1
Y/Z ,Q)

g a closed embedding with

regular ideal sheaf I, Ext1
Y (I/I2,K)

Rif∗(t
∗
XJ ) = 0 for all i > 0, ⊕

K and Q kernel and cokernel of HomY (I/I2,Q)

t∗Y J → f∗(t
∗
XJ ), respectively

13

Y Z

X

h

>>~~~~~~~

LT (g)/S = (LY/S , LZ/S , g
∗LZ/S → LY/S)

Ext1
T (f)

(
(f, g)∗LT (g)/S ,m

∗
T (f)J

)
the cotangent complex of

mT (g) : T (g)→ S

14

Y
g // Z

X

h

>>~~~~~~~

none Ext1
X(f∗LY/Z , t

∗
XJ )

g smooth Ext1
X(f∗Ω1

Y/Z , t
∗
XJ )

g a closed embedding with

regular ideal sheaf I and HomX(f∗I/I2, t∗XJ )

• I/I2 flat over OY or • f flat

15

Y Z

X

f

OO

h

>>~~~~~~~

RG as in Proposition 3.25 for
Ext1

Y (g∗LZ/S ,RG(m∗T (f)J ))
G : K+(T (f))→ K+(Y ) as in Lemma 3.23

tZ smooth, Rif∗(t
∗
XJ ) = 0 for all i > 0, Ext1

Y (g∗Ω1
Z/S ,K)

K and Q kernel and cokernel of ⊕
t∗Y J → f∗(t

∗
XJ ), respectively HomY (g∗Ω1

Z/S ,Q)
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Notice that only the twelfth subdiagram is well-positioned and full. Thus for the other subdia-

grams Corollary 3.26 is not applicable. We will use similar argumentations pointed out in Section

3 for the simplification of the respective obstruction group. Condition 2 in Theorem 2.20 will

always be fulfilled except for subdiagram 14.

Proof. If l : W →W ′ is a smooth morphism of schemes (respectively a closed embedding of schemes

with regular ideal sheaf I), then the natural morphism of complexes LW/W ′ → Ω1
W/W ′ (respec-

tively LW/W ′ → I/I2[1]) is a quasi-isomorphism by [Ill71, Proposition III.3.1.2.] (respectively by

[Ill71, Proposition III.3.2.4.]). We will use these results several times.

Let h : u−1OY → OX be the ring morphism in Proposition 2.16. We will denote the objects of X
in the form (FX ,FY ,FZ) if the sheaf morphisms f−1FY → FX , g−1FZ → FY and h−1FZ → FX
are clear from the context.

Subdiagram 11: By definition we have u−1OY =
(
h−1OZ ⊗t−1

X OS
OX , g−1OZ ,OZ

)
, hence

condition 2 is satisfied and

Lh =
(
L,LY/Z , LZ/Z

)
by Corollary A.3. The morphism(

id, id, 0
)

:
(
L,LY/Z , 0

)
→
(
L,LY/Z , LZ/Z

)
in Ch(X ) is a quasi-isomorphism by the exactness of LZ/Z . It follows that we may replace Lh

by
(
L,LY/Z , 0

)
in D(X ) for the calculation of the obstruction group. Since the forgetful functor

K+(X )→ K+(T (f)) is exact and since there is a natural isomorphism

HomCh(X )

(
(L,LY/Z , 0),m∗XJ

) ∼= HomCh(T (f))

(
(L,LY/Z),m∗T (f)J

)
of abelian groups, we get a natural isomorphism

Ext2
X
(
(L,LY/Z , 0),m∗XJ

) ∼= Ext2
T (f)

(
(L,LY/Z),m∗T (f)J

)
by the same argument as used in the proof of Proposition 3.25.

Subdiagram 12: Since X
f−→ Y

g−→ Z is a bridge of X we know by Proposition 3.46 and

Lemma 3.47 that the obstruction lives in Ext2
Y (LY/Z ,RG(m∗T (f)J )) for G : K+(T (f))→ K+(Y )

as in Lemma 3.23. If Rif∗(t
∗
XJ ) = 0 for all i > 0 then we have naturally

Ext2
Y (LY/Z ,RG(m∗T (f)J )) ∼= Ext2

Y (LY/Z ,K)⊕ Ext1
Y (LY/Z ,Q)

by Corollary 3.49. If g is smooth (respectively if g is a closed embedding with regular ideal sheaf

I), then the natural morphism of complexes

LY/Z → Ω1
Y/Z (respectively LY/Z → I/I2[1])

is a quasi-isomorphism.
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Subdiagram 13: By definition we have

u−1OY =
(
f−1OY ⊗t−1

X OS
OX , g−1OZ ⊗t−1

Y OS
OY ,OZ

)
,

hence condition 2 is fulfilled and

Lh =
(
LOX/f−1OY ⊗OX , LOY /g−1OZ⊗OY , LZ/Z

)
.

The same argument as in the proof for subdiagram 11 shows that we may replace Lh by(
LOX/f−1OY ⊗OX , LOY /g−1OZ⊗OY , 0

)
in D(X ). Now as in the proof of Proposition 3.55 this complex is naturally isomorphic in D(X )

to (
f∗LY/S , g

∗LZ/S , 0
)
[1]

where the morphism of complexes of OX -modules f∗g∗LZ/S → f∗LY/S is the pullback under f of

the natural morphism of complexes of OY -modules g∗LZ/S → LY/S . Since the forgetful functor

K+(X )→ K+(T (f)) is exact and since there is a natural isomorphism

HomCh(X )

(
(f∗LY/S , g

∗LZ/S , 0),m∗XJ
) ∼= HomCh(T (f))

(
(f∗LY/S , g

∗LZ/S),m∗T (f)J
)

of abelian groups, we get a natural isomorphism

Ext2
X
(
(f∗LY/S , g

∗LZ/S , 0)[1],m∗XJ
) ∼= Ext2

T (f)

(
(f∗LY/S , g

∗LZ/S)[1],m∗T (f)J
)

by the same argument as used in the proof of Proposition 3.25. Moreover, we have naturally

Ext2
T (f)

(
(f∗LY/S , g

∗LZ/S)[1],m∗T (f)J
) ∼= Ext1

T (f)

(
(f∗LY/S , g

∗LZ/S),m∗T (f)J
)

∼= Ext1
T (f)

(
(f, g)∗LT (g)/S ,m

∗
T (f)J

)
.

Subdiagram 14: By definition we have u−1OY =
(
f−1OY ⊗h−1OZ OX ,OY ,OZ

)
, hence con-

dition 2 is not satisfied. If w : X → Y is the forgetful functor with left adjoint w−1 : Y → X as in

Proposition 2.11 and if B ∈ ob(Y), then (w−1B)X , the part of w−1B on the level X, is given by

the colimit in X of the system

BX

h−1BZ

99tttttttttt

%%JJJJJJJJJ

f−1BY

and this colimit does not commute with finite limits. Thus condition 1 is not satisfied either.

Nevertheless, we are able to calculate the obstruction group by Theorem 2.13. Assume given a

deformation

Y ′
g′ // Z ′

X ′
h′

>>||||||||
of the subdiagram

Y
g // Z

X

h

>>~~~~~~~
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over S′ and let

0→ t∗ZJ → OZ′ → OZ → 0

be the extension of OZ where tZ : Z → S is the structure morphism. Now we consider h : X → Z

and g : Y → Z as (not necessarily flat) structure morphisms. We define X to be the ringed

topos associated to the diagram f : X → Y in the category RTop/Z of ringed topoi over Z.

Similarly, let Y be the ringed topos associated to the diagram (X,Y ) in the category RTop/Z

of ringed topoi over Z and let v : OX -mod → OY -mod be the forgetful functor with left adjoint

v∗ : OY -mod→ OX -mod as in Proposition 2.11. Letting

c : f∗LY/Z → LX/Z

be the natural morphism of complexes of OX -modules induced from the composition X
f−→ Y

g−→ Z

and denoting the objects of X in the form

(FX ,FY , f−1FY → FX),

we have

v∗LY/Z = (f∗LY/Z ⊕ LX/Z , LY/Z , f∗LY/Z
(id|c)−−−→ f∗LY/Z ⊕ LX/Z)

and

LX/Z = (LX/Z , LY/Z , f
∗LY/Z

c−→ LX/Z)

by definition of v∗ and by Corollary A.3. Now the morphism m : v∗LY/Z → LX/Z of complexes of

OX -modules in Theorem 2.13 is given levelwise by

mX : f∗LY/Z ⊕ LX/Z → LX/Z , (a, b) 7→ c(a) + b and mY : LY/Z
id−→ LY/Z .

Since mX is surjective with kernel isomorphic to f∗LY/Z and since the cone of the identity is

homotopic to the zero complex, we have

Cone(m) = (f∗LY/Z [1], 0, f∗0→ f∗LY/Z [1])

in D(X ). By Theorem 2.13 there is an obstruction for finding an extension

Y ′
g′ // Z ′

X ′

f ′

OO

h′

>>||||||||
of

Y ′
g′ // Z ′

X ′
h′

>>||||||||

with respect to the extension

0→ t∗ZJ → OZ′ → OZ → 0

of OZ in the group Ext2
X (Cone(m),m∗X t

∗
ZJ ) where mX : X → Z is the morphism of ringed topoi

in Proposition 1.17 (we did not need the flatness of the structure morphisms h : X → Z and

g : Y → Z in Theorem 2.13).

Now considering Y as a subdiagram of X with the complementary subdiagram X, the functor

G : OX -mod→ OX -mod in Lemma 3.23 is the forgetful functorOX -mod→ OX -mod, in particular,

it is exact. Since Cone(m) is a bounded above complex consisting of free OX -modules it follows
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from Proposition 3.25, applied to the diagram X , the subdiagram Y and the complementary

subdiagram X, that we have naturally

Ext2
X (Cone(m),m∗X t

∗
ZJ ) ∼= Ext2

X(f∗LY/Z [1], h∗t∗ZJ )

which may be simplified to Ext2
X(f∗LY/Z [1], t∗XJ ) ∼= Ext1

X(f∗LY/Z , t
∗
XJ ).

Notice that if Z = S and tZ is the identity, then this is just the obstruction group of Subdiagram

3 in Proposition 4.5 and the proof there shows the simplification of the obstruction group if g is

smooth. If g is a closed embedding with regular ideal sheaf I, then the natural morphism of

complexes of OY -modules LY/Z → I/I2[1] is a quasi-isomorphism. If I/I2 is a flat OY -module

or if f is flat, then the induced morphism f∗LY/Z → f∗I/I2[1] is still a quasi-isomorphism by

[Ill71, Lemme I.3.3.2.1.] because LY/Z consists of free OY -modules.

Subdiagram 15: By definition we have u−1OY =
(
OX , g−1OZ ⊗t−1

Y OS
OY ,OZ

)
, hence con-

dition 2 is satisfied and

Lh =
(
LX/X , LOY /g−1OZ⊗OY , LZ/Z

)
which may be replaced in D(X ) by

(
0, LOY /g−1OZ⊗OY , 0

)
using the quasi-isomorphisms(

id, id, 0
)

:
(
LX/X , LOY /g−1OZ⊗OY , 0

)
→
(
LX/X , LOY /g−1OZ⊗OY , LZ/Z

)
and (

0, id, 0
)

:
(
LX/X , LOY /g−1OZ⊗OY , 0

)
→
(
0, LOY /g−1OZ⊗OY , 0

)
.

Since the forgetful functor K+(X )→ K+(T (f)) is exact and since there is a natural isomorphism

HomCh(X )

(
(0, LOY /g−1OZ⊗OY , 0),m∗XJ

) ∼= HomCh(T (f))

(
(0, LOY /g−1OZ⊗OY ),m∗T (f)J

)
of abelian groups, we get a natural isomorphism

Ext2
X
(
(0, LOY /g−1OZ⊗OY , 0),m∗XJ

) ∼= Ext2
T (f)

(
(0, LOY /g−1OZ⊗OY ),m∗T (f)J

)
by the same argument as used in the proof of Proposition 3.25. Now if G : K+(T (f)) → K+(Y )

is the functor in Lemma 3.23 we get a natural isomorphism

Ext2
T (f)

(
(0, LOY /g−1OZ⊗OY ),m∗T (f)J

) ∼= Ext2
Y (LOY /g−1OZ⊗OY ,RG(m∗T (f)J ))

by Proposition 3.25. By an analogue argumentation as given in the proof of Proposition 3.55 there

is a natural isomorphism LOY /g−1OZ⊗OY
∼= g∗LZ/S [1] in D(Y ), hence the obstruction lives in

Ext1
Y (g∗LZ/S ,RG(m∗T (f)J )).

The simplification of the obstruction group if tZ is smooth and if Rif∗(t
∗
XJ ) = 0 for all i > 0 is

shown as in the case of subdiagrams 12 and 14.
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Remark 4.9. The obstruction groups for Subdiagrams 11 and 13 are difficult to control in practice

since they are concentrated on the ringed topos T (f). In this case we may consider “two-step”

obstruction groups similarly as in Remark 4.6.

Assume given deformations X ′ and Z ′ of X and Z, respectively. Let us consider an example

of a two-step obstruction. There is an obstruction for finding a deformation h′ : X ′ → Z ′ of

h : X → Z lying in Ext1
X(h∗LZ/S , t

∗
XJ ) by Proposition 4.5 Subdiagram 3. If it vanishes, there is

an obstruction in Ext2
Y (LY/Z ,RG(m∗T (f)J )) for extending h′ : X ′ → Z ′ to a deformation of the

triangle by Proposition 4.8 Subdiagram 12.

Now assume given a deformation Y ′, h′ : X ′ → Z ′ of Subdiagram 13. There is, for example,

an obstruction in Ext1
Y (g∗LZ/S , t

∗
Y J ) for finding a deformation g′ : Y ′ → Z ′ of g : Y → Z by

Proposition 4.5 Subdiagram 3. If it vanishes, there is an obstruction in Ext1
X(f∗LY/Z , t

∗
XJ ) for

extending h′ : X ′ → Z ′ and g′ : Y ′ → Z ′ to a deformation of the triangle by Proposition 4.8

Subdiagram 14.
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4.2.2 Deformations of the image of the Albanese map

We refer to [Băd01, Chapter 5] for the definition of the Albanese variety and its properties.

We consider only extensions of OS by the module J = OS , i.e., those extensions of OS of the

form 0 → OS → OS′ → OS → 0. Let S = Spec C be the spectrum of the field C of complex

numbers. By a variety over C we mean an integral separated scheme of finite type over C.

Let X be a nonsingular projective variety over C and let Z = Alb(X) be the Albanese variety

of X. Then Z is a nonsingular projective abelian variety of dimension q = dimH1(X,OX). Fixing

a closed point x0 ∈ X, we may consider the Albanese map

h : X → Z = Alb(X)

of X and its image Y . The morphism h and the image Y of h are independent of the chosen closed

point x0, up to translation in the abelian variety Z, so we need not care about this choice.

Now if I is the kernel of the ring morphism θh : OZ → h∗OX , we make Y into a scheme by

taking the structure sheaf OY = OA/I. This is just the reduced induced subscheme structure of

Y in Z. We get two morphisms of schemes f : X → Y and g : Y → Z with ring morphisms θf and

θg and two short exact sequences of sheaves

0→ OY
θf−→ f∗OX → Q→ 0 and 0→ I → OZ

θg−→ g∗OY → 0.

By definition there is a commutative triangle

Y � o

g

�@@@@@@@

X
h //

f
>>~~~~~~~

Z

of schemes over C.

Remember that if Rif∗OX = 0 for all i > 0 and if Y is smooth, then HomY (I/I2,Q) is an

obstruction group for extending a given deformation of h : X → Z to a deformation of the triangle

by Proposition 4.8 Subdiagram 12.

The aim of this subsection is to proof the following result.

Proposition 4.10. With the notations at the beginning of this section, assume that the following

conditions hold.

i) f is flat.

ii) Rif∗OX = 0 for all i > 0.

iii) Y = C1× . . .×Cm is a finite product of nonsingular projective curves Cj of genus g(Cj) ≥ 2

for all j.

Then

HomY (I/I2,Q) = 0,

hence each deformation h′ : X ′ → Z ′ of h : X → Z extends to a deformation

Y ′ � p
g′

 AAAAAAAA

X ′
h′ //

f ′
>>||||||||

Z ′

of

Y � p

g

 AAAAAAA

X
h //

f
>>~~~~~~~

Z.
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We need a preliminary lemma before giving the proof.

Lemma 4.11. With the notations at the beginning of this subsection, assume only that Y is a

nonsingular variety and let Alb(Y ) be the Albanese variety of Y . Then g : Y → Alb(X) induces

an isomorphism

Albg : Alb(Y )
∼=−→ Alb(X)

of abelian varieties.

Proof. Since Alb(X) is projective and since Y is a closed subscheme of Alb(X), it follows that Y

is projective as well. Thus Y is nonsingular and projective, hence we may consider its Albanese

variety Alb(Y ).

For distinction, let αX : X → Alb(X) and αY : Y → Alb(Y ) be the Albanese maps of X and

Y with respect to the closed points x0 ∈ X and f(x0) ∈ Y , respectively. We have αX(x0) = 0 and

αY (f(x0)) = 0 by definition of the Albanese map. Now since g : Y → Alb(X) is a morphism from

Y to the Abelian variety Alb(X) and since g(f(x0)) = 0, by the universal property of Alb(Y )

there is a unique morphism of abelian varieties Albg : Alb(Y ) → Alb(X) such that Albg(0) = 0

and such that

Alb(Y )

Albg

��

Y

αY
;;wwwwwwwww

� q

g

#GGGGGGGGG

X
αX //

f
??��������

Alb(X)

is commutative. Similarly, since the composition c : X
f−→ Y

αY−−→ Alb(Y ) is a morphism from X

to the Abelian variety Alb(Y ) and since c(x0) = 0, by the universal property of Alb(X) there is

a unique morphism of abelian varieties Albc : Alb(X) → Alb(Y ) such that Albc(0) = 0 and such

that

Alb(X)
Albc // Alb(Y )

Albg

��

Y

αY
;;wwwwwwwww

� q

g

#GGGGGGGGG

X

αX

OO

αX //

f

;;wwwwwwwww
Alb(X)

is commutative. Now both morphisms Albg ◦ Albc and the identity from Alb(X) to Alb(X) are

morphisms of abelian varieties sending 0 to 0, furthermore,

X
αX

{{wwwwwwwww
αX

##GGGGGGGGG

Alb(X)
Albg◦Albc // Alb(X)
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is commutative, hence Albg ◦ Albc = id by the universal property of Alb(X). If y ∈ Y , we may

choose x ∈ X such that f(x) = y since f is surjective. Thus

Albc(Albg(αY (y))) = Albc(g(y)) = Albc(g(f(x))) = Albc(αX(x)) = αY (f(x)) = αY (y),

whence Albc ◦ Albg ◦ αY = αY . Now similarly, since both morphisms Albc ◦ Albg and the iden-

tity from Alb(Y ) to Alb(Y ) are morphisms of abelian varieties sending 0 to 0, it follows that

Albc ◦ Albg = id by the universal property of Alb(Y ), whence Albg : Alb(Y ) → Alb(X) is an

isomorphism of abelian varieties.

Proof of Proposition 4.10. Let prj : Y → Cj be the projection to Cj and let fj : X → Cj be

the composition X
f−→ Y

prj−−→ Cj . We will divide the proof into three steps. We will see that

fj∗OX = OCj and prj∗Q = 0 for all j. Finally, we conclude that HomY (I/I2,Q) = 0.

Step 1: Let us show that fj∗OX = OCj for all j. Consider the Stein factorization

X
f //

fj

  @@@@@@@@@@@@@@@@

f ′j

��

Y

prj

��
C ′j

cj // Cj

of fj where C ′j = Specfj∗OX and f ′j has connected fibres and cj is a finite morphism. f ′j is

surjective and C ′j is normal by [Sta13, Lemma 33.36.1.]. Since f ′j is surjective and X is irreducible,

we have that C ′j is irreducible as well. Since C ′j is a normal curve, it is nonsingular, furthermore,

C ′j is projective because Cj is projective by assumption and cj is finite. We conclude that C ′j is a

nonsingular projective variety with Albanese variety Alb(C ′j).

Then abbreviating Y ′ = C ′1 × . . .× C ′m, there is a commutative diagram

X
(f ′1|...|f

′
m)

wwooooooooooooo
f

''OOOOOOOOOOOOO

Y ′ = C ′1 × . . .× C ′m
c1×...×cm // Y = C1 × . . .× Cm

of schemes. Since cj is surjective for all j, we have that c1 × . . . × cm is surjective as well.

Similarly, since f is surjective, we conclude that (f ′1| . . . |f ′m) is surjective as well because Y ′ and

Y are irreducible of the same dimension m.

Consequently, the pullback morphisms

H0(Y,Ω1
Y/C)→ H0(Y ′,Ω1

Y ′/C) and H0(Y ′,Ω1
Y ′/C)→ H0(X,Ω1

X/C)

are injective, but their composition H0(Y,Ω1
Y/C)→ H0(Y ′,Ω1

Y ′/C)→ H0(X,Ω1
X/C) is an isomor-

phism by Lemma 4.11, thus each pullback morphism is an isomorphism. In particular, we have

dim Alb(Y ) = h0(Y,Ω1
Y/C) = h0(Y ′,Ω1

Y ′/C) = dim Alb(Y ′).

It follows that cj is an isomorphism for every j. Otherwise, without loss of generality, c1 would

have degree at least 2. Since g(C1) ≥ 2 by assumption, it follows from Hurwitz formula that
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g(C ′1) > g(C1) (see for example [Har77, Example IV.2.5.4.]) and we get the contradiction

dim Alb(Y ) =

m∑
j=1

dim Alb(Cj) =

m∑
j=1

g(Cj) <

m∑
j=1

g(C ′j) =

m∑
j=1

dim Alb(C ′j) = dim Alb(Y ′).

Whence from the Stein factorization we conclude that fj∗OX = OCj for all j.

Step 2: We show that prj∗Q = 0 for all j. Applying prj∗ to the short exact sequence

0→ OY
θf−→ f∗OX → Q→ 0

of sheaves on Y , we get a long exact sequence

0→ prj∗OY
prj∗θf−−−−→ prj∗f∗OX → prj∗Q → R1prj∗OY → R1prj∗(f∗OX)→ R1prj∗Q → . . .

of sheaves on Cj . We have prj∗OY = OCj and prj∗f∗OX = fj∗OX = OCj by step one, moreover,

from the five-term-exact-sequence

0→ R1prj∗(f∗OX)→ R1fj∗OX → prj∗R
1f∗OX → R2prj∗(f∗OX)→ R2fj∗OX

of the Leray spectral sequence and from the hypothesis R1f∗OX = 0, it follows that

R1prj∗(f∗OX)→ R1fj∗OX is an isomorphism. Hence the long exact sequence simplifies to

0→ OCj
id−→ OCj → prj∗Q → R1prj∗OY → R1fj∗OX → R1prj∗Q → . . . .

It remains to show that R1prj∗OY → R1fj∗OX is injective for each j. We treat the case j = 1,

the case j 6= 1 is analogous.

The fibre of pr1 over y ∈ C1 is F = C2 × . . . × Cm, whence it is independent of y and the

function y 7→ h1(F,OF ) is constant. Since pr1 is flat, it follows that R1pr1∗OY is locally free and

that the natural morphism

R1pr1∗OY ⊗ C(y)→ H1(F,OF )

is an isomorphism for each y ∈ C1 (see for example [Har77, Corollary III.12.9]).

For y ∈ C1 let f−1
1 (y) ⊆ X be the fibre of f1 over y. Define

U = {y ∈ C1 | h1(f−1
1 (y),Of−1

1 (y)) is minimal}.

Then U is a non-empty open subset of C1 because the function C1 → N0, y 7→ h1(f−1
1 (y),Of−1

1 (y))

is upper semicontinuous. Since f is flat by assumption, we deduce that R1f1∗OX
∣∣
U

is locally free

and that the natural morphism

R1f1∗OX
∣∣
U
⊗ C(y)→ H1(f−1

1 (y),Of−1
1 (y))

is an isomorphism for each y ∈ U .

Consequently, on U the morphism R1pr1∗OY → R1f1∗OX is given fibrewise by the natu-

ral morphism H1(F,OF ) → H1(f−1
1 (y),Of−1

1 (y)) which by complex conjugation is given by the

pullback morphism H0(F,Ω1
F/C) → H0(f−1

1 (y),Ω1
f−1
1 (y)/C). Since the morphism f−1

1 (y) → F is
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surjective for all y ∈ C1 as follows from the commutativity of

C1

X
f //

f1

55jjjjjjjjjjjjjjjjjjjj

))TTTTTTTTTTTTTTTTT Y = C1 × . . .× Cm

pr1

OO

pr2×...×prm

��
F = C2 × . . .× Cm,

we see that H0(F,Ω1
F/C)→ H0(f−1

1 (y),Ω1
f−1
1 (y)/C) is injective. Hence R1pr1∗OY

∣∣
U
→ R1f1∗OX

∣∣
U

is injective. It follows that the support of the kernel K of R1pr1∗OY → R1f1∗OX is contained in

the finite set C1 \U , hence K is a torsion sheaf. But since R1pr1∗OY is locally free, it follows that

K = 0 and so R1pr1∗OY → R1f1∗OX is injective. We conclude that prj∗Q = 0 for all j.

Step 3: Finally, we show that HomY (I/I2,Q) = 0. Since Y = C1 × . . . × Cm we have

that Alb(Y ) = Alb(C1) × . . . × Alb(Cm) and we know from Lemma 4.11 that Alb(X) ∼= Alb(Y )

naturally, hence the normal bundle NY of Y in Z = Alb(X) is given by NY ∼=
⊕m

j=1 pr∗jNCj where

NCj is the normal bundle of Cj in Alb(Cj). It follows

HomY (I/I2,Q) ∼= HomY (OY ,Q⊗NY ) ∼= H0(Y,Q⊗NY ) ∼= H0(Y,Q ⊗
( m⊕
j=1

pr∗jNCj
)
)

∼=
m⊕
j=1

H0(Y,Q⊗ pr∗jNCj )
∼=

m⊕
j=1

H0(Cj ,prj∗
(
Q⊗ pr∗jNCj

)
).

But since NCj is locally free, prj∗(Q ⊗ pr∗jNCj )
∼= prj∗Q ⊗ NCj by projection formula which is

zero because prj∗Q = 0 by step 2. We conclude that HomY (I/I2,Q) = 0.
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5 Deformations of diagrams of modules

In Section 2 we have dealt with deformations of diagrams and subdiagrams of ringed topoi. Simi-

larly, if (S,OS) is a ringed topos, we will now describe deformations of diagrams and subdiagrams

of OS -modules. We will use many notions and some results of [Ill71, Chapitre IV], for example

graded extensions, the graded cotangent complex, the derived category of graded modules over a

graded ring.

In the first subsection we describe a way of turning the given diagram of modules into a

diagram of ringed topoi. Taking the ringed topos X associated to the diagram of ringed topoi as

in Proposition 1.15, we will show that giving a deformation of the diagram of modules is equivalent

to giving a certain graded extension of the structure sheaf OX .

In the second subsection we will answer the two analogue questions for deformations of diagrams

and subdiagrams of modules posed at the beginning of Section 2. Basically the answers are given

by a graded analogue of Theorem 2.13 where all complexes occurring there are replaced by their

graded analogues.

Finally in the last subsection we give an overview of all subdiagrams of a single morphism of

modules and the respective obstruction groups.

For the whole section we fix an extension

0→ J → OS′ → OS → 0

of OS by an OS -module J .

Definition 5.1. Let F be a flat OS -module. A deformation of F over OS′ is a short exact

sequence of OS′ -modules

F : (0→ J ⊗OS F → F ′
p−→ F → 0)

such that F ′ is a flat OS′ -module and such that the morphism of OS -modules F ′ ⊗OS′ OS → F
corresponding to p by adjunction is an isomorphism.

Given another deformation

F̃ : (0→ J ⊗OS F → F̃ ′
p̃−→ F → 0)

of F over OS′ , an isomorphism of deformations F → F̃ is an isomorphism of OS′ -modules F ′ → F̃ ′

such that

0 // J ⊗OS F // F ′
p //

��

F // 0

0 // J ⊗OS F // F̃ ′
p̃ // F // 0

is commutative.
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Proposition 5.2. [Ill71, Proposition IV.3.1.5.] Let F be a flat OS-module.

i) There is an obstruction for the existence of a deformation of F over OS′ lying in

Ext2
S(F ,J ⊗OS F).

ii) If this obstruction vanishes, then the set of isomorphism classes of deformations of F over

OS′ is a torsor under

Ext1
S(F ,J ⊗OS F).

iii) The automorphism group of any fixed deformation of F over OS′ is canonically isomorphic

to

HomS(F ,J ⊗OS F).

Now we come to the notion of diagrams of OS -modules.

Definition 5.3. Let C be a finite category, i.e., the morphisms of C and thereby the objects of

C are finite sets. Let further (S,OS) be a ringed topos. A diagram of sheaves of OS -modules of

type C is a covariant functor I from C to the category of OS -modules, denoted I : C→ OS -mod.

Thus for any c ∈ ob(C) there is an OS -module I(c) and for any α ∈ HomC(c1, c2) there is an

OS -linear morphism I(α) : I(c1) → I(c2) such that for any composition c1
α→ c2

β→ c3 in C we

have I(βα) = I(β) ◦ I(α) : I(c1)→ I(c2)→ I(c3). Notice that in contrast to the case of diagrams

of ringed topoi in Definition 1.14, we define this functor I to be covariant from C to OS -mod. The

reason will become clear in Definition 5.6.

Definition 5.4. Let I : C→ OS -mod be a diagram of OS -modules. Assume that each OS -module

I(c) is flat for c ∈ ob(C). A deformation of I over OS′ is a functor I ′ : C → OS′ -mod together

with, for each c ∈ ob(C), a deformation

0→ J ⊗OS I(c)→ I ′(c)
pc−→ I(c)→ 0

of I(c) such that for every α ∈ HomC(c1, c2) the diagram

0 // J ⊗OS I(c1) //

id⊗I(α)

��

I ′(c1)
pc1 //

I′(α)

��

I(c1) //

I(α)

��

0

0 // J ⊗OS I(c2) // I ′(c2)
pc2 // I(c2) // 0

is commutative. Two deformations I ′ and Ĩ ′ of I over OS′ are called isomorphic if there is a

natural isomorphism of functors ϕ : I ′ → Ĩ ′ such that

0 // J ⊗OS I(c) // I ′(c)
pc //

ϕ(c)

��

I(c) // 0

0 // J ⊗OS I(c) // Ĩ ′(c)
p̃c // I(c) // 0

is commutative for every c ∈ ob(C).
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5.1 The relation between diagrams of modules and diagrams of ringed

topoi

We restrict to the following case for the rest of this section.

General assumption 5.5. Let (S,OS) be a ringed topos and 0 → J → OS′ → OS → 0 an

extension of OS . Let I : C→ OS -mod be a diagram of OS -modules such that Fc = I(c) is flat over

OS for every c ∈ ob(C) and let D a subcategory of C. By restricting I to D we get a subdiagram

J : D→ OS -mod of I.

We may ask the analogue two questions at the beginning of Section 2 for the case of diagrams

of OS -modules:

i) Given a deformation J ′ of the subdiagram J , what is an obstruction group for the existence

of a deformation of the diagram I inducing the given deformation J ′ of J?

ii) If the obstruction in this group vanishes, how many different isomorphism classes of defor-

mations of I inducing the given one of J are there?

To answer these questions we will construct for I, as already mentioned at the beginning of this

section, a diagram of ringed topoi over S with associated ringed topos X such that giving a

deformation of the diagram of modules over OS′ is equivalent to giving a graded extension of OX
over m−1

X OS′ .
For each c ∈ ob(C) the OS -module Fc = I(c) gives rise to the OS -algebra OS ⊕ Fc which is a

graded OS -algebra having OS in degree 0 and Fc in degree 1 with ring multiplication

(OS ⊕Fc)× (OS ⊕Fc)→ OS ⊕Fc ,
(
(s1, f1), (s2, f2)

)
7→ (s1s2, s1f2 + s2f1)

and with structure morphism

(id|0) : OS → OS ⊕Fc.

Each α ∈ HomC(c1, c2) yielding the OS -linear morphism

Fα = I(α) : Fc1 → Fc2

gives rise to a morphism of graded OS -algebras θα : OS ⊕Fc1 → OS ⊕Fc2 defined by

(
id 0

0 Fα

)
.

For each c ∈ ob(C) there is a morphism of ringed topoi

tc : (S,OS ⊕Fc)→ (S,OS)

whose underlying morphism of topoi is the identity and whose ring morphism is the above mor-

phism (id|0) : t−1
c OS = OS → OS ⊕Fc.

Definition 5.6. We define (X ,OX ) to be the ringed topos associated to the following diagram

of ringed topoi over S of type C (in the sense of Proposition 1.15): The levels are the ringed

topoi (S,OS ⊕ Fc) for c ∈ ob(C), the morphisms of topoi fα : S → S are the identities for each

α ∈ HomC(c1, c2) and the ring morphisms are the above morphisms of graded OS -algebras

θα : f−1
α

(
OS ⊕Fc1

)
= OS ⊕Fc1 → OS ⊕Fc2

for α ∈ HomC(c1, c2). The ringed topos (Y,OY) is defined analogously be restricting to the objects

and morphisms of D.
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Notice that there are natural morphisms of ringed topoi mX : X → S and mY : Y → S by

Lemma 1.17 and the ring morphisms θX : m−1
X OS → OX and θY : m−1

Y OS → OY are morphisms of

graded rings since levelwise they are given by the morphisms of graded rings (id|0) : OS → OS⊕Fc
for c ∈ ob(C) and c ∈ ob(D), respectively. Moreover, the collection F of all OS -modules Fc for

c ∈ ob(C) together with the OS -linear morphisms Fα : Fc1 → Fc2 for α ∈ HomC(c1, c2) is a module

over m−1
X OS and θX may be written as

θX = (id|0) : m−1
X OS → OX = m−1

X OS ⊕F

where m−1
X OS is placed in degree 0 and F in degree 1.

Lemma 5.7. In the situation of General assumption 5.5, the morphisms mX : X → S and

mY : Y → S are flat. In particular, X and Y satisfy all conditions of General assumption 2.1.

Proof. For each c ∈ ob(C) there is a short exact sequence of OS -modules

0→ Fc
(0|id)−−−→ OS ⊕Fc

pr1−−→ OS → 0.

Since Fc is a flat OS -module by assumption and since OS is a flat OS -module, it follows that

(id|0) : OS → OS ⊕Fc is flat as well.

Applying m−1
X to the fixed extension 0→ J → OS′ → OS → 0 of OS we get an extension

0→ m−1
X J → m−1

X OS′ → m−1
X OS → 0

of m−1
X OS . Furthermore, by definition of the ringed topos X , giving (an isomorphism class of) a

deformation of the diagram I : C → OS -mod of OS -modules over OS′ in the sense of Definition

5.4 is equivalent to giving (an isomorphism class of) a deformation of the m−1
X OS -module F over

m−1
X OS′ in the sense of Definition 5.1.

Now if A is a graded sheaf of rings on a topos T and if B is a graded A-algebra, we define

the graded cotangent complex Lgr
B/A as in [Ill71, Equation IV.2.2.1]. Taking the concept of graded

extensions and graded deformations as presented in [Ill71, Section IV.2.4.], it is possible to define

the derived category D(A)gr of the category of graded A-modules as in [Ill71, Section IV.1.2.] and

abelian groups

ExalA(B,M)gr and Ext1
B(Lgr

B/A,M)gr

for M a graded B-module which are naturally isomorphic by [Ill71, Equation IV.2.4.2] just as their

analogues ExalA(B,M) ∼= Ext1
B(LB/A,M) in the ungraded case in Theorem 1.8.iii). The group

ExalA(B,M)gr is by definition the group of isomorphism classes of graded A-extensions of B by

the fixed graded B-module M .

The crucial point is that there is a relation between the two notions “deformations of the

m−1
X OS -module F over m−1

X OS′” in the sense of Definition 5.1 and “m−1
X OS′ -extensions of OX ”

in the sense of Definition 1.6, stated after the following lemma.
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Lemma 5.8. Let T be a topos, let A =
⊕

n≥0An be a graded ring of T and let B =
⊕

n≥0Bn be

a graded A-algebra. For M,L ∈ ob(D(A)gr) and i ∈ Z let

ExtiA(M,L)gr = HomD(A)gr
(M,L[i]).

i) For each E ∈ ob(D(A)gr) and F ∈ ob(D(A0)) and for each i, n ∈ Z there is a natural

isomorphism

ExtiA0
(En, F ) ∼= ExtiA(E,F (−n))gr

of abelian groups, functorial in E and F , where En is the homogeneous part of degree n of

E.

ii) There is a natural functorial isomorphism

(Lgr
B/A)0

∼= LB0/A0

in D(B0). If A = A0 and B0 = A0, then there are natural isomorphisms

(Lgr
B/A)0

∼= 0 and (Lgr
B/A)1

∼= B1

in D(A), functorial in B in the sense that if f : B =
⊕

n≥0Bn → C =
⊕

n≥0 Cn is a

morphism of graded A-algebras such that B0 = A0 = C0, then the degree 1 morphism

(Lgr
B/A)1 → (Lgr

C/A)1 of the natural morphism of graded B-modules Lgr
B/A → Lgr

C/A is identified

with the degree 1 morphism f1 : B1 → C1 of f : B → C.

Proof. Assertion i) is shown in [Ill71, Equation IV.1.2.2.1] and assertion ii) in [Ill71, Equation

IV.2.2.4] and [Ill71, Equation IV.2.2.5] together with the functoriality of [Ill71, Equation IV.2.1.5].

Proposition 5.9. Under the conditions of General assumption 5.5, let X be the ringed topos

associated to I as in Definition 5.6. Then for each i ∈ Z there is a natural isomorphism of abelian

groups

Exti
m−1
X OS

(F ,m−1
X J ⊗m−1

X OS
F) ∼= ExtiX (Lgr

X/S ,m
−1
X J ⊗m−1

X OS
F)gr

where m−1
X J ⊗m−1

X OS
F on the right hand side is considered as a graded OX -module concentrated

in degree 1.

In particular, for i = 1, it follows that there is a natural one-to-one correspondence between

isomorphism classes of deformations of F over m−1
X OS′ and isomorphism classes of graded ex-

tensions of OX over m−1
X OS′ by the graded OX -module m−1

X J ⊗m−1
X OS

F , considered as module

concentrated in degree 1.

Before giving the proof, let us describe the above natural one-to-one correspondence which is

proved in [Ill71, Equation IV.3.1.2] together with [Ill71, Equation IV.2.4.2]: Let

0→ m−1
X J → m−1

X OS′
q−→ m−1

X OS → 0

be the extension of m−1
X OS considered. Given the isomorphism class of a deformation

0→ m−1
X J ⊗m−1

X OS
F i−→ F ′ p−→ F → 0
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of F over m−1
X OS′ , we get an induced isomorphism class of a graded m−1

X OS′ -extension of

OX = m−1
X OS ⊕F by the graded OX -module 0⊕m−1

X J ⊗m−1
X OS

F which is represented by

0 // 0⊕m−1
X J ⊗m−1

X OS
F

0 0

0 i


// m−1
X OS ⊕F ′

id 0

0 p


// m−1
X OS ⊕F // 0.

m−1
X OS′

(q|0)

OO

(q|0)

iiSSSSSSSSSSSSSSSS

Here we have written explicitly 0⊕m−1
X J ⊗m−1

X OS
F to indicate that this module is concentrated

in degree 1. On the other hand, given the isomorphism class of a graded m−1
X OS′ -extension of OX

by the graded OX -module 0⊕m−1
X J ⊗m−1

X OS
F represented by

0 // 0⊕m−1
X J ⊗m−1

X OS
F // m−1

X OS ⊕F ′ // m−1
X OS ⊕F // 0,

m−1
X OS′

(q|0)

OOiiSSSSSSSSSSSSSSSS

we get an isomorphism class of a deformation of F over m−1
X OS′ by taking the class represented

by the degree 1 sequence

0→ m−1
X J ⊗m−1

X OS
F → F ′ → F → 0.

Proof of Proposition 5.9. By Lemma 5.8.i) we have naturally

ExtiX (Lgr
X/S ,m

−1
X J ⊗m−1

X OS
F)gr

∼= Exti
m−1
X OS

(
(Lgr
X/S)1,m

−1
X J ⊗m−1

X OS
F
)

because m−1
X J ⊗m−1

X OS
F is concentrated in degree 1. By Lemma 5.8.ii) there is a natural iso-

morphism (Lgr
X/S)1

∼= F in D(m−1
X OS), hence

Exti
m−1
X OS

(
(Lgr
X/S)1,m

−1
X J ⊗m−1

X OS
F
) ∼= Exti

m−1
X OS

(F ,m−1
X J ⊗m−1

X OS
F)

∼= Exti
m−1
X OS

(F ,m−1
X J ⊗m−1

X OS
F)
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5.2 The long exact sequence of a diagram and a subdiagram of modules

Assume given the situation of General assumption 5.5 and let X and Y be the ringed topoi for I

and J as in Definition 5.6. As done in Subsections 2.2 and 2.3 for the ungraded case, we will derive

a long exact sequence for diagrams and subdiagrams of modules containing all groups relevant for

deformation theoretic considerations.

Let N0 be the set of nonnegative integers. If A is an N0-graded ring of a topos T , we denote

by A-modgr the category of N0-graded A-modules whose morphisms are A-linear morphisms pre-

serving the grading. We will omit N0 in the notations and just speak of a graded module. The

category A-modgr has all finite colimits. To see this, notice that if we are given a finite system

of graded modules over A, we may disregard the grading and take the colimit in the category of

modules. This colimit has a natural grading and regarding it as a graded module, we see that the

category A-modgr has all finite colimits.

Let D(A)gr be the derived category of the category of graded A-modules as defined in [Ill71,

Section IV.1.2.]. For L,M ∈ ob(D(A)gr) and i ∈ Z we define

ExtiA(L,M)gr = HomD(A)gr
(L,M [i]).

Now let

v : OX -modgr→ OY -modgr

be the forgetful functor. As in the ungraded case, there is a left adjoint

v∗ : OY -modgr→ OX -modgr

of v. For L ∈ ob(OY -modgr) it is defined levelwise by

(v∗L)c = lim−→
γ∈ob(c)

(
f−1
γ Ld ⊗f−1

γ OXd
OXc

)
for c ∈ ob(C) where the colimit is taken in the category OXc-modgr. This makes sence because

if Ld is a graded OXd -module for (γ : d → c) ∈ ob(c), then f−1
γ Ld ⊗f−1

γ OXd
OXc is a graded

OXc-module. By abuse of notation we denote by v and v∗ the functors between the categories

Ch(X )gr and Ch(Y)gr of complexes of graded OX -modules and graded OY -modules, respectively,

as well.

Let Lgr
X/S be the graded cotangent complex of the morphism of graded rings

θX = (id|0) : m−1
X OS → OX = m−1

X OS ⊕F

of mX : X → S as defined in [Ill71, Equation IV.2.2.1].

Theorem 5.10. Assume given the situation of General assumption 5.5 and let X and Y be the

ringed topoi for I and J as in Definition 5.6. Let

mgr : v∗vLgr
X/S = v∗Lgr

Y/S → Lgr
X/S

be the adjunction morphism in Lemma 2.12 of the graded cotangent complex Lgr
X/S and let Cone(mgr)

be the cone of mgr. Let M = m−1
X J ⊗m−1

X OS
F , considered as graded OX -module concentrated in
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degree 1. Then the distinguished triangle

Cone(mgr)
yy

yyrrrrrrrrrr

v∗Lgr
Y/S

mgr
// Lgr
X/S

eeKKKKKKKKK

in the derived category D(X )gr yields a long exact sequence

0→ Ext0
X (Cone(mgr),M)gr → Ext0

X (Lgr
X/S ,M)gr → Ext0

Y(Lgr
Y/S , vM)gr

→ Ext1
X (Cone(mgr),M)gr

σ−→ Ext1
X (Lgr

X/S ,M)gr
τ−→ Ext1

Y(Lgr
Y/S , vM)gr

ω−→ Ext2
X (Cone(mgr),M)gr → Ext2

X (Lgr
X/S ,M)gr → Ext2

Y(Lgr
Y/S , vM)gr

→ . . .

of abelian groups. The morphism τ is the forgetful morphism sending a deformation of the diagram

I of OS-modules to the induced deformation of J . Given a deformation J ′ of the subdiagram J

over OS′ , there is an obstruction

ω(J ′) ∈ Ext2
X (Cone(mgr),M)gr

whose vanishing is necessary and sufficient for the existence of a deformation I ′ of the diagram I

over OS′ reducing to J ′. If the obstruction ω(J ′) is zero, then the set of isomorphism classes of

deformations I ′ of I over OS′ reducing to J ′ is a torsor under the image of

σ : Ext1
X (Cone(mgr),M)gr → Ext1

X (Lgr
X/S ,M)gr.

Proof. We apply the functor HomD(X )gr
(−,M) to the above distinguished triangle to get an exact

sequence

0→ Ext0
X (Cone(mgr),M)gr → Ext0

X (Lgr
X/S ,M)gr → Ext0

X (v∗Lgr
Y/S ,M)gr

→ Ext1
X (Cone(mgr),M)gr → Ext1

X (Lgr
X/S ,M)gr → Ext1

X (v∗Lgr
Y/S ,M)gr

→ Ext2
X (Cone(mgr),M)gr → Ext2

X (Lgr
X/S ,M)gr → Ext2

X (v∗Lgr
Y/S ,M)gr

→ . . .

of abelian groups. As in the ungraded case in Theorem 2.13, one shows that for each i ∈ Z there

is a natural isomorphism

ExtiX (v∗Lgr
Y/S ,M)gr

∼= ExtiY(Lgr
Y/S , vM)gr

and that the composition

ExtiX (Lgr
X/S ,M)gr → ExtiX (v∗Lgr

Y/S ,M)gr
∼= ExtiY(Lgr

Y/S , vM)gr

is the forgetful morphism. We know that Ext1
X (Lgr

X/S ,M)gr and Ext1
Y(Lgr

Y/S , vM)gr classify isomor-

phism classes of deformations of I and J over OS′ , respectively, by Proposition 5.9 and Theorem

5.2. All deformation theoretic assertions follow from the exactness of the sequence.
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Our next aim is to state a graded analogue of Theorem 2.20. If A is an N0-graded ring of a

topos T , we denote by A-alggr the category of N0-graded A-algebras with morphisms of A-algebras

preserving the grading. Again we omit the prefix N0 in the notations. The category A-alggr has

all finite colimits. Similarly as in the case of the category A-modgr, if we are given a finite system

of graded A-algebras, we may omit the grading and take the colimit in the category of algebras.

This colimit has a natural grading as A-algebra, so it is the colimit in the category A-alggr.

Now let u : m−1
X OS -alggr → m−1

Y OS -alggr be the forgetful functor. This functor has a left

adjoint

u−1 : m−1
Y OS -alggr→ m−1

X OS -alggr

which is given levelwise, for c ∈ ob(C), by

(u−1B)c = lim−→
γ∈ob(c)

f−1
γ Bd

where B ∈ ob(m−1
Y OS -alggr) and the colimit is taken in the category t−1

c OS -alggr. Remember

that tc : (S,OS ⊕ Fc) → (S,OS) has the identity as underlying morphism of topoi, thus this

colimit is taken in the category OS -alggr. Imitating the construction in Proposition 2.16, we get

the following result.

Corollary 5.11. With the above notations there is a natural factorization

m−1
X OS

θX //

l $$JJJJJJJJJ
OX

u−1OY

h

;;xxxxxxxxx

of the graded ring morphism θX all of whose morphisms are morphisms of graded m−1
X OS-algebras.

Before stating the graded analogue of Theorem 2.20, let us examine three different examples.

Example 5.12. Consider the examples

diagram in OS -mod subdiagram 1 in OS -mod

F
ϕ // G F

subdiagram 2 in OS -mod subdiagram 3 in OS -mod

G F G

with no other morphisms involved except for the identities. Here F and G are OS -modules and

ϕ : F → G is OS -linear. The corresponding diagram in RTop/S is given by

f : (X,OX) := (S,OS ⊕ G)→ (S,OS ⊕F) =: (Y,OY )

whose underlying morphism of topoi is the identity and whose ring morphism is

id⊕ ϕ : OS ⊕F → OS ⊕ G.
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Let further tX : (X,OX)→ (S,OS) and tY : (Y,OY )→ (S,OS) be the structure morphisms whose

underlying morphisms of topoi are the identity and whose ring morphisms are (id|0) : OS → OS⊕G
and (id|0) : OS → OS ⊕F , respectively. Now let X be the ringed topos associated to the diagram

f : X → Y in RTop/S as defined in Definition 5.6. We denote the objects of X in the form

(HX ,HY ,HY → HX)

where HX and HY are sheaves of X and Y , respectively. The structure sheaf of X is given by

OX =
(
OS ⊕ G,OS ⊕F ,OS ⊕F

id⊕ϕ−−−→ OS ⊕ G
)
.

Subdiagram 1: By definition we have

u−1OY =
(
OS ⊕F ,OS ⊕F ,OS ⊕F

id⊕id−−−→ OS ⊕F
)

and h : u−1OY → OX is given by h =
(
id⊕ ϕ, id⊕ id

)
.

Subdiagram 2: Similarly, we have

u−1OY =
(
OS ⊕ G,OS ,OS

(id|0)−−−→ OS ⊕ G
)

and h : u−1OY → OX is given by h =
(
id⊕ id, (id|0)

)
.

Subdiagram 3: This time (u−1OY)X is the tensor product of OS ⊕F and OS ⊕ G over OS ,

considered as a graded OS -algebra, i.e.,

(u−1OY)X = OS ⊕ (F ⊕ G)⊕ (F ⊗OS G).

whose degree 0 part is OS , whose degree 1 part is F ⊕ G and whose degree 2 part is F ⊗OS G.

Hence we have

u−1OY =
(
OS ⊕ (F ⊕ G)⊕ (F ⊗OS G),OS ⊕F ,OS ⊕F

id⊕(id|0)−−−−−−→ OS ⊕ (F ⊕ G)⊕ (F ⊗OS G)
)
.

If l : F ⊕ G → G is the morphism (f, g) 7→ ϕ(f) + g, then h : u−1OY → OX is given by

h =
(
id⊕ l ⊕ 0, id⊕ id

)
.

We come back to the general case. Each composition of graded rings gives rise to a distinguished

triangle between the graded cotangent complexes by [Ill71, Diagramme IV.2.3.4]. Hence as in the

ungraded case, we have a distinguished triangle

Lgr
hxx

xxrrrrrrrrrrr

Lgr
l ⊗u−1OY OX // Lgr

X/S

aaDDDDDDDD

in D(X )gr induced from the composition of graded rings θX : m−1
X OS

l−→ u−1OY
h−→ OX in Corol-

lary 5.11.

Now as in Lemma 2.19 we define a natural morphism of complexes of graded OX -modules

agr : v∗Lgr
Y/S → Lgr

l ⊗u−1OY OX
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such that

v∗Lgr
Y/S

mgr
//

agr

��

Lgr
X/S

Lgr
l ⊗u−1OY OX // Lgr

X/S

is commutative in the category Ch(X )gr of complexes of graded OX -modules.

Theorem 5.13. Assume given the situation of General assumption 5.5 and let X and Y be the

ringed topoi for I and J as in Definition 5.6. Let M = m−1
X J ⊗m−1

X OS
F , considered as graded

OX -module concentrated in degree 1. If agr is a quasi-isomorphism, then for each i ∈ Z it induces

a natural isomorphism of abelian groups

ExtiX (Lgr
l ⊗u−1OY OX , N)gr

∼= ExtiY(Lgr
Y/S , vN)gr,

functorial in N ∈ ob(D+(X )gr). Furthermore, if agr is a quasi-isomorphism, then the application

of the functor HomD(X )gr
(−,M) to the distinguished triangle

Lgr
hxx

xxrrrrrrrrrrr

Lgr
l ⊗u−1OY OX // Lgr

X/S

aaDDDDDDDD

yields a long exact sequence

0→ Ext0
X (Lgr

h ,M)gr → Ext0
X (Lgr

X/S ,M)gr → Ext0
Y(Lgr

Y/S , vM)gr

→ Ext1
X (Lgr

h ,M)gr
σ−→ Ext1

X (Lgr
X/S ,M)gr

τ−→ Ext1
Y(Lgr

Y/S , vM)gr

ω−→ Ext2
X (Lgr

h ,M)gr → Ext2
X (Lgr

X/S ,M)gr → Ext2
Y(Lgr

Y/S , vM)gr

→ . . .

of abelian groups. The morphism τ is the forgetful morphism sending a deformation of the diagram

I of OS-modules to the induced deformation of J . Given a deformation J ′ of the subdiagram J

over OS′ , there is an obstruction

ω(J ′) ∈ Ext2
X (Lgr

h ,M)gr

whose vanishing is necessary and sufficient for the existence of a deformation I ′ of the diagram I

over OS′ reducing to J ′. If the obstruction ω(J ′) is zero, then the set of isomorphism classes of

deformations I ′ of I over OS′ reducing to J ′ is a torsor under the image of

σ : Ext1
X (Lgr

h ,M)gr → Ext1
X (Lgr

X/S ,M)gr.

Proof. We just imitate the proof of Theorem 2.20.
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Notice that agr : v∗Lgr
Y/S → Lgr

l ⊗u−1OY OX is a quasi-isomorphism of complexes of graded

OX -modules if and only if the underlying morphism a : v∗LY/S → Ll ⊗u−1OY OX of complexes

of OX -modules disregarding the grading in Lemma 2.19 is a quasi-isomorphism by [Ill71, Section

IV.1.2.1.]. Hence we may use the sufficient conditions 1 or 2 in Theorem 2.20 to verify if agr is a

quasi-isomorphism.

Notice further that

ExtiX (Lgr
h ,M)gr = ExtiX (Lgr

h ,m
−1
X J ⊗m−1

X OS
F)gr

∼= Exti
m−1
X OS

(
(Lgr

h )1,m
−1
X J ⊗m−1

X OS
F
)

for all i ∈ Z by Lemma 5.8.i). Thus in contrast to the ungraded case in Theorem 2.20, we

do not need to know the graded cotangent complex Lgr
h to understand the obstruction group

Ext2
X (Lgr

h ,M)gr, but only its degree 1 component (Lgr
h )1. The following lemma is a generalization

of [Ill71, Equation IV.3.2.10].

Lemma 5.14. Let h1 : (u−1OY)1 → F be the degree 1 morphism of the morphism

h : u−1OY → OX = m−1
X OS ⊕F

of graded m−1
X OS-algebras in Corollary 5.11. Consider h1 as a morphism of m−1

X OS-modules. If

Cone(h1) is the cone of h1, then there is an isomorphism

(Lgr
h )1
∼= Cone(h1)

in D(m−1
X OS).

Notice that the m−1
X OS -linear morphism h1 : (u−1OY)1 → F and thereby its cone depend

only on the chosen diagram I : C → OS -mod and the chosen subdiagram J : D → OS -mod of

OS -modules.

Proof. The distinguished triangle

Lgr
hxx

xxrrrrrrrrrrr

Lgr
l ⊗u−1OY OX // Lgr

X/S

aaDDDDDDDD

in D(X )gr induced by the composition of graded rings m−1
X OS

l−→ u−1OY
h−→ OX gives rise to a

distinguished triangle

(Lgr
h )1ww

wwoooooooooooo

(Lgr
l ⊗u−1OY OX )1

// (Lgr
X/S)1

ddIIIIIIIII

in D(m−1
X OS) by taking the degree 1 components. Remember that (u−1OY)0 = m−1

X OS and

OX = m−1
X OS ⊕F , hence we have

(Lgr
l ⊗u−1OY OX )1 =

(
(Lgr

l )0 ⊗(u−1OY)0
(OX )1

)
⊕
(
(Lgr

l )1 ⊗(u−1OY)0
(OX )0

)
=
(
(Lgr

l )0 ⊗m−1
X OS

F
)
⊕
(
(Lgr

l )1 ⊗m−1
X OS

m−1
X OS

)
∼=
(
(Lgr

l )0 ⊗m−1
X OS

F
)
⊕ (Lgr

l )1.
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By Lemma 5.8 ii) there are natural functorial isomorphism

(Lgr
l )0
∼= 0 , (Lgr

l )1
∼= (u−1OY)1 and (Lgr

X/S)1
∼= F

in D(m−1
X OS). Thus (Lgr

l ⊗u−1OY OX )1
∼= (u−1OY)1 and the functoriality of all isomorphisms

used shows that there is a distinguished triangle

(Lgr
h )1yy

yyssssssssss

(u−1OY)1
h1 // F

aaDDDDDDDD

in D(m−1
X OS). In particular, there is an isomorphism (Lgr

h )1
∼= Cone(h1) in D(m−1

X OS).
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5.3 The subdiagrams of a single morphism of modules

In this example we keep the situation of General assumption 5.5. We consider two flat OS -modules

F and G and the diagram

ϕ : F → G

of OS -modules in Example 5.12. Similarly as in Subsection 4.1.2, we treat all three possible

subdiagrams and calculate the obstruction groups for the problem of extending a given deformation

of the subdiagram to a deformation of the diagram as explicitly as possible.

We keep the notations of Example 5.12, in particular the corresponding diagram

f : (X,OX) := (S,OS ⊕ G)→ (S,OS ⊕F) =: (Y,OY )

in RTop/S whose underlying morphism of topoi is the identity and whose ring morphism is

id⊕ ϕ : OS ⊕F → OS ⊕ G.

Let Z be the ringed topos associated to the diagram f : X → Y in RTop/S.

Proposition 5.15. The following chart is a list of all subdiagrams of ϕ : F → G and the corre-

sponding obstruction groups as found in Theorem 5.13:

subdiagram condition or notation obstruction group

1 F
C(ϕ) the cone of ϕ Ext2

S(C(ϕ),J ⊗OS G)

ϕ surjective with kernel K Ext1
S(K,J ⊗OS G)

ϕ injective with cokernel Q Ext2
S(Q,J ⊗OS G)

2 G
H = (G,F ,F ϕ−→ G)

Ext2
m−1
Z OS

(F ′,m−1
Z J ⊗m−1

Z OS
H)

F ′ = (0,F ,F → 0)

3 F G none Ext1
S(F ,J ⊗OS G)

Proof. First notice that considering the subdiagrams F , G and (F ,G) of ϕ : F → G corresponds

to considering the subdiagrams Y , X and (X,Y ) of f : X → Y , respectively. We have seen in the

proof of Proposition 4.5 that condition 2 in Theorem 2.20 is satisfied in each of the three cases.

We will use some graded versions of results of Section 3.

Subdiagram 1: Keeping F and omitting G corresponds to omitting the source (X,OX) of f .

By a graded analogue of the calculations for the obstruction group for subdiagram 2 in Proposition

4.5, there is an obstruction in

Ext2
X(Lgr

X/Y , t
−1
X J ⊗t−1

X OS
G)gr = Ext2

X(Lgr
X/Y ,J ⊗OS G)gr

for extending a given graded extension of (Y,OY ) to a graded extension of f . Here J ⊗OS G is

considered as graded OX -module concentrated in degree 1. By Lemma 5.8.i) we have naturally

Ext2
X(Lgr

X/Y ,J ⊗OS G)gr
∼= Ext2

S
(
(Lgr

X/Y )1,J ⊗OS G
)
.

We have seen in Example 5.12 that the morphism h1 in Lemma 5.14 is given by

h1 = (ϕ, id) : (F ,F ,F id−→ F)→ (G,F ,F ϕ−→ G)
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and we have (Lgr
X/Y )1 =

(
(Lgr

h )1

)
X
∼=
(
Cone(h1)

)
X

= C(ϕ) in D(S) by Lemma 5.14. If ϕ is sur-

jective with kernel K (respectively if ϕ is injective with cokernel Q) it follows that C(ϕ) ∼= K[1]

(respectively C(ϕ) ∼= Q) naturally in D(S).

Subdiagram 2: Abbreviating H = (G,F ,F ϕ−→ G), we know from Theorem 5.13 that the ob-

struction group is given by Ext2
Z(Lgr

h ,m
−1
Z J ⊗m−1

Z OS
H)gr where m−1

Z J ⊗m−1
Z OS

H is concentrated

in degree 1. By Lemma 5.8.i) this group is isomorphic to

Ext2
m−1
Z OS

((Lgr
h )1,m

−1
Z J ⊗m−1

Z OS
H).

By Example 5.12 the morphism h1 is given by

h1 = (id, 0) : (G, 0, 0→ G)→ (G,F ,F ϕ−→ G)

and we see that Cone(h1) = (0,F ,F → 0) in D(m−1
Z OS) since the cone of the identity G → G is

homotopic to zero. Hence abbreviating F ′ = (0,F ,F → 0), it follows from Lemma 5.14 that

Ext2
m−1
Z OS

((Lgr
h )1,m

−1
Z J ⊗m−1

Z OS
H) ∼= Ext2

m−1
Z OS

((0,F ,F → 0),m−1
Z J ⊗m−1

Z OS
H)

= Ext2
m−1
Z OS

(F ′,m−1
Z J ⊗m−1

Z OS
H)

∼= Ext2
m−1
Z OS

(F ′,m−1
Z J ⊗m−1

Z OS
H).

Subdiagram 3: Keeping both F and G but omitting ϕ corresponds to keeping (X,OX) and

(Y,OY ) but omitting f . By a graded analogue of the calculations for the obstruction group for

subdiagram 3 in Proposition 4.5, there is an obstruction in

Ext1
X(f∗Lgr

Y/S , t
−1
X J ⊗t−1

X OS
G)gr = Ext1

X(f∗Lgr
Y/S ,J ⊗OS G)gr

for extending a given graded extension of (X,OX) and (Y,OY ) to a graded extension of f where

J ⊗OS G is again concentrated in degree 1. By Lemma 5.8.i) we have naturally

Ext1
X(f∗Lgr

Y/S ,J ⊗OS G)gr
∼= Ext1

S

(
(f∗Lgr

Y/S)1,J ⊗OS G
)
.

By definition we have isomorphisms of OS -modules

(f∗Lgr
Y/S)1 = (Lgr

Y/S ⊗OY OX)1
∼=
(
(Lgr

Y/S)0 ⊗OS G
)
⊕ (Lgr

Y/S)1.

From Lemma 5.8.ii) it follows that (Lgr
Y/S)0

∼= 0 and (Lgr
Y/S)1

∼= F in D(S), whence

Ext1
X(f∗Lgr

Y/S ,J ⊗OS G)gr
∼= Ext1

S(F ,J ⊗OS G) ∼= Ext1
S(F ,J ⊗OS G).

Remark 5.16. The obstruction groups for subdiagrams 1 and 3 can also be found in [Ill71, Propo-

sition IV.3.2.3.] and [Ill71, Proposition IV.3.2.12.], respectively, where they are calculated without

using the corresponding obstruction groups for subdiagrams 1 and 3 in Proposition 4.5. But the

obstruction group for subdiagram 2 does not occur in [Ill71].
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A Further properties of the cotangent complex

All sheaves of rings of any topos are assumed to be associative, commutative and unitary.

Proposition A.1. Let T be a topos, A a sheaf of rings of T and B1, . . . , Bn sheaves of A-algebras

of T . Let Cn = B1⊗A . . .⊗ABn and LBj/A⊗Bj Cn → LCn/A the natural morphisms of complexes

of Cn-modules. Assume that each Bj is flat over A. Then the sum morphism

ζn :

n⊕
j=1

(
LBj/A ⊗Bj Cn

)
→ LCn/A

is a quasi-isomorphism.

Proof. We proceed by induction on n. For n = 1 we have C1 = B1 and ζ1 is the identity. So let

n ≥ 1. Since TorAi (Cn−1, Bn) = 0 for all i > 0 by the flatness of A→ Bn, the cocartesian diagram

Cn−1
// Cn

A

OO

// Bn

OO

yields a quasi-isomorphism

ψ :
(
LCn−1/A ⊗Cn−1 Cn

)
⊕
(
LBn/A ⊗Bn Cn

)
→ LCn/A

by Theorem 1.8.vi). By induction hypothesis the sum morphism

ζn−1 :

n−1⊕
j=1

(
LBj/A ⊗Bj Cn−1

)
→ LCn−1/A

is a quasi-isomorphism of complexes of Cn−1-modules. Since this is a quasi-isomorphism of com-

plexes consisting of free modules, the morphism

ζn−1 ⊗Cn−1
Cn :

n−1⊕
j=1

(
LBj/A ⊗Bj Cn

)
→ LCn−1/A ⊗Cn−1

Cn

obtained by tensoring with Cn is a quasi-isomorphism as well by [Ill71, Lemme I.3.3.2.1.]. But the

composition of
(
ζn−1 ⊗Cn−1

Cn
)
⊕ id and ψ is ζn, showing that ζn is a quasi-isomorphism.

Lemma A.2. Let (X ,OX ) be the ringed topos associated to the diagram f : X0 → X1 in RTop/S
in the sense of Proposition 1.15. Denote the objects of X in the form

C = (C0, C1, f
−1C1

c−→ C0)

where Cj is an object of Xj and f−1C1
c→ C0 is a sheaf morphism of X0. Let

A = (A0, A1, f
−1A1

a−→ A0) and B = (B0, B1, f
−1B1

b−→ B0)

be sheaves of rings of X and let q : A→ B be a ring morphism of X , given by the ring morphisms

qj : Aj → Bj of Xj together with the commutative diagram

f−1A1
a //

f−1q1
��

A0

q0

��
f−1B1

b // B0.

(A.1)
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Let f−1LB1/A1
⊗f−1B1

B0
n−→ LB0/A0

be the natural morphism of complexes of B0-modules defined

by the above square as in Theorem 1.8.ii). Then there is a natural isomorphism

LB/A → (LB0/A0
, LB1/A1

, f−1LB1/A1
⊗f−1B1

B0
n−→ LB0/A0

)

in the derived category D(B) of the category of B-modules.

Proof. Let (X0, A0), (X0, B0), (X1, A1), (X1, B1), (X , A) and (X , B) be the ringed topoi whose

underlying topoi is the respective first entry and whose structure sheaf is the respective second

entry. Then the commutative square (A.1) defines a commutative square of ringed topoi

(X0, B0)
(f,b) //

(id,q0)

��

(X1, B1)

(id,q1)

��
(X0, A0)

(f,a) // (X1, A1)

where the first entries of the maps are the underlying morphisms of topoi and the second entries

of the maps are the ring morphisms of the structure sheaves. By [Ill71, Chapitre III.4.12.] there

is a commutative diagram

(X0, B0)
(iX0

,id)
//

(id,q0)

��

(X , B)

(id,q)

��

(X1, B1)

(id,q1)

��

(iX1
,id)

oo

(X0, A0)
(iX0

,id)
// (X , A) (X1, A1)

(iX1
,id)

oo

of ringed topoi where

i−1
Xj : X → Xj , (C0, C1, f

−1C1
c−→ C0) 7→ Cj

are the forgetful functors. The assertion follows from [Ill71, Proposition III.4.12.2.].

Corollary A.3. Let (X ,OX ) be the ringed topos associated to the diagram I : Cop → RTop/S in

the sense of Proposition 1.15, let q : A→ B be a ring morphism of X consisting of ring morphisms

qc : Ac → Bc of Xc for c ∈ ob(C). For α ∈ HomC(c1, c2) the commutative diagram

f−1
α Ac1

Aα //

f−1
α qc1

��

Ac2

qc2

��
f−1
α Bc1

Bα // Bc2

yields natural morphisms of complexes of Bc2-modules

nα : f−1
α LBc1/Ac1 ⊗f−1

α Bc1
Bc2 → LBc2/Ac2 .

Then the cotangent complex Lq = LB/A is given, up to natural isomorphism in D(B), by the

collection of all cotangent complexes Lqc = LBc/Ac for c ∈ ob(C) together with the natural

morphisms of complexes of Bc2-modules nα : f−1
α LBc1/Ac1 ⊗f−1

α Bc1
Bc2 → LBc2/Ac2 for

α ∈ HomC(c1, c2).
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Proof. For fixed α ∈ HomC(c1, c2) denote by Xα the ringed topos associated to the diagram

fα : Xc2 → Xc1 in RTop/S. Let

Aα = (Ac2 , Ac1 , f
−1
α Ac1

Aα−−→ Ac2) and Bα = (Bc2 , Bc1 , f
−1
α Bc1

Bα−−→ Bc2)

and let (Xα, Aα), (Xα, Bα), (X , A) and (X , B) be the ringed topoi whose underlying topoi is the

respective first entry and whose structure sheaf is the respective second entry. Since the forgetful

functor X → Xα commutes with arbitrary limits and colimits, we may choose a right adjoint

iXα∗ : Xα → X of it by Remark 1.5 and we may regard the forgetful functor as the inverse image

functor i−1
Xα : X → Xα of a morphism of topoi iXα : Xα → X . There is a commutative diagram of

ringed topoi

(Xα, Bα)
(iXα ,id) //

(id,(qc2 ,qc1 ))

��

(X , B)

(id,q)

��
(Xα, Aα)

(iXα ,id) // (X , A).

Now by [Ill71, Proposition III.4.12.2.] the natural morphism of complexes of Bα-modules

i∗XαLB/A → LBα/Aα

is a quasi-isomorphism, whence an isomorphism in the derived category D(Bα) of the cate-

gory of Bα-modules. Notice that this isomorphism does not depend on the chosen right adjoint

iXα∗ : Xα → X of the forgetful functor i−1
Xα : X → Xα.

By Lemma A.2 there is a natural isomorphism

LBα/Aα ∼= (LBc2/Ac2 , LBc1/Ac1 , f
−1
α LBc1/Ac1 ⊗f−1

α Bc1
Bc2

nα−−→ LBc2/Ac2 )

in D(Bα). Hence for every c ∈ ob(C) we may choose a morphism α ∈ HomC(c, c2) to get an

isomorphism (LB/A)c ∼= LBc/Ac in D(Bc) and it suffices to show that the collection of these

isomorphisms (LB/A)c ∼= LBc/Ac in D(Bc) for c ∈ ob(C) we have constructed so far is independent

of the choice of α. But if c ∈ ob(C) and if α and β are morphisms in C having c either as source

or target, then the diagram of functors

X

  BBBBBBBB

~~||||||||

Xα

  AAAAAAAA Xβ

~~}}}}}}}}

Xc

all of whose functors are the forgetful functors is commutative. It follows that (LB/A)c ∼= LBc/Ac

is independent of the choice of α.
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B Injective resolutions of modules on a diagram

Let X be the ringed topos associated to a diagram I : Cop → RTop/S in the sense of Proposition

1.15. Given an OX -module M , we will describe an injective resolution of it in terms of injective

OXc-modules for c ∈ ob(C) which we will use to calculate the complex RG(m∗XJ ) in Corollary

3.26. Remember that if (T ,OT ) is an arbitrary ringed topos, then the category of OT -modules

has enough injectives by [Sta13, Theorem 18.9.4.].

For each c ∈ ob(C) let Jc be an injective OXc-module. Define

Ic =
⊕

γ∈HomC(c,c′),
c′∈ob(C)

fγ∗Jc′ =
( ⊕
γ∈HomC(c,c′),
c′∈ob(C),γ 6=id

fγ∗Jc′
)
⊕ Jc

to be the OXc -module obtained by all not necessarily injective modules fγ∗Jc′ for γ ∈ HomC(c, c′)

and c′ ∈ ob(C). For α ∈ HomC(c1, c2) we have a natural isomorphism

fα∗Ic2 = fα∗

( ⊕
γ∈HomC(c2,c

′),
c′∈ob(C)

fγ∗Jc′
)
∼=

⊕
γ∈HomC(c2,c

′),
c′∈ob(C)

fγα∗Jc′

of OXc1 -modules. If δ ∈ HomC(c1, c
′) factors as c1

α→ c2
γ→ c′, we have fδ∗ = fγα∗ and we define

Iα : Ic1 =
⊕

δ∈HomC(c1,c
′),

c′∈ob(C)

fδ∗Jc′ →
⊕

γ∈HomC(c2,c
′),

c′∈ob(C)

fγα∗Jc′ ∼= fα∗

( ⊕
γ∈HomC(c2,c

′),
c′∈ob(C)

fγ∗Jc′
)

= fα∗Ic2

to be the composition of the projection and the natural isomorphism.

If c1
α→ c2

β→ c3 is a composition in C, then the triangle

Ic1

Iα ""FFFFFFFF
Iβα // fβα∗Ic3 = fα∗fβ∗Ic3

fα∗Ic2

fα∗Iβ

44jjjjjjjjjjjjjjjjj

of morphisms of OXc1 -modules is commutative because the morphisms are defined by projecting.

Example B.1. Consider the diagram

X1

g

  BBBBBBBB

X0

f
>>|||||||| h=g◦f // X2

in RTop/S with no other morphisms except for the identities and choose an injective OXj -module

Jj for j = 0, 1, 2. Then we have

I0 = J0 , I1 = f∗J0 ⊕ J1 and I2 = h∗J0 ⊕ g∗J1 ⊕ J2

and the projections

I1 = f∗J0 ⊕ J1 → f∗J0 = f∗I0 , I2 = h∗J0 ⊕ g∗J1 ⊕ J2 → h∗J0 = h∗I0

and

I2 = h∗J0 ⊕ g∗J1 ⊕ J2 → h∗J0 ⊕ g∗J1
∼= g∗(f∗J0 ⊕ J1) = g∗I1.
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Lemma B.2. For each c ∈ ob(C) let Jc be an injective OXc-module. Then the collection I of all

OXc-modules

Ic =
⊕

γ∈HomC(c,c′),
c′∈ob(C)

fγ∗Jc′

for c ∈ ob(C) together with the morphisms of OXc1 -modules Iα : Ic1 → fα∗Ic2 for α ∈ HomC(c1, c2)

is an injective OX -module.

Proof. Let 0 → M
s−→ N be an exact sequence of OX -modules and let p : M → I be a morphism

of OX -modules. We have to show that there is a morphism of OX -modules q : N → I such that

N
q

��@@@@@@@@

M

s

OO

p
// I

is commutative. For c ∈ ob(C) and γ ∈ HomC(c, c′) let

prγc : Ic =
⊕

γ∈HomC(c,c′),
c′∈ob(C)

fγ∗Jc′ → fγ∗Jc′

be the projection to the summand corresponding to γ. By definition of Iγ the triangle

Ic
Iγ //

prγc ""DDDDDDDDD fγ∗Ic′

fγ∗prid
c′zzvvvvvvvvv

fγ∗Jc′

is commutative for every c ∈ ob(C) and γ ∈ HomC(c, c′). Since Jc is an injective OXc -module, we

may choose, for every c ∈ ob(C), a morphism of OXc-modules qid
c : Nc → Jc such that

Nc
qid
c

))TTTTTTTTTTTTTTTTTTTT

Mc

sc

OO

pc
// Ic

prid
c

// Jc

is commutative. Now fix c ∈ ob(C). Then for every γ ∈ HomC(c, c′) the diagram

Mc

sc

  AAAAAAAA
Mγ //

pc

��

fγ∗Mc′

fγ∗sc′

$$JJJJJJJJJ

fγ∗pc′

��

Nc

qid
c

�����������������

Nγ // fγ∗Nc′

fγ∗q
id
c′

������������������

Ic
Iγ //

prid
c

��

fγ∗Ic′

fγ∗prid
c′

��
Jc fγ∗Jc′
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of morphisms of OXc-modules is commutative by assumption. Thus the morphism

qγc : Nc
Nγ−−→ fγ∗Nc′

fγ∗q
id
c′−−−−→ fγ∗Jc′

makes the triangle

Nc
qγc

((QQQQQQQQQQQQQQ

Mc

sc

OO

pc
// Ic

prγc

// fγ∗Jc′

commutative. We define qc : Nc → Ic to be the direct sum of all morphisms qγc for γ ∈ HomC(c, c′).

Then qc is a morphism of OXc -modules. Now fix α ∈ HomC(c1, c2). It remains to show that

Nc1

qc1

��

Nα // fα∗Nc2

fα∗qc2
��

Ic1
Iα // fα∗Ic2

(B.1)

is commutative because then the collection of all qc for c ∈ ob(C) defines a morphism q : N → I

of OX -modules which makes the triangle

N
q

��@@@@@@@@

M

s

OO

p
// I

commutative by definition.

Let us show that Diagram (B.1) is commutative. Let γ ∈ HomC(c1, c
′). If γ does not factor

through α, then the restriction of Iα : Ic1 → fα∗Ic2 to the direct summand fγ∗Jc′ is the zero

morphism by definition of Iα. If γ factors through α as γ : c1
α→ c2

ε→ c′, then

Nc1
Nα //

qγc1

!!

Nγ

��

fα∗Nc2

fα∗Nε

��
fα∗q

ε
c2

vv

fγ∗Nc′

fγ∗q
id
c′

��

id // fγ∗Nc′ = fα∗fε∗Nc′

fα∗fε∗q
id
c′

��
fγ∗Jc′

id // fγ∗Jc′ = fα∗fε∗Jc′

is commutative because the upper square commutes since N is an OX -module and the lower square

commutes since fα∗fε∗ = fγ∗. Since qc1 : Nc1 → Ic1 and qc2 : Nc2 → Ic2 are the direct sum of

all morphisms qγc1 for γ ∈ HomC(c1, c
′) and qεc2 for ε ∈ HomC(c2, c

′), respectively, it follows that

Diagram (B.1) is commutative.

Proposition B.3. Let M be an OX -module, let jc : Mc → Jc be an injection of OXc-modules for

c ∈ ob(C) such that Jc is injective. If I is the injective OX -module built from the Jc as in Lemma

B.2, then there is an injection i : M → I of OX -modules.
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Proof. Let c ∈ ob(C) and γ ∈ HomC(c, c′). We define

ic : Mc → Ic =
⊕

γ∈HomC(c,c′),
c′∈ob(C)

fγ∗Jc′

to be the composition of

Mc →
⊕

γ∈HomC(c,c′),
c′∈ob(C)

Mc, m 7→ (m, . . . ,m)

and
⊕
Mc

⊕
Mγ−−−−→

⊕
fγ∗Mc′

⊕
fγ∗jc′−−−−−−→

⊕
fγ∗Jc′ where the direct sums are taken over all

γ ∈ HomC(c, c′) with c′ ∈ ob(C). The component morphism of ic : Mc → Ic of the identity

γ = id: c→ c is just the injection jc : Mc → Jc which shows that ic : Mc → Ic is injective.

If α ∈ HomC(c1, c2), then

Mc1

ic1
��

Mα // fα∗Mc2

fα∗ic2
��

Ic1
Iα // fα∗Ic2

is commutative by definition of Iα. Thus the collection of the injective morphisms ic : Mc → Ic of

OXc-modules for c ∈ ob(C) defines an injective morphism i : M → I of OX -modules.

Corollary B.4. Let M be an OX -module. Then there is an injective resolution

0→M → I0 → I1 → I2 → · · ·

of M where all injective OX -modules In are modules of the form I in Lemma B.2.

Proof. For each c ∈ ob(C) chooce an injection Mc → J0
c of Mc to an injective OXc -module J0

c . By

Proposition B.3 there is an induced injection M → I0 of M to the injective OX -modules I0 built

from the J0
c . Let Q be the cokernel of M → I0. For each c ∈ ob(C) chooce an injection Qc → J1

c

of Qc to an injective OXc -module J1
c and let I1 be the injective OX -module built from the J1

c .

By Proposition B.3 there is an injection Q → I1. Repeating this procedure we get an injective

resolution

0→M → I0 → I1 → I2 → · · ·

of M of the desired form.

We will see in Example B.6 that in general it is not possible to start with an injective resolution

0→Mc → J0
c → J1

c → J2
c → . . .

of Mc for every c ∈ ob(C) and to build an injective resolution

0→M → I0 → I1 → I2 → . . .

of M such that In is the injective OX -module built from the Jnc as in Lemma B.2 because in

general, the cokernel of Mc → J0
c is not the cokernel of Mc → I0

c .
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Corollary B.5. Let M ∈ ob(Ch+(X )) be a bounded below complex and let a ∈ Z such that

Mn = 0 for all n < a. Then there is a bounded below complex I ∈ ob(Ch+(X )) such that In = 0

for all n < a and a quasi-isomorphism l : M → I such that each lm : Mm → Im is injective and

such that each Im is an injective OX -module of the form in Lemma B.2 for all m ≥ a.

Proof. This is a special case of [Sta13, Lemma 12.15.4.].

Example B.6. Let X be the ringed topos associated to the diagram

f : Xa → Xb

in RTop/S. Let M be an OX -module, denoted in the form M = (Ma, Mb, Mb
p−→ f∗Ma) where

Mk is an OXk -module. Now choose injections

j0
a : Ma → J0

a and j0
b : Mb → J0

b

where J0
k is an injective OXk -module. Then the injective OX -module I0 built from the J0

k is given

by

I0 = (J0
a , f∗J

0
a ⊕ J0

b , f∗J
0
a ⊕ J0

b

pr1−−→ f∗J
0
a)

and the injection i0 : M → I0 in Proposition B.3 is given levelwise by

i0a = j0
a : Ma → J0

a and i0b = (f∗j
0
a ◦ p | j0

b ) : Mb → f∗J
0
a ⊕ J0

b ,

respectively, and the square

0 // Mb

p

��

(f∗j
0
a◦p | j

0
b ) // f∗J0

a ⊕ J0
b

pr1

��
0 // f∗Ma

f∗j
0
a // f∗J0

a

is commutative and has exact rows. Let Q0 = (Q0
a, Q

0
b , Q

0
b

q0

−→ f∗Q
0
a) be the cokernel of

i0 : M → I0. We have exact sequences

0→Ma
i0a−→ I0

a
l−→ Q0

a → 0 and 0→Mb
i0b−→ I0

b → Q0
b → 0

of OXa -modules and OXb -modules, respectively, and a commutative square

0 // Mb

p

��

(f∗j
0
a◦p | j

0
b ) // f∗J0

a ⊕ J0
b

pr1

��

// Q0
b

//

q0

��

0

0 // f∗Ma

f∗j
0
a // f∗J0

a

f∗l // f∗Q0
a

// R1f∗Ma
// . . .

of OXb -modules with exact rows. Now choose injections

ĵ1
a : Q0

a → J1
a and ĵ1

b : Q0
b → J1

b

where J1
k is an injective OXk -module. The injective OX -module I1 built from the J1

k is given by

I1 = (J1
a , f∗J

1
a ⊕ J1

b , f∗J
1
a ⊕ J1

b

pr1−−→ f∗J
1
a)
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and the injection î1 : Q0 → I1 in Proposition B.3 is given levelwise by

î1a = ĵ1
a : Q0

a → J1
a and î1b = (f∗ĵ

1
a ◦ q0 | ĵ1

b ) : Q0
b → f∗J

1
a ⊕ J1

b ,

respectively, and the square

0 // Q0
b

q0

��

(f∗ ĵ
1
a◦q

0 | ĵ1b ) // f∗J1
a ⊕ J1

b

pr1

��
0 // f∗Q0

a

f∗ ĵ
1
a // f∗J1

a

is commutative and has exact rows. So far, letting i1 be the composition I0 → Q
î1−→ I1, we have

found an exact sequence

0→M
i0−→ I0 i1−→ I1

of OX -modules which may be completed to an injective resolution of M . Since i0a = j0
a the injective

module J1
a may be chosen to be part of an injective resolution

0→Ma
j0a−→ J0

a

j1a−→ J1
a → J2

a → . . .

of Ma. If we choose J1
a like that, then we see from the commutativity of

f∗J
0
a ⊕ J0

b

pr1

��

// Q0
b

î1b //

q0

��

f∗J
1
a ⊕ J1

b

pr1

��
f∗J

0
a

// f∗Q0
a

f∗ î
1
a // f∗J1

a

that we have a commutative diagram with exacts rows

0 // Mb

p

��

f∗j0
a ◦ p
j0
b


// f∗J0

a ⊕ J0
b

pr1

��

f∗j1
a 0

∗1 ∗2


// f∗J1

a ⊕ J1
b

pr1

��
0 // f∗Ma

f∗j
0
a // f∗J0

a

f∗j
1
a // f∗J1

a

where the unknown entries ∗1 and ∗2 are the restrictions of f∗J
0
a ⊕ J0

b → Q0
b

ĵ1b−→ J1
b to f∗J

0
a and

J0
b , respectively.

Now let

0→Ma
j0a−→ J0

a

j1a−→ J1
a → J2

a → . . . and 0→Mb
j0b−→ J0

b

j1b−→ J1
b → J2

b → . . .

be injective resolutions of Mk. We have seen in Proposition B.3 that we may take the injective

OX -module I0 built from the J0
k as in Lemma B.2 as the beginning of an injective resolution

0→M → I0 → I1 → I2 → . . .
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of M . But in this example it is not possible to take I1 to be the injective OX -module built from

the J1
k as in Lemma B.2. If Q0

b denotes again the cokernel of i0b = (f∗j
0
a ◦ p | j0

b ) : Mb → f∗J
0
a ⊕ J0

b

and if Q̃0
b is the cokernel of j0

b : M0
b → J0

b , the commutativity of

0

��

0

��
f∗J

��

f∗J

��
0 // Mb

(f∗j
0
a◦p | j

0
b ) // f∗J0

a ⊕ J0
b

//

pr2

��

Q0
b

��

// 0

0 // Mb

j0b // J0
b

��

// Q̃0
b

��

// 0

0 0

shows that Q0
b → Q̃0

b is not injective, hence we cannot continue with the given embedding Q̃0
b → J1

b .
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List of notations

a the morphism v∗LY/S → Ll ⊗u−1OY OX in Lemma 2.19 36

agr the morphism v∗Lgr
Y/S → Lgr

l ⊗u−1OY OX 132

A-alg the category of A-algebras over the commutative unitary ring A

A-alggr the category of N0-graded A-algebras over

the commutative unitary N0-graded ring A 131

A-mod the category of modules over the commutative unitary ring A

A-modgr the category of N0-graded modules over

the commutative unitary N0-graded ring A 129

Ab the category of abelian groups

Alb(X) the Albanese variety of the nonsingular projective variety X 118

AX , AY one of the four categories defined in Section 2.1 18

bridge a certain quintuple 2
α−→ 1

β−→ 0 in C 86

C the field of complex numbers

c the comma category associated to c ∈ ob(C) 19

C a finite category 14

CΓ a subcategory of C 70

Ch(A) the category of cochain complexes of modules over the

commutative and unitary ring A

Ch(X) the category of cochain complexes of OX -modules

of the ringed topos (X,OX)

Ch(X)gr the category of cochain complexes of graded OX -modules

of the ringed topos (X,OX) 129

Cone(h1) the cone of h1 : (u−1OY)1 → F 134

Cone(m) the cone of m : v∗LY/S → LX/S 29

Cone(mgr) the cone of mgr : v∗Lgr
Y/S → Lgr

X/S 129

cyclic a type of subdiagrams defined in Definitions 3.31 or 3.41 68, 78

D a subcategory of C 17

D(A) the derived category of the category A-mod

D(A)gr the derived category of the category A-modgr 129

D(Mγ), D(prnγ ) the morphisms in Diagram (3.5) 68

D(X) the derived category of the ringed topos or of the scheme X

DerA(B,M) the group of A-derivations of the A-algebra B to the B-module M

E the subcategory of C in Notation 3.56 94

E the subcategory of C in Notation 3.56 94

ExalA(C, I) the group of A-extensions of C by the C-module I 7

ExtiA(L,M) the group HomD(A)(L,M [i]) where A is an abelian category 8

ExtiA(L,M)gr the group HomD(A)gr
(L,M [i]) 129

F the m−1
X OS -module built from all Fc for c ∈ ob(C) 126

F a deformation of the OS -module F 123

Fα : Fc1 → Fc2 the morphism of OS -modules I(α) for α ∈ HomC(c1, c2) 125
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Fc the OS -module I(c) for c ∈ ob(C) 125

fα : Xc2 → Xc1 the morphism of ringed topoi I(α) for α ∈ HomC(c1, c2) 15

G the functor G : OX -mod→ OY -mod in Lemma 3.23 60

Γ a subset of the morphisms in C in Subsections 3.4.1 or 3.4.2 66, 78

h : u−1OY → OX one of the ring morphisms in the factorization of θX 34

h1 : (u−1OY)1 → F the degree 1 morphism of h in Lemma 5.14 134

I the functor Cop → RTop/S defining the diagram X or 17

the functor C→ OS -mod in Definition 5.3 124

J the restriction of I : Cop → RTop/S to Dop or 17

the restriction of I : C→ OS -mod to D 125

J a fixed OS -module 17

K(A) the category of cochain complexes of modules over the

commutative and unitary ring A up to homotopy

K(X) the category of cochain complexes of OX -modules

of the ringed topos (X,OX) up to homotopy

l : m−1
X OS → u−1OY one of the ring morphisms in the factorization of θX 34

Ld a certain complex of OX -modules for the discrete subdiagram 93

Lh the cotangent complex of h : u−1OY → OX 36

Lgr
h the graded cotangent complex of h : u−1OY → OX 133

(Lgr
h )1 the degree 1 component of Lgr

h , considered as a complex

of m−1
X OS -modules 134

L′h, L∗h the modified cotangent complexes of h : u−1OY → OX 51

Ll the cotangent complex of l : m−1
X OS → u−1OY 36

Lgr
l the graded cotangent complex of l : m−1

X OS → u−1OY 133

LX/S the cotangent complex of a morphism of ringed topoi X → S
Lgr
X/S the graded cotangent complex of a morphism of ringed topoi X → S 129

levels the ringed topoi Xc for c ∈ ob(C) of the diagram I 15

lim−→γ∈ob(c)
f−1
γ Bd the levelwise definition of u−1 20

m the morphism of complexes v∗LY/S → LX/S in Theorem 2.13 29

mgr the morphism of complexes v∗Lgr
Y/S → Lgr

X/S in Theorem 5.10 129

mA : u−1uA→ A adjunction morphism of A ∈ ob(AX ) for u and its left inverse u−1 26

M the OY -module defined by the OX -module M 58

mX : X → S the structure morphism of X over S 15

m−1
X OS -alg the category of sheaves of m−1

X OS -algebras of X
mY : Y → S the structure morphism of Y over S 15

µ(δ) the number of factorizations of δ : 0→ c′ as in Diagram (3.4) 67

nB : B → uu−1B adjunction morphism of B ∈ ob(AY) for u and its left inverse u−1 26

N0 the set of nonnegative integers

non-cyclic a type of subdiagrams defined in Definitions 3.31 or 3.41 68, 78

Ω1
B/A the B-module of Kähler differentials

of the ring morphism A→ B on a topos

OX the structure sheaf of the ringed topos or of the scheme X
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OX -alg the category of OX -algebras

OX -alggr the category of N0-graded OX -algebras 131

OX -mod the category of OX -modules

OX -modgr the category of N0-graded OX -modules 129

p : Lh → L′h the morphism in Remark 3.8 51

prj the projection of a direct sum to the j-th direct summand

q : L∗h → L′h the morphism in Remark 3.8 51

RG(−) the total right derived functor of G 62

RTop/S the category of ringed topoi over S 14

S the ringed topos consider as a base ringed topos 14

source a certain object of C 77

T the m−1
X OS -algebra in Definition 3.52 91

target a certain object of C 65

tc : Xc → S the structure morphism of Xc over S for c ∈ ob(C) 17

t−1
c OS -alg the category of sheaves of t−1

c OS -algebras of Xc
θc : t−1

c OS → OXc the ring morphism of tc : Xc → S for c ∈ ob(C) 17

θα : f−1
α OXc1 → OXc2 the ring morphism of fα : Xc2 → Xc1 for α ∈ HomC(c1, c2) 17

θX : m−1
X OS → OX the ring morphism of mX : X → S 17

θY : m−1
Y OS → OY the ring morphism of mY : Y → S 17

u the forgetful functor between the respective categories

u−1 the left adjoint of the forgetful functor u 19

u−1OY the m−1
X OS -algebra in Proposition 2.16 34

v the forgetful functor OX -mod→ OY -mod

X the ringed topos associated to the diagram I 17

w : X → Z the forgetful functor in Notation 3.56 94

w : X → Z the forgetful functor in Notation 3.56 94

Xc the levels of X for c ∈ ob(C) 15

XΓ the ringed topos associated to the index category CΓ 71

X0
f−→ X1

g−→ X2 a bridge of X 86

Y the ringed topos associated to the diagram J 17

Y the complementary subdiagram of Y 56

Z the ringed topos in Notation 3.56 94

Z the complementary subdiagram of Z 56, 94
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matics, Vol. 270. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébrique du
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