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Introduction

Motivation

In the middle of the 20th century De Giorgi [DG57] and Nash [Nas57] independently proved
that weak solutions u of a linear partial differential equation of the form

div (A(x)∇u(x)) = 0 (I.1)

satisfy an a priori Hölder estimate. More precisely, under the assumption that the operator
in (I.1) is uniformly elliptic, i.e. if the symmetric matrix A is bounded, measurable and
satisfies for some λ,Λ > 0

λ |ξ|2 ≤ A(x)ξ · ξ ≤ Λ |ξ|2 for all x, ξ ∈ Rd , (I.2)

they showed that weak solutions u of (I.1) are Hölder continuous – i.e. u ∈ C0,β – where the
Hölder exponent β ∈ (0, 1) and the corresponding seminorm depend only on the dimension
and the constants λ,Λ > 0 in (I.2). A few years later Moser [Mos61] established a stronger
result – namely an elliptic Harnack inequality – for weak solutions to (I.1). This Harnack
inequality implies Hölder regularity for weak solutions and thereby Moser gave a third
proof of the a priori Hölder estimate.

This result – which is often referred to as the De Giorgi-Nash-Moser result – applies to
minimizers of nonlinear variational integrals of the form

ˆ
F (∇w(x)) dx , (I.3)

where F is a convex C2-function. To be specific, the partial derivatives ∂iw of minimizers
w of (I.3) are weak solutions to (I.1), where aij(x) = ∂i∂jF (∇w(x)), and hence the De
Giorgi-Nash-Moser result shows that w ∈ C1,β under appropriate assumptions on F that
ensure (I.2). The assertion w ∈ C1,β for minimizers w was the most important contribution
to the solution of Hilbert’s 19th problem, who raised in his famous collection of problems
(see [Hil00]) the question whether regular variational integrals such as (I.3) only allow
for minimizers that are smooth. Thanks to the De Georgi-Nash-Moser result – and some
results which had been established earlier – it was finally possible to give a positive answer
to Hilbert’s 19th problem.

Already Nash [Nas57] and later Moser [Mos64, Mos67, Mos71] proved Hölder regularity of
weak solutions u = u(t, x) of the parabolic equation associated to (I.1), i.e.

∂tu(t, x)− div (A(t, x)∇u(t, x)) = 0 , (I.4)
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under the assumption that the operator is uniformly elliptic. Again, Moser deduced the
Hölder regularity from a parabolic Harnack inequality1 (Theorem 7.6).

The present work extends Moser’s results including a weak Harnack inequality (Theo-
rem 4.4) and Hölder regularity (Theorem 4.5) to parabolic equations of the type

∂tu(t, x)− p.v.
ˆ
Rd

[u(t, y)− u(t, x)] kt(x, y) dy = 0 , (I.5)

where kt(x, y) is a symmetric kernel that has a certain singularity at the diagonal x = y.
A Harnack inequality in the form of Theorem 4.4 is called a weak Harnack inequality. If
one could replace ‖u‖L1(Q	) by supQ	 u therein, then one would call this type of inequality
(cf. Theorem 7.6) a strong Harnack inequality or simply Harnack inequality.
In the special case2 kt(x, y) = 2Ad,−α |x− y|−d−α, α ∈ (0, 2), equation (I.5) becomes

∂tu(t, x) + (−∆)α/2u(t, x) = 0 , (I.6)

where (−∆)α/2 denotes the fractional Laplacian – the pseudo-differential operator with
symbol |ξ|α, see Section 2.7. This operator can be seen as a prototype of a nonlocal
operator. The standing assumptions (see Section 4.1) that are imposed on the kernel kt to
prove the main theorems imply that the properties of the bilinear form associated to the
nonlocal operator in (I.5) are in a certain sense comparable to those of the bilinear form
associated to the fractional Laplacian.

In a very similar way as the classical De Giorgi-Nash-Moser result applies to minimizers of
variational integrals (I.3), the a priori Hölder estimate for weak solutions to (I.5) applies
to nonlocal, nonlinear variational integrals: Caffarelli, Chan and Vasseur [CCV11] showed
that their Hölder regularity estimate for solutions to (I.5) implies that the minimizers w
of ¨

φ(w(x)− w(y))K(x− y) dx dy

belong to C1,β , where φ is a convex and even functional of class C2(R) with λ ≤ φ′′ ≤ Λ
and K a symmetric function satisfying K(x) � |x|−d−α.
From this point of view, Hölder regularity estimates for (I.5) such as Theorem 4.5 can be
considered as the central tool in proving regularity of minimizers of nonlocal, nonlinear
variational integrals.

Another reason why regularity results for parabolic equations are interesting is the applica-
tion to the potential theory of Markov processes: This relation is explained by the following
observations: At least in the case kt(x, y) = k(x, y) and k(x, y) � |x− y|−d−α for small
values of |x− y|−d−α, it is possible to show that there corresponds a regular, symmetric
Dirichlet form (E ,F) to the nonlocal operator

Lu(x) = p.v.
ˆ
Rd

[u(y)− u(x)] k(x, y) dy .

1Around twenty years later, Fabes and Stroock [FS86] reproved Moser’s parabolic Harnack inequality by
means of Nash’s ideas.

2The factor 2Ad,−α is just a norming constant that is specified in Section 2.4.
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By the general theory of symmetric Dirichlet forms ([FŌT94]) L is then the infinitesimal
generator of a Hunt process X . In this situation, the density function pα(t, x, y) (also
called heat kernel) of the associated semigroup is the fundamental solution of (I.5). A
priori Hölder continuity then implies that pα(t, x, y) is continuous and thus the associated
Hunt process X may be redefined to start in every point x ∈ Rd, i.e. X is a strong Markov
process on Rd. This Markov process has discontinuous paths and does not possess second
moments.

Even in the most simple case L = −(−∆)α/2 (i.e. if (I.5) reduces to (I.6)) no explicit
expression for pα(t, x, y) is known except for the case α = 1. Therefore heat kernel bounds
are a matter of particular interest. A special case of a result by Chen and Kumagai [CK08]
yields for L = −(−∆)α/2 the two-sided heat kernel estimate

pα(t, x, y) � t−d/α
(

1 ∧ t1/α

|x− y|

)α+d

t > 0, x, y ∈ Rd . (I.7)

This result should be compared with the corresponding estimate for the heat kernel cor-
responding to (I.1): There are constants c1, . . . , c4 > 0 depending only on d, and λ, Λ in
(I.2) such that for all t > 0 and x, y ∈ Rd

c1

(4πt)d/2
exp

(
c2
− |x− y|2

4t

)
≤ p2(t, x, y) ≤ c3

(4πt)d/2
exp

(
c4
− |x− y|2

4t

)
. (I.8)

This estimate was obtained by Aronson [Aro67] and a central tool in his proof was Moser’s
parabolic Harnack inequality. Reversely, Fabes and Stroock [FS86] showed that the es-
timate (I.8) implies Moser’s parabolic Harnack inequality for solutions to (I.4). Hence,
Harnack inequalities for parabolic equations are closely related to heat kernel estimates of
the associated process. This relation is still true and even more interesting if the state
space is no longer the Euclidean space, but a manifold or a graph, see the introduction in
Barlow, Grigor’yan and Kumagai [BGK12].

Related results

The proofs within this thesis use only analytical methods, in other words (I.5) is considered
from the point of view of PDE theory. Therefore, this short survey starts with results that
share this purely analytic point of view.

One may consider Komatsu’s articles [Kom88, Kom95] as a starting point in the regularity
theory of weak solutions to (I.5). The author proves Hölder regularity following Nash’s
method under the condition of pointwise comparability of kt(x, y) with |x− y|−d−α and
assuming continuity in t.
Kassmann [Kas09] established a Moser scheme for nonlocal elliptic equations leading to
Hölder regularity for weak solutions. Due to the nonlocality of the operator the assump-
tion of non-negativity of the solution in some domain in Rd is not strong enough to prove a
classical elliptic Harnack inequality. A counterexample violating the global non-negativity
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was given in [Kas07a]. An alternative formulation of Harnack’s inequality which is equiv-
alent to the classical one in case of a second order operator was proposed in [Kas11].
Caffarelli, Chan and Vasseur proved Hölder regularity for solutions to (I.5) following De
Giorgi’s method. This method yields an a priori Hölder estimate where the Cβ-norm of a
solution u is controlled by ‖u‖L2 instead of ‖u‖L∞ as in Theorem 4.5. They provide a very
interesting proof of how the regularity of weak solutions to linear, nonlocal equations apply
to regularity of minimizers of nonlinear, nonlocal variational integrals. The constants in
their results blow up if α→ 2−.
There are some related results which are robust for α → 2−, but these apply to nonlocal
operators in non-divergence form3: Chang Lara and Dávila [CLD12] proved Hölder regu-
larity for viscosity solutions to fully nonlinear parabolic equations. Robust results for fully
nonlinear elliptic equations were also found by Caffarelli and Silvestre [CS11] as well as by
Guillen and Schwab [GS12].

As already explained previously in this introduction there is a huge interplay between ana-
lytic and probabilistic methods for parabolic equations such as (I.5). From a probabilistic
point of view, the Harnack inequality for solutions to (I.6) is readily established by using
the explicit expression for the exit time of a rotationally invariant α-stable Lévy process.
The generalization to other kernels opened a large field of research starting with the article
by Bass and Levin [BL02]. In the case kt(x, y) = k(x, y) and k(x, y) � |x− y|−d−α they
use both probabilistic and analytical methods for their proof of a Harnack inequality and
pointwise bounds on the heat kernel.
This approach was further generalized by Chen and Kumagai [CK03]. On a general d-set
(F, ν) they showed that – under the assumption kt(x, y) = k(x, y) and k(x, y) � |x− y|−d−α
– there exists a Feller process associated with the Dirichlet form (E ,F) given by

E(u, v) =

¨

F F

[u(x)− u(y)] [v(x)− v(y)] k(x, y)ν( dx)ν( dy),

F =
{
u ∈ L2(F, ν) : E(u, u) <∞

}
.

They showed that the heat kernel exists and satisfies (I.7) for 0 < t ≤ 1. In particular,
their set-up allows to work with the weak formulation of (I.5).
In [SV04], Song and Vondraček list three abstract conditions on a general class of Markov
processes that are sufficient to establish a Harnack inequality.
A situation where the pointwise comparability to one fixed order of singularity is not
satisfied is studied in Barlow, Bass, Chen and Kassmann [BBCK09]. It is assumed that
kt(x, y) = k(x, y) and that there are constants c1, c2 > 0 and 0 < α ≤ β < 2 such that for
all |x− y| ≤ 1

c1 |x− y|−d−α ≤ k(x, y) ≤ c2 |x− y|−d−β .
They show the existence of the heat kernel together with upper and lower bounds for it.
Generally, it is important that the equation satisfies a certain scaling behavior in order
to deduce regularity results. Such a scaling property is not satisfied for the equations in
the situation of [BBCK09]; the authors provide an example of a discontinuous function u
satisfying Lu = 0.

3A detailed discussion on the distinction between divergence form and non-divergence form in the case of
nonlocal operators may be found in [KS13] or [Caf12]
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This approach of combining probabilistic and analytical aspects has been extended further,
also to much more general state spaces. A complete list of all related results in this area
would go far beyond the scope of this introduction.

Local vs. Nonlocal

Due to the nonlocality of the operator in (I.5), there are several differences compared to the
situation of a second-order parabolic equation. Two of them may be of particular interest:
Firstly, very similar to (I.2), the conditions on kt in this work ensure the non-degeneracy
of the operator in the parabolic equation. However, a strong Harnack inequality cannot
be expected to hold for solutions of (I.5). A counterexample was given by Bogdan and
Sztonyk [BS05].
Secondly, the implication from Harnack inequality to Hölder regularity is more involved.
For this reason, a weak Harnack inequality is established for nonnegative weak supersolu-
tions to

∂tu(t, x)− p.v.
ˆ
Rd

[u(t, y)− u(t, x)] kt(x, y) dy = f(t, x) on (0, T )× Ω,

where Ω ⊂ Rd is a bounded domain and f ∈ L∞((0, T )×Ω). This weak Harnack inequality
then implies an estimate on the oscillation of a solution u, which in turn yields Hölder
regularity in the nonlocal setting. The method how to deduce Hölder regularity from the
estimate on the oscillation of u was found by Silvestre [Sil06].

Main features of the approach

The presented work establishes the main results by modifying Moser’s classical approach
to the case of nonlocal parabolic equations. The advantages of this method are explained
by the following features:

I) Local regularity results: In contrast to De Giorgi’s method, Moser’s technique uses
local methods to derive regularity results. This means that (I.5) is only assumed to
hold on a bounded region I×Ω ⊂ Rd+1 in order to derive the weak Harnack inequality
and the Hölder regularity result.
The weak Harnack inequality is of its own interest since these a priori inequalities
play an important role4 in partial differential equations and have applications that go
beyond questions of regularity. Only recently, Jarohs and Weth [JW13] applied The-
orem 4.4 in their results on asymptotic symmetry of solutions to nonlinear fractional
reaction-diffusion equations. Also Erdős and Yau [EY12] as well as Jin and Xiong
[JX11] apply a Harnack inequality for fractional order equations in their results.

II) Mild assumptions on the kernel: The techniques applied in this thesis allow for rel-
atively mild assumptions on the underlying kernel kt. In particular, no pointwise
bounds and no regularity in the variables is required for kt. This property is essential
for the application to nonlocal, nonlinear variational integrals. Thus, (I.5) can be

4see the survey on Harnack inequalities [Kas07b].
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seen as a nonlocal equation with bounded, measurable coefficients. Moreover, kt may
vanish on a large part around the diagonal, see Example 4.8 for an illustration. Up
to the present, all related results that prove Hölder regularity for solutions to (I.5)
have used stronger conditions on the underlying kernels.
Another important aspect in this context is explained in Kassmann and Schwab
[KS13], where the authors use this approach to provide the main results in the case
where the kernel of the nonlocal operator is not absolutely continuous with respect
to the Lebesgue measure.

III) Robustness for α→ 2−: All constants that appear in the main results are independent
of α ∈ (α0, 2), i.e. the a priori estimates do not depend on the order of differentia-
bility of the underlying operator – provided the order is bounded from below by a
universal constant α0 > 0. In particular, the estimates hold uniformly for a sequence
of solutions (un) to orders αn approaching 2 from below, see Example 4.7. However,
it will not be shown in this thesis that Moser’s classical results can be obtained as a
limit case.

Outline

Chapter 1 contains a short review on integration of vector-valued functions. The focus
therein lies on the application to parabolic equations. Also the results in Chapter 2 serve
as a basis for the theory of parabolic equations of fractional order. Except of Section 2.4 all
results and proofs in Chapter 1 and Chapter 2 are collected from the literature. Detailed
references are given therein.
In Chapter 3, the parabolic initial boundary value problem for both local and nonlocal
operators is studied from a functional analytic point of view. The notion of weak solution
is elaborated there and the well-posedness of the problem is established by means of Hilbert
space methods.
The main theorems of this thesis and the framework for these results are presented in Chap-
ter 4. Chapter 5 collects all technical tools that are needed to apply Moser’s technique.
This technique is applied in Chapter 6, where the proofs of the main results are given.
Finally, in Chapter 7, Moser’s classical results for local operators are reviewed and re-
proved. The structure in this chapter is in one-to-one correspondence with the structure in
Chapter 6 in order to facilitate a comparison between Moser’s technique for second order
and fractional order parabolic equations.
A short list of notation is given on pp. 117-118.
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Abgrenzung des eigenen Beitrags gemäß §10(2) der Promotionsordnung

Den Inhalt der Kapitel 4-6 hat der Autor dieser Dissertation in einer Arbeit [FK13] ge-
meinsam mit seinem Betreuer, Moritz Kaßmann, veröffentlicht. Diese Arbeit wurde von
der Zeitschrift Communications in Partial Differential Equations zur Veröffentlichung an-
genommen. Die Ergebnisse in Abschnitt 5.3, Abschnitt 5.4 und Abschnitt 6.6 gehen auf
Moritz Kaßmanns frühere Arbeiten über elliptische Gleichungen zurück. Außerdem stammt
die Idee, die punktweisen Schranken an den Kern kt(x, y) durch Integralbedingungen zu
ersetzen – siehe Abschnitt 4.1 – von ihm.
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Basics





1 Integration theory & Lebesgue spaces

In this chapter we review the construction of the Bochner-Lebesgue integral as well as
some central results in this theory. The concept of Bochner measurability and integrability
can be considered as an extension of Lebesgue’s integration theory to functions that take
values in some Banach space. In this presentation we focus on those parts of this concept
that will be needed in the functional analytic theory of parabolic equations. Additionally,
some important results in this chapter such as the theory of Lp-spaces are provided in an
integrated way both for real-valued and vector-valued functions.

Throughout the whole chapter the triplet (M,A, µ) denotes a complete1 measure space.
In this thesis the results are applied to the situation where (M,A, µ) is the completion
of the measure space (Rd,B(Rd), λd), where B(Rd) denotes the Borel σ-field and λd the
d-dimensional Lebesgue measure.

(V, ‖·‖) denotes a real Banach space.

1.1 Measurable functions

Let us recall that a function f : M → R is said to be Lebesgue measurable if f−1(B) ∈ A
for every B ∈ B(R).

The following definition generalizes the concept of measurability to the case where f maps
into a general Banach space V . It is a summary of the definitions and remarks in [AE09,
Section X.1] and [Zei90, Appendix].

Definition 1.1. Let f : M → V .

(i) f is called step function (or simple function) if there is k ∈ N, (vj , Aj) ∈ V ×A with
µ(Aj) <∞ for j = 1, . . . , k, such that

f =
k∑

j=1

vj1Aj

with vj 6= 0 for all j = 1, . . . , k and vj 6= vi, Aj ∩ Ai = ∅ for j 6= i. It is easy to see
that this representation is unique.

1A measure space is called complete if every subset of a set of measure zero is again measurable. Note
that this property is depending on both the σ-field and the measure. See Remark 1.2 for a discussion
on this assumption.
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(ii) f is called Bochner measurable (or strongly measurable) if there is a sequence (fj)j∈N
of simple functions such that for µ-almost every m ∈M

lim
j→∞

‖fj(m)− f(m)‖ = 0.

(iii) f is called weakly measurable if the real-valued functions ξ 7→ 〈g, f(ξ)〉 are Lebesgue
measurable for every g ∈ V ∗.

(iv) f is called almost surely separably valued if there is N ⊂M with µ(N) = 0 such that
f(N c) ⊂ V is separable.

Remark 1.2. A well-known result (e.g. [AE09, Theorem X.1.14]) states that if a sequence
(fn) of strongly measurable functions converges to a function f almost everywhere, then f
is again strongly measurable. The following example, which is taken from [AE09, Remark
X.1.15], shows that this property fails if we do not assume the measure space to be complete:

The measure space (R,B(R), λ1) is non-complete ([AE09, IX.5.29]). In particular, there is
a subset N of the Cantor set C such that N /∈ B(R). Define fn = 1C and f = 1N . C –
as a compact set – is measurable and thus fn is strongly measurable. Since λ1(C) = 0, fn
converges λ1-a.e. to f . However, f is not measurable since {f > 0} = N /∈ B(R).

Of course, if g is defined by g(t) = limn→∞ fn(t), then g = 1C , which is a measurable
function. The result mentioned at the beginning of this remark asserts that every function
that can be identified as a pointwise limit of a sequence of strongly measurable functions
is again measurable – provided the underlying measure space is complete. �

Let us mention another rather simple observation: If f : M → V is strongly measurable
then the real valued functionm 7→ ‖f(m)‖ is Lebesgue measurable, see e.g. [Růž04, Lemma
2.1.7] for a proof.

The following theorem provides a characterization of strong measurability. It is due to
Pettis [Pet38], see also [Yos80, Section V.4] for a proof.

Theorem 1.3 (Pettis’ theorem). A function f : M → V is strongly measurable if and only
if it is weakly measurable and almost surely separately valued.

Since every subset of a separable normed space is again separable, we see that f(M) is
separable if V is itself separable. As an immediate consequence of Pettis’ theorem we
obtain2:

Corollary 1.4. Let V be a separable Banach space. Then f : M → V is strongly measurable
if and only if f is weakly measurable.

We will frequently use this result without citing it explicitly.

2In literature this corollary is sometimes referred to as Pettis’ theorem.
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1.2 The Bochner-Lebesgue integral

The presentation in this section collects results on Bochner integration from [AE09, Chapter
X], [GGZ74, §IV.1] and [Zei90, Section 23.2], see also [Emm04, Abschnitt 7.1] and [Růž04,
Kapitel 2] for similar summaries on this topic.

Let us give a very short overview on the construction of the Lebesgue integral of real-
valued functions: For every measurable function f : M → [0,∞) there is a sequence of step
functions (ϕn) such that ϕn → f a.e. The integral of f is then defined as the limit of the
integrals of ϕn, i.e.

ˆ
M
f(m) dµ(m) = lim

n→∞

ˆ
M
ϕn(m) dµ(m) = lim

n→∞

kn∑

j=1

xj,nµ(Aj,n) ,

where ϕn =
kn∑
j=1

xj,n1Aj,n . A general function f : M → R is called integrable if
´
f+ and

´
f− exist and we set ˆ

M
f dµ =

ˆ
M
f+ dµ−

ˆ
M
f− dµ .

This is just a minimal overview. Details can be found in the monograph [Bau01].

The next definition generalizes this concept to functions with values in a Banach space
(V, ‖·‖).

Definition 1.5. Let ϕ : M → V be a simple function as in Definition 1.1(i). The integral
of ϕ is defined by ˆ

M
ϕ dµ =

k∑

j=1

vj µ(Aj) ∈ V .

Let f : M → V be a Bochner measurable function with approximating sequence (ϕn). We
say that f is Bochner integrable if for every ε > 0 there is N ∈ N such that for every
n, k ≥ N ˆ

M
‖ϕn(m)− ϕk(m)‖ dµ(m) < ε . (1.1)

In this case we define the integral of f by
ˆ
M
f dµ = lim

n→∞

ˆ
M
ϕn dµ ∈ V . (1.2)

Furthermore, we define for A ∈ A
ˆ
A
f dµ =

ˆ
M
1Af dµ .

A few comments are necessary in order to explain that this definition is meaningful. Firstly,
the real-valued functions m 7→ ‖ϕn(m)‖ are measurable since ϕn is strongly measurable. In
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particular, the integral in (1.1) is a Lebesgue integral of real-valued functions (M,A, µ)→
(R,B(R)). Secondly, it is easy to see that

∥∥∥∥
ˆ
M
ϕ(m) dµ(m)

∥∥∥∥ ≤
ˆ
M
‖ϕ(m)‖ dµ(m) for every simple function ϕ.

By this inequality we may deduce from (1.1) that the sequence
(ˆ

M
ϕn dµ : n ∈ N

)
is a Cauchy sequence in the Banach space V ,

and thus the limit on right-hand side of (1.2) exists. Thirdly, an elementary proof shows
that the definition of the integral of f is independent of the choice of the approximating
sequence. For details we refer to [AE09, Section X.2].

As can be seen from this definition and Corollary 1.4, the concept of integration of vector
valued functions extends the Lebesgue integration theory in a consistent way, i.e. the two
concepts coincide if V = R.

Properties of the integral

Let us give a short summary of results on the theory of Bochner integrable functions.

The Bochner integral is linear, i.e. for all α, β ∈ R and integrable f, g : M → V
ˆ
αf + βg dµ = α

ˆ
f dµ+

ˆ
g dµ.

A strongly measurable function f : M → V is Bochner integrable if and only if the real-
valued function m 7→ ‖f(m)‖ is Lebesgue integrable. This fact is often referred to as
Bochner’s theorem. Moreover, for every A ∈ A and every integrable f we have

∥∥∥∥
ˆ
A
f dµ

∥∥∥∥ ≤
ˆ
A
‖f‖ dµ . (1.3)

The dominated convergence theorem is one of the most important properties of the Bochner-
Lebesgue integral. A proof can be found in [AE09, Chapter X].

Theorem 1.6 (Dominated convergence). Let (fn) be a sequence of measurable functions
fn : M → V such that lim

n→∞
fn = f a.e. for a function f : M → V . Furthermore assume

that there is a function g : M → R such that ‖fn‖ ≤ g a.e. for all n ∈ N and
´
|g| dµ <∞.

Then
lim
n→∞

ˆ
M
‖f − fn‖ dµ = 0

and in particular

lim
n→∞

ˆ
M
fn dµ =

ˆ
M

lim
n→∞

fn dµ <∞.

We give another two convergence results for the special case of real-valued functions. For
proofs we refer to [AE09, Chapter X].
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Theorem 1.7 (Monotone convergence). Assume that (fn) is a sequence of measurable
functions fn : M → [0,∞) such that fn ≤ fn+1 a.e. on M for every n ∈ N. Then

lim
n→∞

ˆ
M
fn dµ =

ˆ
M

lim
n→∞

fn dµ . (1.4)

Theorem 1.8 (Fatou’s lemma). Assume that (fn) is a sequence of measurable functions
fn : M → [0,∞). Then

ˆ
M

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

ˆ
M
fn dµ . (1.5)

Note that we interpret (1.4) and (1.5) as (in)equalities in [0,∞], i.e. we allow both sides
to be equal to +∞.

1.3 Spaces of integrable functions

As in the integration theory of real-valued functions we call two functions f, g : M → V
equivalent if f = g µ-a.e. on M . In what follows we will consider spaces that contain
equivalence classes [f ] of integrable functions. We will denote these equivalence classes
again by f without mentioning it explicitly.

From now on we will assume that the underlying measure space is an open subset Ω of
Rd endowed with its natural σ-field and the restriction of the Lebesgue measure λd to Ω.
Recall that ‖·‖ stands for the norm of the Banach space V .

Definition 1.9. For p ∈ [1,∞] we define the linear space

Lp(Ω;V ) =
{
f : Ω→ V : f is strongly measurable and ‖f‖Lp(Ω;V ) <∞

}
, (1.6a)

where

‖f‖Lp(Ω;V ) =

(ˆ
Ω
‖f(x)‖p dx

)1/p

if 1 ≤ p <∞ ,

‖f‖L∞(Ω;V ) = ess-sup
x∈Ω

‖f(x)‖ = inf
{
α ≥ 0: λd({‖f‖ > α}) = 0

}
.

(1.6b)

A function f ∈ L∞(Ω;V ) is called essentially bounded. In the case V = R we simply write
Lp(Ω) = Lp(Ω;R). If Ω = (a, b) ⊂ R we write Lp(a, b;V ) = Lp((a, b);V ).

The following proposition collects some properties of Lp-spaces. Proofs of these assertions
can be found in [AE09, Section X.4], [Emm04, Satz 7.1.23], [GGZ74, §IV.1.3] and [Zei90,
Chapter 23].
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Proposition 1.10.

(i) For 1 ≤ p ≤ ∞ the linear space Lp(Ω;V ) endowed with the norm given by (1.6b) is a
Banach space.

(ii) The set of simple functions is dense in Lp(Ω;V ), 1 ≤ p <∞.

(iii) If V is a separable Banach space then so is Lp(Ω;V ) for 1 ≤ p <∞.

(iv) If H is a Hilbert space then so is L2(Ω;H), where the scalar product is given by

(f, g)L2(Ω;H) =

ˆ
Ω

(f(x), g(x))H dx . (1.7)

(v) Let f ∈ Lp(Ω;V ) and g ∈ Lq(Ω;V ∗) with 1
p + 1

q = 1, 1 < p < ∞. Then Hölder’s
inequality holds:

ˆ
Ω
〈g(x), f(x)〉V dx ≤ ‖g‖Lq(Ω;V ∗) ‖f‖Lp(Ω;V ) . (1.8)

(vi) If V is reflexive and separable then Lp(Ω;V ) is reflexive for 1 < p < ∞. In this
case there is an isometric isomorphism (Lp(Ω;V ))∗ ∼= Lq(Ω;V ∗) where q is the dual
exponent, i.e. 1

p + 1
q = 1. The dual pairing is then given by

〈F, f〉Lq(Ω;V ∗) =

ˆ
Ω
〈F (x), f(x)〉V dx for f ∈ Lp(Ω;V ) . (1.9)

(vii) Let W be another Banach space such that V ↪→ W and assume that Ω is bounded.
Then for 1 ≤ p ≤ r ≤ ∞ one has Lr(Ω;V ) ↪→ Lp(Ω;W ).

Assertion (vi) remains true if we only assume that V is reflexive or V ∗ separable. A proof
of this can be found in [Edw65]. We will not make use of this.

Another property of the spaces Lp(Ω;V ) will turn out to be useful in the next section
when dealing with averages of abstract functions. The proof of this property in the case of
vector-valued functions defined on Rd is not very common in the literature. Therefore we
provide an elementary proof.

Theorem 1.11 (Continuity of translations in Lp). Let f : Rd → V and 1 ≤ p ≤ ∞. For
h ∈ Rd define Thf(x) = f(x+ h). If f ∈ Lp(Rd;V ) then also Thf ∈ Lp(Rd;V ). Moreover,
if p <∞, we have

lim
h→0
‖Thf − f‖Lp(Rd;V ) = 0 . (1.10)

Proof. If the sequence (ϕn) of simple functions approximates f a.e. on Rd in the norm of
V , then the sequence (Thϕn), whose members are still simple functions, approximates Thf .
This shows that Thf is strongly measurable. Furthermore, the translation invariance of the
Lebesgue measure and the definition of ess-sup, respectively, show that Thf ∈ Lp(Ω;V ) for
p <∞ and p =∞. In particular, ‖f‖Lp(Ω;V ) = ‖Thf‖Lp(Ω;V ) for all h ∈ Rd.
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Now assume that f = v 1U for some measurable set U ⊂ Rd and some v ∈ V . Then

‖Thf − f‖pLp(Rd;V )
= ‖v‖p

ˆ
Rd

[1U (x+ h)− 1U (x)] dx

= λd((U ∪ U + h) \ (U ∩ U + h))
h→0−−−→ 0.

Property (1.10) is then readily checked if f is assumed to be a simple function. Now we
prove the assertion for general f ∈ Lp(Ω;V ). Let ε > 0. By Proposition 1.10(ii) there is
a simple function ϕ such that ‖ϕ− f‖Lp(Ω;V ) < ε. For this simple function we find δ > 0
such that for all h ∈ Bδ(0) we have ‖Thϕ− ϕ‖Lp(Ω;V ) < ε. Then for all h ∈ Bδ(x) (setting
‖·‖p = ‖·‖Lp(Ω;V ))

‖Thf − f‖p = ‖Th(f − ϕ) + Thϕ− ϕ+ ϕ− f‖p ≤ ‖f − ϕ‖p + ‖Th − ϕ‖p + ‖ϕ− f‖p
< 3ε.

This finishes the proof.

The solution of a parabolic equation is a function u(t, x), where we interpret the variable
t as time variable and the variable x as space variable. Generally, we seek for a solution
u that is defined for t in a finite time interval, for instance (0, T ), and for x belonging to
some domain Ω ⊂ Rd. In the functional analytic treatment of parabolic problems it is a
common strategy to treat the differentiation with respect to t in a different way than the
derivatives in space. In other words, one associates to each function u : (0, T )×Ω→ R an
abstract function

U : (0, T )→ VΩ, U(t) = u(t, ·).
In this situation VΩ is a space of functions operating on Ω. The following result answers the
question if one can identify the function u belonging to some space of (Lebesgue) integrable
functions operating on (0, T )×Ω with the space of (Bochner) integrable abstract functions
U operating on (0, T ) with values in VΩ. This result as well as its proof can be found in
[Emm04, Section 7.1], [Růž04, Section 2.1.1] and [Zei90, Example 23.4].

Proposition 1.12. For 1 ≤ p < ∞ the mapping u 7→ U is an isometric isomorphism
between Lp((0, T )× Ω) and Lp(0, T ;Lp(Ω)).

This proposition justifies that we shall denote the abstract function U again by u. Its
proof uses the density of step functions in Lp. This density argument is not true if p =∞.
Indeed (cf. [Emm04, Satz 7.1.26]):

Lemma 1.13. One has L∞(0, T ;L∞(Ω)) ( L∞((0, T )× Ω).

The example [Emm04, Beispiel 7.1.27] considers a function f : (0, 1) × (0, 1) → R defined
by f(x, y) = 1 if x ≥ y and f(x, y) = 0 if x < y. Clearly, this function belongs to
L∞((0, 1) × (0, 1)). However, the strong measurability fails since for given x0 ∈ (0, 1) one
cannot approximate in the norm of L∞(0, 1) the function f(x0, ·) with a sequence of step
functions. Details can be found in the mentioned reference.
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1.4 Steklov averages

Steklov averages are needed to mollify (vector-valued) functions u defined on a time interval.
In this section we give some technical results on these averaged functions in a general
framework. Some of these results are stated in [LSU68, II.§4] and [DGV11, Section 2.5.3].
The application of Steklov averages to parabolic equations is explained in full detail in
Section 5.2.

Let I = (T1, T2), Q = I × Ω. For v ∈ L1(Q) and 0 < h < T2 − T1 define

vh(t, ·) =





1

h

ˆ t+h

t
v(·, s) ds for T1 < t < T2 − h,

0, for t ≥ T2 − h.

Lemma 1.14. Let V be a Banach space and let v ∈ Lp(I;V ) for some p ∈ [1,∞] and
I ′ = (t1, t2) ⊂ I with t2 < T2. Then

(i) vh ∈ C(I ′;V ) for every h ∈ (0, T2 − t2).

(ii) ‖vh‖Lp(I′;V ) ≤ ‖v‖Lp(I′;V ) for every h ∈ (0, T2 − t2).

(iii) If p <∞ then ‖vh − v‖Lp(I′;V ) → 0 for h→ 0+.

(iv) If v ∈ C(I;Lp(Ω)) for some p < ∞, then ‖vh(t, ·)− v(t, ·)‖Lp(Ω)
h→0+−−−−→ 0 for every

t ∈ I ′.

Proof. ad (i): For every t ∈ I ′ and h ∈ (0, T2 − t2) we have

lim
∆t→0

‖vh(t+ ∆t)− vh(t)‖ ≤ lim
∆t→0

ˆ
I′
‖v(s)‖

∣∣1[t+∆t,t+∆t+h](s)− 1[t,t+h](s)
∣∣ ds

=

ˆ
I′
‖v(s)‖ lim

∆t→0

∣∣1[t+∆t,t+∆t+h](s)− 1[t,t+h](s)
∣∣ ds = 0 .

We can interchange limit and integration due to dominated convergence theorem
(Theorem 1.6).

ad (ii): By Jensen’s inequality, inequality (1.3), and Fubini’s theorem we obtain

‖vh‖pLp(I′;V ) =

ˆ
I′
‖vh(t)‖p dt ≤ 1

h

ˆ
I′

ˆ t+h

t
‖v(s)‖p ds dt

=

ˆ
I′
‖v(s)‖p 1

h

ˆ
I′
1(t,t+h)(s) dt ds

=

ˆ
I′
‖v(s)‖p 1

h

ˆ
I′
1(s−h,s)(t) dt ds

= ‖v‖pLp(I′;V ) .
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This proves (ii) in the case p < ∞. In the case p = ∞ we use again (1.3) to
deduce that for almost every t ∈ I ′

‖v(t)‖ ≤ 1

h

ˆ t+h

t
‖v(s)‖ ds ≤ ‖v‖L∞(I′;V ) .

This proves (ii) for p =∞.

ad (iii): Observe that for a.e. t ∈ I ′

‖vh(t)− v(t)‖p =

∥∥∥∥
1

h

ˆ t+h

t
v(s)− v(t) ds

∥∥∥∥
p

=

∥∥∥∥
ˆ 1

0
v(t+ sh)− v(t) ds

∥∥∥∥
p

≤
ˆ 1

0
‖v(t+ sh)− v(t)‖p ds . (1.11)

Hence,

‖vh − v‖pLp(I′;V ) =

ˆ
I′
‖vh(t)− v(t)‖p dt ≤

ˆ
I′

ˆ 1

0
‖v(t+ sh)− v(t)‖p ds dt

=

ˆ 1

0

ˆ
I′
‖v(t+ sh)− v(t)‖p dt ds ≤ sup

0<s<h
‖v(·+ s)− v(·)‖pLp(I′;V ) .

The right-hand side tends to zero for h→ 0 due to uniform continuity of transla-
tions in Lp(I ′;V ), 1 ≤ p <∞ (Theorem 1.11). This proves assertion (iii).

ad (iv): Let t ∈ I ′ and ε > 0. By assumption we find δ > 0 such that for all h ∈ (0, δ) we
have ‖v(t+ h)− v(t)‖Lp(Ω) < ε. By (1.11)

‖vh(t)− v(t)‖pLp(Ω) ≤
ˆ 1

0
‖v(t+ sh)− v(t)‖pLp(Ω) dt < εp.

This shows assertion (iv).





2 Distributions & Sobolev spaces

Sobolev spaces arise in a natural way as spaces of weak solutions to partial differential
equations. Generally speaking, these spaces consist of functions that belong together with
all generalized partial derivatives up to a certain order to some Lp-space. In this chapter
we define generalized derivatives in the context of distributions. We shall define both
integer order and fractional order Sobolev spaces as spaces of functions with a domain
being an arbitrary open set Ω ⊂ Rd. In Section 2.6 we shall present – in the case Ω = Rd
– some results that connect the Fourier transform to Sobolev spaces. Finally, we introduce
the fractional Laplacian as a prototype of a nonlocal operator that is closely related to
fractional Sobolev spaces.

Throughout the whole chapter we denote by Ω a – bounded or unbounded – open set in
Rd.

2.1 The spaces D(Ω), D′(Ω) and generalized derivatives

In this section fundamental results and definitions concerning distributions are provided.
In this presentation we concentrate on the main aspects of distributions that are necessary
to study partial differential equations and Sobolev spaces.

The way of presentation in this section is largely influenced by [AF03, HT08]. Detailed
references for the results and definitions will be given below.

Unless otherwise stated we consider functions with values in the complex plane C and by
a linear space we mean a complex vector space. We recall that a measurable function
f : Ω→ C with f = u+ iv, u, v : Ω→ R, belongs to Lp(Ω;C) if |f | = (u2 + v2)1/2 belongs
to Lp(Ω;R). For f ∈ L1(Ω;C) the integral of f is defined by

ˆ
f(x) dx =

ˆ
u(x) dx+ i

ˆ
v(x) dx .

In the following definition we follow the lines of [HT08, Section 2.1]:

Definition 2.1. Let f ∈ Cloc(Ω).

(i) The support of f is the set

supp[f ] = {x ∈ Ω: f(x) 6= 0}, (2.1)

where the closure is taken with respect to any norm in Rd. Note that supp[f ] may
contain points x ∈ Ωc. The reason why this definition is given only for f ∈ Cloc(Ω) is
explained by Example 2.5.
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(ii) f is said to have compact support (in Ω) if supp[f ] is bounded and supp[f ] ⊂ Ω.

(iii) The linear space C∞c (Ω) is defined by

C∞c (Ω) = {φ ∈ C∞(Ω): φ has compact support in Ω} .

In literature, distributions are also referred to as generalized functions in the sense that they
are considered as mappings T : C∞c (Ω)→ R. But for the notion of continuity (i.e. a notion
of T being a functional) it is necessary to endow this vector space with a certain topology.
This topology, which we denote by T from now on, has to be chosen in a reasonable way
in the sense that at least the following requirements are satisfied:

a) T should be a Hausdorff topology on C∞c (Ω) and addition and scalar multiplication
should be continuous operations. A vector space that is endowed with a topology and
shares these two properties is called a topological vector space, cf. [Rud91, Section 1.6].

b) The topological vector space (Cc(Ω), T ) and especially its dual space should allow for a
functional analytic treatment parallel to the one of normed spaces. This is to a certain
extent possible for locally convex topological vector spaces. A topological vector space
is called locally convex if there is a local base1 whose members are convex, cf. [Rud91,
Section 1.8].

c) The topology T should be compatible with a notion of convergence of elements φn ∈
C∞c (Ω). In particular, a mapping T : (C∞c (Ω), T ) → R should be continuous if and
only if T is sequentially continuous – with respect to the before mentioned notion of
convergence in (C∞c (Ω), T ).

We collect the following assertions from [Rud91, Theorem 6.4(b)], [Rud91, Theorem 6.5(f)]
and [Rud91, Theorem 6.6], where also the proofs can be found.

Proposition 2.2. There is a topology T on C∞c (Ω) such that

(i) (C∞c (Ω), T ) is a locally convex topological vector space,

(ii) φn → 0 in (C∞c (Ω), T ) if and only if there is a compact K ⊂ Ω such that supp[φn] ⊂ K
for every n ∈ N and ∂αφn → 0 uniformly as n→∞ for every multi-index α ∈ Nd0,

(iii) a linear mapping T : (C∞c (Ω), T ) → Y , where Y is a normed space, is continuous
if and only if ‖T (φn)‖Y → 0, n → ∞, for every sequence (φn) with φn → 0 in
(C∞c (Ω), T ).

From now on we fix this topology2 T . We make the following definitions:

1Let (X, τ) be a topological space. A family U(x, τ) of neighborhoods of a point x ∈ X is called a local
base if every neighborhood of x contains a member of U(x, τ), [Rud91, p. 7].

2It can be shown (see [Rud91, Remark 6.9] or [Leo09, Exercise 9.9]) that the topology T of D(Ω) is not
metrizable.
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Definition 2.3.

(i) The topological vector space (C∞c (Ω), T ) is denoted by D(Ω). φ ∈ D(Ω) is called a
test function.

(ii) A distribution or generalized function is a continuous linear functional T : D(Ω)→ R.
The set of all distributions is denoted by D′(Ω).

The terminology “generalized functions” is justified by the following observation: Ev-
ery f ∈ L1

loc(Ω) defines a distribution Tf ∈ D′(Ω) via

Tf (φ) =

ˆ
Ω
f(x)φ(x) dx . (2.2)

Indeed, Tf is obviously linear and continuous due to the characterization of continuity
in Proposition 2.2 (ii),(iii).

It is also clear that not every distribution can be represented as in (2.2). For example,
for x ∈ Ω, φ 7→ φ(x) defines a distribution in D′(Ω). It is obvious that there is no
function f allowing for a representation (2.2). The following definition singles out the
distributions having such a representation:

(iii) A distribution T ∈ D′(Ω) is called regular if there is f ∈ L1
loc(Ω) such that T = Tf ,

where Tf is given by (2.2).

(iv) The restriction T |Ω0 ∈ D′(Ω0) of a distribution T ∈ D′(Ω) to an open subset Ω0 ⊂ Ω
is defined by

T |Ω0(φ) = T (φ) for φ ∈ D(Ω0).

(v) The support of a distribution T ∈ D′(Ω) is defined by

suppT =
{
x ∈ Ω: T |Ω∩Bε(x) 6= 0 for any ε > 0

}
. (2.3)

We cite the following proposition from [HT08, Proposition 2.7], which is often called funda-
mental lemma of calculus of variations. For a proof we refer to the mentioned reference.

Proposition 2.4. Let f ∈ L1
loc(Ω). Ifˆ

Ω
f(x)φ(x) dx = 0 for all φ ∈ D(Ω),

then f = 0 almost everywhere on Ω.

One consequence of this result is that for f ∈ Cloc(Ω) the support of f as in (2.1) and
the support of f interpreted as a distribution Tf ∈ D′(Ω) in (2.3) coincide. The following
example shows that this is not true if f is not continuous:
Example 2.5 ([HT08, Remark 2.23]). This example shows that the generalization of (2.1)
to functions f ∈ L1

loc(Ω) would have the consequence that the support of f – interpreted
as a function – would differ from the support of f interpreted as a regular distribution:

Let f be the Dirichlet function, i.e. the function f : R → [0, 1] defined by f(x) = 1Q(x).
Clearly, f = 0 in L1(R) and hence suppTf = ∅. But since Q is dense in R we have

{x ∈ R : f(x) 6= 0} = R. �
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Generalized derivatives

Definition 2.6 (Derivative of a distribution). Let α ∈ Nd0 and T ∈ D′(Ω). The derivative
∂αT is defined by

(∂αT )(φ) = (−1)|α| T (∂αφ) for φ ∈ D(Ω).

Since φn → 0 in D(Ω) implies ∂αφ→ 0 uniformly (cf. Proposition 2.2(ii)), we obtain that
|∂αT (φn)| → 0, i.e. ∂αT ∈ D′(Ω) for every α ∈ Nd0.

As a consequence of this definition, every function f ∈ L1
loc(Ω) possesses a distributional

derivative of every order, simply by interpreting f as a distribution Tf ∈ D′(Ω). The
following definition singles out the cases where the distributional derivative of f is a regular
distribution:

Definition 2.7 (Generalized derivatives). Let f ∈ L1
loc(Ω) and α ∈ Nd0. If ∂αTf is a regular

distribution, i.e. if there is a function g ∈ L1
loc(Ω) such that

∂αTf = Tg, (2.4)

then g is called the generalized derivative (corresponding to α ∈ Nd0). If such a function g
exists, we write ∂αf = g.

Remark 2.8.

1. Note that (2.4) means
ˆ

Ω
f(x) ∂αφ(x) dx = (−1)|α|

ˆ
Ω
g(x) φ(x) dx for all φ ∈ D(Ω). (2.5)

Therefore, Proposition 2.4 implies that if there are g1, g2 with ∂αTf = Tg1 = Tg2 ,
then g1 = g2 almost everywhere on Ω.

2. (2.5) is an integration by parts formula, which holds for sufficiently smooth functions
f and g. In particular, we can deduce that the generalized derivative and the classical
derivative coincide – provided both exist. In other words, the concept of generalized
derivatives extends the concept of classical derivatives in a consistent way.

3. The two foregoing remarks justify the notation g = ∂αf , which we use both for the
classical and the generalized derivative of f .

4. From (2.5) we can also deduce that piecewise continuous derivatives of a function
f : [a, b] → R are generalized derivatives, see [Zei90, p. 232], where also a proof can
be found.

5. Clearly, the notion of generalized derivatives of f ∈ Lp(Ω) is well-defined since
Lp(Ω) ⊂ L1

loc(Ω) for every (bounded or unbounded) open setΩ ⊂ Rd. �

The following short example ([GS64, Section 2.2, Ex. 3]) illustrates the relation between
generalized derivatives and distributional derivatives.
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Example 2.9. Let Ω = (0,∞) and λ ∈ (0, 1). The function f(t) = t−λ clearly belongs
to L1

loc(Ω) and thus defines a distribution Tf ∈ D′(Ω) via (2.2). Its classical derivative
−λt−λ−1 does not belong to L1

loc(Ω). However, we can compute the distributional derivative
T ′f of f : Let φ ∈ D(Ω). By (2.4) and partial integration

T ′f (φ) = −
ˆ ∞

0
t−λφ′(t) dt = lim

r→0

[
−t−λ (φ(t)− φ(0))

]∞
t=r

+ λ

ˆ ∞
0

t−λ−1 (φ(t)− φ(0)) dt.

The limit on the right-hand side is equal to zero and the integral on the right-hand side
exists since φ(t)− φ(0) = o(t) for t→ 0+. Hence, T ′f is given by

T ′f (φ) =

ˆ
Ω
λt−λ−1 (φ(t)− φ(0)) dt . �

2.2 The spaces S(Rd), S ′(Rd) and the Fourier transform

Unless otherwise stated we consider functions with values in the complex plane C and by
a linear space we mean a complex vector space.

In this section we follow [HT08, Section 2.5].

In Section 2.1 we have introduced – in the special case Ω = Rd – the space D(Rd) and
its topological dual D′(Rd). As it was elaborated in the previous section these spaces are
perfectly suited for the theory of generalized derivatives. However, the space D(Rd) is
too small to develop the theory of Fourier transform. It is easy to see that the Fourier
transform is well-defined for functions u ∈ D(Rd), but the transformed function in general
does not belong to D(Rd), in other words the space D′(Rd) is too large. As will turn out,
the spaces S(Rd) and S ′(Rd) are optimal to overcome this problem.

Definition 2.10. Set

S(Rd) =
{
φ ∈ C∞(Rd) : ‖φ‖k,l <∞ for all k, l ∈ N0

}
,

where
‖φ‖k,l = sup

x∈Rd

(
1 + |x|2

)k/2 ∑

|α|≤l
|∂αφ(x)| . (2.6)

The space S(Rd) is called the Schwartz space and a function φ ∈ S(Rd) is called a Schwartz
function or rapidly decreasing function.

Remark 2.11.

a) From this definition it is clear that

∂αφ ∈ S(Rd) for all φ ∈ S(Rd) and α ∈ Nd0. (2.7)
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b) A local base in S(Rd) can be defined by means of the seminorm in (2.6) and therefore
S(Rd) is a locally convex topological vector space3 with the topology induced by the
family of seminorms in (2.6), cf. [Rud91, Theorem 1.37]. It this sense the task of finding
a suitable topology on the space of rapidly decreasing functions is easier than in the
situation of compactly supported functions. In particular, it can be shown that the
topology on S(Rd) is metrizable, cf. [HT08, Exercise 2.35, Note 2.9.3].

In particular, a sequence (φn) in S(Rd) is convergent to φ in S(Rd) if and only if

‖φn − φ‖k,l
n→∞−−−→ 0 for all k, l ∈ N0. (2.8)

c) It is clear that D(Rd) ⊂ S(Rd) and φn → φ in D(Rd) implies φn → φ in S(Rd).

Of course there are rapidly decreasing functions which are not compactly supported, for
example φ(x) = e−|x|

2

. �

In the same way as we introduced D′(Rd) we define now S ′(Rd):

Definition 2.12. Set

S ′(Rd) =
{
T : S(Rd)→ C : T is linear and continuous

}
.

The elements of S ′(Rd) are called tempered distributions.

Remember that by (2.8) T is continuous if and only if for all sequences (φn) in S(Rd)

φn → φ in S(Rd) ⇒ |T (φn)− T (φ)| → 0.

Fourier transform

Definition 2.13. For u ∈ S(Rd) the Fourier transform û of u is defined by

û(ξ) = (2π)−d/2
ˆ
Rd
e−ix·ξ u(x) dx, ξ ∈ Rd.

The inverse Fourier transform qu of u ∈ S(Rd) is defined by

(qu)(x) = û(−x) = (2π)−d/2
ˆ
Rd
eiξ·xu(ξ) dξ, x ∈ Rd.

It is well known (see [Gra08, Proposition 2.2.11, Theorem 2.2.14]) that for all u ∈ S(Rd)

û, qu ∈ S(Rd), q̂u = u = q̂u, and ‖u‖L2(Rd) = ‖û‖L2(Rd) = ‖qu‖L2(Rd) . (2.9)

The last identity is known as Plancherel’s identity.

3cf. p. 14
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In the previous section we observed that every function f ∈ L1
loc(Ω) defines Tf ∈ D′(Ω)

via (2.2). A similar statement holds in the context of tempered distibutions (see [HT08,
Corollary 2.50]): If u ∈ Lp(Rd) for some p ∈ [1,∞] then Tu ∈ S ′(Rd), where Tu is defined
by

Tu(φ) =

ˆ
Rd
u(x)φ(x) dx, φ ∈ S(Rd) . (2.10)

The Fourier transforms ̂ and q on S(Rd) can be extended to operators F and F−1 on
the space of tempered distributions:

Definition 2.14. Let T ∈ S ′(Rd). Define FT and F−1T by

(FT )(u) = T (û) and (F−1T )(u) = T (qu), u ∈ S(Rd).

Note that this definition makes sense due to the first property in (2.9). Moreover,

FT,F−1T ∈ S ′(Rd), for T ∈ S ′(Rd).

It is easy to see that F (Tu) = Tû and F−1(Tu) = T
qu for u ∈ S(Rd), thus F and F−1 are

indeed extensions from S(Rd) to S ′(Rd) consistent with the (inverse) Fourier transform on
S(Rd) as in Definition 2.13. The operators are bijective mappings from S ′(Rd) onto S ′(Rd)
and satisfy

FF−1T = T = F−1FT, T ∈ S ′(Rd),
see [HT08, Section 2.7].

For the following result, which we cite from [HT08, Section 2.8], we interpret the spaces
Lp(Rd) as subspaces of S ′(Rd) in the sense of (2.10) and do not distinguish between the
function u ∈ Lp(Rd) and its distribution Tu ∈ S ′(Rd).

Theorem 2.15 (Fourier transform in Lp(Rd), Plancherel’s theorem). If u ∈ Lp(Rd) with
1 ≤ p ≤ 2, then the tempered distribution Fu is regular. Furthermore, the restrictions of
F and F−1, respectively, to L2(Rd) generate unitary operators in L2(Rd), in particular

‖Ff‖L2(Rd) =
∥∥F−1f

∥∥
L2(Rd)

= ‖f‖L2(Rd) , f ∈ L2(Rd). (2.11)

Moreover, if u ∈ L1(Rd) then

Fu(ξ) = (2π)−d/2
ˆ
Rd
e−ix·ξf(x) dx, ξ ∈ Rd.
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2.3 Sobolev spaces of integer order

From now on we consider functions with values in R and by Banach spaces (or linear spaces)
we mean linear spaces over R.

In the following definition we follow the lines of [Eva10, Section 5.2.2].

Definition 2.16 (Sobolev space). Let 1 ≤ p ≤ ∞ and k ∈ N0. The Sobolev space W k,p(Ω)
consists of all functions f ∈ Lp(Ω) such that for each multi-index α ∈ Nd0 with |α| ≤ k the
generalized derivative ∂αf exists and belongs to Lp(Ω). In compact form

W k,p(Ω) =
{
f ∈ Lp(Ω): ∂αf ∈ Lp(Ω) for all α ∈ Nd0 with |α| ≤ k

}
.

Furthermore, for f ∈W 1,p(Ω) set

∇f = (∂1f, . . . , ∂df) .

Note that W 0,p(Ω) = Lp(Ω).

The following result states elementary properties of Sobolev spaces. For a proof we refer
to [AF03, Theorems 3.3, 3.6], [Eva10, Section 5.2.3, Theorem 2], [Wlo87, Theorem 3.1],
[Zei90, Proposition 21.10].

Proposition 2.17. Let 1 ≤ p ≤ ∞ and k ∈ N0. Endowed with the norm

‖f‖Wk,p(Ω) =


∑

|α|≤k
‖∂αf‖pLp(Ω)




1/p

for 1 ≤ p <∞,

‖f‖Wk,∞(Ω) =
∑

|α|≤k
‖∂αf‖L∞(Ω) ,

the linear space W k,p(Ω) is a Banach space. W k,p(Ω) is separable if 1 ≤ p < ∞ and
reflexive if 1 < p <∞.

Note that for all k ∈ N0 the norm on W k,2(Ω) is induced by a scalar product. Therefore,
the spaces W k,2(Ω) are separable Hilbert spaces and we define4

Hk(Ω) = W k,2(Ω)

and the scalar product on these spaces by

(f, g)Hk(Ω) =
∑

|α|≤k
(∂αf, ∂αg)L2(Ω) .

4In literature, one finds also the notation Hk,p(Ω). This space is defined as the completion of C∞(Ω) ∩
Wm,p(Ω) with respect to the norm ‖·‖Wk,p(Ω). It was shown in [MS64] that Hk,p(Ω) = W k,p(Ω)

for every open set Ω ⊂ Rd and 1 ≤ p < ∞, see also [AF03, Theorem 3.17]. If p = ∞ we have
Hm,p(Ω) (Wm,p(Ω), see [AF03, Corollary 3.4, Example 3.18].
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The space Hk
0 and its dual

Definition 2.18. Let k ∈ N0 and 1 ≤ p ≤ ∞.

(i) The space W k,p
0 (Ω) is defined as the completion of C∞c (Ω) with respect to the norm

‖·‖Wk,p(Ω). Furthermore, set Hk
0 (Ω) = W k,2

0 (Ω).

(ii) The Banach space H−1(Ω) is defined as the dual space of H1
0 (Ω) endowed with the

norm
‖f‖H−1(Ω) = sup

{
〈f, u〉 : u ∈ H1

0 (Ω), ‖u‖H1(Ω) ≤ 1
}
.

The following result, which we cite from [Eva10, Section 5.9.1, Theorem 1] and [Bre11,
Proposition 9.20], gives a characterization of the dual space H−1(Ω).

Proposition 2.19. Let F ∈ H−1(Ω). Then there are functions f0, f1, . . . , fd ∈ L2(Ω) such
that for all v ∈ H1

0 (Ω)

〈F, v〉 = (f0, v)L2(Ω) +
d∑

i=1

(fi, ∂iv)L2(Ω) and ‖F‖H−1(Ω) = max
1≤i≤d

‖fi‖L2(Ω) .

Remark 2.20.

a) Since we do not need the dual spaces of general spaces W k,p we omit their definition
here and restrict ourselves to the case (k, p) = (1, 2). For detailed characterizations of
the normed duals of W k,p similar to Proposition 2.19 we refer to [AF03, pp. 62-65].

b) A function f belongs to W k,p
0 (Ω) if and only if there is a sequence (fn) in C∞c (Ω) such

that ‖fn − f‖Wk,p(Ω) → 0 as n→∞.

c) Note that W 0,p
0 (Ω) = Lp(Ω) if 1 ≤ p <∞, since C∞c (Ω) is dense in Lp(Ω).

d) Due to the fact that C∞c (Ω) is a linear subset of Wm,p(Ω) it is clear that W k,p
0 (Ω) is

a closed linear subspace. Hence, also the spaces W k,p
0 (Ω) are Banach spaces with the

norm ‖·‖Wk,p(Ω) and the spaces Hk
0 (Ω) are Hilbert spaces with scalar product (·, ·)Hk(Ω).

The assertions on separability and reflexivity in Proposition 2.17 hold in the same way
for W k,p

0 (Ω).

e) Obviously, for all u ∈ C∞c (Ω) we have ‖u‖Wk,p(Ω) = ‖u‖Wk,p(Rd). Therefore, we can
define the spacesW k,p

0 (Ω) in an equivalent way as the completion of C∞c (Ω) with respect
to ‖·‖Wk,p(Rd).

f) Note that we do not identify the dual space H−1(Ω) with H1
0 . The reason for this is

that we shall consider the Gelfand triplet

H1
0 (Ω) ⊂ L2(Ω) ∼= (L2(Ω))∗ ⊂ H−1(Ω) (2.12)

in the functional analytic treatment of linear evolution equations in Chapter 3. A
simultaneous identification of L2 with its dual as well as of H1

0 with H−1 would make
(2.12) senseless. See also the discussion in [Bre11, Section 5.2]. �
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2.4 The constant Ad,−2s

In this section we compute the norming constant that ensures that the Fourier symbol of
the fractional Laplacian (cf. Section 2.7) is |ξ|2s. More precisely, we prove the following
identity:

Lemma 2.21. Let 0 < s < 1, d ∈ N and ξ ∈ Rd. The following identity holds:

ˆ
Rd

∣∣eiξ·h − 1
∣∣2

|h|d+2s
dh = |ξ|2s 21−2sπd/2

|Γ(−s)|
Γ
(
d+2s

2

) . (2.13)

Up to the author’s knowledge there is no standard reference where one may find a de-
tailed computation of the exact value of this constant, although its precise value is well-
established. The proof of this lemma extends the sketch of proof in [FLS08, Lemma 3.1]
and is based only on classical results.

For further reference we set

Ad,−2s =
22s−1

πd/2
Γ
(
d+2s

2

)

|Γ(−s)| , s ∈ (0, 1), d ∈ N. (2.14)

Sometimes, this constant is defined in a different way, namely as the reciprocal of
ˆ
Rd

1− cos (h1)

|h|d+2s
dh .

The relation to (2.13) and (2.14), respectively, is the following:

ˆ
Rd

∣∣eiξ·h − 1
∣∣2

|h|d+2s
dh = 2 |ξ|2s

ˆ
Rd

1− cos (h1)

|h|d+2s
dh , (2.15)

i.e. ˆ
Rd

1− cos (h1)

|h|d+2s
dh =

1

2
A−1
d,−2s = 2−2sπd/2

|Γ(−s)|
Γ
(
d+2s

2

) . (2.16)

The proof of this identity is given right after the proof of Lemma 2.21.

Let us start with the definition of Bessel functions. We define it in terms of the Taylor
series around zero, cf. [AS70, 9.1.10] or [Wat66, III.1.(8)].

Definition 2.22. The Bessel function Jν of the first kind of order ν ∈ R is defined by

Jν(t) =
∞∑

j=0

(−1)j
tν+2j

2ν+2j j! Γ(ν + j + 1)
(2.17)

= π−1/2

(
t

2

)ν ∞∑

j=0

(−1)j
Γ
(
j + 1

2

)

Γ(j + ν + 1)

t2j

(2j)!
, t ∈ R .
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If ν > −1
2 , the representation as a Poisson integral

Jν(t) =

(
t
2

)ν

π
1
2 Γ

(
ν + 1

2

)
ˆ 1

−1
eits(1− s2)ν−

1
2 ds

=

(
t
2

)ν

π
1
2 Γ

(
ν + 1

2

)
ˆ 1

−1
cos(ts)(1− s2)ν−

1
2 ds, t ∈ R, (2.18)

holds, see [AS70, 9.1.20] or [Gra08, Appendix B.1]. Note that it is possible to consider
Bessel functions of complex order ν ∈ C. However, for our purposes we may assume
ν ∈ R.

The following identity was found in the 19th century ([Son80, p. 39], [Sch87, p. 161]), see
also [Wat66, XIII.24.(1)]: If ν > −3

2 and −1
2 < Re z < ν + 1 then

ˆ ∞
0

t−zJν(t) dt = 2−z
Γ
(
ν+1−z

2

)

Γ
(
ν+1+z

2

) . (2.19)

Consider this as an identity of functions in the complex variable z. It is possible to
determine the analytic continuation of the integral on the left-hand side to the strip
ν + 1 < Re z < ν + 3. This method is standard, cf. [GS64, Section I.3].

Lemma 2.23. Let ν ∈ (0,∞) and define aν as the coefficient of tν in (2.17), i.e.

aν =
1

2ν Γ(ν + 1)
.

The following identity holds for ν + 1 < Re z < ν + 3:
ˆ ∞

0
t−z (Jν(t)− aνtν) dt = 2−z

Γ
(
ν+1−z

2

)

Γ
(
ν+1+z

2

) . (2.20)

Proof. Decompose the integral in (2.19) in the following way:
ˆ ∞

0
t−zJν(t) dt =

ˆ 1

0
t−z (Jν(t)− aνtν) dt+

ˆ 1

0
aνt

ν−z dt+

ˆ ∞
1

t−zJν(t) dt . (2.21)

The first term on the right-hand side exists for Re z < ν + 3 since (2.17) implies
|Jν(t)− aνtν | = O(tν+2) for t → 0+. The second term exists for all Re z > ν + 1,
whereas the third term is well-defined for all Re z > −1

2 , cf. (2.19). Hence, the right-hand
side of (2.21) is an analytic continuation of the integral on the left-hand side to the the strip
ν + 1 < Re z < ν + 3. By the identity theorem of complex analysis (see [FB09, Corollary
III.3.2]) and the property

ˆ 1

0
aνt

ν−z dt =
aν

ν + 1− z = −
ˆ ∞

1
t−z (aνt

ν) dt

we finally deduce from (2.19)
ˆ ∞

0
t−z (Jν(t)− aνtν) dt = 2−z

Γ
(
ν+1−z

2

)

Γ
(
ν+1+z

2

) ,

which is valid for ν + 1 < Re z < ν + 3.
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One could use the decomposition as in (2.21) with higher order terms in order to determine
the analytic continuation to any strip of the form ν + 2k + 1 < Re z < ν + 2k + 3, k ∈ N.
For our purposes the continuation to ν + 1 < Re z < ν + 3 is sufficient.

Proof of Lemma 2.21. From a change of variable z = |ξ|h and
∣∣eit − 1

∣∣2 = 2(1 − cos t),
t ∈ R, we obtain

ˆ
Rd

∣∣eiξ·h − 1
∣∣2

|h|d+2s
dh = |ξ|2s

ˆ
Rd

∣∣∣exp
(
i ξ|ξ| · z

)
− 1
∣∣∣
2

|z|d+2s
dz

= 2 |ξ|2s
ˆ
Rd

1− cos
(
ξ
|ξ| · h

)

|h|d+2s
dh . (2.22)

Writing ζ = ξ
|ξ| and changing to spherical coordinates yields

ˆ
Rd

1− cos
(
ξ
|ξ| · h

)

|h|d+2s
dh =

ˆ ∞
0

rd−1

ˆ
Sd−1

1− cos(rζ · θ)
rd+2s

dθ dr

=

ˆ ∞
0

r−1−2s

ˆ
Sd−1

1− cos(rζ · θ) dθ dr . (2.23)

Due to a well-known formula on spherical integration (see [Gra08, Appendix D.3])

ˆ
Sd−1

cos(rζ · θ) dθ =
2π

d−1
2

Γ
(
d−1

2

)
ˆ 1

−1
cos(rs)(1− s2)

d−3
2 ds

= (2π)
d
2 r−

d−2
2 J d−2

2
(r) ,

where the last identify follows from (2.18). We apply this identity and
∣∣Sd−1

∣∣ = 2πd/2

Γ(d/2) in
(2.23) to obtain

ˆ
Rd

1− cos
(
ξ
|ξ| · h

)

|h|d+2s
dh =

ˆ ∞
0

r−
d
2
−2s

[
2πd/2

Γ(d/2)
r
d−2

2 − (2π)
d
2 J d−2

2
(r)

]
dr

= (2π)
d
2

ˆ ∞
0

r−
d
2
−2s

[
21−d/2

Γ(d/2)
r
d−2

2 −J d−2
2

(r)

]
dr .

Finally, we use Lemma 2.23 with ν = d−2
2 and z = d

2 + 2s ∈ (ν + 1, ν + 3) to evaluate the
integral, which proves the assertion (2.13):

ˆ
Rd

∣∣eiξ·h − 1
∣∣2

|h|d+2s
dh = |ξ|2s

(
−21−2sπd/2

Γ(−s)
Γ(d2 + s

)

= |ξ|2s 21−2sπd/2
|Γ(−s)|
Γ(d2 + s)

.
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Let us now prove (2.15) (see [DNPV12, p. 531-532]): By (2.22) it remains to show that

ˆ
Rd

1− cos
(
ξ
|ξ| · h

)

|h|d+2s
dh =

ˆ
Rd

1− cos (h1)

|h|d+2s
dh .

Given ξ ∈ Rd define an orthogonal mapping O : Rd → Rd with O(ξ/ |ξ|) = e1. Using
Ot = O−1 in the scalar product, |O(h)| = |h| and dO(h) = dh we deduce

ˆ
Rd

1− cos
(
ξ
|ξ| · h

)

|h|d+2s
dh =

ˆ
Rd

1− cos
(
O−1(e1) · h

)

|h|d+2s
dh =

ˆ
Rd

1− cos (e1 ·O(h))

|h|d+2s
dh

=

ˆ
Rd

1− cos (e1 · h′)
|h′|d+2s

dh′ =
ˆ
Rd

1− cos (h1)

|h|d+2s
dh .

The following result provides the asymptotic behavior of the constant Ad,−2s for s → 0+
and s → 1−, respectively. It is a restatement of [DNPV12, Corollary 4.2] but the proof
here is different.

Proposition 2.24 (Asymptotics of the constant Ad,−2s). For any d ∈ N we have

lim
s→0+

Ad,−2s

s(1− s) =
1

|Sd−1| and lim
s→1−

Ad,−2s

s(1− s) =
2d

|Sd−1| . (2.24)

Recall that
∣∣Sd−1

∣∣ denotes the (d− 1)-dimensional measure of the unit sphere, i.e.

∣∣∣Sd−1
∣∣∣ =

2πd/2

Γ
(
d
2

) .

Let us emphasize that the precise value of the constants on the right-hand sides of (2.24)
is secondary; the main aspect is that Ad,−2s is asymptotically equivalent to s(1 − s) for
s→ 0+ and s→ 1−.

Proof. By definition of Ad,−2s in (2.14) and the properties of the Gamma function we have

Ad,−2s

s(1− s) =
22s−1Γ

(
d+2s

2

)

πd/2(1− s) |(−s)Γ(−s)| =
22s−1Γ

(
d+2s

2

)

πd/2(1− s)Γ(1− s) =
22s−1Γ

(
d+2s

2

)

πd/2Γ(2− s) .

Hence,

lim
s→0+

Ad,−2s

s(1− s) =
Γ
(
d
2

)

2πd/2
=

1

|Sd−1| and lim
s→1−

Ad,−2s

s(1− s) =
dΓ
(
d
2

)

πd/2
=

2d

|Sd−1| .
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2.5 Sobolev spaces of fractional order

There are several ways to define (fractional order) Sobolev spaces, for example via Fourier
transform (cf. Section 2.6) or via interpolation theory5. We will comment below on the
relation to the definition via Fourier transform. To distinguish the spaces from possible
other definitions, the spaces in Definition 2.25 are sometimes called Sobolev-Slobodeckij
spaces and the seminorm in (2.28) as Slobodeckij, Aronszajn or Gagliardo seminorm.

Definition 2.25 (Fractional order Sobolev space). Let Ω be an arbitrary open set in Rd
and 1 ≤ p <∞. The linear space W s,p(Ω), 0 < s < 1, is defined by

W s,p(Ω) =

{
f ∈ L2(Ω):

|f(x)− f(y)|
|x− y|d/p+s

∈ Lp(Ω× Ω)

}
. (2.25)

Let r = k+ s with k ∈ N0 and 0 ≤ s < 1. The linear space W r,p(Ω), 0 ≤ r <∞, is defined
by

W r,p(Ω) =
{
f ∈W k,p(Ω): ∂αf ∈W s,p(Ω) for all α ∈ Nd0 with |α| = k

}
. (2.26)

Obviously, W r,p(Ω) in Definition 2.25 coincides with W k,p(Ω) in Definition 2.16 if r = k ∈
N0.

Proposition 2.26. Let 1 ≤ p < ∞, Ω an open set in Rd, r = k + s with k ∈ N0 and
0 ≤ s < 1. Endowed with the norm

‖f‖W r,p(Ω) =


‖f‖p

Wk,p +
∑

|α|=k
[∂αf ]pW s,p(Ω)




1/p

, (2.27)

where for u ∈W s,p(Ω)

[u]pW s,p = Ad,−2s

∥∥∥∥∥
u(x)− u(y)

|x− y|d/p+s

∥∥∥∥∥

p

Lp(Ω×Ω)

= Ad,−2s

¨

Ω Ω

|u(x)− u(y)|p

|x− y|d+ps
dx dy , (2.28)

the linear space W r,p(Ω) is a separable Banach space.

Remark 2.27.

a) For p = 2 the norm in (2.27) is induced by a scalar product and therefore the spaces
W k,2(Ω) are separable Hilbert spaces and we define

Hr(Ω) = W r,2(Ω)

and the scalar product on these spaces by

(f, g)Hr(Ω) = (f, g)Hk(Ω) +
∑

|α|=k
[∂αf, ∂αg]Hs(Ω) , (2.29)

5When defining Sobolev spaces as interpolation spaces, the Sobolev spaces of fractional order are consid-
ered as special cases of Besov spaces, cf. [AF03, Chapter 7].
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where for u, v ∈ Hs(Ω)

[u, v]Hs(Ω) = Ad,−2s

¨

Ω Ω

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|d+2s
dx dy . (2.30)

b) The role of the constant Ad,−2s in (2.28) and (2.30) is not evident at this point. Defining
the seminorm in (2.30) and the fractional Laplacian in (2.43) with exactly this constant
has the following desirable consequences in the case Ω = Rd:

• The seminorm induced by (2.30) converges to the norm on L2(Rd) and to the
seminorm on H1(Rd) for s→ 0+ and s→ 1−, respectively6. We refer to Proposi-
tion 2.36 for a precise statement and the proof.

• The symbol of the fractional Laplacian as defined in (2.43) is exactly |ξ|2s, i.e. for
u ∈ S(Rd)

F ((−∆)su)(ξ) = |ξ|2s Fu ,

see Proposition 2.39.

• Moreover, the operator (−∆)s converges for s → 1− and s → 0+ to the classical
Laplace operator −∆ and to the identity operator, respectively. More precisely –
cf. Proposition 2.41 – for u ∈ S(Rd) and x ∈ Rd

lim
s→1−

(−∆)su(x) = (−∆u)(x), and lim
s→0+

(−∆)su(x) = u(x). �

The following proof is based on [DD12, Proposition 4.24], [Dob06, Satz 6.33] and [Wlo87,
Theorem 3.1].

Proof. Without loss of generality we may assume Ad,−2s = 1 in the whole proof. It is clear
that (2.27) defines a norm on W r,p(Ω). It remains to show that W r,p(Ω) is complete. We
prove the completeness of W s,p(Ω), 0 < s < 1, which immediately implies that W r,p(Ω),
0 ≤ r <∞, are Banach spaces.

Let (fn) be a Cauchy sequence with respect to the norm ‖·‖W s,p(Ω). Set

vn(x, y) =
fn(x)− fn(y)

|x− y|d/p+s
.

Then, by definition of ‖·‖W s,p(Ω) and the completeness of Lp-spaces, (fn) converges to some
f in the norm of Lp(Ω). We may chose a subsequence fnk that converges a.e. to f . Then
vnk converges a.e. in Ω× Ω to the function

v(x, y) =
f(x)− f(y)

|x− y|d/p+s
.

6A similar statement is also true when p 6= 2, see [BBM01] and [MS02].
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By Fatou’s lemma (Theorem 1.8),
¨

Ω Ω

|f(x)− f(y)|p

|x− y|d+ps
dx dy ≤ lim inf

k→∞

¨

Ω Ω

|vnk(x, y)|p dx dy ≤ sup
k∈N
‖vnk‖pLp(Ω×Ω) .

Since vn is a Cauchy sequence (and hence bounded) in Lp(Ω × Ω), this shows that
[f ]W s,p(Ω) <∞, i.e. f ∈W s,p(Ω). Another application of Fatou’s lemma shows that

[fnk − f ]pW s,p(Ω) =

¨

Ω Ω

|vnk(x, y)− v(x, y)|p dx dy

≤ lim inf
l→∞

¨

Ω Ω

|vnk(x, y)− vnl(x, y)|p dx dy k→∞−−−→ 0.

This shows that ‖fnk − f‖W s,p(Ω) → 0 for k → ∞ for the subsequence (nk) chosen above
and thus ‖fn − f‖W s,p(Ω) → 0 as n→∞, since (fn) was assumed to be a Cauchy sequence.
The completeness of W r,p(Ω) is proved.

The mapping I

I : W r,p(Ω)→
¡
|α|≤k

L2(Ω)×
¡
|α|=k

L2(Ω× Ω), (2.31)

I(f) =

(
∂αf [|α| ≤ k],

∂αf(x)− ∂αf(y)

|x− y|d/p+s
[|α| = k]

)
,

is isometric due to the definition of the norm in W r,p(Ω) in (2.27). Having shown the
completeness of W r,p(Ω) we obtain that I(W r,p(Ω)) is a closed subspace of the Cartesian
product on the right-hand side of (2.31). This product is separable and so is W r,p(Ω), cf.
[Wlo87, Lemma 3.1].

The next result shows that in the case Ω = Rd there is an equivalent norm to (2.27) in
terms of the difference operator ∆h, h ∈ Rd, defined by

∆hf(x) = f(x+ h)− f(x) . (2.32)

Lemma 2.28. Let 1 ≤ p < ∞ and r = k + s with k ∈ N0 and 0 < s < 1. There is a
constant c = c(d, s, p) > 0 such that for all f ∈W r,p(Rd)

c ‖f‖p
Wr,p(Rd)

≤ ‖f‖p
Wk,p(Rd)

+Ad,−2s

∑

|α|=k

ˆ
|h|≤1

‖∆h(∂αf)‖p
Lp(Rd)

|h|ps
dh
|h|d
≤ ‖f‖p

W r,p(Rd)
.

(2.33)

Note that the analogous assertion to (2.33) for the seminorm [ · ]W r,p(Rd) is not true in
general. This can be seen in the proof below. Let us also mention that the constant c tends
to zero if s→ 0+.
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The ideas of this proof are taken from [HT08, p. 65]. In contrast to the computations
therein we consider general p ∈ [1,∞) and we stress the fact that the constant will depend
on s ∈ (0, 1) (and of course on the dimension d ∈ N).

Proof. Fix α ∈ Nd0 with |α| = k and write ∂αf = g. We use the coordinate transform
y = x+ h, h ∈ Rd, and the decomposition Rd = {|h| ≤ 1} ∪ {|h| > 1} to obtain

¨

Rd Rd

|g(x)− g(y)|p

|x− y|d+ps
dx dy =

¨

Rd Rd

|g(x+ h)− g(x)|p

|h|d+ps
dx dh

=

ˆ

|h|≤1

‖∆hg‖pLp(Rd)

|h|ps
dh
|h|d

+

ˆ

|h|>1

ˆ

Rd

|∆hg|p

|h|d+ps
dx dh . (2.34)

Now observe that ‖∆hg‖pLp(Rd)
≤ 2p−1 ‖g‖p

Lp(Rd)
for all h ∈ Rd and

ˆ

|h|>1

|h|−d−ps dh =
d |B1(0)|

ps
.

This implies that the lower bound in (2.33) holds, where c = c(d, s, p) can be chosen as

c =

(
2 +

2p d |B1(0)|
ps

)−1

.

Estimating the second term in (2.34) from below by zero we establish the upper estimate
in (2.33).

The space Hs
0(Ω) and its dual

Definition 2.29. Let 1 ≤ p <∞ and 0 ≤ r <∞ with r = k + s, k ∈ N0, 0 ≤ s < 1.

(i) The space W r,p
0 (Ω) is defined as the completion of C∞c (Ω) with respect to the norm

‖·‖W r,p(Rd). Furthermore, set Hr
0(Ω) = W r,2

0 (Ω).

(ii) The Banach space H−s(Ω), 0 < s < 1, is defined as the dual space of Hs
0(Ω) endowed

with the norm

‖f‖H−s(Ω) = sup
{
〈f, u〉 : u ∈ Hs

0(Ω), ‖u‖Hs(Rd) ≤ 1
}
.

Remark 2.30.

a) Let us emphasize that the closure in the foregoing definition is taken with respect to
the norm ‖·‖Hr(Rd). To give sense to ‖u‖Hr(Rd), the functions u ∈ C∞c (Ω) are extended
in the natural way, namely by zero, outside of Ω.

b) Note that the two spaces W r,p
0 (Ω) in Definition 2.29 and W k,p

0 (Ω) in Definition 2.18
coincide if r = k ∈ N0, see Remark 2.20e.
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c) The reason for defining Hr
0(Ω) in this way is given by the easy observation that for a

given function u ∈ Hr
0(Ω) we have ũ ∈ Hr(Rd), where

ũ(x) =

{
u(x) for x ∈ Ω,

0 for x ∈ Ωc.
(2.35)

This would not hold in general if we defined Hr
0(Ω) as the completion with respect to

‖·‖Hr(Ω). However, in most cases the latter definition is equivalent to the one given
Definition 2.29. We state this result, which is taken from [McL00, Theorem 3.33], in a
proposition below.

d) Again, we do not identify Hs
0(Ω) with its dual, cf. Remark 2.20f). �

Proposition 2.31. Let 0 ≤ r <∞ and assume that Ω is a Lipschitz domain. Then

Hr
0(Ω) =

{
u ∈ L2(Ω): ũ ∈ Hr(Rd)

}
,

where ũ is given by (2.35). If additionally r /∈
{

1
2 ,

3
2 ,

5
2 , . . .

}
, then

Hr
0(Ω) = C∞c (Ω)

‖·‖Hr(Ω) .

2.6 Characterization of (fractional) Sobolev spaces by Fourier
transform

In the previous section Sobolev spaces of fractional order, in particular Hr(Ω) for arbitrary
r ∈ (0,∞), were introduced. This subsection is designed to explain why the extension
to Hr(Ω) with non-integer r ∈ (0,∞) can be seen as a generalized definition of Hk(Ω),
k ∈ N0.

To start with, let us recall Definition 2.25, which is valid for Ω = Rd, i.e. for r = k + s
with k ∈ N0 and 0 ≤ s < 1

Hr(Rd) =

{
f ∈ Hk(Rd) :

∂αf(x)− ∂αf(y)

|x− y|d/2+s
∈ L2(Rd × Rd) for all |α| = k

}
, (2.36)

‖f‖2Hr(Rd) = ‖f‖2Hk(Rd) +Ad,−2s

∑

|α|=k

¨

Rd Rd

|∂αf(x)− ∂αf(y)|2

|x− y|d+2s
dx dy. (2.37)

The following result is taken from [HT08, Section 3.2], see also [LM72, Theorem 1.2],
[Eva10, Section 5.8.5] and [McL00, Theorem 3.16]. It states that F is an isometric
map from Hr(Rd) into a certain weighted L2-space. For r = 0 this is a restatement of
Plancherel’s theorem, Theorem 2.15.
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Theorem 2.32 (Characterization of Hr(Rd) via Fourier-transform). Let r = k + s with
k ∈ N0, 0 ≤ s < 1. A function f ∈ L2(Rd) belongs to Hr(Rd) if and only if the function
ξ 7→ (1 + |ξ|2)r/2(Ff)(ξ) belongs to L2(Rd), i.e.

Hr(Rd) =
{
f ∈ L2(Rd) :

(
1 + |ξ|2

)r/2
Ff ∈ L2(Rd)

}
. (2.38)

Moreover, for u ∈ Hs(Rd) we have

[u, u]Hs(Rd) =

ˆ
Rd
|ξ|2s |Fu(ξ)|2 dξ (2.39)

and the norm ‖·‖F ,r defined by

‖f‖F ,r =

∥∥∥∥
(

1 + |ξ|2
)r/2

Ff

∥∥∥∥
L2(Rd)

is an equivalent norm to ‖·‖Hr(Rd) in (2.37).

The following remark explains one reason for the occurrence of the factor Ad,−2s in the
definition of the seminorms on Hr(Rd):
Remark 2.33. The equivalence of the norms, which is stated in the above theorem, is
robust for s ∈ (0, 1), i.e. the constants c, C in the relation

c ‖·‖Hr(Rd) ≤ ‖·‖F ,r ≤ C ‖·‖Hr(Rd)

depend on d and k, but not on s ∈ (0, 1). �

Concerning the case Ω 6= Rd we have the following result, see [McL00, Theorem 3.18].

Proposition 2.34. Let 0 ≤ r <∞ and Ω a domain. If Ω is an extension domain7 then

Hr(Ω) =
{
T ∈ D′(Ω): T = f |Ω for some f ∈ Hr(Rd)

}

and
‖T‖F ,r,Ω = inf

{
‖f‖Hr(Rd) : f |Ω = T

}

is an equivalent norm to ‖·‖Hs(Ω).

We shall present the proof of Theorem 2.32 following the lines of [LM72, Theorem 1.2],
[HT08, Theorems 3.11, 3.24] and [McL00, Theorem 3.16]. All these references use an upper
and lower bound for

∑
|α|≤k ξ

α, which they do not prove. We give a proof of this elementary
estimate as a lemma below.

Lemma 2.35. Let d ≥ 1 and k ∈ N0. There are constants c, C > 0 such that for all y ∈ Rd

c(1 + |y|2)k ≤
∑

|α|≤k
y2α ≤ C(1 + |y|2)k, (2.40)

where – as usual – |y|2 = y2
1 + . . .+ y2

d and the sum is taken over all multi-indices α ∈ Nd0
with |α| ≤ k.

7Ω is an extension domain if there is a continuous linear operator EΩ : Hr(Ω) → Hr(Rd) such that
Eu|Ω = u for all u ∈ Hs(Ω).
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Proof. The assertion is easily verified if k = 0 or y = 0. From now on we assume k ∈ N
and y 6= 0. Next observe that the function

ζ 7→
∑

|α|≤k
ζ2α

is a continuous function on the compact set Sd−1. Therefore, this function attains its
maximum, which we denote by M > 0. Of course, M depends on d and k.

For any given y 6= 0 write y = |y| ζ for ζ = y
|y| ∈ Sd−1. Then

∑

|α|≤k
(|y| ζ)2α =

∑

|α|≤k
|y|2|α| ζ2α ≤M(1 + |y|2k) ≤M(1 + |y|2)k.

This proves the upper bound in (2.40). To prove the lower bound we note that

{(0, . . . , 0), (k, 0, . . . , 0), (0, k, 0, . . .), . . . , (0, . . . , 0, k)} ⊂
{
α ∈ Nd0 : |α| ≤ k

}
.

Hence,
∑

|α|≤k
y2α ≥ 1 + y2k

1 + . . .+ y2k
d ≥ 1 + d1−k |y|2k ≥ d1−k(1 + |y|2k)

≥ (2d)1−k
(

1 + |y|2
)k

,

where we have applied Jensen’s inequality to the convex function t 7→ tk and the trivial
estimate (a+ b)k ≤ 2k−1(ak + bk). This finishes the proof of Lemma 2.35.

Proof of Theorem 2.32. The assertion is proved in two steps:

I. Assume r = k ∈ N. Let f ∈ Hk(Rd). By Theorem 2.15 and the property ∂̂αu(ξ) =
(iξ)αû(ξ), which is easily checked for u ∈ S(Rd) and extends to F on L2(Rd), we
obtain

‖∂αf‖L2(Rd) = ‖ξαFf‖L2(Rd) for all α ∈ Nd0 with |α| ≤ k.
By (2.40) we then have

‖f‖2Hk(Rd) =

ˆ
Rd

(∑

|α|≤k
ξ2α

)
|(Ff)(ξ)|2 dξ �

ˆ
Rd

(1 + |ξ|2)k |(Ff)(ξ)| dξ = ‖f‖2F ,k .

This proves the result if r = k ∈ N0.

II. Now assume r = s ∈ (0, 1). The transformation y = x + h and the definition of ∆h

in (2.32) yield
¨

Rd Rd

|f(x)− f(y)|2

|x− y|d+2s
dx dy =

¨

Rd Rd

|f(x+ h)− f(x)|2

|h|d+2s
dx dh

=

ˆ

Rd

‖∆hf‖2L2(Rd)

|h|d+2s
dh .
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Changing the order of integration, using the fact that

F (∆hu)(ξ) =
(
eiξ·h − 1

)
(Ff)(ξ)

and Plancherel’s theorem we obtainˆ

Rd

‖∆hf‖2L2(Rd)

|h|d+2s
dh =

ˆ
Rd
|Ff(ξ)|2

ˆ
Rd

∣∣eiξ·h − 1
∣∣2

|h|d+2s
dh dξ .

From this and Lemma 2.21 we deduce (2.39). Furthermore,

‖f‖2W s(Rd) = ‖Ff‖2L2(Rd) +

ˆ
Rd
|ξ|2s |Ff(ξ)|2 dξ

�
ˆ
Rd

(1 + |ξ|2)s |Ff(ξ)|2 dξ,

where the constants that are contained in the notation “�” do not depend on s ∈
(0, 1).

This proves the result if r = s ∈ (0, 1). For general r = k + s ∈ (0,∞) apply step II
to the functions ∂αf , where |α| = k.

Combining (2.39) and the asymptotics of the constant Ad,−2s in Proposition 2.24 we are
now able to prove the convergence of the seminorms on Hs(Rd) to the norm on L2(Rd) and
the seminorm on H1(Rd), respectively.
Proposition 2.36.

(i) For u ∈ ⋃
s∈(0,1)

Hs(Rd) we have

lim
s→0+

s

¨

Rd Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy = |Sd−1| ‖u‖L2(Rd) . (2.41)

(ii) For u ∈ H1(Rd) we have

lim
s→1−

(1− s)
¨

Rd Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy =

|Sd−1|
2d

‖∇u‖2L2(Rd) . (2.42)

A generalization of these statements to the case p 6= 2 holds true, see [BBM01] and
[MS02].

Proof. Both assertions follow immediately from (2.39), Proposition 2.24 and Plancherel’s
theorem:

lim
s→0+

¨

Rd Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy = lim

s→0+
sA−1

d,−2s

ˆ
Rd
|ξ|2s |Fu(ξ)|2 dξ

= |Sd−1| ‖u‖2L2(Rd) .
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lim
s→1−

(1− s)
¨

Rd Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy = lim

s→1−
(1− s)A−1

d,−2s

ˆ
Rd
|ξ|2s |Fu(ξ)|2 dξ

=
|Sd−1|

2d
‖∇u‖2L2(Rd) .

The following proposition justifies why the dual space of Hr
0(Rd) = Hr(Rd) was denoted

by H−r(Rd) in Definition 2.29. It is taken from [DD12, Proposition 4.10], where also a
proof can be found.

Proposition 2.37. Let 0 < r <∞. Then

H−r(Rd) =
{
f ∈ S ′(Rd) : (1 + |ξ|2)−r/2Ff ∈ L2(Rd)

}
.

2.7 The fractional Laplacian

The fractional Laplacian can be considered as the prototype of a nonlocal operator. In this
section we provide the definition of (−∆)α/2 and explain the connection to fractional order
Sobolev spaces.

Definition 2.38. Let 0 < s < 1 and u ∈ S(Rd). The fractional Laplacian (−∆)s is defined
as

(−∆)su(x) = 2Ad,−2s p. v.

ˆ
Rd

u(x)− u(y)

|x− y|d+2s
dy for x ∈ Rd. (2.43)

For 0 < s < 1
2 it can be shown ([DNPV12, p. 528-529]) that

ˆ
Rd

|u(x)− u(y)|
|x− y|d+2s

dy <∞,

i.e. (2.43) has to be understood in the principal value sense only if 1
2 ≤ s < 1. Moreover,

the fractional Laplacian can be defined equivalently via second order differences ([DNPV12,
Lemma 3.2]):

(−∆)su(x) = −Ad,−2s

ˆ
Rd

u(x+ h) + u(x− h)− 2u(x)

|h|d+2s
dh for x ∈ Rd. (2.44)

Proposition 2.39. Let 0 < s < 1. For any u ∈ S(Rd) and ξ ∈ Rd

F ((−∆)su) (ξ) = |ξ|2s Fu(ξ) . (2.45)

Proof. Applying (2.44) and Fubini’s theorem we obtain

F ((−∆)su) (ξ) = −Ad,−2s

ˆ
Rd

F [u(x+ h) + u(x− h)− 2u(x)] (ξ)

|h|d+2s
dh
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= −Ad,−2s Fu(ξ)

ˆ
Rd

eiξ·h + e−iξ·h − 2

|h|d+2s
dh

= Ad,−2s Fu(ξ)

ˆ
Rd

∣∣eiξ·h − 1
∣∣2

|h|d+2s
dh

= |ξ|2s Fu(ξ) .

The last identity follows from Lemma 2.21 and the application of Fubini’s theorem in the
first identity is justified by the fact that

|u(x+ h) + u(x− h)− 2u(x)|
|h|d+2s

∈ L1(Rd × Rd),

cf. [DNPV12, p.531].

Proposition 2.40. Let 0 < s < 1 and u ∈ Hs(Rd). The following identity holds:

[u, u]Hs(Rd) =
(

(−∆)s/2u, (−∆)s/2u
)
L2(Rd)

. (2.46)

Proof. Plancherel’s theorem, Proposition 2.39 and (2.39) imply

(
(−∆)s/2u, (−∆)s/2u

)
L2(Rd)

=

ˆ
Rd
|ξ|2s |Fu(ξ)|2 dξ = [u, u]Hs(Rd) .

Concerning the asymptotics of (−∆)s we cite the following proposition from [DNPV12,
Proposition 4.4].

Proposition 2.41. Let d ∈ N and u ∈ C∞c (Rd). Then

lim
s→0+

(−∆)su = u and lim
s→1−

(−∆)su = −∆u . (2.47)





Part II

Existence & Uniqueness





3 Existence and uniqueness of solutions
to local and nonlocal parabolic
differential equations

Let Ω ⊂ Rd be a bounded domain and 0 < T <∞. Set QT = (0, T )× Ω.

For s ∈ (0, 1] we consider operators L s of the form

(L su)(t, x) =





div(A∇u)(t, x) if s = 1,

2 p. v.

ˆ
Rd

[u(t, y)− u(t, x)] kt(x, y) dy if s ∈ (0, 1),
(3.1)

where

• A = (aij)1≤i,j≤d denotes a symmetric matrix of functions aij : (0, T )× Ω→ R,

• k denotes a symmetric kernel k : (0, T )×Rd×Rd → [0,∞), (t, x, y) 7→ kt(x, y), which
typically has a certain singularity at the diagonal x = y.

The detailed assumptions on A and k will be given in Lemma 3.16 and Lemma 3.17,
respectively.

Note that in both cases (L su) may not exist even for functions u ∈ C∞c (Ω) or u ∈ S(Ω).
Since we do not treat classical solutions but weak solutions to problem (3.2), we work with
bilinear forms instead of the operator itself. Only then it will be necessary to specify the
domain of the corresponding bilinear forms.

For s ∈ (0, 1] we study initial boundary value problems of the type




∂tu−L su = f in (0, T )× Ω,
u = 0 on [0, T ]× Ωc,
u = u0 on {0} × Ω,

(3.2)

under the conditions
f ∈ L2(QT ), u0 ∈ L2(Ω). (3.3)

The aim of this chapter is to prove that there is a unique weak solution u ∈ W(0, T ) to
problem (3.2). The well-posedness in the case of a local operator – i.e. s = 1 in (3.2)
– has been common knowledge since the 1950’s, see for example [Lad54, Viš54, LV58].
A detailed discussion on the development of existence and uniqueness results concerning
weak solutions of linear parabolic equations with bounded and measurable coefficients can
be found in the introduction of [Lad85].
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3.1 Generalized derivatives of abstract functions

The following definition extends the concept of generalized derivatives (cf. Section 2.1)
of real-valued functions to vector-valued functions. Similarly to Section 2.1, this could be
done in the context of vector-valued distributions. But for the sake of shortness we omit
the notion of vector-valued distributions.

Definition 3.1. Let V be a Banach space and u ∈ L1(0, T ;V ). If there is a function
v ∈ L1(0, T ;V ) such that

ˆ T

0
u(t)φ′(t) dt = −

ˆ T

0
v(t)φ(t) dt for all φ ∈ C∞c (0, T ) , (3.4)

then v is called the generalized derivative of u and we write u′ = v.

If (3.4) is satisfied for two functions v1 and v2, then v1(t) = v2(t) for almost every t ∈ (0, T ).
This follows from the following variational lemma for vector-valued functions, see [Zei90,
Propositions 23.10,23.18] for a proof.

Lemma 3.2. Let V be a Banach space and u ∈ L1(0, T ;V ) such that
ˆ t

0
u(t)φ(t) dt = 0 for all φ ∈ C∞c (0, T ) .

Then u(t) = 0 for almost every t ∈ (0, T ).

The following lemma is taken from [Emm04, Satz 8.1.5]:

Lemma 3.3. Let V be a Banach space and u, v ∈ L1(0, T ;V ). The following are equivalent:

(i) g is the generalized derivative of u: u′ = v.

(ii) There is u0 ∈ V such that

u(t) = u0 +

ˆ t

0
v(s) ds for a.e. t ∈ (0, T ).

(iii) For all f ∈ V ∗ the real-valued function t 7→ 〈f, v(t)〉V is the generalized derivative (in
the sense of Definition 2.7) of the function t 7→ 〈f, u(t)〉V :

d
dt
〈f, u(t)〉V = 〈f, v(t)〉V for all f ∈ V ∗.

The equivalent formulation in part (iii) is of special interest if we take into account the
following characterization (see [EG92, Section 4.9.1]) of absolutely continuous functions on
a finite interval such as (0, T ). We will use this characterization to prove the equivalence
of several weak formulations of the parabolic problem, cf. Proposition 3.13.

Recall that an absolutely continuous function f : (0, T )→ R is almost everywhere on (0, T )
differentiable.
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Theorem 3.4. Let 1 ≤ p <∞ and f : (0, T )→ R.

(i) If f ∈W 1,p(0, T ) then there is a unique f ∈ C[0, T ] belonging to the equivalence class
of f . f is absolutely continuous on [0, T ] and f ′ ∈ Lp(0, T ).

(ii) Conversely, if the equivalence class of f ∈ Lp(0, T ) contains a function g which is
absolutely continuous on [0, T ] with g′ ∈ Lp(0, T ), then we have f ∈W 1,p(0, T ).

3.2 Evolution triplets and the space W(0, T )

As already mentioned in Section 1.3 one particularity in the functional analytic study of
parabolic equations is that one treats the derivative in time in a different way than the
derivatives in space. In particular, one considers the solution u : (0, T ) × Ω → R as an
abstract function u(t) with values in V , which is a Banach space of functions acting on Ω.
On the one hand, V should provide enough regularity such that all expressions without
time derivative in the weak formulation are well-defined. On the other hand, it would be
much too restrictive to require that also the time derivative u′ takes values in V . This
explains why one considers a second space H with V ⊂ H.

The following result is a preparation to the definition of an evolution triplet.

Proposition 3.5. Let V and W be two Banach spaces. Assume that V
d

↪−→W . Then

(i) W ∗ ↪→ V ∗ and 〈w∗, v〉V = 〈w∗, v〉W for all w∗ ∈W ∗, v ∈ V .

(ii) W ∗ is dense in V ∗ if V is assumed to be reflexive.

We give the proof following the argumentation in [Emm04, pp. 205–206] and [Zei90, Prob-
lem 18.6]:

Proof. ad (i): For w∗ ∈W ∗ we define J(w∗) to be the restriction of the functional w∗ to
the subset V ofW . Of course, J(w∗) is again a linear functional on V . Moreover,
since V ↪→W there is c > 0 such that ‖v‖W ≤ c ‖v‖V for all v ∈ V . Thus

‖J(w∗)‖V ∗ = sup
v∈V \{0}

〈J(w∗), v〉V
‖v‖V

≤ c sup
v∈W\{0}

〈w∗, v〉W
‖v‖W

= c ‖w∗‖W ∗ .

This means that J defines a continuous mapping W ∗ → V ∗. It remains to show
that J : W ∗ → V ∗ is injective, i.e.

〈J(w∗), v〉V = 0 for all v ∈ V ⇒ 〈w∗, w〉W = 0 for all w ∈W.

But since V is dense in W this is an immediate consequence (see e.g. [Bre11,
Corollary 1.8]) of the Hahn-Banach theorem.

Having shown that J is a continuous, injective mapping from W ∗ to V ∗ we may
now identify each element J(w∗) ∈ V ∗ in the image of J with w∗ ∈ W ∗. In this
sense we have W ∗ ↪→ V ∗ and

〈w∗, v〉V = 〈w∗, v〉W for all w∗ ∈W ∗, v ∈ V . (3.5)
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ad (ii): We prove this by contradiction: Assume that the closure of W ∗ w.r.t. the norm
of V ∗ is a proper closed subset of V ∗. Then by the Hahn-Banach theorem there
is F ∈ (V ∗)∗ such that F (w∗) = 0 for all w∗ ∈ W ∗ with F 6= 0 as element of
(V ∗)∗. But since V is reflexive we may find vF ∈ V such that

F (v∗) = 〈v∗, vF 〉V for all v∗ ∈ V ∗.

By the assumptions on F and (3.5) this implies

F (w∗) = 〈w∗, vF 〉 = 0 for all w∗ ∈W ∗.

Since vF ∈ V ⊂W this implies vF = 0 and hence F = 0 onW , which contradicts
F 6= 0.

Definition 3.6 (Evolution triplet). A triplet (V,H,V∗) is called an evolution triplet (or a
Gelfand triplet) if V is a reflexive, separable Banach space and H a separable Hilbert space

such that V d
↪−→ H.

Remark 3.7. a) By the Riesz-Fréchet representation theorem (see e.g. [Bre11, Theorem
5.5]) we may identify H with its dual H∗. Proposition 3.5 then shows that

V d
↪−→ H ∼= H∗ d

↪−→ V∗ and 〈h, v〉V = (h, v)H for all h ∈ H, v ∈ V.

In particular, for all v, w ∈ V

〈v, w〉V = (v, w)H = (w, v)H = 〈w, v〉V . (3.6)

b) Note that we do not identify V with its dual V∗ even in the cases when V is itself a
Hilbert space. A very detailed discussion as well as an example concerning the question
when to identify or not to identify Hilbert spaces is given in [Bre11, Ch. 5, Remark
3]. �

From now on the calligraphic letters V, V∗ and H are used to denote that these spaces
form an evolution triplet in the sense of Definition 3.6.

Definition 3.8. Let V,H,V∗ be an evolution triplet. The linear space W(0, T ;V,H) is
defined by

W(0, T ;V,H) =
{
u ∈ L2(0, T ;V) : u′ exists and u′ ∈ L2(0, T ;V∗)

}
. (3.7)

The spaces V and H are often fixed and then we simply writeW(0, T ) to denote this space.

Note that by Proposition 1.10(vi) we have L2(0, T ;V∗) ∼= (L2(0, T ;V))∗.

Furthermore, for a general Banach space V , we define the linear space C([0, T ];V ) by

C([0, T ];V ) = {u : [0, T ]→ V : u is continuous on [0, T ]} . (3.8)

The following results are taken from [Zei90, Propositions 23.2, 23.23]. For proofs we refer
the reader to this reference or to [Emm04, Satz 8.1.9, Korollar 8.1.10].
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Proposition 3.9. Let V be a Banach space and V,H,V∗ an evolution triplet.

(i) C([0, T ];V ) is a Banach space with norm

‖u‖C([0,T ];V ) = max
0≤t≤T

‖u(t)‖V

(ii) W(0, T ) is a Banach space with norm

‖u‖W(0,T ) = ‖u‖L2(0,T ;V) +
∥∥u′
∥∥
L2(0,T ;V∗) .

(iii) W(0, T ;V,H) ↪→ C([0, T ];H). More precisely, each equivalence class inW(0, T ;V,H)
contains a uniquely determined function that belongs to C([0, T ];H). Moreover, there
is c > 0 such that

max
0≤t≤T

‖u(t)‖H ≤ c ‖u‖W(0,T ) for all u ∈ W(0, T ).

(iv) The following integration by parts formula holds: For u, v ∈ W(0, T ) and s, t with
0 ≤ s ≤ t ≤ T we have

(u(t), v(t))H − (u(s), v(s))H =

ˆ t

s

〈
u′(τ), v(τ)

〉
V +

〈
v′(τ), u(τ)

〉
V dτ . (3.9)

(v) For u ∈ W(0, T ) we have

1

2

d
dt

(u(t), u(t))H =
〈
u′(t), u(t)

〉
V

in the sense of generalized derivatives and a.e. on (0, T ), respectively.

3.3 Hilbert space methods for parabolic equations

Recall that V,H,V∗ stands for an evolution triplet.

For the rest of this chapter we denote by B(t;u, v) a mapping B : (0, T )×V × V → R that
satisfies the following properties:

For all t ∈ (0, T ) the mapping B(t; ·, ·) is a bilinear form on V, (3.10)
For all u, v ∈ V the mapping t 7→ B(t;u, v) is measurable on (0, T ), (3.11)
there is M > 0 such that for all t ∈ (0, T ) and u, v ∈ V we have

|B(t;u, v)| ≤M ‖u‖V ‖v‖V ,
(3.12)

there are m > 0 and L0 ≥ 0 such that for all t ∈ (0, T ) and u ∈ V we
have

B(t;u, u) ≥ m ‖u‖2V − L0 ‖u‖2H .
(3.13)
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Remark 3.10. (3.13) is also referred to as Gårding’s inequality. If L0 = 0 then (3.13)
states that B is a uniformly (in t) strongly positive bilinear form.

If the bilinear form B satisfies (3.13) with L0 > 0 one can apply the transformation ũ(t) =
e−L0tu(t) and analogously for f̃ and B̃, such that the transformed problem involves a
bilinear form B̃ that is uniformly strongly positive. Therefore, it suffices to prove results
like Theorem 3.14 assuming that B is strongly positive, i.e. B satisfies (3.13) with L0 = 0.
For more details on this transformation see [Emm04, p. 218] and [Zei90, Remark 23.25]. �

Consider the following abstract initial value problem (cf. [Zei90, Section 23.7]):

Problem 3.11. For given u0 ∈ H and f ∈ L2(0, T ;V∗) find u ∈ W(0, T ) such that

for all v ∈ V :
d
dt

(u(t), v)H + B(t;u(t), v) = 〈f(t), v〉V in D′(0, T ) , (3.14a)

u(0) = u0 . (3.14b)

Remark 3.12.

1. By an identity in D′(0, T ) we mean that the appearing derivatives have to be un-
derstood in the sense of generalized derivatives of real-valued functions as in Defini-
tion 2.7, i.e. (3.14a) is satisfied if for all v ∈ V and for all φ ∈ C∞c (0, T )

−
ˆ T

0
(u(t), v)Hφ′(t) dt +

ˆ T

0
B(t;u(t), v)φ(t) dt =

ˆ T

0
〈f(t), v〉V φ(t) dt. (3.15)

2. The initial condition (3.14b) is well-defined since u is a.e. equal to a function in
C([0, T ];H), see Proposition 3.9(iii). �

There are several equivalent formulations of (3.14a), cf. [Emm04, pp. 215–216]. We state
some of them in the following proposition.

Proposition 3.13. Let u ∈ W(0, T ) and f ∈ L2(0, T ;V∗). Then the following conditions
are both equivalent to (3.14a):

(i) For all v ∈ V
d
dt
〈u(t), v〉V + B(t;u(t), v) = 〈f(t), v〉V .

(ii) For all v ∈ V 〈
u′(t), v

〉
V + B(t;u(t), v) = 〈f(t), v〉V .

The identities can be interpreted as identities in D′(0, T ) and as identities that hold almost
everywhere1 on (0, T ). The assumptions on f and u ensure that all appearing terms belong
to L2(0, T ).

1In this case the quantifiers have to be understood in the following way: The exceptional set, i.e. the
subset of (0, T ) where the identities may not hold, has to be independent of v ∈ V.
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Proof. The proof collects arguments from [Emm04, pp. 215–216]. Since u(t) ∈ V for
almost every t ∈ (0, T ) we obtain by (3.6) that 〈u(t), v〉V = (u(t), v)H for every v ∈ V
almost everywhere on (0, T ). This proves the equivalence of (i) and (3.14a). Moreover, u′ ∈
L2(0, T ;V∗) is assumed to be the generalized derivative of u ∈ L2(0, T ;V) ⊂ L2(0, T ;V∗)
and we may interpret v ∈ V as element in (V∗)∗ ∼= V. Thus, by Lemma 3.3(iii) and (3.6),

d
dt
〈u(t), v〉V =

〈
u′(t), v

〉
V in D′(0, T ).

This shows the equivalence of (3.14a) and (ii).

That all identities may also be considered as identities that hold a.e. on (0, T ) follows im-
mediately from the characterization ofW 1,2(0, T )-functions on the real line in Theorem 3.4.
To apply this result it remains to show that the functions t 7→ 〈u′(t), v〉V and t 7→ (u(t), v)H
belong to L2(0, T ) for every v ∈ V:

ˆ T

0

∣∣〈u′(t), v
〉
V
∣∣2 dt ≤

ˆ T

0

∥∥u′(t)
∥∥2

V∗ ‖v‖
2
V dt =

∥∥u′
∥∥2

L2(0,T ;V∗) ‖v‖
2
V ,

ˆ T

0
|(u(t), v)H|2 dt ≤

ˆ T

0
‖u(t)‖2H ‖v‖2H dt = ‖u‖2L2(0,T ;H) ‖v‖2H .

Finally, we show that also t 7→ B(t;u(t), v) belongs to L2(0, T ). The measurability follows
from (3.11) and the square integrability from (3.12):

ˆ T

0
|B(t;u(t), v)|2 dt ≤M2

ˆ T

0
‖u(t)‖2V ‖v‖2V = M2 ‖u‖2L2(0,T ;V) ‖v‖2V .

This finishes the proof of Proposition 3.13.

The following theorem, which can be found for instance in [Chi00, Theorem 11.7] or [Zei90,
Theorem 23.A and Corollary 23.26], asserts that there is a unique solution to Problem 3.11.

Theorem 3.14. Assume that B satisfies (3.10)-(3.13). Then Problem 3.11 has a unique so-
lution u ∈ W(0, T ). This solution depends continuously on the initial data. More precisely,
there is a constant C > 0 such that for all u0 ∈ H and f ∈ L2(0, T,V∗)

‖u‖W(0,T ) ≤ C
(
‖u0‖H + ‖f‖L2(0,T ;V∗)

)
. (3.16)

For a proof of this theorem we refer to [Chi00, Section 11.3], [GGZ74, §VI.1] or [Zei90,
Section 23.9].
Remark 3.15.

1. A common technique to prove existence of solutions is a Galerkin approximation.
The general idea is to solve (3.14) on finite dimensional subspaces and then pass to
the limit. The solution on the finite dimensional subspaces is obtained via existence
& regularity theorems for systems of ordinary differential equations.

For similar results on existence of solutions to abstract initial value problems like
Problem 3.11 via Galerkin approximation we refer also to [Eva10, Section 7.1],
[GGZ74, Chapter VI], [LSU68, Chapter III] and [Wlo87, Chapter IV].
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2. Let us emphasize that the bilinear form B in Problem 3.11 may depend on the
time variable t. In (3.12),(3.13) we require the constants to be independent of
t ∈ (0, T ). In the sense of estimates deduced from (3.12) & (3.13), the change from
time-independent forms to forms as in (3.14) causes no particular difficulties.

However, the systems of ordinary differential equations obtained by the Galerkin
method are not the same in the cases of time-dependent and time-independent forms
B, cf. [Zei90, p. 439]. �

3.4 The bilinear forms associated to L s

As usual in the functional analytic theory of weak solutions, the bilinear form that will be
part of the weak formulation is obtained as L2-product of (−L su) with a smooth function
v ∈ C∞c (Ω). We assume the coefficients, the kernel and the solution to be regular enough
such that all terms are well-defined in the derivation of the bilinear form. When inspecting
the structural properties of these forms in Lemma 3.16 and Lemma 3.17, we provide formal
assumptions on the domain and on the coefficients and kernels, respectively.

3.4.1 The local case s = 1:

Let v ∈ C∞c (Ω). An integration by parts yields

(
−L 1u(t, ·), v(·)

)
L2(Rd)

= −
ˆ
Rd

div(A∇u)(t, x)v(x) dx =

ˆ
Ω
A(t, x)∇u(t, x) · ∇v(x) dx.

Under certain conditions on A the right-hand side of this identity defines a continuous
bilinear form on H1

0 (Ω) that satisfies Gårding’s inequality:

Lemma 3.16. Assume that A = (aij)1≤i,j≤d is a quadratic matrix of functions
aij ∈ L∞((0, T );L∞(Ω)) such that aij = aji for all 1 ≤ i, j ≤ d. Furthermore assume that
there is γ > 0 such that for all ξ ∈ Rd and (t, x) ∈ QT

d∑

i,j=1

aij(t, x)ξiξj = A(t, x)ξ · ξ ≥ γ |ξ|2 . (3.17)

Then E1 : (0, T )×H1
0 (Ω)×H1

0 (Ω)→ R defined by

E1(t;u, v) =

ˆ
Ω
A(t, x)∇u(x) · ∇v(x) dx

satisfies the properties (3.10)-(3.13), where V = H1
0 (Ω), H = L2(Ω) and m = L0 = γ in

(3.13).

The proof is straightforward, cf. [Eva10, p. 318] or [Zei90, Proposition 23.30]. We present
this proof here for the sake of completeness:
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Proof. Property (3.10) is obvious. Since all functions aij are measurable, we easily obtain
the measurability of t 7→ E1(t;u, v) for all u, v ∈ H1

0 (Ω). To prove the boundedness, observe
that for all t ∈ (0, T )

∣∣E1(t;u, v)
∣∣ ≤ max

1≤i,j≤d
‖aij‖L∞(QT ) ‖u‖H1(Ω) ‖v‖H1(Ω) .

Hence, (3.12) is satisfied with M = max
1≤i,j≤d

‖aij‖L∞(QT ), which is independent of t, u, v.

Finally, to prove that E1 satisfies (3.13), we apply (3.17): For all u ∈ H1
0 (Ω) we have

E1(t;u, u) + γ ‖u‖2L2(Ω) ≥
ˆ

Ω
γ |∇u(x)|2 dx+ γ ‖u‖2L2(Ω) = γ ‖u‖2H1(Ω) .

3.4.2 The nonlocal case s ∈ (0, 1)

Let v ∈ C∞c (Ω) and Dn =
{

(x, y) ∈ Rd × Rd : |x− y| ≥ 1/n
}
for n ∈ N. By definition of

the principal value we obtain

(−L su(t, ·), v(·))L2(Rd) = 2

ˆ
Rd
v(x) lim

ε→0+

ˆ
Rd\Bε(x)

[u(t, x)− u(t, y)] kt(x, y) dy dx

= 2 lim
n→∞

¨

Dn

[u(t, x)− u(t, y)] v(x)kt(x, y) dy dx.

Since the kernel is symmetric we have
¨

Dn

[u(t, x)− u(t, y)] v(x)kt(x, y) dy dx =

¨

Dn

[u(t, y)− u(t, x)] v(y)kt(x, y) dx dy.

Fubini’s theorem then implies

2

¨

Dn

[u(t, x)− u(t, y)] v(x)kt(x, y) dy dx =

¨

Dn

[u(t, x)− u(t, y)] v(x)kt(x, y) dy dx

+

¨

Dn

[u(t, y)− u(t, x)] v(y)kt(x, y) dy dx

=

¨

Dn

[u(t, x)− u(t, y)][v(x)− v(y)] kt(x, y) dy dx.

If we assume that the form Es(u, u) is in some sense comparable to the seminorm in Hs(Rd)
then the limit as n → ∞ of the right-hand side expression exists, and this limit defines a
continuous bilinear form on Hs

0(Ω) that satisfies Gårding’s inequality. More precisely we
have the following result:
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Lemma 3.17. Define Es : (0, T )×Hs
0(Ω)×Hs

0(Ω)→ R by

Es(t;u, v) =

¨

Rd Rd

[u(x)− u(y)] [v(x)− v(y)] kt(x, y) dy dx.

Assume that (t, x, y) 7→ kt(x, y) is a nonnegative, measurable function on R × Rd × Rd
satisfying kt(x, y) = kt(y, x) for a.e. t, x, y. If we assume that there is a constant c1 =
c1(s, d) > 0 such that for every u ∈ Hs

0(Ω)

Es(u, u) ≤ c1 ‖u‖2Hs(Rd) , (3.18)

then Es(t;u, v) satisfies the properties (3.10)-(3.12), where V = Hs
0(Ω), H = L2(Ω). More-

over,

Es(t;u, v) = lim
n→∞

¨

Dn

[u(x)− u(y)] [v(x)− v(y)] kt(x, y) dy dx. (3.19)

If we additionally assume that there are constants c2, c3 > 0 that may depend on s and d,
such that for every u ∈ Hs

0(Ω)

[u, u]Hs(Rd) ≤ c2 Es(u, u) + c3 ‖u‖2L2(Ω) , (3.20)

then Es satisfies property (3.13).

Remark 3.18.

a) Clearly, all assumptions in the previous lemma are satisfied if we assume that there are
constants λ,Λ > 0 such that

λ |x− y|−d−2s ≤ kt(x, y) ≤ Λ |x− y|−d−2s for almost every (t, x, y) ∈ R× Rd × Rd .

b) The assumptions (3.18) and (3.20) state that the kernel kt has to be chosen in such a
way that the corresponding bilinear form is comparable to the seminorm on Hs(Rd).
It is currently an interesting field of research (cf.[DK11]) in the area of nonlocal forms
to find quite mild conditions on the kernel kt that are sufficient for this comparability
in the sense of (3.18) and (3.20), respectively. In particular, in [DK11, Appendix], the
authors show that no essential conditions on the behavior of kt(x, y) for large values of
|x− y| have to be imposed in order to guarantee (global) comparability.

c) Let us give two sufficient conditions on the kernel such that (3.18) and (3.20) hold. Con-
dition (3.22) is very restrictive in comparison to those in [DK11, Appendix]. However,
they are easy to compare with the assumptions (K1) and (K2), which we shall use to
prove regularity results in Part III of this thesis.

Assume that there is s ∈ (0, 1), Λ ≥ 1 and U c Ω bounded such that the following
properties hold: for all t ∈ (0, T ), x0 ∈ Rd, ρ ∈ (0, 1) and v ∈ Hs(U)

ρ−2

ˆ
|x0−y|≤ρ

|x0 − y|2 kt(x0, y) dy +

ˆ
|x0−y|>ρ

kt(x0, y) dy ≤ Λρ−2s, (3.21)
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Λ−1

¨

U U

[v(x)− v(y)]2kt(x, y) dx dy ≤ (1− s)
¨

U U

[v(x)− v(y)]2

|x− y|d+2s
dx dy

≤ Λ

¨

U U

[v(x)− v(y)]2 kt(x, y) dx dy.
(3.22)

For simplicity we assume that dist(Ω, U) ≥ 1 and remark that we may replace 1 by any
fixed number greater than zero.

To prove (3.18) let u ∈ Hs
0(Ω). By (3.21), (3.22) and the fact that U c ∩ B1(x) = ∅ for

every x ∈ Ω we obtain

Es(t;u, u) =

¨

U U

[u(x)− u(y)]2 kt(x, y) dy dx+ 2

ˆ

U

u2(x)

ˆ

Uc

kt(x, y) dy dx

≤ Λ(1− s)
¨

U U

[u(x)− u(y)]2

|x− y|d+2s
dy dx+ 2

ˆ

Ω

u2(x)

ˆ

B1(x)c

kt(x, y) dy dx

≤ Λ(1− s) ‖u‖2Hs(Rd) + 2Λ ‖u‖2L2(Ω)

≤ 2Λ ‖u‖2Hs(Rd) .

To see that also (3.20) holds let u ∈ Hs
0(Ω). We apply the second inequality of (3.22):

[u]2Hs(Rd) =

¨

U U

[u(x)− u(y)]2

|x− y|d+2s
dy dx+ 2

ˆ

Ω

u2(x)

ˆ

B1(x)c

|x− y|−d−2s dy dx

≤ Λ

1− s E
s(u, u) + 2C ‖u‖2L2(Ω) ,

where C = C(d, s) is some constant such that
´
B1(x)c |x− y|

−d−2s dy ≤ C for every
x ∈ Ω. �

Proof of Lemma 3.17. It is easily seen that for every t ∈ (0, T ) the mapping u, v 7→
Es(t;u, v) is bilinear. Property (3.11) follows from the measurability of t 7→ kt(·, ·).
By Hölder’s inequality we have |Es(t;u, v)| ≤

√
Es(t;u, u)

√
Es(t; v, v) for every t ∈ (0, T )

and u, v ∈ Hs
0(Ω). This shows that (3.12) is satisfied with M = c1(d, s). Due to the

monotone convergence theorem, the existence of the limit and the representation in (3.19)
is now an easy consequence of the boundedness.

We can write (3.20) in an equivalent way:

‖u‖2Hs
0(Ω) = ‖u‖2L2(Ω) + [u]2Hs(Rd) ≤ c1Es(u, u) + (c2 + 1) ‖u‖2L2(Ω) ,

which shows that (3.13) is satisfied with m = c2(d, s) and L0 = c3(d, s) + 1.
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3.5 Weak formulation of the initial boundary value problem

We will now introduce two weak formulations of problem (3.2). The difference between the
two formulations is the role of the partial derivative with respect to time. On the one hand,
we can require the test function to possess (a weak) derivative with respect to time, which
in turn implies that there is no such restriction to the solution, cf. Problem 3.19. On the
other hand we may require that the solution possesses at least a generalized derivative in
some suitable space, which allows us to use test functions with less regularity in the time
variable, cf. Problem 3.20.

In view of the the abstract approach in Section 3.3 we consider for each s ∈ (0, 1] the
Gelfand triplet

V = Hs
0(Ω), H = L2(Ω), V∗ = H−s(Ω).

Hence, in addition to the dependence of the underlying function spaces on the domain
where the initial boundary value problem is stated, these spaces also depend on the order
s ∈ (0, 1] of the underlying operator L s.

The presentation in this section uses several ideas from [Trö10, Chapter 3].

Problem 3.19. Find u ∈ L2(0, T ;V) satisfying for all

φ ∈ H1(0, T ;H) ∩ L2(0, T ;V) with φ(T ) = 0

the variational equality

− (u0, φ(0))H −
T̂

0

(
u(t), φ′(t)

)
H dt+

T̂

0

Es(t;u(t), φ(t)) dt =

ˆ T

0
(f(t), φ(t))H dt . (3.23)

Note that all expressions in (3.23) are finite due to the requirements on u and φ. In
particular, the terms φ(0) and φ(T ) are well-defined due to the embedding H1((0, T );H) ↪→
C([0, T ];H), see Proposition 3.9(iii).

Problem 3.20. Find u ∈ W(0, T ) satisfying for all

φ ∈ L2(0, T ;V)

the variational equality
ˆ T

0

〈
u′(t), φ(t)

〉
V∗ dt+

ˆ T

0
Es(t;u(t), φ(t)) dt =

ˆ T

0
(f(t), φ(t))H dt (3.24a)

and
u(0) = u0. (3.24b)

Again, all expressions in (3.24a) are finite and the initial condition (3.24b) makes sense
due to the embedding W(0, T ) ↪→ C([0, T ];H), see Proposition 3.9(iii).



3.5 Weak formulation of the initial boundary value problem 51

Remark 3.21. Note that (3.24a) can be seen as an integrated version of the abstract
formulation in (3.14a): Assume that u ∈ W(0, T ) satisfies (3.14a). Define for a given test
function φ ∈ L2(0, T ;V)

I0(φ) = {t ∈ (0, T ) : φ(t) /∈ V} .
By the properties of the function space L2(0, T ;V) the set I0(v) is contained in a measurable
set of measure zero. Denote by I1 ⊂ (0, T ) the set of t ∈ (0, T ) such that (3.14a) does not
hold. Similarly, I1 is contained in a set of measure zero. On (0, T ) \ (I0 ∪ I1) we may apply
(3.14a), and integrating over (0, T ) yields (3.24a). �

The following two propositions provide the link between the two formulations. Propo-
sition 3.22 says that u ∈ W(0, T ) is no essential requirement for u as in Problem 3.19.
Proposition 3.23 asserts that the formulation in Problem 3.19 is weaker.

Proposition 3.22. If u satisfies Problem 3.19 then u ∈ W(0, T ).

The proof of this assertion in the case s = 1 and aij = δij , i.e. L s = ∆, can be found
in [Trö10, Section 3.4.4]. Following the method there we provide a proof in the general
setting.

Proof. Assume u satisfies Problem 3.19. In (3.23) we apply a test function φ of the form
φ(t, x) = v(x)χ(t), where v ∈ V and χ ∈ C∞c ((0, T )). Using χ(0) = 0 we obtain

−
ˆ T

0

(
u(t)χ′(t), v

)
H dt = −

ˆ T

0
χ(t)Es(u(t), v) dt+

ˆ T

0
χ(t) (f(t), v)H dt. (3.25)

For every fixed t ∈ (0, T ) – possibly after redefining u(t) = 0 on a subset of (0, T ) of
measure zero – the integrands on the right-hand side define linear functionals F1(t), F2(t) :
V → R, namely

F1(t) : v 7→ Es(u(t), v) and F2(t) : v 7→ (f(t), v)H .

Obviously, F1(t) and F2(t) are bounded and hence F1(t), F2(t) ∈ V∗ for every t ∈ (0, T ).
Furthermore, for every t ∈ (0, T ) there is a constant C = C(A,Λ, s) such that

‖F1(t)‖V∗ + ‖F2(t)‖V∗ ≤ C (‖u(t)‖V + ‖f(t)‖H) .

Since the right-hand side of this inequality belongs to L2(0, T ), this shows that F1, F2 ∈
L2(0, T ;V∗). Setting F = F1 + F2 we can rewrite (3.25) and obtain that for all v ∈ V and
χ ∈ C∞c ((0, T ))

−
ˆ T

0

(
u(t)χ′(t), v

)
H dt = −

ˆ T

0

〈
u(t)χ′(t), v

〉
V dt =

ˆ T

0
〈F (t)χ(t), v〉V dt

This means that for all χ ∈ C∞c ((0, T ))

−
ˆ T

0
u(t)χ′(t) dt =

ˆ T

0
F (t)χ(t) dt ∈ V∗ ,

i.e. u′ = F ∈ L2(0, T ;V∗). This finishes the proof of Proposition 3.22.
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Proposition 3.23. If u satisfies Problem 3.20 then u also satisfies Problem 3.19.

Proof. Let u satisfy Problem 3.20 and let

φ ∈ H1((0, T );H) ∩ L2(0, T ;V) with φ(T ) = 0,

i.e. φ is an arbitrary test function as in Problem 3.19. In particular, φ ∈ W(0, T ). Therefore
we can apply the integration by parts formula (3.9) to the first term in (3.24), which implies

(u(T )φ(T ))H − (u(0)φ(0))H −
ˆ T

0

〈
u(t), φ′(t)

〉
V dt+

ˆ T

0
Es(u, φ) dt =

ˆ T

0
(f(t), φ(t))H dt.

Finally, we use φ(T ) = 0, the initial condition (3.24b) and the property 〈u(t), φ′(t)〉V =
(u(t), φ′(t))H to conclude that u satisfies Problem 3.19.

3.6 Well-posedness result

As an easy consequence of the results in Section 3.4, which show that the bilinear forms
Es(t;u, v) satisfy all conditions in Theorem 3.14, we are now able to deduce the well-
posedness of Problem 3.20.

Theorem 3.24. If s = 1 let A satisfy the assumptions of Lemma 3.16. If s ∈ (0, 1)
assume that kt satisfy the assumptions of Lemma 3.17. Then there is a unique weak
solution u ∈ W(0, T ) to Problem 3.20. This solution depends continuously on the given
data: For all u0 ∈ L2(Ω) and f ∈ L2(QT ) there is a constant C > 0 such that

‖u‖W(0,T ) ≤ C
(
‖u0‖L2(Ω) + ‖f‖L2(QT )

)
. (3.26)

The constant C depends on s ∈ (0, 1], on the dimension and on the constants that
appear in the assumptions on Es in Lemma 3.16 and Lemma 3.17, respectively.

Note that W(0, T ) =W(0, T ;Hs
0(Ω), L2(Ω)).

By Proposition 3.23 the previous theorem proves also the existence of a solution to Prob-
lem 3.19. However, the question of uniqueness (and the derivation of an estimate compara-
ble to (3.26)) is technically more involved. This is explained by the fact that one may not
apply the solution u as test function in Problem 3.19. There are two possibilities to over-
come this problem: One may derive an energy estimate similar to (3.26) for the solutions in
the Galerkin scheme and then pass to the limit. Another possibility is to use differentiable
approximations of the solution u, such as Steklov averages. We refer the reader to [LSU68,
Chapter III] for details.



Part III

Local regularity of solutions to the
parabolic equation





4 Set-up & Main results

By Ω we denote a bounded domain in Rd and by I an open, bounded interval in R.

In this last part (Chapters 4-7) of the thesis we study local properties of weak solutions
u : I × Rd → R to the equation

∂tu(t, x)−L α/2u(t, x) = f(t, x), (t, x) ∈ I × Ω, (4.1)

where L α/2 is an operator of the form1 (cf. Chapter 3)

(L α/2u)(t, x) =





div(A∇u)(t, x) if α = 2,

2 p. v.

ˆ
Rd

[u(t, y)− u(t, x)] kt(x, y) dy if α ∈ (0, 2) .
(4.2)

In the two cases α = 2 and α ∈ (0, 2) we use the following notation:

• A = (aij)1≤i,j≤d denotes a symmetric matrix of functions aij : (0, T ) × Ω → R. We
assume that aij ∈ L∞(I;L∞(Ω)) for every i, j = 1, . . . , d and that there is λ > 0 such
that A(t, x)ξ · ξ ≥ λ |ξ|2. Thus we may assume that there are 0 < λ ≤ Λ < ∞ such
that for all (t, x) ∈ I × Ω and for all ξ ∈ Rd

λ |ξ|2 ≤ A(t, x)ξ · ξ ≤ Λ |ξ|2 . (4.3)

We will refer to the equation

∂tu(t, x)−L 1u(t, x) = f(t, x), (t, x) ∈ I × Ω, (PE2)

as second order parabolic equation. Local regularity results for this equation were
shown by Moser. We restate and reprove these results in Chapter 7.

• k denotes a symmetric kernel k : (0, T )×Rd×Rd → [0,∞), (t, x, y) 7→ kt(x, y), which
typically has a certain singularity at the diagonal x = y. The detailed assumptions
on kt(x, y) will be given below. We will refer to the equation

∂tu(t, x)−L α/2u(t, x) = f(t, x), (t, x) ∈ I × Ω, (PEα)

as α-order or fractional order parabolic equation. The proofs of the regularity results
for this equation are given in Chapter 6. These results have already been published
by the author in a joint publication [FK13] with M. Kassmann.

1We recall from Chapter 3 that in both cases the operator may not exist even for smooth functions u.
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Note that in the case
kt(x, y) =

Ad,−α
|x− y|d+α

with Ad,−α defined in (2.14), the integro-differential operator L s defined by (4.2) is equal
to the pseudo-differential operator (−∆)α/2 with symbol |ξ|α, cf. Section 2.7. Thus the
operator in equation (PEα) can be seen as an integro-differential operator of order α with
bounded measurable coefficients. From this point of view it is natural to denote the order
of the equation rather by α ∈ (0, 2) than by s ∈ (0, 1). This is one of several reasons why
we stick to this notation for the rest of the thesis. The results from the previous sections
are applied to s = α/2. The notation sup and inf are also used to denote ess-sup and
ess-inf, respectively.

4.1 Assumptions on kt(x, y)

Let us specify the class of admissible kernels. We assume that the kernels k are of the
form

kt(x, y) = a(t, x, y)k0(x, y)

for measurable functions k0 : Rd × Rd → [0,∞] and a : R × Rd × Rd →
[

1
2 , 1
]
, which are

symmetric with respect to x and y.

Definition 4.1. Fix α0 ∈ (0, 2) and Λ ≥ max(1, α−1
0 ).

(i) We say that a kernel k belongs to K(α0,Λ), if there is α ∈ (α0, 2) such that k0 satisfies
the following properties: for every x0 ∈ Rd, ρ ∈ (0, 2) and v ∈ Hα/2(Bρ(x0))

ρ−2

ˆ
|x0−y|≤ρ

|x0 − y|2 k0(x0, y) dy +

ˆ
|x0−y|>ρ

k0(x0, y) dy ≤ Λρ−α, (K1)

Λ−1

¨

BB

[v(x)− v(y)]2k0(x, y) dx dy ≤ (2− α)

¨

BB

[v(x)− v(y)]2

|x− y|d+α
dx dy

≤ Λ

¨

BB

[v(x)− v(y)]2 k0(x, y) dx dy, where B = Bρ(x0).

(K2)

(ii) We say that a kernel k belongs to K′(α0,Λ) if k ∈ K(α0,Λ) and if

sup
x∈B2(0)

ˆ
Rd\B3(0)

|y|1/Λ k0(x, y) dy ≤ Λ . (K3)

Note that (K3) is satisfied if
´
Rd\B3(0) |y|

δ k0(x, y) dy is uniformly bounded in B2(0) for
some δ > 0. We use this notation in order to avoid a third constant to appear in the class
K′.
As we will show, the conditions (K1) and (K2) are sufficient to prove a weak Harnack
inequality for nonnegative supersolutions of (PEα). The additional assumption (K3) is
needed for the proof of Hölder regularity.
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4.2 Local weak solutions

In Chapter 3 we studied existence and uniqueness of solutions to the boundary value
problem (3.2). In what follows we will prove local regularity results for functions that are
only solutions to the equation, disregarding the boundary and initial values prescribed in
(3.2). As a first consequence we obtain that a solution is no longer required to vanish on
Ωc. Thus a solution – written as abstract function – may take values in Hα/2(Ω) (instead
of Hα/2

0 (Ω) as in (3.2)). Furthermore, we only require the equation to hold locally, i.e. on
every compact subset of I × Ω.

For both the second order and fractional order case we take the formulation in Problem 3.19
as a starting point. In particular, the assumption u ∈ Cloc(I;L2

loc(Ω
′)) is motivated by

Proposition 3.22 and the embedding

W(I ′;Hs
0(Ω′), L2(Ω′)) ↪→ C(I ′;L2(Ω′)) ,

see Proposition 3.9(iii).

The definitions in this section follow [DGV11, Section 3.1].

4.2.1 Second order parabolic equation

Definition 4.2. Assume Q = I × Ω ⊂ Rd+1 and f ∈ L∞(Q). We say that u is a
supersolution of (PE2) in Q = I × Ω, if

(i) u ∈ Cloc(I;L2
loc(Ω)) ∩ L2

loc(I;H1
loc(Ω)),

(ii) for every subdomain Ω′ b Ω, for every subinterval I ′ = [t1, t2] ⊂ I and for every
nonnegative test function φ ∈ H1(I ′;L2(Ω′)) ∩ L2(I ′;H1

0 (Ω′)),

ˆ

Ω′

φ(t2, x)u(t2, x) dx−
ˆ

Ω′

φ(t1, x)u(t1, x) dx−
t2ˆ

t1

ˆ

Ω′

u(t, x)∂tφ(t, x) dx dt

+

t2ˆ

t1

ˆ

Ω′

A(t, x)∇u(t, x) · ∇φ(t, x) dx dt ≥
t2ˆ

t1

ˆ

Ω′

f(t, x)φ(t, x) dx dt. (4.4)

From now on “∂tu−L 1u ≥ f in I × Ω“ denotes that u is a supersolution in I × Ω in the
sense of this definition. Subsolutions and solutions2 are defined analogously.

Note that the values of φ(t1) and φ(t2) are well-defined due to the embedding

H1(I ′;L2(Ω′)) ↪→ C(I
′
;L2(Ω′)) ,

see Proposition 3.9(iii).

2In the definition of a solution there is no restriction on the sign of the test function φ.
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4.2.2 Fractional order parabolic equation

Let us recall from Lemma 3.17 the bilinear form that is associated to the operator L α/2:

Eα/2(t;u, v) =

¨

Rd Rd

[u(x)− u(y)] [v(x)− v(y)] kt(x, y) dx dy ,

where we assume that the kernel kt satisfies (K1) and (K2) on page 56. For simplicity we
shall omit the upper index in the bilinear form and write Et(u, v) = Eα/2(t;u, v) if there
is no danger of confusion. We will reserve the letter E for the bilinear form in the the
fractional order case.

Definition 4.3. Assume Q = I × Ω ⊂ Rd+1 and f ∈ L∞(Q). We say that u ∈
L∞(I;L∞(Rd)) is a supersolution of (PEα) in Q = I × Ω, if

(i) u ∈ Cloc(I;L2
loc(Ω)) ∩ L2

loc(I;H
α/2
loc (Ω)),

(ii) for every subdomain Ω′ b Ω, for every subinterval I ′ = [t1, t2] ⊂ I and for every
nonnegative test function φ ∈ H1(I ′;L2(Ω′)) ∩ L2(I ′;Hα/2

0 (Ω′)),
ˆ

Ω′

φ(t2, x)u(t2, x) dx−
ˆ

Ω′

φ(t1, x)u(t1, x) dx

−
t2ˆ

t1

ˆ

Ω′

u(t, x)∂tφ(t, x) dx dt+

t2ˆ

t1

Et(u, φ) dt ≥
t2ˆ

t1

ˆ

Ω′

f(t, x)φ(t, x) dx dt. (4.5)

From now on “∂tu−L α/2u ≥ f in I ×Ω“ denotes that u is a supersolution in I ×Ω in the
sense of this definition. Subsolutions and solutions3 are defined analogously.

The values of φ(t1) and φ(t2) are well-defined due to the embedding

H1(I ′;L2(Ω′)) ↪→ C(I
′
;L2(Ω′)),

see Proposition 3.9(iii).

In comparison with Definition 4.2 we added the assumption u ∈ L∞(I;L∞(Rd)), i.e. we
allow only for bounded solutions. This is explained by the nonlocality of Et in (4.5): Let
φ be a test function as in Definition 4.3. We may extend φ by zero outside of Ω′, by
Remark 2.30c) this extension belongs to Hα/2(Rd). Let Ω0 ⊂ Rd such that Ω′ b Ω0 b Ω.
Then, by (K1) and (K2), for almost every t ∈ I ′

|Et(u, φ)| ≤
¨

Rd Rd

|u(t, x)− u(t, y)| |φ(t, x)− φ(t, y)| kt(x, y) dx dy

=

¨

Ω0 Ω0

|u(t, x)− u(t, y)| |φ(t, x)− φ(t, y)| kt(x, y) dx dy

3In the definition of a solution there is no restriction on the sign of the test function φ.
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+ 2

¨

Ωc0 Ω0

φ(t, x) |u(t, x)− u(t, y)| kt(x, y) dx dy

≤ Λ ‖u(t)‖Hα/2(Ω0) ‖φ(t)‖Hα/2(Rd) + 4 ‖u(t)‖L∞(Rd)

ˆ
Ω′
φ(t, x)

ˆ
Ωc0

kt(x, y) dy dx

≤ C ‖φ(t)‖Hα/2(Rd)

(
‖u(t)‖Hα/2(Ω0) + ‖u(t)‖L∞(Rd)

)
,

where the constant C depends on Λ, d and the distance of Ω′ to Ω0. The assumptions on
u and φ ensure that the terms in the last line belong to L1(I ′).

4.3 Main results: Weak Harnack inequality and Hölder
regularity for fractional order parabolic equations

In Section 6.5 we prove the following result:

Theorem 4.4 (Weak Harnack inequality). Let k ∈ K(α0,Λ) for some α0 ∈ (0, 2) and
Λ ≥ 1. Then there is a constant C = C(d, α0,Λ) such that for every supersolution u
of (PEα) on Q = (−1, 1) × B2(0) which is nonnegative in (−1, 1) × Rd the following
inequality holds:

‖u‖L1(U	) ≤ C
(

inf
U⊕

u+ ‖f‖L∞(Q)

)
(HI)

where U⊕ =
(
1− (1

2)α, 1
)
×B1/2(0), U	 =

(
−1,−1 + (1

2)α
)
×B1/2(0).

Note that the domains U⊕, U	 can be replaced by
(

3
4 , 1
)
× B1/2(0),

(
−1,−3

4

)
× B1/2(0),

respectively.

The proof of the following interior Hölder regularity estimate will be given in Section 6.6.

Theorem 4.5 (Hölder regularity). Let k ∈ K′(α0,Λ) for some α0 ∈ (0, 2) and Λ ≥ 1.
Then there is a constant β = β(d, α0,Λ) such that for every solution u of (PEα) in
Q = I × Ω with f = 0 and every Q′ b Q the following estimate holds:

sup
(t,x),(s,y)∈Q′

|u(t, x)− u(s, y)|
(
|x− y|+ |t− s|1/α

)β ≤
‖u‖L∞(I×Rd)

ηβ
, (HC)

with some constant η = η(Q,Q′) > 0.

Similar to the previous result, |t− s|1/α can be replaced by |t− s|1/2.
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Remark 4.6.

a) In this work we concentrate on the most simple characteristic setting in order to explain
the main arguments. In particular, one can obtain Theorem 4.4 for supersolutions u in
general domains in Rd+1 by rescaling u to a function that is a solution in a standard
cylinder (−1, 1)×B2(0) (cf. Lemma 5.1) and by applying some covering arguments (cf.
[Mos71, Lemma 4]).

Let us also mention that the f ∈ L∞(Q) for the inhomogeneity f is not optimal in
(HI). However, this assumption suffices to derive the Hölder regularity estimate from
the weak Harnack inequality.

b) Note that a strong Harnack inequality, i.e. ‖u‖L1(U	) replaced by supU	 u in (HI),
cannot be obtained under our assumptions. A counterexample was found by Bogdan
and Sztonyk [BS05, p. 148], see also the discussion in [KRS13, Section 7.A]. Thus,
the strong formulation of Harnack’s inequality fails although conditions (K1) and (K2)
ensure non-degeneracy of the operator L in (4.2). In this sense the nonlocal case differs
from the case of local diffusion operators. �

Example 4.7 illustrates the robustness for α → 2−. Example 4.8 shows that kt(x, y) may
be zero on a large set around the diagonal x = y.

Example 4.7. Consider a sequence of kernels (kn)n∈N such that kn ∈ K(α0,Λ) for every
n ∈ N and some α0 ∈ (0, 2), Λ ≥ 1 independent of n ∈ N. For instance kt(x, y) defined4 by

knt (x, y) = (2− αn) |x− y|2−αn with αn = 2− 1
n+1 (4.6)

belongs to K(1,Λ) for some Λ = Λ(d) ≥ 1. Let (un) be a sequence of solutions to the
corresponding equation (PEα). Then (HI) holds true for the sequence (un) uniformly in
n ∈ N. Furthermore, if (kn) additionally satisfies (K3) uniformly in n ∈ N – such as the
kernels in (4.6) – then also (HC) holds uniformly in n ∈ N. Note that the theorems are
interesting and new even if αn = α for some α ∈ (0, 2) and all n ∈ N. �

Example 4.8. Fix α0 ∈ (0, 2). Assume kt(x, y) = 2−α
|x−y|d+α for some α ∈ (α0, 2). Let

ζ ∈ Sd−1 and r ∈ (0, 1). Set

S = Sd−1 ∩ (Br(ζ) ∪Br(−ζ)) and k′t(x, y) = kt(x, y)1S( x−y
|x−y|).

Then we have k′ ∈ K(α0,Λ) for some Λ ≥ 1. �

4Note that the factor (2− αn) in (4.6) is essential to find Λ and α0 independent of n ∈ N.



5 Auxiliary Results

In this chapter we provide all technical tools that are needed to apply Moser’s iteration
technique. The results concerning the fractional order case have already been published in
a joint publication by M. Kassmann and the author [FK13].

Four basic tools for Moser’s proof of the regularity results can be singled out, cf. the
description in [SC95]:

1. In order to deduce Hölder regularity from the (weak) Harnack inequality, a certain
scaling property of the equation is used. This scaling result is provided in Section 5.1.

2. The basic steps of Moser’s iteration are proved by means of Sobolev’s inequality, which
is shown in Section 5.4.1.

3. A Poincaré inequality is needed in order to prove estimates for log u. In contrast to
Moser’s proof for elliptic equations, a weighted Poincaré inequality is needed in the
situation of a parabolic equation. Heuristically, this is explained by the observation
that one has no information on the sign of ∂tv, where v is the auxiliary function in
the proof of Proposition 6.9 and Proposition 7.5. The weighted Poincaré inequality is
established in Section 5.4.2.

4. The John-Nirenberg embedding, which ensures exponential integrability of BMO func-
tions. Moser applied this embedding in [Mos61, Mos64, Mos67]. In Moser’s own words,
the proof of the parabolic generalization of the John-Nirenberg embedding ”is quite in-
tricate and it was desirable to avoid it entirely“1. Therefore, Moser showed in [Mos71]
that indeed this argument can be avoided by adapting a lemma which was found by
Bombieri and Giusti [BG72]. We reprove the Bombieri-Giusti lemma in Section 5.6.

5.1 Standard cylindrical domains and scaling property

Let us briefly explain the scaling behavior of equation (PEα). Here and later we will use
the following notation. Define

Br(x0) =
{
x ∈ Rd : |x− x0| < r

}
, r > 0

and (cf. Figure 5.1)

Ir(t0) = (t0 − rα, t0 + rα), Qr(x0, t0) = Ir(t0)×Br(x0),

I⊕(r) = (0, rα), Q⊕(r) = I⊕(r)×Br(0),

I	(r) = (−rα, 0), Q	(r) = I	(r)×Br(0).

1[Mos71, p. 727]
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t

t = 0

rα

rα

r

Q(R)

Q⊕(r)

Q⊖(r)

Figure 5.1: Standard cylindrical domains

Lemma 5.1 (Scaling property). Fix α0 ∈ (0, 2), ξ ∈ Rd, τ ∈ R and r > 0. Assume that
there is α ∈ (α0, 2) and Λ ≥ max(1, α−1

0 ) such that the kernel kt(x, y) = a(t, x, y)k0(x, y)
satisfies the following properties: for every x0 ∈ Rd, ρ ∈ (0, 2r) and v ∈ Hα/2(Bρ(x0))

ρ−2

ˆ
|x0−y|≤ρ

|x0 − y|2 k0(x0, y) dy +

ˆ
|x0−y|>ρ

k0(x0, y) dy ≤ Λρ−α , (5.1a)

Λ−1

¨

BB

[v(x)− v(y)]2 k0(x, y) dx dy ≤ (2− α)

¨

BB

[v(x)− v(y)]2

|x− y|d+α
dx dy

≤ Λ

¨

BB

[v(x)− v(y)]2 k0(x, y) dx dy, where B = Bρ(x0) , (5.1b)

sup
x∈B2r(ξ)

ˆ
Rd\B3r(ξ)

|y|1/Λ k0(x, y) dy ≤ Λ r1/Λ−α . (5.1c)

Let u be a supersolution of equation (PEα) in Q c Qr(ξ, τ) with a kernel kt(x, y) that
satisfies (5.1a)-(5.1c). Then ũ(t, x) = u(rαt+ τ, rx+ ξ) satisfies
ˆ
B1

φ(t, x)ũ(t, x) dx
∣∣∣
1

t=−1
−
ˆ
Q1(0)

ũ(t, x)∂tφ(t, x) dx dt

+

1ˆ

−1

¨

Rd Rd

[ũ(t, x)− ũ(t, y)] [φ(t, x)− φ(t, y)] k̃t(x, y) dx dy dt ≥
ˆ

Q1(0)

rαf̃(t, x)φ(t, x) dx dt,

(5.2)

for every nonnegative test function

φ ∈ H1((−1, 1);L2(B1(0))) ∩ L2((−1, 1);H
α/2
0 (B1(0))) , (5.3)
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where f̃(t, x) = f(trα + τ, rx+ ξ) and

k̃t(x, y) = a(rαt+ τ, rx+ ξ, ry + ξ) rd+α k0(rx+ ξ, ry + ξ).

In particular, k̃ belongs to K′(α0,Λ).

It is readily checked that the second order parabolic equation satisfies an analog scaling
property.

Proof. Let u be a supersolution of (PEα) in Q c Qr(ξ, τ) with a kernel kt(x, y) that satisfies
the conditions of Lemma 5.1. Let φ be a test function as in (5.3). For r > 0 and ξ, τ as in
Lemma 5.1 define a diffeomorphism

Ψ: Q(1)→ Qr(ξ, τ), Ψ(t, x) = (rαt+ τ, rx+ ξ) .

The two components of Ψ are denoted by Ψξ : B1(0)→ Br(ξ) and Ψτ : I1(0)→ Ir(τ). By
the change-of-variables formula we find

ˆ

B1

φ(t, x)ũ(t, x) dx
∣∣∣
1

t=−1
= r−d

ˆ

Br(ξ)

(φ ◦Ψ−1)(t, x)u(t, x) dx
∣∣∣
Ψτ (1)

t=Ψτ (−1)
,

ˆ

Q1(0)

ũ(t, x)∂tφ(t, x) dx dt = r−d−α
ˆ

Qr(ξ,τ)

u(t, x)rα∂t(φ ◦Ψ−1)(t, x) dx dt ,

1ˆ

−1

¨

Rd Rd

[ũ(t, x)− ũ(t, y)] [φ(t, x)− φ(t, y)] k̃t(x, y) dx dy dt

= r−2d−α
τ+rαˆ

τ−rα
rd+αEt(u, φ ◦Ψ−1) dt ,

ˆ

Q1(0)

rαf̃(t, x)φ(t, x) dx dt = r−d+α

ˆ
Qr(ξ,τ)

rαf(t, x)(φ ◦Ψ−1)(t, x) dx dt .

Now observe that the factor r−d cancels out and that φ◦Ψ−1 is an admissible test function
in (4.5). This proves (5.2).

It remains to verify (K1)-(K3) for k̃t(x, y). To shorten notation we assume ξ = 0, τ = 0.
Let x0 ∈ Rd, ρ ∈ (0, 2). Then we may deduce from (5.1a)

ρ−2

ˆ
Bρ(x0)

|x0 − y|2 rd+αk0(rx, ry) dy +

ˆ
Bρ(x0)c

rd+αk0(rx, ry) dy

= (rρ)−2rα
ˆ
Brρ(rx0)

|rx0 − y|2 k0(rx, y) dy + rα
ˆ
Brρ(rx0)c

k0(rx, y) dy

≤ Λrα(rρ)−α = Λρα .
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(5.1b) implies for B = Bρ(x0), B̃ = Brρ(rx0) and v ∈ Hα/2(B)

¨

BB

|v(x)− v(y)|2 rd+αk0(rx, ry) dx dy =

¨

B̃ B̃

|v(x/r)− v(y/r)|2 r−d+αk0(x, y) dx dy

≤ Λ(2− α)r−d+α

¨

B̃ B̃

|v(x/r)− v(y/r)|2

|x− y|d+α
dx dy

= Λ(2− α)

¨

BB

|v(x)− v(y)|2

|x− y|d+α
dx dy .

The proof of the lower bound in (K2) for k̃0 is similar.

Finally, we deduce (K3) from (5.1c):

sup
x∈B2(0)

ˆ
B3(0)c

|y|1/Λ rd+αk0(rx, ry) dy

= rα−Λ−1
sup

x∈B2r(0)

ˆ
B3r(0)c

|y|1/Λ rαk0(x, y) dy ≤ Λ

This finishes the proof of Lemma 5.1.

5.2 Alternative formulation in terms of Steklov averages

In the main proofs we do not use (4.5) directly. The starting point in these proofs is the
inequality

ˆ
Ω′
∂tu(t, x)φ(t, x) dx+ Et(u(t, ·), φ(t, ·)) ≥

ˆ
Ω′
f(t, x)φ(t, x) dx for a.e. t ∈ I, (5.4)

where we apply test functions of the form φ(t, x) = ψ(x)u−q(t, x), q > 0, where u is a
positive supersolution in I ×Ω and ψ a suitable cut-off function. In particular, we assume
that u is a.e. differentiable in time.

The aim of this section is to justify the use of (5.4) instead of (4.5) in our main technical
results, Proposition 6.1, Proposition 6.3 and Proposition 6.9. Thus, we can work with
supersolutions u as if they were a.e. differentiable with respect to t. This approach is
standard when proving regularity results for solutions to second order parabolic problems,
cf. [AS67, Sec. 9]. Nevertheless, we provide details and show that the nonlocality (in
space) of the underlying operator does not form a serious obstacle.

In the above mentioned proofs we multiply (5.4) with some piecewise differentiable function
χ : R → [0,∞) and integrate over some time interval (t1, t2) ⊂ I. This implies, together
with the chain rule and partial integration,

[
χ(t)

ˆ
Ω′
ψ(x)w(t, x) dx

]t2

t=t1

+

ˆ t2

t1

χ(t)Et(u, φ) dt
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≥
ˆ t2

t1

χ(t)

ˆ
Ω′
f(t, x)φ(x) dx dt+

ˆ t2

t1

χ′(t)
ˆ

Ω′
ψ(x)w(t, x) dx dt, (5.5)

where

w(t, x) =

{
1

1−qu
1−q(t, x) if q 6= 1,

log u(t, x) if q = 1.
(5.6)

Inequality (5.5) is the main source for our estimates. Let us now show how to derive (5.5)
from (4.5). To this end, we recall the concept of Steklov averages in Section 1.4: Let
I = (T1, T2), Q = I × Ω. For v ∈ L1(Q) and 0 < h < T2 − T1 define

vh(t, ·) =





1

h

ˆ t+h

t
v(·, s) ds for T1 < t < T2 − h,

0 for t ≥ T2 − h.

Fix t ∈ I, Ω′ b Ω and h > 0 such that t + h ∈ I. In (4.5) we choose φ(s, x) = η(x) with
η ∈ Hα/2

0 (Ω′), t1 = t and t2 = t+ h. Dividing by h we obtain
ˆ

Ω′
∂tuh(t, x)η(x) dx+

1

h

ˆ t+h

t
Es(u(s, ·), η(·)) ds ≥

ˆ
Ω′
fh(t, x)η(x) dx , (5.7)

valid for all t ∈ I and η ∈ Hα/2
0 (Ω′).

Next we choose in (5.7) (for fixed t ∈ I) test functions of the form η = χ(t)ψu−qh (t, ·),
q > 0, where ψ, χ are suitable cut-off functions. Then we integrate (5.7) over some time
interval (t1, t2). Hence, with w as in (5.6),

ˆ t2

t1

χ(t)

ˆ
Ω′
ψ(x)∂twh(t, x) dx dt+

ˆ t2

t1

χ(t)
1

h

ˆ t+h

t
Es(u(s, ·), ψ(·)u−qh (t, ·)) ds dt

≥
ˆ t2

t1

χ(t)

ˆ
Ω′
fh(t, x)ψ(x)u−qh (t, x) dx dt .

After partial integration in the first term we pass to the limit h → 0. Lemma 1.14 and
Lemma 5.2 from below then imply

[
χ(t)

ˆ
Ω′
ψ(x)w(t, x) dx

]t2

t=t1

+

ˆ t2

t1

χ(t)Et(u(t, ·), ψ(·)u−q(t, ·)) dt

≥
ˆ t2

t1

χ(t)

ˆ
Ω′
f(t, x)u(t, x)ψ(x) dx dt+

ˆ t2

t1

χ′(t)ψ(x)w(t, x) dx dt , (5.8)

which we wanted to show.

Let us mention that the situation of a second order parabolic equation is easier due to the
structure of the form A∇u · ∇φ in (4.4), see [DGV11, Section 3.1.1] and [AS67, Section 9]:
In the same way as we deduced (5.7) above we may deduce from (4.4)

ˆ
Ω′
∂tuh(t, x)η(x) dx+

ˆ
Ω′

(A∇u)h(t, x) · ∇η(x) dx ≥
ˆ

Ω′
fh(t, x)η(x) dx .
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From this inequality we proceed as in the case of the fractional order equation and observe
that the convergence of the term with space derivatives follows from (4.3) and Lemma 1.14.
Thus we may take
ˆ

Ω′

∂tu(t, x)φ(t, x) dx+

ˆ

Ω′

(A∇u ·∇φ)(t, x) dx ≥
ˆ

Ω′

f(t, x)φ(t, x) dx for a.e. t ∈ I (5.9)

as a starting point in the proofs of Proposition 7.1 and Proposition 7.5.

It remains to prove the auxiliary result.

Lemma 5.2. Let v be a positive supersolution to ∂tv − Lv = f in Q = Ω × I. Let φ be
an admissible test function as in Definition 4.3 that is bounded and satisfies supp[φ(t, ·)] ⊂
BR b Ω for some R > 0 and every t ∈ I. Then for every I ′ b I

ˆ
I′

1

h

ˆ t+h

t
Es(v(s, ·), φh(t, ·)) ds dt h→0+−−−−→

ˆ
I′
Et(v, φ) dt. (5.10)

Proof. Set V (t, x, y) = a(t, x, y) (v(t, x)− v(t, y)) and Φ(t, x, y) = φ(t, x)− φ(t, y). Since
ˆ
I′

1

h

ˆ t+h

t
Es(v(s, ·), φh(t, ·)) ds dt =

ˆ
I′

¨

Rd Rd

Vh(t, x, y)Φh(t, x, y)k0(x, y) dx dy dt ,

ˆ
I′
Et(v, φ) dt =

ˆ
I′

¨

Rd Rd

V (t, x, y)Φ(t, x, y)kt(x, y) dx dy dt ,

the convergence in (5.10) follows if we show both
ˆ
I′

¨

Rd Rd

|Vh(t, x, y)− V (t, x, y)| |Φ(t, x, y)| k0(x, y) dx dy dt h→0+−−−−→ 0, (5.11a)

ˆ
I′

¨

Rd Rd

|Vh(t, x, y)| |Φh(t, x, y)− Φ(t, x, y)| k0(x, y) dx dy dt h→0+−−−−→ 0. (5.11b)

First we prove (5.11a). Define B = BR+ε for some fixed ε > 0. A usual decomposition of
the integral over Rd × Rd yields

ˆ
I′

¨

Rd Rd

|Vh(t, x, y)− V (t, x, y)| |φ(t, x)− φ(t, y)| k0(x, y) dx dy dt

=

ˆ
I′

¨

BB

|Vh(t, x, y)− V (t, x, y)| |φ(t, x)− φ(t, y)| k0(x, y) dx dy dt

+ 2

ˆ
I′

ˆ
B
|φ(t, x)|

ˆ
Bc
|Vh(t, x, y)− V (t, x, y)| k0(x, y) dy dx dt

=: I1(h) + I2(h).
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Hölder’s inequality applied to I1(h) shows that I1(h)→ 0:

‖(Vh − V )Φh k0‖L1(I′×B×B) ≤
∥∥∥(Vh − V )k0

1
2

∥∥∥
L2(I′;L2(B×B))

∥∥∥Φk0
1
2

∥∥∥
L2(I′;L2(B×B))

≤
∥∥∥(Vh − V )k0

1
2

∥∥∥
L2(I′;L2(B×B))

‖φ‖L2(I′;Hα/2(B)) ,

where we have used (K2) in the second inequality. Lemma 1.14(iii) implies that the first
factor tends to zero since – again due to property (K2) –

v ∈ L2(I ′;Hα/2(B))⇒ V k
1
2
0 ∈ L2(I ′;L2(B ×B)).

In a similar way we obtain the convergence of I2(h):
ˆ
I′

ˆ
B
|φ(t, x)|

ˆ
Bc
|Vh(t, x, y)− V (t, x, y)| k0(x, y) dy dx dt

≤ ‖φ‖L∞(I′×B)

ˆ
I′
‖Vh(t, ·, ·)− V (t, ·, ·)‖L∞(Rd×Rd)

¨

BR Bc

k0(x, y) dy dx dt

≤ Λ ε−α |BR| ‖φ‖L∞(I′×B) ‖Vh − V ‖L1(I;L∞(Rd×Rd)) ,

where we have applied (K1) in the second inequality. The convergence of the last factor
follows again from Lemma 1.14(iii).

Next, we prove (5.11b): Again, we use the decomposition
ˆ
I′

¨

Rd Rd

|Vh(t, x, y)| |Φh(t, x, y)− Φ(t, x, y)| k0(x, y) dx dy dt

=

ˆ
I′

¨

BB

|Vh(t, x, y)| |Φh(t, x, y)− Φ(t, x, y)| k0(x, y) dx dy dt

+ 2

ˆ
I′

ˆ
B
|φh(t, x)− φ(t, x)|

ˆ
Bc
|Vh(t, x, y)| k0(x, y) dy dx dt

=: J1(h) + J2(h).

The convergence J1(h)
h→0+−−−−→ 0 follows by the same argument as we used for the conver-

gence of I1(h). It remains to show that J2(h)
h→0+−−−−→ 0:

1
2J2(h) ≤

ˆ
I′
‖φh(t, ·)− φ(t, ·)‖L∞(BR)

¨

BR Bc

|Vh(t, x, y)| k0(x, y) dx dy dt

≤ 2ε−α |BR| ‖vh‖L∞(I′;L∞(Rd)) ‖φh − φ‖L1(I′;L∞(Rd)) .

Finally, we apply Lemma 1.14(ii),(iii) to conclude that J2(h) converges to zero. This finishes
the proof.
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5.3 Some algebraic inequalities

The following two results are tools for Lemma 5.5, which is essential for the proof of the
basic steps in Section 6.1.

Proposition 5.3. Let f, g ∈ C1([a, b]). Then

f(b)− f(a)

b− a +

(
g(b)− g(a)

b− a

)2

≤ max
t∈[a,b]

[
f ′(t) + (g′(t))2

]
. (5.12)

Proof. Assume that (5.12) was not true and integrate the reversed inequality over [a, b]
resulting in

f(b)− f(a) +
(g(b)− g(a))2

b− a > f(b)− f(a) +

ˆ b

a
(g′(t))2 dt,

which is equivalent to
(
g(b)− g(a)

(b− a)

)2

>
1

b− a

ˆ b

a
(g′(t))2 dt.

This is a contradiction (Jensen’s inequality) and hence Proposition 5.3 is proved.

Lemma 5.4. Let q > 0, q 6= 1 and a, b > 0. Then

(b− a)(a−q − b−q) ≥ 4q

(1− q)2

(
b

1−q
2 − a 1−q

2

)2
. (5.13)

Proof. Setting c(q) = (1−q)2

4q , (5.13) is equivalent to

c(q)
b−q − a−q
b− a +

(
b

1−q
2 − a 1−q

2

)2

(b− a)2
≤ 0.

Proposition 5.3 with f(t) = c(q)t−q and g(t) = t
1−q

2 yields

c(q)
b−q − a−q
b− a +

(
b

1−q
2 − a 1−q

2

)2

(b− a)2
≤ max

t∈[a,b]
t−1−q

(
−(1− q)2

4
+

(1− q)2

4

)
= 0,

which proves inequality (5.13).

Part (i) of the following lemma is taken from [Kas09, Lemma 2.5]. Part (ii) was derived in
collaboration with M. Kassmann and R. Zacher.
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Lemma 5.5.

(i) Let q > 1, a, b > 0 and τ1, τ2 ≥ 0. Set ϑ(q) = max
{

4, 6q−5
2

}
. Then

(b− a)
(
τ q+1

1 a−q − τ q+1
2 b−q

)
≥ 1

q − 1
(τ1τ2)

[(
b

τ2

) 1−q
2

−
(
a

τ1

) 1−q
2

]2

− ϑ(q) (τ2 − τ1)2

[(
b

τ2

)1−q
+

(
a

τ1

)1−q]
. (5.14)

Since 1− q < 0 the division by τ1 = 0 or τ2 = 0 is allowed.

(ii) Let q ∈ (0, 1), a, b > 0 and τ1, τ2 ≥ 0. Set ζ(q) = 4q
1−q , ζ1(q) = 1

6ζ(q) and ζ2(q) =

ζ(q) + 9
q . Then

(b− a)
(
τ2

1 a
−q − τ2

2 b
−q) ≥ ζ1(q)

(
τ2b

1−q
2 − τ1a

1−q
2

)2

− ζ2(q)(τ2 − τ1)2
(
b1−q + a1−q) (5.15)

Proof. Here we only prove (5.15); for the proof of (5.14) we refer to [Kas09, pp. 5-6]. (5.15)
is easily checked if τ2 = 0. If τ1 = 0 and τ2 > 0 the inequality reads

−b1−q + ab−q ≥ (ζ1(q)− ζ2(q)) b1−q − ζ2(q)a1−q.

This is true since ζ1(q)− ζ2(q) < −1.

Now we consider the case τ1τ2 > 0. We can assume b ≥ a due to symmetry. Setting
t = b

a ≥ 1, s = τ2
τ1
> 0 and λ = s2t−q, assertion (5.15) is equivalent to

ζ1(q)
(√

λt− 1
)2
≤ (t− 1)(1− λ) + ζ2(q)(s− 1)2

(
t1−q + 1

)
(5.16)

We estimate
(√

λt− 1
)2
≤ 2

(√
λt− t 1−q

2

)2
+ 2

(
t

1−q
2 − 1

)2
= 2(s− 1)2t1−q + 2

(
t

1−q
2 − 1

)2

≤ 2(s− 1)2t1−q +
2

ζ(q)
(t− 1)(1− t−q),

where we have used Lemma 5.4 in the last inequality noting that 4q
(1−q)2 ≥ 4q

1−q = ζ(q) for
q ∈ (0, 1). We decompose the last factor of the above inequality as follows:

1− t−q = (1− λ) + (λ− t−q) = (1− λ) + (s− 1)2t−q + 2(s− 1)t−q.

This implies
(√

λt− 1
)2
≤
(

2 +
2

ζ(q)

)
(s−1)2t1−q+

2

ζ(q)
(t−1)(1−λ)+

4

ζ(q)
(t−1)(s−1)t−q. (5.17)

It remains to estimate the last term in (5.17). To this end we consider different ranges of
t ∈ [1,∞) and s ∈ (0,∞):



70 5 Auxiliary Results

a) t > 1, s ∈ (1, 2) and t − 1 > 4
q t(s − 1): By the mean value theorem, there is ξ ∈ (1, t)

such that tq − 1 = qξq−1(t− 1). Then we can estimate

(s+ 2)(s− 1)

t− 1
≤ q(s+ 2)

4t
≤ q

t
≤ q

t1−q
≤ qξq−1 =

tq − 1

t− 1
.

Therefore

(s+ 2)(s− 1) ≤ tq − 1, or equivalently s− 1 ≤ tq − s2 = tq(1− λ).

This implies (t− 1)(s− 1)t−q ≤ (t− 1)(1− λ). We deduce from (5.17)

1
6ζ(q)

(√
λt− 1

)2
≤
(

1
3ζ(q) + 1

3

)
(s− 1)2t1−q + (t− 1)(1− λ). (5.18a)

b) t > 1, s ∈ (1, 2) and t − 1 ≤ 4
q t(s − 1): In this case (t − 1)(s − 1)t−q ≤ 4

q t
1−q(s − 1)2

and – again by (5.17) –

1
2ζ(q)

(√
λt− 1

)2
≤
(
ζ(q) + 1 + 8

q

)
(s− 1)2t1−q + (t− 1)(1− λ). (5.18b)

c) t = 1 or s ≤ 1: Then obviously (t− 1)(s− 1)t−q ≤ 0 and

1
2ζ(q)

(√
λt− 1

)2
≤ (ζ(q) + 1) (s− 1)2t1−q + (t− 1)(1− λ). (5.18c)

d) t > 1, s ≥ 2: Using s− 1 ≤ (s− 1)2 we obtain (t− 1)(s− 1)t−q ≤ (s− 1)2t1−q and

1
2ζ(q)

(√
λt− 1

)2
≤ (ζ(q) + 3) (s− 1)2t1−q + (t− 1)(1− λ). (5.18d)

Combining inequalities (5.18a)-(5.18d) we obtain (5.16) since 3 < 1 + 8
q <

9
q . This finishes

the proof of Lemma 5.5.

5.4 Sobolev and weighted Poincaré inequalities

5.4.1 Sobolev inequality

Proposition 5.6 (Sobolev inequality – H1-version).

(i) Let d ≥ 3, θ = d
d−2 . Then there is a constant S > 0 such that for every r > 0 and

u ∈ H1(Br)

(ˆ
Br

|u(x)|2θ dx
)1/θ

≤ S
ˆ
Br

|∇u(x)|2 dx+ Sr−2

ˆ
Br

u2(x) dx . (5.19a)
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(ii) Let d = 1, 2 and θ = 3. Then there is a constant S′ > 0 such that for every r ∈ (0, 2)
and u ∈ H1(Br)

(ˆ
Br

|u(x)|2θ dx
)1/θ

≤ S′
ˆ
Br

|∇u(x)|2 dx+ S′r−2

ˆ
Br

u2(x) dx . (5.19b)

Proof. ad (i): For r = 1 the inequality is a consequence of the Gagliardo-Nirenberg-
Sobolev inequality, cf. [Eva10, §5.6.1]. The assertion for arbitrary r > 0 then
follows by a scaling argument: Let u ∈ H1(Br) and define the diffeomorphism
Φ: B1 → Br, Φ(x) = rx. Then u ◦ Φ ∈ H1(B1) and

(ˆ
Br

|u(x)|2θ dx
)1/θ

= rd/θ
(ˆ

B1

|(u ◦ Φ)(x)|2θ dx
)1/θ

≤ S
ˆ
B1

rd/θ |∇(u ◦ Φ)(x)|2 + rd/θ |u ◦ Φ(x)|2 dx

= S

ˆ
B1

rd/θ+2 |∇u(rx)|2 + rd/θ |u(rx)|2 dx

= S

ˆ
Br

rd/θ+2−d |∇u(x)|2 + rd/θ−d |u(x)|2 dx . (5.20)

This proves (5.19a) for general r > 0 since d/θ + 2− d = 0 and d/θ − d = −2.

ad (ii): In this case we may consider u as a function of three variables – temporarily
denoted by u – which is constant in the second (and third) variable. Then we
may apply (5.19a) to u, where r = 1 and the ball B1 is replaced by the cube
R1 =

{
x ∈ Rd : max

1≤k≤3
|xk| < 1

}
. In this way we establish (5.19b) for r = 1 with

θ = 3
3−2 = 3.

For d = 1, 2 and θ = 3 we have d/3 + 2 − d > 0 and d/3 − d > −2 in (5.20).
Therefore we can use the upper bound r < 2 to establish (5.19b).

We provide a Sobolev inequality and a weighted Poincaré inequality for fractional Sobolev
spaces with constants that are uniform for α→ 2−:

Proposition 5.7 (Sobolev inequality – Hα/2-version).

(i) Let d ≥ 3 and α0 > 0. Then there is a constant S′ > 0 such that for any α ∈ (α0, 2),
θ = d

d−α , r > 0 and u ∈ Hα/2(Br) the following inequality holds:

(ˆ
Br

|u(x)|2θ dx
)1/θ

≤ (2− α)S

¨

Br Br

|u(x)− u(y)|2

|x− y|d+α
dx dy + Sr−α

ˆ
Br

u2(x) dx .

(5.21a)



72 5 Auxiliary Results

(ii) Let d = 1, 2 and α0 > 0. Then there is a constant S′ > 0 such that for any α ∈ (α0, 2),
θ = 3

3−α , r ∈ (0, 2) and u ∈ Hα/2(Br) the following inequality holds:

(ˆ
Br

|u(x)|2θ dx
)1/θ

≤ (2− α)S′
¨

Br Br

|u(x)− u(y)|2

|x− y|d+α
dx dy + S′r−α

ˆ
Br

u2(x) dx .

(5.21b)

Proof. In [BBM02, Theorem 1] we find for B = B1 and u ∈ Hα/2(B)

∥∥u−
´
B u
∥∥2

L2θ(B)
≤ c(d)

2− α
d− α

¨

BB

|u(x)− u(y)|2

|x− y|d+α
dx dy .

Since ∥∥´
B u
∥∥2

L2θ(B)
≤ |B|2/θ+1 ‖u‖2L2(B) ≤ c′(d) ‖u‖2L2(B)

and
‖u‖2L2θ(B) ≤

1

2

∥∥u−
´
u
∥∥2

L2θ(B)
+

1

2

∥∥´ u∥∥2

L2θ(B)
,

this proves (5.21a) in the case r = 1. The result for general r > 0 follows after a change of
variables: Let u ∈ Hα/2(Br) and define a diffeomorphism Φ: B1 → Br, Φ(x) = rx. Then
u ◦ Φ ∈ Hα/2(B1) and

(ˆ
Br

|u(x)|2θ dx
)1/θ

= rd/θ
(ˆ

B1

|u ◦ Φ(x)|2θ dx
)1/θ

≤ (2− α)Srd/θ
¨

B1 B1

|u(rx)− u(ry)|2

|x− y|d+α
dx dy + Srd/θ

ˆ
B1

u2(rx) dx

≤ (2− α)Srd/θ−2d

¨

Br Br

|u(x)− u(y)|2

|x/r − y/r|d+α
dx dy + Srd/θ−d̂

Br

u2(x) dx

= S(2− α)

¨

Br Br

|u(x)− u(y)|2

|x− y|d+α
dx dy + Sr−α

ˆ
Br

u2(x) dx .

This proves (5.21a) for general r > 0. (5.21b) can be proved in the same way as is explained
in the proof of (5.19b).

This finishes the proof of Proposition 5.7.

5.4.2 Weighted Poincaré inequality

In order to derive estimates on log u in Section 6.4 we will need weighted Poincaré in-
equalities: A standard weighted Poincaré inequality in the case of a local operator and a
fractional version in the nonlocal case.
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We do not state these results in full generality but only in the special cases that apply in
Section 6.4. To this end we fix B = B3/2(0) and define Ψ: B → [0, 1] by Ψ(x) = (3

2−|x|)∧1.
Clearly, Ψ is Lipschitz continuous in B and its profile ψ(r) = Ψ(|x|) is non-increasing.

The following result is a special case of [DK13, Corollary 3]. We refer also to [DGV11,
Prop. 2.2.1], [Mos64, Lemma 3] or [SC02, Theorem 5.3.4] for similar results.

Lemma 5.8 (Weighted Poincaré inequality – H1-version). There is a constant C = C(d)
such that for every v ∈ L1(B,Ψ(x) dx)

ˆ
B

(
v(x)− vΨ

B

)2
Ψ(x) dx ≤ C

ˆ
B
|∇v(x)|2 Ψ(x) dx,

where vΨ
B =

(ˆ
B

Ψ(x) dx
)−1 ˆ

B
v(x)Ψ(x) dx.

Lemma 5.9 (Weighted Poincaré inequality – Hα/2-version). Let k ∈ K(α0,Λ) for some
α0 ∈ (0, 2) and Λ ≥ 1. Then there is a positive constant c2(d, α0,Λ) such that for every
v ∈ L1(B3/2,Ψ(x) dx)

ˆ
B3/2

[v(x)− vΨ]2 Ψ(x) dx ≤ c2

¨

B3/2B3/2

[v(x)− v(y)]2 kt(x, y) (Ψ(x) ∧Ψ(y)) dx dy ,

where vΨ =
(ˆ

B3/2

Ψ(x) dx
)−1

ˆ
B3/2

v(x)Ψ(x) dx.

Proof. For x ∈ B3/2 \B1 write Ψ(x) = 2
´ 3/2

1 1Bs(x) ds. Then for some α ∈ (α0, 2)

ˆ
B3/2

ˆ
B3/2

[v(x)− v(y)]2 kt(x, y) (Ψ(x) ∧Ψ(y)) dx dy

=

ˆ
B3/2

ˆ
B3/2

[v(x)− v(y)]2 kt(x, y)2

ˆ 3/2

1
1Bs(x)1Bs(y) ds dx dy

= 2

ˆ 3/2

1

ˆ
B3/2

ˆ
B3/2

[v(x)− v(y)]2 kt(x, y)1Bs(x)1Bs(y) dx dy ds

≥ 2Λ−1(2− α)

ˆ 3/2

1

ˆ
B3/2

ˆ
B3/2

[v(x)− v(y)]2

|x− y|d+α
1Bs(x)1Bs(y) dx dy ds

= Λ−1(2− α)

ˆ
B3/2

ˆ
B3/2

[v(x)− v(y)]2

|x− y|d+α
(Ψ(x) ∧Ψ(y)) dx dy ,

where we have applied (K2) to obtain the inequality. The assertion of Lemma 5.9 follows
now immediately from [DK13, Corollary 6].
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5.5 Abstract Moser iteration

This section contains a restatement of Moser’s iteration result. This iteration technique
(Lemma 5.11 in combination with Proposition 7.1) was applied for the first time in [Mos61]
for linear elliptic equations and in [Mos64] for parabolic equations. Since then, there have
been many generalizations of this approach, such as the extension to quasilinear equations
in [Tru67] and [Tru68] and to parabolic equations on manifolds (e.g. [SC95]) and on graphs
(e.g. [Del99]).

Moser’s iteration technique has extended into the literature on partial differential equations,
e.g. in [GT01, Lie96, SC02]. In contrast to the mentioned references, the presentation here
states these results in an abstract way that may apply in different contexts. To the author’s
knowledge this idea of abstraction goes back to [CZ04], see also [Zac10].

We start with a definition:

Definition 5.10. Let (Ω,A, µ) be a measure space. We say that a family U = (Ur, 0 <
r ≤ 1) of subsets of Ω is increasing if

µ(U1) <∞ and Ur ⊂ Ur′ ⊂ Ω for all 0 < r ≤ r′ ≤ 1.

For a given increasing family U and a measurable function f : U1 → R, p ∈ (0,∞) and
r ∈ (0, 1) we use the notation

N (f ; r, p) =

(ˆ
Ur

|f |p dµ
)1/p

.

5.5.1 Abstract Moser iteration scheme – type I

Lemma 5.11 (Moser’s iteration I). Let κ > 1, p0 ∈ [1,∞) and U = (Ur, 0 < r ≤ 1) be an
increasing family of subsets of some measure space (Ω,A, µ). For m ∈ N0, p ∈ (0, p0] set
pm = pκm and let (rm)m∈N0 be a sequence such that

1 ≥ σ = r0 > r1 > . . . > rj > rj+1 > . . . > ρ > 0.

Let f : U1 → R be a measurable function with the property

N (f ; rj+1, pj+1) ≤ Aj(p)1/pjN (f ; rj , pj) for all j ∈ N0 (5.22)

for some family (Aj(p))j∈N0 that may also depend on σ, ρ and κ. If there is
M(σ, ρ, p0, κ) ≥ 1 such that for all p ∈ (0, p0]

∞∏

j=0

Aj(p)
1/κj ≤M <∞ , (5.23)

then

sup
Uρ

|f | ≤M1/p

(ˆ
Uσ

|f |p dµ
)1/p

for all p ∈ (0, p0]. (5.24)
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Proof. Since f is fixed, we omit f in the argument of N . Applying (5.22) repeatedly we
obtain for m ∈ N0 the chain of inequalities

N p(ρ, pm+1) ≤ N p(rm+1, pm+1) ≤ Am(p)1/κmN p(rm, pm) ≤ N p(r0, p)
m∏

j=0

Aj(p)
1/κj .

By the property lim
m→∞

N (ρ, pm) = sup
Uρ

|f | and (5.23) we see that

sup
Uρ

|f | = lim
m→∞

N (ρ, pm) ≤



∞∏

j=0

A(j, pj)




1/p

N (r0, p) ≤M1/p

(ˆ
Uσ

|f |p dµ
)1/p

for every p ∈ (0, p0], which finishes the proof of Lemma 5.11.

5.5.2 Abstract Moser iteration scheme – type II

In some situations one cannot expect an inequality of the type (5.22) to hold for arbitrarily
large values of p but only for a finite range of values. However, one can still prove an
estimate in the spirit of (5.24) with sup f replaced by a p-norm of f .

Lemma 5.12 (Moser’s iteration II). Let κ > 1, p0 ∈ (0, κ), and U = (Ur, 0 < r ≤ 1) be an
increasing family of subsets of some measure space (Ω,A, µ). For m ∈ N0 set pm = p0κ

−m

and let (rm)m∈N0 be a sequence such that

1 ≥ σ = r0 > r1 > . . . > rj > rj+1 > . . . > ρ > 0 .

Let f : U1 → R be a measurable function with the property that for all n ∈ N

N (f ; rj , pn−j) ≤ A1/pn−j+1

j N (f ; rj−1, pn−j+1) for all j = 1, . . . , n (5.25)

for some family (Aj)1≤j≤n. If there is M = M(σ, ρ, κ) ≥ 1 such that

n∏

j=1

A
1/pn−j+1

j ≤M1/pn−1/p0 for all n ∈ N, (5.26)

then for all p ∈
(
0, p0

κ

]

(ˆ
Uρ

|f |p0 dµ

)1/p0

≤ [M (1 ∨ µ(U1))](1+κ)(1/p−1/p0)

(ˆ
Uσ

|f |p dµ
)1/p

. (5.27)

The following proof uses ideas from [Zac10, pp. 6-7].

Proof. Since f is fixed we omit f in the argument of N . Let n ∈ N. From (5.25) and (5.26)
we deduce

N (ρ, p0) ≤ N (rn, p0) ≤ A1/p1
n N (rn−1, p1) ≤ A1/p1

n A
1/p2

n−1 N (rn−2, p2)
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≤ N (r0, pn)
n∏

j=1

A
1/pn−j+1

j ≤M1/pn−1/p0 N (r0, pn) . (5.28)

Let p ∈
(
0, p0

κ

]
and fix n ≥ 2 with the property pn < p ≤ pn−1. Thus

1

pn
− 1

p0
=
κn − 1

p0
≤ κn + κn−1 − κ− 1

p0
=

(1 + κ)(κn−1 − 1)

p0
= (1 + κ)

(
1

pn−1
− 1

p0

)

≤ (1 + κ)

(
1

p
− 1

p0

)
. (5.29)

Additionally we have by Hölder’s inequality

N (r0, pn) = N (σ, pn) ≤ µ(Uσ)
1
pn
− 1
p N (σ, p) ≤ µ(U1)

1
pn
− 1
p N (σ, p)

≤
(

1 ∨ µ(U1)
1
pn
− 1
p0

)
N (σ, p) .

Using (5.29) and the latter inequality in (5.28) proves the assertion.

5.6 A lemma by Bombieri and Giusti

The following abstract lemma extends the idea of [BG72] to the parabolic case. It was first
proved in [Mos71, pp. 731-733]. The version below can be found in [SC02, Section 2.2.3].

Lemma 5.13. Let (U(r))θ≤r≤1 be a increasing family of domains in some measure space
(Ω,A, µ). Let m, c0 be positive constants, θ ∈ [1/2, 1], η ∈ (0, 1) and 0 < p0 ≤ ∞. Further-
more assume that w is a positive, measurable function defined on U(1) which satisfies

(ˆ
U(r)

wp0 dµ
)1/p0 ≤

(
c0

(R− r)m |U(1)|

)1/p−1/p0 (ˆ
U(R)

wp dµ
)1/p

<∞. (5.30)

for all r,R ∈ [θ, 1], r < R and for all p ∈ (0, 1 ∧ ηp0).

Additionally suppose that

∀s > 0: µ (U(1) ∩ {logw > s}) ≤ c0

s
µ(U(1)). (5.31)

Then there is a constant C = C(θ, η,m, c0, p0) such that

(ˆ
U(θ)

wp0 dµ
)1/p0 ≤ C [µ(U(1))]1/p0 . (5.32)

Proof. This proof follows the lines of [CZ04, Lemma 2.6].

Without loss of generality we can normalize |U(1)| = 1.
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Define

β(r) = log

(ˆ
U(r)

wp0 dµ

)1/p0

= log (N (w; r, p0))

Note that β(r) ≤ β(R) for r ≤ R.
Let r,R ∈ [θ, 1] with r < R. For 0 < p < p0 we make use of (5.31) and Hölder’s inequality
with exponents q1 = p0

p0−p and q2 = p0

p in the first term of the following equality and obtain

ˆ
U(R)

wp dµ =

ˆ
U(R)

1{logw>β(R)/2}w
p dµ+

ˆ
U(R)

1{logw≤β(R)/2}w
p dµ

≤
(
µ [U(R) ∩ {logw > β(R)/2}]

)1−p/p0

(ˆ
U(R)

wp0 dµ

)p/p0

+ epβ(R)/2

≤
(

2c0

β(R)

)p(1/p−1/p0)

epβ(R) + epβ(R)/2 . (5.33)

If
β(R) > 2c0 and (1/p− 1/p0)−1 = 2

β(R) log β(R)
2c0

, (5.34)

the two terms on the right-hand side of (5.33) coincide and requiring

β(R) > c2 for some suitable constant c2 = c2(c0, p0, η) (5.35)

ensures β(R) > 2c0 and (1/p− 1/p0)−1 ≤ min(1, ηp0). For p chosen as in (5.34) and if
(5.35) is satisfied we thus have

N (w;R, p) ≤ 21/peβ(R)/2.

Now we apply (5.30) for p chosen as in (5.34):

β(r) ≤ log

((
2c0

(R−r)m
)1/p−1/p0 N (w;R, p)

)
≤
(

1
p − 1

p0

)
log
(

2c0
(R−r)m

)
+ β(R)

2 + 1
p log 2

=
β(R)

2




log
(

2c0
(R−r)m

)

log
(
β(R)
2c0

) + 1


+

1

p
log 2.

If, in addition to the first requirement (5.35) on β(R),

β(R) ≥ 8c3
0

(R− r)2m
(5.36)

holds, then we have
log

2c0
(R−r)m

log
β(R)
2c0

≤ 1
2 and consequently β(r) ≤ 3

4β(R) + 1
p log 2.

On the other hand, if one of the requirements (5.35) or (5.36) is not satisfied, then

β(R) ≤ γ1

(R− r)2m
+ c2 ≤

γ1 + c2

(R− r)2m
with a constant γ1 = γ1(c0,m, θ).
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Since β(r) ≤ β(R) and r,R ∈ [θ, 1], r < R, were arbitrary we have in all cases

∀r,R ∈ [θ, 1] : β(r) ≤ 3

4
β(R) +

γ2

(R− r)2m
with a constant γ2 = γ2(c0,m, θ).

By iteration we obtain

β(r0) ≤
(

3

4

)k
β(rk) + γ2

k−1∑

j=0

(
3

4

)j
(rj+1 − rj)−2m

for any sequence of radii θ ≤ r0 < r1 < . . . < rk ≤ 1.

Finally, we have β(rk) ≤ β(1) <∞ and letting k →∞ we obtain for the sequence of radii

defined by rj = 1− 1− θ
1 + j

β(θ) ≤ β(r0) ≤ γ2

∞∑

j=0

(
3

4

)j
(rj+1 − rj)−2m ≤ 4γ2

(
1− θ

2

)−2m

,

which finishes the proof.



6 Proof of the main results for fractional
order parabolic equations

In this chapter we give the proof for the main results, Theorems 4.4 and 4.5. These proofs
are published in joint article of the author with M. Kassmann [FK13].

6.1 Basic step of Moser’s iteration

Negative exponents

The following result generalizes Proposition 7.1(i) to the case of a parabolic equation with
a nonlocal operator.

Proposition 6.1. Let 1
2 ≤ r < R ≤ 1 and p > 0. Then every nonnegative supersolution u

of (PEα) in Q = I ×Ω, Q c Q	(R), with u ≥ ε > 0 in Q satisfies the following inequality
(ˆ

Q	(r)
ũ−κp(t, x) dx dt

)1/κ

≤ A
ˆ
Q	(R)

ũ−p(t, x) dx dt , (6.1)

where ũ = u+ ‖f‖L∞(Q), κ = 1 + α
d (κ = 1 + α

3 if d = 1, 2) and A can be chosen as

A = C(p+ 1)2
(
(R− r)−α + (Rα − rα)−1

)
with C = C(d, α0,Λ). (6.2)

Remark 6.2. Note that

1

(R− r)α +
1

(Rα − rα)
≤
{

2
(R−r)α for α ∈ [1, 2],

2
(Rα−rα) for α ∈ (0, 1].

(6.3)

Proof. Let u be a supersolution in Q with u ≥ ε > 0 in Q. We set ũ = u + ‖f‖L∞(Q). If
f = 0 a.e. in Q we set ũ = u + δ for some δ > 0. The additional assumption u ≥ δ > 0
on I × Rd \ Ω is temporarily needed to ensure that the nonlocal term on the right-hand
side of (6.4) is finite. Since (6.1) is a statement only on BR, where the assumption ensures
u ≥ ε > 0, we may pass to the limit δ → 0+ in the end.

For q > 1 define

v(t, x) = ũ
1−q

2 (t, x), φ(t, x) = ũ−q(t, x)ψq+1(x),

where ψ : Rd → [0, 1] is defined by ψ(x) =
(
R−|x|
R−r ∧ 1

)
∨ 0. Obviously, ψq+1 ∈ Hα/2

0 (BR).
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Rd

ψ
1

Br

BR

Figure 6.1: Profile of the cut-off function ψ in the space variable

We apply the test function φ in (5.4):

ˆ
BR

−ψq+1(x)ũ−q(t, x)∂tũ(t, x) dx+

+

¨

Rd Rd

[ũ(t, x)− ũ(t, y)]
[
ψq+1(y)ũ−q(t, y)− ψq+1(x)ũ−q(t, x)

]
kt(x, y) dx dy

≤
ˆ
BR

−ψq+1(x)ũ−q(t, x)f(t, x) dx.

Applying Lemma 5.5(i) (remember ϑ(q) = max
{

4, 6q−5
2

}
therein) and rewriting

∂tv
2 = (1− q)ũ−q∂tũ yields1

1

q − 1

ˆ
BR

ψq+1∂t(v
2) dx

+
1

q − 1

¨

Rd Rd

ψ(x)ψ(y)

[(
ũ(t, x)

ψ(x)

) 1−q
2

−
(
ũ(t, y)

ψ(y)

) 1−q
2

]2

kt(x, y) dx dy

≤ ϑ(q)

¨

Rd Rd

[ψ(x)− ψ(y)]2
[(

ũ(t, x)

ψ(x)

)1−q
+

(
ũ(t, y)

ψ(y)

)1−q]
kt(x, y) dx dy

+

ˆ
BR

ψq+1(x)
∣∣ũ−q(t, x)

∣∣ |f(t, x)| dx, (6.4)

The properties ψ ≡ 1 on Br and supx,y∈Rd
|ψ(x)−ψ(y)|2
|x−y|2 ≤ 1

(R−r)2 result in the two estimates

¨

Rd Rd

[ψ(x)ψ(y)]

[(
ũ(t, x)

ψ(x)

) 1−q
2

−
(
ũ(t, y)

ψ(y)

) 1−q
2

]2

kt(x, y) dx dy

≥
¨

Br Br

[v(t, x)− v(t, y)]2 kt(x, y) dx dy,

(6.5)

1Note that the division by ψ is only a slight abuse of notation; we have 1− q < 0.
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1

−1

t

χ⊖

−Rα −rα

1

1

t

χ⊕

Rαrα

Figure 6.2: The two types of cut-off functions in the time variable

and

¨

Rd Rd

[ψ(x)− ψ(y)]2
[(

ũ(t, x)

ψ(x)

)1−q
+

(
ũ(t, y)

ψ(y)

)1−q]
kt(x, y) dx dy

≤ 2

¨

BR BR

[ψ(x)− ψ(y)]2 ũ1−q(t, x) kt(x, y) dx dy

+ 4

¨

BR B
c
R

[ψ(x)− ψ(y)]2 ũ1−q(t, x)kt(x, y) dy dx

≤ c1(d,Λ)(R− r)−α
ˆ
BR

v2(t, x) dx, (6.6)

where we have used (K1) in the following way:
ˆ
BR

ũ1−q(t, x)

ˆ
BR

[ψ(x)− ψ(y)]2 kt(x, y) dy dx

≤
ˆ
BR

ũ1−q(t, x)

( ˆ

|x−y|>R−r

k0(x, y) dy + (R− r)−2

ˆ

|x−y|≤R−r

|x− y|2 k0(x, y) dy

)
dx

≤ Λ(R− r)−α
ˆ
BR

v2(t, x) dx, (6.7)

and similar for the second term.

Combining (6.5), (6.6) and the fact that ‖f/ũ‖L∞(Q) ≤ 1 we obtain from (6.4)

ˆ
BR

ψq+1(x)∂t(v
2)(t, x) dx+

¨

Br Br

[v(t, x)− v(t, y)]2 kt(x, y) dx dy

≤ (q − 1)
(
1 + ϑ(q)c1(R− r)−α

) ˆ
BR

v2(x) dx. (6.8)

Now define a piecewise differentiable function χ	 : R→ [0, 1] by χ	(t) =
(
t+Rα

Rα−rα ∧ 1
)
∨0.

Multiplying (6.8) with χ2
	 we get
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∂t

ˆ
BR

ψq+1(x) [χ	(t)v(t, x)]2 dx+ χ2
	(t)

¨

Br Br

[v(t, x)− v(t, y)]2 kt(x, y) dx dy

≤ c2(q − 1)ϑ(q)(R− r)−αχ2
	(t)

ˆ
BR

v2(t, x) dx+ 2χ	(t)
∣∣χ′	(t)

∣∣
ˆ
BR

v2(t, x) (6.9)

and integrating this inequality from −Rα to some t ∈ I	(r) yields

ˆ
BR

ψq+1(x)(χ	(t)v(t, x))2 dx+

ˆ t

−Rα
χ2
	(s)

¨

Br Br

[v(s, x)− v(s, y)]2 ks(x, y) dx dy ds

≤ c2(q − 1)ϑ(q)(R− r)−α
ˆ t

−Rα
χ2
	(s)

ˆ
BR

v2(s, x) dx ds +

+

ˆ t

−Rα
2χ	(s)

∣∣χ′	(s)
∣∣
ˆ
BR

v2(s, x) dx ds,

which implies, noting that
∣∣χ′	

∣∣ ≤ 1
Rα−rα ,

sup
t∈I	(r)

ˆ
Br

v2(t, x) dx+

ˆ
Q	(r)

ˆ
Br

[v(s, x)− v(s, y)]2 ks(x, y) dx dy ds

≤ c3(q − 1)ϑ(q)
(
(R− r)−α + (Rα − rα)−1

) ˆ
Q	(R)

v2(s, x) dx ds. (6.10)

In order to estimate the second term on the left-hand side from below we apply Hölder’s
inequality with exponents2 θ = d

d−α , θ
′ = d

α to the integrand v2κ and then we make use of
Sobolev’s inequality (5.21):
ˆ
Q	(r)

v2κ(t, x) dx dt =

ˆ
Q	(r)

v2(t, x)v2α/d(t, x) dx dt

≤
ˆ
I	(r)

(ˆ
Br

v2θ(t, x) dx
)1/θ (ˆ

Br

v2(t, x) dx
)1/θ′

dt

≤ S sup
t∈I	(r)

(ˆ
Br

v2(t, x) dx
)1/θ′

×

×


(2− α)

¨

Q	 (r)Br

|v(s, x)− v(s, y)|2

|x− y|d+α
dx dy ds+ r−α

ˆ

Q	(r)

v2(s, x) dx ds


 ,

where S = S(d, α0). Using (6.10) twice, r ≥ 1
2 and (K2) yields

ˆ
Q	(r)

v2κ(t, x) dx dt ≤ c4(d,Λ, α0)
[
(q − 1)ϑ(q)

(
(R− r)−α + (Rα − rα)−1

)]1/θ′ ×

2These exponents are valid in the case d ≥ 3. In view of (5.21b), the modifications for the case d = 1, 2
are obvious.
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×
[
(q − 1)ϑ(q)

(
(R− r)−α + (Rα − rα)−1

)
+ 1
]
[ˆ

Q	(R)
v2(s, x) dx ds

]1+1/θ′

.

Finally, we can estimate the coefficient by

c4(d,Λ, α0)
[
(q − 1)ϑ(q)

(
(R− r)−α + (Rα − rα)−1

)] 1
θ′

+
[
(q − 1)ϑ(q)

(
(R− r)−α + (Rα − rα)−1

)]κ

≤ c5(d,Λ, α0)
[
qϑ(q)

(
(R− r)−α + (Rα − rα)−1

)]κ

≤ c6(d,Λ, α0)q2κ
[
(R− r)−α + (Rα − rα)−1

]κ
,

which finishes the proof of (6.1) by taking p = q − 1 and resubstituting v = u
1−q

2 .

Small positive exponents

The following result generalizes Proposition 7.1(ii) to the case of a parabolic equation with
a nonlocal operator.

The technique for the proof of the basic step for small positive exponents is very similar
to the one used in the case of negative exponents. We state it separately and indicate the
modifications that have to be made.

Proposition 6.3. Let 1
2 ≤ r < R ≤ 1 and p ∈ (0, κ−1] with κ = 1 + α

d (κ = 1 + α
3 if

d = 1, 2). Then every nonnegative supersolution u of (PEα) in Q = I × Ω, Q c Q⊕(R),
satisfies the following inequality

(ˆ
Q⊕(r)

ũκp(t, x) dx dt

)1/κ

≤ A′
ˆ
Q⊕(R)

ũp(t, x) dx dt , (6.11)

where ũ = u+ ‖f‖L∞(Q) and A′ can be chosen as

A′ = C ′
(
(R− r)−α + (Rα − rα)−1

)
with C ′ = C ′(d, α0,Λ). (6.12)

Proof. Let u be a supersolution in Q with u ≥ 0 on I × Rd. We set ũ = u+ ‖f‖L∞(Q). If
f = 0 a.e. in Q we set ũ = u+ ε and pass to the limit ε→ 0+ in the end.

Set q = 1− p ∈ [1− κ−1, 1) and define

v(t, x) = ũ
1−q

2 (t, x), φ(t, x) = ũ−q(t, x)ψ2(x)

with ψ as in the proof of Proposition 6.1, namely ψ(x) =
(
R−|x|
R−r ∧ 1

)
∨ 0.

From (5.4) we obtain for a.e. t ∈ I
ˆ
BR

−ψ2(x)ũ−q(t, x)∂tũ(t, x) dx
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+

¨

Rd Rd

[ũ(t, x)− ũ(t, y)]
[
ψ2(y)ũ−q(t, y)− ψ2(x)ũ−q(t, x)

]
kt(x, y) dx dy

≤
ˆ
BR

−ψ2(x)ũ−q(t, x)f(t, x) dx. (6.13)

First we observe that for every small h > 0

¨

Rd Rd

[ũ(t, x)− ũ(t, y)]
[
ψ2(y)ũ−q(t, y)− ψ2(x)ũ−q(t, x)

]
kt(x, y) dx dy

=

¨

BR+hBR+h

[ũ(t, x)− ũ(t, y)]
[
ψ2(y)ũ−q(t, y)− ψ2(x)ũ−q(t, x)

]
kt(x, y) dx dy

+ 2

¨

BR B
c
R+h

[ũ(t, x)− ũ(t, y)]
[
−ψ2(x)ũ−q(t, x)

]
kt(x, y) dy dx . (6.14)

Using (K1), the positivity of ũ and the fact that (ψ(x)−ψ(y))2

|x−y|2 ≤ (R− r)−2 we can estimate
as follows:¨

BR B
c
R+h

[ũ(t, x)− ũ(t, y)]
[
−ψ2(x)ũ−q(t, x)

]
kt(x, y) dy dx

≥ −
ˆ
BR

ũ1−q(t, x)

[
(R− r)−2

ˆ

|y−x|≤R−r

|x− y|2 kt(x, y) dy +

ˆ

|y−x|>R−r

kt(x, y) dy

]
dx

≥ −Λ(R− r)−α
ˆ
BR

v2(t, x) dx.

If h → 0, this shows also that the decomposition in (6.14) is valid with h = 0. Rewriting
∂tv

2 = (1− q)ũ−q∂tũ and using ‖f/ũ‖L∞(Q) ≤ 1 we deduce from (6.13) and (6.14)

−1

1− q

ˆ
BR

ψ2(x)∂tv
2(t, x) dx+

+

¨

BR BR

[ũ(t, x)− ũ(t, y)]
[
ψ2(y)ũ−q(t, y)− ψ2(x)ũ−q(t, x)

]
kt(x, y) dx dy

≤ c1Λ(R− r)−α
ˆ
BR

v2(t, x) dx.

Remember
ζ(q) =

4q

1− q , ζ1(q) =
1

6
ζ(q), ζ2(q) = ζ(q) +

9

q

from Lemma 5.5(ii). Applying this result we arrive at

−1

1− q

ˆ
BR

ψ2(x)∂tv
2(t, x) dx+ ζ1(q)

¨

BR BR

[ψ(x)v(t, x)− ψ(y)v(t, y)]2kt(x, y) dx dy
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≤ c1Λ(R− r)−α
ˆ
BR

v2(t, x) dx

+ ζ2(q)

¨

BR BR

[ψ(x)− ψ(y)]2
[
v2(t, x) + v2(t, y)

]
kt(x, y) dx dy .

By the properties of ψ and (K1) this implies (cf. (6.7))

−
ˆ
BR

ψ2(x)∂tv
2(t, x) dx+ (1− q)ζ1(q)

¨

Br Br

[v(t, x)− v(t, y)]2kt(x, y) dx dy

≤ c2(d,Λ)(1− q)(R− r)−α
(
1 + ζ2(q)

) ˆ
BR

v2(t, x) dx.

We multiply this inequality with χ2, where χ⊕ : R→ [0, 1] is defined by

χ⊕(t) =

(
Rα − t
Rα − rα ∧ 1

)
∨ 0.

We integrate the resulting inequality from some t ∈ I⊕(r) to Rα and apply the same tech-
nique that we used to deduce (6.10) from (6.8) on page 81 in the proof of Proposition 6.1.
As a result we get

sup
t∈I⊕(r)

ˆ
Br

v2(t, x) dx+ (1− q)ζ1(q)

ˆ

Q⊕(r)

ˆ

Br

[v(s, x)− v(s, y)]2 ks(x, y) dx dy ds

≤ c3(d,Λ)
[
(1− q)(1 + ζ2(q))(R− r)−α + (Rα − rα)−1

] ˆ

Q⊕(R)

v2(s, x) dx ds.

We estimate the coefficients by

(1− q)ζ1(q) =
2q

3
≥ 2

3

α0

d+ 2
= c4(d, α0)

(1− q)(1 + ζ2(q)) ≤ 1 + (1− q)ζ2(q) ≤ 1 + 4q +
9(1− q)

q
≤ 5 + 9

d+ 2

α0
= c5(d, α0),

which implies

sup
t∈I⊕(r)

ˆ
Br

v2(t, x) dx+ c4

ˆ

Q⊕(r)

ˆ

Br

[v(s, x)− v(s, y)]2 ks(x, y) dx dy ds

≤ c6(d,Λ, α0)
[
(R− r)−α + (Rα − rα)−1

] ˆ

Q⊕(R)

v2(s, x) dx ds.

Applying Sobolev’s inequality as in the proof of Proposition 6.1 we obtain

ˆ

Q⊕(r)

v2κ(t, x) dx dt ≤ c7(d,Λ, α0)
[
(R− r)−α + (Rα − rα)−1

]1/θ′

×
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×
[
(R− r)−α + (Rα − rα)−1 + 1

] [ˆ
Q⊕(R)

v2(s, x) dx ds

]1+1/θ′

.

We can estimate the coefficient by

[
(R− r)−α + (Rα − rα)−1

]1/θ′

+
[
(R− r)−α + (Rα − rα)−1

]κ

≤ c8(d,Λ, α0)
[
(R− r)−α + (Rα − rα)−1

]κ
.

This finishes the proof of Proposition 6.3 by resubstituting q = 1− p and v = ũ
1−p

2 .

Note that κ−1, the upper bound on p, can be replaced by any number less than 1.

6.2 An estimate for the infimum of supersolutions

Having established the basic step (Proposition 6.1) of Moser’s iteration it is now possible
to apply Lemma 5.11 to prove a lower estimate for a nonnegative supersolution u:

Theorem 6.4. Let 1
2 ≤ r < R ≤ 1 and 0 < p ≤ 1. There is a constant C = C(d, α0,Λ) > 0

such that for every nonnegative supersolution u of (PEα) in Q = I ×Ω, Q c Q	(R), with
u ≥ ε > 0 in Q the following estimate holds:

sup
Q	(r)

ũ−1 ≤
(

C

G1(r,R)

)1/p
(ˆ

Q	(R)
ũ−p(t, x) dx dt

)1/p

, (6.15)

where ũ = u+ ‖f‖L∞(Q) and G1(r,R) =

{
(R− r)d+α if α ≥ 1,

(Rα − rα)(d+α)/α if α < 1.

In particular, G1(r,R) ≥ (R− r)d+2 ∧ (α0(R− r))(d+2)/α0 .

Remark 6.5. The proof that we shall present below establishes (6.15) in the case d ≥ 3. Of
course, Theorem 6.4 is true for d = 1, 2, but the precise structure of G1(r,R) is determined
in a different way: First, one proves (6.15) for r = 1

2 and R = 1. A simple scaling argument
then shows that there is a constant C = C(d, α0,Λ) > 0 such that

sup
Q	(ρ/2)

ũ−1 ≤
(

C

ρd+α

)1/p
(ˆ

Q	(ρ)
ũ−p(t, x) dx dt

)1/p

for all ρ ∈ (0, 1]. (6.15’)

Next, for given r,R as in the theorem, set ρ = R−r in the case α ≥ 1. Consider all possible
translations

T	(ρ; t0, x0) = T	(t0, x0) = (t0 − ρα, t0)×Bρ(x0)

of the cylindrical domain Q	(ρ), such that T	(ρ; t0, x0) ⊂ Q	(R). Clearly, (6.15’) remains
true with Q	 replaced by some T	(t0, x0). We denote by C the set of all possible centers
(t0, x0) such that T	(t0, x0) ⊂ Q	(R).
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Figure 6.3: The different scaling behavior in the cases α ≥ 1 (on the left-hand side) and α < 1
(on the right-hand side)

In the case α ≥ 1 we have r + ρ = r and rα + ρα ≤ Rα (cf. Figure 6.3), which implies
that every point (t0, x0) ∈ Q	(r) is a center of a translated domain such that T	(t0, x0) ⊂
Q	(R), i.e. Q	(r) ⊂ C. Clearly,

U :=
⋃

(t0,x0)∈Q	(r)

T	(ρ/2; t0, x0) ⊃ Q	(r) and
⋃

(t0,x0)∈Q	(r)

T	(ρ; t0, x0) ⊂ Q	(R).

Hence, by (6.15’),

sup
Q	(r)

ũ−1 ≤ sup
U
ũ−1 ≤

(
C

(R− r)d+α

)1/p
(ˆ

Q	(R)
ũ−p(t, x) dx dt

)1/p

,

which shows (6.15) in the case α ≥ 1.

In the case α0 < α < 1 we may choose ρ = (Rα − rα)1/α. Then rα + ρα = Rα and
r + ρ ≤ R (cf. Figure 6.3), from where the same reasoning as above proves (6.15) in the
case α0 < α < 1.

The method that is explained in this remark can be considered as an alternative way to
prove Theorem 6.4 because it applies to the case d ≥ 3, too. �

Proof of Theorem 6.4. We apply Lemma 5.11. To this end choose κ = 1+ α
d , p0 = 1 and for

p ∈ (0, 1] and m ∈ N0 set pm = pκm. Consider the increasing sequence (Q	(r), 0 < r ≤ 1)
of subsets of Rd+1. There is a slight difference in the choice of the sequence (rm) in two
cases3:

I. 1 ∨ α0 ≤ α < 2: Choose the sequence of radii (rm)m∈N0 defined by

rm = r +
R− r

2m
.

3Note that the second case is irrelevant if α0 ≥ 1.
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Note that r0 = R, rm > r and lim
m→∞

rm = r. Proposition 6.1 in combination with
(6.3) states that for all j ∈ N0




ˆ

Q	(rj+1)

ũ−pj+1(t, x) dx dt




1
pj+1

≤ Aj(p)1/pj




ˆ

Q	(rj)

ũ−pj (t, x) dx dt




1
pj

(6.16)

with Aj(p) = c1(pj + 1)2(rj − rj+1)−α for some constant c1 = c1(d, α0,Λ) ≥ 1. This
means that condition (5.22) is satisfied and due to p ≤ 1 we may estimate

Aj(p) = c1(pκj + 1)2(rj − rj+1)−α ≤ c1(2κj)2

(
2j+1

R− r

)α
≤ cj2

(R− r)α

for some constant c2 = c2(d, α0,Λ) ≥ 1. Since

∞∑

j=0

j

κj
≤
∞∑

j=0

j

(1 + α0/d)j
≤ c3(α0, d)

we can verify condition (5.23):

∞∏

j=0

Aj(p)
1/κj ≤ c4(R− r)

−α
∞∑
j=0

κ−j

= c4(R− r)−α κ
κ−1 =

c4

(R− r)d+α

for some constant c4 = c4(d, α0,Λ) ≥ 1. This proves (6.15) in the case α ∈ [1, 2).

II. α0 < α < 1: In this case choose (rm) defined by

rm =

(
rα +

Rα − rα
2m

)1/α

.

Again, r0 = R, rm > r and lim
m→∞

rm = r. Proposition 6.1 and (6.3) state that (6.16)

holds with Aj(p) = c1(pj + 1)2(rαj − rαj+1)−1. In the same way as above we may
estimate

Aj(p) = c1(pκj + 1)2 2j+1

Rα − rα ≤
cj2

Rα − rα
and ∞∏

j=0

Aj(p)
1/κj ≤ c4

(Rα − rα)(d+α)/α
.

This proves (6.15) in the case α0 < α < 1.

The lower bound on G1 follows from the elementary inequalities

(R− r)d+α ≥ (R− r)d+2,

(Rα − rα) ≥ α 1α−1(R− r) ≥ α0(R− r) if α0 < α < 1.

The proof of Theorem 6.4 is complete.
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6.3 An estimate for the L1-norm of a supersolution

An application of Lemma 5.12 to the basic step (Proposition 6.3) yields the following result:

Theorem 6.6. Let 1
2 ≤ r < R ≤ 1 and p ∈ (0, κ−1) with κ = 1 + α

d (κ = 1 + α
3 if

d = 1, 2). Then there are constants C,ω1, ω2 > 0 depending only on d, α0,Λ, such that
for every nonnegative supersolution u of (PEα) in Q = I × Ω, Q c Q⊕(R), the following
estimate holds:

ˆ
Q⊕(r)

ũ(t, x) dx dt ≤
(

C

(R− r)ω1 ∧ (α0(R− r))ω2

)1/p−1
(ˆ

Q⊕(R)
ũp(t, x) dx dt

)1/p

,

(6.17)

where ũ = u+ ‖f‖L∞(Q(R)). If α0 ≥ 1 then (R− r)ω1 ≤ (α0(R− r))ω2 .

Proof. In view of Lemma 5.12 choose4 κ = 1 + α
d , p0 = 1 and consider the sequence

(Q⊕(r), 0 < r ≤ 1) of increasing subsets of Rd+1. For m ∈ N0 define pm = κ−m. Similar to
the proof of Theorem 6.4 there are two cases, the second being irrelevant if α0 ≥ 1:

I. 1 ∨ α0 ≤ α < 2: Choose the sequence of radii (rm)m∈N0 defined by

rm = r +
R− r

2m
.

Note that r0 = R, rm > r and lim
m→∞

rm = r. Let n ∈ N. Proposition 6.3 in
combination with (6.3) states that for all j = 1, . . . , n




ˆ

Q⊕(rj)

ũpn−j (t, x) dx dt




1
pn−j

≤ A
1

pn−j+1

j




ˆ

Q⊕(rj−1)

ũpn−j+1(t, x) dx dt




1
pn−j+1

,

with Aj = c1(rj−1−rj)−α for some constant c1 = c1(d, α0,Λ) ≥ 1. To verify condition
(5.26) observe

n∏

j=1

A
1/pn−j+1

j =
n∏

j=1

A
1/pj
n−j+1 =

n∏

j=1

(
c12α(n−j+1)

(R− r)α

)κj
.

Due to
n∑

j=1

κj =
κ

κ− 1

(
1

pn
− 1

)
=
d+ α

α

(
1

pn
− 1

)
, and

n∑

j=1

(n− j + 1)κj ≤ κ3

(κ− 1)3

(
1

pn
− 1

)
,

4This choice is appropriate in the case d ≥ 3. The modifications for the case d = 1, 2 are obvious and we
omit the details for the sake of brevity.
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we may estimate

n∏

j=1

A
1/pn−j+1

j ≤


2

ακ3

(κ−1)3 c
κ
κ−1

1

(R− r)d+α




1/pn−1

≤
(

c2

(R− r)d+α

)1/pn−1

for some constant c2 = c2(d, α0,Λ) ≥ 1. By Lemma 5.12 we obtain
ˆ
Q⊕(r)

ũ(t, x) dx dt ≤
(
c2 |Q⊕(1)|
(R− r)d+α

)(1+κ)/p
(ˆ

Q⊕(R)
ũp(t, x) dx dt

)1/p

for all p ∈ (0, κ−1]. Since (R − r)(1+κ)(d+α) ≥ (R − r)2d+6+ 4
d , |Q⊕(1)| = c3(d) and

(1 + κ) ≤ 1 + 2
d , this proves (6.17) in the case α ∈ [1, 2) with ω1 = 2d+ 6 + 4

d .

II. α0 < α < 1: Choose the sequence of radii (rm)m∈N0 defined by

rm =

(
rα +

Rα − rα
2m

)1/α

.

Note that r0 = R, rm > r and lim
m→∞

rm = r. Proposition 6.3 and (6.3) imply that
condition (5.25) is satisfied with

Aj = c1(rαj−1 − rαj )−1 =
c12j

Rα − rα , with c1 as above.

In a similar way to the computations in case I we obtain

n∏

j=1

A
1/pn−j+1

j ≤


 2

κ3

(κ−1)3 c
κ
κ−1

1

(Rα − rα)
d+α
α




1/pn−1

≤
(

c3

(Rα − rα)
d+α
α

)1/pn−1

.

Observe that

(Rα − rα)
d+α
α ≥ [α0(R− r)](1+κ) d+α

α ≥ [α0(R− r)]3+ 1
d

+ 2d
α0 ,

which proves (6.17) in the case α0 < α < 1 with ω2 = 3 + 1
d + 2d

α0
.

The additional assertion concerning the case α0 ≥ 1 is obvious. The proof of Theorem 6.6
is complete.

6.4 An inequality for log u

The following lemma provides a lower bound for the nonlocal term in (4.5) when applying
u−1 times some cut-off function as test function. It can be seen as the nonlocal analog to
the inequality

(
∇(ψ2ũ−1) ·A∇ũ

)
≥ 1

2
ψ2 (∇(log ũ) ·A∇(log ũ))− 2 (∇ψ ·A∇ψ) ,

which is used in the proof of Proposition 7.5 to establish (7.23) when applying the test
function ψ2ũ−1.

See [BBCK09, Proposition 4.9] for a similar result.
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Lemma 6.7. Let I ⊂ R and ψ : Rd → [0,∞) be a continuous function satisfying supp[ψ] =
BR for some R > 0 and supt∈I Et(ψ,ψ) < ∞. Then the following computation rule holds
for w : I × Rd → [0,∞):

Et(w,−ψ2w−1) ≥
¨

BR BR

ψ(x)ψ(y)

(
log

w(t, y)

ψ(y)
− log

w(t, x)

ψ(x)

)2

kt(x, y) dx dy − 3 Et(ψ,ψ)

Remark 6.8. We apply the rule above only in cases where all terms are finite. �

Proof. Fix t ∈ I. First of all we note that

Et(w,− ψ2w−1) =

¨

Rd Rd

[w(t, y)− w(t, x)]
[
ψ2(x)w−1(t, x)− ψ2(y)w−1(t, y)

]
kt(x, y) dy dx

≥
¨

BR BR

ψ(x)ψ(y)

[
ψ(x)w(t, y)

ψ(y)w(t, x)
+
ψ(y)w(t, x)

ψ(x)w(t, y)
− ψ(y)

ψ(x)
− ψ(x)

ψ(y)

]
kt(x, y) dy dx

+ 2

¨

BR B
c
R

[w(t, y)− w(t, x)]
[
ψ2(x)w−1(t, x)− ψ2(y)w−1(t, y)

]
kt(x, y) dy dx

(6.18)

+

¨

BcR B
c
R

[w(t, y)− w(t, x)]
[
ψ2(x)w−1(t, x)− ψ2(y)w−1(t, y)

]
kt(x, y) dy dx

Because of supp[ψ] = BR the third term on the right-hand side vanishes.

To estimate the first term on the right-hand side we apply the inequality

(a− b)2

ab
= (a− b)

(
b−1 − a−1

)
≥ (log a− log b)2 for a, b > 0

to a = At(x, y) = w(t,y)
w(t,x) and b = B(x, y) = ψ(y)

ψ(x) , x, y ∈ BR:

ψ(x)w(t, y)

ψ(y)w(t, x)
+
ψ(y)w(t, x)

ψ(x)w(t, y)
− ψ(y)

ψ(x)
− ψ(x)

ψ(y)

=
At(x, y)

B(x, y)
+
B(x, y)

At(x, y)
− 2−

(
√
B(x, y)− 1√

B(x, y)

)2

≥
(

log
w(t, y)

ψ(y)
− log

w(t, x)

ψ(x)

)2

−
(
ψ(x)

ψ(y)
+
ψ(y)

ψ(x)
− 2

)
.

Hence,
¨

BR BR

ψ(x)ψ(y)

[
ψ(x)w(t, y)

ψ(y)w(t, x)
+
ψ(y)w(t, x)

ψ(x)w(t, y)
− ψ(y)

ψ(x)
− ψ(x)

ψ(y)

]
kt(x, y) dy dx

≥
¨

BR BR

ψ(x)ψ(y)

(
log

w(t, y)

ψ(y)
− log

w(t, x)

ψ(x)

)2

dy dx− Et(ψ,ψ). (6.19)
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Finally, we estimate the second term using the non-negativity of w(t, ·) in Rd:
¨

BR B
c
R

[w(t, y)− w(t, x)]
[
ψ2(x)w−1(t, x)− ψ2(y)w−1(t, y)

]
kt(x, y) dy dx

=

¨

BR B
c
R

[w(t, y)− w(t, x)]
[
ψ2(x)w−1(t, x)

]
kt(x, y) dy dx

=

ˆ
BR

ψ2(x)

w(t, x)

ˆ
BcR

w(t, y)kt(x, y) dy dx−
ˆ
BR

ψ2(x)

ˆ
BcR

kt(x, y) dy dx

≥ −
ˆ
BR

ˆ
BcR

[ψ(x)− ψ(y)]2 kt(x, y) dy dx ≥ −Et(ψ,ψ). (6.20)

Applying the estimates (6.19) and (6.20) in (6.18) finishes the proof of Lemma 6.7.

Proposition 6.9. Assume k ∈ K(α0,Λ) for some α0 ∈ (0, 2) and Λ ≥ 1. Then there is
C = C(d, α0,Λ) > 0 such that for every supersolution u of (PEα) in Q = (−1, 1)× B2(0)
which satisfies u ≥ ε > 0 in (−1, 1) × Rd, there is a constant a = a(ũ) ∈ R such that the
following inequalities hold simultaneously:

∀s > 0: ( dt⊗ dx) (Q⊕(1) ∩ {log ũ < −s− a}) ≤ C |B1|
s

, (6.21a)

∀s > 0: ( dt⊗ dx) (Q	(1) ∩ {log ũ > s− a}) ≤ C |B1|
s

, (6.21b)

where ũ = u+ ‖f‖L∞(Q).

Proof. In the course of the proof we introduce constants c1, c2, c3, c4 that may depend on
d, α0, and Λ. We use the test function φ(t, x) = ψ2(x)ũ−1(t, x) in (5.4), where

ψ2(x) =
[(

3
2 − |x|

)
∧ 1
]
∨ 0, x ∈ Rd,

and we write v(t, x) = − log ũ(t,x)
ψ(x) . Thus we have for a.e. t ∈ (−1, 1)

ˆ
B3/2

ψ2(x)∂tv(t, x) dx+ Et(ũ,−ψ2ũ−1) ≤ −
ˆ
B3/2

ψ2(x)ũ−1(t, x)f(t, x) dx.

Note that Et(ũ,−ψ2ũ−1) is finite since u(t, ·) ∈ Hα/2
loc (B2) for a.e. t ∈ (−1, 1) and suppψ =

B3/2. Applying Lemma 6.7 and ‖f/ũ‖L∞(Q) ≤ 1 we obtain

ˆ
B3/2

ψ2(x)∂tv(t, x) dx +

+

¨

B3/2B3/2

ψ(x)ψ(y) [v(t, y)− v(t, x)]2 kt(x, y) dx dy ≤
∣∣B3/2

∣∣+ 3Et(ψ,ψ).
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Now we apply the weighted Poincaré-inequality, Lemma 5.9, to the second term and use
the fact sup

t∈(−1,1)
Et(ψ,ψ) ≤ C for some constant C = C(d, α0,Λ). We obtain

ˆ
B3/2

ψ2(x)∂tv(t, x) dx+ c1

ˆ
B3/2

[v(t, x)− V (t)]2 ψ2(x) dx ≤ c2 |B1| , (6.22)

where

V (t) =

´
B3/2

v(t, x)ψ2(x) dx´
B3/2

ψ2(x) dx
.

The proof now proceeds as in the case of local operators. Our presentation uses ideas from
[Mos64, pp. 120-123] and [SC02, Lemma 5.4.1].

Integrating the above inequality over [t1, t2] ⊂ (−1, 1) yields
[ˆ

B3/2

ψ2(x)v(t, x) dx

]t2

t=t1

+c1

ˆ t2

t1

ˆ
B3/2

[v(t, x)− V (t)]2 ψ2 dx ≤ c2(t2−t1) |B1| . (6.23)

Dividing by
´
B3/2

ψ2, using
´
B3/2

ψ2 ≤ 2d |B1| and ψ = 1 in B1, we obtain

V (t2)− V (t1) +
c−1

3

|B1|

ˆ t2

t1

ˆ
B1

[v(t, x)− V (t)]2 dx dt ≤ c2(t2 − t1) with c3 =
2d

c1
, (6.24)

or equivalently

V (t2)− V (t1)

t2 − t1
+

c−1
3

|B1| (t2 − t1)

ˆ t2

t1

ˆ
B1

[v(t, x)− V (t)]2 dx dt ≤ c2 (6.25)

Assume that V (t) is differentiable. Taking the limit t2 → t1 the above inequality yields

V ′(t) +
c−1

3

|B1|

ˆ
B1

[v(t, x)− V (t)]2 dx ≤ c2, for a.e. t ∈ (−1, 1). (6.26)

Now set
w(t, x) = v(t, x)− c2t, W (t) = V (t)− c2t,

such that (6.26) reads

W ′(t) +
c−1

3

|B1|

ˆ
B1

[w(t, x)−W (t)]2 dx ≤ 0 for a.e. t ∈ (−1, 1), W (0) = a, (6.27)

where a is a constant depending on u. Note that by the latter inequalityW is non-increasing
in (−1, 1).

We work out here the details for the proof of (6.21a). It is straightforward to mimic the
arguments for the proof of (6.21b). Define for t ∈ (0, 1) and s > 0 the set

L⊕s (t) = {x ∈ B1(0) : w(t, x) > s+ a} . (6.28)
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Noting that W (t) ≤ a for a.e. t ∈ (0, 1), we obtain for such t and x ∈ L⊕s (t)

w(t, x)−W (t) ≥ s+ a−W (t) > 0.

Using this in (6.27) yields

W ′(t) +
c−1

3

|B1|
∣∣L⊕s (t)

∣∣ (s+ a−W (t))2 ≤ 0,

which is equivalent to
−c3W

′(t)
(s+ a−W (t))2

≥ |L
⊕
s (t)|
|B1|

.

Integrating this inequality over t ∈ (0, 1) we obtain

c3

s
≥
[

c3

s+ a−W (τ)

]1

τ=0

≥ 1

|B1|

ˆ 1

0

∣∣L⊕s (t)
∣∣ dt =

|Q⊕(1) ∩ {w > s+ a}|
|B1|

and replacing w again by w(t, x) = v(t, x)− c2t = − log ũ− c2t in Q⊕(1) yields

|Q⊕(1) ∩ {log ũ+ c2t < −s− a}| ≤
c3 |B1|
s

. (6.29)

Finally,

|Q⊕(1) ∩ {log ũ < −s− a}| ≤
∣∣∣∣Q⊕(1) ∩

{
log ũ+ c2t <

−s
2
− a
}∣∣∣∣+

∣∣∣Q⊕(1) ∩
{
c2t >

s

2

}∣∣∣

≤ 2c3

s
|B1|+

(
1− s

2c2

)
|B1| ≤

c4

s
.

In case that V is only continuous in (−1, 1) we derive the result in a different manner, cf.
[Lie96, Lemma 6.21]: For ε0 > 0 there is δ > 0 such that for t2 < t1 + δ

|v(t, x)− V (t)|2 ≤ 2 |v(t, x)− V (t2)|2 + 2 |V (t2)− V (t)|2 ≤ 2 |v(t, x)− V (t2)|2 + 2ε2
0.

Hence, by (6.24) we obtain for t2 < t1 + δ

V (t2)− V (t1) +
c−1

3

|B1|

ˆ t2

t1

ˆ
B1

[v(t, x)− V (t2)]2 dx dt ≤
(
2c2 + 2c−1

3 ε2
0

)
(t2 − t1).

Defining

w(t, x) = v(t, x)−
(
2c2 + 2c−1

3 ε2
0

)
t, W (t) = V (t)−

(
2c2 + 2c−1

3 ε2
0

)
t,

the latter inequality reads

W (t2)−W (t1) +
c−1

3

|B1|

ˆ t2

t1

ˆ
B1

[
w(t, x)−W (t2) + (2c2 + 2c−1

3 ε2
0)(t2 − t)

]2 dx dt ≤ 0.
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Using the fact that for t, t2 ∈ (0, 1) and x ∈ L⊕s (t) we have w(t, x)−W (t2) > s+a−W (t2) ≥
0, we can omit the term (2c2 +2c−1

3 ε2
0)(t2− t) in the integral and deduce that for t2 < t1 +δ

W (t2)−W (t1)

(s+ a−W (t2))2
+
c−1

3

|B1|

ˆ t2

t1

∣∣L⊕s (t)
∣∣ dt ≤ 0.

Again, since W is non-increasing, this implies

c−1
3

|B1|

ˆ t2

t1

∣∣L⊕s (t)
∣∣ dt ≤ W (t1)−W (t2)

(s+ a−W (t1))(s+ a−W (t2))

=
1

s+ a−W (t1)
− 1

s+ a−W (t2)
.

(6.30)

Choosing k ∈ N such that 1
k < δ, writing

ˆ 1

0

∣∣L⊕s (t)
∣∣ dt =

k−1∑

j=0

ˆ j+1
k

j
k

∣∣L⊕s (t)
∣∣ dt,

and applying (6.30) in each summand, we establish (6.29). Using the same arguments as
above we establish (6.21a). This finishes the proof of Proposition 6.9.

6.5 Proof of the weak Harnack inequality

The aim of this section is to prove Theorem 4.4. The proof uses the well-known idea of
Bombieri and Giusti, Lemma 5.13. Let us recall Theorem 4.4:

Theorem 4.4 (Weak Harnack inequality). Let k ∈ K(α0,Λ) for some α0 ∈ (0, 2) and
Λ ≥ 1. Then there is a constant C = C(d, α0,Λ) such that for every supersolution u
of (PEα) on Q = (−1, 1) × B2(0) which is nonnegative in (−1, 1) × Rd the following
inequality holds:

‖u‖L1(U	) ≤ C
(

inf
U⊕

u+ ‖f‖L∞(Q)

)
(HI)

where U⊕ =
(
1− (1

2)α, 1
)
×B1/2(0), U	 =

(
−1,−1 + (1

2)α
)
×B1/2(0).

Proof of Theorem 4.4. Let u as in the assumption and define ũ = u+ ‖f‖L∞(Q). If f = 0
a.e. on Q we set ũ = u+ ε and pass to the limit ε→ 0+ in the end.

Furthermore, set w = e−aũ−1 and ŵ = w−1 = eaũ, where a = a(ũ) is chosen according to
Proposition 6.9, i.e. there is c1 > 0 such that for every s > 0

|Q⊕(1) ∩ {logw > s}| ≤ c1 |B1|
s

, and |Q	(1) ∩ {log ŵ > s}| ≤ c1 |B1|
s

. (6.31)
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The strategy of the proof is to apply Lemma 5.13 twice: on the one hand to w and a
family of domains U = (U(r))θ≤r≤1 – and on the other hand to ŵ and a family of domains
Û = (Û(r))

θ̂≤r≤1
. We consider the case α ≥ 1 first and define the families U and Û by (cf.

Figure 6.4)

U(1) = Q⊕(1), θ =
1

2
, U(r) = (1− rα, 1)×Br,

Û(1) = Q	(1), θ̂ =
1

2
Û(r) = (−1,−1 + rα)×Br

By virtue of (6.31) we see that condition (5.31) is satisfied for both w and ŵ.

Rd

t

B2 × (−1, 1)

Û(r)

U(r)

U⊕ = U(12 )

U⊖ = Û(12 )

rα

rα

r

Figure 6.4: Sketch of the domains U and Û in the case α ≥ 1

We apply Theorem 6.4 to (w,U) with p0 =∞ and arbitrary η. We also apply Theorem 6.6
to (ŵ, Û) with p̂0 = 1 and η̂ = d

d+2 ≤ κ−1. In both cases condition (5.30) of Lemma 5.13
is satisfied. Note that the domains U(r) and Û(r) are obtained from Q	(r) and Q⊕(r),
respectively, by shifting in time, i.e. transformations of the type (t, x) 7→ (t+ τ, x), which
do not affect neither (6.15) nor (6.17).

All in all, application of Lemma 5.13 yields

sup
U(θ)

w = e−a sup
U(θ)

ũ−1 ≤ C and ‖ŵ‖
L1(Û(θ̂))

= ea ‖ũ‖
L1(Û(θ̂))

≤ Ĉ.

Multiplying these two inequalities eliminates a and yields

‖ũ‖
L1(Û(θ̂))

≤ c2 inf
U(θ)

ũ

for a constant c2 = C Ĉ that depends only on d, α0 and Λ. This proves (HI) in the case
α ≥ 1 observing that U⊕ = U(θ), U	 = Û(θ̂) and

‖u‖L1(U	) ≤ ‖ũ‖L1(U	) ≤ c2

(
inf
U⊕

u+ ‖f‖L∞(Q)

)
.
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If α < 1, we define the domains U and Û slightly differently, namely

U(1) = Q⊕(1), θ =
(

1
2

)α
, U(r) = (1− r, 1)×Br1/α ,

Û(1) = Q	(1), θ̂ =
(

1
2

)α
, Û(r) = (−1,−1 + r)×Br1/α .

The same reasoning as above applies to these domains and hence (HI) is proved for all
α ∈ (α0, 2).

6.6 Proof of Hölder regularity

In this section we deduce Theorem 4.5 from Theorem 4.4. This step is not trivial and differs
from the proof in the case of a local differential operator because the (super-)solutions in
Theorem 4.4 are assumed to be nonnegative in the whole spatial domain. Note that the
auxiliary functions of the type M(t, x) = supQ u− u(t, x) and m(t, x) = u− infQ u used in
[Mos64, Section 2] are nonnegative in Q but not in all of Rd. The key idea to overcome this
problem is to derive Lemma 6.11 from the Harnack inequality. Lemma 6.11 then implies
Theorem 4.5. This step is carried out in [Sil06] for elliptic equations.

The following corollary will be used to derive Hölder continuity.

Corollary 6.10. Let σ ∈ (0, 1) and D	 = (−2,−2+
(

1
2

)α
)×B1/2, D⊕ = (−

(
1
2

)α
, 0)×B1/2.

There exist ε0, δ ∈ (0, 1) such that for every function w satisfying




w ≥ 0 a.e. in (−2, 0)× Rd,
∂tw −Lw ≥ −ε0 in (−2, 0)×B2,

|D	 ∩ {w ≥ 1}| ≥ σ |D	| ,

the following estimate holds:

w ≥ δ a.e. in D⊕. (6.32)

The constants ε0 and δ depend on σ, α0,Λ, d but not on α ∈ (α0, 2).

Proof. Application of Theorem 4.4 to w yields

σ ≤
 
D	

w(t, x) dx dt ≤ c
(

inf
D⊕

w + ε0

)

for a constant c = c(d, α0,Λ). Choosing ε0 <
σ
c and δ = σ−cε0

c we obtain

inf
D⊕

w ≥ δ,

which is the desired inequality.
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Define for (t, x) ∈ Rd+1 a distance function

ρ̂((t, x)) =

{
max

(
1
3 |x| , 1

2(−t)1/α
)

if t ∈ (−2, 0],

∞ if t /∈ (−2, 0].

Note that ρ̂((x, t)) 6= ρ̂(−(x, t)). We define (cf. Figure 6.5)

D̂r((x0, t0)) =
{

(t, x) ∈ Rd+1 | ρ̂((t, x)− (t0, x0)) < r
}
, I1 = (−2, 0)

and note

D̂r((x0, t0)) = (t0 − 2rα, t0)×B3r(x0) and
⋃

r>0

D̂r((0, 0)) = I1 × Rd.

To simplify notation we write D̂(r) = D̂r((0, 0)). Additionally, we define

D(r) = (−2rα, 0)×B2r(0)

and recall the definitions of D⊕ and D	 in Corollary 6.10.

Rdt

D̂(1) D(1)

D̂(1/6)

D⊕

D⊖

Figure 6.5: Sketch of the domains D and D̂

Lemma 6.11. Assume that L is defined by (4.2) with a kernel k belonging to some
K′(α0,Λ). Then there exist β0 ∈ (0, 1) and δ ∈ (0, 1) depending on d, α0 and Λ such
that for every function w with the properties

w ≥ 0 a.e. in D̂(1), (6.33a)

∂tw −Lw ≥ 0 in D̂(1), (6.33b)

|D	 ∩ {w ≥ 1}| ≥ 1

2
|D	| , (6.33c)

w ≥ 2
[
1− (6 ρ̂(t, y))β0

]
a.e. in I1 × (Rd \B3), (6.33d)

the following inequality holds:

w ≥ δ a.e. in D⊕.
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Proof. The conditions (6.33a) and (6.33b) imply ∂tw+ −Lw+ ≥ −f in D(1), where

f(t, x) = (Lw−)(t, x) for (t, x) ∈ D(1).

Note that since |x− y| ≥ 1 for x ∈ B2 and y ∈ Rd \B3

‖f‖L∞(D(1)) = sup
(t,x)∈D(1)

ˆ
Rd\B3(0)

w−(t, y)kt(x, y) dy <∞ .

Next, from condition (6.33d) we deduce

w−(t, y) ≤ 2 [6 ρ̂(t, y)]β0 − 2 ≤ 2
(

4β0 |y|β0 − 1
)

a.e. in I1 × (Rd \B3).

Our aim is to show ‖f‖L∞(D(1)) ≤ ε0 with ε0 as in Corollary 6.10 for σ = 1
2 . Note that for

every R > 3ˆ
Rd\B3(0)

(
4β0 |y|β0 − 1

)
kt(x, y) dy =

ˆ
Rd\BR(0)

(
4β0 |y|β0 − 1

)
kt(x, y) dy

+

ˆ
BR\B3(0)

(
4β0 |y|β0 − 1

)
kt(x, y) dy.

Because of (K3) it is possible to choose R sufficiently large and β0 ∈ (0, 1) sufficiently small
in dependence of ε0 and Λ such that ‖f‖L∞(D(1)) ≤ ε0.

Condition (6.33c) ensures that Corollary 6.10 can be applied.

Theorem 6.12 (Oscillation decay). Assume that L is defined by (4.2) with a kernel k
belonging to some K′(α0,Λ). Then there exists β ∈ (0, 1) depending on d, α0 and Λ such
that every solution u to ∂tu−L u = 0 in D̂(1) satisfies for all ν ∈ Z

osc
D̂(6−ν)

u ≤ 2‖u‖L∞(I1×Rd)6
−νβ , (6.34)

where oscQ u = supQ u− infQ u.

Proof. Set K = M0 −m0 where M0 = supI1×Rd u, m0 = infI1×Rd u. Let δ, β0 ∈ (0, 1) be
the constants from Lemma 6.11. Define

β = min
(
β0,

log( 2
2−δ )

log 6

)
=⇒ 1− δ

2
< 6−β. (6.35)

We will construct inductively an increasing sequence (mν)ν∈Z and a decreasing sequence
(Mν)ν∈Z such that for every ν ∈ Z

mν ≤ u ≤Mν a.e. in D̂(6−ν),

Mν −mν = K6−νβ .
(6.36)

Obviously, (6.36) implies (6.34). For n ∈ N set M−n = M0, m−n = m0. Assume we have
constructed Mn and mn for n ≤ k − 1 and define

v(t, x) =

[
u

(
t

6α(k−1)
,
x

6k−1

)
− Mk−1 +mk−1

2

]
2 · 6β(k−1)

K
.
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Clearly, v satisfies

∂tv −L v = 0 in D̂(1) and |v| ≤ 1 in D̂(1) (by induction hypothesis). (6.37)

On I1 × (Rd \ B3) we can estimate v in the following way: For (t, y) ∈ I1 × (Rd \ B3) fix
j ∈ N such that

6j−1 ≤ ρ̂(t, y) < 6j , or equivalently (t, y) ∈ D̂(6j) \ D̂(6j−1).

Then

K

2 · 6(k−1)β
v(t, y) =

(
u

(
t

6α(k−1)
,
y

6k−1

)
− Mk−1 +mk−1

2

)

≤
(
Mk−j−1 −mk−j−1 +mk−j−1 −

Mk−1 +mk−1

2

)

≤
(
Mk−j−1 −mk−j−1 −

Mk−1 −mk−1

2

)

=

(
K6−(k−j−1)β − K

2
6−(k−1)β

)
,

⇒ v(t, y) ≤ 2 · 6jβ − 1 for a.e. (t, y) ∈ D̂(6j) \ D̂(6j−1)

⇒ v(t, y) ≤ 2 [6 ρ̂(t, y)]β − 1 for a.e. (t, y) ∈ I1 × (Rd \B3). (6.38)

Analogously, we can estimate v from below by

v(t, y) ≥ 1− 2 [6 ρ̂(t, y)]β for a.e. (t, y) ∈ I1 × (Rd \B3). (6.39)

Now there are two cases. In the first case v is non-positive in at least half of the set D	,
i.e.

|D	 ∩ {v ≤ 0}| ≥ 1

2
|D	| . (6.40)

Set w = 1− v. w satisfies conditions (6.33a)-(6.33d) of Lemma 6.11 and hence

w ≥ δ a.e. in D⊕, or equivalently v ≤ 1− δ a.e. in D⊕.

Noting that D̂(1/6) ⊂ D⊕ this estimate has the following consequence for u: For a.e.
(t, x) ∈ D̂(6−k) we have

u(t, x) =
K

2 · 6(k−1)β
v
(

6α(k−1)t, 6k−1x
)

+
Mk−1 +mk−1

2

≤ K(1− δ)
2 · 6(k−1)β

+mk−1 +
Mk−1 −mk−1

2

≤ K(1− δ)
2 · 6(k−1)β

+mk−1 +
K

2 · 6(k−1)β
= mk−1 +

(
1− δ

2

)
K6−(k−1)β

≤ mk−1 +K6−kβ,

where we apply (6.35) in the last inequality. By choosing mk = mk−1 and Mk = mk−1 +
K6−kβ we obtain sequences (mn) and (Mn) satisfying (6.36). In the second case v is positive
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in at least half of the set D	 and hence w = 1 + v satisfies all conditions of Lemma 6.11.
Therefore, we obtain

w ≥ δ a.e. in D⊕, or equivalently v ≥ −1 + δ a.e. in D⊕.

Adopting the computations above we see that Mk = Mk−1 and mk = Mk−1 −K6−kβ lead
to the desired result.

This proves (6.36).

Having established Theorem 6.12 we are now able to prove Theorem 4.5 providing a priori
estimates of Hölder norms of solutions. Let us recall Theorem 4.5:

Theorem 4.5 (Hölder regularity). Let k ∈ K′(α0,Λ) for some α0 ∈ (0, 2) and Λ ≥ 1.
Then there is a constant β = β(d, α0,Λ) such that for every solution u of (PEα) in
Q = I × Ω with f = 0 and every Q′ b Q the following estimate holds:

sup
(t,x),(s,y)∈Q′

|u(t, x)− u(s, y)|
(
|x− y|+ |t− s|1/α

)β ≤
‖u‖L∞(I×Rd)

ηβ
, (HC)

with some constant η = η(Q,Q′) > 0.

Proof. Let u as in the assumption, Q′ b Q and define

η(Q′, Q) = η = sup
{
r ∈ (0, 1

2 ]
∣∣∣ ∀(t, x) ∈ Q′ : D̂r(t, x) ⊂ Q

}
.

Fix (t, x), (s, y) ∈ Q′. Without loss of generality we may take t ≤ s. At first, assume that

ρ̂((t, x)− (s, y)) < η (6.41)

and choose n ∈ N0 such that
η

6n+1
≤ ρ̂((t, x)− (s, y)) <

η

6n
.

Now set u(t, x) = u(ηαt + s, ηx + y). By assumption u is a solution of ∂tu −L u = 0 in
D̂(1). Accordingly, applying Theorem 6.12 to u we obtain

|u(t, x)− u(s, y)| =
∣∣u(η−α(t− s), η−1(x− y))− u(0, 0)

∣∣
≤ 2 ‖u‖L∞(I1×Rd) 6−nβ

≤ 2 ‖u‖L∞(I×Rd)

(
6−n−1

)β
6β

≤ 12 ‖u‖L∞(I×Rd)

(
ρ̂((t, x)− (s, y))

η

)β

≤ 12 ‖u‖L∞(I×Rd)

(
|x− y|+ (s− t)1/α

η

)β
.
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Hence, for all (t, x), (y, s) ∈ Q′ subject to (6.41)

|u(t, x)− u(s, y)|
(
|x− y|+ |t− s|1/α

)β ≤
12 ‖u‖L∞(I×Rd)

ηβ
.

If ρ̂((t, x)− (s, y)) ≥ η then the Hölder estimate follows directly:

|u(t, x)− u(s, y)| ≤ 2 ‖u‖L∞(I×Rd) ≤
2 ‖u‖L∞(I×Rd)

[
max

(
|x− y| , |t− s|1/α

)]β

ηβ

≤
2 ‖u‖L∞(I×Rd)

ηβ

(
|x− y|+ |t− s|1/α

)β
.

Hence,

sup
(t,x),(s,y)∈Q′

|u(t, x)− u(s, y)|
(
|x− y|+ |t− s|1/α

)β ≤
12 ‖u‖L∞(I×Rd)

ηβ
,

which had to be shown.



7 Proof of the main results for second
order parabolic equations

7.1 Basic step of Moser’s iteration

The results in this section provide the basic steps for Moser’s iteration for negative ex-
ponents. The case of a local operator, i.e. a parabolic equation in divergence form with
bounded and measurable coefficients, is studied in this section. The result and the proof
are contained in [Mos64] and [Mos71].

Proposition 7.1. Let 1
2 ≤ r < R ≤ 1 and κ = 1 + 2

d (κ = 5
3 if d = 1, 2).

(i) Let p < 0. Then every supersolution u of (PE2) in Q = I × Ω, Q c Q	(R), with
u ≥ ε > 0 in Q satisfies

(ˆ
Q	(r)

ũκp(t, x) dx dt

)1/κ

≤ A
ˆ
Q	(R)

ũp(t, x) dx dt . (7.1)

(ii) Let p ∈ (0, 1). Then every nonnegative supersolution u of (PE2) in Q = I × Ω,
Q c Q⊕(R), satisfies

(ˆ
Q⊕(r)

ũκp(t, x) dx dt

)1/κ

≤ A
ˆ
Q⊕(R)

ũp(t, x) dx dt . (7.2)

(iii) Let p > 1. Then every nonnegative subsolution u of (PE2) in Q = I×Ω, Q c Q	(R),
satisfies (ˆ

Q	(r)
ũκp(t, x) dx dt

)1/κ

≤ A
ˆ
Q	(R)

ũp(t, x) dx dt . (7.3)

In (7.1)-(7.3) we have used the notation ũ = u+ ‖f‖L∞(Q). The constant A can be chosen
as

A =
C

(R− r)2

(σ
ε

+ |p|+ 1
)κ+1

κ (7.4)

with ε = 1
2

∣∣∣1− 1
p

∣∣∣, σ = Λ + λ−1 and a constant C = C(d).
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Note that (7.1) is an estimate on ũ from below since the exponent is negative there.

Before starting the proof let us state and prove an immediate consequence of the preceding
result:

Corollary 7.2. Let p > 0, p 6= 1. Then every solution u of (PE2) in Q = I × Ω,
Q c Q(R), satisfies

(ˆ
Q(r)

ũκp(t, x) dx dt

)1/κ

≤ A
ˆ
Q(R)

ũp(t, x) dx dt . (7.5)

where

A =
C

(R− r)2

(σ
ε

+ |p|+ 1
)κ+1

κ

with the same notation as in Proposition 7.1.

Proof of Corollary 7.2. Solutions are invariant under the translation (t, x) 7→ (t ± r2, x).
Taking into account the inclusions

(−r2, R2 − r2)×BR ⊂ Q(R) and (−R2 + r2, r2)×BR ⊂ Q(R)

we conclude from (7.2) and (7.3) that

(ˆ
Q(r)

ũκp(t, x) dx dt

)1/κ

≤ 2A

ˆ
Q(R)

ũp(t, x) dx dt.

The proof of Corollary 7.2 is complete.

Proof of Proposition 7.1. Let p ∈ R, p 6= 0, p 6= 1, and u some function as in part (i)-(iii).
Set ũ = u+ ‖f‖L∞(Q(R)) and

v(t, x) = ũ
p
2 (t, x), φ(t, x) = ũp−1(t, x)ψ2(x),

where ψ : Ω → [0, 1] is defined by1 ψ(x) =
(
R−|x|
R−r ∧ 1

)
∨ 0. Obviously, ψ2 ∈ H1

0 (Ω). Note
that

∇v =
p

2
ũ
p
2
−1∇ũ, ∂tv

2 = p ũp−1∂tũ

and
∇φ = (p− 1) ũp−2 ψ2∇ũ(t, x) + 2ψ ũp−1∇ψ .

We prove part (i) in full detail and indicate the modifications that are necessary for the
proof of part (ii) and (iii) afterwards.

For the proof of part (i) we proceed in two steps: First, we establish a Caccioppoli-type
estimate. In the second step we use these estimates in a space-time Sobolev-type embedding
to obtain (7.1).

1cf. Figure 6.1 on page 80
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I: Let u be a supersolution in Q with u ≥ ε > 0 in Q. Since p < 0 this assumption is
needed to guarantee the boundedness of up. We apply the test function φ in (5.9):
For a.e. t ∈ I

ˆ

BR

ũp−1(t, x)ψ2(x)∂tũ(t, x) dx+

ˆ

BR

(p− 1)ψ2(x)ũp−2(t, x) (∇ũ ·A∇ũ) (t, x) dx

≥ −2

ˆ

BR

ψ(x)ũp−1(t, x) (∇ψ ·A∇ũ) (t, x) dx+

ˆ

BR

f(t, x)ψ2(x)ũp−1(t, x) dx .

In terms of v this inequality reads

1

p

ˆ

BR

ψ2(x)∂tv
2(t, x) dx+

4(p− 1)

p2

ˆ

BR

ψ2(x) (∇v ·A∇v) (t, x) dx

≥ −4

p

ˆ

BR

ψ(x)v(t, x) (∇ψ ·A∇v) (t, x) dx+

ˆ

BR

f(t, x)ψ2(x)ũ−p−1 dx , (7.6)

or equivalently

1

4

ˆ
BR

ψ2(x)∂tv
2(t, x) dx+

(
1− 1

p

)ˆ
BR

ψ2(x) (∇v ·A∇v) (t, x) dx

≤ −
ˆ
BR

ψ(x)v(t, x) (∇ψ ·A∇v) (t, x) dx+
p

4

ˆ
BR

f(t, x)ψ2(x)ũp−1(t, x) dx . (7.7)

Using Schwarz’ inequality and the inequality ab ≤ 1
4εa

2 + εb2 for ε > 0, we estimate
the first integrand on the right-hand side by

|vψ∇ψ ·A∇v| ≤
(
v2 (∇ψ ·A∇ψ)ψ2 (∇v ·A∇v)

) 1
2

≤ 1

4ε
v2 ∇ψ ·A∇ψ + εψ2 ∇v ·A∇v. (7.8)

Choose ε = 1
2

(
1− 1

p

)
> 0. Then (7.7) and (7.8) yield

1

4

ˆ
BR

ψ2(x)∂tv
2(t, x) dx+ ε

ˆ
BR

ψ2(x) (∇v ·A∇v) (t, x) dx

≤ 1

4ε

ˆ
BR

v2(t, x)(∇ψ ·A∇ψ)(t, x) dx+
p

4

ˆ
BR

f(t, x)ψ2(x)up−1(t, x) dx . (7.9)

Using (4.3) and ‖f/ũ‖L∞(Q) ≤ 1 we obtain
ˆ
BR

ψ2(x)∂tv
2(t, x) dx+ 4ελ

ˆ
BR

ψ2(x) |∇v(t, x)|2 dx

≤
ˆ
BR

v2(t, x)

(
Λ

ε
|∇ψ(x)|2 + |p| ψ2(x)

)
dx.

(7.10)
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Now define2 a piecewise differentiable function χ	 : R→ [0, 1] by

χ	(t) =

(
t+R2

R2 − r2
∧ 1

)
∨ 0.

Multiplying (7.10) with χ2
	 implies

ˆ

BR

∂t(χ	(t)ψ(x)v(t, x))2 dx+ 4ελχ2
	(t)

ˆ

BR

ψ2(x) |∇v(t, x)|2 dx

≤ χ2
	(t)

ˆ

BR

v2(t, x)

[
Λ

ε
|∇ψ(x)|2 + |p| ψ2(x)

]
dx

+2χ	(t)
∣∣χ′	(t)

∣∣
ˆ

BR

ψ2(x)v2(t, x) dx. (7.11)

Integrating (7.11) from −R2 to some t ∈ (−r2, 0) = I	(r) yields
ˆ
BR

(χ	(t)ψ(x)v(t, x))2 dx+ 4ελ

ˆ t

−R2

χ2
	(s)

ˆ
B(R)

ψ2(x) |∇v(s, x)|2 dx ds

≤
ˆ t

−R2

χ2
	(s)

ˆ
BR

v2(s, x)

(
Λ

ε
|∇ψ(x)|2 + |p| ψ2(x)

)
dx ds

+

ˆ t

−R2

ˆ
BR

2χ	(s)
∣∣χ′	(s)

∣∣ψ2(x)v2(s, x) dx ds .

(7.12)

Now we use the facts that

|∇ψ|2 ≤ 1

(R− r)2
,

∣∣χ′	
∣∣ ≤ 1

R2 − r2

ψ = 1 on Br, ψ ≤ 1 on BR, χ	 = 1 on I	(r), χ	 ≤ 1 on I	(R).

to establish

sup
t∈I	(r)

ˆ
B(r)

v2(t, x) dx+ ελ

ˆ
Q	(r)

|∇v(t, x)|2 dx dt

≤ 1

4

(
Λ

ε

1

(R− r)2
+ |p|+ 1

R2 − r2

) ˆ
Q	(R)

v2(t, x) dx dt

≤ c1

(R− r)2

(
Λ

ε
+ |p|+ 1

) ˆ
Q	(R)

v2(t, x) dx dt . (7.13)

This L∞(L2)∩L2(H1)-estimate is sometimes called a Caccioppoli-type estimate. We
will use these inequalities in the next step to control the constant in the parabolic
Sobolev embedding.

2cf. Figure 6.2 on page 81
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II: Now we first apply Hölder’s inequality with exponents3 θ = d
d−2 , θ

′ = d
2 to the

integrand v2κ (remember κ = 1 + 1
θ′ ) and then we make use of Sobolev’s inequality

in Proposition 5.6:
ˆ
Q(r)

v2κ(t, x) dx dt =

ˆ
Q(r)

v2(t, x)v4/d(t, x) dx dt

≤
ˆ
I(r)

(ˆ
B(r)

v2θ(t, x) dx

)1/θ(ˆ
B(r)

v2(t, x) dx

)1/θ′

dt

≤ c2 sup
t∈I(r)

(ˆ
B(r)

v2(t, x) dx

)1/θ′ ˆ
Q(r)

(
r−2v2(t, x) + |∇v(t, x)|2

)
dx dt,

(7.14)

with a constant c2 depending on d. Using (7.13) twice and r ≥ 1
2 yields

ˆ
Q(r)

v2κ(t, x) dx dt ≤ c2

[
c1

(R− r)2

(
Λ

ε
+ |p|+ 1

)]κ−1

×

×
[

c1

(R− r)2

1

λε

(
Λ

ε
+ |p|+ 1

)
+ 1

](ˆ
Q(R)

v2(t, x) dx dt

)κ
. (7.15)

Observe that with σ = Λ + λ−1

[
c1

(R− r)2

(
Λ

ε
+ |p|+ 1

)]κ−1 [ c1

(R− r)2

1

λε

(
Λ

ε
+ |p|+ 1

)
+ 1

]

=
cκ1

(R− r)2κ

(
Λ

ε
+ |p|+ 1

)κ−1 [Λλ−1

ε2
+
λ−1

ε
(1 + |p|) + c−1

1 (R− r)2

]

≤ c3

(R− r)2κ

(σ
ε

+ |p|+ 1
)κ−1 (σ

ε
+ |p|+ 1

)2
.

Together with (7.15) this proves (7.1) in part (i) by resubstituting v2 = ũp.

To prove part (ii) take p ∈ (0, 1). If f = 0 a.e. on Q we set ũ = u+ ε, ε > 0, and pass to
the limit ε → 0+ in the end. We need this assumption to guarantee the boundedness of
the test function.

Next, observe that (7.6) remains valid in this case. For p ∈ (0, 1), inequality (7.6) is
equivalent to

− 1

4

ˆ
BR

ψ2(x)∂tv
2(t, x) dx−

(
1− 1

p

) ˆ
BR

ψ2(x) (∇v ·A∇v) (t, x) dx

≤
ˆ
BR

ψ(x)v(t, x) (∇ψ ·A∇v) (t, x) dx− p

4

ˆ
BR

f(t, x)ψ2(x)ũp−1(t, x) dx . (7.16)

3In the case d = 1, 2 these exponents should be adopted to (5.19b)
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Choose ε = 1
2

(
1
p − 1

)
= 1

2

∣∣∣1− 1
p

∣∣∣ in (7.8). Then

−
ˆ
BR

ψ2(x)∂tv
2(t, x) dx+ 4ελ

ˆ
BR

ψ2(x) |∇v(t, x)|2 dx

≤
ˆ
BR

v2(t, x)

(
Λ

ε
|∇ψ(x)|2 + pψ2(x)

)
dx.

(7.17)

We choose a slightly different time-dependent test function in this case, namely χ⊕(t) =(
R2−t
R2−r2 ∧ 1

)
∨ 0. We multiply the latter inequality with χ2

⊕ and integrate from some
t ∈ I⊕(r) = (0, r2) to R2, which yields

sup
t∈I⊕(r)

ˆ
B(r)

v2(t, x) dx+ ελ

ˆ
Q⊕(r)

|∇v(t, x)|2 dx dt

≤ 1

4

(
Λ

ε

1

(R− r)2
+ |p|+ 1

R2 − r2

) ˆ
Q⊕(R)

v2(t, x) dx dt

≤ c1

(R− r)2

(
Λ

ε
+ |p|+ 1

) ˆ
Q⊕(R)

v2(t, x) dx dt .

Starting from this inequality the assertion (7.2) can be established in the same way as in
Step II above – of course with Q	 and I	 replaced by Q⊕ and I⊕, respectively.

In order to prove part (iii) take p ∈ (1,∞). If f = 0 a.e. on Q we set ũ = u+ ε, ε > 0, and
pass to the limit ε→ 0+ in the end. Since u is a subsolution we obtain

1

p

ˆ

BR

ψ2(x)∂tv
2(t, x) dx+

4(p− 1)

p2

ˆ

BR

ψ2(x) (∇v ·A∇v) (t, x) dx

≤ −4

p

ˆ

BR

ψ(x)v(t, x) (∇ψ ·A∇v) (t, x) dx+

ˆ

BR

f(t, x)ψ2(x)ũ−p−1 dx , (7.18)

which is equivalent to (7.9). The same steps as in the proof of part (i) prove (7.3).

The proof of Proposition 7.1 is complete.

7.2 Estimates for the infimum of a supersolution and the
supremum of a solution

Theorem 7.3. Let 1
2 ≤ r < R ≤ 1, σ = λ−1 + Λ and 0 < p ≤ σ−1.

(i) There is a constant C = C(d,Λ, λ) > 0 such that for every nonnegative supersolution
u of (PE2) in Q = I × Ω, Q c Q	(R), with u ≥ ε > 0 in Q the following estimate
holds:

sup
Q	(r)

ũ−1 ≤
(

C

(R− r)d+2

)1/p
(ˆ

Q	(R)
ũ−p(t, x) dx dt

)1/p

, (7.19)

where ũ = u+ ‖f‖L∞(Q).
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(ii) There is a constant C ′ = C ′(d,Λ, λ) > 0 such that for every nonnegative solution u
of (PE2) in Q = I × Ω, Q c Q(R), the following estimate holds:

sup
Q(r)

ũ ≤
(

C ′

(R− r)d+2

)1/p
(ˆ

Q(R)
ũp(t, x) dx dt

)1/p

, (7.20)

where ũ = u+ ‖f‖L∞(Q).

Remark 7.4. The proof below establishes the inequalities (7.19) and (7.20) in the case
d ≥ 3. The assertion is still true if d = 1, 2. The proof of this fact can be found in
Remark 6.5 just by setting α = 2 therein. �

Proof. In view of Lemma 5.11 choose κ = 1 + d
2 , p0 = σ−1. Furthermore, for p ∈ (0, σ−1]

and m ∈ N0 set pm = pκm as well as εm = 1
2

(
1 + 1

pm

)
and choose the sequence of radii

defined by

rm = r +
R− r

2m
.

Note that r0 = R, rm > r and lim
m→∞

rm = r.

ad (i): We consider the increasing sequence of subsets (Q	(r), 0 < r ≤ 1) of Rd+1.

In Proposition 7.1(i) we established for all j ∈ N0

(ˆ
Q	(rj+1)

ũ−pj+1(t, x) dx dt

)1/pj+1

≤ Aj(p)1/pj

(ˆ
Q	(rj)

ũ−pj (t, x) dx dt

)1/pj

,

where

Aj(p) =
c1

(rj − rj+1)2

(
σ

εj
+ pj + 1

)κ+1
κ

for some constant c1 = c1(d) ≥ 1.

Thus, condition (5.22) of Lemma 5.11 is satisfied for the function ũ−1. In order to
verify condition (5.23) observe that (rj−rj+1)−2 = 22j+2(R−r)−2. Additionally,
by the property p ≤ σ−1,

(
σ

εj
+ pj + 1

)κ+1
κ

≤
(

2σpj
1 + pj

+ pj + 1

)2

≤
(
2κj + pκj + 1

)2 ≤ 16κ2j .

Therefore, since
∞∑

j=0

2j

κj
<∞, there is a constant c2 = c2(d, λ,Λ) ≥ 1 such that

∞∏

j=0

Aj(p)
1/κj ≤ c2 (R− r)−2

∑∞
j=0 κ

−j
= c2(R− r)−2

1+2/d
2/d =

c2

(R− r)d+2
.
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Taking M = c2(R− r)−d−2 in Lemma 5.11 implies

sup
Q	(r)

ũ−1 ≤
(

c2

(R− r)d+2

)1/p
(ˆ

Q	(R)
ũ−p dx dt

)1/p

for all p ∈ (0, σ−1],

which had to be shown in part (i).

ad (ii): We consider the increasing sequence of subsets (Q(r), 0 < r ≤ 1) of Rd+1. Corol-
lary 7.2 states that for all j ∈ N0

(ˆ
Q(rj+1)

ũpj+1(t, x) dx dt

)1/pj+1

≤ Aj(p)1/pj

(ˆ
Q(rj)

ũpj (t, x) dx dt

)1/pj

,

where

Aj(p) =
c3 22j+2

(R− r)2

(
σ

εj
+ pj + 1

)κ+1
κ

for some constant c3(d, λ,Λ) ≥ 1.

Assume p = 1
2κ
−ν(κ+ 1) for some ν ∈ N. For p of this form we have

|pm − 1| = 1

2

∣∣κm−ν(κ+ 1)− 2
∣∣ ≥ 1

2
(1− κ−1) for all m, ν ∈ N. (7.21)

This inequality can be verified as follows: The continuous, strictly monotone

increasing function x 7→ κx(κ+ 1)−2, x ∈ R, is zero if and only if x =
log( 2

κ+1
)

log κ ∈
(−1, 0). Now

∣∣κ−1(κ+ 1)− 2
∣∣ = 1− κ−1 and

∣∣κ0(κ+ 1)− 2
∣∣ = κ− 1 ≥ 1− κ−1.

This shows inequality (7.21). The fact p ∈ (0, σ−1] and (7.21) imply

σ

εm
+ pm =

2σpm
|pm − 1| + pm ≤

2κm

|pm − 1| + pm ≤
4κm

1− κ−1
+ pκm ≤ 5κm

1− κ−1

and

Aj(p) ≤
c3 22j+2

(R− r)2

(
5κj

1− κ−1
+ 1

)2

≤ cj4
(R− r)2

for some constant c4 = c4(d, λ,Λ) ≥ 1. By the same computations as in the proof
of part (i) we establish (7.20) for the specific choice of p mentioned a few lines
above.

For general p′ we may find p such that p ≤ p′ < pκ and (7.20) holds for this p.
By Hölder’s inequality we obtain

(
C

(R− r)d+2

ˆ
Q(R)

ũp

)1/p

≤
(
C |Q(R)|

(R− r)d+2

)1/p
(

1

|Q(R)|

ˆ
Q(R)

ũp
′
)1/p′

≤
(
C |Q(R)|

(R− r)d+2

)1/p′
(

1

|Q(R)|

ˆ
Q(R)

ũp
′
)1/p′
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=

(
C

(R− r)d+2

)1/p′
(ˆ

Q(R)
ũp
′
)1/p′

,

where we have used |Q(R)|
(R−r)d+2 = Rd+2

(R−r)d+2 > 1 in the last inequality. This finishes
the proof of Theorem 7.3.

7.3 An estimate for the L1-norm of a supersolution

Of course, one could also prove a result in the spirit of Theorem 6.6 for nonnegative
supersolutions of the second order equation. However, in order to prove a strong Harnack
inequality for solutions to the second order equation, we need an estimate for the supremum
of a solution, which we established in Theorem 7.3(ii). This is much stronger and explains
why we discount a possible analog of Theorem 6.6 in this context.

7.4 An inequality for log u

The following result is stated in [Mos71] and was proved in [Mos64].

Proposition 7.5. There is C = C(d) > 0 such that for every supersolution u of (PE2)
in Q = (−1, 1) × B2(0) which satisfies u ≥ ε > 0 in (−1, 1) × B2(0), there is a constant
a = a(ũ) ∈ R such that the following inequalities hold simultaneously:

∀s > 0: ( dt⊗ dx) (Q⊕(1) ∩ {log ũ < −s− a}) ≤ Cσ

s
, (7.22a)

∀s > 0: ( dt⊗ dx) (Q	(1) ∩ {log ũ > s− a}) ≤ Cσ

s
, (7.22b)

where ũ = u+ ‖f‖L∞(Ω) and σ = λ−1 + Λ.

Proof. We just need to prove an inequality analogous to (6.22) in the proof of Proposi-
tion 6.9. As is explained there the arguments in the proofs of the local and nonlocal case
coincide. We follow the lines of [Mos64, p. 121].

Let u be a supersolution such that u ≥ ε > 0 on (−1, 1) × B2(0) and ũ = u + ‖f‖L∞(Ω) .
We set

v(t, x) = − log ũ(t, x), φ(t, x) = ψ2(x)ũ−1(t, x),

where ψ2(x) = Ψ(x) = (3
2 − |x|) ∧ 1 as in Lemma 5.8. Note that

∇v =
−∇ũ
ũ

and ∂tv =
−∂tũ
ũ

.

We apply the test function φ in (5.9): For a.e. t ∈ (−1, 1)

ˆ
B3/2

ψ2ũ−1∂tu dx
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+

ˆ
B3/2

[
ũ−1

(
∇(ψ2) ·A∇ũ

)
+ ψ2

(
∇(ũ−1) ·A∇ũ

)]
dx ≥

ˆ
B3/2

ψ2fũ−1 dx .

In terms of v this inequality reads
ˆ
B3/2

ψ2∂tv dx +

ˆ
B3/2

[
2ψ (∇ψ ·A∇v) + ψ2 (∇v ·A∇v)

]
dx ≤ −

ˆ
B3/2

ψ2fũ−1 dx .

Using Schwarz’ inequality (cf. (7.8))

|ψ 〈∇ψ,A∇v〉| ≤ 〈∇ψ,A∇ψ〉+
1

4
ψ2 〈∇v,A∇v〉 ,

∥∥fũ−1
∥∥
L∞(B2(0))

≤ 1 and (4.3), we get

ˆ
B3/2

ψ2∂tv dx+
λ

2

ˆ
B3/2

ψ2 |∇v|2 dx ≤ 2Λ

ˆ
B3/2

|∇ψ|2 dx+

ˆ
B3/2

ψ2 dx . (7.23)

Lemma 5.8 applied to the second term on the left-hand side implies
ˆ
B3/2

ψ2∂tv dx+ c1λ

ˆ
B3/2

ψ2 (v(t, x)− V (t))2 dx ≤ 2Λ

ˆ
B3/2

|∇ψ|2 dx+

ˆ
B3/2

ψ2 dx .

where

V (t) =

ˆ
B2

v(t, x)ψ2(x) dx
ˆ
B2

ψ2(x) dx
.

Due to σ = λ−1 + Λ we may write this inequality in the form
ˆ
B3/2

ψ2∂tv dx+c1σ
−1

ˆ
B3/2

ψ2 (v(t, x)− V (t))2 dx ≤ c2σ

ˆ
B3/2

|∇ψ|2 dx+
∣∣B3/2

∣∣ , (7.24)

which is now the desired analogous inequality to (6.22). The same arguments as in the
proof of Proposition 6.9 lead to (7.22a) and (7.22b).

7.5 Strong Harnack inequality for solutions

Theorem 7.6 (Strong Harnack inequality for solutions to second order equation).
There is a constant C = C(d, λ,Λ) > 0 such that for every nonnegative solution u of
(PE2) on Q = (−1, 1)×B2(0) the following inequality holds:

sup
U	

u ≤ C
(

inf
U⊕

u+ ‖f‖L∞(Q)

)
, (7.25)

where U⊕ = (3/4, 1)×B1/2(0) and U	(−1,−3/4)×B1/2(0).
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The main difference between the following proof and the foregoing proof is that – due to
Theorem 7.3 – there is an L∞-estimate for both ũ and ũ−1. This means that we are able
to apply Lemma 5.13 with p0 =∞ for both w and ŵ. Let us provide the details:

Proof. Let u as in the assumption and define ũ = u+ ‖f‖L∞(Q). If f = 0 a.e. on Q we set
ũ = u+ ε and pass to the limit ε→ 0+ in the end.

Furthermore, set w = e−aũ−1 and ŵ = w−1 = eaũ, where a = a(ũ) is chosen according to
Proposition 7.5, i.e. there is c1 > 0 such that for every s > 0

|Q⊕(1) ∩ {logw > s}| ≤ c1σ

s
, and |Q	(1) ∩ {log ŵ > s}| ≤ c1σ

s
. (7.26)

Apply Lemma 5.13 to w and a family of domains U = (U(r))θ≤r≤1 – and to ŵ and a family
of domains Û = (Û(r))

θ̂≤r≤1
. Define the families U and Û by

U(1) = Q⊕(1), θ =
1

2
, U(r) =

(
1− r2, 1

)
×Br,

Û(1) = Q	(1), θ̂ =
1

2
Û(r) =

(
−1,−1 + r2

)
×Br

By virtue of (7.26) we see that condition (5.31) is satisfied for both w and ŵ.

The domains U(r) and Û(r) are obtained from Q	(r) and Q⊕(r), respectively, by shifting
in time, i.e. transformations of the type (t, x) 7→ (t+ τ, x). Therefore, Theorem 7.3 implies
that condition (5.30) of Lemma 5.13 is satisfied for both w and ŵ with p0 =∞ and arbitrary
η. By Lemma 5.13, there are constants C, Ĉ > 0 depending only on d, λ and Λ such that

sup
U(θ)

w = e−a sup
U(θ)

ũ−1 ≤ C and sup
Û(θ̂)

ŵ = ea sup
Û(θ)

û ≤ Ĉ.

Multiplying these two inequalities eliminates a and yields

sup
Û(θ̂)

ũ ≤ c2 inf
U(θ)

ũ

for a constant c2 = C Ĉ that depends only on d, λ and Λ. This proves (7.25) since U⊕ =
U(θ), U	 = Û(θ̂) and

sup
Û(θ̂)

u ≤ sup
Û(θ̂)

ũ ≤ c2

(
inf
U⊕

u+ ‖f‖L∞(Q)

)
.



114 7 Proof of the main results for second order parabolic equations

7.6 Hölder regularity for weak solutions

Theorem 7.7 (Hölder regularity estimate). There is a constant β = β(d, λ,Λ) such
that for every solution u of (PE2) in Q = I × Ω with f = 0 and every Q′ b Q the
following estimate holds:

sup
(t,x),(s,y)∈Q′

|u(t, x)− u(s, y)|
(
|x− y|+ |t− s|1/2

)β ≤
‖u‖L∞(Q)

ηβ
, (7.27)

with some constant η = η(Q,Q′) > 0.

Proof. Let v be a nonnegative solution to (PE2) on U = (−1, 1)×B2(0) and recall

U⊕ = (3/4, 1)×B1/2(0) and U	(−1,−3/4)×B1/2(0)

from Theorem 7.6. Write

M	(v) =
1

|U	|

ˆ
U	

v(t, x) dx dt ≤ sup
U	

v.

As a consequence of Harnack’s inequality we obtain that there is a constant γ ∈ (0, 1)
depending only on d, λ and Λ such that

inf
U⊕

v ≥ γM	(v) . (7.28)

Given a solution u (that may change its sign) on U of (PE2) we define

M = sup
U
u, m = inf

U
u, M⊕ = sup

U⊕
u, m⊕ = inf

U⊕
u .

Clearly, M − u and u−m are nonnegative solutions of (PE2) and

M	(M − u) = M −M	(u), M	(u−m) =M	(u)−m.

(7.28) implies

M −M⊕ ≥ γ(M −M	(u)) and m⊕ −m ≥ γ(M	(u)−m),

which in turn implies

osc
U
u− osc

U⊕
u ≥ γ osc

U
u, or equivalently osc

U⊕
u ≤ (1− γ) osc

U
u, (7.29)

where oscD v = supD v − infD v denotes the oscillation of a function v on a domain D.

The strategy now is to repeat estimate (7.29) on a sequence of nested cylindrical domains
such that the oscillation reduces in each step. To this end define for (t, x) ∈ Rd+1 a distance
function

ρ((t, x)) =

{
max

(
1
2 |x| , 1

2

√−t
)

if t ∈ (−2, 0],

∞ if t /∈ (−2, 0].
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Note that ρ((t, x)) 6= ρ(−(t, x)). We define

Dr((t0, x0)) =
{

(t, x) ∈ Rd+1 | ρ((t, x)− (t0, x0)) < r
}
, Dr((0, 0)) = Dr .

Observe that D(1) = (−2, 0)×B2(0) = U and D(1/4) = U⊕. By a simple scaling argument
we deduce from (7.29) that a solution u on D(1) satisfies

osc
D(4−n−1)

u ≤ (1− γ)n+1 osc
D(1)

u for every n ∈ N0 . (7.30)

For Q′ as in the assumption define

η(Q′, Q) = η = sup
{
r ∈ (0, 1

2 ] | ∀(t, x) ∈ Q′ : Dr(t, x) ⊂ Q
}
.

Fix (t, x), (s, y) ∈ Q′. Without loss of generality we may assume t ≤ s. If ρ((t, x)−(s, y)) <
η we choose n ∈ N0 such that

η

4n+1
≤ ρ((t, x)− (s, y)) <

η

4n
.

By assumption the rescaled function u(t, x) = u(η2t + s, ηx + y) is a solution of the local
equation on D(1) = (−2, 0)×B2(0) and by (7.30) we find

|u(t, x)− u(s, y)| =
∣∣u(η−2(t− s), η−1(x− y))− u(0, 0)

∣∣
≤ (1− γ)n osc

D(1)
u

≤ 2(1− γ)n ‖u‖L∞(Q)

≤ 2

(
1

4

)βn
‖u‖L∞(Q)

≤ 8

ηβ
‖u‖L∞(Q)

(
ρ((t, x)− (s, y))

η

)β
,

where β =
− log(1− γ)

log 4
.

This proves (7.27) in the case ρ((t, x) − (s, y)) < η. In the case ρ((t, x) − (s, y)) ≥ η,
the Hölder continuity follows directly as is explained in the last argument in the proof of
Theorem 4.5 on page 102.





Notation

A ⊂ B means that every element of A is contained in B. If A is a proper subset of B we
write A ( B.
The Euclidean norm on Rd is denoted by | · | and the scalar product is written as

x · y =
d∑

i=1

xiyi .

We use the notation f � g if there is a constant C > 1 such that C−1f ≤ g ≤ C f .
For α = (α1, . . . , αd) ∈ Nd0 we use |α| = α1 + . . .+ αd and for u ∈ C∞(Ω)

∂αu = ∂α1
1 ∂α2

2 . . . ∂αdd u .

The norm of a Banach space V is denoted by ‖·‖V . The dual space of V is denoted by V ∗

and for f ∈ V ∗ and v ∈ V we write

〈f, v〉V = f(v) and ‖f‖V ∗ = sup
v∈V \{0}

〈f, v〉V
‖v‖V

.

For two Banach spaces V,W we write V ↪→ W if there is a continuous, injective mapping
j : V →W . If j is not specified, then j = id : V →W . We write V

d
↪−→W if V ↪→W and

V is dense in W .

If B(Ω) is a Banach space of functions acting on Ω and taking values in some normed space
Y , then we write

Bloc(Ω) = {u : Ω→ Y | uφ ∈ B(Ω) for every φ ∈ C∞c (Ω)} .

1A stands for the characteristic function of a set A.

Let m ∈ N0 and Ω ⊂ Rd open. Then

Cm(Ω) =
{
u : Ω→ R

∣∣∣ ∂αu is continuous for every α ∈ Nd0 with |α| ≤ m
}
,

Cm(Ω) =
{
u ∈ Cm(Ω)

∣∣ ∂αu has a continuous extension to Ω

for every α ∈ Nd0 with |α| ≤ m
}
,

C∞(Ω) =
⋂

m∈N0

Cm(Ω), C∞(Ω) =
⋂

m∈N0

Cm(Ω) .
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Let Ω ⊂ Rd be open. If u : Ω→ R is continuous and bounded, we set

‖u‖C(Ω) = sup
x∈Ω
|u(x)| .

Furthermore, we define for β ∈ (0, 1] the Hölder seminorm

[u]C0,β(Ω) = sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|β

.

For k ∈ N0 the Banach space Ck,β(Ω) consists of all functions u : Ω→ R such that

‖u‖Ck,β(Ω) =
∑

|α|≤k
‖∂α‖C(Ω) +

∑

|α|=k
[∂αu]C0,β(Ω) <∞ .
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