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Introduction

Motivation

In the middle of the 20th century De Giorgi [DG57| and Nash [Nas57] independently proved
that weak solutions u of a linear partial differential equation of the form

div (A(z)Vu(z)) = 0 (L.1)

satisfy an a priori Holder estimate. More precisely, under the assumption that the operator
in (I.1) is uniformly elliptic, i.e. if the symmetric matrix A is bounded, measurable and
satisfies for some A\, A > 0

AEP < A(@)g- ¢ < AJEPP for all z,¢ € RY, (1.2)

they showed that weak solutions u of (I.1) are Hélder continuous —i.e. u € C%# — where the
Holder exponent 5 € (0,1) and the corresponding seminorm depend only on the dimension
and the constants A\, A > 0in (I.2). A few years later Moser [Mos61]| established a stronger
result — namely an elliptic Harnack inequality — for weak solutions to (I.1). This Harnack
inequality implies Holder regularity for weak solutions and thereby Moser gave a third
proof of the a priori Holder estimate.

This result — which is often referred to as the De Giorgi-Nash-Moser result — applies to
minimizers of nonlinear variational integrals of the form

/F(Vw(x)) dz, (1.3)

where F' is a convex C?-function. To be specific, the partial derivatives d;w of minimizers
w of (I.3) are weak solutions to (I.1), where a;;(z) = 0;0;F(Vw(x)), and hence the De
Giorgi-Nash-Moser result shows that w € C''? under appropriate assumptions on F' that
ensure (1.2). The assertion w € C'# for minimizers w was the most important contribution
to the solution of Hilbert’s 19th problem, who raised in his famous collection of problems
(see |Hil0O|) the question whether regular variational integrals such as (I1.3) only allow
for minimizers that are smooth. Thanks to the De Georgi-Nash-Moser result — and some
results which had been established earlier — it was finally possible to give a positive answer
to Hilbert’s 19th problem.

Already Nash [Nas57| and later Moser [Mos64, Mos67, Mos71] proved Holder regularity of
weak solutions u = u(t, z) of the parabolic equation associated to (I.1), i.e.

Oyu(t,z) — div (A(t,z)Vu(t,z)) =0, (I.4)
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under the assumption that the operator is uniformly elliptic. Again, Moser deduced the
Holder regularity from a parabolic Harnack inequality! (Theorem 7.6).

The present work extends Moser’s results including a weak Harnack inequality (Theo-
rem 4.4) and Holder regularity (Theorem 4.5) to parabolic equations of the type

Orut.a) = pov. [ [ult.y) =~ u(t. )] k. 9) dy = 0, (L5)
where ki(z,y) is a symmetric kernel that has a certain singularity at the diagonal = = y.
A Harnack inequality in the form of Theorem 4.4 is called a weak Harnack inequality. If
one could replace ||ul| L1(Qs) PY supg,, u therein, then one would call this type of inequality
(cf. Theorem 7.6) a strong Harnack inequality or simply Harnack inequality.

In the special case? ky(z,y) = 244 o |z — y|7, a € (0,2), equation (L.5) becomes

Ayu(t, x) + (=A)*u(t,z) =0, (1.6)

where (—A)O‘/ 2 denotes the fractional Laplacian — the pseudo-differential operator with
symbol [£]%, see Section 2.7. This operator can be seen as a prototype of a nonlocal
operator. The standing assumptions (see Section 4.1) that are imposed on the kernel k; to
prove the main theorems imply that the properties of the bilinear form associated to the
nonlocal operator in (I.5) are in a certain sense comparable to those of the bilinear form
associated to the fractional Laplacian.

In a very similar way as the classical De Giorgi-Nash-Moser result applies to minimizers of
variational integrals (I.3), the a priori Holder estimate for weak solutions to (I.5) applies
to nonlocal, nonlinear variational integrals: Caffarelli, Chan and Vasseur [CCV11]| showed
that their Holder regularity estimate for solutions to (I.5) implies that the minimizers w
of

J] @) - wto) K -y dray

belong to C1#, where ¢ is a convex and even functional of class C%(R) with A < ¢” < A
and K a symmetric function satisfying K () = |z|~%°.

From this point of view, Holder regularity estimates for (I.5) such as Theorem 4.5 can be
considered as the central tool in proving regularity of minimizers of nonlocal, nonlinear
variational integrals.

Another reason why regularity results for parabolic equations are interesting is the applica-
tion to the potential theory of Markov processes: This relation is explained by the following
observations: At least in the case ki(z,y) = k(z,y) and k(z,y) = |z —y|~** for small
values of |z — y|_d_a, it is possible to show that there corresponds a regular, symmetric
Dirichlet form (£, F) to the nonlocal operator

Lule) = pv. [ fuly) = u(w)] ) dy.

R4

! Around twenty years later, Fabes and Stroock [FS86] reproved Moser’s parabolic Harnack inequality by
means of Nash’s ideas.
2The factor 244, is just a norming constant that is specified in Section 2.4.
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By the general theory of symmetric Dirichlet forms ([FOT94]) £ is then the infinitesimal
generator of a Hunt process X. In this situation, the density function p,(t,z,y) (also
called heat kernel) of the associated semigroup is the fundamental solution of (I.5). A
priori Holder continuity then implies that p, (¢, z,y) is continuous and thus the associated
Hunt process X may be redefined to start in every point € R%, i.e. X is a strong Markov
process on R%. This Markov process has discontinuous paths and does not possess second
moments.

Even in the most simple case £ = —(—=A)*/? (i.e. if (1.5) reduces to (I.6)) no explicit
expression for p, (¢, x,y) is known except for the case @ = 1. Therefore heat kernel bounds
are a matter of particular interest. A special case of a result by Chen and Kumagai [CKO0§|
yields for £ = —(—A)*/2 the two-sided heat kernel estimate

tl/a
|z —y|

a+d
palt,z,y) <t~ (1 A ) t>0, z,y € RY. (1.7)

This result should be compared with the corresponding estimate for the heat kernel cor-
responding to (I.1): There are constants ci,...,cq4 > 0 depending only on d, and A, A in
(I1.2) such that for all ¢ > 0 and z,y € R?

2 2
c1 — |z —y| c3 — |z —y|
WeXp <C24t> spa(toy) < Wexl’ <C44t ' (1.8)

This estimate was obtained by Aronson [Aro67] and a central tool in his proof was Moser’s
parabolic Harnack inequality. Reversely, Fabes and Stroock [FS86] showed that the es-
timate (I.8) implies Moser’s parabolic Harnack inequality for solutions to (I.4). Hence,
Harnack inequalities for parabolic equations are closely related to heat kernel estimates of
the associated process. This relation is still true and even more interesting if the state
space is no longer the Euclidean space, but a manifold or a graph, see the introduction in
Barlow, Grigor'yan and Kumagai [BGK12|.

Related results

The proofs within this thesis use only analytical methods, in other words (I.5) is considered
from the point of view of PDE theory. Therefore, this short survey starts with results that
share this purely analytic point of view.

One may consider Komatsu’s articles [Kom88, Kom95| as a starting point in the regularity
theory of weak solutions to (I.5). The author proves Holder regularity following Nash’s
method under the condition of pointwise comparability of k;(z,y) with |z —y|~*"® and
assuming continuity in .

Kassmann [Kas09| established a Moser scheme for nonlocal elliptic equations leading to
Holder regularity for weak solutions. Due to the nonlocality of the operator the assump-
tion of non-negativity of the solution in some domain in R? is not strong enough to prove a
classical elliptic Harnack inequality. A counterexample violating the global non-negativity
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was given in [Kas07al. An alternative formulation of Harnack’s inequality which is equiv-
alent to the classical one in case of a second order operator was proposed in [Kasl1].
Caffarelli, Chan and Vasseur proved Holder regularity for solutions to (I.5) following De
Giorgi’s method. This method yields an a priori Holder estimate where the C#-norm of a
solution u is controlled by ||ul| ;2 instead of ||ul|;« as in Theorem 4.5. They provide a very
interesting proof of how the regularity of weak solutions to linear, nonlocal equations apply
to regularity of minimizers of nonlinear, nonlocal variational integrals. The constants in
their results blow up if o« — 2—.

There are some related results which are robust for @« — 2—, but these apply to nonlocal
operators in non-divergence form?®: Chang Lara and Davila [CLD12] proved Hélder regu-
larity for viscosity solutions to fully nonlinear parabolic equations. Robust results for fully
nonlinear elliptic equations were also found by Caffarelli and Silvestre [CS11] as well as by
Guillen and Schwab [GS12].

As already explained previously in this introduction there is a huge interplay between ana-
lytic and probabilistic methods for parabolic equations such as (I.5). From a probabilistic
point of view, the Harnack inequality for solutions to (I1.6) is readily established by using
the explicit expression for the exit time of a rotationally invariant a-stable Lévy process.
The generalization to other kernels opened a large field of research starting with the article
by Bass and Levin [BLO02]. In the case ki(z,y) = k(x,y) and k(z,y) = |z —y|™* they
use both probabilistic and analytical methods for their proof of a Harnack inequality and
pointwise bounds on the heat kernel.

This approach was further generalized by Chen and Kumagai [CK03|. On a general d-set
(F,v) they showed that — under the assumption k¢ (z,y) = k(z,y) and k(z,y) = |z — y| 4
— there exists a Feller process associated with the Dirichlet form (&, F) given by

E(u,v) = // [u(x) —u(y)] [v(z) —v(y)] k(z, y)v(dz)v(dy),
FF

F={ueL*(Fv): E(u,u) <o} .

They showed that the heat kernel exists and satisfies (1.7) for 0 < ¢ < 1. In particular,
their set-up allows to work with the weak formulation of (I1.5).
In [SV04], Song and Vondracek list three abstract conditions on a general class of Markov
processes that are sufficient to establish a Harnack inequality.
A situation where the pointwise comparability to one fixed order of singularity is not
satisfied is studied in Barlow, Bass, Chen and Kassmann [BBCKO09]. It is assumed that
kt(x,y) = k(x,y) and that there are constants c¢i,c2 > 0 and 0 < o < 8 < 2 such that for
all [x —y| <1

oo —y| " < k(wy) < calw—y[
They show the existence of the heat kernel together with upper and lower bounds for it.
Generally, it is important that the equation satisfies a certain scaling behavior in order
to deduce regularity results. Such a scaling property is not satisfied for the equations in
the situation of [BBCK09|; the authors provide an example of a discontinuous function u
satisfying Lu = 0.

3A detailed discussion on the distinction between divergence form and non-divergence form in the case of
nonlocal operators may be found in [KS13| or [Cafl2]
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This approach of combining probabilistic and analytical aspects has been extended further,
also to much more general state spaces. A complete list of all related results in this area
would go far beyond the scope of this introduction.

Local vs. Nonlocal

Due to the nonlocality of the operator in (1.5), there are several differences compared to the
situation of a second-order parabolic equation. Two of them may be of particular interest:
Firstly, very similar to (I.2), the conditions on k; in this work ensure the non-degeneracy
of the operator in the parabolic equation. However, a strong Harnack inequality cannot
be expected to hold for solutions of (I.5). A counterexample was given by Bogdan and
Sztonyk [BS05].

Secondly, the implication from Harnack inequality to Holder regularity is more involved.
For this reason, a weak Harnack inequality is established for nonnegative weak supersolu-
tions to

atu(t7 I’) —p.v. / [u(ta y) - u(ta l’)] k"t(wa y) dy = f(ta ZL‘) on (07 T) X 97
Rd

where  C R? is a bounded domain and f € L>((0,7) x Q). This weak Harnack inequality

then implies an estimate on the oscillation of a solution w, which in turn yields Holder

regularity in the nonlocal setting. The method how to deduce Hélder regularity from the

estimate on the oscillation of u was found by Silvestre [Sil06].

Main features of the approach

The presented work establishes the main results by modifying Moser’s classical approach
to the case of nonlocal parabolic equations. The advantages of this method are explained
by the following features:

I) Local regularity results: In contrast to De Giorgi’s method, Moser’s technique uses

local methods to derive regularity results. This means that (I.5) is only assumed to
hold on a bounded region I x Q C R4 in order to derive the weak Harnack inequality
and the Holder regularity result.
The weak Harnack inequality is of its own interest since these a priori inequalities
play an important role* in partial differential equations and have applications that go
beyond questions of regularity. Only recently, Jarohs and Weth [JW13| applied The-
orem 4.4 in their results on asymptotic symmetry of solutions to nonlinear fractional
reaction-diffusion equations. Also Erdds and Yau [EY12] as well as Jin and Xiong
[JX11] apply a Harnack inequality for fractional order equations in their results.

II) Mild assumptions on the kernel: The techniques applied in this thesis allow for rel-
atively mild assumptions on the underlying kernel k;. In particular, no pointwise
bounds and no regularity in the variables is required for k;. This property is essential
for the application to nonlocal, nonlinear variational integrals. Thus, (I.5) can be

“see the survey on Harnack inequalities [Kas07b].



X Introduction

seen as a nonlocal equation with bounded, measurable coefficients. Moreover, k; may
vanish on a large part around the diagonal, see Example 4.8 for an illustration. Up
to the present, all related results that prove Holder regularity for solutions to (I.5)
have used stronger conditions on the underlying kernels.

Another important aspect in this context is explained in Kassmann and Schwab
[KS13|, where the authors use this approach to provide the main results in the case
where the kernel of the nonlocal operator is not absolutely continuous with respect
to the Lebesgue measure.

III) Robustness for « — 2—: All constants that appear in the main results are independent
of a € (v, 2), i.e. the a priori estimates do not depend on the order of differentia-
bility of the underlying operator — provided the order is bounded from below by a
universal constant o > 0. In particular, the estimates hold uniformly for a sequence
of solutions (u,,) to orders «,, approaching 2 from below, see Example 4.7. However,
it will not be shown in this thesis that Moser’s classical results can be obtained as a
limit case.

Outline

Chapter 1 contains a short review on integration of vector-valued functions. The focus
therein lies on the application to parabolic equations. Also the results in Chapter 2 serve
as a basis for the theory of parabolic equations of fractional order. Except of Section 2.4 all
results and proofs in Chapter 1 and Chapter 2 are collected from the literature. Detailed
references are given therein.

In Chapter 3, the parabolic initial boundary value problem for both local and nonlocal
operators is studied from a functional analytic point of view. The notion of weak solution
is elaborated there and the well-posedness of the problem is established by means of Hilbert
space methods.

The main theorems of this thesis and the framework for these results are presented in Chap-
ter 4. Chapter 5 collects all technical tools that are needed to apply Moser’s technique.
This technique is applied in Chapter 6, where the proofs of the main results are given.
Finally, in Chapter 7, Moser’s classical results for local operators are reviewed and re-
proved. The structure in this chapter is in one-to-one correspondence with the structure in
Chapter 6 in order to facilitate a comparison between Moser’s technique for second order
and fractional order parabolic equations.

A short list of notation is given on pp. 117-118.
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Abgrenzung des eigenen Beitrags gemilR §10(2) der Promotionsordnung

Den Inhalt der Kapitel 4-6 hat der Autor dieser Dissertation in einer Arbeit [FK13| ge-
meinsam mit seinem Betreuer, Moritz Kalkmann, veroffentlicht. Diese Arbeit wurde von
der Zeitschrift Communications in Partial Differential Fquations zur Verdffentlichung an-
genommen. Die Ergebnisse in Abschnitt 5.3, Abschnitt 5.4 und Abschnitt 6.6 gehen auf
Moritz Kafimanns frithere Arbeiten tiber elliptische Gleichungen zuriick. Auflerdem stammt
die Idee, die punktweisen Schranken an den Kern k;(x,y) durch Integralbedingungen zu
ersetzen — siehe Abschnitt 4.1 — von ihm.
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1 Integration theory & Lebesgue spaces

In this chapter we review the construction of the Bochner-Lebesgue integral as well as
some central results in this theory. The concept of Bochner measurability and integrability
can be considered as an extension of Lebesgue’s integration theory to functions that take
values in some Banach space. In this presentation we focus on those parts of this concept
that will be needed in the functional analytic theory of parabolic equations. Additionally,
some important results in this chapter such as the theory of LP-spaces are provided in an
integrated way both for real-valued and vector-valued functions.

Throughout the whole chapter the triplet (M, A, 1) denotes a complete! measure space.
In this thesis the results are applied to the situation where (M, A, ) is the completion
of the measure space (R% B(R?), \9), where B(R?) denotes the Borel o-field and A? the
d-dimensional Lebesgue measure.

(V,|I-I) denotes a real Banach space.

1.1 Measurable functions

Let us recall that a function f: M — R is said to be Lebesgue measurable if f~1(B) € A
for every B € B(R).

The following definition generalizes the concept of measurability to the case where f maps
into a general Banach space V. It is a summary of the definitions and remarks in [AE09,
Section X.1| and |Zei90, Appendix].

Definition 1.1. Let f: M — V.

(i) fis called step function (or simple function) if there is k € N, (v;, Aj) € V x A with
p(A;) < oo for j=1,...,k, such that

k
f= Z vjla;
=1

with v; # 0 for all j = 1,...,k and v; # v;, A; N A; = 0 for j # i. It is easy to see
that this representation is unique.

1A measure space is called complete if every subset of a set of measure zero is again measurable. Note
that this property is depending on both the o-field and the measure. See Remark 1.2 for a discussion
on this assumption.
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(ii) f is called Bochner measurable (or strongly measurable) if there is a sequence (f;)jen
of simple functions such that for p-almost every m € M

Tim | £5(m) = f(m)] = 0.

(iii) f is called weakly measurable if the real-valued functions & — (g, f(£)) are Lebesgue
measurable for every g € V*.

(iv) f is called almost surely separably valued if there is N C M with p(N) = 0 such that
f(N€¢) C V is separable.

Remark 1.2. A well-known result (e.g. [AE09, Theorem X.1.14]) states that if a sequence
(fn) of strongly measurable functions converges to a function f almost everywhere, then f
is again strongly measurable. The following example, which is taken from [AE09, Remark
X.1.15], shows that this property fails if we do not assume the measure space to be complete:

The measure space (R, B(R), A!) is non-complete (JAE09, 1X.5.29]). In particular, there is
a subset N of the Cantor set C' such that N ¢ B(R). Define f,, = 1¢ and f = 1y. C —
as a compact set — is measurable and thus f, is strongly measurable. Since A'(C) =0, f,
converges Al-a.e. to f. However, f is not measurable since {f > 0} = N ¢ B(R).

Of course, if g is defined by ¢(t) = limy, 0 fn(t), then g = 1, which is a measurable
function. The result mentioned at the beginning of this remark asserts that every function
that can be identified as a pointwise limit of a sequence of strongly measurable functions
is again measurable — provided the underlying measure space is complete. ¢

Let us mention another rather simple observation: If f: M — V is strongly measurable
then the real valued function m +— || f(m)|| is Lebesgue measurable, see e.g. [R1z04, Lemma
2.1.7] for a proof.

The following theorem provides a characterization of strong measurability. It is due to
Pettis [Pet38], see also [Yos80, Section V.4] for a proof.

Theorem 1.3 (Pettis’ theorem). A function f: M — V' is strongly measurable if and only
if it is weakly measurable and almost surely separately valued.

Since every subset of a separable normed space is again separable, we see that f(M) is
separable if V is itself separable. As an immediate consequence of Pettis’ theorem we
obtain?:

Corollary 1.4. LetV be a separable Banach space. Then f: M — V is strongly measurable
if and only if f is weakly measurable.

We will frequently use this result without citing it explicitly.

2In literature this corollary is sometimes referred to as Pettis’ theorem.
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1.2 The Bochner-Lebesgue integral

The presentation in this section collects results on Bochner integration from [AE09, Chapter
X], [GGZT74, §IV.1]| and [Zei90, Section 23.2], see also [Emm04, Abschnitt 7.1] and [Ruz04,

Kapitel 2| for similar summaries on this topic.

Let us give a very short overview on the construction of the Lebesgue integral of real-
valued functions: For every measurable function f: M — [0, 00) there is a sequence of step
functions (¢, ) such that ¢, — f a.e. The integral of f is then defined as the limit of the
integrals of ¢, i.e.

k'll
[ ) dutm) =t [ o om)dpaom) = i Sy (Asn)
M M j=1

n—0o0

kn
where @n, = ) xjnl4,,. A general function f: M — R is called integrable if J f+ and
=1

2
/Mfduz/Mﬁ du—/Mf .

[ /- exist and we set
This is just a minimal overview. Details can be found in the monograph [Bau01].

The next definition generalizes this concept to functions with values in a Banach space

(VA1

Definition 1.5. Let ¢: M — V be a simple function as in Definition 1.1(i). The integral
of ¢ is defined by

k
/ pdu=> vju(A) eV,
M =

Let f: M — V be a Bochner measurable function with approximating sequence (¢,). We
say that f is Bochner integrable if for every € > 0 there is N € N such that for every
n, k>N

[ ligutm) = auml dum) <. (1)
In this case we define the integral of f by
/ fdu= lim/ on dueVv. (1.2)
M n—oo M

Furthermore, we define for A € A

/Af duz/M 1afdp.

A few comments are necessary in order to explain that this definition is meaningful. Firstly,
the real-valued functions m + ||, (m)|| are measurable since ¢, is strongly measurable. In
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particular, the integral in (1.1) is a Lebesgue integral of real-valued functions (M, A, u) —
(R, B(R)). Secondly, it is easy to see that

H/ w(m) du(m)H < / llo(m)|| du(m) for every simple function .
M M
By this inequality we may deduce from (1.1) that the sequence
< / onp du:n e N) is a Cauchy sequence in the Banach space V,
M

and thus the limit on right-hand side of (1.2) exists. Thirdly, an elementary proof shows
that the definition of the integral of f is independent of the choice of the approximating
sequence. For details we refer to [AE09, Section X.2.

As can be seen from this definition and Corollary 1.4, the concept of integration of vector
valued functions extends the Lebesgue integration theory in a consistent way, i.e. the two
concepts coincide if V' = R.

Properties of the integral

Let us give a short summary of results on the theory of Bochner integrable functions.

The Bochner integral is linear, i.e. for all «, 8 € R and integrable f,g: M — V

/oaf—i—ﬁgdu:a/fdu—l—/gdu.

A strongly measurable function f: M — V is Bochner integrable if and only if the real-
valued function m + || f(m)| is Lebesgue integrable. This fact is often referred to as
Bochner’s theorem. Moreover, for every A € A and every integrable f we have

MAfd@}gAHmdu. (13)

The dominated convergence theorem is one of the most important properties of the Bochner-
Lebesgue integral. A proof can be found in [AE09, Chapter X].

Theorem 1.6 (Dominated convergence). Let (f,) be a sequence of measurable functions
fn: M — V such that lim f, = f a.e. for a function f: M — V. Furthermore assume
n—o0

that there is a function g: M — R such that ||f,|| < g a.e. for alln € N and [ |g| dp < oo.

Then
i [ 17 = full dp =0
n—oo M
and in particular

lim fndp = / lim f,, dp < oco.
M MTL‘)OO

n—o0

We give another two convergence results for the special case of real-valued functions. For
proofs we refer to [AE09, Chapter X|.
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Theorem 1.7 (Monotone convergence). Assume that (fy,) is a sequence of measurable
functions frn: M — [0,00) such that f,, < fn+1 a.e. on M for every n € N. Then

lim frn du :/ lim f, du. (1.4)
M n—oo

n—o0 M

Theorem 1.8 (Fatou’s lemma). Assume that (f,) is a sequence of measurable functions
fn: M —[0,00). Then

/ liminf f,, dp < liminf [ f, du. (1.5)
M M

n—oo n—o0

Note that we interpret (1.4) and (1.5) as (in)equalities in [0, oc], i.e. we allow both sides
to be equal to +oc.

1.3 Spaces of integrable functions

As in the integration theory of real-valued functions we call two functions f,g: M — V
equivalent if f = g p-a.e. on M. In what follows we will consider spaces that contain
equivalence classes [f] of integrable functions. We will denote these equivalence classes
again by f without mentioning it explicitly.

From now on we will assume that the underlying measure space is an open subset 2 of
R? endowed with its natural o-field and the restriction of the Lebesgue measure A% to €.
Recall that ||-|| stands for the norm of the Banach space V.

Definition 1.9. For p € [1, 00] we define the linear space
LP(Q; V) = {f: Q — V: [ is strongly measurable and [|f|| 150, < oo} , (1.6a)

where

1/p
1l iy = ( [ dx> 1< p < oo,

(1.6b)
171y = ess-sup [ (a) | = inf {a > 0: M({|lf]| > a}) = 0} .

A function f € L*(Q; V) is called essentially bounded. In the case V = R we simply write

LP(Q) = LP(R). If Q = (a,b) C R we write LP(a,b; V') = LP((a,b); V).

The following proposition collects some properties of LP-spaces. Proofs of these assertions
can be found in [AE09, Section X.4], [EmmO04, Satz 7.1.23|, [GGZ74, §IV.1.3] and [Zei90,
Chapter 23|.
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Proposition 1.10.

(i) For1 < p < oo the linear space LP(2; V') endowed with the norm given by (1.6b) is a
Banach space.

(i) The set of simple functions is dense in LP(2;V), 1 <p < oo.
(iii) If V is a separable Banach space then so is LP(Q; V) for 1 < p < co.

(iv) If H is a Hilbert space then so is L*(2; H), where the scalar product is given by

(F.9) 2 cuim) = /Q (f(2), g(x))r dz. (1.7)

v) Let f € LP(Q:V) and g € LI V) with £ +1 =1, 1 < p < co. Then Holder’s
(v) g P q
inequality holds:

/Q<9(33)’f($)>v dz < lgll o) 1l zr vy - (1.8)

(vi) If V is reflexive and separable then LP(S; V') is reflexive for 1 < p < oo. In this
case there is an isometric isomorphism (LP(Q;V))* =2 L1(Q; V*) where q is the dual
exponent, i.e. % + % = 1. The dual pairing is then given by

F. Dusoy = | (F@.f@hy do forfel@V). (19

(vit) Let W be another Banach space such that V. — W and assume that € is bounded.
Then for 1 <p <r < oo one has L"(Q; V') — LP(Q; W).

Assertion (vi) remains true if we only assume that V' is reflexive or V* separable. A proof
of this can be found in [Edw65]. We will not make use of this.

Another property of the spaces LP(2;V) will turn out to be useful in the next section
when dealing with averages of abstract functions. The proof of this property in the case of
vector-valued functions defined on R? is not very common in the literature. Therefore we
provide an elementary proof.

Theorem 1.11 (Continuity of translations in LP). Let f: R* =V and 1 < p < co. For
h € RY define Ty f (x) = f(z + h). If f € LP(R% V) then also Ty, f € LP(R% V). Moreover,
if p < oo, we have

lim | Thf = fllp ey = 0- (1.10)

Proof. If the sequence (¢,,) of simple functions approximates f a.e. on R? in the norm of
V', then the sequence (T} p,), whose members are still simple functions, approximates T}, f.
This shows that T}, f is strongly measurable. Furthermore, the translation invariance of the
Lebesgue measure and the definition of ess-sup, respectively, show that T}, f € LP(Q; V) for
p < o0 and p = oo. In particular, || fl| s,y = IThf |l Lo, for all h € R,



1.3 Spaces of integrable functions 9

Now assume that f = v 1y for some measurable set U C R? and some v € V. Then

IS = Wpay = 101 [ o+ ) = 1o(a)] da

= MU UU+h)\ (UNU +h)) =% 0.

Property (1.10) is then readily checked if f is assumed to be a simple function. Now we
prove the assertion for general f € LP(Q; V). Let ¢ > 0. By Proposition 1.10(ii) there is
a simple function ¢ such that [¢ — f{| s,y < €. For this simple function we find § > 0
such that for all h € Bs(0) we have ||Th¢ — @[ 15,y < €. Then for all h € Bs(z) (setting

1l = 1 o)

IThf = fll, = 1Th(f =) + The —p+ o — fll, < If —ell, + ITh — #ll, + e = fl,
< 3e.

This finishes the proof. O

The solution of a parabolic equation is a function u(¢,x), where we interpret the variable
t as time variable and the variable = as space variable. Generally, we seek for a solution
u that is defined for ¢ in a finite time interval, for instance (0,7"), and for x belonging to
some domain © C R% In the functional analytic treatment of parabolic problems it is a
common strategy to treat the differentiation with respect to ¢ in a different way than the
derivatives in space. In other words, one associates to each function u: (0,7) x 2 — R an
abstract function

U: (0,T) = Vo, U(t) =ult,").

In this situation Vj, is a space of functions operating on 2. The following result answers the
question if one can identify the function u belonging to some space of (Lebesgue) integrable
functions operating on (0,7) x Q with the space of (Bochner) integrable abstract functions
U operating on (0,7") with values in Vy. This result as well as its proof can be found in
[EmmO04, Section 7.1], [Rtz04, Section 2.1.1| and |Zei90, Example 23.4].

Proposition 1.12. For 1 < p < oo the mapping u — U is an isometric isomorphism
between LP((0,T) x Q) and LP(0,T; LP(Q)).

This proposition justifies that we shall denote the abstract function U again by w. Its
proof uses the density of step functions in LP. This density argument is not true if p = oo.
Indeed (cf. [EmmO04, Satz 7.1.26]):

Lemma 1.13. One has L>(0,T; L>°(Q)) € L*>((0,T) x Q).

The example [Emm04, Beispiel 7.1.27| considers a function f: (0,1) x (0,1) — R defined
by f(z,y) = 1if z > y and f(z,y) = 0 if x < y. Clearly, this function belongs to
L*>((0,1) x (0,1)). However, the strong measurability fails since for given z¢ € (0,1) one
cannot approximate in the norm of L*(0,1) the function f(xg,-) with a sequence of step
functions. Details can be found in the mentioned reference.
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1.4 Steklov averages

Steklov averages are needed to mollify (vector-valued) functions u defined on a time interval.
In this section we give some technical results on these averaged functions in a general
framework. Some of these results are stated in [LSU68, I1.§4] and [DGV11, Section 2.5.3].
The application of Steklov averages to parabolic equations is explained in full detail in
Section 5.2.

Let [ = (T1,T2), Q = I x Q. For v € L}(Q) and 0 < h < Ty — T} define

1 t+h
"Uh(t, ) — h\/t 'U(’, S) ds for Ty <t < Ty — h,
0, for t > Ty — h.

Lemma 1.14. Let V' be a Banach space and let v € LP(I;V) for some p € [1,00] and
I' = (ty,t3) C I with to < Ty. Then

(i) vy, € C(I'; V) for every h € (0, Ty — t2).
(i) vnll vy < 0l oy for every h € (0,12 — t2).
(iti) If p < oo then [[vn — vl 1oy = 0 for h — 0+

iw) If v e C(I; LP(QQ)) for some p < oo, then ||lvp(t, ) — v(t, )| ;p mOforevery
Lr(Q)

tel.
Proof. ad (i): For every t € I’ and h € (0, Ty — t2) we have
Al;lglo [on(t + At) —vp(t)]| < Ahtglo /I/ [o(s)]| ‘1[t+At,t+At+h}(s) - ﬂ[t,t+h](3)‘ ds
= [ 1o fim, |1 stes a0 (6) = Bearny(6)] ds =0.

We can interchange limit and integration due to dominated convergence theorem
(Theorem 1.6).

ad (i): By Jensen’s inequality, inequality (1.3), and Fubini’s theorem we obtain

1 t+h
lonll 7o sy =/ [on (D[P dt < // lu(s)|P ds dt
’ I h 7 Jt
1
= [ 1P} [ V() deas
I’ I’
1
= [ W@y [ @t
I’ I

= H’UHiP([/;V) .
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This proves (ii) in the case p < co. In the case p = co we use again (1.3) to
deduce that for almost every t € I’

1 t+h
o <5 [ 1o ds < ol

This proves (ii) for p = oo.
ad (#i): Observe that for a.e. t € I’

p p

lon() — v()||P = H}ll /;M o(s) — v(t) ds /01 o(t + sh) — o(t) ds

1
g/o lo(t + sh) — v()[? ds . (1.11)

Hence,

1
o= oW = [ Non® = v dt < [ [ ute+ sty = wle))? asas

1
— [ [ ottt sh) = vl deds < sup ol +5) = o) gy, -
0 I 0<s<h

The right-hand side tends to zero for h — 0 due to uniform continuity of transla-
tions in LP(I’; V), 1 < p < oo (Theorem 1.11). This proves assertion (iii).

ad (w): Let t € I' and € > 0. By assumption we find § > 0 such that for all h € (0, ) we
have [[v(t +h) = v(t)|| po) <e. By (1.11)

1
lon(t) = o)1, g < /0 ot + sh) = v(D)]17, g dt < &.

This shows assertion (iv). O






2 Distributions & Sobolev spaces

Sobolev spaces arise in a natural way as spaces of weak solutions to partial differential
equations. Generally speaking, these spaces consist of functions that belong together with
all generalized partial derivatives up to a certain order to some LP-space. In this chapter
we define generalized derivatives in the context of distributions. We shall define both
integer order and fractional order Sobolev spaces as spaces of functions with a domain
being an arbitrary open set  C R?. In Section 2.6 we shall present — in the case Q = R¢
— some results that connect the Fourier transform to Sobolev spaces. Finally, we introduce
the fractional Laplacian as a prototype of a nonlocal operator that is closely related to
fractional Sobolev spaces.

Throughout the whole chapter we denote by 2 a — bounded or unbounded — open set in
R4,

2.1 The spaces D(12), D'(2) and generalized derivatives

In this section fundamental results and definitions concerning distributions are provided.
In this presentation we concentrate on the main aspects of distributions that are necessary
to study partial differential equations and Sobolev spaces.

The way of presentation in this section is largely influenced by [AF03, HT08|. Detailed
references for the results and definitions will be given below.

Unless otherwise stated we consider functions with values in the complex plane C and by
a linear space we mean a complex vector space. We recall that a measurable function
f:Q = Cwith f =u+iv, u,v: Q — R, belongs to LP(Q; C) if | f| = (u? + v?)"/? belongs
to LP(Q;R). For f € LY(Q;C) the integral of f is defined by

/f(@“)dx:/u(x)dx—i—i/v(ac)dx.

In the following definition we follow the lines of [HTO08, Section 2.1]:
Definition 2.1. Let f € Cj,.(Q).
(i) The support of f is the set

supp[f] = {z € Q: f(z) # 0}, (2.1)

where the closure is taken with respect to any norm in R?. Note that supp[f] may
contain points x € Q°. The reason why this definition is given only for f € Cj,.(Q2) is
explained by Example 2.5.
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(i) f is said to have compact support (in ) if supp[f] is bounded and supp|[f] C Q.
(iii) The linear space C2°(2) is defined by

CX(Q) ={¢ € C(Q): ¢ has compact support in Q} .

In literature, distributions are also referred to as generalized functions in the sense that they
are considered as mappings 7': C2°(€2) — R. But for the notion of continuity (i.e. a notion
of T being a functional) it is necessary to endow this vector space with a certain topology.
This topology, which we denote by 7 from now on, has to be chosen in a reasonable way

n

2)

the sense that at least the following requirements are satisfied:

7T should be a Hausdorff topology on Cg°(€2) and addition and scalar multiplication
should be continuous operations. A vector space that is endowed with a topology and
shares these two properties is called a topological vector space, cf. [Rud91, Section 1.6].

The topological vector space (C¢(€2),T) and especially its dual space should allow for a
functional analytic treatment parallel to the one of normed spaces. This is to a certain
extent possible for locally convexr topological vector spaces. A topological vector space
is called locally conver if there is a local base! whose members are convex, cf. [Rud9l,
Section 1.8.

The topology T should be compatible with a notion of convergence of elements ¢, €
C(€2). In particular, a mapping T: (C°(2),7) — R should be continuous if and
only if T' is sequentially continuous — with respect to the before mentioned notion of
convergence in (C°(Q), 7).

We collect the following assertions from [Rud91, Theorem 6.4(b)], [Rud91, Theorem 6.5(f)]
and [Rud91, Theorem 6.6, where also the proofs can be found.

Proposition 2.2. There is a topology T on C°() such that

(i) (C°(Q),T) is a locally convex topological vector space,

(i1) ¢n — 0 in (C°(Q),T) if and only if there is a compact K C Q) such that supp|¢,] C K

for every n € N and 0%¢,, — 0 uniformly as n — oo for every multi-inder o € Ng,

(i1i) a linear mapping T: (C(),T) — Y, where Y is a normed space, is continuous

if and only if || T(¢n)|ly — 0, n — oo, for every sequence (¢p) with ¢p, — 0 in
(C (), T).

From now on we fix this topology? 7. We make the following definitions:

"Let (X,7) be a topological space. A family U(x,7) of neighborhoods of a point € X is called a local

base if every neighborhood of  contains a member of U(z, 7), [Rud91, p. 7].

2Tt can be shown (see [Rud91, Remark 6.9] or [Leo09, Exercise 9.9]) that the topology 7 of D(R) is not

metrizable.
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Definition 2.3.

(i)

(i)

(iii)

(iv)

(v)

The topological vector space (C°(€2),7T) is denoted by D(2). ¢ € D(Q) is called a
test function.

A distribution or generalized function is a continuous linear functional 7': D(Q2) — R.
The set of all distributions is denoted by D’'(Q).

The terminology “generalized functions” is justified by the following observation: Ev-
ery f € Li,.(Q) defines a distribution Ty € D'(2) via

loc
Ty (6) = /Q f(@)é() da | (2.2)

Indeed, T is obviously linear and continuous due to the characterization of continuity
in Proposition 2.2 (ii),(iii).

It is also clear that not every distribution can be represented as in (2.2). For example,
for € Q, ¢ — ¢(x) defines a distribution in D’(Q). It is obvious that there is no
function f allowing for a representation (2.2). The following definition singles out the
distributions having such a representation:

A distribution T € D'(9) is called regular if there is f € L}, () such that T = T,
where T} is given by (2.2).

The restriction T, € D'(Qp) of a distribution 7" € D’(Q2) to an open subset 2y C
is defined by

Tlay(¢) =T(¢)  for ¢ € D(Q).

The support of a distribution T € D’'(Q) is defined by
suppT = {:p € Q: Tlonp.(z) 7 0 for any € > 0} . (2.3)

We cite the following proposition from [HT08, Proposition 2.7], which is often called funda-
mental lemma of calculus of variations. For a proof we refer to the mentioned reference.

Proposition 2.4. Let f € L} (). If

/ﬂf(a:)qﬁ(x) dx =0 for all ¢ € D(Q),

then f =0 almost everywhere on €.

Omne consequence of this result is that for f € Cj,.(2) the support of f as in (2.1) and
the support of f interpreted as a distribution Tt € D'(2) in (2.3) coincide. The following
example shows that this is not true if f is not continuous:

Example 2.5 ([HT08, Remark 2.23]). This example shows that the generalization of (2.1)
to functions f € L} () would have the consequence that the support of f — interpreted
as a function — would differ from the support of f interpreted as a regular distribution:

Let f be the Dirichlet function, i.e. the function f: R — [0, 1] defined by f(z) = Lg(x).
Clearly, f =0 in L'(R) and hence supp Ty = (). But since Q is dense in R we have

{z e R: f(zx) #0} =R. ¢
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Generalized derivatives

Definition 2.6 (Derivative of a distribution). Let o € N¢ and 7' € D'(2). The derivative
0T is defined by

(0°T)(¢) = ()" T(2*¢)  for ¢ € D(Q).

Since ¢, — 0 in D(2) implies 0%¢ — 0 uniformly (cf. Proposition 2.2(ii)), we obtain that
10T (¢,)| — 0, i.e. 9°T € D'() for every a € Nd.

As a consequence of this definition, every function f € L}OC(Q) possesses a distributional
derivative of every order, simply by interpreting f as a distribution Ty € D'(2). The
following definition singles out the cases where the distributional derivative of f is a regular
distribution:

Definition 2.7 (Generalized derivatives). Let f € L} () and o € N¢. If 9%T is a regular
distribution, i.e. if there is a function g € L} (£2) such that

loc
9Ty =T, (2.4)

then g is called the generalized derivative (corresponding to o € Ng ). If such a function g
exists, we write 0% f = g.

Remark 2.8.
1. Note that (2.4) means

/ f(z) 0%(x) dz = (—1) / g(x) ¢(x)dx for all ¢ € D(Q). (2.5)
Q Q

Therefore, Proposition 2.4 implies that if there are g1, g with 0Ty = T, = T,,,
then g1 = go almost everywhere on €.

2. (2.5) is an integration by parts formula, which holds for sufficiently smooth functions
f and g. In particular, we can deduce that the generalized derivative and the classical
derivative coincide — provided both exist. In other words, the concept of generalized
derivatives extends the concept of classical derivatives in a consistent way.

3. The two foregoing remarks justify the notation g = 0 f, which we use both for the
classical and the generalized derivative of f.

4. From (2.5) we can also deduce that piecewise continuous derivatives of a function
f:[a,b] — R are generalized derivatives, see |Zei90, p. 232|, where also a proof can

be found.

5. Clearly, the notion of generalized derivatives of f € LP(Q) is well-defined since
LP(Q) c L} _(Q) for every (bounded or unbounded) open setQ) C RY. ¢

loc

The following short example (|GS64, Section 2.2, Ex. 3]) illustrates the relation between
generalized derivatives and distributional derivatives.
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Example 2.9. Let © = (0,00) and A € (0,1). The function f(t) = ¢t~ clearly belongs
to L] () and thus defines a distribution Ty € D'(Q) via (2.2). Its classical derivative

loc

—At~*~! does not belong to L}, (). However, we can compute the distributional derivative

T} of f: Let ¢ € D(Q2). By (2.4) and partial integration

17(0) == [0t = lim [ 60~ 90)] +3 [T 600 - 9(0) .

The limit on the right-hand side is equal to zero and the integral on the right-hand side
exists since ¢(t) — ¢(0) = o(t) for ¢ — 0+. Hence, T} is given by

Ti(9) = /Q M1 ((1) — 6(0) di ‘

2.2 The spaces S(R%), S'(R?) and the Fourier transform

Unless otherwise stated we consider functions with values in the complex plane C and by
a linear space we mean a complex vector space.

In this section we follow [HTO08, Section 2.5].

In Section 2.1 we have introduced — in the special case 2 = R? — the space D(R?) and
its topological dual D’(R%). As it was elaborated in the previous section these spaces are
perfectly suited for the theory of generalized derivatives. However, the space D(RY) is
too small to develop the theory of Fourier transform. It is easy to see that the Fourier
transform is well-defined for functions u € D(R?), but the transformed function in general
does not belong to D(R?), in other words the space D' (R?) is too large. As will turn out,
the spaces S(RY) and &'(R?) are optimal to overcome this problem.

Definition 2.10. Set

SR = {# € C*R?): ¢l < oo for all k,l € No},

where

k/2
6l = sup (1+1a?) D" [0%()] (2.6)
reRd

o<t

The space S(R?) is called the Schwartz space and a function ¢ € S(R?) is called a Schwartz
function or rapidly decreasing function.

Remark 2.11.

a) From this definition it is clear that

%% € S(RY) for all ¢ € S(R?) and o € Ng. (2.7)
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b) A local base in S(R%) can be defined by means of the seminorm in (2.6) and therefore
S(RY) is a locally convex topological vector space® with the topology induced by the
family of seminorms in (2.6), cf. [Rud91, Theorem 1.37|. It this sense the task of finding
a suitable topology on the space of rapidly decreasing functions is easier than in the
situation of compactly supported functions. In particular, it can be shown that the
topology on S(R?) is metrizable, cf. [HT08, Exercise 2.35, Note 2.9.3].

In particular, a sequence (¢,) in S(R?) is convergent to ¢ in S(R?) if and only if

n—oo

I6n — 0l 22250 for all k,1 € Ny, (2.8)

¢) It is clear that D(R?) C S(RY) and ¢, — ¢ in D(RY) implies ¢,, — ¢ in S(R?).

Of course there are ranidly decreasing functions which are not compactly supported, for
example ¢(z) = e 17" ¢

In the same way as we introduced D'(R?) we define now S’(R%):

Definition 2.12. Set

S'(RY) = {T: S(R?) — C: T is linear and continuous } .
The elements of S'(R?) are called tempered distributions.

Remember that by (2.8) T is continuous if and only if for all sequences (¢,) in S(R?)

bn — ¢ in SRY) = |T(¢y,) —T(¢)| — 0.

Fourier transform

Definition 2.13. For u € S(RY) the Fourier transform u of u is defined by

a(e) = (2m)~9/? / e y(z)dz, € R

Rd

The inverse Fourier transform U of u € S(R?) is defined by

(W) (z) = G(—z) = (2m)~ Y2 / e€Tu(g)de,  zeRY

Rd
It is well known (see [Gra08, Proposition 2.2.11, Theorem 2.2.14]) that for all u € S(R?)
GieSRY, T—u=t and fullgsgs = 1@lags = 1l (29)

The last identity is known as Plancherel’s identity.

Scf. p. 14
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In the previous section we observed that every function f € L} .(Q) defines Ty € D'(Q)

loc

via (2.2). A similar statement holds in the context of tempered distibutions (see [HTO0S,
Corollary 2.50]): If u € LP(R?) for some p € [1, 0] then T,, € S'(R?), where T, is defined
by

T,(¢) = /R u@é()dr, 6 e SERY. (2.10)

The Fourier transforms ~ and ~ on S(RY) can be extended to operators .# and .Z ! on
the space of tempered distributions:

Definition 2.14. Let T € S'(R?). Define .ZT and .# T by

(FT)(u) =T(@) and (F7'T)(u)=T%), ueSRY.

Note that this definition makes sense due to the first property in (2.9). Moreover,

FT, 7T € S'RY,  for T € S'(RY).

It is easy to see that .7 (T,) = Ty and .Z ~Y(T,) = Ty for u € S(R?), thus .% and .Z ! are
indeed extensions from S(R?) to S'(RY) consistent with the (inverse) Fourier transform on
S(R%) as in Definition 2.13. The operators are bijective mappings from S’(R%) onto S'(R%)
and satisfy

FFIT=T=7"'2T, TecSRY,
see [HT08, Section 2.7].

For the following result, which we cite from [HT08, Section 2.8], we interpret the spaces
LP(RY) as subspaces of S’(R?) in the sense of (2.10) and do not distinguish between the
function u € LP(R?) and its distribution T, € S'(R9).

Theorem 2.15 (Fourier transform in LP(R?), Plancherel’s theorem). If u € LP(R?) with
1 < p <2, then the tempered distribution % u is reqular. Furthermore, the restrictions of
F and F 1, respectively, to L>(R?) generate unitary operators in L*(R?), in particular

12 Fllageny = 127 gy = W lioey.  F € L2(RY). (2.11)

Moreover, if u € L'(R?) then

Fu(g) = (2m)/2 / (@) de, £ e RY

Rd
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2.3 Sobolev spaces of integer order

From now on we consider functions with values in R and by Banach spaces (or linear spaces)
we mean linear spaces over R.

In the following definition we follow the lines of |[Eval0, Section 5.2.2|.

Definition 2.16 (Sobolev space). Let 1 < p < oo and k € Ny. The Sobolev space WP ()
consists of all functions f € LP(f2) such that for each multi-index a € N¢ with |a| < k the
generalized derivative 0% f exists and belongs to LP(2). In compact form

WhP(Q) = {f € LP(Q): 8°f € LP(Q) for all a € N¢ with |a| < k} :

Furthermore, for f € WHP(Q) set

Vf=(nf . ..,0af)-
Note that W9P(Q) = LP(Q).
The following result states elementary properties of Sobolev spaces. For a proof we refer

to [AF03, Theorems 3.3, 3.6], |[Eval0, Section 5.2.3, Theorem 2|, [Wlo87, Theorem 3.1,
[Ze190, Proposition 21.10].

Proposition 2.17. Let 1 < p < oo and k € Ny. Endowed with the norm

1/p
I lwesgy = | Do 10°F100 for 1< p < oo,
|al<k
Hf“ka‘X’(Q) = Z ||aaf||Loo(Q) )
|la|<k

the linear space WFP(Q) is a Banach space. WHP(Q) is separable if 1 < p < oo and
reflexive if 1 < p < o00.

Note that for all & € Ny the norm on W*2(Q) is induced by a scalar product. Therefore,
the spaces WkQ(Q) are separable Hilbert spaces and we define*

H*(Q) = Wk2(Q)
and the scalar product on these spaces by

(£, D e = D (0°1,0%9) 2y

laf<k

“In literature, one finds also the notation H*P(Q). This space is defined as the completion of C*°(€) N
W P(Q) with respect to the norm |||y k.p(q)- It was shown in [MS64] that HP(Q) = WFP(Q)
for every open set @ C RY and 1 < p < o0, see also [AF03, Theorem 3.17]. If p = oo we have
H™P(Q) C W™P(Q), see [AF03, Corollary 3.4, Example 3.18].
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The space HY and its dual

Definition 2.18. Let k € Ny and 1 < p < <.

(i) The space VV(;c P(Q) is defined as the completion of C°(Q) with respect to the norm
|/l ytop (- Furthermore, set HE(€) = Wy*(Q).

(i) The Banach space H1(f2) is defined as the dual space of Hg () endowed with the
norm

112y = sup { (£, 0) + 0 € HY@Q), gy gy < 1}

The following result, which we cite from [Eval0, Section 5.9.1, Theorem 1| and |Brell,
Proposition 9.20], gives a characterization of the dual space H ().

Proposition 2.19. Let F € H='(Q). Then there are functions fo, f1,..., f1 € L*(Q) such
that for all v € H} ()

d

(Fv) = (fo,0) 2@ + D (i 00) 12y and  [|F || g1y = max [ fill 2o -
i_ ==

Remark 2.20.

a) Since we do not need the dual spaces of general spaces WP we omit their definition
here and restrict ourselves to the case (k,p) = (1,2). For detailed characterizations of
the normed duals of WP similar to Proposition 2.19 we refer to [AF03, pp. 62-65].

b) A function f belongs to WéC’p(Q) if and only if there is a sequence (fy,) in C2°(Q2) such
that || fn — fllyre) = 0 as n — oo.

c) Note that Wg’p(ﬂ) =LP(Q) if 1 < p < oo, since C°(N) is dense in LP(N).

d) Due to the fact that C2°(Q) is a linear subset of W™P() it is clear that W(;C’p(Q) is
a closed linear subspace. Hence, also the spaces Wéc P(Q) are Banach spaces with the
norm H-Hwk,p(m and the spaces HE((2) are Hilbert spaces with scalar product (-, ')Hk(Q)'
The assertions on separability and reflexivity in Proposition 2.17 hold in the same way
for T/V(l;f P(Q).

e) Obviously, for all u € C2°(Q2) we have [ullyrrq) = l|lullyrrpga). Therefore, we can
define the spaces VV(/;C P(Q) in an equivalent way as the completion of C2°(£2) with respect
o |[-[lyr.p(ray-

f) Note that we do not identify the dual space H~1(Q) with H}. The reason for this is
that we shall consider the Gelfand triplet

HY(Q) € L3(Q) = (LA(Q)* ¢ H1(Q) (2.12)

in the functional analytic treatment of linear evolution equations in Chapter 3. A
simultaneous identification of L? with its dual as well as of H& with H~! would make
(2.12) senseless. See also the discussion in [Brell, Section 5.2|. ¢
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2.4 The constant A, _o;

In this section we compute the norming constant that ensures that the Fourier symbol of
the fractional Laplacian (cf. Section 2.7) is |¢|**. More precisely, we prove the following
identity:

Lemma 2.21. Let 0 < s < 1, d € N and & € R%. The following identity holds:

et — 1] D(—s)|
" dh = 25 21_25 d/2 12 °)1 . 2.13
/Rd |7 g ToT (4R 219

Up to the author’s knowledge there is no standard reference where one may find a de-
tailed computation of the exact value of this constant, although its precise value is well-
established. The proof of this lemma extends the sketch of proof in [FLS08, Lemma 3.1]
and is based only on classical results.

For further reference we set

(i
Ad,72s = W m, ENS (O, 1), deN. (214)

Sometimes, this constant is defined in a different way, namely as the reciprocal of

1—
/ Cgsghl)dh
Re|R[TT

The relation to (2.13) and (2.14), respectively, is the following:

‘e’f'h—llz 1 —cos (h1)
2 L gh=21¢* ———>dh 2.15
L =21 [ 219
I cos(hy) 1 r(-s)
—cosim _ —1  _ o-2s_d/2 —S
—— 2 dh = - =2 _— 2.1
/]Rd |h|d+2s 2Ad,*2s & F(%) ( 6)

The proof of this identity is given right after the proof of Lemma 2.21.

Let us start with the definition of Bessel functions. We define it in terms of the Taylor
series around zero, cf. [AS70, 9.1.10] or [Wat66, II1.1.(8)].

Definition 2.22. The Bessel function 7, of the first kind of order v € R is defined by

e j tl/—i-Qj
/V(t):j;(—l) T 5T (2.17)
_ a2t '~ gy Fl+g) ¥
B 12(2> SRy T TR

Jj=0



2.4 The constant Ag,_2s 23

Ifv> —%, the representation as a Poisson integral

/I/(t) — (%)V /1 eits(l _ 82)1/—% ds
w% r V'f‘%)
DR 1
= —= cos(ts)(1 —s“)" 2 ds, t e R, 1
2 [ costes)1 - 57 R (2.18)
T2 F(V—i— %) -1

—

holds, see [AS70, 9.1.20] or |Gra08, Appendix B.1]. Note that it is possible to consider
Bessel functions of complex order v € C. However, for our purposes we may assume
vekR.

The following identity was found in the 19th century ([Son80, p. 39|, [Sch87, p. 161]), see
also [Wat66, XIIL24.(1)]: If v > —2 and —3 < Rez < v+ 1 then

00 vtl—z
/0 t* #,(t)dt = 2ZM . (2.19)

Consider this as an identity of functions in the complex variable z. It is possible to
determine the analytic continuation of the integral on the left-hand side to the strip
v+ 1 < Rez < v+ 3. This method is standard, cf. [GS64, Section 1.3].

Lemma 2.23. Let v € (0,00) and define a, as the coefficient of t¥ in (2.17), i.e

1
T Tw 1)
The following identity holds for v +1 < Rez < v + 3:
00 T (V+1—Z)
t_z ( y(t) — (Zl/ty) dt = 2_21/72z . (220)
fy T ()

Proof. Decompose the integral in (2.19) in the following way:

/Ooot—zfy(t)dt:/l (Aut) — ant?) dt+/Olaut”‘zd“r/loot‘z/y(t)dt. (2.21)

The first term on the right-hand side exists for Rez < v 4 3 since (2.17) implies
| Z,(t) —a,t’| = O(t"*2) for t — 0+. The second term exists for all Rez > v + 1,
whereas the third term is well-defined for all Rez > —3, cf. (2.19). Hence, the right-hand
side of (2.21) is an analytic continuation of the mtegral on the left-hand side to the the strip
v+ 1 < Rez < v+ 3. By the identity theorem of complex analysis (see [FB09, Corollary
I11.3.2]) and the property

1 a e
A a,/tlliz dt = ﬁ]ﬁj—z = —A tiz (a,,ty) dt

we finally deduce from (2.19)

© N i
/Ot (Z,(t) —a,t’) dt =2 F(T;Z)

which is valid for v +1 < Rez < v + 3. OJ
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One could use the decomposition as in (2.21) with higher order terms in order to determine
the analytic continuation to any strip of the form v + 2k +1 < Rez <v+2k+3, k € N.
For our purposes the continuation to v + 1 < Rez < v + 3 is sufficient.

2

Proof of Lemma 2.21. From a change of variable z = |£|h and ’eit - 1‘ = 2(1 — cost),
t € R, we obtain
e — 1] o [ o0 (i 2) - 1‘2
/Rd Gz dh = [¢] /Rd 2| FF2s dz
_9 |§|23/ e ('5' h) dh . (2.22)
B ] T+2

Writing ¢ = é—‘ and changing to spherical coordinates yields

1 — cos
1 —cos(rC-6
/ d+|§s| / Tt / d+2§ )d‘g dr
R4 ‘h‘ gd-1 r

:/ —1 28/ l—COS(rC Q)dﬁdr . (223)
0 Sd—1

Due to a well-known formula on spherical integration (see |Gra08, Appendix D.3|)

d—1

o2z 1
/ cos(r¢ - 0)do = 7Td_21/ cos(rs)(1 — 82)% ds

st L(%H) /o

= @m)E % faa(r),
2
where the last identify follows from (2.18). We apply this identity and [S*!| = 2”d/22) in
(2.23) to obtain

1 — cos < h) oo d/2
Tél _ _d_o9g | 27 d=2 d
/Rd s dh —/0 r2 [I‘(d/Z) ro2 (2#)2/0152 (T‘)] dr

Finally, we use Lemma 2.23 with v = % and z = § 4195 € (v+1,v+ 3) to evaluate the
integral, which proves the assertion (2.13):

i 2
et —1] _g(2s 1-2s_d/2 I'(—s)
L dan =g (2 7o)

rd || I'(¢+s

‘§|28 21 2s d/2 |F( )‘ ) n
T'(¢+s)
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Let us now prove (2.15) (see [DNPV12, p. 531-532]): By (2.22) it remains to show that

_ £ .
/ 1 —cos (|£| h) dh — / 1 —cos (h1) dh
R4 R

’h|d+2$ |h|d+2$

Given ¢ € RY define an orthogonal mapping O: R? — R? with O(¢/|€|) = e;. Using
O! = O~ ! in the scalar product, |O(h)| = |h| and dO(h) = dh we deduce

_ £ . -
/ 1 cos(m h) dh:/ 1—cos (O~ (e1) - h) dh:/ L —cos(er-O(h))
i |h|d+2s Rd |h|d+28 R ’h|d+28

:/ 1—cosd(e;-h’) dh/:/ 1—0252(h1)dh
Re || Rd  |B|¢T
The following result provides the asymptotic behavior of the constant Ag o4 for s — 0+

and s — 1—, respectively. It is a restatement of [DNPV12, Corollary 4.2] but the proof
here is different.

Proposition 2.24 (Asymptotics of the constant Ag o). For any d € N we have

. Ad—2s 1 . Ad—Qs 2d
1 : = d 1 : = . 2.24
o sl—s) M SRS T 22

Recall that }Sdil‘ denotes the (d — 1)-dimensional measure of the unit sphere, i.e.

s = T
d
T ()
Let us emphasize that the precise value of the constants on the right-hand sides of (2.24)

is secondary; the main aspect is that Ag _os is asymptotically equivalent to s(1 — s) for
s —> 0+ and s —» 1—.

Proof. By definition of Ay _2, in (2.14) and the properties of the Gamma function we have

Ad,—2s 92s—11n (%) 92s—110 (d+25 B 92s—110 (%)

s(l1—s) @d/2(1—s)|(—=s)[(—s)|] w21 - S)F<21 —s)  wd2T(2 - s)

Hence,

d d
lim Ad-2s L(3) S and lim Ad-2s ar (3) 2d

_ = = . O
s—0+s(1—s) 2rd/2  |Sd-1 s—1-s(1 —s) md/2 |Sa—1|
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2.5 Sobolev spaces of fractional order

There are several ways to define (fractional order) Sobolev spaces, for example via Fourier
transform (cf. Section 2.6) or via interpolation theory®. We will comment below on the
relation to the definition via Fourier transform. To distinguish the spaces from possible
other definitions, the spaces in Definition 2.25 are sometimes called Sobolev-Slobodeckij
spaces and the seminorm in (2.28) as Slobodeckij, Aronszajn or Gagliardo seminorm.

Definition 2.25 (Fractional order Sobolev space). Let © be an arbitrary open set in R%
and 1 < p < oo. The linear space W*P(Q), 0 < s < 1, is defined by

WHP(Q) = {f € L*(Q): 11@) = F)] € LP(Q x Q)} : (2.25)

|z — |d/p+s

Let r = k+ s with & € Ny and 0 < s < 1. The linear space W™P(Q), 0 < r < oo, is defined
by

WP(Q) = {f e WkP(Q): 0°f € W*P(Q) for all a € N¢ with |a| = k} . (2.26)

Obviously, W"P(2) in Definition 2.25 coincides with W*P(Q) in Definition 2.16 if r = k €
Np.

Proposition 2.26. Let 1 < p < oo, Q an open set in R?, r = k 4+ s with k € Ny and
0 < s < 1. Endowed with the norm

1/p

Py = (1 n + 3 0 yniey | (227)
la|=k

where for u € W*P(Q)

ngs,p = -Ad,—25 ‘d/ers

ul\xr
_,4_5/| d+ps Tdrdy, (229)

[z —y LP(2xQ)

the linear space W™P(Q) is a separable Banach space.
Remark 2.27.

a) For p = 2 the norm in (2.27) is induced by a scalar product and therefore the spaces
Wk2(Q) are separable Hilbert spaces and we define

H"(Q) = W’"’Q(Q)
and the scalar product on these spaces by

(F,9)mr@) = (1,9 mey + D, 1071,0%) o0 » (2.29)

laf=k

5When defining Sobolev spaces as interpolation spaces, the Sobolev spaces of fractional order are consid-
ered as special cases of Besov spaces, cf. [AF03, Chapter 7].
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where for u,v € H*()

(@)~ u(w)) (v(a) ~ ()
0]y = Ade Q/g D= W ey e

7 — y’d+28

b) The role of the constant Ag o, in (2.28) and (2.30) is not evident at this point. Defining
the seminorm in (2.30) and the fractional Laplacian in (2.43) with exactly this constant
has the following desirable consequences in the case Q = R%:

e The seminorm induced by (2.30) converges to the norm on L?(R?) and to the
seminorm on H'(R?) for s — 0+ and s — 1—, respectively®. We refer to Proposi-
tion 2.36 for a precise statement and the proof.

e The symbol of the fractional Laplacian as defined in (2.43) is exactly |£|*, i.e. for
u € S(RY)
F((=A)u)(€) = [¢** Fu,

see Proposition 2.39.

e Moreover, the operator (—A)® converges for s — 1— and s — 0+ to the classical
Laplace operator —A and to the identity operator, respectively. More precisely —
cf. Proposition 2.41 - for u € S(R?) and x € R?

lim (—A)’u(z) = (—Au)(z), and lim (—A)%u(z) = u(z). ¢

s—1— 5—0+

The following proof is based on [DD12, Proposition 4.24], [Dob06, Satz 6.33] and [W1087,
Theorem 3.1].

Proof. Without loss of generality we may assume 44 _9; = 1 in the whole proof. It is clear
that (2.27) defines a norm on W"P(Q). It remains to show that W"P(2) is complete. We
prove the completeness of W*P(Q), 0 < s < 1, which immediately implies that W"P(Q),
0 <r < oo, are Banach spaces.

Let (fn) be a Cauchy sequence with respect to the norm |||y« p(q). Set

_ fn(w) — fn(y)
'Un(xv y) - W
Then, by definition of H-st,p(ﬂ) and the completeness of LP-spaces, (fy,) converges to some
f in the norm of LP(£2). We may chose a subsequence f,, that converges a.e. to f. Then
Up,, converges a.e. in {2 x {2 to the function

f(x) = fy)

v(z,y) = - y‘d/p-i—s .

5A similar statement is also true when p # 2, see [BBMO1] and [MS02].
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By Fatou’s lemma (Theorem 1.8),
[f(x) = fy)I” L
QQ

Since v, is a Cauchy sequence (and hence bounded) in LP(Q x ), this shows that
[f]Ws,p(Q) < 00, i.e. f € W*P(Q). Another application of Fatou’s lemma shows that

[ = flwvsr( //|Unk z,y) —v(x,y) dedy

< liminf/ [on,, (2, y) — v, (2,9) [P dzdy LEsN}

l—00

This shows that || f,, — f||Ws,p(Q) — 0 for k — oo for the subsequence (nj) chosen above
and thus || f, — fHWS,p(Q) — 0 as n — oo, since (f,,) was assumed to be a Cauchy sequence.
The completeness of W"P(Q2) is proved.

The mapping 7

T:W™P(Q) — X L*(Q) x X L*QxQ), (2.31)
la|<k |a|=k

I(f) = (8‘”f ol < &, 8{;_) y]d?:ﬁ” la = k]) ,

is isometric due to the definition of the norm in W"P(Q) in (2.27). Having shown the
completeness of WP(£)) we obtain that Z(W™P(2)) is a closed subspace of the Cartesian
product on the right-hand side of (2.31). This product is separable and so is W"P(Q), cf.
[W1o87, Lemma 3.1]. O

The next result shows that in the case @ = R? there is an equivalent norm to (2.27) in
terms of the difference operator Ay, h € R, defined by

Anf(x) = f(z +h) = f(z) . (2.32)

Lemma 2.28. Let 1 < p < oo andr =k+ s with k € Ng and 0 < s < 1. There is a
constant ¢ = c(d, s,p) > 0 such that for all f € W"P(R9)

[ 1@ )% gy
|h|<1

c Hf”%/r,p(ﬂgd = ||f||Wkp (Rd) + ‘Ad7—28 ’h‘ps | |d = ”f”wrp R4)

|a|=k
(2.33)

Note that the analogous assertion to (2.33) for the seminorm [-]yrp(ga) is not true in
general. This can be seen in the proof below. Let us also mention that the constant ¢ tends
to zero if s — 0+.
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The ideas of this proof are taken from [HTO08, p. 65]. In contrast to the computations
therein we consider general p € [1,00) and we stress the fact that the constant will depend
on s € (0,1) (and of course on the dimension d € N).

Proof. Fix a € N& with |a| = k and write 9°f = g. We use the coordinate transform
y=x+h, h € R and the decomposition R = {|h| < 1} U {|h| > 1} to obtain

l9(z) — g(y) l9(z +h) — g(z)["
/ |J7 o |d+ps // ‘h|d+ps dx dh
R4 Rd 4

R4 Rd
1AnglY ) may dh ApglP
_ (RY) / | Angl
— — 0 dz dh . (2.34)
/ A |n) || *+P
|h|<1 |h|>1 R4

Now observe that HAthLp Ry < 2P ! ”gHLP(]Rd for all h € R? and

413 0)]

/ |h|~%7P% dh =
ps

|h|>1
This implies that the lower bound in (2.33) holds, where ¢ = ¢(d, s, p) can be chosen as
p _1
ps

Estimating the second term in (2.34) from below by zero we establish the upper estimate
n (2.33). O

The space H3(2) and its dual

Definition 2.29. Let 1 <p<oocand 0 <r<ocowithr=k+s, ke Ny 0<s<1.

(i) The space WP (Q) is defined as the completion of C2°(§2) with respect to the norm
H-||Wr,p(Rd). Furthermore, set Hj(Q2) = Wg’2(Q).

(ii) The Banach space H™%(12), 0 < s < 1, is defined as the dual space of H{(2) endowed
with the norm

11152y = 5P { (.0} = € ).l ooy < 1}
Remark 2.30.

a) Let us emphasize that the closure in the foregoing definition is taken with respect to
the norm |||+ gay. To give sense to [|ul| yr(ga), the functions u € C2°(€2) are extended
in the natural way, namely by zero, outside of 2.

b) Note that the two spaces W{P(€) in Definition 2.29 and WF*(Q) in Definition 2.18
coincide if r = k € Ny, see Remark 2.20e.
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c) The reason for defining Hj(2) in this way is given by the easy observation that for a
given function u € Hj () we have u € H"(R?), where

(2.35)

_ u(z) for x € Q,
0 for z € Q°.

This would not hold in general if we defined H((€2) as the completion with respect to
Il fr(q)- However, in most cases the latter definition is equivalent to the one given
Definition 2.29. We state this result, which is taken from [McL00, Theorem 3.33], in a
proposition below.

d) Again, we do not identify Hg(€2) with its dual, c¢f. Remark 2.20f). ¢

Proposition 2.31. Let 0 < r < oo and assume that ) is a Lipschitz domain. Then
HI(Q) = {u e L3(Q): u € H’“(Rd)} :
where w is given by (2.35). If additionally r ¢ {%, %, %, .. .}, then

. el e
Hy(Q) = Ceo(Q) 7

2.6 Characterization of (fractional) Sobolev spaces by Fourier
transform

In the previous section Sobolev spaces of fractional order, in particular H"(Q2) for arbitrary
r € (0,00), were introduced. This subsection is designed to explain why the extension
to H"(Q) with non-integer 7 € (0,00) can be seen as a generalized definition of H¥(f),
k € Np.

To start with, let us recall Definition 2.25, which is valid for Q = R?, ie. for r = k+ s
with k € Ngand 0 <s <1

0% f(x) — 9 f(y)

‘.’L‘ _ y‘d/2+s

H"(RY) = {f € H*(RY): e L*(R? x RY) for all |a| = k;} . (2.36)

0% f(x) — 0“f ()|

|.’IJ o y|d+25

11y = 1 ey + Aaas ] da dy. (2.37)

\a|=de Rd

The following result is taken from [HTO08, Section 3.2|, see also [LM72, Theorem 1.2],
[Eval0, Section 5.8.5] and [McL00, Theorem 3.16]. It states that . is an isometric
map from H"(R?) into a certain weighted L?-space. For r = 0 this is a restatement of
Plancherel’s theorem, Theorem 2.15.
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Theorem 2.32 (Characterization of H"(R?) via Fourier-transform). Let r = k + s with
k€ Ny, 0<s < 1. A function f € L*(R?) belongs to H"(R?) if and only if the function
& (14 €2 2(F £)(€) belongs to L2(RY), i.e.

H'(RY) = {f e LX(RY: (14 [¢?)*7f ¢ L2(Rd)}. (2.38)
Moreover, for u € H*(R?) we have

iy = [ 612 u(@) d€ (2.30)

and the norm [-|| z . defined by

115, = | (1+167)" 71

L2(R4)
is an equivalent norm to ||-[| yr(gay in (2.37).

The following remark explains one reason for the occurrence of the factor Ay o, in the
definition of the seminorms on H"(R?):

Remark 2.33. The equivalence of the norms, which is stated in the above theorem, is
robust for s € (0, 1), i.e. the constants ¢, C' in the relation

cllgr@ay < -z < Ol e (ray
depend on d and k, but not on s € (0,1). ¢

Concerning the case Q # R? we have the following result, see [McL00, Theorem 3.18].
Proposition 2.34. Let 0 < r < oo and  a domain. If Q is an extension domain” then

H™(Q) = {T eD(Q): T = flq for some f € HT(Rd)}
and

1Tl 50 = i0f {1 fll e gy : Flo =T}

is an equivalent norm to ||| gs(q)-
We shall present the proof of Theorem 2.32 following the lines of [LM72, Theorem 1.2],
[HT08, Theorems 3.11, 3.24] and [McLO00, Theorem 3.16]. All these references use an upper

and lower bound for Z| al<k &% which they do not prove. We give a proof of this elementary
estimate as a lemma below.

Lemma 2.35. Letd > 1 and k € Ng. There are constants ¢, C > 0 such that for all y € R?

c(L+ [y < Y v <c+ 1y, (2.40)
o] <k

where — as usual — ]y|2 =y +... + y?l and the sum is taken over all multi-indices o € Ng
with |a| < k.

"Q is an extension domain if there is a continuous linear operator Eq: H"(Q) — H"(R?) such that
Eu|g = wu for all u € H°(Q).
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Proof. The assertion is easily verified if kK = 0 or y = 0. From now on we assume k& € N
and y # 0. Next observe that the function

C’_> Z<2a

o<k

is a continuous function on the compact set S®!. Therefore, this function attains its
maximum, which we denote by M > 0. Of course, M depends on d and k.

For any given y # 0 write y = |y| ¢ for ¢ = % € S* 1. Then
> (wl o zjmmkM<Mu+va<Mu+wn
la|<k || <k

This proves the upper bound in (2.40). To prove the lower bound we note that

{0,.-,0), (K, 0, .., 0), (0,k,0,..)- ., (0,...,0,k)} C {aeNg; I gk}.

STz L b g 2 L d 2 d R )
|| <k

> )™ (14 7).

where we have applied Jensen’s inequality to the convex function ¢ — t* and the trivial
estimate (a + b)¥ < 2¥=1(a¥ 4 b¥). This finishes the proof of Lemma 2.35. O

Proof of Theorem 2.32. The assertion is proved in two steps:

I. Assume r = k € N. Let f € H*(R?). By Theorem 2.15 and the property @(f) =
(i€)*u(€), which is easily checked for u € S(R?) and extends to .# on L?(R%), we
obtain

10° fll po(ray = I€°F fllp2gray  for all @ € N§ with |a| < k.

y (2.40) we then have

s = [ (X ) IENOF ae= [ a1 @1 = 115

loo| <k
This proves the result if » = k € Nj.

II. Now assume r = s € (0,1). The transformation y = z + h and the definition of Ay,
in (2.32) yield

// I y’dJ(rzs dz dy // |fx+|hh’d+25 f@r dzdh

HAthm(Rd)
|h’d+25
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Changing the order of integration, using the fact that

F(A)(§) = (47 = 1) (FN)(©)

and Plancherel’s theorem we obtain
2

i€-h
d "Afhfgf;w - [ zner | ‘€|;|d+23 dhde
From this and Lemma 2.21 we deduce (2.39). Furthermore,
ey = 12 £ + [ 1612 5@ e
< [ (+IER 17O

where the constants that are contained in the notation “x<” do not depend on s &€
(0,1).

This proves the result if r = s € (0,1). For general r = k + s € (0, 00) apply step II
to the functions 0% f, where |a| = k. O

Combining (2.39) and the asymptotics of the constant Ag o5 in Proposition 2.24 we are
now able to prove the convergence of the seminorms on H*(R9) to the norm on L?(R%) and
the seminorm on H'(R?), respectively.

Proposition 2.36.
(i) Forue |J H*RY) we have

s€(0,1)
. u\xr _
lim s / [t Ms’ drdy = (8% ul 2 g (2.41)
Rd R4
(i) For v € H'(R?) we have
!u y) _ st 2
lim (1 / MS dody =" Vulogey.  (242)

A generalization of these statements to the case p # 2 holds true, see [BBMO01| and
[MS02].

Proof. Both assertions follow immediately from (2.39), Proposition 2.24 and Plancherel’s
theorem:

_ u(x
51—1>%1+ // Pt d+25’ dedy = hm SAd 25/ |£|2s ()| d¢

R Rd
i 2
= 18" ull72(ga) -



34 2 Distributions & Sobolev spaces

ulxr S
lim (1 / [l MS dxdy—slimi 1—s)Ay! 25/ 1> | F
R4 R4
S
= IV ullZ2 ay - N

The following proposition justifies why the dual space of H}(R%) = H"(RY) was denoted
by H~"(R?) in Definition 2.29. It is taken from [DD12, Proposition 4.10], where also a

proof can be found.

Proposition 2.37. Let 0 <r < oco. Then

H(RY) = {f € SRY): (1+[¢P) 727 f e L*®RY } .

2.7 The fractional Laplacian

The fractional Laplacian can be considered as the prototype of a nonlocal operator. In this
section we provide the definition of (—A)*/2 and explain the connection to fractional order
Sobolev spaces.

Definition 2.38. Let 0 < s < 1 and u € S(R?). The fractional Laplacian (—A)* is defined
as

(—A)u(zr) =2 Ag 25 p.v./ ulw) = uly) dy for z € R%. (2.43)
) Rd ‘.Z' - y‘d—&-?s

For 0 < s < § it can be shown ([DNPV12, p. 528-529]) that

JRECEI
Rd ’

g

i.e. (2.43) has to be understood in the principal value sense only if % < s < 1. Moreover,
the fractional Laplacian can be defined equivalently via second order differences ([DNPV12,
Lemma 3.2]):

s u(x + h) +u(x — h) —2u(x
(=A)’u(x) = —Ag 26 /Rd ( ) |h](d+28 ) ( )dh for z € RY. (2.44)

Proposition 2.39. Let 0 < s < 1. For any u € S(R?) and ¢ € R?

F ((—A)*u) (&) = [¢** Fu(f) . (2.45)

Proof. Applying (2.44) and Fubini’s theorem we obtain

 [u(x + h) +u(z — h) = 2u(z)] (§)

’h‘dJrQS dh

F (D)) () = —Ag 2, /

Rd
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i€h 1 p—ith o
—2 ( ) RA |h|d+28

@{/ s —af*
_ u —

= [¢]** Fu(é).

|
&
Y

The last identity follows from Lemma 2.21 and the application of Fubini’s theorem in the
first identity is justified by the fact that

|u(z + h) +u(z — h) — 2u(z)|
’h‘d+25

e LR x RY),

cf. [DNPV12, p.531]. O

Proposition 2.40. Let 0 < s < 1 and u € H*(R?). The following identity holds:

[w, u] s (may = ((—A)S/Qu, (—A)S/2u>L2(Rd) . (2.46)

Proof. Plancherel’s theorem, Proposition 2.39 and (2.39) imply
_ s/2 _ s/2 o 2s 2 o
(8 2u-ayr) = [P I a6 = [, - 0

Concerning the asymptotics of (—A)® we cite the following proposition from [DNPV12,
Proposition 4.4].

Proposition 2.41. Let d € N and u € C°(R%Y). Then

lim (—A)Y’u=u and lim (—A)%u=—Au . (2.47)

s—0-+ s—1—
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3 Existence and uniqueness of solutions
to local and nonlocal parabolic
differential equations

Let © € R? be a bounded domain and 0 < T < co. Set Qr = (0,T) x Q.

For s € (0, 1] we consider operators .Z* of the form

div(AVu)(t, z) if s =1,

(LruEr) =39 v /R ult,y) —u(t, @) kola,y) dy it s € (0,1),

(3.1)

where
o A = (ajj)i<ij<dq denotes a symmetric matrix of functions a;;: (0,7) x Q — R,

e k denotes a symmetric kernel k: (0,7) x R x R? — [0,00), (t,x,y) — ki(x,y), which
typically has a certain singularity at the diagonal x = y.

The detailed assumptions on A and k will be given in Lemma 3.16 and Lemma 3.17,
respectively.

Note that in both cases (Z*u) may not exist even for functions u € C°(Q2) or u € S(1).
Since we do not treat classical solutions but weak solutions to problem (3.2), we work with
bilinear forms instead of the operator itself. Only then it will be necessary to specify the
domain of the corresponding bilinear forms.

For s € (0,1] we study initial boundary value problems of the type

ou— L% = f in (0,7) x €,
u= 0 on [0,7] x Q°, (3.2)
u= ug on {0} x Q,

under the conditions

feL?(Qr), uy<c L*Q). (3.3)

The aim of this chapter is to prove that there is a unique weak solution v € W(0,T) to
problem (3.2). The well-posedness in the case of a local operator — i.e. s = 1 in (3.2)
— has been common knowledge since the 1950’s, see for example |[Lad54, Vish4, LV58|.
A detailed discussion on the development of existence and uniqueness results concerning
weak solutions of linear parabolic equations with bounded and measurable coefficients can
be found in the introduction of [Lad85].
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3.1 Generalized derivatives of abstract functions

The following definition extends the concept of generalized derivatives (cf. Section 2.1)
of real-valued functions to vector-valued functions. Similarly to Section 2.1, this could be
done in the context of vector-valued distributions. But for the sake of shortness we omit
the notion of vector-valued distributions.

Definition 3.1. Let V be a Banach space and u € L'(0,7;V). If there is a function
v € LY(0,T;V) such that

T T
/ w(t)d' (t) dt = / v(t)p(t)dt  for all p € C(0,T), (3.4)
0 0
then v is called the generalized derivative of u and we write u’ = v.

If (3.4) is satisfied for two functions vy and vg, then vy (t) = va(t) for almost every t € (0, 7).
This follows from the following variational lemma for vector-valued functions, see [Zei90,
Propositions 23.10,23.18] for a proof.

Lemma 3.2. Let V be a Banach space and v € L'(0,T;V) such that

t
/ WBeE) dE=0  for all 6 € C2(0,T).
0
Then u(t) =0 for almost every t € (0,T).

The following lemma is taken from [Emm04, Satz 8.1.5|:
Lemma 3.3. Let V be a Banach space and u,v € L*(0,T; V). The following are equivalent:
(i) g is the generalized derivative of u: u' = v.

(11) There is ug € V' such that
¢
u(t) = ug +/ v(s)ds for a.e. t € (0,T).
0

(iii) For all f € V* the real-valued function t — (f,v(t)), is the generalized derivative (in
the sense of Definition 2.7) of the function t — (f, u(t)) :

)y = o)y forall eV

The equivalent formulation in part (iii) is of special interest if we take into account the
following characterization (see [EG92, Section 4.9.1]) of absolutely continuous functions on
a finite interval such as (0,7"). We will use this characterization to prove the equivalence
of several weak formulations of the parabolic problem, cf. Proposition 3.13.

Recall that an absolutely continuous function f: (0,7) — R is almost everywhere on (0, 7T)
differentiable.
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Theorem 3.4. Let 1 <p < oo and f: (0,T7) — R.

(i) If f € WYP(0,T) then there is a unique f € C[0,T] belonging to the equivalence class
of f. f is absolutely continuous on [0,T] and ?l e LP(0,T).

(ii) Conversely, if the equivalence class of f € LP(0,T) contains a function g which is
absolutely continuous on [0,T] with g’ € LP(0,T), then we have f € W1P(0,T).

3.2 Evolution triplets and the space W(0,T)

As already mentioned in Section 1.3 one particularity in the functional analytic study of
parabolic equations is that one treats the derivative in time in a different way than the
derivatives in space. In particular, one considers the solution u: (0,7) x 2 — R as an
abstract function u(¢) with values in V', which is a Banach space of functions acting on €.
On the one hand, V should provide enough regularity such that all expressions without
time derivative in the weak formulation are well-defined. On the other hand, it would be
much too restrictive to require that also the time derivative u’ takes values in V. This
explains why one considers a second space H with V C H.

The following result is a preparation to the definition of an evolution triplet.
d
Proposition 3.5. Let V and W be two Banach spaces. Assume that V.— W. Then
(i) W* = V* and (w*,v),, = (w*,v)y, for allw* e W*, veV.

(ii) W* is dense in V* if V' is assumed to be reflexive.

We give the proof following the argumentation in [Emm04, pp. 205-206| and |Zei90, Prob-
lem 18.6]:

Proof. ad (i): For w* € W* we define J(w*) to be the restriction of the functional w* to
the subset V of W. Of course, J(w*) is again a linear functional on V. Moreover,
since V' — W there is ¢ > 0 such that ||v||, < c|[v]|,, for all v € V. Thus

HJ(w*)HV* = sup M <e¢ sup M

= cllw*llyy-
vevioy  |lvlly vewrior vl v

This means that J defines a continuous mapping W* — V*. It remains to show
that J: W* — V* is injective, i.e.

(J(w*),v)yy, =0 forallveV = (w"w), =0 foralweWW.
But since V' is dense in W this is an immediate consequence (see e.g. [Brell,
Corollary 1.8]) of the Hahn-Banach theorem.

Having shown that J is a continuous, injective mapping from W* to V* we may
now identify each element J(w*) € V* in the image of J with w* € W*. In this
sense we have W* — V* and

(w*,v)y, = (W, )y, for all w* e W*v e V. (3.5)
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ad (i1): We prove this by contradiction: Assume that the closure of W* w.r.t. the norm
of V* is a proper closed subset of V*. Then by the Hahn-Banach theorem there
is F € (V*)* such that F(w*) = 0 for all w* € W* with F' # 0 as element of
(V*)*. But since V is reflexive we may find vp € V' such that

F(v") = (v*,vr)y, for all v* € V*.
By the assumptions on F' and (3.5) this implies
Fw*) = (w*,vp) =0 for all w* € W*.

Since vp € V' C W this implies vp = 0 and hence F' = 0 on W, which contradicts
F #0. ]

Definition 3.6 (Evolution triplet). A triplet (V,H,V*) is called an evolution triplet (or a
Gelfand triplet) if V is a reflexive, separable Banach space and H a separable Hilbert space

such that V <i> H.

Remark 3.7. a) By the Riesz-Fréchet representation theorem (see e.g. [Brell, Theorem
5.5]) we may identify H with its dual H*. Proposition 3.5 then shows that

Ve m=n <LVt and (o), = (ho)y forall he Hov € V.
In particular, for all v,w € V

<va>v = (v, w)y = (w,v)y = <w’v>v . (3.6)

b) Note that we do not identify V with its dual V* even in the cases when V is itself a
Hilbert space. A very detailed discussion as well as an example concerning the question
when to identify or not to identify Hilbert spaces is given in [Brell, Ch. 5, Remark

3]. ¢

From now on the calligraphic letters V, V* and H are used to denote that these spaces
form an evolution triplet in the sense of Definition 3.6.

Definition 3.8. Let V,H,V* be an evolution triplet. The linear space W(0,T;V,H) is
defined by

W(0,T;V,H) = {u € L*(0,T;V): v exists and u' € L*(0,T; V*)} . (3.7)
The spaces V and H are often fixed and then we simply write W(0,T) to denote this space.
Note that by Proposition 1.10(vi) we have L?(0,T;V*) = (L%(0,T;V))*.
Furthermore, for a general Banach space V', we define the linear space C([0,7]; V) by

C([0,T];V) = {u: [0,T] — V: u is continuous on [0,7]} . (3.8)

The following results are taken from [Zei90, Propositions 23.2, 23.23|. For proofs we refer
the reader to this reference or to [Emm04, Satz 8.1.9, Korollar 8.1.10].
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Proposition 3.9. Let V' be a Banach space and V,H,V* an evolution triplet.
(i) C([0,T];V) is a Banach space with norm

- ¢
lulleqo,rv) Ofgtag?gp||u()ﬂv

(i) W(0,T) is a Banach space with norm
lullwo,r = llull 2o,y + HU/HLQ(O,T;V*) :

(iii) W(0,T;V,H) — C([0,T); H). More precisely, each equivalence class in W(0,T;V,H)
contains a uniquely determined function that belongs to C([0,T];H). Moreover, there
15 ¢ > 0 such that

< .
mase [u(t) 5y < cllulwr  Jor allue WO,T)

(iv) The following integration by parts formula holds: For u,v € W(0,T) and s,t with
0<s<t<T we have

(u(t),v(t))gy — (u(s),v(s))y = / (W (7), U(T)>v + (V' (1), u(7)>v dr. (3.9)

(v) Forw e W(0,T) we have

1d

57 (wB), u®)n = (' (1), u(®)),,

in the sense of generalized derivatives and a.e. on (0,T), respectively.

3.3 Hilbert space methods for parabolic equations

Recall that V,H, V* stands for an evolution triplet.

For the rest of this chapter we denote by B(t;u,v) a mapping B: (0,7) x V x V — R that
satisfies the following properties:

For all t € (0,T") the mapping B(¢;-,-) is a bilinear form on V, (3.10)
For all u,v € V the mapping t — B(t;u,v) is measurable on (0,7), (3.11)
there is M > 0 such that for all ¢ € (0,7) and u,v € V we have

3.12
Bt )| < M [Jully o]y (342
there are m > 0 and Ly > 0 such that for all t € (0,7) and u € V we

have ) 5 (3-13)
B(t;u,u) > mlully, — Lo [Jul[3 -
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Remark 3.10. (3.13) is also referred to as Garding’s inequality. If Ly = 0 then (3.13)
states that B is a uniformly (in ¢) strongly positive bilinear form.

If the bilinear form B satisfies (3.13) with Ly > 0 one can apply the transformation u(t) =
e~Foly(t) and analogously for f and g, such that the transformed problem involves a
bilinear form B that is uniformly strongly positive. Therefore, it suffices to prove results
like Theorem 3.14 assuming that B is strongly positive, i.e. B satisfies (3.13) with Ly = 0.
For more details on this transformation see [Emm04, p. 218| and |Zei90, Remark 23.25]. ¢

Consider the following abstract initial value problem (cf. [Zei90, Section 23.7]):

Problem 3.11. For given ug € H and f € L?(0,T;V*) find u € W(0,T) such that

forallveV: %(u(t), V) + Bt u(t),v) = (f(t),v), inD(0,T), (3.14a)
u(0) = ugp . (3.14Db)
Remark 3.12.

1. By an identity in D’(0,7) we mean that the appearing derivatives have to be un-
derstood in the sense of generalized derivatives of real-valued functions as in Defini-
tion 2.7, i.e. (3.14a) is satisfied if for all v € V and for all ¢ € C2°(0,T)

T T T
- [(w®.ons @+ [ Beu@.vemd = [ @ oma @15
0 0 0

2. The initial condition (3.14b) is well-defined since u is a.e. equal to a function in
C([0,T];H), see Proposition 3.9(iii). ¢

There are several equivalent formulations of (3.14a), cf. [Emm04, pp. 215-216]. We state
some of them in the following proposition.

Proposition 3.13. Let u € W(0,T) and f € L*(0,T;V*). Then the following conditions
are both equivalent to (3.14a):

(i) For allvey

% <u(t),v>v + B(t;u(t),v) = <f(t)7v>v :
(ii) For allv eV

<u'(t), U>V + B(t;u(t),v) = (f(t),v)y, .

The identities can be interpreted as identities in D'(0,T) and as identities that hold almost

everywhere! on (0,T). The assumptions on f and u ensure that all appearing terms belong
to L*(0,T).

'In this case the quantifiers have to be understood in the following way: The exceptional set, i.e. the
subset of (0,7") where the identities may not hold, has to be independent of v € V.



3.3 Hilbert space methods for parabolic equations 45

Proof. The proof collects arguments from [Emm04, pp. 215-216]. Since u(t) € V for
almost every t € (0,7") we obtain by (3.6) that (u(t),v),, = (u(t),v)y for every v € V
almost everywhere on (0, 7). This proves the equivalence of (i) and (3.14a). Moreover, v’ €
L?(0,T;V*) is assumed to be the generalized derivative of u € L2(0,T;V) C L?(0,T;V*)
and we may interpret v € V as element in (V*)* =2 V. Thus, by Lemma 3.3(iii) and (3.6),

S tult) o)y = ((0),0),  wDO.T).

This shows the equivalence of (3.14a) and (ii).

That all identities may also be considered as identities that hold a.e. on (0,7") follows im-
mediately from the characterization of W2(0, T)-functions on the real line in Theorem 3.4.
To apply this result it remains to show that the functions ¢ — (u/(t),v),, and t — (u(t),v)
belong to L2(0,T) for every v € V:

T T
/ 2 /
| @ as [ ol

T T
/O [(u(t), o)l dt </0 ()3 1ol dt = NulZ2go 700 1013 -

Finally, we show that also ¢ + B(t;u(t),v) belongs to L?(0,T). The measurability follows
from (3.11) and the square integrability from (3.12):

b ol dt = [[o/[[ 720 ey 1011

T T
[ .0 4t < 32 [ ol 1ol = 02 g o1}

This finishes the proof of Proposition 3.13. O

The following theorem, which can be found for instance in [Chi00, Theorem 11.7] or [Zei90,
Theorem 23.A and Corollary 23.26|, asserts that there is a unique solution to Problem 3.11.

Theorem 3.14. Assume that B satisfies (3.10)-(3.13). Then Problem 3.11 has a unique so-
lution w € W(0,T). This solution depends continuously on the initial data. More precisely,
there is a constant C > 0 such that for all ug € H and f € La(0,T,V*)

oy < € (Iollse + 1 2oz ) - (3.16)

For a proof of this theorem we refer to [Chi00, Section 11.3], [GGZ74, §VI.1| or |Zei90,
Section 23.9].

Remark 3.15.

1. A common technique to prove existence of solutions is a Galerkin approximation.
The general idea is to solve (3.14) on finite dimensional subspaces and then pass to
the limit. The solution on the finite dimensional subspaces is obtained via existence
& regularity theorems for systems of ordinary differential equations.

For similar results on existence of solutions to abstract initial value problems like
Problem 3.11 via Galerkin approximation we refer also to [EvalO, Section 7.1],
|GGZT74, Chapter VI|, [LSU68, Chapter III| and [W1o87, Chapter IV].
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2. Let us emphasize that the bilinear form B in Problem 3.11 may depend on the
time variable t. In (3.12),(3.13) we require the constants to be independent of
t € (0,7). In the sense of estimates deduced from (3.12) & (3.13), the change from
time-independent forms to forms as in (3.14) causes no particular difficulties.

However, the systems of ordinary differential equations obtained by the Galerkin
method are not the same in the cases of time-dependent and time-independent forms

B, cf. |Zei90, p. 439]. ¢

3.4 The bilinear forms associated to .¥*

As usual in the functional analytic theory of weak solutions, the bilinear form that will be
part of the weak formulation is obtained as L2-product of (—.%*u) with a smooth function
v € CP(Q). We assume the coefficients, the kernel and the solution to be regular enough
such that all terms are well-defined in the derivation of the bilinear form. When inspecting
the structural properties of these forms in Lemma 3.16 and Lemma 3.17, we provide formal
assumptions on the domain and on the coefficients and kernels, respectively.

3.4.1 The local case s = 1:

Let v € C2°(£2). An integration by parts yields

(=L ult, ):00)) gy = _/

div(AVu)(t, z)v(zr) de = / A(t,z)Vu(t,z) - Vu(x) dz.
R4 Q

Under certain conditions on A the right-hand side of this identity defines a continuous
bilinear form on Hg () that satisfies Garding’s inequality:

Lemma 3.16. Assume that A = (aij)1<ij<d 15 o quadratic matriz of functions
a;j € L*=((0,T); L>®(Q2)) such that a;j = aj; for all 1 <i,j < d. Furthermore assume that
there is v > 0 such that for all € € R and (t,z) € Qr

d

> it )& = Alt,2)€ - € = v [€°. (3.17)

3,j=1

Then EL: (0,T) x HY(Q) x HH(Q) — R defined by
El(tu,v) = / A(t,z)Vu(z) - Vo(z) dz
Q

satisfies the properties (3.10)-(3.13), where V = HE(Q), H = L*(Q) and m = Ly = 7 in
(3.13).

The proof is straightforward, cf. [Eval0, p. 318] or [Zei90, Proposition 23.30]. We present
this proof here for the sake of completeness:
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Proof. Property (3.10) is obvious. Since all functions a;; are measurable, we easily obtain
the measurability of t — E1(¢;u,v) for all u,v € HZ(Q). To prove the boundedness, observe
that for all t € (0,7)
(4. g
‘5 (t,u,v)‘ < 1£3§d“a”HL°"(QT) HUHHl(Q) HU”HI(Q)
Hence, (3.12) is satisfied with M = max ||al]||Loo (Qr)> Which is independent of £, u,v.

1<i,j

Finally, to prove that £! satisfies (3.13), we apply (3.17): For all u € H () we have

E' (k) + 7 [[ull 22y = /Q 7 Vu(@)? da + 7 llul2agq) = 7 el gy - m

3.4.2 The nonlocal case s € (0,1)

Let v € C°(Q) and D, = {(z,y) € R x R?: |2 —y| > 1/n} for n € N. By definition of
the principal value we obtain

(=Z%u(t,),v(") 2may = 2/dv($) Jim - )[ u(t,z) — u(t,y)] ku(z, y) dy da
—27}3.10// (t, ) — u(t,y)] v(@)ke(z,y) dy dz.

Since the kernel is symmetric we have
// [u(t, z) — u(t,y)] v(z)k(z,y) dy dz = // [u(t,y) — u(t, z)] v(y)ki(z, y) dz dy.
D Dy,

Fubini’s theorem then implies

o ut.2) — (e ) @k o) e = [ [0 2) — )] 0@k ) g
DTL Dn
+ // [u(t,y) —u(t,x)] v(y)ke(z,y) dy dz
Dn

- // fut, 2) — u(t, )][o(z) — v(y)] ke, ) dy da.

Dy

If we assume that the form £%(u, u) is in some sense comparable to the seminorm in H*(R?)
then the limit as n — oo of the right-hand side expression exists, and this limit defines a
continuous bilinear form on H{(£2) that satisfies Garding’s inequality. More precisely we
have the following result:
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Lemma 3.17. Define £°%: (0,T) x H§(2) x H§(2) = R by

et ) = [ lule) = uw) o) — oly)] kla,y) dydo.

R4 R4

Assume that (t,z,y) v+ ki(z,y) is a nonnegative, measurable function on R x R? x R?
satisfying ki(x,y) = ki(y,z) for a.e. t,x,y. If we assume that there is a constant ¢y =
ci1(s,d) > 0 such that for every u € H(2)

£°(u,u) < et |[ulls(gay (3.18)

then £%(t;u,v) satisfies the properties (3.10)-(3.12), where V = H§(Y), H = L*(Q). More-
over,

E%(t;u,v) = lim // [u(z) — u(y)] [v(x) — v(y)] ke(z,y) dy dz. (3.19)

If we additionally assume that there are constants ca,c3 > 0 that may depend on s and d,
such that for every u € H(2)

[, 1] oty < €2 E%(u,u) + 3 ||ull2q » (3.20)
then E° satisfies property (3.13).

Remark 3.18.

a) Clearly, all assumptions in the previous lemma are satisfied if we assume that there are
constants A\, A > 0 such that

Mz —y| % < ky(x,y) <Az —y|""*  for almost every (t,z,y) € R x R? x R?.

b) The assumptions (3.18) and (3.20) state that the kernel k; has to be chosen in such a
way that the corresponding bilinear form is comparable to the seminorm on H*(R%).
It is currently an interesting field of research (cf.[DK11]) in the area of nonlocal forms
to find quite mild conditions on the kernel k; that are sufficient for this comparability
in the sense of (3.18) and (3.20), respectively. In particular, in [DK11, Appendix|, the
authors show that no essential conditions on the behavior of k;(z,y) for large values of
| — y| have to be imposed in order to guarantee (global) comparability.

c) Let us give two sufficient conditions on the kernel such that (3.18) and (3.20) hold. Con-
dition (3.22) is very restrictive in comparison to those in [DK11, Appendix|. However,
they are easy to compare with the assumptions (K;) and (Ks), which we shall use to
prove regularity results in Part III of this thesis.

Assume that there is s € (0,1), A > 1 and U 3 Q bounded such that the following
properties hold: for all t € (0,T), zg € R?, p € (0,1) and v € H*(U)

p_2/ 20 — y|* ky(z0,y) dy + / ki(z0,y) dy < Ap~2, (3.21)
lzo—y|<p |zo—y|>p
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A // W2k (2, ) dedy < (1 // d+23 " dedy

<A [ @) = o) ) do .

uu

(3.22)

For simplicity we assume that dist(2,U) > 1 and remark that we may replace 1 by any
fixed number greater than zero.

To prove (3.18) let uw € H§(§2). By (3.21), (3.22) and the fact that U° N By(z) = 0 for
every x € () we obtain

(4, ) // 2 ko (2, y)dydx+2/ 2(p )/kt(x,y)dydx

U

U(‘
// d+2s d dx+2/ / ki(z,y)dy dz

Bl(CIE)C
< A(L = 8) [|ull Fro ray + 24 [[ull72(q)
< 2A [l o ay -

To see that also (3.20) holds let u € Hj(£2). We apply the second inequality of (3.22):

Hs Rd)—// d+23 d dac-l—?/ 2(z) / lz —y| % dyda

Q B1 (x)c

< 1755@ u) + 2CHUHL2 ()

where C' = C(d, s) is some constant such that fBl(ac)c |z —y|7% dy < C for every
x € (. ¢

Proof of Lemma 3.17. Tt is easily seen that for every ¢ € (0,7) the mapping w,v
E3(t;u,v) is bilinear. Property (3.11) follows from the measurability of ¢ — k(- -).

By Hélder’s inequality we have |E%(t;u,v)| < \/E5(t;u, u)\/E3(t;v,v) for every t € (0,T)
and u,v € H§(). This shows that (3.12) is satisfied with M = ¢;(d,s). Due to the
monotone convergence theorem, the existence of the limit and the representation in (3.19)
is now an easy consequence of the boundedness.

We can write (3.20) in an equivalent way:
2 2 2 2
[ullzs ) = llullzo@) + [ulgs ey < 187w, u) + (c2 + 1) [Jullz2 (g ,

which shows that (3.13) is satisfied with m = ca(d, s) and Lo = c3(d, s) + 1. O



50 3 Existence and uniqueness of solutions to local and nonlocal parabolic differential equations

3.5 Weak formulation of the initial boundary value problem

We will now introduce two weak formulations of problem (3.2). The difference between the
two formulations is the role of the partial derivative with respect to time. On the one hand,
we can require the test function to possess (a weak) derivative with respect to time, which
in turn implies that there is no such restriction to the solution, cf. Problem 3.19. On the
other hand we may require that the solution possesses at least a generalized derivative in
some suitable space, which allows us to use test functions with less regularity in the time
variable, cf. Problem 3.20.

In view of the the abstract approach in Section 3.3 we consider for each s € (0,1] the
Gelfand triplet
V=H9Q), H=L*Q), V'=H*Q).

Hence, in addition to the dependence of the underlying function spaces on the domain
where the initial boundary value problem is stated, these spaces also depend on the order
s € (0,1] of the underlying operator .£*.

The presentation in this section uses several ideas from [Tr610, Chapter 3.

Problem 3.19. Find u € L?(0,T;V) satisfying for all
¢ € HY(0,T;H) N L*(0,T; V) with ¢(T) = 0

the variational equality

T

z T
—wwwmﬂi/ww@wnﬂa+/fwuw¢@wﬂ:A<ﬂm¢dewcma
0

0

Note that all expressions in (3.23) are finite due to the requirements on w and ¢. In
particular, the terms ¢(0) and ¢(T) are well-defined due to the embedding H'((0,T); H) —
C([0,T); H), see Proposition 3.9(iii).

Problem 3.20. Find u € W(0,T) satisfying for all
¢ € L*(0,T;V)

the variational equality

T , T T
A<wmwmwa+ésamwamwzﬂ<ﬂmwmﬂa (3.24a)
and
u(0) = uo. (3.24b)

Again, all expressions in (3.24a) are finite and the initial condition (3.24b) makes sense
due to the embedding W(0,T) — C([0,T];H), see Proposition 3.9(iii).
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Remark 3.21. Note that (3.24a) can be seen as an integrated version of the abstract
formulation in (3.14a): Assume that v € W(0,T) satisfies (3.14a). Define for a given test
function ¢ € L2(0,T;V)
Io(¢) = {t € (0,T): ¢(t) ¢ V5.

By the properties of the function space L?(0,7T; V) the set Ip(v) is contained in a measurable
set of measure zero. Denote by I C (0,7T) the set of ¢ € (0,7) such that (3.14a) does not
hold. Similarly, I; is contained in a set of measure zero. On (0,7)\ (Ip U I;) we may apply
(3.14a), and integrating over (0,7") yields (3.24a). ¢

The following two propositions provide the link between the two formulations. Propo-
sition 3.22 says that v € W(0,T) is no essential requirement for u as in Problem 3.19.
Proposition 3.23 asserts that the formulation in Problem 3.19 is weaker.

Proposition 3.22. If u satisfies Problem 3.19 then u € W(0,T).

The proof of this assertion in the case s = 1 and a;; = 6;5, i.e. £° = A, can be found
in [Tr610, Section 3.4.4]. Following the method there we provide a proof in the general
setting.

Proof. Assume u satisfies Problem 3.19. In (3.23) we apply a test function ¢ of the form
o(t,x) = v(x)x(t), where v € V and x € C°((0,7T)). Using x(0) = 0 we obtain

T / T T
—/0 (u(t)x'(t),v),, dt = —/0 X()E% (u(t),v) dt+/0 x(t) (f(t),v)y dt. (3.25)

For every fixed t € (0,T) — possibly after redefining u(t) = 0 on a subset of (0,7) of
measure zero — the integrands on the right-hand side define linear functionals Fy(t), Fa(t):
YV — R, namely

Fi(t): v E%(u(t),v) and Fa(t): v (f(1),v)y .

Obviously, Fi(t) and Fy(t) are bounded and hence F(t), F5(t) € V* for every t € (0,7T).
Furthermore, for every t € (0,7 there is a constant C' = C'(A, A, s) such that

[E1 @) [y + [ E2@)]ly- < C(lu@)lly +1F @2 -

Since the right-hand side of this inequality belongs to L?(0,T'), this shows that Fy, Fy €
L%(0,T;V*). Setting F' = F} + F, we can rewrite (3.25) and obtain that for all v € V and
x € C2((0,T))

T , T , T
~ [ @OXO.0)y == [ (@00 de= [ FOX.0y at
This means that for all x € C2°((0,7))
T T
—/u@ywazfzwn@a eV,
0 0

ie. v/ = F € L?(0,T;V*). This finishes the proof of Proposition 3.22. O
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Proposition 3.23. If u satisfies Problem 3.20 then u also satisfies Problem 3.19.
Proof. Let u satisfy Problem 3.20 and let
¢ € H((0,T);H) N L*0,T; V) with ¢(T) = 0,

i.e. ¢isan arbitrary test function as in Problem 3.19. In particular, ¢ € W(0,T'). Therefore
we can apply the integration by parts formula (3.9) to the first term in (3.24), which implies

T T T
(MﬂMﬂM—W@MWM—A<M&#®h®+£éﬂw@&24(ﬂmwmnﬁ

Finally, we use ¢(T") = 0, the initial condition (3.24b) and the property (u(t),¢'(t))y,
(u(t), @' (t)) to conclude that u satisfies Problem 3.19.

Ol

3.6 Well-posedness result

As an easy consequence of the results in Section 3.4, which show that the bilinear forms
E*(t;u,v) satisfy all conditions in Theorem 3.14, we are now able to deduce the well-
posedness of Problem 3.20.

Theorem 3.24. If s = 1 let A satisfy the assumptions of Lemma 3.16. If s € (0,1)
assume that ki satisfy the assumptions of Lemma 3.17. Then there is a unique weak
solution uw € W(0,T) to Problem 3.20. This solution depends continuously on the given
data: For all ug € L*(Q) and f € L*(Qr) there is a constant C' > 0 such that

lulbwozy < € (Iollza(ay + 171l 2o (3.26)

The constant C' depends on s € (0,1], on the dimension and on the constants that
appear in the assumptions on E° in Lemma 3.16 and Lemma 3.17, respectively.

Note that W(0,T) = W(0,T; H3(Q2), L*(2)).

By Proposition 3.23 the previous theorem proves also the existence of a solution to Prob-
lem 3.19. However, the question of uniqueness (and the derivation of an estimate compara-
ble to (3.26)) is technically more involved. This is explained by the fact that one may not
apply the solution u as test function in Problem 3.19. There are two possibilities to over-
come this problem: One may derive an energy estimate similar to (3.26) for the solutions in
the Galerkin scheme and then pass to the limit. Another possibility is to use differentiable
approximations of the solution u, such as Steklov averages. We refer the reader to [LSUGS,
Chapter III| for details.
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4 Set-up & Main results

By © we denote a bounded domain in R? and by I an open, bounded interval in R.

In this last part (Chapters 4-7) of the thesis we study local properties of weak solutions
w: I xR? = R to the equation

duu(t,x) — L°%u(t,x) = f(t,z),  (t,x) el xQ, (4.1)
where £%/? is an operator of the form® (cf. Chapter 3)

div(AVu)(t, x) if o =2,

20)(t, x) =
Rd

(4.2)
In the two cases aw = 2 and a € (0,2) we use the following notation:

o A = (aij)1<ij<d denotes a symmetric matrix of functions a;;: (0,7) x @ — R. We
assume that a;; € L>(1; L>(Q)) for every i,j = 1,...,d and that there is A > 0 such
that A(t,z)€ - & > A|€|*. Thus we may assume that there are 0 < A < A < 0o such
that for all (t,7) € I x Q and for all £ € R?

el < At 2)€ - € < AJE” (4.3)
We will refer to the equation
atu(ta IE) - glu(t’x) = f(tal'% (ta ZL‘) €l x Q7 (PEQ)

as second order parabolic equation. Local regularity results for this equation were
shown by Moser. We restate and reprove these results in Chapter 7.

e k denotes a symmetric kernel k: (0,7) x R x R? — [0, 00), (t,z,y) + k¢(x,y), which
typically has a certain singularity at the diagonal x = y. The detailed assumptions
on ki(x,y) will be given below. We will refer to the equation

deu(t, ) — L %u(t,x) = f(t,x),  (t,z)elxQ, (PEq)

as a-order or fractional order parabolic equation. The proofs of the regularity results
for this equation are given in Chapter 6. These results have already been published
by the author in a joint publication [FK13] with M. Kassmann.

1'We recall from Chapter 3 that in both cases the operator may not exist even for smooth functions wu.
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Note that in the case
Ad,—a

’.1‘ o y’d—I—a

with A4 _o defined in (2.14), the integro-differential operator . defined by (4.2) is equal
to the pseudo-differential operator (—A)*/? with symbol |€|*, cf. Section 2.7. Thus the
operator in equation (PE,) can be seen as an integro-differential operator of order a with
bounded measurable coefficients. From this point of view it is natural to denote the order
of the equation rather by a € (0,2) than by s € (0,1). This is one of several reasons why
we stick to this notation for the rest of the thesis. The results from the previous sections
are applied to s = «/2. The notation sup and inf are also used to denote ess-sup and
ess-inf, respectively.

kt(xv y) =

4.1 Assumptions on ki(x,y)

Let us specify the class of admissible kernels. We assume that the kernels & are of the
form

kt(xv y) = a(t,a:,y)kg(m,y)

for measurable functions ko: RY x R? — [0,00] and a: R x R? x R? — [%, 1], which are
symmetric with respect to x and y.

Definition 4.1. Fix ag € (0,2) and A > max(1,ap").

(i) We say that a kernel k belongs to K (g, A), if there is o € (v, 2) such that kg satisfies
the following properties: for every zo € R, p € (0,2) and v € H*/?(B,(x))

p2 / 120 — y1? k(0. ) dy + / kolzo,y)dy < Ap~, (K1)
|zo—y[<p |zo—y|>p

A7 [ @) — o) Pho(e ) dedy < (2 // o - y|d+a -aw (Ks)

BB

< A// N ko(x,y) dzdy, where B = B,(xo).

(ii) We say that a kernel k belongs to K'(ag, A) if k € K(apg, A) and if

sup / 1Y ko, y) dy < A . (Ks)
z€B2(0) J R4\ B3(0)

Note that (Ks) is satisfied if fRd\Bg(O) ly|® ko(z, y) dy is uniformly bounded in By(0) for
some § > 0. We use this notation in order to avoid a third constant to appear in the class

K.

As we will show, the conditions (K;j) and (Ks) are sufficient to prove a weak Harnack
inequality for nonnegative supersolutions of (PE,). The additional assumption (Kj) is
needed for the proof of Holder regularity.
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4.2 Local weak solutions

In Chapter 3 we studied existence and uniqueness of solutions to the boundary value
problem (3.2). In what follows we will prove local regularity results for functions that are
only solutions to the equation, disregarding the boundary and initial values prescribed in
(3.2). As a first consequence we obtain that a solution is no longer required to vanish on
Q°. Thus a solution — written as abstract function — may take values in H%/%(Q) (instead

of Hy / 2(Q) as in (3.2)). Furthermore, we only require the equation to hold locally, i.e. on
every compact subset of I x €.

For both the second order and fractional order case we take the formulation in Problem 3.19
as a starting point. In particular, the assumption u € Co(I; L2 (€')) is motivated by
Proposition 3.22 and the embedding

W(I's Hy (), L*(Q) = C(I' L))
see Proposition 3.9(iii).

The definitions in this section follow [DGV11, Section 3.1].

4.2.1 Second order parabolic equation
Definition 4.2. Assume Q = I x Q C R and f € L>(Q). We say that u is a
supersolution of (PEg) in @Q =1 x Q, if

<1> u € ClOC(I; LZQOC(Q>) a Ll20c(I; Hlloc(Q))7

(i) for every subdomain ' € €, for every subinterval I’ = [t1,t3] C I and for every
nonnegative test function ¢ € H(I'; L2(Y')) N L2(I'; H (),

/¢(t27$)u(t2,9€) dw—/¢(t1,x)u(t1,a:) dx—f/u(t, 2)Opp(t, x) dz dt
o o

t1 QY

+7 / Alt,2)Vult, ) - Vo(t, z) de dt > 7 / Pt 2)b(t, 2) de dt. (4.4)

t1 Q t1 Q

From now on “Oyu — %' > f in I x “ denotes that u is a supersolution in I x € in the
sense of this definition. Subsolutions and solutions? are defined analogously.

Note that the values of ¢(t1) and ¢(t2) are well-defined due to the embedding
HN(I' LX) = C(T5 L)),

see Proposition 3.9(iii).

2In the definition of a solution there is no restriction on the sign of the test function ¢.
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4.2.2 Fractional order parabolic equation

Let us recall from Lemma 3.17 the bilinear form that is associated to the operator £/

£2/2(t;u,0) = // () — ()] [o(x) — v(y)] ke, y) dardy

R4 R4

where we assume that the kernel k; satisfies (K;) and (K2) on page 56. For simplicity we
shall omit the upper index in the bilinear form and write & (u,v) = £/2(t;u,v) if there
is no danger of confusion. We will reserve the letter £ for the bilinear form in the the
fractional order case.

Definition 4.3. Assume Q = I x Q C R¥! and f € L®(Q). We say that u €
L®(I; L (RY)) is a supersolution of (PEy) in Q = I x €, if

a/2
(15 Hyyl (),

loc

(i) u € Cloe(L: L3, (2)) N L],

loc loc

(ii) for every subdomain ' € €, for every subinterval I’ = [t1,t2] C I and for every
nonnegative test function ¢ € H*(I'; L2(Y')) N L*(I'; Hg/Q(Q’)),

/gb(tg,x)u(tg,x) dx—/qﬁ(tl,x)u(tl,x) dx
0% 0%

to to ta
— u(t,x)0ep(t,x) dedt + | E(u, ¢)dt > f(t,x)p(t,z)dedt. (4.5)
/1 !

From now on “Oyu — %%y > f in I x * denotes that u is a supersolution in I x € in the
sense of this definition. Subsolutions and solutions® are defined analogously.

The values of ¢(t1) and ¢(t2) are well-defined due to the embedding
HY(I' L)) = O(T; L*(9Y)),
see Proposition 3.9(iii).

In comparison with Definition 4.2 we added the assumption u € L®(I; L>°(R%)), i.e. we
allow only for bounded solutions. This is explained by the nonlocality of & in (4.5): Let
¢ be a test function as in Definition 4.3. We may extend ¢ by zero outside of €/, by
Remark 2.30c) this extension belongs to H*/2(R%). Let Qo C R? such that Q' € Qg € Q.
Then, by (K;) and (Kz), for almost every ¢t € I’

€1 (u, )| < / u(t, z) — ult, y)||o(t, 2) = (L, y)| ke (z,y) dzdy
Rde

=[] tutt.) — utt.)l19(t.2) — 6(t.9)] Rale. ) drdy

Qo Qo

3In the definition of a solution there is no restriction on the sign of the test function ¢.
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equations

v2 [ ottt )~ ult.g) . g) doy

Q8 Qo

< Aty 100 oy + 41O sy [ 0lt,2) [ Kol dya

0

< C100)oraqay (1400 ey + 1808 )

where the constant C' depends on A, d and the distance of Q' to Qy. The assumptions on
u and ¢ ensure that the terms in the last line belong to L(I").

4.3 Main results: Weak Harnack inequality and Hoélder
regularity for fractional order parabolic equations

In Section 6.5 we prove the following result:

Theorem 4.4 (Weak Harnack inequality). Let k € (v, A) for some ag € (0,2) and
A > 1. Then there is a constant C = C(d, o, A) such that for every supersolution u
of (PE4) on Q = (—1,1) x By(0) which is nonnegative in (—1,1) x R? the following
inequality holds:

Il <€ (infut 1l ()

where Ug = (1 — (5)%,1) x By2(0), Ug = (=1,—1 4 ($)%) x By/2(0).

Note that the domains Ug, Us can be replaced by (%, 1) x By /2(0), (—17 —%) x By /2(0),

respectively.

The proof of the following interior Holder regularity estimate will be given in Section 6.6.

Theorem 4.5 (Holder regularity). Let k € K'(ag, A) for some ag € (0,2) and A > 1.
Then there is a constant § = B(d, o, A) such that for every solution u of (PE,) in
Q=1xQ with f =0 and every Q' € Q the following estimate holds:

lu(t, x) — u(s,y)| - Hu”Loo(Ide)

, (HC)

Sub 5= B
(tvx)a(svy)eQ/ <’x — y| _|_ |t — 8|1/a> T,

with some constant n = n(Q, Q") > 0.

1/a 1/2.

Similar to the previous result, |t — s|"/® can be replaced by |t — s|
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Remark 4.6.

a) In this work we concentrate on the most simple characteristic setting in order to explain
the main arguments. In particular, one can obtain Theorem 4.4 for supersolutions u in
general domains in R%T! by rescaling v to a function that is a solution in a standard
cylinder (—1,1) x By(0) (cf. Lemma 5.1) and by applying some covering arguments (cf.
[Mos71, Lemma 4]).

Let us also mention that the f € L*°(Q) for the inhomogeneity f is not optimal in
(HI). However, this assumption suffices to derive the Holder regularity estimate from
the weak Harnack inequality.

b) Note that a strong Harnack inequality, i.e. |[ulz1(y,) replaced by supy, w in (HI),
cannot be obtained under our assumptions. A counterexample was found by Bogdan
and Sztonyk [BS05, p. 148], see also the discussion in [KRS13, Section 7.A|. Thus,
the strong formulation of Harnack’s inequality fails although conditions (K;) and (Kj)
ensure non-degeneracy of the operator L in (4.2). In this sense the nonlocal case differs
from the case of local diffusion operators. ¢

Example 4.7 illustrates the robustness for &« — 2—. Example 4.8 shows that ki(z,y) may
be zero on a large set around the diagonal x = y.

Example 4.7. Consider a sequence of kernels (k™),en such that k™ € K(ap, A) for every
n € N and some g € (0,2), A > 1 independent of n € N. For instance k;(z,y) defined? by

K (z,y) = (2 —an) |z —y ™ withap =2 35 (4.6)

belongs to K(1,A) for some A = A(d) > 1. Let (u,) be a sequence of solutions to the
corresponding equation (PE,). Then (HI) holds true for the sequence (u,) uniformly in
n € N. Furthermore, if (k") additionally satisfies (K3) uniformly in n € N — such as the
kernels in (4.6) — then also (HC) holds uniformly in n € N. Note that the theorems are
interesting and new even if «,, = « for some « € (0,2) and all n € N. ¢

Example 4.8. Fix oy € (0,2). Assume ki(x,y) = ‘x_2;|§‘+a for some a € (ap,2). Let

¢ €S tandre(0,1). Set

§=S"TN(BAOUB(-Q)  and ki(z,y) = ko y) Ls( £,

Then we have k' € K(ap, A) for some A > 1. ¢

“Note that the factor (2 — @) in (4.6) is essential to find A and ao independent of n € N.
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In this chapter we provide all technical tools that are needed to apply Moser’s iteration
technique. The results concerning the fractional order case have already been published in
a joint publication by M. Kassmann and the author [FK13].

Four basic tools for Moser’s proof of the regularity results can be singled out, cf. the
description in [SCI5]:

1.

In order to deduce Holder regularity from the (weak) Harnack inequality, a certain
scaling property of the equation is used. This scaling result is provided in Section 5.1.

. The basic steps of Moser’s iteration are proved by means of Sobolev’s inequality, which

is shown in Section 5.4.1.

. A Poincaré inequality is needed in order to prove estimates for logu. In contrast to

Moser’s proof for elliptic equations, a weighted Poincaré inequality is needed in the
situation of a parabolic equation. Heuristically, this is explained by the observation
that one has no information on the sign of d,v, where v is the auxiliary function in
the proof of Proposition 6.9 and Proposition 7.5. The weighted Poincaré inequality is
established in Section 5.4.2.

. The John-Nirenberg embedding, which ensures exponential integrability of BMO func-

tions. Moser applied this embedding in [Mos61, Mos64, Mos67|. In Moser’s own words,
the proof of the parabolic generalization of the John-Nirenberg embedding "is quite in-
tricate and it was desirable to avoid it entirely“!. Therefore, Moser showed in [Mos71]
that indeed this argument can be avoided by adapting a lemma which was found by
Bombieri and Giusti [BG72|. We reprove the Bombieri-Giusti lemma in Section 5.6.

5.1 Standard cylindrical domains and scaling property

Let us briefly explain the scaling behavior of equation (PE,). Here and later we will use
the following notation. Define

Br(xo):{wERd: \x—ajo\<r}, r >0
and (cf. Figure 5.1)
I.(to) = (to — r, to +1%), Qr(z0,t0) = Ir(to) X Br(zo),
Ig(r) = (0,7%), Qa(r) = Ig(r) x B(0),
Ie(r) = (=r%,0), Qe (r) = I (r) x Br(0).

Mos71, p. 727]
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Figure 5.1: Standard cylindrical domains

Lemma 5.1 (Scaling property). Fiz ag € (0,2), ¢ € R?, 7 € R and r > 0. Assume that
there is a € (ag,2) and A > max(1,ay") such that the kernel ky(z,y) = a(t, z,y)ko(x,y)
satisfies the following properties: for every xo € R, p € (0,2r) and v € HO‘/2(B,,(:C0))

P_Q/ |0 — y|* ko(zo, y) dy +/ ko(wo,y)dy < Ap™®, (5.1a)
lzo—y|<p lzo—y|>p
A~ 1// ) — () ko(z, y) dzdy < (2 // d+a da:dy
BB
< A// (W) ko(z,y) dedy, where B = B,(zo), (5.1b)
sup [ k) dy < A A (5.1¢)
(EEBQT(g) Rd\Bgr()

Let u be a supersolution of equation (PE,) in Q 2 Q.(&,7) with a kernel ky(xz,y) that
satisfies (5.1a)-(5.1c). Then u(t,z) = u(r*t + 7,rz + &) satisfies

1

ottt a| - / o 29 2) dw

(5.2)
/ J] )~ ot0) - ole ) Fle ) dndyde = [ v Fit,a)ott.z) dodt
—1RARM Q1(0)

for every nonnegative test function

6 € H'((=1,1); LA(B1(0))) N LA((—1,1); Hy*(B1(0))) , (5:3)
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where f(t,x) = f(tr*+ 7,1 + &) and
fl%(ac,y) =a(r‘t+r,re+&ry+§) pdte ko(rz +&,ry + &).

In particular, k belongs to K'(ag, A).

It is readily checked that the second order parabolic equation satisfies an analog scaling
property.

Proof. Let u be a supersolution of (PE,) in Q 2 Q,(§, 7) with a kernel k;(z, y) that satisfies
the conditions of Lemma 5.1. Let ¢ be a test function as in (5.3). For r > 0 and &, 7 as in
Lemma 5.1 define a diffeomorphism

U Q1) = Qr(&,7), U(t,z) = (rt+71,re+§).

The two components of ¥ are denoted by W¢: B1(0) — B, (§) and ¥.: I1(0) — I.(7). By
the change-of-variables formula we find

B 1 v, (1)
[ot o, =t [ @ovauea
B By (€)
/ u(t, )0sp(t, ) do dt = 972 / u(t, z)r0 (¢ o U1 (t, z) dadt,
@1(0) Qr(&7)
1
[ ] ) ~ ) ote.) — 6t 0) ) dodyat
—1RARd
T+re
— p2d-a / rdtag (u, ¢ o ) dt
/ rf(t, 2)o(t, x) dodt = r~ 0+ / rof(t,z)(¢po U (t,z) dadt.
Q1(0) e

Now observe that the factor r—¢

in (4.5). This proves (5.2).

cancels out and that ¢o ¥~ is an admissible test function

It remains to verify (Ki)-(Ks) for ki (z,y). To shorten notation we assume & = 0, 7 = 0.
Let 29 € R%, p € (0,2). Then we may deduce from (5.1a)

p? / w0 — y|* 1 ko (ra, ry) dy + / r g (ra, ry) dy
Bp (2o Bp(x0)©

= (TP)QT‘“/B ) rzo — yl|* ko(ra, y) dy + r® /B ko(rz,y) dy
rp(TT0

rp(rxo)ﬂ

S Ar(rp)™" = Ap®.
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(5.1b) implies for B = B, (zo), B= B,,(rxzo) and v € H*/?(B)

/ o) = o) (o ry) dody = [ fota/r) = o/ e (e, ) de dy
BB

< A2 - d+°‘/ it x/r _Zera/T)’ dx dy

|v
// iz d+a d dy .

The proof of the lower bound in (Ks) for ko is similar.

Finally, we deduce (K3) from (5.1c):

sup / YA P40 kg () y
z€B32(0) J B3(0)

— oA up / YA vk () dy < A
IEBQT(O) Bgr(o)c

This finishes the proof of Lemma 5.1. L]

5.2 Alternative formulation in terms of Steklov averages

In the main proofs we do not use (4.5) directly. The starting point in these proofs is the
inequality

Owu(t, x)p(t,x) doe + E(ult, ), ¢(t, ) > [ flt,x)o(t, z)dx fora.e. t €I, (5.4)
o Q

where we apply test functions of the form ¢(t,z) = ¥(x)u~%(t,x), ¢ > 0, where u is a
positive supersolution in I x 2 and v a suitable cut-off function. In particular, we assume
that w is a.e. differentiable in time.

The aim of this section is to justify the use of (5.4) instead of (4.5) in our main technical
results, Proposition 6.1, Proposition 6.3 and Proposition 6.9. Thus, we can work with
supersolutions u as if they were a.e. differentiable with respect to ¢. This approach is
standard when proving regularity results for solutions to second order parabolic problems,

[AS67, Sec. 9]. Nevertheless, we provide details and show that the nonlocality (in
space) of the underlying operator does not form a serious obstacle.

In the above mentioned proofs we multiply (5.4) with some piecewise differentiable function
x: R — [0,00) and integrate over some time interval (¢1,t2) C I. This implies, together
with the chain rule and partial integration,

to

4 / ()&, d) dt

t=t1 t1

[x(t) | valt) d:c]
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to to
Z/tl x(t) o f(t,$)¢(x)dxdt+/ X (t) Q,w(az)w(t,x)dxdt, (5.5)

t1
where

w(t,z) = (5.6)

Ut @) if ¢ #1,
log u(t, x) if g = 1.

Inequality (5.5) is the main source for our estimates. Let us now show how to derive (5.5)
from (4.5). To this end, we recall the concept of Steklov averages in Section 1.4: Let
I=(T,Ty),Q=1xQ. Forve L' (Q)and 0 < h < Ty — T} define

1 t+h
- : for T T, —
ot ) = h/t v(-,s)ds or Ty <t <Ty—h,

0 fort > 15 — h.

Fixte I, Q9 € Qand h > 0 such that ¢t + h € I. In (4.5) we choose ¢(s,z) = n(z) with
nE H(?/Q(Q'), t1 =t and to =t + h. Dividing by h we obtain

t+h
o 8tuh(t7 35)77(96) dz + E /t ES(U(S, ')7 77()) ds > /Q/ fh(tﬂ :ZI)T](.T) dz | (57)

valid for all ¢t € I and 7 € Hg‘/Q(Q’).

Next we choose in (5.7) (for fixed t € I) test functions of the form n = x(¢)yu, (t,),
q > 0, where 1, x are suitable cut-off functions. Then we integrate (5.7) over some time
interval (¢1,t2). Hence, with w as in (5.6),

to to t+h
/t1 () Q/@/J(x)atwh(t,x)dxdt—i—/ X(t)}lL/t Eu(uls, ) (Y (t, ) ds dt

t1

to
> / X [ falt, @)@y (¢ 2) da d.
t1 Q/

After partial integration in the first term we pass to the limit h — 0. Lemma 1.14 and
Lemma 5.2 from below then imply

to

+/2X(t)gt(u(tv ), (Jut(t, ) dt

t=t1 t1

[x(t) o Y(x)w(t, ) d:c]

> / ) [ Ft Dt 2o de dt + / Y Ob@)w(t,z) dzdt, (5.8)
t1 Q/

t1
which we wanted to show.

Let us mention that the situation of a second order parabolic equation is easier due to the
structure of the form AVu- V¢ in (4.4), see [DGV11, Section 3.1.1] and [AS67, Section 9:
In the same way as we deduced (5.7) above we may deduce from (4.4)

Orup (t, x)n(x) de + / (AVu)p(t,x) - Vn(z)dz > o ot z)n(z) dz.

/

Q/
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From this inequality we proceed as in the case of the fractional order equation and observe
that the convergence of the term with space derivatives follows from (4.3) and Lemma 1.14.
Thus we may take

/6tut:):)¢(t :):)dx—i—/(AVu Vo)(t,x) dx>/ftac ¢(t,x)der forae. tel (5.9)

Q/
as a starting point in the proofs of Proposition 7.1 and Proposition 7.5.

It remains to prove the auxiliary result.

Lemma 5.2. Let v be a positive supersolution to Opv — Lv = f in Q = Q x I. Let ¢ be
an admissible test function as in Definition 4.3 that is bounded and satisfies supp|p(t,-)] C
Br @ Q for some R > 0 and every t € I. Then for every I' € I

/ /Hh Vs dn(t, ) dsdt 2225 [ g (v, ¢) dt. (5.10)

I
Proof. Set V(t,z,y) = a(t,z,y) (v(t,x) —v(t,y)) and (¢, x,y) = ¢(t,x) — ¢(t,y). Since

t+h
/, }11/15 Es(v(s, ), pn(t,-)) dsdt = // / Vi(t,z,y)®p(t, x,y)ko(z,y) dedydt ,

R4 R4

e[ [ viometa i) ddyar.

R4 R4

the convergence in (5.10) follows if we show both

/ / Valt,z,y) — V(t, 2 9)| |8(t, 2, y)| kol y) dedydt 22050, (5.11a)
/Rde
/ / Valt,, )] [ @4t 2,y) — Bt 2| kola,y) dedydt 2255 0. (5.11b)
I/
Rd Rd

First we prove (5.11a). Define B = Bp.. for some fixed € > 0. A usual decomposition of
the integral over R% x R? yields

| [ mhtta) = vl ioten) - ot )l Koo, p) dodyde

R4 R4

- /I" // |Vh(t,.§l),y) - V(tax>y)‘ |¢(ta l‘) - ¢(tay)| ko(-f,y) dx dy dt

+2//\<Z>t9:|/ [Vi(t, 2, y) = V(t,2,y)| ko(z,y) dy da dt
—: I, (h) + Iy(h
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Holder’s inequality applied to I;(h) shows that I;(h) — O:

2

1
|(Va = V)®n koll sy < || (Ve = V)ko?

L2(I';L?(Bx B)) H L2(I';L?(Bx B))

< || = Vko?

L2(I";L2(BxB)) ||¢||L2(]/;Ha/2(3)) R

where we have used (Kg) in the second inequality. Lemma 1.14(iii) implies that the first
factor tends to zero since — again due to property (Kg) —

1
ve LXI'; HY?*(B)) = V k2 € L*(I'; L*(B x B)).

In a similar way we obtain the convergence of I5(h):
| [1ewa [ Wit - Vo)l o) dydedr
rJB B¢
< 6llimqery [ IVt = Vi [] oo dydz

Bpr B¢

< Ae™ |BR| |0l poorxmy IVh = VIl 1 (1,100 R xRAY) 5

where we have applied (Kj) in the second inequality. The convergence of the last factor
follows again from Lemma 1.14(iii).

Next, we prove (5.11b): Again, we use the decomposition
/ / Vit 2,9)| [ (b, y) — D(t, 2 y)| Ko () dar dy e
[/

R4 Rd

— / / Vit 2. 9)| | @n(t 2, ) — (b, 2.)| Folz, y) da dy dt
II

I B¢
=: Ji(h) +J2

The convergence Ji(h) 20 follows by the same argument as we used for the conver-

gence of I1(h). It remains to show that Ja(h) R0 .

/ | pn(t, () oo (B ) / \Vi(t, 2, 9)| ko(x,y) de dy dt

Bpr B¢

< 267 [BR| vl oo (17,100 may) 100 = DMl L1 (17,100 (R4 -

Finally, we apply Lemma 1.14(ii),(iii) to conclude that J2(h) converges to zero. This finishes
the proof. O
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5.3 Some algebraic inequalities

The following two results are tools for Lemma 5.5, which is essential for the proof of the
basic steps in Section 6.1.

Proposition 5.3. Let f,g € C'([a,b]). Then

fb) ~ fla) (g(bz - g<a>)2 < max [£(6) + (4'(8))2] (5.12)

T tefab]

Proof. Assume that (5.12) was not true and integrate the reversed inequality over [a, b]
resulting in

<W>2 - bia /ab(g’(t))th.

This is a contradiction (Jensen’s inequality) and hence Proposition 5.3 is proved. OJ

Lemma 5.4. Let ¢ > 0,q # 1 and a,b > 0. Then

b—a)(a1=0b"% >

(b¥ - al%q)z. (5.13)

Proof. Setting c¢(q) = (1;;1)2, (5.13) is equivalent to

1—gq 1—gq

S G
<0.
(0) b—a (b—a)? =0

1—gq

Proposition 5.3 with f(t) = ¢(¢)t™? and g(t) =t 2 yields

(bl%q al_Tq>2 2 2
b9 —a™" B g (-9 (A-q)
< A =0
() b—a (b—a)? - trél[i};] < 1 ’
which proves inequality (5.13). O

Part (i) of the following lemma is taken from [Kas09, Lemma 2.5]. Part (ii) was derived in
collaboration with M. Kassmann and R. Zacher.
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Lemma 5.5.

(i) Let ¢ > 1, a,b >0 and 71,72 > 0. Set 9(q) = max{él, %}. Then

o) = e [(8)7 ()]
o= [(2) "+ (2) ] o

Since 1 — q < 0 the division by 71 = 0 or 7o = 0 is allowed.

(ii) Let g € (0,1), a,b > 0 and 7,720 > 0. Set ((q) = 14%1(1, ¢1(q)
C(q)—i—% Then

Il
o=
Iy
—
)
~—
=)
3
S
o
—
)
~—
Il

(b~ a) (rta™ ~ 70) > G1(g) (mb'2* —ma'?" )’
—G(g) (e —m)? (b1 77+ a7 (5.15)

Proof. Here we only prove (5.15); for the proof of (5.14) we refer to [Kas09, pp. 5-6]. (5.15)
is easily checked if 79 = 0. If 71 = 0 and 75 > 0 the inequality reads

=01 ab™? > (Gi(g) — G(9) b — Galg)a Y.
This is true since (1(q) — Ca(q) < —1.

Now we consider the case 7179 > 0. We can assume b > a due to symmetry. Setting
t= g >1, 5= :—f > 0 and \ = s%t79, assertion (5.15) is equivalent to

Gla) (VRE=1)" < (6= 1)1 =) + Gla)(s — 17 (#7+1) (5.16)
We estimate
= 1)2 <2 (V- t%f +2 (1 - 1)2 = (s — 122 (7 - 1)2

241—q i _ _ 474
<2(s—1) +C(Q)(t (1 —¢t79),

where we have used Lemma 5.4 in the last inequality noting that &72)2 > =L = ((q) for
q € (0,1). We decompose the last factor of the above inequality as follows:

1=t 9=(1-AN+A—t")=1=A)+(s—1)* 7 +2(s— 1)t "

This implies

) 2 N e 12T 2 V(L= ) V(s 1)
<\/ﬁ 1) §<2+<(q)>( DR = D=0+ = D= D (57)

It remains to estimate the last term in (5.17). To this end we consider different ranges of
t € [1,00) and s € (0,00):
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a)t>1,se(l,2)andt -1 > %t(s —1): By the mean value theorem, there is £ € (1,t)
such that t9 — 1 = ¢¢971(t — 1). Then we can estimate
(s+2)(s—=1) q(s+2)

<
t—1 - 4t

<

Therefore
(s+2)(s—1)<t1—1, orequivalently s—1<t9—s%=1tI(1-N\).

This implies (t —1)(s — 1)t79 < (t — 1)(1 — X). We deduce from (5.17)

(@) (x/ﬁ - 1)2 < (3¢a) + D) (s = 1)+ (- 1)(1 - ). (5.18a)

b)t>1,s€(1,2)andt —1 < %t(s —1): In this case (t —1)(s — 1)t77 < %tl_q(s —1)?
and — again by (5.17) —

5¢(9) (x/ﬁ - 1)2 < (C(q) +1+ %) (s — D294 (t —1)(1 = \). (5.18b)
c) t=1or s <1: Then obviously (¢ —1)(s —1)t7? < 0 and

1¢(q) (x/ﬂ - 1)2 < (Clq) + 1) (s — D279 4 (1 — 1)(1 — \). (5.18¢)

d) t>1,s>2: Using s — 1< (s—1)? we obtain (t — 1)(s — 1)t79 < (s — 1)?t!7% and

2
1¢(q) (\/ﬂ - 1) < (Clq) +3) (s — 129 4 (t — 1)(1 = \). (5.18d)
Combining inequalities (5.18a)-(5.18d) we obtain (5.16) since 3 < 1 +§ < % This finishes
the proof of Lemma 5.5. O

5.4 Sobolev and weighted Poincaré inequalities

5.4.1 Sobolev inequality

Proposition 5.6 (Sobolev inequality — H!-version).

(i) Let d > 3, 0 = ﬁ. Then there is a constant S > 0 such that for every r > 0 and
u € HY(B,)

</ Ju)[* dx)w <S [ |Vu()]® dz+Sr2 / w?(z) da. (5.19a)

By
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(i) Let d =1,2 and 8 = 3. Then there is a constant S’ > 0 such that for every r € (0,2)
and u € H'(B,)

< / ,« () *? dx> v <s / T \Vu(z))? de+ §'r2 / u?(z) de . (5.19b)

T

Proof. ad (i): For r = 1 the inequality is a consequence of the Gagliardo-Nirenberg-
Sobolev inequality, cf. [Eval0O, §5.6.1]. The assertion for arbitrary r» > 0 then
follows by a scaling argument: Let v € H'(B,) and define the diffeomorphism
®: By — B,, ®(z) = rz. Then uo ® € H'(B;) and

(/T u(z)[* dx) v = pd/? <

< s/ P40 1 (0 &) (@) + 10 [u o ®(x)| do
B1

=S r 42 \u(re))? + rY Ju(re)|? do
B

=5 [ r¥0F2=d \gu(a)? + Y0 u(z)]? dz. (5.20)
By

This proves (5.19a) for general r > 0 since d/0 +2 —d =0 and d/0 —d = —2.

ad (ii): In this case we may consider u as a function of three variables — temporarily
denoted by @ — which is constant in the second (and third) variable. Then we
may apply (5.19a) to w, where » = 1 and the ball By is replaced by the cube
Ry = {z € R%: max, |z| < 1}. In this way we establish (5.19b) for r = 1 with

1<k<
0 =325 =3
For d = 1,2 and 0 = 3 we have d/3+2 —d > 0 and d/3 —d > —2 in (5.20).
Therefore we can use the upper bound r < 2 to establish (5.19b). O

We provide a Sobolev inequality and a weighted Poincaré inequality for fractional Sobolev
spaces with constants that are uniform for o — 2—:

Proposition 5.7 (Sobolev inequality — H®/?-version).

(i) Let d >3 and ap > 0. Then there is a constant S" > 0 such that for any o € (v, 2),
0= ﬁ, r >0 and uw € H*?(B,) the following inequality holds:

</T lu(z)|? d$>1/9 <(2- a)SBrér dedy+ ST—Q/TUZ(JU) .

(5.21a)
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(i) Letd =1,2 and ap > 0. Then there is a constant S’ > 0 such that for any a € (v, 2),
0= r € (0,2) and u € HY?(B,) the following inequality holds:

3a’

1/9
(/ lu(z)|* dw) / fule d+a dxdy—i—S' 0‘/ u?(z) de .

(5.21D)

Proof. In [BBM02, Theorem 1| we find for B = Bj and u € HO‘/Q(B)

u(x
H fB“HL%)(B / u d+a dwdy.

Since

S |B‘2/9+1

/5 UHiQQ(B) ullZ2m) < €(d) [lull72(p

and 1
2 2
HUH%QO(B) < B HU - fUHLQG(B) + 9 HIUHLQG(B) ’

this proves (5.21a) in the case » = 1. The result for general r > 0 follows after a change of
variables: Let u € H*/?(B,) and define a diffcomorphism ®: By — B,, ®(z) = rz. Then
uwo® € HY?(By) and

(/ ()2 dx> R </B w0 ®(z)[% dx)w

1
(2 - Srd/0 // ]u (rz) dgjﬂ dxdy+5rd/9/ u?(rz) de
BB, —yl B

Srd/o 2d// | dz dy + Sré/9- d/ u?(z) dz
=t rx/r—y/r ey 5"

/ [ulz d+a dxdy+Sr_a/ u?(z) dz .

IN

This proves (5.21a) for general r > 0. (5.21b) can be proved in the same way as is explained
in the proof of (5.19b).

This finishes the proof of Proposition 5.7. O
5.4.2 Weighted Poincaré inequality
In order to derive estimates on logu in Section 6.4 we will need weighted Poincaré in-

equalities: A standard weighted Poincaré inequality in the case of a local operator and a
fractional version in the nonlocal case.
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We do not state these results in full generality but only in the special cases that apply in
Section 6.4. To this end we fix B = Bs3/5(0) and define ¥: B — [0,1] by ¥(z) = (3—]z|)AL.
Clearly, ¥ is Lipschitz continuous in B and its profile ¢(r) = ¥(|z|) is non-increasing.

The following result is a special case of [DK13, Corollary 3]. We refer also to [DGV11,
Prop. 2.2.1], [Mos64, Lemma 3| or [SC02, Theorem 5.3.4] for similar results.

Lemma 5.8 (Weighted Poincaré inequality — H'-version). There is a constant C' = C(d)
such that for every v € L'(B, ¥ (x) dx)

/ (v(x) — v5)* W(z) dz < c/ Vo(2))? U(z) dz
B B

where vy = (/B () d:r>_1/Bv(x)\IJ(:v) dz.

Lemma 5.9 (Weighted Poincaré inequality — H®/?-version). Let k € K(ag, A) for some
ap € (0,2) and A > 1. Then there is a positive constant co(d, g, A) such that for every
v € L'(Bs)s, V(x)dx)

/B ) -l e e < | 1@ o k) (¥@) A ¥0) drdy,

B33 B3 /2
where vy = (/
B

Proof. For x € By, \ By write ¥(x) = 2[3/2 . Then for some a € (ay, 2)

U(z) dm)_l/B v(x)¥(z)de.

3/2 3/2

[ 1w = o) o) (90 A 900)) ey
B3/s J/ B3/

3/2
/ / o(y))” kel y)2 / Ip,(r)1p,(y)dsdzdy
Bs/o J By o 1
B 3/2 )
= 2/ /]33/2 /]33/2 [v(x) —v(y)]” k(x,y) 1B, (z)1p,(y) dedyds

. o)
2 - / / / d+a 1p,(x)lp,(y)dedyds
BS/2 B3/2 |l’ — y|
2

12—« /B /B ‘ y’d+o3] (U(x) AN¥(y)) dedy ,
32/ B3jp  |T —

where we have applied (Kz) to obtain the inequality. The assertion of Lemma 5.9 follows
now immediately from [DK13, Corollary 6]. O
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5.5 Abstract Moser iteration

This section contains a restatement of Moser’s iteration result. This iteration technique
(Lemma 5.11 in combination with Proposition 7.1) was applied for the first time in [Mos61]
for linear elliptic equations and in [Mos64]| for parabolic equations. Since then, there have
been many generalizations of this approach, such as the extension to quasilinear equations
in [Tru67] and [Tru68| and to parabolic equations on manifolds (e.g. [SC95|) and on graphs
(e.g. [Del99]).

Moser’s iteration technique has extended into the literature on partial differential equations,
e.g. in [GTO01, Lie96, SCO2|. In contrast to the mentioned references, the presentation here
states these results in an abstract way that may apply in different contexts. To the author’s
knowledge this idea of abstraction goes back to [CZ04], see also [Zac10].

We start with a definition:

Definition 5.10. Let (€2, A, 1) be a measure space. We say that a family U = (U,,0 <
r < 1) of subsets of Q is increasing if

w(Uy) <oo and U, CU. CQforall0<r<r <1.

For a given increasing family U and a measurable function f: U3 — R, p € (0,00) and
r € (0,1) we use the notation

1/p
N(f;r,p)=</U !f\pdu> :

5.5.1 Abstract Moser iteration scheme — type |

Lemma 5.11 (Moser’s iteration I). Let k > 1, py € [1,00) and U = (U,,0 < r < 1) be an
increasing family of subsets of some measure space (2, A, ). For m € Ny, p € (0,po] set
Pm = K™ and let (rm)men, be a sequence such that

1ZU:T0>’F1>...>Tj>’l“j+1>...>p>0.
Let f: Uy — R be a measurable function with the property
N(firi1,p541) < Aj(0) PN (firj,p;)  for all j € Ny (5.22)

for some family (A;(p))jen, that may also depend on o,p and k. If there is
Mo, p,po, k) > 1 such that for all p € (0, po)

[TAwY <M< oo, (5.23)
=0
then
1/p
sup | f| < MY </ |fI? du) for all p € (0, po]. (5.24)
U, U,
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Proof. Since f is fixed, we omit f in the argument of A/. Applying (5.22) repeatedly we
obtain for m € Ny the chain of inequalities

m

Np(Paperl) < Np(rm+17pm+1) < Ap(p )1/5 Np(rm,pm < Np (r0,p H 1/Rj :
7=0

By the property li_r>n N(p,pm) = sup|f| and (5.23) we see that
m—00 U

1/p

1/p
sup |f| = lim N(p,pm) < HA]pJ N(ro,p) < M'/? (/ 1f1P du)
Us
for every p € (0, po], which finishes the proof of Lemma 5.11. O

5.5.2 Abstract Moser iteration scheme — type Il

In some situations one cannot expect an inequality of the type (5.22) to hold for arbitrarily
large values of p but only for a finite range of values. However, one can still prove an
estimate in the spirit of (5.24) with sup f replaced by a p-norm of f.

Lemma 5.12 (Moser’s iteration II). Let k > 1, pg € (0,k), andU = (U,,0 <r < 1) be an
increasing family of subsets of some measure space (2, A, ). For m € Ny set p,, = pok™ "™
and let (rm)men, be a sequence such that

1>20=rg>r>...>rj>rjp1>...>p>0.
Let f: Uy — R be a measurable function with the property that for alln € N
N(f;rjpn—j) < Ajl-/pnfj“/\/(f;rj_l,pn_j+1) forallj=1,....n (5.25)
for some family (A;)i<j<n. If there is M = M (o, p, k) > 1 such that
n
H A;/p"_j“ < MY/Pa=1/po for alln € N, (5.26)
j=1

then for all p € (07 %0]
1/po 1/p
( [ i dﬂ) < [M (1 v (U)o p=1/m) ( IR du) o)
U, U,

The following proof uses ideas from [Zacl0, pp. 6-7].

Proof. Since f is fixed we omit f in the argument of A'. Let n € N. From (5.25) and (5.26)
we deduce

N(p,po) < N (rn,po) < AYPY N (ry_1,p1) < AL/ A,ll/,pf N (r5—2,p2)
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< N(r07pn) H A;/pniﬁrl < Ml/pn—l/po N(T’o,pn) . (5'28)
j=1

Let p € (0, %0} and fix n > 2 with the property p, < p < pp_1. Thus

1 1 k"—1 k"+r"1-k-1 1+ k)1 -1 1 1
11 R ) — (14 n) 1
Pn Po Po Po Po

Pn—1 Po
<(1+k) ( — ) . (5.29)
Additionally we have by Hdélder’s inequality

N(r0,pn) = N(0,pn) < p(Uy) 757 N0, p) < p(U1) 7 N (o, p)
< (1 vM(Ul)P%’%)N(a,p%

Using (5.29) and the latter inequality in (5.28) proves the assertion. O

5.6 A lemma by Bombieri and Giusti

The following abstract lemma extends the idea of [BG72| to the parabolic case. It was first
proved in [Mos71, pp. 731-733|. The version below can be found in [SC02, Section 2.2.3].

Lemma 5.13. Let (U(7))o<r<1 be a increasing family of domains in some measure space
(Q, A, ). Let m,co be positive constants, 0 € [1/2,1], n € (0,1) and 0 < pg < co. Further-
more assume that w is a positive, measurable function defined on U(1) which satisfies

1/po co 1/p=1/po 1/p
wPo dp < ( ) / wP dp < 00. 5.30
(™9™ = (= U™ %) (>:30)

forallr,R € [0,1],r < R and for all p € (0,1 A npo).

Additionally suppose that
Vs>0: p(UL)N{logw > s}) < %OM(U(l)). (5.31)

Then there is a constant C = C(0,n,m, co,po) such that
1/
(/ W dﬂ) P <cuay (5.32)
U(®)

Proof. This proof follows the lines of [CZ04, Lemma 2.6].

Without loss of generality we can normalize |U(1)| = 1.
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Define
1/po
B(r) = log (/U( )w”o du) = log (N (w; 7, p0))

Note that §(r) < B(R) for r < R.

Let r, R € [0, 1] with » < R. For 0 < p < pp we make use of (5.31) and Holder’s inequality

with exponents q; = pf Ep and qo = % in the first term of the following equality and obtain

/ wPdp = / Ltog w>p(R) /23 w” dp + / 1 tog w<p(r)/2yw” dpt
U(R) U(R) U(R)

P/Po
< (nw R N fogw > s(R)/2)]) " ( / o du) T P2

2¢y \P/P~1/po)
< (5(R)> ePB(R) 4 oPB(R)/2 (5.33)
If
B(R) >2c and (1/p—1/py) " = 5 log 52, (5.34)

the two terms on the right-hand side of (5.33) coincide and requiring
B(R) > c2 for some suitable constant ¢y = c2(co, po,n) (5.35)

ensures B(R) > 2¢o and (1/p—1/po)~" < min(1,npo). For p chosen as in (5.34) and if
(5.35) is satisfied we thus have

N(w; R, p) < 2'/PefR)/2,
Now we apply (5.30) for p chosen as in (5.34):

)1/1’*1/100

ﬁ(?“)élog((mﬁcf)m N(w;R,p)) < (L= &) o8 (g2 ) + 252 + Llog2

2¢cq

log ( =5
:ﬂ(R) <(R ) >+1 —|—llog2.
p

2\ log (62(01;5))

If, in addition to the first requirement (5.35) on 5(R),

3
e

B(R) > m

(5.36)

2¢q

1 TR—r)T
holds, then we have Olg(% < £ and consequently 3(r) < 28(R) + %log 2.
og

2¢q

On the other hand, if one of the requirements (5.35) or (5.36) is not satisfied, then

Y1+ C2

m with a constant v; = 71 (co, m, 0).

ﬁ(R)S(R—VW—Fng
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Since B(r) < B(R) and r, R € [0,1], r < R, were arbitrary we have in all cases

3
Vr,R € [0,1]: B(r) < Zﬁ(R) + (R_Vﬁ with a constant 2 = y2(co, m, 0).
By iteration we obtain
3 k k—1 3 J
s00 < (§) B0+ X (5) =)
j=0

for any sequence of radii  <rg<ry <...<rp <1.
Finally, we have B(r;) < f(1) < oo and letting k& — oo we obtain for the sequence of radii

1
defined by 'I"j =1- ﬁ
J

B(0) < B(ro) < 722? (i)J (rjp1 —15) 72" < 4y (1;0>_2m,

7=0

which finishes the proof. O



6 Proof of the main results for fractional
order parabolic equations

In this chapter we give the proof for the main results, Theorems 4.4 and 4.5. These proofs
are published in joint article of the author with M. Kassmann [FK13].

6.1 Basic step of Moser’s iteration

Negative exponents

The following result generalizes Proposition 7.1(i) to the case of a parabolic equation with
a nonlocal operator.

Proposition 6.1. Let % <r<R<1andp>0. Then every nonnegative supersolution u
of (PE,) in@Q=1xQ, Q>3 Qs(R), withu>¢e >0 in Q satisfies the following inequality

1/k
(/ u "P(t,z)dx dt) <A u P(t,x)dxdt , (6.1)
Qo(r) Qo (R)

where & =u+ || f|[ ooy, K =14+G (k=145 ifd=1,2) and A can be chosen as
A=Clp+1)*(R—7r)“+(R*—r")™) with C' = C(d, g, A). (6.2)

Remark 6.2. Note that

2
1 1 | . {W for o € [1,2], 63)

at
(R—r) (RY —r ﬁ for av € (0, 1].

Proof. Let u be a supersolution in @ with u > e > 0in Q. We set & = u + || f|| o (q) If
f=0ae. in Q we set ©w = u—+ 6 for some § > 0. The additional assumption v > ¢ > 0
on I x R?\ Q is temporarily needed to ensure that the nonlocal term on the right-hand
side of (6.4) is finite. Since (6.1) is a statement only on Bp, where the assumption ensures
u > e > 0, we may pass to the limit 6 — 0+ in the end.

For ¢ > 1 define
vta) =TT (), ot a) =u Ut x) T (x),

where 1: R? — [0, 1] is defined by 1 (x) = (% A 1) v 0. Obviously, 94! e Hg/Q(BR).
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i B .’ R

Figure 6.1: Profile of the cut-off function 1 in the space variable
We apply the test function ¢ in (5.4):

/ —1/}q+1(aj)ﬁ_q(t,x)3tﬂ(t,x) dz+
Bgr

b [ ) — ) [ ) ) - 00 @ 10)] K)oy

R4 R4

< —1/Jq+1(a:)ﬁfq(t,:c)f(t,x) dz.
Bgr

Applying Lemma 5.5(i) (remember ¥(¢q) = max {4 6q2 } therein) and rewriting
0pw? = (1 — q)u~ 901 yields?

b VI, (v?) da
Bpr

q—1
P [ v (22) 7 - (1) 7 e

v
R4 R
] 4 [0(@) ~ () [(“&x 9 (Teny ] kil y) dr dy

+ / W (@) [T, 2)| |f (1 2)] de, (6.4)
Br

|y (x) =1 (y)? 1
e = R

The properties ¢ = 1 on B, and sup, ,cpd 7 result in the two estimates

1—q 1—

eyt | (B2} T () = ) oy
V() v)

R4 R4 (6.5)
// (t,2) = v(t,y)] k(2 y) dz dy,
r By

e

'Note that the division by 1 is only a slight abuse of notation; we have 1 — g < 0.
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Xo Xo

Figure 6.2: The two types of cut-off functions in the time variable

and

[ W) - w2 [(ﬂf())) v (Zf(yy)))] k(e y) drdy

RIR
<2 // fo() — ()2 T, 2) (o, ) do dy
Br Br
+1 [ @ - s T ey dy s

Br BS,

<c1(d,A)(R — T)_a/B v (t, x) d, (6.6)

where we have used (K;) in the following way:
| @) [ @) - ) by dyda
Br Br

< /BR alq(t,l’)< / ko(m,y) dy—|—(R—’l“)_2 / |5L‘_y|2 k?o(l',y) dy> dz

x—y|>R—r |lz—y|<R—7r

< AR - T)_a/B v (t, x) d, (6.7)

and similar for the second term.

Combining (6.5), (6.6) and the fact that [|f/u| =gy <1 we obtain from (6.4)

+1x tUQ .2)dz v(t, ) — v(t, th’ -
[, wrtmaety e dn s [ ) o) ki) drdy

B, By

< (¢—1) (1+9(q)ar(R—1r)"%) /B v?(z)dz. (6.8)

Now define a piecewise differentiable function xs: R — [0,1] by xs(t) = ( PR A 1) V0.

RO{ 77»(1

Multiplying (6.8) with x4 we get
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o [ @) ettt de+x2 ) [ lottn) ot ) bile ) dady

B
" B. B

< ex(q - DO()(R — 1) \3 (1) /B 2(t, ) da + 2x6 (£) [xo (8)] / 2(1,2) (6.9)

and integrating this inequality from —R®* to some t € I5(r) yields

/BR T () (xo (t)u(t, x))de+/ // (s,2) —v(s,y)]* ks(, y) dz dy ds

B, By

< ca(g — 1)9(g) (R — 1)~ / e /B o2 (s, 2) dz ds +

which implies, noting that ‘ X@‘ <

W}
sup / (t,x dx—i—/ / (s,z) — v(s,y))* ks(x,y) dz dy ds
telg(r) J By Qo(r) J By
<ez(g—1)0(q) (R—r)"* + (R*—r*)7) / v2(s,2)dzds.  (6.10)
Qe(R)

In order to estimate the second term on the left-hand side from below we apply Holder’s
inequality with exponents? 6 = I a, 0 = d to the integrand v?* and then we make use of
Sobolev’s inequality (5.21):

/ v (t, ) dz dt = / V2 (t, 2)v* (¢, ) da dt
Qo(r)

Qo(r)

1/6 1/6/
< / (/ v?(t, x) dx) </ v2(t, x) dx) dt
Ie(’r’) B,- r

1/¢'
<S8 sup </ v (t, x) dx) X
tEI@(T) -

X [(2—a) // d(fay)‘ dedyds +r~¢ / v?(s, ) dzds|
Qo(r)

where S = S(d, ap). Using (6.10) twice, r > 5 and (K3) yields

/Q ( )vz"‘(t,m) dzdt < cq(d, A, a0) [(¢ — 1)I(q) (R—7)"% + (R — Ta)_l)]l/el X

2These exponents are valid in the case d > 3. In view of (5.21b), the modifications for the case d = 1,2
are obvious.
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1+1/0'
x [(q=19(g) (R=r)"+ (R* = r*)7") +1] ]

/ v?(s,z) dz ds
Qo (R)

Finally, we can estimate the coefficient by

which finishes the proof of (6.1) by taking p = ¢ — 1 and resubstituting v = u'zt O

Small positive exponents

The following result generalizes Proposition 7.1(ii) to the case of a parabolic equation with
a nonlocal operator.

The technique for the proof of the basic step for small positive exponents is very similar
to the one used in the case of negative exponents. We state it separately and indicate the
modifications that have to be made.

Proposition 6.3. Let % <r<R<1landp€ (0,s7 ] with k = 1 +9 (k=1+75if
d =1,2). Then every nonnegative supersolution u of (PEy) in Q@ =1 xQ, Q 3 Qg(R),
satisfies the following inequality

1/k
( / (¢, ) dmdt) <A / Wt ) dz dt | (6.11)
Qa(r) Qg (R)

where U =u+ || o (q) and A’ can be chosen as
A=C(R-r)"+(R*—r™ with C' = C'(d, ag, A). (6.12)

Proof. Let u be a supersolution in Q with u > 0 on I x R%. We set u = u + [l ooy I
f=0a.e. in Q we set & = u + ¢ and pass to the limit € — 0+ in the end.

Set qg=1—-pe[l—~x1 1) and define
v(to) =TT (), et x) = It z)3(x)

with 1 as in the proof of Proposition 6.1, namely ¢ (x) = (if—_‘fl A 1) V0.

From (5.4) we obtain for a.e. t € I

—p?(x)u(t, z)0pu(t, z) d
Br
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+ // [t z) — @t y)] [P )E "t ) — VP (@)t 2)] k) dz dy

R4 R4

< ; —?(x)u 9t x) f(t,z)dz.  (6.13)

First we observe that for every small h > 0

// [i(t, ) — @t y)] [V2)a(t, ) — V2 ()T (t, 2)] k) d dy

R4 R4

// it 2) — a(t,y)] [ )Tt ) — VR@)T (1 2)] k() da dy

Br+n Br+h

+2 // u(t,y)) [ Q,Z)Q(x)ﬂfq(t,x)] ki(z,y)dydz . (6.14)

Br B% 4,

Using (Kj), the positivity of @ and the fact that % < (R —1r)~2 we can estimate
as follows:

[a(t,x) —a(t,y)] [~¢*(@)a ()] ke(z,y) dy de

Bpr B¢

(R—r)? / 1z — y|* ke (z, y) dy + / kt(x,y)dy]drv

> —/ It x)
Br
ly—z|<R—r ly—z|>R—r

> —A(R— r)_o‘/B V2 (t, ) dz.

If h — 0, this shows also that the decomposition in (6.14) is valid with h = 0. Rewriting
Ow? = (1 — q)u~90;u and using 1 /ull ooy < 1 we deduce from (6.13) and (6.14)

L[ 2@)ont ) dot
1 —q Bgr

+ // [t z) — @t y)] [P )E(E ) — V2 (@)t )] kel ) d dy

Br Br

< AR - T)a/ v?(t, x) dx.
Br

Remember A . 9
C(q) = ﬁ, Gule) = 5¢la),  G(e) =¢(a) + g

from Lemma 5.5(ii). Applying this result we arrive at

L[ 2 wandte) de + Gl // — (y)o(t,y) 2he(z, ) do dy

1—q /By
Bgr Br
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SclA(R—r)a/ v (t, x) dx

Br
+ &) // () — 9] [v2(t2) + v2(t, )] ke ) da dy.

Br Br

By the properties of ¢ and (Kj) this implies (cf. (6.7))

— 2£L’ tU2 , L) dx — 1 v\t,r) — vlt, 2,5(13, T
| vt q>c<q>//[<t ) — o(t,y) 2k, ) dz dy

B, By

< co(d, A)(1 —q)(R — r)_a(l + Cg(q)) /B v2(t, x) da.

We multiply this inequality with x?, where xa: R — [0,1] is defined by

R —1
X@(t): <RO‘—TO‘/\1> V0.

We integrate the resulting inequality from some ¢ € Ig(r) to R and apply the same tech-
nique that we used to deduce (6.10) from (6.8) on page 81 in the proof of Proposition 6.1.
As a result we get

sw [ Ptayde+ (-0 [ [0 - vl ki) dedyds

Iay (7 .
e Qo) By
< c3(d, A) [(1 — )1+ C(@)(R—7r)"*+ (R*— ro‘)_l} / v?(s,x) dx ds.
Qa(R)
We estimate the coefficients by
2q 2 (&7}
_ S =
(100 =2 2 2% — ci(da0)
— d+2
(1-q¢)(1+G(e) <1+ (1 —q)C(g) <1+4g+ 19 <549 o = ¢5(d, o),
which implies
sup / v (t,x) dx + ¢4 / / [v(s,z) — v(s,y)]? ks(z,y) dz dy ds
telg(r) / Br
Qa(r) Br
< ¢g(d, A, ) [(R —r) *+ (R — ro‘)_l} / v?(s,x) dx ds.

Qo (R)
Applying Sobolev’s inequality as in the proof of Proposition 6.1 we obtain

2 _ 1 1/6'
/ v H(t’x) dedt S 07(d7A7 Oé()) [(R - 7") @ + (Ra — Ta) } X

Qo (r)
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X (R =)+ (R =)~ 1] ] 1416/

/ v?(s,z)dz ds
Qo (R)

We can estimate the coefficient by

(R—7)""+ (R — r“)’l] T [(R —7)"* 4 (R — ra)*l] i

This finishes the proof of Proposition 6.3 by resubstituting ¢ =1 —p and v = Thenl OJ

Note that !, the upper bound on p, can be replaced by any number less than 1.

6.2 An estimate for the infimum of supersolutions

Having established the basic step (Proposition 6.1) of Moser’s iteration it is now possible
to apply Lemma 5.11 to prove a lower estimate for a nonnegative supersolution w:

Theorem 6.4. Let% <r<R<1and0<p<1. Thereis a constant C = C(d, g, A) > 0
such that for every nonnegative supersolution u of (PEy) in Q =1xQ, Q 3 Qs(R), with
u>¢e>0in Q the following estimate holds:

C 1/p 1/p

~_1 ~—

sup u - < () / u P(t,x) da:dt) , (6.15)
Qa(r) Gi(r, R) ( Qs (R)

(R — r)dte if > 1,

where & = u+ || f| Lo () and G1(r, R) = {(RO‘ —roy(dra)/a g <1,

In particular, G1(r, R) > (R — r)%2 A (ap(R — )¢+ /a0,

Remark 6.5. The proof that we shall present below establishes (6.15) in the case d > 3. Of
course, Theorem 6.4 is true for d = 1,2, but the precise structure of G1(r, R) is determined
in a different way: First, one proves (6.15) for r = % and R = 1. A simple scaling argument
then shows that there is a constant C' = C(d, ag, A) > 0 such that

c \VP 1/p
sup u < ( d+a> (/ u P(t,z)dx dt> for all p € (0, 1]. (6.15%)
Qo(p/2) P Qo(p)

Next, for given r, R as in the theorem, set p = R—r in the case o > 1. Consider all possible
translations
To(pito, x0) = Ta(to, wo) = (to — p*, t0) x Bp(zo)

of the cylindrical domain Qs (p), such that T (p; to, zo) C Qo (R). Clearly, (6.15”) remains
true with Qg replaced by some Tg(to, xo). We denote by C the set of all possible centers
(to, o) such that T5(to, xo) C Qo(R).
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é Zo Rd 4_) ity Rd
Q@ (T) -+ fo l_":
VT to, s Qo(r) 1 Lo
; R Te (to, o) 3
& Q@( ) 5‘ 1 Q@(R)
~ To (to, o)

Figure 6.3: The different scaling behavior in the cases aw > 1 (on the left-hand side) and o < 1
(on the right-hand side)

In the case a > 1 we have r + p = r and r* 4+ p* < R® (cf. Figure 6.3), which implies
that every point (t9, z9) € Qo(r) is a center of a translated domain such that 75 (to, zo) C

Qs(R), i.e. Qo(r) C C. Clearly,
U= J  Telp/2ito,20) D Qe(r) and U 7e(pito.z0) € Qa(R).
(to,20)€Qe (1) (to,20)€Qe (1)

Hence, by (6.15),

1 1 o\ w
sup u - <supu - < <a> / u P(t,x)dadt ,
Qe (r) U (R —m)® Qs (R)

which shows (6.15) in the case o > 1.

In the case ap < @ < 1 we may choose p = (R —ro‘)l/a. Then r* + p® = R* and
r+ p < R (cf. Figure 6.3), from where the same reasoning as above proves (6.15) in the
case ap < a < 1.

The method that is explained in this remark can be considered as an alternative way to
prove Theorem 6.4 because it applies to the case d > 3, too. ¢

Proof of Theorem 6.4. We apply Lemma 5.11. To this end choose k = 1+, po = 1 and for
p € (0,1] and m € Ny set p,,, = pr™. Consider the increasing sequence (Qg(r),0 < r < 1)
of subsets of R4!. There is a slight difference in the choice of the sequence (r,,) in two

cases3:

I. 1V ap < a < 2: Choose the sequence of radii (7, )men, defined by

R—r
om

Tm =T+

3Note that the second case is irrelevant if ag > 1.
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Note that r9 = R, rp, > r and lim 7,, = r. Proposition 6.1 in combination with
m—0o0
(6.3) states that for all j € Ny

le+1 Pj
/ TP (tx)dzdt | < Aj(p)Pi / uPi(t,x) de dt (6.16)
Qo (rj+1) Qa(r;)

with A;(p) = e1(pj + 1)%(rj — rj+1) " for some constant ¢; = ¢1(d, ap, A) > 1. This
means that condition (5.22) is satisfied and due to p < 1 we may estimate

. 10\ ¢ A
Aj(p) = er(pr? +1)%(rj — rj1) " < c1(267)? (1:2;— 7’> = (R iyzr)a

for some constant co = co(d, ap, A) > 1. Since

Z% Z 1+a0/dJ < es(a0, d)

J=0 J=0

we can verify condition (5.23):

i ' 7O‘ZH7]‘ —a—t- &
[[A®Y <c(R=—r) = =ci(R—r) %" :m

for some constant ¢4 = ¢4(d, ag, A) > 1. This proves (6.15) in the case « € [1,2).

II. ap < o < 1: In this case choose (r,,) defined by

R — 7noc)l/O‘

Ty = ('ra + o

Again, 7o = R, ry, > 7 and lim 7, = r. Proposition 6.1 and (6.3) state that (6.16)
m—r0o0

holds with A;(p) = ci(p; + 1)2(7“0-‘ TJH)_l. In the same way as above we may
estimate .
! c
< 2
R — pa — Ro _ pa

Aj(p) = c1(pe? +1)?

and
o

H 1/59 C4
L (Ra _ Ta)(d—&-oz)/oz ’

This proves (6.15) in the case ap < o < 1.

The lower bound on G follows from the elementary inequalities

(R—T)d+a > (R— T‘)d+2,
(R —r*) > al* Y R—7r)>ag(R—7) ifay<a<l.

The proof of Theorem 6.4 is complete. O
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6.3 An estimate for the L'-norm of a supersolution

An application of Lemma 5.12 to the basic step (Proposition 6.3) yields the following result:

Theorem 6.6. Let 3 <r < R<1landp € (0,s ") with =1+9 (k=149 if
d = 1,2). Then there are constants C,wi,ws > 0 depending only on d,ap, A, such that
for every nonnegative supersolution u of (PEy) in Q@ =1 x 8, Q 2 Qg(R), the following
estimate holds:

C 1/p—-1 1/p
u(t, z)dz Pt ) da
/QGB(T) (t7 )d a S ((R - T)WI A (QO(R — T))W2) </Q@(R) (t’ )d dt) )
(6.17)

where U = u + || f| oo (q(ry)- If @0 = 1 then (R —1r)*t < (ag(R —1))**.

Proof. In view of Lemma 5.12 choose* x = 1 + 7> po = 1 and consider the sequence
(Qx(1),0 < 7 < 1) of increasing subsets of R¥1. For m € Ny define p,,, = x~™. Similar to
the proof of Theorem 6.4 there are two cases, the second being irrelevant if oy > 1:

I. 1V ap < a < 2: Choose the sequence of radii (ry,)men, defined by

R—r
om

Tm =1+

Note that ro = R, r, > r and lim r,, = r. Let n € N. Proposition 6.3 in

m— 00

combination with (6.3) states that for all j =1,....n

Pp—j L Pn—j+1
/ uPr=i(t, ) dx dt <A / P+ (t, ) da dt ,
Qe (rj) QRe(rj-1)

with A; = ¢1(rj—1—7;) " for some constant ¢; = ¢1(d, g, A) > 1. To verify condition
(5.26) observe

ﬁA;/pn—j+1 _ ﬁA}@/_p]J;_F ﬁ <612a(n ]+l)>
j=1 ; =1

Due to

" K 1 d+a (1
Zli]: (—1>: <—1>, and
= K—1 \pn o Pn

n 3

. K 1
w1 ),
j;( ) (H_l)g Pn

4This choice is appropriate in the case d > 3. The modifications for the case d = 1,2 are obvious and we
omit the details for the sake of brevity.
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we may estimate

n OU€3 _Kk_ l/pnil 1/ 1
H Al/pn—j—&-l - 2 (nfl)3 Cf71 - ( co > Pn—
j — _ »)d+a — _ »)d+a
i J (R—r) (R—r)

for some constant co = co(d, ap, A) > 1. By Lemma 5.12 we obtain

(1+r)/p 1/p
/ a(t, ) da dt < <C}22|E2®(dl+)lv> </ WP(t, ) da dt)
Qe (r) (R—r) Qe(R)

for all p € (0,1 Since (R — r)1+)(@+0) > (R — p)2d+6+3 1Qu (1)] = c3(d) and
(14 k) < 1+ 2, this proves (6.17) in the case a € [1,2) with wy = 2d +6 + 3.
IT. ap < a < 1: Choose the sequence of radii (ry,)men, defined by
_ oy R* —r® e
rm =7 o .

Note that ro = R, 7, > r and li_r>n rm = 7. Proposition 6.3 and (6.3) imply that
m o0
condition (5.25) is satisfied with

_ a2 .
A] = Cl(rf‘jo'éil — Tja) 1 = W, with C1 as above.
In a similar way to the computations in case I we obtain
: 1/pn—1
. A e\ U -
AYPr—iv1 2 ‘1 < €3
7 = d+a — dta :
j=1 (R* —7r®) o (R —r) e

Observe that
a a 1, 2d
(B = 1%)"2" 2 [ag(R = )05 = fag(R -] T,
which proves (6.17) in the case ag < o < 1 with wy =3+ 5 + Z—‘é.

The additional assertion concerning the case ag > 1 is obvious. The proof of Theorem 6.6
is complete. O

6.4 An inequality for logu

The following lemma provides a lower bound for the nonlocal term in (4.5) when applying
u~! times some cut-off function as test function. It can be seen as the nonlocal analog to
the inequality

(VT ) - AVa) > %W (V(log @) - AV(log @) — 2 (Vi) - AV4)) |

which is used in the proof of Proposition 7.5 to establish (7.23) when applying the test
function ¥?u 1.

See [BBCKO09, Proposition 4.9| for a similar result.
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Lemma 6.7. Let I C R and1: R? — [0,00) be a continuous function satisfying supp[¢] =
Bp for some R > 0 and supc; (1, 1) < co. Then the following computation rule holds
forw: I x RY — [0, 00):

w(t,y) w(t, x)\?
(w, —p*w™ // U(z < —log ki(z,y)dedy — 3 &,
oy ) e )
Bgr Br
Remark 6.8. We apply the rule above only in cases where all terms are finite. ¢

Proof. Fix t € I. First of all we note that

E(w, — P ) = // (t, ) — w(t, )] [P @)w (¢ 2) — G2y ()] ke, y) dyda

R4 R4

vaulty) | @) G v@],
> [ vt [wy)w(t,xﬁwx)w(t,y) e T R

Br Br
2 // it y) — wit, 2)] [¢2@)w (1, 2) — b2 )t )] ke, ) dy da
Br BS,
(6.18)
// wt, y) — w(t, )] [V @) 2) — 62w (¢, y)] ke, y) dyda

Because of supp[t)] = Bg the third term on the right-hand side vanishes.

To estimate the first term on the right-hand side we apply the inequality

(a ;bb)z =(@—0b)(b'—a') > (loga—logh)*  fora,b>0
to a = Ayz,y) = 58’% and b = B(x,y) = zgg;,x,yEBR
p@uwlty)  vywtz) vy P
Y(ywt,z)  Y@)wlty) v@)  Yy)
2
_ Az,y) | Blz,y) ) —
Blay) Ay o \VPEY \/B<x,y>>
wit,y) | wt)\® (@) | o)
=) ' ) ) <w<y> @) 2) |

w(t,y) w(t, z)\>
> [ v (105 52 <10 0yt - w0 619
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Finally, we estimate the second term using the non-negativity of w(t,-) in R

// [w(t,y) —w(t,z)] [V (@)w ™' (t,2) — *(Y)w ™ (t,y)] ki(z,y) dy da

Br BS,

// [w(t,y) — w(t,z)] [wQ(a:)wfl(t,a:)] ke(x,y) dy dz

. / wltpheayds = [ 2@ [ weg)ayas
Br %
/B | @) =) k() dyde > ~€(6.0) (6:20)

Applying the estimates (6.19) and (6.20) in (6.18) finishes the proof of Lemma 6.7. O

Proposition 6.9. Assume k € K(ag,A) for some ag € (0,2) and A > 1. Then there is
C =C(d,ap,N) > 0 such that for every supersolution u of (PE,) in @ = (—1,1) x Bs(0)
which satisfies u > € > 0 in (—1,1) x R, there is a constant a = a(u) € R such that the
following inequalities hold simultaneously:

C|B|

Vs >0: (dt® dz) (Qe(1) N{logu < —s —a}) < P (6.21a)
Vs> 0: (dt® dz) (Qs(l)N{logu > s —a}) < ¢ ‘SBl| (6.21b)

where U= u+ || fl 1o (q)-

Proof. In the course of the proof we introduce constants c1, o, c3, ¢4 that may depend on
d, ap, and A. We use the test function ¢(¢,z) = ¥?(x)u"'(¢,z) in (5.4), where

P2 (z) = (3 —|z[) A1) VO, z e RY,

and we write v(t,z) = — log 1/5( )) Thus we have for a.e. t € (—1,1)

Y (x)Opv(t, ) de + & (U, —p*u ') < — VHx)u (t, x) f(t, ) da.
Bss B3 o

Note that & (u, —?u~!) is finite since u(t,-) € Hgé (B2) for a.e. t € (—1,1) and supp ¢ =

Bss. Applying Lemma 6.7 and || f /]| () < 1 we obtain

V2 (x)0(t, z) de +
B3

// D(@)p(y) [o(t,y) — v(t, )] ke(2,y) dedy < [Byjo| + 3E(0, ).

B33 B3/
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Now we apply the weighted Poincaré-inequality, Lemma 5.9, to the second term and use

the fact sup &(¢, ) < C for some constant C' = C(d, ap, A). We obtain
te(—1,1)

V2 (x)0(t, z) dx + ¢ / [w(t,z) — V(£)]? *(x) dz < ep | By, (6.22)

B3 B3 2

where

fB3/2 v(t, 2)?(x) do
fBS/2 Y% (r) dw

The proof now proceeds as in the case of local operators. Our presentation uses ideas from
[Mos64, pp. 120-123| and [SC02, Lemma 5.4.1].

V(t) =

Integrating the above inequality over [t1,t2] C (—1,1) yields

to
[ V2 (z)v(t, z) dzx
Bs o 1=t

Dividing by f33/2 Y2, using fB3/2 Y? < 2%|By| and ¢ = 1 in By, we obtain

+ep /: /33/2 w(t,z) = V()P 92 de < ca(ta—t1) | B1| . (6.23)

t2 2d
V(tg) t1 —|— |B1|/ / )]2 dadt < Cg(tg — tl) with cg = C—l, (6.24)

or equivalently

V(t2) = V(t1) /”/ 2
< 2
PaS— + AR t2 e V(t)]” dedt <co (6.25)

Assume that V(t) is differentiable. Taking the limit to — t; the above inequality yields

o(t,z) = V) dz < e, for a.e. t € (—=1,1). (6.26)
\B1| B1

Now set
w(t,z) =v(t,x) — cat, W(t) =V(t) — eat,

such that (6.26) reads
W' (t) + —=2— [w(t,z) —W(#)* de <0 for ae. t € (—1,1), W(0) =a, (6.27)

where a is a constant depending on u. Note that by the latter inequality W is non-increasing
n(—1,1).

We work out here the details for the proof of (6.21a). It is straightforward to mimic the
arguments for the proof of (6.21b). Define for t € (0,1) and s > 0 the set

LYP(t) ={z € B1(0): w(t,z) > s +a}. (6.28)
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Noting that W (t) < a for a.e. t € (0,1), we obtain for such ¢t and z € L?(¢)
w(t,x) —W(t) > s+a—W(t) > 0.

Using this in (6.27) yields

which is equivalent to
W) L2
(s+a=-W(t)?* ~ [Bi]

Integrating this inequality over ¢ € (0,1) we obtain

1 1
e [ e 10 1 Qe)nfws sa)
SZLM_W(T)LOZ;&,/ L5 0)] dt = B

and replacing w again by w(t,z) = v(t,x) — cat = —logu — cat in Qg (1) yields

C3 |Bl|

|Qa(1) N {logu + cot < —s —a}| < .

(6.29)

Finally,

|Qs(1)N{logu < —s —a}| < ‘Q@(l) N {logﬂ—i— cot < _78 — aH + ‘Q@(l) N {0275 > g}‘

2c
&8 \Bl| + (1 > |By| < ;

| /\

In case that V is only continuous in (—1,1) we derive the result in a different manner, cf.
[Lie96, Lemma 6.21]: For g > 0 there is 6 > 0 such that for to < ¢; + 0

[o(t,x) = V(O < 2Ju(t,2) = V(t2)]* +2[V(t2) = V()* < 2[o(t, ) = V(t2)|* + 25,

Hence, by (6.24) we obtain for to < t; + 9

V(ty) — V(t1) +‘B1‘/2/ (t2)]* dzdt < (2¢2 + 2¢5'€d) (ta — t).

Defining
w(t,z) = v(t,z) — (2e2 + 2c5'd) ¢, W(t)=V(t) - (2c2 + 2c5'<d) ¢,

the latter inequality reads

W (ts) — W(t) + |B1|/ ) / W (ts) + (22 + 2¢5'€2) (ta — 1)]” dadt < 0.



6.5 Proof of the weak Harnack inequality 95

Using the fact that for ¢,to € (0,1) and 2z € LP(t) we have w(t, z)—W (t2) > s+a—W(ty) >
0, we can omit the term (2co +20§18(2))(t2 —t) in the integral and deduce that for to < t;+0

W(ty) — W(t /
LP#)] dt <o.
(8+G—W |Bl| ’ ‘

Again, since W is non-increasing, this implies

631 t2 W(tl) — W(tg)
|B1] J4, e )] dt < (s+a—W(t))(s+a—W(t))
1 1
s+a—W(t) s+a—Wlty)

(6.30)

Choosing k € N such that & 7 < 0, writing

1 k—1 %
LP )| dt = / LP(t)| dt
[ ez X[l

and applying (6.30) in each summand, we establish (6.29). Using the same arguments as
above we establish (6.21a). This finishes the proof of Proposition 6.9. O

6.5 Proof of the weak Harnack inequality

The aim of this section is to prove Theorem 4.4. The proof uses the well-known idea of
Bombieri and Giusti, Lemma 5.13. Let us recall Theorem 4.4:

Theorem 4.4 (Weak Harnack inequality). Let k € (v, A) for some o € (0,2) and
A > 1. Then there is a constant C = C(d, o, A) such that for every supersolution u
of (PE4) on Q = (—1,1) x By(0) which is nonnegative in (—1,1) x R? the following
inequality holds:

Il <€ (infut 1l ()

where Ug = (1 — (5)%,1) x By2(0), Ug = (=1, =1+ (5)%) x By/2(0).

Proof of Theorem 4.4. Let u as in the assumption and define & = u + [|f|| oo (). If f =0
a.e. on @ we set & = u + ¢ and pass to the limit € — 0+ in the end.

a 1

Furthermore, set w = e %! and @ = w™! = %, where a = a(u) is chosen according to
Proposition 6.9, i.e. there is ¢; > 0 such that for every s > 0

C1 |Bl|

Qo) N{logw > s} < ——, and [Qs(1) N{log@ > s}| <

C1 |Bﬂ
_— 6.31
- (6.31)
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The strategy of the proof is to apply Lemma 5.13 twice: on the one hand to w and a
family of domains U = (U(r))g<r<1 — and on the other hand to @ and a family of domains
U= (U(r))§<r<1. We consider the case o > 1 first and define the families ¢/ and U by (cf.
Figure 6.4)

S
I

U(1) = Qa(1),
U(1) = Qs(1),

U(r)=>1-r%1)x B,,

~

U(r) = (~1,—1+1%) x B,

<)
Il
[NCNIE OR

By virtue of (6.31) we see that condition (5.31) is satisfied for both w and .

t
Ug =U(3})
: T
ro E E
e HU(r)
T R4
e BRRLREt . U(r)
re E E
: \ :
_ Byx(-1,1)
Us=U(})

Figure 6.4: Sketch of the domains ¢/ and U in the case o >1

We appAly Theorem 6.4 to (w,U) with pg = oo and arbitrary 7. We also apply Theorem 6.6
to (w,U) with pp =1 and 7 = #'IQ < k% In both cases condition (5.30) of Lemma 5.13
is satisfied. Note that the domains U(r) and ﬁ(r) are obtained from Qg(r) and Qg (r),
respectively, by shifting in time, i.e. transformations of the type (¢,x) — (¢t + 7, ), which

do not affect neither (6.15) nor (6.17).

All in all, application of Lemma 5.13 yields

—a ~—1 ~ a ||~ ~
supw =e *supu - < C and W15 = el mm, < C.
() 0 I HLl(U( ) I LY (U(6))

Multiplying these two inequalities eliminates a and yields

for a constant ¢y = C C that depends only on d, o and A. This proves (HI) in the case
a > 1 observing that Ug = U(0), Us = U(0) and

ey < Wl < <2 (gt Iflieie))-
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If @ < 1, we define the domains U and u slightly differently, namely

U(1) = Qa(1), 0=(3)", U(r)=(1—-r1) x B,1/a,

U(1) = Qa(1), 0=(3)", U(r) = (=1, =147) X Byy/a.
The same reasoning as above applies to these domains and hence (HI) is proved for all
a € (ap,2). O

6.6 Proof of Holder regularity

In this section we deduce Theorem 4.5 from Theorem 4.4. This step is not trivial and differs
from the proof in the case of a local differential operator because the (super-)solutions in
Theorem 4.4 are assumed to be nonnegative in the whole spatial domain. Note that the
auxiliary functions of the type M(t,r) = supg u — u(t, ) and m(t,z) = u — infg u used in
[Mos64, Section 2| are nonnegative in @ but not in all of R?. The key idea to overcome this
problem is to derive Lemma 6.11 from the Harnack inequality. Lemma 6.11 then implies
Theorem 4.5. This step is carried out in [Sil06] for elliptic equations.

The following corollary will be used to derive Holder continuity.

Corollary 6.10. Leto € (0,1) and Dg = (-2, —2+(%)a)xBl/2, Dg = (— (%)a ;0)x By /a.
There ezist €9,6 € (0,1) such that for every function w satisfying

w >0 a.e. in (—2,0) x RY,
Ow — Lw > —¢gg in (—2,0) X By,
[De N {w > 1} > o [Del,

the following estimate holds:
w >0 a.e. in Dg. (6.32)

The constants g and 0 depend on o, g, A, d but not on « € (ag,2).

Proof. Application of Theorem 4.4 to w yields

o< ][ w(t,z)dxdt <c <infw+5o>
Dg

Dg
for a constant ¢ = ¢(d, ag, A). Choosing g9 < Z and § = 7=°¢ we obtain

infw > 9,
Dg

which is the desired inequality. O
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Define for (t,2) € R4+ a distance function
R max (1 |z|, L(—t)"/ if t € (—2,0],
(e 2y = { P (Bl 3E0)
00 if t ¢ (—2,0].

Note that p((x,t)) # p(—(x,t)). We define (cf. Figure 6.5)

~

Dr((z0,t0)) = {(t,m) e R | 5((t, ) — (to, 20)) < r}, I = (—2,0)

and note

Dy ((0,t0)) = (to — 2 t0) x Bsp(wo) and | J Dy((0,0)) = I; x R
>0
To simplify notation we write D(r) = D,((0,0)). Additionally, we define
D(r) = (—2r%,0) x Ba,-(0)

and recall the definitions of Dg, and Dy in Corollary 6.10.

D(1/6
t/ (1/6) iy
i L7 1 ;
; eeeemdeeaeszar Dg 1
Du)EDO)E *%De i

Figure 6.5: Sketch of the domains D and D

Lemma 6.11. Assume that £ is defined by (4.2) with a kernel k belonging to some
K'(co,A). Then there exist By € (0,1) and 6 € (0,1) depending on d,cgy and A such
that for every function w with the properties

w>0  ae inD(1), (6.33a)
dw—Lw>0  inD(1), (6.33D)

1
[Ds N {w 2 1} 2 5|Dsl, (6.33¢)
w>2[1-(6 ﬁ(t,y))ﬁo] a.e. in I x (R4\ By), (6.33d)

the following inequality holds:

w>46 a.e. in Dg.
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Proof. The conditions (6.33a) and (6.33b) imply dyw™ — Lw* > —f in D(1), where
ft,x) = (Lw)(t,x) for (t,z) € D(1).
Note that since |z —y| > 1 for # € By and y € R?\ B
ey = s [ w k) dy < oo
(tx)€D(1) /RN Bs(0)

Next, from condition (6.33d) we deduce
W (ty) <206 )] —2 <2 (4501 | i
yY) = p(t,y)] 2 <2 (470 |y 1 a.e. in I1 x (R*\ Bs).

Our aim is to show || f| e p(1y) < €0 with g9 as in Corollary 6.10 for o = 3. Note that for
every R > 3

/ (4% Iy1™ = 1) k() dy = / (4% 11 = 1) k() dy
R\ B3(0) RN\ Br(0)

+/ (4ﬁ° ly|® — 1) ki(z,y) dy.
BR\Bg(O)

Because of (K3) it is possible to choose R sufficiently large and Sy € (0, 1) sufficiently small
in dependence of £y and A such that HfHLoo(D(l)) < gp.

Condition (6.33¢c) ensures that Corollary 6.10 can be applied. ]

Theorem 6.12 (Oscillation decay). Assume that £ is defined by (4.2) with a kernel k
belonging to some K'(ag,A). Then there exists 3 € (0,1) depending on d,ap and A such
that every solution u to Oyu — Lu =0 in D(1) satisfies for allv € Z

osc u< 2Hu\|Loo(leRd)6*”B, (6.34)
D(6-v)

where 0scg u = supg u — infq u.

Proof. Set K = My — mg where My = supy, wga u, mg = inf; ,gau. Let ,58p € (0,1) be
the constants from Lemma 6.11. Define

o log(5%) 5 s
8= mm(,ao, W) — 1-7<67. (6.35)

We will construct inductively an increasing sequence (m,),cz and a decreasing sequence
(M,), ez such that for every v € Z
my, <u < M, a.e. in D(677
oo 67, (6.36)
M, —m, = K67

Obviously, (6.36) implies (6.34). For n € N set M_,, = My, m_,, = mg. Assume we have
constructed M,, and m,, for n < k — 1 and define

v(t,x) = |u ¢ L o M 1 +mp_1] 2- GB(k—1)
e Gak—1)" gk—1 5 I .
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Clearly, v satisfies
dv—Lv=0in D(1) and v <1in D(1) (by induction hypothesis). (6.37)

On I; x (R%\ B3) we can estimate v in the following way: For (t,y) € I; x (R?\ Bs) fix
J € N such that

6/~1 < plt,y) <67, or equivalently (t,y) € D(67)\ D(67~1).

Then
o(t,y) = (u t y o\ M1 +mp—
9. 6k-1)8 Y= gak—1)" gk—1 2
M1 +my—
< (Mkjl — Mg—j—1 + Mp—j—1 — lekl>
M1 —my_
§<A&ﬂ;1—n%ﬂ;1—k’ﬂ2m*1>
— <K6—(k—j—1)ﬁ _ K6—(k—1)ﬂ>
2 )
= v(t,y) <2-6/F -1 for a.c. (t,y) € D(67)\ D(67~")
= u(t,y) < 2[6 p(t,y)]" —1 for a.e. (t,y) € I x (R?\ Bs). (6.38)
Analogously, we can estimate v from below by
o(t,y) > 1—-2[6 p(t,y)]”  forae. (t,y) el x (R?\ Bs). (6.39)

Now there are two cases. In the first case v is non-positive in at least half of the set Dg,
ie.

1
[Don{v <0} 2 5 |Dgl.- (6.40)
Set w =1 — v. w satisfies conditions (6.33a)-(6.33d) of Lemma 6.11 and hence

w>4¢§ ae in Dg, orequivalently v <1-—4§ a.e. in Dg.

Noting that D(1/6) C Dg this estimate has the following consequence for u: For a.c.
(t,z) € D(67%) we have

K My + my—
_ alk—1), pk—1 k—1 k—1
u(t, x) 5 618 " (6 t,6 :c) + 5
K(1-9) My—1 —mp—y
=g gt-ns ML T
K(1—9) K O\ o (ho1)8
S oogtna Tt o e T et (1 - 2) K6

<mp_q + K67,

where we apply (6.35) in the last inequality. By choosing my = my_1 and My = my_1 +
K675 we obtain sequences (m,,) and (M,,) satisfying (6.36). In the second case v is positive
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in at least half of the set Dg and hence w = 1 + v satisfies all conditions of Lemma 6.11.
Therefore, we obtain

w>4¢§ a.e in Dg, orequivalently v > —149 a.e. in Dg.

Adopting the computations above we see that My, = Mj,_; and my, = Mj_; — K65 lead
to the desired result.

This proves (6.36).

Having established Theorem 6.12 we are now able to prove Theorem 4.5 providing a priori

estimates of Holder norms of solutions. Let us recall Theorem 4.5:

Theorem 4.5 (Holder regularity). Let k € K'(a, A) for some ag € (0,2) and A > 1.
Then there is a constant 5 = B(d, o, A) such that for every solution u of (PE,) in
Q=1xQ with f =0 and every Q" € Q the following estimate holds:

- lu(t, z) — u(s,y)| - HUHLOO(IXRd)
= B=" B

(t,z),(s,y)EQ’ (’:E _ y’ + |t _ S,l/a)

, (HC)

with some constant n = n(Q, Q") > 0.

Proof. Let u as in the assumption, Q' € @ and define
n(@.Q) =n=suw{re 3] |¥ta)eQ: Do) C Q).
Fix (t,2), (s,y) € Q'. Without loss of generality we may take ¢t < s. At first, assume that

and choose n € Ny such that

n ~ n
Gt = p((t,x) — (s,y)) < 6

Now set u(t,x) = u(n“t + s,nx + y). By assumption @ is a solution of dyu — Zu = 0 in
D(1). Accordingly, applying Theorem 6.12 to @ we obtain

u(t, z) — u(s,y)| = [a(n*(t — s),n " (x —y)) — u(0,0)|
< 2{[0l oo (1, xr 6"
< 2wl oo (1 xra) (67”71)ﬁ65
p(t,x) — <s,y>>>ﬂ
n
2=yl + (s =Y\
n ) '

<12 g 1 (

<12 ”uHLOO(IXR‘i) (
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Hence, for all (¢,2), (y,s) € Q" subject to (6.41)

lut,2) —u(s,y)| _ 12 l[wll oo (1 xRa)
B — B ’
(lo =yl + [t = s"/") 1

If p((t,z) — (s,y)) > n then the Holder estimate follows directly:

B
1
2 ull e 1y [mex (12 = 1t = 5]/ ]
nb

lu(t, ) —u(s,y)| <2 HUHLoo(Ide) <
2 [ull oo 8
< D (o — gl e — 50
n
Hence,

sup u(t, ) — u(s, y)| < 12 [Jull poo (1 xray
(t,x),(s,y)EQ’ <|x — y| + |t — 8|1/D¢)6 "75

)

which had to be shown. O



7 Proof of the main results for second
order parabolic equations

7.1 Basic step of Moser’s iteration

The results in this section provide the basic steps for Moser’s iteration for negative ex-
ponents. The case of a local operator, i.e. a parabolic equation in divergence form with
bounded and measurable coefficients, is studied in this section. The result and the proof
are contained in [Mos64] and [MosT71].

Proposition 7.1. Let } <r<R<land k=1+32 (k=3 ifd=1,2).

(i) Let p < 0. Then every supersolution u of (PEg) in Q@ =1 x Q, Q 2 Qs(R), with
u>e >0 in Q satisfies

1/k
( / (¢, ) dxdt) <4 / Wt 2) dz dt . (7.1)
Qs(r) Qs(R)

(ii) Let p € (0,1). Then every nonnegative supersolution u of (PEg) in Q = I x Q,
Q@ 2 Qg (R), satisfies

1/k
( / uP(t,x) dz dt) <A / uP(t, ) ddt . (7.2)
Qg (r) Qo(R)
(iti) Letp > 1. Then every nonnegative subsolution u of (PE2) in @ = IxQ, Q@ 3 Qo(R),
satisfies
1/k
( / P (t, z) da dt) <A u(t,x) dedt . (7.3)
Qo(r) Qo(R)

In (7.1)-(7.3) we have used the notation & = u+ || f|| (- The constant A can be chosen
as

A:(R_CT)Q<Z~I—|p|+1)K:1 (7.4)

with e = 3 ‘1— H, o =A+)\"1 and a constant C = C(d).
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Note that (7.1) is an estimate on u from below since the exponent is negative there.

Before starting the proof let us state and prove an immediate consequence of the preceding
result:

Corollary 7.2. Let p > 0, p # 1. Then every solution u of (PEg) in Q = I x Q,
Q@ > Q(R), satisfies

1/k
( / T (1, ) dxdt) <A / Wt x) da dt (7.5)
Q(r) Q(R)

k+1

A:(R_C7n)2<z+!p|+1) "

where

with the same notation as in Proposition 7.1.

Proof of Corollary 7.2. Solutions are invariant under the translation (t,z) ~ (t & 72, z).
Taking into account the inclusions

(=12, R* — %) x Bg C Q(R) and (—R%*+12,7?) x Bg € Q(R)

we conclude from (7.2) and (7.3) that

</ u™P(t,x) dz dt) < 2A/ P(t,x) dz dt.
Q(r)

The proof of Corollary 7.2 is complete. O

Proof of Proposition 7.1. Let p € R, p # 0, p # 1, and u some function as in part (i)-(iii).
Set &= u+ [|f| Lo (q(r)) and

~P
u2

vt z) =az(tx),  (tx) =a " (t 2y (@),

where 1p: Q — [0,1] is defined by! 9(z) = (i;'f‘ A 1) V 0. Obviously, ¢ € H}(Q2). Note
that

S

Vo=-us"'va,  op?=paPlou

[\

and
Vo = (p— 1) P2 *Vau(t,z) + 2 a1 Ve .
We prove part (i) in full detail and indicate the modifications that are necessary for the

proof of part (ii) and (iii) afterwards.

For the proof of part (i) we proceed in two steps: First, we establish a Caccioppoli-type
estimate. In the second step we use these estimates in a space-time Sobolev-type embedding
to obtain (7.1).

ef. Figure 6.1 on page 80
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I: Let u be a supersolution in Q with © > ¢ > 0 in (. Since p < 0 this assumption is
needed to guarantee the boundedness of u?. We apply the test function ¢ in (5.9):
Forae. tel

/ P (t, 2)y? (@) (L, @) da + / (p = DY (2)a 2 (t, ) (Vi - AVED) (t, ) do

Br Br

2 [w@ ) (Vo AVD) (o) da [ ()RR (0) do
In terms of v this inequality reads
1173/ V2 (2)0p? (t, x) dx + 4(pp;1) / V2 (x) (Vv - AV) (t,2) dz
>—/¢ v(t,z) (Vi - AVU)(txdx+/ftx1/J2()_p1dx (7.6)

or equivalently
1
4 /B,

< — Y(x)v(t,x) (Vi - AVo) (t,z)dz + % ft, ) (x)uP~ (¢, x) dx. (7.7)
Br Bg

2 2 . 2(z) (Vv - AV) (t, z) dz
* ()0 (t,x)dw+<1 p) BRw()(V AV) (t,z)d

Using Schwarz’ inequality and the inequality ab < 4%@2 +eb? for € > 0, we estimate
the first integrand on the right-hand side by

[0 V- AV| < (u2 (V- AVE) 2 (Vo - AV0)) 2
< 415@2 Vi - AVY + ep? Vo - AVo. (7.8)

Choose € = 5 (1 - 7) > 0. Then (7.7) and (7.8) yield

L w@ontto)yde+e [ 02(z) (Vo- AVD) (¢ 2) de
4 BR BR
< 1 V2 (t,x)(Vip - AVY)(t, ) dz + p f(t, ) (x)uP L (t, z)dz. (7.9)
4e Br 4 Br

Using (4.3) and || f/t| oo () < 1 we obtain

V2 (x) 0 (t, ) da 4 e V2 (x) |Vo(t, z)* de
Br Br

(7.10)
A
< [ s (190 + bl (@) ) o
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Now define? a piecewise differentiable function xo: R — [0,1] by
t+ R?
Multiplying (7.10) with X2@ implies

/(9t Xo(t Jo(t, ) dz + 4eX x2 (¢ /1/) ) [Vo(t,z)|* da

<20 [ P | IVe@P + ] ) ds

Br

Foxa ()Xa0)] / (@)t 2) da. (7.11)
B

Integrating (7.11) from —R? to some t € (—72,0) = I5(r) yields
/ (xo (O (@)o(t, 2)? d + 4eA / Y2 (5) / (@) |Vo(s, 2)[? dzds
Br 2 B(R)
<[ e / V(s 2) ( V() + o w%:)) dards (7.12)

/ /2)(@ ‘Xe ‘1/12 sxdxds

Now we use the facts that

R2 _ 42

1
Vi< —— Ll <
| ¢’ —(R_r>2 ‘X@‘f
¢»=1on B,, 1% <1 on Bg, Xo =1on I5(r), xe <1on Ig(R).

to establish

sup / v2(t, x) do + E)\/ \Vo(t,z)|* dzdt
tels(r) J B(r) Qe(r)

A1 1 ,
_ _— t dx dt
(g(R_T)Q+rp\+R2_T2)/Qe(R)v<,x> .

C1 A 2
<1 +p+1)/ V2 (¢, x) dz dt . 7.13
(R—r)2 (6 o Qs (R) 71

This L°°(L?)N L?(H')-estimate is sometimes called a Caccioppoli-type estimate. We
will use these inequalities in the next step to control the constant in the parabolic
Sobolev embedding.

=

2¢f. Figure 6.2 on page 81
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II: Now we first apply Hélder’s inequality with exponents® 6 = ﬁ, 0 = % to the

integrand v%® (remember £ = 1 + %) and then we make use of Sobolev’s inequality
in Proposition 5.6:

/ v (t,z) dz dt = / V2 (¢, 2)v (¢, z) da dt
Q(r) Q(r)

1/6 170/
< / (/ v (t, x) d:v) </ v (t, z) dx) dt
I(r) \YB(r) B(r)

176/
< ¢y sup (/ v (t, x) dx) / <r*2v2(t,x) + [Vo(t, x)\Q) dz dt,
tel(r) B(r) Q(r)
(7.14)

with a constant ¢ depending on d. Using (7.13) twice and r > % yields

A k—1
o0 [ (S i)

X [(Rc_lryi (£+|p|+1> +1} (/Q(R) V2 (t, z) dxdt)ﬁ. (7.15)

Observe that with o = A + \7!

[op (2] e (2o )

o A FELTANT AL ~
:W<e+|p|+1> [52 +€(1+|p|)+611(R—'r)2]

C3 o k=1 /o 2
s (2 1) <f 1) .
(R — 1)~ <€+\P|+ €+\P|+

Together with (7.15) this proves (7.1) in part (i) by resubstituting v? = uP.

IN

To prove part (ii) take p € (0,1). If f =0 a.e. on @ we set u =u + ¢, € > 0, and pass to
the limit € — 0+ in the end. We need this assumption to guarantee the boundedness of
the test function.

Next, observe that (7.6) remains valid in this case. For p € (0,1), inequality (7.6) is
equivalent to

1 2 2 1 2
"1l Y7 (z) 0" (t, ) do — <1 - p) . V() (Vo - AVo) (¢, z) dz
< (x)v(t,x) (V- AV) (t,x) dz — % ft,x)?(x)aP L (t, z)dz. (7.16)
Br Br

3In the case d = 1,2 these exponents should be adopted to (5.19b)
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Choose £ = £ (% - 1) =1 ‘1 - %‘ in (7.8). Then

— [ X @)8?(t,z) dx + 4eX | @ (x) |[Vo(t, z)* dz
br br (7.17)

< [ ) (190 400w an

We choose a slightly different time-dependent test function in this case, namely xq(t) =

( ez N\ 1) VvV 0. We multiply the latter inequality with Xé and integrate from some

t € Is(r) = (0,7%) to R?, which yields

sup / V2 (t, ) dz + e \Vo(t,z)|* dzdt
B(r) Qa(r)

t€le(r)
1/A 1 1 )
<-|——— e S— t dx dt
_4<5(Rr)2+’p|+R27"2)/@3@(3)0(’:5) !

C1 A 2
L +p+1>/ V2 (t, ) dzdt.
(R—r)Q(8 p Qs (R) ()

Starting from this inequality the assertion (7.2) can be established in the same way as in
Step 1II above — of course with Q¢ and I replaced by Qg and Ig, respectively.

In order to prove part (iii) take p € (1,00). If f =0 a.e. on Q we set u =u-+¢, € > 0, and
pass to the limit € — 0+ in the end. Since w is a subsolution we obtain

;/¢2($)8t02(t,x) dz + Ap—1) /wZ(x) (Vv - AVv) (t,x)dz

Br

<—/¢ v(t,xz) (Vi - AVv)(txdx+/ftm1/12()up1dx (7.18)

which is equivalent to (7.9). The same steps as in the proof of part (i) prove (7.3).
The proof of Proposition 7.1 is complete. O

7.2 Estimates for the infimum of a supersolution and the
supremum of a solution

Theorem 7.3. Let%§r<R§1,a:/\_1+A and 0 < p <ot

(i) There is a constant C' = C(d, A, \) > 0 such that for every nonnegative supersolution
uof (PEg) in@Q=1xQ, Q3 Qs(R), withu > e >0 in Q the following estimate

holds:
(7 1/p 1/P
~71 ~_
sup @1 < <) / TPt ) dedt | (7.19)
Qs (r) (R —r)dt ( Qo (R)

where U =u+ || fl 1o ()
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(i1) There is a constant C" = C'(d, A, \) > 0 such that for every nonnegative solution u
of (PE2) in Q=1xQ, Q> Q(R), the following estimate holds:

c 1/p 1/p
sup u < () / uP(t,x) dx dt , (7.20)
Q(r) (R —r)d2 ( QR)

where U= 1w+ |||l o ()

Remark 7.4. The proof below establishes the inequalities (7.19) and (7.20) in the case
d > 3. The assertion is still true if d = 1,2. The proof of this fact can be found in
Remark 6.5 just by setting o = 2 therein. ¢

Proof. In view of Lemma 5.11 choose Kk = 1 + %, po = o~ '. Furthermore, for p € (0,07!]

and m € Ny set p,, = pr'™ as well as ¢, = % (1 + i) and choose the sequence of radii

defined by
R—7r

2m

Tm =T+

Note that ro = R, r,p, > r and lim 7, = r.
m—00

ad (i): We consider the increasing sequence of subsets (Qs(r),0 < r < 1) of R4+,

In Proposition 7.1(i) we established for all j € Ny

1/pj+1 L/ps
</ u P (t, x) dz dt) < Aj(p)'/i </ uPi(t,x) de dt) 7
Qo (rj+1) Qe(ry)

where
K+l
A;(p) a <U+ +1>K f tant (d) >1

ip)=——" | —+pj or some constant ¢; = ¢1(d) > 1.

! (rj —rj+1)* \g;
Thus, condition (5.22) of Lemma 5.11 is satisfied for the function @ ~!. In order to
verify condition (5.23) observe that (r; —7j11) "2 = 222(R—r)~2. Additionally,
by the property p < o1,

K+1

" 20+ 2 , . 4
<;+pj+1> = <1ip].+pj+1> < (206 +pi/ +1)° <1657,
J

pj

(o] .
2
Therefore, since E —”; < 00, there is a constant co = ca(d, A, A) > 1 such that
K
J=0

_9 1+2/d CQ

1/k7 —23°%° kI
H)Aj(p)/ <o (R—r)255%0% = oy(R— ) 274 - mE
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Taking M = c2(R —r)~%"2 in Lemma 5.11 implies
1/p 1/p
sup u ! < (CQH> / u Pdxdt for all p € (0,071,
Qo) (R =) Qo (R)
which had to be shown in part (i).
ad (ii): We consider the increasing sequence of subsets (Q(r),0 < r < 1) of R*!. Corol-

lary 7.2 states that for all j € Ny

1/pjt1 1/p;
(/ WP+ (t, ) da dt> < Aj(p)l/pj (/ ubi (t,x) dx dt) )
Q(rj+1) Q(r;)

where

K+1

(U +pj + 1) " for some constant cs(d, \,A) > 1
€j

¢q 2242

A=y

Assume p = $x7"(k + 1) for some v € N. For p of this form we have
1 m—v 1 1
|pm—1|:§‘/<a (k+1)—2|> 1—/-$ ) for all m,v € N. (7.21)

This inequality can be verified as follows: The continuous, strictly monotone

log(57)
log k

increasing function x — k*(k+1) —2, x € R, is zero if and only if z = €

(~1,0). Now
ki (k+1)—2/=1-r" and ["(k+1)—2|=r—-1>1—x""
This shows inequality (7.21). The fact p € (0,071] and (7.21) imply

m 4™ 5™

P S o € e 4 PR <
T

o 200m
— +Pm =
Em [pm — 1]

3 2%+2 5k 2 c
A < 1] < —3
](p)_(R—r)Q 1—/1_1—1_ ~(R-r)?

for some constant ¢4 = c4(d, A, A) > 1. By the same computations as in the proof
of part (i) we establish (7.20) for the specific choice of p mentioned a few lines
above.

and

For general p’ we may find p such that p < p’ < px and (7.20) holds for this p.

By Hélder’s inequality we obtain
ClRR) \""
(R —r)dt2 IQ ) Je

1/p
C 2
((R_T)d+2 /Q(R)“>
<C|Q(R| )1“’
(R —r)dt2 IQ(R)| Jg

IN

IN
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C 1/1)’ , 1/p,
(= P 7
<(R - T)d”) </Q(R) )

where we have used ( ACE(TI)?L =1 Rjidrﬁ +— > 1 in the last inequality. This finishes

the proof of Theorem 7.3. OJ

7.3 An estimate for the L'-norm of a supersolution

Of course, one could also prove a result in the spirit of Theorem 6.6 for nonnegative
supersolutions of the second order equation. However, in order to prove a strong Harnack
inequality for solutions to the second order equation, we need an estimate for the supremum
of a solution, which we established in Theorem 7.3(ii). This is much stronger and explains
why we discount a possible analog of Theorem 6.6 in this context.

7.4 An inequality for logu

The following result is stated in [Mos71] and was proved in [Mos64].

Proposition 7.5. There is C = C(d) > 0 such that for every supersolution u of (PExj)
in Q@ = (—1,1) x By(0) which satisfies u > e > 0 in (—1,1) x Bg(0), there is a constant
a = a(u) € R such that the following inequalities hold simultaneously:

Vs >0: (dt® dz) (Qe(1) N{logu < —s —a}) < , (7.22a)

(7.22b)

|52]5

Vs> 0: (dt ® dz) (Qe(1) N{logu > s —a}) <
where U= u+ || f| oo (q) and o = AL+ AL

Proof. We just need to prove an inequality analogous to (6.22) in the proof of Proposi-
tion 6.9. As is explained there the arguments in the proofs of the local and nonlocal case
coincide. We follow the lines of [Mos64, p. 121].

Let u be a supersolution such that u > & > 0 on (—1,1) X B2(0) and @ = u + || f[| oo () -
We set

v(t,2) = —logii(t,z),  o(t,x) = v*(@)a"" (t, ),
where ¢?(z) = ¥(z) = (3 — |2|) A1 as in Lemma 5.8. Note that

—Vu —Oru

Vu=— and O = —
u u

We apply the test function ¢ in (5.9): For a.e. t € (—1,1)

VU o da
B3 /s
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+/ [a=" (V(?) - AVa) +¢* (V(a ') - AVa)] dz > Y futda.
Bs s B3 s

In terms of v this inequality reads
/ V2o dr + / 24 (Vo - AVV) +1* (Vo - AV0)] dz < — P2 futde.
B3 B3/ Bz

Using Schwarz’ inequality (cf. (7.8))
1
4 (V4, AV0)| < (Y, AVS) + 192 (Y, AV)

Hfﬂ_lHLoo(B2(0)) <1 and (4.3), we get

A
V2O da + = Y? Vol dz < QA/ V2 da + Y2 da . (7.23)
B3 2 2 B3 /2 B3 B3
Lemma 5.8 applied to the second term on the left-hand side implies
/ V2ovde + el A 2 (v(t, ) — V(t))? dz < 2A (Ve dz + Y da .
B3/ B3/ B3/ Bs s

where

/ v(t, 2)? (z) d
B '
2 (z) dx

B2

V(t) =

Due to 0 = A~! + A we may write this inequality in the form

V2o dr+epot 2 (v(t, ) — V(2)? dz < 020/ V|2 dx+}B3/Q , (7.24)

B3 o Bs o B3 o

which is now the desired analogous inequality to (6.22). The same arguments as in the
proof of Proposition 6.9 lead to (7.22a) and (7.22b). O

7.5 Strong Harnack inequality for solutions

Theorem 7.6 (Strong Harnack inequality for solutions to second order equation).
There is a constant C = C(d, A\, A) > 0 such that for every nonnegative solution u of
(PE2) on Q = (—1,1) x B2(0) the following inequality holds:

supu < C' [ infu + NS >, 7.25
upu < C (intut I~ (7.25)

where Ug, = (3/4,1) X By/2(0) and Usg(—1,—3/4) x By 5(0).
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The main difference between the following proof and the foregoing proof is that — due to
Theorem 7.3 — there is an L>®-estimate for both @ and % ~!. This means that we are able
to apply Lemma 5.13 with py = oo for both w and @w. Let us provide the details:

Proof. Let u as in the assumption and define u = u + || f|[ oo () If f =0 a.e. on @ we set
u = u + € and pass to the limit € — 0+ in the end.

a 1

Furthermore, set w = e %! and @ = w™! = %, where a = a(u) is chosen according to
Proposition 7.5, i.e. there is ¢; > 0 such that for every s > 0

1Qu(1) N {logw > s}| < % and  |Qo(1) N {log®@ > s}| < % (7.26)

Apply Lemma 5.13 to w and a family of domains U = (U(r))g<r<1 — and to w and a family

of domains U = ([7(7"))§<r<1. Define the families ¢/ and I/ by

S
|

U(1) = Qp(1), , U(r)=(1-7%1) x B,

U(1) = Qa(1), 6 U(r)=(~1,-1+7%) x B,

N — DN -

By virtue of (7.26) we see that condition (5.31) is satisfied for both w and .

The domains U(r) and U (r) are obtained from Qg (r) and Qg(r), respectively, by shifting
in time, i.e. transformations of the type (t,x) — (¢t + 7, x). Therefore, Theorem 7.3 implies
that condition (5.30) of Lemma 5.13 is satisfied for both w and @ with py = oo and arbitrary
7. By Lemma 5.13, there are constants C, C>0 depending only on d, A and A such that

upu < C.
Q)

supw=e *supu ' < C and w=e"

U(®) U(6)

w
T

u

(

)
&)
(@)

Multiplying these two inequalities eliminates a and yields

supu < ¢o inf u
ﬁ(A) u(o)

for a constant co = C C that depends only on d, A\ and A. This proves (7.25) since Ug =

~

U(6), Us = U(H) and

supu < supu < ¢ (i(}lﬂafu‘i' HfHLOO(Q)> ' -
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7.6 Holder regularity for weak solutions

Theorem 7.7 (Holder regularity estimate). There is a constant 5 = B(d, A\, A) such
that for every solution u of (PEg2) in Q = I x Q with f =0 and every Q" € Q the
following estimate holds:

_ U|| 700
. lut,2) —u(s,y)|  _ =g
> B=" B

(t,2),(,9) €Q’ (|$ — [+t — s|1/2>

, (7.27)

with some constant n = n(Q, Q") > 0.

Proof. Let v be a nonnegative solution to (PE3) on U = (—1,1) x B2(0) and recall
Us = (3/4,1) X By2(0) and Ug(—1,-3/4) x By2(0)
from Theorem 7.6. Write

1
v(t,z)dxdt < supwv.

M -
o(v) Usl Ju, Us

As a consequence of Harnack’s inequality we obtain that there is a constant v € (0,1)
depending only on d, A and A such that

infv >~y Mg(v). (7.28)
Ug

Given a solution u (that may change its sign) on U of (PEg) we define

M =supu, m=infu, M® =supu, m® =infu.
U U Ug Ug

Clearly, M — u and u — m are nonnegative solutions of (PEy) and

Me(M —u) =M - Mg(u),  Mg(u—m)=Mg(u) —m.
(7.28) implies

M= M® > 5(M - Mo(w)) and m® —m > y(Mo(u) —m),
which in turn implies

oscu — oscu > yoscu, or equivalently oscu < (1 —)oscu, (7.29)
Ug U Ug U

where oscp v = supp v — infp v denotes the oscillation of a function v on a domain D.
The strategy now is to repeat estimate (7.29) on a sequence of nested cylindrical domains

such that the oscillation reduces in each step. To this end define for (¢, z) € R*! a distance
function

max (3 |z|, 1v/~1) if t € (—2,0],

p(t2)) = {OO if £ ¢ (<2,00
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Note that p((t,x)) # p(—(t,x)). We define
Dy((to,w0)) = { (t,2) € R | p((t,2) = (to,20)) <7}, Dy((0,0)) = D,

Observe that D(1) = (—2,0) x B2(0) = U and D(1/4) = Ug. By a simple scaling argument
we deduce from (7.29) that a solution v on D(1) satisfies

osc u<(l—%)""oscu foreveryneNy. (7.30)

D(4=n=1) D(1)
For @' as in the assumption define

n(Q,Q) =n=sup{re(0,3]|V(txz)eQ: D(tx)CQ}.

Fix (t,z), (s,y) € Q. Without loss of generality we may assume t < s. If p((t,z)—(s,y)) <
n we choose n € Ny such that
n

ot S (o) = (5,9) < 1=

By assumption the rescaled function (¢, z) = u(n?t + s,nx + y) is a solution of the local
equation on D(1) = (—2,0) x By(0) and by (7.30) we find

lu(t,z) —u(s,y)| = [a(n*(t — s),n" " (z —y)) —(0,0)]

<(@-9)" gt

< 2(1 = )" [ull poo g

1\
<2(3) Mol

_ 8 GEEE <s,y>>)ﬁ |

s —Z ||U o
e [l oo ) ;

—log(1-7)

where 5 = log 4

This proves (7.27) in the case p((t,x) — (s,y)) < n. In the case p((t,z) — (s,y)) > n,
the Holder continuity follows directly as is explained in the last argument in the proof of
Theorem 4.5 on page 102. O






Notation

A C B means that every element of A is contained in B. If A is a proper subset of B we
write A C B.
The Euclidean norm on R? is denoted by |- | and the scalar product is written as

d
JUy:Zl“zyz
i=1

We use the notation f = g if there is a constant C' > 1 such that C~1f < ¢ < C f.

For a = (a1, ...,0q) € N& we use |a| = a1 + ...+ ag and for u € C®(9)
0% = 071052 ... 0.

The norm of a Banach space V' is denoted by ||-[|;,. The dual space of V' is denoted by V*
and for f € V* and v € V we write

(fiv)y = f(v) and || f[ly = sup {(f;0)y

vevrioy Ivlly

For two Banach spaces V, W we write V — W if there is a continuous, injective mapping

j: V. — W. If j is not specified, then j =id: V — W. We write V' <i> Wif V. — W and
V is dense in W.

If B(Q2) is a Banach space of functions acting on € and taking values in some normed space
Y, then we write

Bioe(Q2) ={u: Q =Y | up € B(Q) for every ¢ € C°(Q)} .

1 4 stands for the characteristic function of a set A.
Let m € Ny and Q € R? open. Then
cm(Q) = {u: Q—R ‘ d%u is continuous for every o € Nd with |a| < m} ,
c"(Q) = {u € C"™(Q) | 9”u has a continuous extension to £
for every a € N& with |a < m} ,

CoQ) =) c™Q), Cc*@= () c"@.

méeNp meNg
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Let © C R¢ be open. If u: © — R is continuous and bounded, we set

|l Ay = sup |u(z)| .
lullom) = sup ju(z)]

Furthermore, we define for g € (0, 1] the Hélder seminorm

|u(z) — u(y)]
[u] o) = sup 5 -
z,y€0) |.I' — y|
T#y

For k € Ny the Banach space C*#(Q) consists of all functions u: © — R such that

lullors@) = Z 1%l o) + Z [0%u]co.0(q) < 00

la| <K |a|=F
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