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Abstract. In this paper we present an online approach to human ac-
tivity classification based on Online Growing Neural Gas (OGNG). In
contrast to state-of-the-art approaches that perform training in an offline
fashion, our approach is online in the sense that it circumvents the need
to store any training examples, processing the data on the fly and in
one pass. The approach is thus particularly suitable in life-long learning
settings where never-ending streams of data arise. We propose an archi-
tecture that consists of two layers, allowing the storage of human actions
in a more memory efficient structure. While the first layer (feature map)
dynamically clusters Space-Time Interest Points (STIP) and serves as
basis for the creation of histogram-based signatures of human actions,
the second layer (class map) builds a classification model that relies on
these human action signatures. We present experimental results on the
KTH activity dataset showing that our approach has comparable per-
formance to a Support Vector Machine (SVM) while performing online
and avoiding to store examples explicitly.
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1 Introduction

The recognition and classification of human activity is important in many appli-
cation domains including smart homes [1], surveillance systems [2], ambient in-
telligence [3], etc. In particular, we address the task of classifying human activity
into a given set of activity types on the basis of video data, sequences of 2D im-
ages in particular. State-of-the-art approaches extract features from space-time
volumes, e.g. space-time interest points (STIP) as introduced by Ivan Laptev [4].
Their advantage lies in their compact and robust representation of human ac-
tions, as they reduce the input space by identifying local feature points. Training
a human action classifier model based on STIPs typically includes the clustering
(with e.g. k-Means) of video features to yield bag-of-visual-words clusters that
can be used to derive a histogram-based representation of a video clip by indi-
cating the number of STIPs being assigned to each cluster. Then a classifier (e.g.
SVM) is trained to learn to classify image sequences into a set of given human
activity types.



There are several drawbacks in this classical approach. First of all, the ap-
proach requires an architecture that comprises heterogeneous algorithms, e.g. a
feature extractor, a clustering algorithm and a classification algorithm. An ar-
chitecture that is more uniform and compact relying on one algorithm would be
simpler, easier to implement and thus preferable. Further, the approach is not
online, requiring to store a number of examples in memory or on disk in order
to recompute the cluster and retrain the classifier at regular intervals.

To circumvent these limitations, we present a new architecture which is based
on Online Growing Neural Gas (OGNG), which has been presented earlier [5]. In
this paper we present a two-layer architecture which consists of two maps that
we call feature map and class map, respectively. In the first layer (feature map),
STIPs are dynamically clustered according to their similarity in the feature
space, yielding a growing set of “visual words” that can also change over time.
A human activity signature (HAS) for each space-time volume is then formed
by a histogram indicating the activity of each prototype / neuron in the feature
map. In the second layer (class map), space-time volumes are clustered by their
HAS and labelled according to the corresponding activity.

Our contributions can be listed as follows:

– Online classification: We provide an architecture that grows incrementally
and is capable of processing space-time volumes in an online fashion as new
data arrives.

– Compact model: We provide a compact human activity model as both
layers are based on STIPs and OGNG which represent the high dimensional
input space in a low dimensional map.

– Uniform architecture: We provide an architecture which is uniformly
based on OGNG, in contrast to existing approaches that rely on more het-
erogeneous structures.

We compare our architecture to the classical architecture proposed by Laptev
[4] based on a k-means based feature discretization as well as an SVM-based
classification, showing that our approach yields comparable results to the latter
approach, while proposing a uniform architecture based on two OGNG maps and
circumventing the need to store examples to process them offline. Our approach is
thus suitable in a life-long learning setting, in which there is a never-ending data
stream that needs to be processed on-the-fly as in the applications mentioned
above.

The paper is structured as follows: in Section 2 we describe the OGNG al-
gorithm in order to make this paper self-contained. In Section 3 we describe
our online approach to human action classification with OGNG, including a de-
scription of the features we use. In Section 4 our experiments, including the
methodology of our evaluation, the used baseline and our results are described.
We then conclude and provide an overview over the related work in Section 5.



2 Online Growing Neural Gas (OGNG)

Online Growing Neural Gas (OGNG) as introduced by Beyer and Cimiano [5],
extends Growing Neural Gas to an online classifier by integrating additional on-
line labeling and prediction strategies. In the following we will briefly describe the
OGNG algorithm. The algorithm is depicted in Algorithm 1 and modifications
are highlighted. A detailed description of OGNG and a comparison of several
online labeling and prediction strategies can be found in Beyer and Cimiano. [5].

Algorithm 1 Online Growing Neural Gas (OGNG)

1: Start with two units i and j at random positions in the input space.
2: Present an input vector x ∈ Rn from the input set or according to input distribution.
3: Find the nearest unit n1 and the second nearest unit n2.
4: Assign the label of x to n1 according to the present labeling strategy.
5: Increment the age of all edges emanating from n1.
6: Update the local error variable by adding the squared distance between wn1 and x.

∆error(n1) = |wn1 − x|2

7: Move n1 and all its topological neighbours (i.e. all the nodes connected to n1 by an edge) towards
x by fractions of eb and en of the distance:

∆wn1 = eb(x − wn1 )

∆wn = en(x − wn)

for all direct neighbours of n1.
8: If n1 and n2 are connected by an edge, set the age of the edge to 0 (refresh). If there is no such

edge, create one.
9: Remove edges with their age larger than amax. If this results in nodes having no emanating

edges, remove them as well.
10: If the number of input vectors presented or generated so far is an integer or multiple of a

parameter λ, insert a new node nr as follows:
Determine unit nq with the largest error.
Among the neighbours of nq, find node nf with the largest error.
Insert a new node nr halfway between nq and nf as follows:

wr =
wq + wf

2

Create edges between nr and nq , and nr and nf . Remove the edge between nq and nf .
Decrease the error variable of nq and nf by multiplying them with a constant α. Set the error
nr with the new error variable of nq .

11: Decrease all error variables of all nodes i by a factor β.
12: If the stopping criterion is not met, go back to step (2).

In steps 1-3, the network is initialized and the first winner n1 and second
winner n2, according to a presented stimulus, are determined. In step 4 we assign
the label of our stimulus ξ to the winner neuron n1 according to the selected
labeling strategy. The selected labeling strategy is the relabeling method (relabel),
because of its simplicity and effectiveness as shown in Beyer and Cimiano [5].
In steps 5-7, the age of all edges emanating from n1 are incremented by one.
Furthermore, the local error gets updated, and n1 and its topological neighbors
n are adapted towards the stimulus by the learning rates eb (for n1) and en (for
the topological neighbors). In steps 8-9, n1 and n2 get connected by an edge and



HOG+HOF
kMeans - Bag of 

Visual-Words

OGNG - Human
 Activity Signature (HAS)

SVM

Feature Extraction Sequence Representation Classification

HOG+HOF OGNG

Offline pipeline

Online pipeline

Fig. 1. Online and offline processing pipelines.

the edges with an age larger than amax are removed. In step 10, a new neuron nr

is introduced between the neuron nq with the largest local error and its neighbor
nf , having the largest error of its neighborhood. We only insert a new neuron
if nmax, the maximal number of neurons per class, is not exceeded for the class
of ξ. In step 11 all error variables are decreased by the factor β. In the last step
12, the algorithm continues with step 2 if the stopping criterion (mostly when a
predefined maximum number of neurons has been reached) is met.1

3 Human Activity Classification with OGNG

In this section we describe our two-layer online approach to human activity clas-
sification that exploits topological maps - Growing Neural Gas maps in particular
- at both layers. We call our approach Online Human Action Classifier (OHAC).
A typical processing pipeline in human activity recognition is comprised of the
following three steps:

1. Extraction of video features: Extraction of distinctive features from a sequence
of video frames.

2. Representation of video features: Calculating video signatures from the ex-
tracted features that capture the similarity between different video sequences.

3. Classification of video signatures: Training a classifier to learn to recognize a
set of previously observed classes of human actions.

Our algorithm covers steps 2 and 3 of the typical processing pipeline. For the
first step, the extraction of video features, we use HOG+HOF features calculated
around sparsely detected spatio-temporal interest points (STIPS) as proposed by
Laptev [4]. The detection of the points and the extraction of the feature descrip-
tors are completely online in the sense that no global information is required.
STIPs are detected as local maxima of a Harris-Corner-Function extended into
the spatio-temporal domain. The spacial Harris-Corner-Function characterizes
the ”‘cornerness”’ of an image point by the strength of its intensity gradients in
all directions. The spatio-temporal Harris-Corner-Function responds to points
in space-time where the motion of local image structures is non-constant. Aside
from sensor noise and other disruptions, the motion of local image structures is

1 For our experiments we additionally introduce new neurons for novel categories in
the learning process. Furthermore, we only stop inserting new neurons when the
maximum number of neurons is reached, instead of stopping the training process.



primarily the result of forces acting on the corresponding physical objects. Hence
the local neighbourhood of the detected points can be expected to provide mean-
ingful information about motion primitives in that point of space-time. The
combination of STIPs and HOG+HOF feature descriptors has already shown
promising results in several synthetic [4] and real world datasets [4, 6].

3.1 Static Human Action Classifier according to Laptev

As baseline we use an offline approach proposed by Laptev [4]. This approach
uses k-means for clustering and an SVM for classification. The video sequence
is represented as a bag of visual words histogram. The visual vocabulary is built
by clustering the feature vectors in the training set into a predetermined number
of clusters.

Algorithm 2 Static Human Action Classifier according to Laptev
1: Cluster the training set into a predetermined number of clusters using kMeans.
2: Initialize Histogram H with one entry for each prototype vector.
3: Present an input vector x ∈ S from the extracted features of the video sequence.
4: Find the nearest prototype px to the presented input.
5: Increment the corresponding histogram entry px by one.
6: repeat step 3 until all features are processed.
7: Normalize H using L1 norm
8: Train the SVM with the normalized histogram and the label l of the current sequence.

In step 1 the visual vocabulary is built in advance by clustering all feature vec-
tors in the training set into a predetermined number of clusters2 using kMeans.
Each cluster stands with its prototype vector for one distinct visual word in the
visual vocabulary. Steps 3-6 iterate over the feature vectors in the current train-
ing sequence. Each feature vector is assigned to its nearest prototype vector and
incorporated into the histogram. The resulting histogram represents the given
video sequence as a bag of visual words. To compensate for different counts of
features in different sequences, the histogram is normalized using the L1 norm. In
step 8 the SVM is trained with the normalized histogram and the corresponding
label of the current sequence.

3.2 Online Human Action Classifier (OHAC)

The Online Human Action Classifier consists of two independent OGNG net-
works. The first network is what we call the feature map. It utilizes the OGNG
algorithm for clustering incoming data in feature space. The second network is
called the class map, as it uses the label information from a training sequence
to assign class labels to the nodes in the network according to the relabel strat-
egy presented in section 2. Video sequences are represented as human activity
signatures (HAS ), which are represented by a histogram indicating the activity
of each neuron in the feature map, while iterating through the respective video
sequence.

2 We use k = 4000 for the number of clusters following Laptev [6]



Algorithm 3 Online Human Action Classifier (OHAC)

1: Initialize the feature- and class-maps.
2: Initialize the HAS histogram H with two (number of initial nodes in the feature map) entries

h1 = 0, h2 = 0.
3: Present an input vector x ∈ S from the extracted features of the video sequence.
4: Find the nearest unit nx from the feature map.
5: if node nx is new then
6: insert new entry into the histogram at position x
7: end if
8: Increment the corresponding histogram entry hx by one.
9: repeat step 3 until all features are processed.
10: Normalize H using L2 norm.
11: Update the OGNG class map with the normalized HAS histogram H and label l of the video

sequence.

Algorithm 3 is initialized by first initializing the OGNG network and creating
an empty bag of visual words histogram (steps 1-2). The histogram starts with
two entries, one for each of the two initial nodes in the OGNG network. In steps
3-5 the next input vector x is presented to the feature map, and the node nx that
is closest to the presented stimulus is located. If the located node nx is newly
inserted into the feature map, a new histogram entry is created at position x. In
step 8 the histogram entry at position x is incremented. When all input vectors
in the sequence are processed, the histogram is normalized by L2 norm. The
normalization compensates for different numbers of extracted feature vectors in
different video sequences. The normalized histogram is then used to update the
class map OGNG network with the label l of the video sequence. To predict
the label of a previously unseen video sequence S, all input vectors x ∈ S are
incorporated into the histogram H by the number of the feature map node nx

nearest to them (steps 3-5). The histogram is then normalized and the label l
is predicted by the class map according to the single linkage strategy (see Beyer
and Cimiano [5]).

4 Experiments and Evaluation

4.1 Dataset

As a dataset for evaluation we use the KTH human action dataset [7] 3. This
video database consists of six categories of human actions (walking, jogging,
running, boxing, hand waving and hand clapping). All actions are performed
several times by 25 subjects in four different scenarios (outdoors, outdoors with
scale variations, outdoors with different clothes and indoors). Each combination
of 25 subjects, 6 actions in 4 scenarios gives a total of 600 video files.

4.2 Evaluation Methodology

We evaluated the accuracy of OHAC and our baseline on the KTH human action
dataset. We generated 15 training and test sets by separating the 600 video clips

3 Examples of the six actions are shown on the following website
http://www.nada.kth.se/cvap/actions/



into 300 training examples and 300 test examples for each set. We furthermore
took care that each of the six categories was equally distributed in the train-
ing and test set. We averaged our accuracy results over the 15 runs and also
determined a best and worst result of the 15 runs.

The OGNG parameters are set as follows: insertion parameter λ = 50; max-
imum age amax = 120; adaptation parameter for winner eb = 0.3; adaptation
parameter for neighbourhood en = 0.0018; error variable decrease α = 0.5; error
variable decrease β = 0.0005. We also allowed a maximum of 4000 neurons for
the feature map and 200 for the class map.

4.3 Results

Our results are depicted in Table 1. The matrices show the confusion matrix
of our Baseline (left) and OHAC (right). Thereby, each row represents the to
be classified human action category, while each column holds the percentage of
examples that have been classified into the category written on top of the ma-
trices. Overall, OHAC achieves an averaged accuracy of 93%, while our Baseline
holds an accuracy of 95%. We performed a t-test and could not prove that the
results of both approaches are statistically significant. We thus consider the clas-
sification performance of the algorithms to be comparable. The confusion matrix
shows that both algorithms are having issues to distinguish between jogging and
running, which is intuitively understandable as we as humans also would con-
sider those two activities to be closer to each other compared to the other four.
Furthermore, it is interesting that OHAC slightly less confuses the human action
categories of “hand clapping” and “running” with 93.2% and 72.2% compared to
89.8% and 66.8% of our Baseline. It also should be mentioned that the confusion
of OHAC is spread more uniformly compared to the Baseline approach, which
could be explained by the generative approach of OHAC compared to the dis-
criminative character of our Baseline and i.e. of the underlying SVM classifier.

5 Related Work & Conclusion

In this paper we have presented a novel human activity classifier model based
on Online Growing Neural Gas (OGNG). The model provides a compact archi-
tecture and consists of two layers, allowing the storage of human actions in a
more memory efficient structure. While the first layer (feature map) dynamically
clusters STIPs and serves as base for the creation of histogram-based signatures
of a human action, the second layer (class map) builds a classification model
that builds upon those human action signatures. The advantage of this novel
architecture lies in its ability to perform a human action classification task on-
line as the model stepwise adapts to new data and grows incrementally. The
uniform character of the algorithm is desirable, as that its simplicity allows an
easy implementation and integration into existing systems. In most cases, het-
erogeneous offline human action recognition approaches have been proposed [4,



      

      

      

      

      

      

 

































88.2 3.2 3.2 1.4 2.7 1.4

1.8 89.4 1.8 3.4 1.2 2.4

2.8 1.3 93.2 1.3 0.8 0.5

1.7 1.8 1.7 85.4 6.3 3.1

3 2.5 3.7 10.5 65.4 15

1.3 2 2.9 4 17.5 72.2

handwaving

boxing

handclapping

walking

jogging

running

average 82.2%

ha
nd

w
av

in
g

bo
xi

ng
ha

nd
cl

ap
pi

ng
w

al
ki

ng
jo

gg
in

g
ru

nn
in

g

Table 1. Confusion matrix of our Baseline (left) and OHAC (right) on the KTH human
action database, averaged over 15 runs.

8], that generate action signatures by clustering STIPs with static clustering
algorithms (such as k-Means) and classifying them with an offline classifier that
needs to be retrained as new data arrives. We have experimentally shown on the
KTH dataset that our approach reaches comparable performance to a classical
offline SVM-based classification approach while performing online and avoiding
the need to store training examples explicitly, thus being suitable in lifelong
stream data settings.
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