p-adic L-functions of automorphic forms

Holger Deppe

Dissertation zur Erlangung des Doktorgrads der Fakultät für Mathematik, Universität Bielefeld

vorgelegt im August 2013

Contents

Introduction

Let F be a number field (with adele ring \mathbb{A}_F), and p a prime number. Let $\pi = \bigotimes_v \pi_v$ be an automorphic representation of $GL_2(\mathbb{A}_F)$. Attached to π is the automorphic L-function $L(s, \pi)$, for $s \in \mathbb{C}$, of Jacquet-Langlands [\[JL\]](#page-50-0). Under certain conditions on π , we can also define a p-adic L-function $L_p(s,\pi)$ of π , with $s \in \mathbb{Z}_p$. It is related to $L(s,\pi)$ by the *interpolation property*: For every character $\chi: \mathcal{G}_p \to \mathbb{C}^*$ of finite order we have

$$
L_p(0, \pi \otimes \chi) = \tau(\chi) \prod_{\mathfrak{p} \mid p} e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}) \cdot L(\tfrac{1}{2}, \pi \otimes \chi),
$$

where $e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}})$ is a certain Euler factor (see theorem [4.12](#page-46-1) for its definition) and $\tau(\chi)$ is the Gauss sum of χ .

 $L_p(s,\pi)$ was defined by Haran [\[Har\]](#page-50-1) in the case where π has trivial central character and π_p is a spherical principal series representation for all $\mathfrak{p}|p$. For a totally real field F, Spieß [\[Sp\]](#page-51-0) has given a new construction of $L_p(s, \pi)$ that also allows for π_p to be a special (Steinberg) representation for some $p|p$.

Here, we generalize Spieß' construction of $L_p(s, \pi)$ to automorphic representations π over any number field, with arbitrary central character. As in [\[Sp\]](#page-51-0), we will assume that π is ordinary at all primes p/p (cf. definition [2.5\)](#page-7-0), that π_v is discrete of weight 2 at all real infinite places v , and a similar condition at the complex places.

Throughout most of this thesis, we follow [\[Sp\]](#page-51-0); for section [4.1,](#page-33-0) we follow Bygott [\[By\]](#page-50-2), Ch. 4.2, who in turn follows Weil [\[We\]](#page-51-1).

We define the *p*-adic L-function of π as an integral of the *p*-adic cyclotomic character N with respect to a certain measure μ_{π} on the Galois group \mathcal{G}_p of the maximal abelian extension that is unramified outside p and ∞ , specifically

$$
L_p(s,\pi) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\pi}(d\gamma)
$$

(cf. section [4.6](#page-46-0) for details). Heuristically, μ_{π} is the image of $\mu_{\pi_{p}} \times W^{p}(\begin{smallmatrix} x^{p} & 0 \\ 0 & 1 \end{smallmatrix}) d^{\times} x^{p}$ under the reciprocity map $\mathbb{I}_F = F_p^* \times \mathbb{I}^p \to \mathcal{G}_p$ of global class field theory. Here $\mu_{\pi_p} = \prod_{\mathfrak{p} \mid p} \mu_{\pi_{\mathfrak{p}}}$ is the product of certain local distributions $\mu_{\pi_{\mathfrak{p}}}$ on $F_{\mathfrak{p}}^*$ attached to $\pi_{\mathfrak{p}}$, $d^{\times}x^p$ is the Haar measure on the group $\mathbb{I}^p = \prod'_{v\nmid p} F^*_v$ of p-ideles, and $W^p = \prod_{v\nmid p} W_v$ is a specific Whittaker function of $\pi^p := \otimes_{v \nmid p} \pi_v$.

The structure of this work is the following: In chapter [2,](#page-5-0) we describe the local distributions $\mu_{\pi_{\mathfrak{p}}}$ on $F_{\mathfrak{p}}^*$; they are the image of a Whittaker functional under a map δ on the dual of $\pi_{\mathfrak{p}}$. For constructing δ, we describe $\pi_{\mathfrak{p}}$ in terms of what we call the "Bruhat-Tits graph" of $F_{\mathfrak{p}}^2$: the directed graph whose vertices (resp. edges) are the lattices of $F_{\mathfrak{p}}^2$ (resp. inclusions between lattices). Roughly speaking, it is a covering of the (directed) Bruhat-Tits tree of $GL_2(F_p)$ with fibres $\cong \mathbb{Z}$. When π_p is the Steinberg representation, $\mu_{\mathfrak{p}}$ can actually be extended to all of $F_{\mathfrak{p}}$.

In chapter [3,](#page-23-0) we attach a p-adic distribution μ_{ϕ} to any map $\phi(U, x^p)$ of an open compact subset $U \subseteq F_p^* := \prod_{\mathfrak{p} | p} F_{\mathfrak{p}}^*$ and an idele $x^p \in \mathbb{I}^p$ (satisfying certain conditions). Integrating ϕ over all the infinite places, we get a cohomology class $\kappa_{\phi} \in H^d(F^*, \mathcal{D}_f(\mathbb{C}))$ (where $d = r + s - 1$ is the rank of the group of units of

 $F, F^{*\prime} \cong F^*/\mu_F$ is a maximal torsion-free subgroup of F^* , and $\mathcal{D}_f(\mathbb{C})$ is a space of distributions on the finite ideles of F). We show that μ_{ϕ} can be described solely in terms of κ_{ϕ} , and μ_{ϕ} is a (vector-valued) p-adic measure if κ_{ϕ} is "integral", i.e. if it lies in the image of $H^d(F^*, \mathcal{D}_f(R))$, for a Dedekind ring R consisting of "p-adic integers".

In chapter [4,](#page-32-0) we define a map ϕ_{π} by

$$
\phi_{\pi}(U, x^p) := \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix}
$$

 $(U \subseteq F_p^*$ compact open, $x^p \in \mathbb{I}^p$). ϕ_{π} satisfies the conditions of chapter [3,](#page-23-0) and we show that $\kappa_{\phi_{\pi}}$ is integral by "lifting" the map $\phi_{\pi} \mapsto \kappa_{\phi_{\pi}}$ to a function mapping an automorphic form to a cohomology class in $H^d(\mathrm{GL}_2(F)^+, \mathcal{A}_f)$, for a certain space of functions \mathcal{A}_f . (Here $GL_2(F)^+$ is the subgroup of $M \in GL_2(F)$ with totally positive determinant.) For this, we associate to each automorphic form φ a harmonic form ω_{φ} on a generalized upper-half space \mathcal{H}_{∞} , which we can integrate between any two cusps in $\mathbb{P}^1(F)$.

Then we can define the *p*-adic L-function $L_p(s,\pi) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\pi}(d\gamma)$ as above, with $\mu_{\pi} := \mu_{\phi_{\pi}}$. By a result of Harder [\[Ha\]](#page-50-3), $H^d(\mathrm{GL}_2(F)^+, \mathcal{A}_f)_{\pi}$ is one-dimensional, which implies that $L_p(s, \pi)$ has values in a one-dimensional \mathbb{C}_p -vector space.

Our construction has the following potential application: If E is a modular elliptic curve over F corresponding to π (i.e. the local L-factors of the Hasse-Weil L-function $L(E, s)$ and of the automorphic L-function $L(s-\frac{1}{2})$ $(\frac{1}{2}, \pi)$ coincide at all places v of F), we define the p-adic L-function of E as $L_p(E, s) := L_p(s, \pi)$. The condition that π be ordinary at all $\mathfrak{p}|p$ means that E must have good ordinary or multiplicative reduction at all places $\mathfrak{p}|p$ of F.

The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum [\[MTT\]](#page-50-4) for $F = \mathbb{Q}$, and by Hida [\[Hi\]](#page-50-5) for totally real F) states that

$$
\operatorname{ord}_{s=0} L_p(E, s) \ge n,\tag{0.1}
$$

where *n* is the number of $p|p$ at which E has split multiplicative reduction, and gives an explicit formula for the value of the *n*-th derivative $L_p^{(n)}(E,0)$ as a multiple of $L(E, 1)$. The conjecture was proved in the case $F = \mathbb{Q}$ by Greenberg and Stevens [\[GS\]](#page-50-6) and independently by Kato, Kurihara and Tsuji.

In [\[Sp\]](#page-51-0), Spieß has used his new construction of $L_p(E, s) := L_p(s, \pi)$ to prove the conjecture for all totally real number fields F. Our generalization of $L_p(s, \pi)$ might therefore be well-suited for proving the conjecture for general F.

Acknowledgements. I would like to thank Michael Spieß for suggesting and advising this thesis, and for many helpful discussions. I am also thankful to Werner Hoffmann for a useful discussion, and to the CRC 701, 'Spectral Structures and Topological Methods in Mathematics', for providing financial support during most of my studies.

1 Preliminaries

Let X be a totally disconnected locally compact topological space, R a topological Hausdorff ring. We denote by $C(\mathcal{X}, R)$ the ring of continuous maps $\mathcal{X} \to R$, and let $C_c(\mathcal{X}, R) \subseteq C(\mathcal{X}, R)$ be the subring of compactly supported maps. When R has the discrete topology, we also write $C^0(\mathcal{X}, R) := C(\mathcal{X}, R)$, $C_c^0(\mathcal{X}, R) := C_c(\mathcal{X}, R)$.

We denote by $\mathfrak{Co}(\mathcal{X})$ the set of all compact open subsets of \mathcal{X} , and for an R-module M we denote by $Dist(X, M)$ the R-module of M-valued distributions on X, i.e. the set of maps $\mu: \mathfrak{Co}(\mathcal{X}) \to M$ such that $\mu(\bigcup_{i=1}^n U_i) = \sum_{i=1}^n \mu(U_i)$ for any pairwise disjoint sets $U_i \in \mathfrak{Co}(\mathcal{X})$.

For an open set $H \subseteq \mathcal{X}$, we denote by $1_H \in C(\mathcal{X}, R)$ the R-valued indicator function of H on \mathcal{X} .

Throughout this paper, we fix a prime p and embeddings $\iota_{\infty} : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \iota_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$. Let $\overline{\mathcal{O}}$ denote the valuation ring of $\overline{\mathbb{Q}}$ with respect to the *p*-adic valuation induced by ι_p .

We write $G := GL_2$ throughout the thesis, and let B denote the Borel subgroup of upper triangular matrices, T the maximal torus (consisting of all diagonal matrices), and Z the center of G .

For a number field F, we let $G(F)^{+} \subseteq G(F)$ and $B(F)^{+} \subseteq B(F)$ denote the corresponding subgroups of matrices with totally positive determinant, i.e. $\sigma(\det(q))$ is positive for each real embedding $\sigma : F \hookrightarrow \mathbb{R}$. (If F is totally complex, this is an empty condition, so we have $G(F)^{+} = G(F)$, $B(F)^{+} = B(F)$ in this case.) Similarly, we define $G(\mathbb{R})^+$ and $G(\mathbb{C})^+ = G(\mathbb{C})$.

1.1 p-adic measures

Definition 1.1. Let \mathcal{X} be a compact totally disconnected topological space. For a distribution $\mu : \mathfrak{Co}(\mathcal{X}) \to \mathbb{C}$, consider the extension of μ to the \mathbb{C}_p -linear map $C^0(\mathcal{X}, \mathbb{C}_p) \to \mathbb{C}_p \otimes_{\overline{\mathbb{Q}}} \mathbb{C}, f \mapsto \int f d\mu$. If its image is a finitely-generated \mathbb{C}_p -vector space, μ is called a *p*-*adic measure*.

We denote the space of p-adic measures on $\mathcal X$ by $\mathrm{Dist}^b(\mathcal X,\mathbb{C})\subseteq \mathrm{Dist}(\mathcal X,\mathbb{C})$. It is easily seen that μ is a p-adic measure if and only if the image of μ , considered as a map $C^0(\mathcal{X}, \mathbb{Z}) \to \mathbb{C}$, is contained in a finitely generated $\overline{\mathcal{O}}$ -module. A p-adic measure can be integrated against any continuous function $f \in C(\mathcal{X}, \mathbb{C}_p)$.

2 Local results for representations with arbitrary central character

For this chapter, let F be a finite extension of \mathbb{Q}_p , \mathcal{O}_F its ring of integers, ϖ its uniformizer and $\mathfrak{p} = (\varpi)$ the maximal ideal. Let q be the cardinality of $\mathcal{O}_F/\mathfrak{p}$, and set $U := U^{(0)} := \mathcal{O}_F^{\times}$, $U^{(n)} := 1 + \mathfrak{p}^n \subseteq U$ for $n \geq 1$.

We fix an additive character $\psi : F \to \overline{\mathbb{Q}}^*$ with ker $\psi = \mathcal{O}_F$. We let $|\cdot|$ be the absolute value on F^* (normalized by $|\varpi| = q^{-1}$), ord = ord_{ϖ} the additive valuation, and dx the Haar measure on F normalized by $\int_{\mathcal{O}_F} dx = 1$. We define a (Haar) measure on F^* by $d^{\times}x := \frac{q}{q-1}$ $q-1$ dx $\frac{dx}{|x|}$ (so $\int_{\mathcal{O}_F^{\times}} d^{\times} x = 1$).

2.1 Gauss sums

Recall that the *conductor* of a character $\chi : F^* \to \mathbb{C}^*$ is by definition the largest ideal \mathfrak{p}^n , $n \geq 0$, such that ker $\chi \supseteq U^{(n)}$, and that χ is unramified if its conductor is $\mathfrak{p}^0 = \mathcal{O}_F.$

We will need the following two easy lemmas of $[Sp]$:

Lemma 2.1. Let $X \subseteq \{x \in F^* | \text{ord}(x) \leq -2\}$ be a compact open subset such that $aU^{(-\text{ord}(a)-1)} \subset X$ for all $a \in X$. Then

$$
\int_X \psi(x)d^\times x = 0.
$$

 $(cf.$ [\[Sp\]](#page-51-0), lemma 3.1)

Lemma 2.2. Let $\chi : F^* \to \mathbb{C}^*$ be a quasicharacter of conductor \mathfrak{p}^f , $f \geq 1$, and let $a \in F^*$ with $\text{ord}(a) \neq -f$. Then we have

$$
\int_U \psi(ax)\chi(x)d^\times x = 0.
$$

(cf. [\[Sp\]](#page-51-0), lemma 3.2)

Definition 2.3. Let $\chi : F^* \to \mathbb{C}^*$ be a quasi-character with conductor \mathfrak{p}^f . The Gauss sum of χ (with respect to ψ) is defined by

$$
\tau(\chi) := [U:U^{(f)}] \int_{\varpi^{-f}U} \psi(x) \chi(x) d^{\times}x.
$$

For a locally constant function $g: F^* \to \mathbb{C}$, we define

$$
\int_{F^*} g(x) dx := \lim_{n \to \infty} \int_{x \in F^*, -n \leq \text{ord}(x) \leq n} g(x) dx,
$$

whenever that limit exists. Then we have the following formula:

Lemma 2.4. Let $\chi : F^* \to \mathbb{C}^*$ be a quasi-character with conductor \mathfrak{p}^f . For $f = 0$, assume $|\chi(\varpi)| < q$. Then we have

$$
\int_{F^*} \chi(x)\psi(x)dx = \begin{cases} \frac{1-\chi(\varpi)^{-1}}{1-\chi(\varpi)q^{-1}} & \text{if } f = 0\\ \tau(\chi) & \text{if } f > 0. \end{cases}
$$

Proof. (cf. [\[Sp\]](#page-51-0), lemma 3.4) For $a \in F^*$, we have

$$
\int_{U} \psi(ax) d^{\times} x = \begin{cases} 1, & \text{if } \text{ord}(a) \ge 0 \\ -\frac{1}{q-1}, & \text{if } \text{ord}(a) = -1 \\ 0, & \text{if } \text{ord}(a) \le -2 \end{cases}
$$
 (2.1)

Since $d^{\times}x = \frac{dx}{(1-1)t}$ $\frac{dx}{(1-1/q)|x|}$, this implies

$$
\int_{F^*} \chi(x)\psi(x)dx = \sum_{n=-\infty}^{\infty} (1 - 1/q)q^{-n} \int_{\varpi^n U} \chi(x)\psi(x)d^\times x.
$$

For $f > 0$, all summands except the $(-f)$ th are zero by lemma 2.2, thus we have

$$
\int_{F^*} \chi(x)\psi(x)dx = (1 - 1/q)q^f \int_{\varpi^{-f}U} \chi(x)\psi(x)d^\times x = \tau(\chi)
$$

by the definition of τ (since $[U:U^{(f)}] = (1 - 1/q)q^f$). For $f = 0$, we have by (2.1)

$$
\int_{F^*} \chi(x)\psi(x)dx = (1 - 1/q) \left(-\frac{q}{(q-1)\chi(\varpi)} + \sum_{n=0}^{\infty} (\chi(\varpi)q^{-1})^n \right)
$$

= $-\frac{1}{\chi(\varpi)} + \frac{1 - 1/q}{1 - \chi(\varpi)q^{-1}}$ (since $|\chi(\varpi)| < q$)
= $\frac{1 - \chi(\varpi)^{-1}}{1 - \chi(\varpi)q^{-1}}$.

 \Box

2.2 Tamely ramified representations of $GL_2(F)$

For an ideal $\mathfrak{a} \subset \mathcal{O}_F$, let $K_0(\mathfrak{a}) \subseteq G(\mathcal{O}_F)$ be the subgroup of matrices congruent to an upper triangular matrix modulo a.

Let $\pi : GL_2(F) \to GL(V)$ be an irreducible admissible infinite-dimensional representation (where V is a C-vector space), with central quasicharacter χ . It is well-known (e.g [\[Ge\]](#page-50-7), Thm. 4.24) that there exists a maximal ideal $\mathfrak{c}(\pi) = \mathfrak{c} \subset \mathcal{O}_F$, the conductor of π , such that the space $V^{K_0(\mathfrak{c}),\chi} = \{v \in V | \pi(g)v = \chi(a)v \,\,\forall g = \left\{\alpha, \frac{a}{a}\right\} \in K_0(\mathfrak{c})\}$ is non-zero (and in fact one-dimensional). A representation π is $\left\{\begin{array}{c} a & b \\ c & d \end{array}\right\}$ $\in K_0(\mathfrak{c})\}$ is non-zero (and in fact one-dimensional). A representation π is called tamely ramified if its conductor divides p.

If π is tamely ramified, then π is the spherical resp. special representation $\pi(\chi_1, \chi_2)$ (in the notation of [\[Ge\]](#page-50-7) or [\[Sp\]](#page-51-0)):

If the conductor is \mathcal{O}_F , π is (by definition) spherical and hence a principal series representation $\pi(\chi_1, \chi_2)$ for two unramified quasi-characters χ_1 and χ_2 with $\chi_1 \chi_2^{-1} \neq$ $|\cdot|^{\pm 1}$ ([\[Bu\]](#page-50-8), Thm. 4.6.4).

If the conductor is **p**, then $\pi = \pi(\chi_1, \chi_2)$ with $\chi_1 \chi_2^{-1} = |\cdot|^{\pm 1}$.

For $\alpha \in \mathbb{C}^*$, we define a character $\chi_{\alpha}: F^* \to \mathbb{C}^*$ by $\chi_{\alpha}(x) := \alpha^{\text{ord}(x)}$.

So let now $\pi = \pi(\chi_1, \chi_2)$ be a tamely ramified irreducible admissible infinitedimensional representation of $GL_2(F)$; in the special case, we assume χ_1 and χ_2 to be ordered such that $\chi_1 = |\cdot|\chi_2$.

Set $\alpha_i := \chi_i(\varpi)\sqrt{q} \in \mathbb{C}^*$ for $i = 1, 2$. (We also write $\pi = \pi_{\alpha_1, \alpha_2}$ sometimes.) Set $a := \alpha_1 + \alpha_2, \nu := \alpha_1 \alpha_2 / q$. Define a distribution $\mu_{\alpha_1,\nu} := \mu_{\alpha_1/\nu} := \psi(x) \chi_{\alpha_1/\nu}(x) dx$ on F^* .

For later use, we will need the following condition on the α_i :

Definition 2.5. $\pi = \pi_{\alpha_1,\alpha_2}$ is called *ordinary* if a and v both lie in $\overline{\mathcal{O}}^*$ (i.e. they are *p*-adic units in \overline{Q}). Equivalently, this means that either $\alpha_1 \in \overline{O}^*$ and $\alpha_2 \in q\overline{O}^*$, or vice versa.

Proposition 2.6. Let $\chi : F^* \to \mathbb{C}^*$ be a quasi-character with conductor \mathfrak{p}^f ; for $f = 0$, assume $|\chi(\varpi)| < |\alpha_2|$. Then the integral $\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx)$ converges and we have

$$
\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx) = e(\alpha_1, \alpha_2, \chi) \tau(\chi) L(\tfrac{1}{2}, \pi \otimes \chi),
$$

where

$$
e(\alpha_1, \alpha_2, \chi) = \begin{cases} \frac{(1 - \alpha_1 \chi(\varpi) q^{-1})(1 - \alpha_2 \chi(\varpi)^{-1} q^{-1})(1 - \alpha_2 \chi(\varpi) q^{-1})}{(1 - \chi(\varpi) \alpha_2^{-1})}, & f = 0 \text{ and } \pi \text{ spherical,} \\ \frac{(1 - \alpha_1 \chi(\varpi) q^{-1})(1 - \alpha_2 \chi(\varpi)^{-1} q^{-1})}{(1 - \chi(\varpi) \alpha_2^{-1})}, & f = 0 \text{ and } \pi \text{ special,} \\ (\alpha_1/\nu)^{-f} = (\alpha_2/q)^f, & f > 0, \end{cases}
$$

and where we assume the right-hand side to be continuously extended to the potential removable singularities at $\chi(\varpi) = q/\alpha_1$ or $= q/\alpha_2$.

Proof. Case 1: $f = 0$, π spherical We have

$$
L(s,\pi\otimes\chi)=\frac{1}{\big(1-\alpha_1\chi(\varpi)q^{-\left(s+\frac{1}{2}\right)}\big)\big(1-\alpha_2\chi(\varpi)q^{-\left(s+\frac{1}{2}\right)}\big)},
$$

so

$$
L(\frac{1}{2}, \pi \otimes \chi) \cdot \tau(\chi) \cdot e(\alpha_1, \alpha_2, \chi) = \frac{1 - \alpha_2 q^{-1} \chi(\varpi)^{-1}}{1 - \chi(\varpi)\alpha_2^{-1}}
$$

=
$$
\frac{1 - \nu \alpha_1^{-1} \chi(\varpi)^{-1}}{1 - \alpha_1 \chi(\varpi)\nu^{-1}q^{-1}}
$$

=
$$
\int_{F^*} \chi(x) \chi_{\alpha_1/\nu}(x) \psi(x) dx
$$

=
$$
\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx)
$$

by lemma [2.4.](#page-5-2)

Case 2: $f = 0, \pi$ special Assuming $\chi_1 = |\cdot| \chi_2$, we have

$$
L(s, \pi \otimes \chi) = \frac{1}{1 - \alpha_1 \chi(\varpi) q^{-(s + \frac{1}{2})}}
$$

and thus

$$
L(\frac{1}{2}, \pi \otimes \chi) \cdot \tau(\chi) \cdot e(\alpha_1, \alpha_2, \chi) = \frac{1 - \nu \alpha_1^{-1} \chi(\varpi)^{-1}}{1 - \alpha_1 \nu^{-1} \chi(\varpi) q^{-1}} = \int_{F^*} \chi(x) \chi_{\alpha_1/\nu}(x) \psi(x) dx = \int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx).
$$

by lemma [2.4.](#page-5-2)

Case 3: $f > 0$ In this case, $L(s, \pi \otimes \chi) = 1$ for $s > 0$ and

$$
\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx) = \tau(\chi \cdot \chi_{\alpha_1/\nu})
$$
\n
$$
= q^{f-1}(q-1) \int_{\varpi^{-f}U} \psi(x) \chi(x) \chi_{\alpha_1/\nu}(x) d^\times x
$$
\n
$$
= (\alpha_1/\nu)^{-f} q^{f-1}(q-1) \int_{\varpi^{-f}U} \psi(x) \chi(x) d^\times x
$$
\n
$$
= e(\alpha_1, \alpha_2, \chi) \cdot \tau(\chi) \cdot L(\frac{1}{2}, \pi \otimes \chi).
$$

2.3 The Bruhat-Tits graph $\tilde{\mathcal{T}}$

Let $\tilde{\mathcal{V}}$ denote the set of lattices (i.e. submodules isomorphic to \mathcal{O}_F^2) in F^2 , and let $\tilde{\mathcal{E}}$ be the set of all inclusion maps between two lattices; for such a map $e: v_1 \hookrightarrow v_2$ in $\tilde{\mathcal{E}}$, we define $o(e) := v_1, t(e) := v_2$. Then the pair $\tilde{\mathcal{T}} := (\tilde{\mathcal{V}}, \tilde{\mathcal{E}})$ is naturally a directed graph, connected, with no directed cycles (specifically, $\mathcal{\hat{E}}$ induces a partial ordering on $\tilde{\mathcal{V}}$). For each $v \in \tilde{\mathcal{V}}$, there are exactly $q + 1$ edges beginning (resp. ending) in v, each.

Recall that the *Bruhat-Tits tree* $\mathcal{T} = (\mathcal{V}, \vec{\mathcal{E}})$ of $G(F)$ is the directed graph whose vertices are homothety classes of lattices of F^2 (i.e. $\mathcal{V} = \tilde{\mathcal{V}} / \sim$, where $v \sim \varpi^i v$ for all $i \in \mathbb{Z}$), and the directed edges $\overline{e} \in \overline{\mathcal{E}}$ are homothety classes of inclusions of lattices. We can define maps $o, t : \vec{\mathcal{E}} \to \mathcal{V}$ analogously. For each edge $\vec{e} \in \vec{\mathcal{E}}$, there is an opposite edge $\bar{e}' \in \bar{\mathcal{E}}$ with $o(\bar{e}') = t(\bar{e}), t(\bar{e}') = o(\bar{e});$ and the undirected graph underlying T is simply connected. We have a natural "projection map" $\pi : \tilde{\mathcal{T}} \to \mathcal{T}$, mapping each lattice and each homomorphism to its homothety class. Choosing a (set-theoretic) section $s: \mathcal{V} \to \tilde{\mathcal{V}}$, we get a bijection $\mathcal{V} \times \mathbb{Z} \stackrel{\cong}{\to} \tilde{\mathcal{V}}$ via $(v, i) \mapsto \varpi^i s(v)$.

The group $G(F)$ operates on \tilde{V} via its standard action on F^2 , i.e. $gv = \{gx | x \in v\}$ for $g \in G(F)$, and on $\tilde{\mathcal{E}}$ by mapping $e : v_1 \to v_2$ to the inclusion map $ge : gv_1 \to gv_2$. The stabilizer of the standard vertex $v_0 := \mathcal{O}_F^2$ is $G(\mathcal{O}_F)$.

For a directed edge $\overline{e} \in \mathcal{E}$ of the Bruhat-Tits tree T, we define $U(\overline{e})$ to be the set of ends of \bar{e} (cf. [\[Se1\]](#page-50-9)/[\[Sp\]](#page-51-0)); it is a compact open subset of $\mathbb{P}^1(F)$, and we have $gU(\overline{e}) = U(g\overline{e})$ for all $g \in G(F)$.

For $n \in \mathbb{Z}$, we set $v_n := \mathcal{O}_F \oplus \mathfrak{p}^n \in \tilde{\mathcal{V}}$, and denote by e_n the edge from v_{n+1} to v_n ; the "decreasing" sequence $(\pi(e_{-n}))_{n\in\mathbb{Z}}$ is the geodesic from ∞ to 0. (The geodesic from 0 to ∞ traverses the $\pi(v_n)$ in the natural order of $n \in \mathbb{Z}$.) We have $U(\pi(e_n)) = \mathfrak{p}^{-n}$ for each *n*.

Now (following [\[BL\]](#page-50-10) and [\[Sp\]](#page-51-0)), we can define a "height" function $h: \mathcal{V} \to \mathbb{Z}$ as follows: The geodesic ray from $v \in V$ to ∞ must contain some $\pi(v_n)$ $(n \in \mathbb{Z})$, since it has non-empty intersection with $A := {\pi(v_n)|n \in \mathbb{Z}}$; we define $h(v) :=$ $n - d(v, \pi(v_n))$ for any such v_n ; this is easily seen to be well-defined, and we have $h(\pi(v_n)) = n$ for all $n \in \mathbb{Z}$. We have the following lemma of [\[Sp\]](#page-51-0):

Lemma 2.7. (a) For all $\overline{e} \in \mathcal{E}$, we have

$$
h(t(\overline{e})) = \begin{cases} h(o(\overline{e})) + 1 & \text{if } \infty \in U(\overline{e}), \\ h(o(\overline{e})) - 1 & \text{otherwise.} \end{cases}
$$

(b) For $a \in F^*$, $b \in F$, $\overline{v} \in V$ we have

$$
h\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \overline{v}\right) = h(\overline{v}) - \text{ord}_{\varpi}(a).
$$

Proof. (cf. [\[Sp\]](#page-51-0), Lemma 3.6)

(a) is clear from the definition of h. For (b) we can assume $\overline{v} = \pi(v_0) =: \overline{v_0}$ since $B'(F) := \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \in F^* , b \in F \}$ operates transitively on $\mathcal V$. Put $\overline{e} := \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \pi(e_0);$ since $U(\bar{e}) = a\mathcal{O}_F + b$ does not contain ∞ , we have

$$
h\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \overline{v_0}\right) = h(t(\overline{e})) = h(o(\overline{e})) - 1 = h\left(\begin{pmatrix} a\overline{\omega}^{-1} & b \\ 0 & 1 \end{pmatrix} \overline{v_0}\right) - 1.
$$

If $b \neq 0$, we can iterate this *n* times such that $\text{ord}(a\varpi^{-n}) \geq \text{ord } b$ and get

$$
h\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \overline{v_0} \right) = h\left(\begin{pmatrix} a\varpi^{-n} & b \\ 0 & 1 \end{pmatrix} \overline{v_0} \right) - n = h\left(\begin{pmatrix} a\varpi^{-n} & 0 \\ 0 & 1 \end{pmatrix} \overline{v_0} \right) - n
$$

$$
= h\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \overline{v_0} \right) = h(\pi(v_{\text{ord}(a)})) = -\text{ord}(a).
$$

 \Box

2.4 Hecke structure of $\tilde{\mathcal{T}}$

Let R be a ring, M an R-module. We let $C(\tilde{\mathcal{V}}, M)$ be the R-module of maps $\phi : \tilde{\mathcal{V}} \to M$, and $C(\tilde{\mathcal{E}}, M)$ the R-module of maps $\tilde{\mathcal{E}} \to M$. Both are $G(F)$ -modules via $(g\phi)(v) := \phi(g^{-1}v), (gc)(e) := c(g^{-1}e).$

We let $\mathcal{C}_c(\tilde{\mathcal{V}},M) \subseteq C(\tilde{\mathcal{V}},M)$ and $\mathcal{C}_c(\tilde{\mathcal{E}},M) \subseteq C(\tilde{\mathcal{E}},M)$ be the $(G(F)\text{-stable})$ submodules of maps with compact support, i.e. maps that are zero outside a finite set. We get pairings

$$
\langle \cdot \, , \cdot \rangle : C_c(\tilde{\mathcal{V}}, R) \times C(\tilde{\mathcal{V}}, M) \to M, \quad \langle \phi_1, \phi_2 \rangle := \sum_{v \in \tilde{\mathcal{V}}} \phi_1(v) \phi_2(v) \tag{2.2}
$$

and

$$
\langle \cdot \, , \cdot \rangle : C_c(\tilde{\mathcal{E}}, R) \times C(\tilde{\mathcal{E}}, M) \to M, \quad \langle c_1, c_2 \rangle := \sum_{e \in \tilde{\mathcal{E}}} c_1(v) c_2(v). \tag{2.3}
$$

We define Hecke operators $T, \mathcal{R}: \mathcal{C}(\tilde{\mathcal{V}}, M) \to \mathcal{C}(\tilde{\mathcal{V}}, M)$ by

$$
T\phi(v) = \sum_{t(e)=v} \phi(o(e)) \text{ and } \mathcal{R}\phi := \varpi\phi \text{ (i.e. } \mathcal{R}\phi(v) = \phi(\varpi^{-1}v))
$$

for all $v \in \tilde{\mathcal{V}}$. These restrict to operators on $C_c(\tilde{\mathcal{V}}, R)$, which we sometimes denote by T_c and \mathcal{R}_c for emphasis. With respect to [\(2.2\)](#page-10-0), T_c is adjoint to $T\mathcal{R}$, and \mathcal{R}_c is adjoint to its inverse operator $\mathcal{R}^{-1} : \mathcal{C}_c(\tilde{\mathcal{V}}, R) \to \mathcal{C}_c(\tilde{\mathcal{V}}, R)$.

 T and R obviously commute, and we have the following Hecke structure theorem on compactly supported functions on \hat{V} (an analogue of [\[BL\]](#page-50-10), Thm. 10):

Theorem 2.8. $C_c(\tilde{\mathcal{V}}, R)$ is a free $R[T, \mathcal{R}^{\pm 1}]$ -module (where $R[T, \mathcal{R}^{\pm 1}]$ is the ring of Laurent series in $\mathcal R$ over the polynomial ring $R[T]$, with $\mathcal R$ and T commuting).

Proof. Fix a vertex $v_0 \in \tilde{\mathcal{V}}$. For each $n \geq 0$, let C_n be the set of vertices $v \in \tilde{\mathcal{V}}$ such that there is a directed path of length n from v_0 to v in \tilde{V} , and such that $d(\pi(v_0), \pi(v)) = n$ in the Bruhat-Tits tree T. So $C_0 = \{v_0\}$, and C_n is a lift of the "circle of radius n around v_0 " in $\mathcal T$, in the parlance of [\[BL\]](#page-50-10).

One easily sees that $\bigcup_{n=0}^{\infty} C_n$ is a complete set of representatives for the projection map $\pi : \tilde{\mathcal{V}} \to \mathcal{V}$; specifically, for $n > 1$ and a given $v \in C_{n-1}$, C_n contains exactly q elements adjacent to v in $\tilde{\mathcal{V}}$; and we can write $\tilde{\mathcal{V}}$ as a disjoint union $\bigcup_{j\in\mathbb{Z}}\bigcup_{n=0}^{\infty}\mathcal{R}^{j}(C_{n}).$

We further define $V_0 := \{v_0\}$ and choose subsets $V_n \subseteq C_n$ as follows: We let V_1 be any subset of cardinality q. For $n > 1$, we choose $q - 1$ out of the q elements of C_n adjacent to v', for every $v' \in C_{n-1}$, and let V_n be the union of these elements for all $v' \in C_{n-1}$. Finally, we set

$$
H_{n,j} := \{ \phi \in C_c(\tilde{\mathcal{V}}, R) | \operatorname{Supp}(\phi) \subseteq \bigcup_{i=0}^n \mathcal{R}^j(C_i) \} \text{ for each } n \ge 0, j \in \mathbb{Z},
$$

 $H_n := \bigcup_{j \in \mathbb{Z}} H_{n,j}$, and $H_{-1} := H_{-1,j} := \{0\}$. (For ease of notation, we identify $v \in \tilde{\mathcal{V}}$ with its indicator function $1_{\{v\}} \in C_c(\mathcal{V}, R)$ in this proof.)

Define $T': C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{V}}, R)$ by

$$
T'(\phi)(v) := \sum_{\substack{t(e)=(v),\\o(e)\in \mathcal{R}^j(C_n)}} \phi(o(e)) \quad \text{ for each } v \in \mathcal{R}^j(C_{n-1}), j \in \mathbb{Z};
$$

T' can be seen as the "restriction to one layer" $\bigcup_{n=0}^{\infty} \mathcal{R}^j(C_n)$ of T. We have $T'(v) \equiv$ $T(v) \mod H_{n-1}$ for each $v \in H_n$, since the "missing summand" of T' lies in H_{n-1} . We claim that for each $n \geq 0$, the set $X_{n,j} := \bigcup_{i=0}^n \mathcal{R}^j T^{n-i}(V_i)$ is an R-basis for $H_{n,j}/H_{n-1,j}$. By the above congruence, we can replace T by T' in the definition of $X_{n,i}$.

The claim is clear for $n = 0$. So let $n \geq 1$, and assume the claim to be true for all $n' \leq n$. For each $v \in C_{n-1}$, the q points in C_n adjacent to v are generated by the $q-1$ of these points lying in V_n , plus $T'v$ (which just sums up these q points). By induction hypothesis, v is generated by $X_{n-1,0}$, and thus (taking the union over all v), C_n is generated by $T'(X_{n-1,0}) \cup V_n = X_{n,0}$. Since the cardinality of $X_{n,0}$ equals the R-rank of $H_{n,0}/H_{n-1,0}$ (both are equal to $(q+1)q^{n-1}$), $X_{n,0}$ is in fact an R-basis.

Analoguously, we see that $H_{n,j}/H_{n-1,j}$ has $\mathcal{R}^j(X_{n,0}) = X_{n,j}$ as a basis, for each $j \in \mathbb{Z}$.

From the claim, it follows that $\bigcup_{j\in\mathbb{Z}} X_{n,j}$ is an R-basis of H_n/H_{n-1} for each n, and that $V := \bigcup_{n=0}^{\infty} V_n$ is an $R[T, \mathcal{R}^{\pm 1}]$ -basis of $C_c(\tilde{\mathcal{V}}, R)$. \Box

For $a \in R$ and $\nu \in R^*$, we let $\tilde{\mathcal{B}}_{a,\nu}(F,R)$ be the "common cokernel" of $T - a$ and $\mathcal{R}-\nu \text{ in } C_{\underline{c}}(\tilde{\mathcal{V}},R), \text{ namely } \tilde{\mathcal{B}}_{a,\nu}(F,R):= C_c(\tilde{\mathcal{V}},R)/(\text{Im}(\mathcal{I}-a)+\text{Im}(\mathcal{R}-\nu)); \text{ dually},$ we define $\mathcal{B}^{a,\nu}(F,M) := \ker(T-a) \cap \ker(\mathcal{R}-\nu) \subseteq C(\mathcal{V},M)$.

For a lattice $v \in \tilde{\mathcal{V}}$, we define a valuation ord_v on F as follows: For $w \in F^2$, the set $\{x \in F | xw \in v\}$ is some fractional ideal $\varpi^m \mathcal{O}_F \subseteq F$ $(m \in \mathbb{Z});$ we set ord_v $(w) := m$. This map can also be given explicitly as follows: Let λ_1, λ_2 be a basis of v. We can write any $w \in F^2$ as $w = x_1\lambda_1 + x_2\lambda_2$; then we have $\text{ord}_v(w) = \min\{\text{ord}_{\varpi}(x_1), \text{ord}_{\varpi}(x_2)\}.$ This gives a "valuation" map on F^2 , as one easily checks. We restrict it to $F \cong F \times \{0\} \hookrightarrow F^2$ to get a valuation ord_v on F, and consider especially the value at $e_1 := (1, 0)$.

Lemma 2.9. Let $\alpha, \nu \in R^*$, and put $a := \alpha + q\nu/\alpha$. Define a map $\varrho = \varrho_{\alpha,\nu} : \tilde{\mathcal{V}} \to R$ by $\varrho(v) := \alpha^{h(\pi(v))} \nu^{-\operatorname{ord}_v(e_1)}$. Then $\varrho \in \tilde{\mathcal{B}}^{a,\nu}(F,R)$.

Proof. One easily sees that $(v \mapsto \nu^{-\text{ord}_v(e_1)}) \in \text{ker}(\mathcal{R} - \nu)$. It remains to show that $\rho \in \ker(T - a)$:

We have the Iwasawa decomposition $G(F) = B(F)G(\mathcal{O}_F) = \{(\begin{smallmatrix} * & * \\ 0 & 1 \end{smallmatrix}\})Z(F)G(\mathcal{O}_F);$ thus every vertex in \tilde{V} can be written as $\overline{\omega}^i v$ with $v = \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right) v_0$, with $i \in \mathbb{Z}$, $a \in$ $F^*, b \in F.$

Now the lattice $v = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} v_0$ is generated by the vectors $\lambda_1 = \begin{pmatrix} a \\ 0 \end{pmatrix}$ and $\lambda_2 =$ $\binom{b}{1} \in \mathcal{O}_F^2$, so $e_1 = a^{-1}\lambda_1$ and thus $\text{ord}_v(e_1) = \text{ord}_\varpi(a^{-1}) = -\text{ord}_\varpi(a)$. The $q + 1$ neighbouring vertices v' for which there exists an $e \in \tilde{\mathcal{E}}$ with $o(e) = v', t(e) = v'$ are given by $N_i v, i \in \{\infty\} \cup \mathcal{O}_F/\mathfrak{p}$, with $N_\infty := \left(\begin{smallmatrix} 1 & 0 \\ 0 & \varpi \end{smallmatrix}\right)$, and $N_i := \left(\begin{smallmatrix} \varpi & i \\ 0 & 1 \end{smallmatrix}\right)$ where $i \in \mathcal{O}_F$ runs through a complete set of representatives mod ϖ . By lemma [2.7,](#page-9-1) $h(\pi(N_{\infty}v)) = h(\pi(v)) + 1$ and $h(\pi(N_i v)) = h(\pi(v)) - 1$ for $i \neq \infty$. By considering the basis $\{N_i\lambda_1, N_i\lambda_2\}$ of $N_i v$ for each N_i , we see that $\text{ord}_{N_\infty v}(e_1) = \text{ord}_v(e_1)$ and $\mathrm{ord}_{N_i v}(e_1) = \mathrm{ord}_v(e_1) - 1$ for $i \neq \infty$. Thus we have

$$
(T\varrho)(v) = \sum_{t(e)=v} \alpha^{h(\pi(o(e)))} \nu^{-\operatorname{ord}_{o(e)}(e_1)} = \alpha^{h(\pi(v))+1} \nu^{-\operatorname{ord}_v e_1} + q \cdot \alpha^{h(\pi(v))-1} \nu^{1-\operatorname{ord}_v(e_1)}
$$

=
$$
(\alpha + q\alpha^{-1} \nu)\alpha^{h(\pi(v))} \nu^{-\operatorname{ord}_v e_1} = a\varrho(v),
$$

and also $(T\varrho)(\varpi^i v) = (T\mathcal{R}^{-i}\varrho)(v) = \mathcal{R}^{-i}(a\varrho)(v) = a\varrho(\varpi^i v)$ for a general $\varpi^i v \in \tilde{\mathcal{V}},$ which shows that $\rho \in \ker(T - a)$.

If $a^2 \neq \nu(q+1)^2$ (we will call this the "spherical case"ⁱ), we put $\mathcal{B}_{a,\nu}(F,R) :=$ $\widetilde{\mathcal{B}}_{a,\nu}(F,R)$ and $\mathcal{B}^{a,\nu}(F,M) := \widetilde{\mathcal{B}}^{a,\nu}(F,M)$.

In the "special case" $a^2 = \nu(q+1)^2$, we need to assume that the polynomial $X^2 - a\nu X + q\nu^{-1} \in R[X]$ has a zero $\alpha' \in R$. Then the map $\rho := \rho_{\alpha',\nu} \in C(\tilde{\mathcal{V}},R)$ defined as above lies in $\mathcal{B}^{a\nu,\nu^{-1}}(F,R) = \ker(T\mathcal{R}-a) \cap \ker(\mathcal{R}^{-1}-\nu)$ by Lemma [2.9,](#page-11-0) since $a\nu = \alpha' + q\nu^{-1}/\alpha'$. In other words, the kernel of the map $\langle \cdot, \varrho \rangle : C_c(\tilde{\mathcal{V}}, R) \to R$ contains Im(T – a) + Im(\mathcal{R} – ν); and we define

$$
\mathcal{B}_{a,\nu}(F,R) := \ker\left(\langle \cdot, \varrho \rangle\right) / \left(\operatorname{Im}(T-a) + \operatorname{Im}(\mathcal{R}-\nu)\right)
$$

to be the quotient; evidently, it is an R-submodule of codimension 1 of $\tilde{\mathcal{B}}_{a,\nu}(F,R)$. Dually, T – a and $\mathcal{R}-\nu$ both map the submodule $\varrho M = {\varrho \cdot m, m \in M}$ of $C(\mathcal{V}, M)$ to zero and thus induce endomorphisms on $C(\tilde{\mathcal{V}}, M)/\rho M$; we define $\mathcal{B}^{a,\nu}(F, M)$ to be the intersection of their kernels.

In the special case, since $\nu = \alpha^2$, Lemma [2.9](#page-11-0) states that $\rho(gv_0) = \chi_\alpha(ad)\rho(v_0) =$ $\chi_{\alpha}(\det g) \varrho(v_0)$ for all $g =$ $\int a \, b$ $0 \t d$ \setminus $\in B(F)$, and thus for all $g \in G(F)$ by the Iwasawa decomposition, since $G(\mathcal{O}_F)$ fixes v_0 and lies in the kernel of χ_α \circ det. By the multiplicity of det, we have $(g^{-1}\rho)(v) = \rho(gv) = \chi_{\alpha}(\det g)\rho(v)$ for all $g \in G(F)$, $v \in \tilde{V}$. So $\phi \in \text{ker}\langle \cdot, \varrho \rangle$ implies $\langle g\phi, \varrho \rangle = \langle \phi, g^{-1}\varrho \rangle = \chi_\alpha(\text{det } g)\langle \phi, \varrho \rangle = 0$, i.e. ker $\langle \cdot, \varrho \rangle$ and thus $\mathcal{B}_{a,\nu}(F,R)$ are $G(F)$ -modules.

By the adjointness properties of the Hecke operators T and \mathcal{R} , we have pairings $\operatorname{coker}(T_c - a) \times \operatorname{ker}(T\mathcal{R} - a) \to M$ and $\operatorname{coker}(\mathcal{R}_c - \nu) \times \operatorname{ker}(\mathcal{R}^{-1} - \nu) \to M$, which "combine" to give a pairing

$$
\langle \cdot \, , \cdot \rangle : \mathcal{B}_{a,\nu}(F,R) \times \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to M
$$

(since ker($T\mathcal{R}-a$)∩ker($\mathcal{R}^{-1}-\nu$) = ker($T-a\nu$)∩ker($\mathcal{R}-\nu^{-1}$)), and a corresponding isomorphism $\mathcal{B}^{a\nu,\nu^{-1}}(F,M) \stackrel{\cong}{\to} \text{Hom}(\mathcal{B}_{a,\nu}(F,R),M).$

Definition 2.10. Let G be a totally disconnected locally compact group, $H \subseteq G$ and open subgroup. For a smooth $R[H]$ -module M, we define the *(compactly)* induced

ⁱWe use this term since these pairs of a, ν will later be seen to correspond to a spherical representation of GL₂(F). The case $a^2 = \nu(q+1)^2$ means that there exists an $\alpha \in \mathbb{R}^*$ with $a = \alpha(q+1), \nu = \alpha^2$, which will correspond to a special representation.

G-representation of M, denoted $\text{Ind}_{H}^{G} M$, to be the space of maps $f: G \to M$ such that $f(hg) = f(g)$ for all $g \in G, h \in H$, and such that f has compact support modulo H. We let G act on $\text{Ind}_{H}^{G}M$ via $g \cdot f(x) := f(xg)$. (We can also write $\operatorname{Ind}_{H}^{G} M = R[G] \otimes_{R[H]} M, \operatorname{cf.} [\operatorname{Br}], \, \text{III.5.}$

We further define $\text{Coind}_{H}^{G} M := \text{Hom}_{R[H]}(R[G], M)$. Finally, for an $R[G]$ -module N, we write $\operatorname{res}^G_H N$ for its underlying $R[H]$ -module ("restriction of scalars").

By Theorem [2.8,](#page-10-1) $T_c - a$ (as well as $\mathcal{R}_c - \nu$) is injective, and the induced map

$$
\mathcal{R}_c - \nu : \text{coker}(T_c - a) = C_c(\tilde{\mathcal{V}}, R) / \text{Im}(T_c - a) \to \text{coker}(T_c - a)
$$

(of $R[T, \mathcal{R}^{\pm 1}]/(T - a) = R[\mathcal{R}^{\pm 1}]$ -modules) is also injective. Now since $G(F)$ acts transitively on \mathcal{V}_y with the stabilizer of $v_0 := \mathcal{O}_F^2$ being $K := G(\mathcal{O}_F)$, we have an isomorphism $C_c(\tilde{\mathcal{V}}, R) \cong \text{Ind}_K^{G(F)} R$. Thus we have exact sequences

$$
0 \to \operatorname{Ind}_{K}^{G(F)} R \xrightarrow{T-a} \operatorname{Ind}_{K}^{G(F)} R \to \operatorname{coker}(T_{c} - a) \to 0
$$
 (2.4)

and (for a, ν in the spherical case)

$$
0 \to \text{coker}(T_c - a) \xrightarrow{\mathcal{R}-\nu} \text{coker}(T_c - a) \to \mathcal{B}_{a,\nu}(F,R) \to 0,
$$
\n(2.5)

with all entries being free R-modules. Applying $\text{Hom}_R(\cdot, M)$ to them, we get:

Lemma 2.11. We have exact sequences of R-modules

$$
0 \to \ker(T\mathcal{R} - a) \to \text{Coind}_{K}^{G(F)} M \xrightarrow{T-a} \text{Coind}_{K}^{G(F)} M \to 0
$$

and, if $\mathcal{B}_{a,\nu}(F,M)$ is spherical (i.e. $a^2 \neq \nu(q+1)^2$),

$$
0 \to \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to \ker(T\mathcal{R}-a) \xrightarrow{\mathcal{R}-\nu} \ker(T\mathcal{R}-a) \to 0.
$$

For the special case, we have to work a bit more to get similar exact sequences:

By [\[Sp\]](#page-51-0), eq. (22), for the representation $St^{-}(F, R) := \mathcal{B}_{-(q+1),1}(F, R)$ (i.e. $\nu = 1$, $\alpha = -1$) with trivial central character, we have an exact sequence of G-modules

$$
0 \to \operatorname{Ind}_{KZ}^G R \to \operatorname{Ind}_{K'Z}^G R \to St^-(F, R) \to 0,
$$
\n(2.6)

where $K' = \langle W \rangle K_0(\mathfrak{p})$ is the subgroup of KZ generated by $W := (\frac{0}{\varpi} \frac{1}{0})$ and the subgroup $K_0(\mathfrak{p}) \subseteq K$ of matrices that are upper-triangular modulo p. (Since $W^2 \in Z$, $K_0(\mathfrak{p})Z$ is a subgroup of K' of order 2.) Now (π, V) can be written as $\pi = \chi \otimes St^-$ for some character $\chi = \chi_Z$ (cf. the proof of lemma [2.14](#page-17-1) below), and we have an obvious G-isomorphism

$$
(\pi, V) \cong (\pi \otimes (\chi \circ \det), V \otimes_R R(\chi \circ \det)),
$$

where $R(\chi \circ \det)$ is the ring R with G-module structure given via $gr = \chi(\det(g))r$ for $g \in G, r \in R$. Tensoring [\(2.6\)](#page-13-0) with $R(\chi \circ \det)$ over R gives an exact sequence of G-modules

$$
0 \to \operatorname{Ind}_{KZ}^G \chi \to \operatorname{Ind}_{K'Z}^G \chi \to V \to 0. \tag{2.7}
$$

It is easily seen that $R(\chi \circ \det)$ fits into another exact sequence of G-modules

$$
0 \to \operatorname{Ind}_{H}^{G} R \xrightarrow{\left(\begin{smallmatrix} \varpi & 0 \\ 0 & 1 \end{smallmatrix}\right) - \chi(\varpi) \text{id}} \operatorname{Ind}_{H}^{G} R \xrightarrow{\psi} R(\chi \circ \det) \to 0,
$$

where $H := \{g \in G | \det g \in \mathcal{O}_F^\times \}$ is a normal subgroup containing K , $\left(\begin{smallmatrix} \varpi & 0 \\ 0 & 1 \end{smallmatrix}\right)(f)(g) :=$ $f((\begin{smallmatrix} \varpi & 0 \\ 0 & 1 \end{smallmatrix})^{-1}g)$ for $f \in \text{Ind}_{H}^{G} R = \{f : G \to R | f(Hg) = f(g) \text{ for all } g \in G\}, g \in G$, is the natural operation of G, and where ψ is the G-equivariant map defined by $1_U \mapsto 1$.

Now since $H \subseteq G$ is a normal subgroup, we have $\text{Ind}_{H}^{G} R \cong R[G/H]$ as G -modules (in fact $G/H \cong \mathbb{Z}$ as an abstract group). Let $X \subseteq G$ be a subgroup such that the natural inclusion $X/(X \cap H) \hookrightarrow G/H$ has finite cokernel; let q_iH , $i = 1, \ldots n$ be a set $\bigoplus_{i=0}^n \text{Ind}_{X \cap H}^X \to \text{Ind}_{H}^G R$ defined via $(1_{(X \cap H)x})_i \mapsto 1_{Hxg_i}$ for each $i = 1, \ldots, n$ (cf. of representatives of that cokernel. Then we have a (non-canonical) X -isomorphism $[Br], III (5.4).$ $[Br], III (5.4).$

Using this isomorphism and the "tensor identity" $\text{Ind}_{H}^{G} M \otimes N \cong \text{Ind}_{H}^{G} (M \otimes \text{res}_{H}^{G} N)$ for any groups $H \subseteq G$, H-module M and G-module N ([\[Br\]](#page-50-11) III.5, Ex. 2), we have

$$
\operatorname{Ind}_{KZ}^G R \otimes_R \operatorname{Ind}_H^G R \cong \operatorname{Ind}_{KZ}^G (\operatorname{res}_{KZ}^G (\operatorname{Ind}_H^G R))
$$

=
$$
\operatorname{Ind}_{KZ}^G ((\operatorname{Ind}_{KZ \cap H}^{KZ} R)^2)
$$

=
$$
(\operatorname{Ind}_{KZ}^G (\operatorname{Ind}_K^{KZ} R))^2 = (\operatorname{Ind}_K^G R)^2
$$

(since $KZ/KZ \cap H \hookrightarrow G/H$ has index 2), and similarly

$$
\operatorname{Ind}_{K'Z}^G R \otimes_R \operatorname{Ind}_H^G R \cong \operatorname{Ind}_{K'Z}^G(\operatorname{res}_{K'Z}^G(\operatorname{Ind}_H^G R))
$$

\n
$$
\cong \operatorname{Ind}_{K'Z}^G((\operatorname{Ind}_{K'Z \cap H}^{K'Z} R)^2)
$$

\n
$$
\cong (\operatorname{Ind}_{K'}^G R)^2
$$

and thus, we can resolve the first and second term of [\(2.7\)](#page-13-1) into exact sequences

$$
0 \to (\operatorname{Ind}_{K}^{G} R)^{2} \to (\operatorname{Ind}_{K}^{G} R)^{2} \to \operatorname{Ind}_{KZ}^{G} \chi \to 0,
$$

$$
0 \to (\operatorname{Ind}_{K'}^{G} R)^{2} \to (\operatorname{Ind}_{K'}^{G} R)^{2} \to \operatorname{Ind}_{\langle W \rangle K_{0}(\mathfrak{p})Z}^{G} \chi \to 0.
$$

Dualizing [\(2.7\)](#page-13-1) and these by taking $Hom(\cdot, M)$ for an R-module M, we get a "resolution" of $\mathcal{B}^{a\nu,\nu^{-1}}(F,M)$ in terms of coinduced modules:

Lemma 2.12. We have exact sequences

$$
0 \to \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to \mathrm{Coind}_{K'Z}^G M(\chi) \to \mathrm{Coind}_{KZ}^G M(\chi) \to 0,
$$

\n
$$
0 \to \mathrm{Coind}_{KZ}^G M(\chi) \to (\mathrm{Coind}_K^G R)^2 \to (\mathrm{Coind}_K^G R)^2 \to 0,
$$

\n
$$
0 \to \mathrm{Coind}_{K'Z}^G M(\chi) \to (\mathrm{Coind}_{K'}^G R)^2 \to (\mathrm{Coind}_{K'}^G R)^2 \to 0
$$

for all special $\mathcal{B}_{a,\nu}(F,R)$ (i.e. $a^2 = \nu(q+1)^2$), where $\chi = \chi_Z$ is the central character.

It is easily seen that the above arguments could be modified to get a similar set of exact sequences in the spherical case as well (replacing K' by K everywhere), in addition to that given in lemma [2.11;](#page-13-2) but we will not need this.

2.5 Distributions on $\tilde{\mathcal{T}}$

For $\rho \in C(\tilde{\mathcal{V}}, R)$ we define R-linear maps

$$
\tilde{\delta}_{\varrho}: C(\tilde{\mathcal{E}}, M) \to C(\tilde{\mathcal{V}}, M), \quad \tilde{\delta}_{\varrho}(c)(v) := \sum_{v=t(e)} \varrho(o(e))c(e) - \sum_{v=o(e)} \varrho(t(e))c(e),
$$

$$
\tilde{\delta}^{\varrho}: C(\tilde{\mathcal{V}}, M) \to C(\tilde{\mathcal{E}}, M), \quad \tilde{\delta}^{\varrho}(\phi)(e) := \varrho(o(e))\phi(t(e)) - \varrho(t(e))\phi(o(e)).
$$

One easily checks that these are adjoint with respect to (2.2) and (2.3) , i.e. we have $\langle \tilde{\delta}_{\varrho}(c), \phi \rangle = \langle c, \tilde{\delta}^{\varrho}(\phi) \rangle$ for all $c \in C_c(\tilde{\mathcal{E}}, R)$, $\phi \in C(\tilde{\mathcal{V}}, M)$. We denote the maps corresponding to $\varrho \equiv 1$ by $\delta := \tilde{\delta}_1, \delta^* := \tilde{\delta}^1$.

For each ϱ , the map $\tilde{\delta}_{\rho}$ fits into an exact sequence

$$
C_c(\tilde{\mathcal{E}}, R) \xrightarrow{\tilde{\delta}_{\varrho}} C_c(\tilde{\mathcal{V}}, R) \xrightarrow{\langle \cdot, \varrho \rangle} R \to 0
$$

but it is not injective in general: e.g. for $\rho \equiv 1$, the map $\tilde{\mathcal{E}} \to R$ symbolized by

$$
\cdot \xrightarrow{ -1} \cdot \xrightarrow{ -1} \cdot \xrightarrow{ -1} \cdot
$$

(and zero outside the square) lies in ker δ .

The restriction $\delta^*|_{C_c(\tilde{\mathcal{V}},R)}$ to compactly supported maps is injective since $\tilde{\mathcal{T}}$ has no directed circles, and we have a surjective map

$$
\operatorname{coker} (\delta^* : C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{E}}, R)) \to C^0(\mathbb{P}^1(F), R)/R, \quad c \mapsto \sum_{e \in \tilde{\mathcal{E}}} c(e) 1_{U(\pi(e))}
$$

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits tree T). Its kernel is generated by the functions $1_{\{e\}}-1_{\{e'\}}$ for $e, e' \in \tilde{\mathcal{E}}$ with $\pi(e) = \pi(e')$.

For $\rho_1, \rho_2 \in C(\tilde{\mathcal{V}}, R)$ and $\phi \in C(\tilde{\mathcal{V}}, M)$ it is easily checked that

$$
(\tilde{\delta}_{\varrho_1} \circ \tilde{\delta}^{\varrho_2})(\phi) = (T + T\mathcal{R})(\varrho_1 \cdot \varrho_2) \cdot \phi - \varrho_2 \cdot (T + T\mathcal{R})(\varrho_1 \cdot \phi).
$$

For $a' \in R$ and $\varrho \in \ker(T + T\mathcal{R} - a')$, applying this equality for $\varrho_1 = \varrho$ and $\varrho_2 = 1$ shows that $\tilde{\delta}_{\varrho}$ maps Im δ^* into Im($T + T\mathcal{R} - a'$), so we get an R-linear map

$$
\tilde{\delta}_{\varrho} : \text{coker}(\delta^* : C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{E}}, R)) \to \text{coker}(T_c + T_c \mathcal{R}_c - a').
$$

Let now again $\alpha, \nu \in R^*$, and $a := \alpha + q\nu/\alpha$. We let $\varrho := \varrho_{\alpha,\nu} \in \tilde{\mathcal{B}}^{a,\nu}(F,R)$ as defined in lemma [2.9,](#page-11-0) and write $\tilde{\delta}_{\alpha,\nu} := \tilde{\delta}_{\varrho}$. Since $\tilde{\delta}_{\alpha,\nu}$ maps $1_{\{e\}} - 1_{\{\varpi e\}}$ into $\text{Im}(R - \nu)$, it induces a map

$$
\tilde{\delta}_{\alpha,\nu}: C^0(\mathbb{P}^1(F), R)/R \to \mathcal{B}_{a,\nu}(F, R)
$$

(same name by abuse of notation) via the commutative diagram

$$
\operatorname{coker} \delta^* \xrightarrow{\delta_{\alpha,\nu}} \operatorname{coker}(T_c + T_c \mathcal{R}_c - a')
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \text{mod } (\mathcal{R} - \nu)
$$

\n
$$
C^0(\mathbb{P}^1(F), R)/R \xrightarrow{\delta_{\alpha,\nu}} \mathcal{B}_{a,\nu}(F, R)
$$

\nwith $a' := a(1 + \nu)$, since $\varrho \in \mathcal{B}^{a,\nu}(F, R) \subseteq \ker(T + T\mathcal{R} - a').$

Lemma 2.13. We have $\varrho(gv) = \chi_{\alpha}(d/a')\chi_{\nu}(a')\varrho(v)$, and thus

$$
\tilde{\delta}_{\alpha,\nu}(gf) = \chi_{\alpha}(d/a')\chi_{\nu}(a')g\tilde{\delta}_{\alpha,\nu}(f),
$$

for all $v \in \tilde{\mathcal{V}}$, $f \in C^0(\mathbb{P}^1(F), R)/R$ and $g =$ $\int a'$ b $0 \quad d$ \setminus $\in B(F)$.

Proof. (a) Using lemma [2.7\(](#page-9-1)b) and the fact that $\text{ord}_{gv}(e_1) = -\text{ord}_{\varpi}(a') + \text{ord}_{v}(e_1)$, we have

$$
\varrho\left(\begin{pmatrix}a' & b\\0 & d\end{pmatrix}v\right) = \alpha^{h(v)-\text{ord}_{\varpi}(a'/d)}\nu^{\text{ord}_{\varpi}(a')-\text{ord}_{v}(e_1)} = \chi_{\alpha}(d/a')\chi_{\nu}(a')\varrho(v)
$$

for all $v \in \tilde{\mathcal{V}}$. For f and q as in the assertion, we thus have

$$
\tilde{\delta}_{\alpha,\nu}(gf)(v) = \sum_{v=t(e)} \varrho(o(e))f(g^{-1}e) - \sum_{v=o(e)} \varrho(t(e))f(g^{-1}e)
$$
\n
$$
= \sum_{g^{-1}v=t(e)} \varrho(o(ge))f(e) - \sum_{g^{-1}v=o(e)} \varrho(t(ge))f(e)
$$
\n
$$
= \chi_{\alpha}(d/a')\chi_{\nu}(a')\varrho(v)\left(\sum_{g^{-1}v=t(e)} \varrho(o(e))f(e) - \sum_{g^{-1}v=o(e)} \varrho(t(e))f(e)\right)
$$
\n
$$
= \chi_{\alpha}(d/a')\chi_{\nu}(a')g\tilde{\delta}_{\alpha,\nu}(f)(v).
$$

We define a function $\delta_{\alpha,\nu}: C_c(F^*, R) \to \mathcal{B}_{a,\nu}(F, R)$ as follows: For $f \in C_c(F^*, R)$, we let $\psi_0(f) \in C_c(\mathbb{P}^1(F), R)$ be the extension of $x \mapsto \chi_\alpha(x)\chi_\nu(x)^{-1}f(x)$ by zero to $\mathbb{P}^1(F)$. We set $\delta_{\alpha,\nu} := \tilde{\delta}_{\alpha,\nu} \circ \psi_0$. If $\alpha = \nu$, we can define $\delta_{\alpha,\nu}$ on all functions in $C_c(F,R)$.

 \Box

We let F^* operate on $C_c(F,R)$ by $(tf)(x) := f(t^{-1}x)$; this induces an action of the group $T^1(F) := \{(\begin{smallmatrix} t & 0 \\ 0 & 1 \end{smallmatrix}) | t \in F^*\}$, which we identify with F^* in the obvious way. With respect to it, we have

$$
\psi_0(tf)(x) = \chi_\alpha(t)\chi_\nu(t)^{-1}t\psi_0(f)(x)
$$

and

$$
\tilde{\delta}_{\alpha,\nu}(tf) = \chi_{\alpha}^{-1}(t)\chi_{\nu}(t)t\tilde{\delta}_{\alpha,\nu}(f),
$$

so $\delta_{\alpha,\nu}$ is $T^1(F)$ -equivariant.

For an R-module M, we define an F^* -action on $Dist(F^*, M)$ by $\int f d(t\mu) :=$ $t \int (t^{-1}f)d\mu$. Let $H \subseteq G(F)$ be a subgroup, and M an R[H]-module. We define an H-action on $\mathcal{B}^{a\nu,\nu-1}(F,M)$ by requiring $\langle \phi, h \lambda \rangle = h \cdot \langle h^{-1}\phi, \lambda \rangle$ for all $\phi \in \mathcal{B}_{a,\nu}(F,M)$, $\lambda \in \mathcal{B}^{a\nu,\nu^{-1}}(F,M)$, $h \in H$. With respect to these two actions, we get a $T^1(F) \cap H$ equivariant mapping

$$
\delta^{\alpha,\nu}: \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to \text{Dist}(F^*,M), \quad \delta^{\alpha,\nu}(\lambda) := \langle \delta_{\alpha,\nu}(\cdot),\lambda \rangle
$$

dual to $\delta_{\alpha,\nu}$.

2.6 Local distributions

Now consider the case $R = \mathbb{C}$. Let $\chi_1, \chi_2 : F^* \to \mathbb{C}^*$ be two unramified characters. We consider (χ_1, χ_2) as a character on the torus $T(F)$ of $GL_2(F)$, which induces a character χ on $B(F)$ by

$$
\chi\begin{pmatrix}t_1&u\\0&t_2\end{pmatrix}:=\chi_1(t_1)\chi_2(t_2).
$$

Put $\alpha_i := \chi_i(\varpi)\sqrt{q} \in \mathbb{C}^*$ for $i = 1, 2$. Set $\nu := \chi_1(\varpi)\chi_2(\varpi) = \alpha_1\alpha_2q^{-1} \in \mathbb{C}^*$, and $a := \alpha_1 + \alpha_2 = \alpha_i + q\nu/\alpha_i$ for either *i*. When a and ν are given by the α_i like this, we will often write $\mathcal{B}_{\alpha_1,\alpha_2}(F,R) := \mathcal{B}_{a,\nu}(F,R)$ and $\mathcal{B}^{\alpha_1,\alpha_2}(F,M) := \mathcal{B}^{a\nu,\nu^{-1}}(F,M)$ (!) for its dual.

In the special case $a^2 = \nu(q+1)^2$, we assume the χ_i to be sorted such that $\chi_1 = |\cdot|\chi_2$ (not vice versa).

Let $\mathcal{B}(\chi_1, \chi_2)$ denote the space of continuous maps $\phi : G(F) \to \mathbb{C}$ such that

$$
\phi\left(\begin{pmatrix}t_1 & u \\ 0 & t_2\end{pmatrix}g\right) = \chi_{\alpha_1}(t_1)\chi_{\alpha_2}(t_2)|t_1|\phi(g) \tag{2.8}
$$

for all $t_1, t_2 \in F^*$, $u \in F$, $g \in G(F)$. $G(F)$ operates canonically on $\mathcal{B}(\chi_1, \chi_2)$ by right translation (cf. [\[Bu\]](#page-50-8), Ch. 4.5). If $\chi_1\chi_2^{-1} \neq |\cdot|^{1,1}$, $\mathcal{B}(\chi_1,\chi_2)$ is a model of the spherical representation $\pi(\chi_1, \chi_2)$; if $\chi_1 \chi_2^{-1} = |\cdot|^{1}$, the special representation $\pi(\chi_1, \chi_2)$ can be given as an irreducible subquotient of codimension 1 of $\mathcal{B}(\chi_1, \chi_2)$.ⁱⁱ

Lemma 2.14. We have a G-equivariant isomorphism $\tilde{\mathcal{B}}_{a,\nu}(F,\mathbb{C}) \cong \mathcal{B}(\chi_1,\chi_2)$. It induces an isomorphism $\mathcal{B}_{a,\nu}(F,\mathbb{C}) \cong \pi(\chi_1,\chi_2)$ both for spherical and special representations.

Proof. We choose a "central" unramified character $\chi_Z : F^* \to \mathbb{C}$ satisfying $\chi_Z^2(\varpi) =$ v; then we have $\chi_1 = \chi_Z \chi_0^{-1}, \chi_2 = \chi_Z \chi_0$ for some unramified character χ_0 . We set $a' := \sqrt{q} (\chi_0(\varpi)^{-1} + \chi_0(\varpi))$, which satisfies $a = \chi_Z(\varpi) a'$.

For a representation (π, V) of $G(F)$, by [\[Bu\]](#page-50-8), Ex. 4.5.9, we can define another representation $\chi_Z \otimes \pi$ on V via

 $(g, v) \mapsto \chi_Z(\det(g))\pi(g)v$ for all $g \in G(F)$, $v \in V$,

iiNote that [\[Bu\]](#page-50-8) denotes this special representation by $\sigma(\chi_1, \chi_2)$, not by $\pi(\chi_1, \chi_2)$.

and with this definition we have $\mathcal{B}(\chi_1, \chi_2) \cong \chi_Z \otimes \mathcal{B}(\chi_0^{-1}, \chi_0)$. Since $\mathcal{B}(\chi_0^{-1}, \chi_0)$ has trivial central character, [\[BL\]](#page-50-10), Thm. 20 (as quoted in [\[Sp\]](#page-51-0)) states that $\mathcal{B}(\chi_0^{-1}, \chi_0) \cong \mathcal{B}_{a',1}(F, \mathbb{C}) \cong \text{Ind}_{KZ}^{G(F)}R/ \text{Im}(T-a').$

Define a G-linear map $\phi: \text{Ind}_{K}^{G} R \to \chi_{Z} \otimes \text{Ind}_{KZ}^{G} R$ by $1_{K} \mapsto (\chi_{Z} \circ \det) \cdot 1_{KZ}$. Since 1_K (resp. $(\chi_Z \circ \det) \cdot 1_{KZ})$ generates $\text{Ind}_K^G R$ (resp. $\chi_Z \otimes \text{Ind}_{KZ}^G R$) as a $\mathbb{C}[G]$ -module, ϕ is well-defined and surjective.

 ϕ maps $\mathcal{R}1_K = \left(\begin{smallmatrix} \varpi & 0 \\ 0 & \varpi \end{smallmatrix}\right)1_K$ to

$$
\left(\begin{array}{cc} \overline{\omega} & 0 \\ 0 & \overline{\omega} \end{array}\right) \left(\left(\chi_Z \circ \det \right) \cdot 1_{KZ} \right) = \chi_Z(\overline{\omega})^2 \cdot \left(\left(\chi_Z \circ \det \right) \cdot 1_{KZ} \right) = \nu \cdot \phi(1_K).
$$

Thus Im($\mathcal{R} - \nu$) \subseteq ker ϕ , and in fact the two are equal, since the preimage of the space of functions of support in a coset KZg $(g \in G(F))$ under ϕ is exactly the space generated by the 1_{Kzg} , $z \in Z(F) = Z(\mathcal{O}_F)\{(\begin{smallmatrix} \varpi & 0 \\ 0 & \varpi \end{smallmatrix})\}^{\mathbb{Z}}$.

Furthermore, ϕ maps $T1_K = \sum_{i \in \mathcal{O}_F/(\varpi) \cup \{\infty\}} N_i1_K$ (with the N_i as in Lemma [2.9\)](#page-11-0) to

$$
\sum_{i} \chi_Z(\det(N_i)) \cdot ((\chi_Z \circ \det) \cdot N_i 1_{KZ}) = \chi_Z(\varpi) \cdot (\chi_Z \circ \det) T 1_{KZ}
$$

(since $\det(N_i) = \varpi$ for all i), and thus Im(T – a) is mapped to Im $(\chi_Z(\varpi)T - a)$ = $\mathrm{Im}\left(\chi_Z(\varpi)(T-a')\right) = \mathrm{Im}(T-a').$

Putting everything together, we thus have G-isomorphisms

$$
C_c(\tilde{\mathcal{V}}, \mathbb{C})/(\operatorname{Im}(T - a) + \operatorname{Im}(\mathcal{R} - \nu)) \cong \operatorname{Ind}_{K}^{G} R/(\operatorname{Im}(T - a) + \operatorname{Im}(\mathcal{R} - \nu))
$$

\n
$$
\cong \chi_Z \otimes (\operatorname{Ind}_{KZ}^{G} R/\operatorname{Im}(T - a')) \quad (\text{via } \phi)
$$

\n
$$
\cong \chi_Z \otimes \mathcal{B}(\chi_0^{-1}, \chi_0) \cong \mathcal{B}(\chi_1, \chi_2).
$$

Thus, $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ is isomorphic to the spherical principal series representation $\pi(\chi_1,\chi_2)$ for $a^2 \neq \nu (q+1)^2$.

In the special case, $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ is a G-invariant subspace of $\tilde{\mathcal{B}}_{a,\nu}(F,\mathbb{C})$ of codimension 1, so it must be mapped under the isomorphism to the unique G -invariant subspace of $\mathcal{B}(\chi_1, \chi_2)$ of codimension 1 (in fact, the unique infinite-dimensional irreducible G-invariant subspace, by [\[Bu\]](#page-50-8), Thm. 4.5.1), which is the special representation $\pi(\chi_1, \chi_2)$. \Box

By [\[Bu\]](#page-50-8), section 4.4, there exists thus for all pairs a, ν a Whittaker functional λ on $\mathcal{B}_{a,\nu}(F,\mathbb{C})$, i.e. a nontrivial linear map $\lambda : \mathcal{B}_{a,\nu}(F,\mathbb{C}) \to \mathbb{C}$ such that $\lambda((\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix})\phi) =$ $\psi(x)\lambda(\phi)$. It is unique up to scalar multiples.

From it, we furthermore get a Whittaker model $\mathcal{W}_{a,\nu}$ of $\mathcal{B}_{a,\nu}(F,\mathbb{C})$:

$$
\mathcal{W}_{a,\nu} := \{W_{\xi} : GL_2(F) \to \mathbb{C} \mid \xi \in \mathcal{B}_{a,\nu}(F,\mathbb{C})\},\
$$

where $W_{\xi}(g) := \lambda(g \cdot \xi)$ for all $g \in GL_2(F)$. (see e.g. [\[Bu\]](#page-50-8), Ch. 3, eq. (5.6).)

Now write $\alpha := \alpha_1$ for short. Recall the distribution $\mu_{\alpha,\nu} = \psi(x)\chi_{\alpha/\nu}(x)dx \in$ $Dist(F^*, \mathbb{C})$. For $\alpha = \nu$, it extends to a distribution on F.

Proposition 2.15. (a) There exists a unique Whittaker functional $\lambda = \lambda_{a,\nu}$ on $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ such that $\delta^{\alpha,\nu}(\lambda) = \mu_{\alpha,\nu}$.

(b) For every $f \in C_c(F^*, \mathbb{C})$, there exists $W = W_f \in \mathcal{W}_{a,\nu}$ such that

$$
\int_{F^*} (af)(x) \mu_{\alpha,\nu}(dx) = W_f \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}.
$$

If $\alpha = \nu$, then for every $f \in C_c(F, \mathbb{C})$, there exists $W_f \in \mathcal{W}_{a,\nu}$ such that

$$
\int_F (af)(x)\mu_{\alpha,\nu}(dx) = W_f \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}.
$$

(c) Let $H \subseteq U = \mathcal{O}_F^{\times}$ be an open subgroup, and put $W_H := W_{1_H}$. For every $f \in C_c^0(F^*, \mathbb{C})^H$ we have

$$
\int_{F^*} f(x) \mu_{\alpha,\nu}(dx) = [U:H] \int_{F^*} f(x) W_H \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^\times x.
$$

Proof. (a) (cf. [\[Sp\]](#page-51-0), prop. 3.10 for the first part) We let the additive group F act on $C_c(F, \mathbb{C})$ by $(x \cdot f)(y) := f(y-x)$, and on $C^0(\mathbb{P}^1(F), \mathbb{C})/\mathbb{C}$ by $x\phi := (\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix})\phi$. Thus the functional

$$
\Lambda: C_c(F, \mathbb{C}) \to \mathbb{C}, \quad f \mapsto \int_F f(x)\psi(x)dx
$$

satisfies $\Lambda(xf) = \psi(x)\Lambda(f)$ for all $x \in F$ and all $f \in C_c(F, \mathbb{C})$, and there is an F-equivariant isomorphism

$$
C^0(\mathbb{P}^1(F,\mathbb{C})/\mathbb{C}\to C_c(F,\mathbb{C}),\quad \phi\mapsto f(x):=\phi(x)-\phi(\infty).
$$

Thus the composite

$$
St(F, \mathbb{C}) := C^0(\mathbb{P}^1(F, \mathbb{C})/\mathbb{C} \xrightarrow{\cong} C_c(F, \mathbb{C}) \xrightarrow{\Lambda} \mathbb{C}
$$
 (2.9)

is a Whittaker functional of the Steinberg representation.

Let now $\lambda : \mathcal{B}_{a,\nu}(F,\mathbb{C}) \to \mathbb{C}$ be a Whittaker functional of $\mathcal{B}_{a,\nu}(F,\mathbb{C})$. By lemma [2.13,](#page-16-0)

$$
(\lambda \circ \tilde{\delta}_{\alpha,\nu})(u\phi) = \lambda(u\tilde{\delta}_{\alpha,\nu}(\phi)) = \psi(x)\lambda(\tilde{\delta}_{\alpha,\nu}(\phi)),
$$

so $\lambda \circ \tilde{\delta}_{\alpha,\nu}(\phi)$ is a Whittaker functional if it is not zero. To describe the image of $\tilde{\delta}_{\alpha,\nu}$, consider the commutative diagram

$$
C_c(\tilde{\mathcal{E}}, R) \xrightarrow{\tilde{\delta}_{\alpha,\nu}} C_c(\tilde{\mathcal{V}}, R)
$$

$$
\downarrow (2.10)
$$

$$
C_c(\tilde{\mathcal{E}}, R) \xrightarrow{\delta} C_c(\tilde{\mathcal{V}}, R) \xrightarrow{\langle \cdot, 1 \rangle} R \longrightarrow 0
$$

where the vertical maps are defined by

$$
C_c(\tilde{\mathcal{E}}, R) \to C_c(\tilde{\mathcal{E}}, R), \quad c \mapsto (e \mapsto c(e)\varrho(o(e))\varrho(t(e))) \tag{2.10}
$$

resp. by mapping ϕ to $v \mapsto \phi(v)\rho(v)$; both are obviously isomorphisms.

Since the lower row is exact, we have $\text{Im }\delta = \text{ker }\langle \cdot, 1 \rangle =: C_c^0(\tilde{\mathcal{V}}, R)$ and thus $\operatorname{Im} \widetilde{\delta}_{\alpha,\nu} = \varrho^{-1} \cdot C_c^0(\widetilde{\mathcal{V}}, R).$

Since $\lambda \neq 0$ and $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ is generated by (the equivalence classes of) the $1_{\{v\}},$ $v \in \tilde{\mathcal{V}}$, there exists a $v \in \tilde{\mathcal{V}}$ such that $\lambda(1_{\{v\}}) \neq 0$. Let ϕ be this $1_{\{v\}}$, and let $u = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in B(F)$ such that $x \notin \ker \psi = \mathcal{O}_F$. Then

$$
\varrho \cdot (u\phi - \phi) = \varrho \cdot (1_{\{u^{-1}v\}} - 1_{\{v\}}) = \varrho(v)(1_{\{u^{-1}v\}} - 1_{\{v\}}) \in C_c^0(\tilde{\mathcal{V}}, R)
$$

by lemma [2.13,](#page-16-0) so $0 \neq u\phi - \phi \in \text{Im } \tilde{\delta}_{\alpha,\nu}$, but $\lambda(u\phi - \phi) = \psi(x)\lambda(\phi) - \lambda(\phi) \neq 0$.

So $\lambda \circ \tilde{\delta}_{\alpha,\nu} \neq 0$ is indeed a Whittaker functional. By replacing λ by a scalar multiple, we can assume $\lambda \circ \tilde{\delta}_{\alpha,\nu} = (2.9)$ $\lambda \circ \tilde{\delta}_{\alpha,\nu} = (2.9)$.

Considering λ as an element of $\mathcal{B}^{a\nu,\nu^{-1}}(F,\mathbb{C}) \cong \text{Hom}(\mathcal{B}_{a,\nu}(F,\mathbb{C}),\mathbb{C})$, we have

$$
\delta^{\alpha,\nu}(\lambda)(f) = \langle \delta_{\alpha,\nu}(f), \lambda \rangle
$$

= $\Lambda(\chi_{\alpha}\chi_{\nu}^{-1}f)$
= $\int_{F^*} \chi_{\alpha}(x)\chi_{\nu}^{-1}(x)f(x)\psi(x)dx$
= $\mu_{\alpha,\nu}(f).$

(b) For given f, set $W_f(g) := \lambda(g \cdot \delta_{\alpha,\nu}(f))$. Then $W_f \in \mathcal{W}_{a,\nu}$, and for all $a \in F^*$ we have:

$$
W_f \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \lambda \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \delta_{\alpha,\nu}(f) \Big)
$$

= $\lambda(\delta_{\alpha,\nu}(af))$ (by the $T^1(F)$ -invariance of $\delta_{\alpha,\nu}$)
= $\int_{F^*} (af)(x) \mu_{\alpha,\nu}(dx).$

(c) Without loss of generality we can assume $f = 1_{aH}$ for some $a \in F^*$. We have

$$
\int_{F^*} 1_{aH}(x)\mu_{\alpha,\nu}(dx) = \int_{F^*} 1_H(a^{-1}x)\mu_{\alpha,\nu}(dx)
$$

$$
= \int_{F^*} (a \cdot 1_H)(x)\mu_{\alpha,\nu}(dx)
$$

$$
= W_H \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \text{ by (b)},
$$

and since the left-hand side is invariant under replacing a by ah (for $h \in H$), the

right-hand side also is, so we can integrate this constant function over H :

$$
= [U : H] \int_{H} W_{H} \begin{pmatrix} ax & 0 \\ 0 & 1 \end{pmatrix} d^{x}x
$$

\n
$$
= [U : H] \int_{F^{*}} 1_{H}(x)W_{H} \begin{pmatrix} ax & 0 \\ 0 & 1 \end{pmatrix} d^{x}x
$$

\n
$$
= [U : H] \int_{F^{*}} 1_{H}(a^{-1}x)W_{H} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^{x}x
$$

\n
$$
= [U : H] \int_{F^{*}} 1_{aH}(x)W_{H} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^{x}x.
$$

 \Box

2.7 Semi-local theory

We can generalize many of the previous constructions to the semi-local case, considering all primes $\mathfrak{p}|p$ at once.

So let F_1, \ldots, F_m be finite extensions of \mathbb{Q}_p , and for each i, let q_i be the number of elements of the residue field of F_i . We put $\underline{F} := F_1 \times \cdots \times F_m$.

Let R again be a ring, and $a_i \in R, \nu_i \in R^*$ for each $i \in \{1, \ldots, m\}$. Put $\underline{a} := (a_1, \ldots, a_m), \underline{\nu} := (\nu_1, \ldots, \nu_m)$. We define $\mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R)$ as the tensor product

$$
\mathcal{B}_{\underline{a},\underline{\nu}}(\underline{F},R):=\bigotimes_{i=1}^m \mathcal{B}_{a_i,\nu_i}(F_i,R).
$$

For an R-module M, we define $\mathcal{B}^{\underline{a}\underline{\nu},\underline{\nu}^{-1}}(\underline{F},M) := \text{Hom}_{R}(\mathcal{B}_{\underline{a},\underline{\nu}}(\underline{F},R),M)$; let

$$
\langle \cdot, \cdot \rangle : \mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R) \times \mathcal{B}^{\underline{a}\underline{\nu}, \underline{\nu}^{-1}}(\underline{F}, M) \to M \tag{2.11}
$$

denote the evaluation pairing.

We have an obvious isomorphism

$$
\bigotimes_{i=1}^{m} C_c^0(F_i^*, R) \to C_c^0(\underline{F}^*, R), \quad \bigotimes_{i} f_i \mapsto \left((x_i)_{i=1,\dots,m} \mapsto \prod_{i=1}^m f_i(x_i) \right). \tag{2.12}
$$

Now when we have $\alpha_{i,1}, \alpha_{i,2} \in R^*$ such that $a_i = \alpha_{i,1} + \alpha_{i,2}$ and $\nu_i = \alpha_{i,1}\alpha_{i,2}q_i^{-1}$, we can define the $T^1(\underline{F})$ -equivariant map

$$
\delta_{\underline{\alpha}_{1,2}} := \delta_{\underline{\alpha_1}, \underline{\nu}} : C^0_c(\underline{F}, R) \to \mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R)
$$

as the inverse of [\(2.12\)](#page-21-1) composed with $\bigotimes_{i=1}^{m} \delta_{\alpha_{i,1},\nu_i}$.

Again, we will often write $\mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F, R) := \mathcal{B}_{\underline{a\nu}, \underline{\nu}^{-1}}(F, R)$ and $\mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F, M) :=$ $\mathcal{B}^{\underline{a}\underline{\nu},\underline{\nu}^{-1}}(F,M).$

If $H \subseteq G(F)$ is a subgroup, and M an R[H]-module, we define an H-action on $\mathcal{B}^{\underline{a}\underline{\nu},\underline{\nu}^{-1}}(\overline{F},\overline{M})$ by requiring $\langle \phi,h\rangle = h \cdot \langle h^{-1}\phi,\lambda\rangle$ for all $\phi \in \mathcal{B}_{\underline{a},\underline{\nu}}(F,M)$, $\lambda \in \mathcal{B}^{\underline{a}\underline{\nu},\underline{\nu}^{-1}}(F,M), h \in H$, and get a $T^1(\underline{F}) \cap H$ -equivariant mapping

$$
\delta^{\underline{\alpha_1}, \underline{\alpha_2}} : \mathcal{B}^{\underline{a}\underline{\nu}, \underline{\nu}^{-1}}(F, M) \to \text{Dist}(\underline{F}^*, M), \quad \delta^{\underline{\alpha_1}, \underline{\alpha_2}}(\lambda) := \langle \delta_{\underline{\alpha_1}, \underline{\alpha_2}}(\cdot), \lambda \rangle.
$$

Finally, we have a homomorphism

$$
\bigotimes_{i=1}^{m} \mathcal{B}^{a_{i}\nu_{i},\nu_{i}^{-1}}(F_{i},R) \stackrel{\cong}{\to} \bigotimes_{i=1}^{m} \text{Hom}_{R}(\mathcal{B}_{a_{i}\nu_{i},\nu_{i}^{-1}}(F_{i},R),R)
$$

\n
$$
\to \text{Hom}(\mathcal{B}_{a_{1},\nu_{1}}(F_{1},R),\text{Hom}(\mathcal{B}_{a_{2},\nu_{2}}(F_{2},R),\text{Hom}(\ldots,R))\ldots)
$$

\n
$$
\stackrel{\cong}{\to} \mathcal{B}^{\underline{a}\nu,\underline{\nu}^{-1}}(F,R).
$$
\n(2.13)

where the second map is given by $\otimes_i f_i \mapsto (x_1 \mapsto (x_2 \mapsto (\ldots \mapsto \prod_i f_i(x_i))\ldots)$, and the last map by iterating the adjunction formula of the tensor product.

3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers \mathcal{O}_F . For each finite prime v, let $U_v := \mathcal{O}_v^*$. Let $\mathbb{A} = \mathbb{A}_F$ denote the ring of adeles of F , and $\mathbb{I} = \mathbb{I}_F$ the group of ideles of F . For a finite subset S of the set of places of F , we denote by $\mathbb{A}^S := \{x \in \mathbb{A}_F | x_v = 0 \,\forall v \in S\}$ the S-adeles and by \mathbb{I}^S the S-ideles, and put $F_S := \prod_{v \in S} F_v, U_S := \prod_{v \in S} U_v, U^S := \prod_{v \notin S} U_v$ (if S contains all infinite places of F), and similarly for other global groups.

For ℓ a prime number or ∞ , we write S_{ℓ} for the set of places of F above ℓ , and abbreviate the above notations to $\mathbb{A}^{\ell} := \mathbb{A}^{S_{\ell}}, \mathbb{A}^{p,\infty} := \mathbb{A}^{S_p \cup S_{\infty}},$ and similarly write \mathbb{I}^p , \mathbb{I}^∞ , F_p , F_∞ , U^∞ , U_p , $U^{p,\infty}$, \mathbb{I}_∞ etc.

Let F have r real embeddings and s pairs of complex embeddings. Set $d := r+s-1$. Let $\{\sigma_0, \ldots, \sigma_{r-1}, \sigma_r, \ldots, \sigma_d\}$ be a set of representatives of these embeddings (i.e. for $i \geq r$, choose one from each pair of complex embeddings), and denote by $\infty_0, \ldots, \infty_d$ the corresponding archimedian primes of F. We let $S^0_{\infty} := {\{\infty_1, \ldots, \infty_d\}} \subseteq S_{\infty}$.

We fix an additive character $\psi : \mathbb{A} \to \mathbb{C}^*$ which is trivial on F, and let ψ_v denote the restriction of ψ to $F_v \hookrightarrow \mathbb{A}$, for all primes v; we assume that ker $(\psi_v) = \mathcal{O}_{F_v}$ for all $\mathfrak{p}|p$.

For each place v, let dx_v denote the associated self-dual Haar measure on F_v , and $dx := \prod_v dx_v$ the associated Haar measure on A_F . We define Haar measures $d^{\times}x_v$ on F_v^* by $d^{\times} x_v := c_v \frac{dx_v}{|x_v|}$ $\frac{dx_v}{|x_v|_v}$, where $c_v = (1 - \frac{1}{q_v})$ $(\frac{1}{q_v})^{-1}$ for v finite, $c_v = 1$ for $v | \infty$.

For $v | \infty$ complex, we use the decomposition $\mathbb{C}^* = \mathbb{R}_+^* \times S^1$ (with $S^1 = \{x \in \mathbb{C}^*; |x| = 1\}$) to write $d^{\times} x_v = d^{\times} r_v d\vartheta_v$ for variables r_v, ϑ_v with $r_v \in \mathbb{R}_+^*$, $\vartheta_v \in S^1$.

Let $S_1 \subseteq S_p$ be a set of primes of F lying above $p, S_2 := S_p - S_1$. Let R be a topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

$$
\mathcal{C}(S_1,R) := C(F_{S_1} \times F_{S_2}^* \times \mathbb{I}^{p,\infty}/U^{p,\infty},R);
$$

and let $\mathcal{C}_c(S_1, R)$ be the submodule of all compactly supported $f \in \mathcal{C}(S_1, R)$. We write $C^0(S_1, R)$, $C_c^0(S_1, R)$ when R is assumed to have the discrete topology.

Definition 3.2. For an R-module M, let $\mathcal{D}_f(S_1, M)$ denote the R-module of maps

$$
\phi: \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}_F^{p,\infty} \to M
$$

that are $U^{p,\infty}$ -invariant and such that $\phi(\cdot, x^{p,\infty})$ is a distribution for each $x^{p,\infty} \in \mathbb{I}_F^{p,\infty}$.

Since $\mathbb{I}_F^{p,\infty}/U^{p,\infty}$ is a discrete topological group, $\mathcal{D}_f(S_1, M)$ naturally identifies with the space of M-valued distributions on $F_{S_1} \times F_{S_2}^* \times \mathbb{I}_F^{p,\infty}/U^{p,\infty}$. So there exists a canonical R-bilinear map

$$
\mathcal{D}_f(S_1, M) \times \mathcal{C}_c^0(S_1, R) \to M, \quad (\phi, f) \mapsto \int f \, d\phi,\tag{3.1}
$$

which is easily seen to induce an isomorphism $\mathcal{D}_f(S_1, M) \cong \text{Hom}_R(\mathcal{C}_c^0(S_1, R), M)$.

For a subgroup $E \subseteq F^*$ and an $R[E]$ -module M, we let E operate on $\mathcal{D}_f(S_1, M)$ and $\mathcal{C}^0_c(S_1,R)$ by $(a\phi)(U,x^{p,\infty}) := a\phi(a^{-1}U,a^{-1}x^{p,\infty})$ and $(a f)(x^{\infty}) := f(a^{-1}x^{\infty})$ for $a \in E, U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$, $x \in \mathbb{I}_F$; thus we have $\int (af) d(a\phi) = a \int f d\phi$ for all $a, f, \phi.$

When $M = V$ is a finite-dimensional vector space over a *p*-adic field, we write $\mathcal{D}_f^b(S_1, V)$ for the subset of $\phi \in \mathcal{D}_f(S_1, V)$ such that ϕ is even a measure on $F_{S_1} \times F_{S_2} \times \mathbb{I}_F^{p,\infty}/U^{p,\infty}.$

Definition 3.3. For a C-vector space V, define $\mathcal{D}(S_1, V)$ to be the set of all maps $\phi : \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}^p \to V$ such that:

- (i) ϕ is invariant under F^{\times} and $U^{p,\infty}$.
- (ii) For $x^p \in \mathbb{I}^p$, $\phi(\cdot, x^p)$ is a distribution of F_p .
- (iii) For all $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$, the map $\phi_U : \mathbb{I} = F_p^{\times} \times \mathbb{I}^p \to V$, $(x_p, x^p) \mapsto \phi(x_p U, x^p)$ is smooth, and rapidly decreasing as $|x| \to \infty$ and $|x| \to 0$.

We will need a variant of this last set: Let $\mathcal{D}'(S_1, V)$ be the set of all maps $\phi \in \mathcal{D}'(S_1, V)$ $\mathcal{D}(S_1, V)$ that are " $(S^1)^s$ -invariant", i.e. such that for all complex primes ∞_j of F and all $\zeta \in S^1 = \{x \in \mathbb{C}^*; |x| = 1\}$, we have

$$
\phi(U, x^{p,\infty_j}, \zeta x_{\infty_j}) = \phi(U, x^{p,\infty_j}, x_{\infty_j}) \text{ for all } x^p = (x^{p,\infty_j}, x_{\infty_j}) \in \mathbb{I}^p.
$$

There is an obvious surjective map

$$
\mathcal{D}(S_1, V) \to \mathcal{D}'(S_1, V), \quad \phi \mapsto \left((U, x) \mapsto \int_{(S^1)^s} \phi(U, x) d\vartheta_r \cdots d\vartheta_{r+s-1} \right)
$$

given by integrating over $(S^1)^s \subseteq (\mathbb{C}^*)^s \hookrightarrow \mathbb{I}_{\infty}$.

Let $F^{\ast} \subseteq F^*$ be a maximal torsion-free subgroup (so that $F/F^{\ast} \cong \mu_F$, the roots of unity of F). If F has at least one real embedding, we specifically choose $F^*{}'$ to be the set F^*_{+} of all totally positive elements of F (i.e. positive with respect to every real embedding of F). For totally complex F , there is no such natural subgroup available, so we just choose F^* freely. We set

$$
E' := F^{*'} \cap O_F^{\times} \subseteq O_F^{\times},
$$

so E' is a torsion-free \mathbb{Z} -module of rank d. E' operates freely and discretely on the space

$$
\mathbb{R}_0^{d+1} := \left\{ (x_0, \dots, x_d) \in \mathbb{R}^{d+1} \mid \sum_{i=0}^d x_i = 0 \right\}
$$

via the embedding

$$
E' \leftrightarrow \mathbb{R}_0^{d+1}
$$

$$
a \mapsto (\log |\sigma_i(a)|)_{i \in S_\infty}
$$

(cf. proof of Dirichlet's unit theorem, e.g. in [\[Neu\]](#page-50-12), Ch. 1), and the quotient \mathbb{R}^{d+1}_0/E' is compact. We choose the orientation on \mathbb{R}^{d+1}_0 induced by the natural orientation on \mathbb{R}^d via the isomorphism $\mathbb{R}^d \cong \mathbb{R}^{d+1}_0$, $(x_1, \ldots, x_d) \mapsto (-\sum_{i=1}^d x_i, x_1, \ldots, x_d)$. So \mathbb{R}^{d+1}_0/E' becomes an oriented compact d-dimensional manifold.

Let \mathcal{G}_p be the Galois group of the maximal abelian extension of F which is unramified outside p and ∞ ; for a C-vector space V, let $Dist(\mathcal{G}_p, V)$ be the set of V-valued distributions of \mathcal{G}_p . Denote by $\varrho : \mathbb{I}_F / F^* \to \mathcal{G}_p$ the projection given by global reciprocity.

3.2 Global measures

Now let $V = \mathbb{C}$, equipped with the trivial F^* -action. We want to construct a commutative diagram

$$
\mathcal{D}(S_1, \mathbb{C}) \xrightarrow{\phi \mapsto \kappa_{\phi}} H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))
$$
\n
$$
\xrightarrow{\phi \mapsto \mu_{\phi}} \widetilde{\text{Dist}}(\mathcal{G}_p, \mathbb{C})
$$
\n(3.2)

First, let R be any topological Hausdorff ring. Let E' denote the closure of E' in U_p . The projection map $pr: \mathbb{I}^{\infty}/U^{p,\infty} \to \mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty})$ induces an isomorphism

$$
\text{pr}^*: C_c(\mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty}), R) \to H^0(E', C_c(\mathbb{I}^{\infty}/U^{p,\infty}, R)),
$$

and the reciprocity map induces a surjective map $\overline{\varrho}: \mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty}) \to \mathcal{G}_p$. Now we can define a map

$$
\varrho^{\sharp}: H_0(F^{*\prime}/E', C_c(\mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty}), R)) \to C(\mathcal{G}_p, R)
$$

$$
[f] \mapsto \left(\overline{\varrho}(x) \mapsto \sum_{\zeta \in F^{*\prime}/E'} f(\zeta x) \text{ for } x \in \mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty})\right).
$$

This is an isomorphism, with inverse map $f \mapsto [(f \circ \overline{g}) \cdot 1_{\mathcal{F}}]$, where $1_{\mathcal{F}}$ is the characteristic function of a fundamental domain $\mathcal F$ of the action of $F^{*'}/E'$ on $\mathbb{I}^{\infty}/U^{\infty}$.

We get a composite map

$$
C(\mathcal{G}_p, R) \xrightarrow{\left(\varrho^{\sharp}\right)^{-1}} H_0\left(F^{*}/E', C_c\left(\mathbb{I}^{\infty}/\left(\overline{E'} \times U^{p,\infty}\right), R\right)\right)
$$

\n
$$
\xrightarrow{\text{pr}^*} H_0\left(F^{*}/E', H^0\left(E', C_c\left(\mathbb{I}^{\infty}/U^{p,\infty}, R\right)\right)\right)
$$

\n
$$
\longrightarrow H_0\left(F^{*}/E', H^0\left(E', \mathcal{C}_c(S_1, R)\right)\right),
$$
\n(3.3)

where the last arrow is induced by the "extension by zero" from $C_c(\mathbb{I}^\infty/U^{p,\infty},R)$ to $\mathcal{C}_c(S_1, R)$.

Now let $\eta \in H_d(E', \mathbb{Z}) \cong \mathbb{Z}$ be the generator that corresponds to the given orientation of \mathbb{R}^{d+1}_0 . This gives us, for every R-module A, a homomorphism

$$
H_0(F^{\ast\prime}/E^\prime,H^0(E^\prime,A)) \xrightarrow{\cap \eta} H_0(F^{\ast\prime}/E^\prime,H_d(E^\prime,A))
$$

Composing this with the edge morphism

$$
H_0(F^{*'}/E', H_d(E', A)) \to H_d(F^{*'}, A)
$$
\n(3.4)

(and setting $A = \mathcal{C}_c(S_1, R)$) gives a map

$$
H_0(F^{*'}/E', H^0(E', C_c(S_1, R))) \to H_d(F^{*'}, C_c(S_1, R))
$$
\n(3.5)

We define

$$
\partial: C(\mathcal{G}_p, R) \to H_d\big(F^{*,\prime}, \mathcal{C}_c(S_1, R)\big)
$$

as the composition of [\(3.3\)](#page-25-1) with this map.

Now, letting M be an R-module equipped with the trivial F^* -action, the bilinear form [\(3.1\)](#page-23-2)

$$
\mathcal{D}_f(S_1, M) \times \mathcal{C}_c(S_1, R) \rightarrow M
$$

$$
(\phi, f) \mapsto \int f \, d\phi
$$

induces a cap product

$$
\cap: H^d(F^{*,} \mathcal{D}_f(S_1, M)) \times H_d(F^{*,} \mathcal{C}_c(S_1, R)) \to H_0(F^{*,} M) = M. \tag{3.6}
$$

Thus for each $\kappa \in H^d(F^*, \mathcal{D}_f(S_1, M))$, we get a distribution μ_{κ} on \mathcal{G}_p by defining

$$
\int_{\mathcal{G}_p} f(\gamma) \mu_\kappa(d\gamma) := \kappa \cap \partial(f) \tag{3.7}
$$

for all continuous maps $f: \mathcal{G}_p \to R$.

Now let $M = V$ be a finite-dimensional vector space over a p-adic field K, and let $\kappa \in H^d(F^{*'} , \mathcal{D}^b_f(S_1, V))$. We identify κ with its image in $H^d(F^{*'} , \mathcal{D}_f(S_1, V))$; then it is easily seen that μ_{κ} is also a measure, i.e. we have a map

$$
H^d(F^{*t}, \mathcal{D}_f^b(S_1, V)) \to \text{Dist}^b(\mathcal{G}_p, V). \tag{3.8}
$$

Definition 3.4. The *p*-adic cyclotomic character \mathcal{N} : $\mathcal{G}_p \to \mathbb{Z}_p^*$ is defined by requiring $\gamma \zeta = \zeta^{\mathcal{N}(\gamma)}$ for $\gamma \in \mathcal{G}_p$ and all p-power roots of unity ζ . We put $\mathcal{N}(\gamma)^s :=$ $\exp_p(s \log_p(\mathcal{N}(\gamma)))$ for all $s \in \mathbb{Z}_p$.

Definition 3.5. Let K be a p-adic field, V a finite-dimensional K -vector space. We define the *p*-adic L-function of $\kappa \in H^d(F^*, \mathcal{D}_f^b(S_1, V))$ as

$$
L_p(s,\kappa) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\kappa}(d\gamma)
$$

for all $s \in \mathbb{Z}_p$.

Remark 3.6. Let $\Sigma := {\pm 1}^r$, where r is the number of real embeddings of F. The group isomorphism $\mathbb{Z}/2\mathbb{Z} \cong {\pm 1}$, $\varepsilon \mapsto (-1)^{\varepsilon}$, induces a pairing

$$
\langle \cdot, \cdot \rangle : \Sigma \to \{ \pm 1 \}, \quad \langle ((-1)^{\varepsilon_i})_i, ((-1)^{\varepsilon_i'})_i \rangle := (-1)^{\sum_i \varepsilon_i \varepsilon_i'}.
$$

For a field k of characteristic zero, a $k[\Sigma]$ -module V and $\mu = (\mu_0, \dots, \mu_{r-1}) \in \Sigma$, we put $V_{\underline{\mu}} := \{ v \in V \mid \langle \underline{\mu}, \underline{\nu} \rangle v = \underline{\nu}v \ \forall \underline{\nu} \in \Sigma \},$ so that we have $V = \bigoplus_{\underline{\mu} \in \Sigma} V_{\underline{\mu}}$. We write v_{μ} for the projection of $v \in V$ to V_{μ} , and $v_{+} := v_{(1,...,1)}$.

We identify Σ with $F^*/F^{*\prime}$ via the isomorphism $\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^*/\mathbb{R}^*_+ \cong F^*/F^{*\prime}$. Then for each F^* -module M , Σ acts on $H^d(F^{*}, \mathcal{D}_f(S_1, M))$ and on $H^d(F^{*}, \mathcal{D}_f^b(S_1, M))$. The exact sequence $\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^*/\mathbb{R}^*_+ = \mathbb{I}_{\infty}/\mathbb{I}_{\infty}^0 \to \mathcal{G}_{p} \to \mathcal{G}_{p}^+ \to 0$ of class field theory (where \mathbb{I}_{∞}^{0} is the maximal connected subgroup of \mathbb{I}_{∞}) yields an action of Σ on \mathcal{G}_p . We easily check that [\(3.8\)](#page-26-0) is Σ -equivariant, and that the map $\gamma \mapsto \mathcal{N}(\gamma)^s$ factors over $\mathcal{G}_p \to \mathcal{G}_p^+$. Therefore we have $L_p(s, \kappa) = L_p(s, \kappa_+)$.

For $\phi \in \mathcal{D}(S_1, V)$ and $f \in C^0(\mathbb{I}/F^*, \mathbb{C})$, let

$$
\int_{\mathbb{I}/F^*} f(x)\phi(d^{\times}x_p, x^p) d^{\times}x^p := [U_p:U] \int_{\mathbb{I}/F^*} f(x)\phi_U(x) d^{\times}x,
$$

where we choose an open set $U \subseteq U_p$ such that $f(x_p u, x^p) = f(x_p, x^p)$ for all $(x_p, x^p) \in \mathbb{I}$ and $u \in U$; such a U exists by lemma [3.7](#page-27-0) below.

Since this integral is additive in f, there exists a unique V-valued distribution μ_{ϕ} on \mathcal{G}_p such that

$$
\int_{\mathcal{G}_p} f \, d\mu_{\phi} = \int_{\mathbb{I}/F^*} f(\varrho(x)) \phi(d^{\times} x_p, x^p) \, d^{\times} x^p \tag{3.9}
$$

for all functions $f \in C^0(\mathcal{G}_p, V)$.

Lemma 3.7. Let $F : \mathbb{I}/F^* \to X$ be a locally constant map to a set X. Then there exists an open subgroup $U \subseteq \mathbb{I}$ such that f factors over \mathbb{I}/F^*U .

Proof. (cf. [\[Sp\]](#page-51-0), lemma 4.20)

 $\mathbb{I}_{\infty} = \prod_{v | \infty} F_v$ is connected, thus f factors over $\overline{f} : \mathbb{I}/F^* \mathbb{I}_{\infty} \to X$. Since $\mathbb{I}/F^* \mathbb{I}_{\infty}$ is profinite, f further factors over a subgroup $U' \subseteq \mathbb{I}^{\infty}$ of finite index, which is \Box open.

Let $U^0_{\infty} := \prod_{v \in S^0_{\infty}} \mathbb{R}^*_+$; the isomorphisms U^0_{∞} $\mathcal{L}^0_{\infty} \cong \mathbb{R}^d$, $(r_v)_v \mapsto (\log r_v)_v$, and $\mathbb{R}^d \cong$ \mathbb{R}^{d+1}_0 give it the structure of a *d*-dimensional oriented manifold (with the natural orientation). It has the d-form $d^{\times}r_1 \cdot \ldots \cdot d^{\times}r_d$, where (by slight abuse of notation) we choose $d^{\times}r_i$ on F_{∞_i} corresponding to the Haar measure $d^{\times}x_i$ resp. $d^{\times}r_i$ on $\mathbb{R}^*_+ \subseteq F^*_{\infty_i}.$

E' operates on U^0_{∞} via $a \mapsto (|\sigma_i(a)|)_{i \in S^0_{\infty}}$, making the isomorphism U^0_{∞} $\mathbb{R}^{d+1}_{\infty}$ E' -equivariant.

For $\phi \in \mathcal{D}'(S_1, V)$, set

$$
\int_0^\infty \phi \, d^\times r_0 \colon \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}^{p,\infty_0} \to \mathbb{C}
$$

$$
(U, x^{p,\infty_0}) \mapsto \int_0^\infty \phi(U, r_0, x^{p,\infty_0}) \, d^\times r_0,
$$

where we let $r_0 \in F_{\infty_0}$ run through the positive real line \mathbb{R}^*_+ in F_{∞_0} . Composing this with the projection $\mathcal{D}(S_1, V) \to \mathcal{D}'(S_1, V)$ gives us a map

$$
\mathcal{D}(S_1, V) \to H^0\big(F^{*\prime}, \mathcal{D}_f(S_1, C^{\infty}(U^0_{\infty}, V))\big),
$$

\n
$$
\phi \mapsto \int_{(S^1)^s} \left(\int_0^{\infty} \phi \, d^{\times} r_0\right) d\vartheta_r \, d\vartheta_{r+1} \dots d\vartheta_{r+s-1}
$$
\n(3.10)

(where $C^{\infty}(U_{\infty}^{0}, V)$ denotes the space of smooth V-valued functions on U_{∞}^{0}), since one easily checks that $\int_0^\infty \phi \, d^\times r_0$ is $F^{*'}$ -invariant.

Define the complex $C^{\bullet} := \mathcal{D}_f(S_1, \Omega^{\bullet}(U^0_{\infty}, V))$. By the Poincare lemma, this is a resolution of $\mathcal{D}_f(S_1, V)$. We now define the map $\phi \mapsto \kappa_{\phi}$ as the composition of [\(3.10\)](#page-28-0) with the composition

$$
H^{0}(F^{*}, \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, V))) \to H^{0}(F^{*}, C^{d}) \to H^{d}(F^{*}, \mathcal{D}_{f}(S_{1}, V)), \tag{3.11}
$$

where the first map is induced by

$$
C^{\infty}(U_{\infty}^{0}, V) \to \Omega^{d}(U_{\infty}^{0}, V), \quad f \mapsto f(r_{1}, \dots, r_{d})d^{\times}r_{1} \cdot \dots \cdot d^{\times}r_{d}, \tag{3.12}
$$

and the second is an edge morphism in the spectral sequence

$$
H^{q}(F^{*}, C^{p}) \Rightarrow H^{p+q}(F^{*}, \mathcal{D}_{f}(S_{1}, V)).
$$
\n(3.13)

Specializing to $V = \mathbb{C}$, we now have:

Proposition 3.8. The diagram [\(3.2\)](#page-25-2) commutes, i.e., for each $\phi \in \mathcal{D}(S_1, \mathbb{C})$, we have

$$
\mu_{\phi} = \mu_{\kappa_{\phi}}.
$$

Proof. (cf. $[Sp]$, prop. 4.21) We define a pairing

$$
\langle , \rangle : \mathcal{D}(S_1, \mathbb{C}) \times C^0(\mathcal{G}_p, \mathbb{C}) \to \mathbb{C}
$$

as the composite of $(3.10) \times (3.3)$ $(3.10) \times (3.3)$ with

$$
H^{0}(F^{*}, \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*}/E', H^{0}(E', C_{c}^{0}(S_{1}, \mathbb{C})))
$$

$$
\xrightarrow{\cap} H_{0}(F^{*}/E', H^{0}(E', C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \to H_{0}(F^{*}/E', \mathbb{C}) \cong \mathbb{C}, \quad (3.14)
$$

where \cap is the cap product induced by [\(3.1\)](#page-23-2), and the second map is induced by

$$
H^{0}(E', \mathcal{C}^{\infty}(U_{\infty}^{0}, \mathbb{C})) \to \mathbb{C}, \quad f \mapsto \int_{U_{\infty}^{0}/E'} f(r_{1}, \dots, r_{d}) d^{\times} r_{1} \dots d^{\times} r_{d}. \tag{3.15}
$$

An easy computation shows that

$$
\langle \phi, f \rangle = \int_{\mathcal{G}_p} f(\gamma) \mu_{\phi}(d\gamma)
$$
 for all $f \in C^0(\mathcal{G}_p, \mathbb{C}).$

So we need to show that $\kappa_{\phi} \cap \partial(f) = \langle \phi, f \rangle$; i.e. it suffices to show that the diagram

$$
H^{0}(F^{*}, \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*}/E', H^{0}(E', C_{c}^{0}(S_{1}, \mathbb{C})))
$$
\n(3.16)\n
\n
$$
H^{d}(F^{*}, \mathcal{D}_{f}(S_{1}, \mathbb{C})) \times H_{d}(F^{*}, C_{c}^{0}(S_{1}, \mathbb{C}))
$$
\n(3.17)

commutes. For this consider the commutative diagram

$$
H^{0}(F^{*'}; \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*'}/E', H^{0}(E', C_{c}^{0}(S_{1}, \mathbb{C}))) \xrightarrow{\cap} H_{0}(F^{*'}/E', H^{0}(E', C^{\infty}(U_{\infty}^{0}, \mathbb{C})))
$$
\n
$$
\downarrow id \times \eta
$$
\n
$$
H^{0}(F^{*'}; \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*'}/E', H_{d}(E', C_{c}^{0}(S_{1}, \mathbb{C}))) \xrightarrow{\cap} H_{0}(F^{*'}/E', H_{d}(E', C^{\infty}(U_{\infty}^{0}, \mathbb{C})))
$$
\n
$$
\downarrow 3 \times id
$$
\n
$$
H^{0}(F^{*'}; \mathcal{D}_{f}(S_{1}, \Omega^{d}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*'}/E', H_{d}(E', C_{c}^{0}(S_{1}, \mathbb{C}))) \xrightarrow{\cap} H_{0}(F^{*'}/E', H_{d}(E', \Omega^{d}(U_{\infty}^{0})))
$$
\n
$$
\downarrow id \times 5
$$
\n
$$
H^{0}(F^{*'}; \mathcal{D}_{f}(S_{1}, \Omega^{d}(U_{\infty}^{0}, \mathbb{C}))) \times H_{d}(F^{*'}; \mathcal{C}_{c}^{0}(S_{1}, \mathbb{C}))) \xrightarrow{\cap} H_{d}(F^{*'}; \Omega^{d}(U_{\infty}^{0}))
$$
\n
$$
\downarrow 8
$$
\n
$$
H^{d}(F^{*'}; \mathcal{D}_{f}(S_{1}, \mathbb{C})) \times H_{d}(F^{*'}; \mathcal{C}_{c}^{0}(S_{1}, \mathbb{C}))) \xrightarrow{\cap} H_{0}(F^{*'}; \mathbb{C}) = \mathbb{C}
$$

where the horizontal maps are cap-products induced by the pairing (3.1) , η denotes cap-product with η , 3 and 4 are induced by [\(3.12\)](#page-28-3), 5 and 6 by the edge morphism [\(3.4\)](#page-26-2), and 7 and 8 by an edge morphism of [\(3.13\)](#page-28-4) and a homological spectral sequence for the resolution $0 \to \mathbb{C} \to \Omega^{\bullet}(U^0_{\infty})$, respectively.

Since the composition of the left-hand-side vertical maps is $(3.11) \times (3.5)$ $(3.11) \times (3.5)$, we need to show that the composition of the right-hand-side vertical maps is induced by [\(3.15\)](#page-28-5). But this follows easily from the commutativity of the diagram

$$
H^{0}(E', C^{\infty}(U_{\infty}^{0}, \mathbb{C})) \stackrel{(3.12)_{*}}{\longrightarrow} H^{0}(E', \Omega^{d}(U_{\infty}^{0}, \mathbb{C})) \longrightarrow H^{d}(E', \mathbb{C})
$$

\n
$$
\downarrow \cap \eta \qquad \qquad \downarrow \cap \eta \qquad \qquad \downarrow \cap \eta
$$

\n
$$
H_{d}(E', C^{\infty}(U_{\infty}^{0}, \mathbb{C})) \stackrel{(3.12)_{*}}{\longrightarrow} H_{d}(E', \Omega^{d}(U_{\infty}^{0}, \mathbb{C})) \longrightarrow H_{0}(E', \mathbb{C})
$$

since for a *d*-form on the *d*-dimensional oriented manifold $M := \mathbb{R}^{d+1}_0 / E' \cong U^0_{\infty} / E'$, integration over M corresponds to taking the cap product with the fundamental class η of M under the canonical isomorphism $H_{dR}^d(M) \cong H_{sing}^d(M) = H^d(E', \mathbb{C}).$ \Box

3.3 Integral cohomology classes

Definition 3.9. For $\kappa \in H^d(F^*, \mathcal{D}_f(S_1, \mathbb{C}))$ and a subring R of \mathbb{C} , we denote the image of

$$
H_d(F^{*\prime}, \mathcal{C}_c^0(S_1, R)) \to H_0(F^{*\prime}, \mathbb{C}) = \mathbb{C}, \quad x \mapsto \kappa \cap x
$$

by $L_{\kappa,R}$. ("Module of periods of R ")

Lemma 3.10. Let $R \subseteq \overline{Q}$ be a Dedekind ring. (a)For a subring $R' \supseteq R$ of \mathbb{C} , we have $L_{\kappa,R'} = R'L_{\kappa,R}$. (b) If $\kappa \neq 0$, then $L_{\kappa,R} \neq 0$.

Proof. (cf. [\[Sp\]](#page-51-0), lemma 4.15) (a) We have $\mathcal{C}_c^0(S_1, R') = \mathcal{C}_c^0(S_1, R) \otimes R'$, and since R' is a flat R-module, we have $H_d(F^{*}, C_c^0(S_1, R')) = H_d(F^{*}, C_c^0(S_1, R)) \otimes R'.$

(b) The pairing [\(3.1\)](#page-23-2), and thus the cap-product [\(3.6\)](#page-26-3), is non-degenerate for $M =$ $R = \mathbb{C}$. Thus $L_{\kappa,\mathbb{C}} \neq 0$, and (a) implies $L_{\kappa,R} \neq 0$. \Box

Definition 3.11. A nonzero cohomology class $\kappa \in H^d(F^*, \mathcal{D}_f(S_1, \mathbb{C}))$ is called integral if κ lies in the image of $H^d(F^*, \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \to H^d(F^{*,} \mathcal{D}_f(S_1, \mathbb{C}))$ for some Dedekind ring $R \subset \overline{O}$. If, in addition, there exists a torsion-free Rsubmodule $M \subseteq H^d(F^{\ast \prime}, \mathcal{D}_f(S_1, R))$ of rank ≤ 1 (i.e. M can be embedded into R, by the classification of finitely generated R-modules) such that κ lies in the image of $M \otimes_R \mathbb{C} \to H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))$, then κ is *integral of rank* ≤ 1 .

Proposition 3.12. Let $\kappa \in H^d(F^*, \mathcal{D}_f(S_1, \mathbb{C}))$. The following conditions are equivalent:

- (i) κ is integral (resp. integral of rank ≤ 1).
- (ii) There exists a Dedekind ring $R \subseteq \overline{\mathcal{O}}$ such that $L_{\kappa,R}$ is a finitely generated R-module (resp. a torsion-free R-module of rank ≤ 1).
- (iii) There exists a Dedekind ring $R \subseteq \overline{\mathcal{O}}$, a finitely generated R-module M (resp. a torsion-free R-module of rank \leq 1) and an R-linear map $f : M \to \mathbb{C}$ such that κ lies in the image of the induced map $f_* : H^d(F^{*\prime}, \mathcal{D}_f(S_1, M)) \to$ $H^d(F^*, \mathcal{D}_f(S_1, \mathbb{C}))$.

Proof. (cf. $[Sp]$, prop. 4.17)

(i) \Rightarrow (ii): Let R be such that κ lies in the image of $H^d(F^*, \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \rightarrow$ $H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))$. Then $\kappa = \sum_{i=1}^n x_i \kappa_i$ with $x_i \in \mathbb{C}$, $\kappa_i \in \text{Im}(H^d(F^{*\prime}, \mathcal{D}_f(S_1, R)))$ (with $n \leq 1$ if κ has rank ≤ 1) and thus $L_{\kappa,R} \subseteq \sum_{i=1}^n x_i L_{\kappa_i,R} \subseteq \sum_{i=1}^n x_i R$.

 $(ii) \Rightarrow (iii)$: We have a commutative diagram

$$
H^d(F^*, \mathcal{D}_f(S_1, L_{\kappa,R})) \longrightarrow \text{Hom}_R(H_d(F^{*,\mathcal{C}_c^0(S_1, R)), L_{\kappa,R})
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
H^d(F^{*,\mathcal{D}_f(S_1, \mathbb{C})) \longrightarrow \text{Hom}_R(H_d(F^{*,\mathcal{C}_c^0(S_1, R)), \mathbb{C})
$$
\n
$$
(3.17)
$$

where the horizontal maps are given by the cap-product and the vertical ones are induced by the inclusion $L_{\kappa,R} \hookrightarrow \mathbb{C}$. By the universal coefficient theorem (using the isomorphism $\mathcal{D}_f(S_1, M) \cong \text{Hom}_R(\mathcal{C}_c^0(S_1, R), M)$, the lower horizontal map is an isomorphism, and the kernel and cokernel of the upper horizontal map are Rtorsion; since the map $\kappa \cap \cdot$ lies in $\text{Hom}_R(H_d(F^*, C_c^0(S_1, R)), L_{\kappa,R})$, some multiple $a \cdot \kappa$, $a \in R^*$, must have a preimage in $H^d(F^*, \mathcal{D}_f(S_1, L_{\kappa,R}))$. Thus we can choose $M = L_{\kappa,R}$ and $f: L_{\kappa,R} \to \mathbb{C}, x \mapsto a^{-1}x$ in (iii).

(iii) \Rightarrow (i): Since $f(M)$ is a torsion-free finitely generated module over a Dedekind ring, it can be embedded into a free module $R^n \hookrightarrow \mathbb{C}$ (with $n \leq 1$ if M has rank ≤ 1). Then f factorizes over $M \to f(M) \hookrightarrow R^n \hookrightarrow \mathbb{C}$, and thus f_* factorizes over $H^d(F^*, \mathcal{D}_f(S_1, R^n))$. Thus, we can assume that $M = R^n$.

Now let $x_1, \ldots, x_n \in \mathbb{C}$ be the images of the standard basis of M under f. Then we have

$$
\kappa \in \text{Im}(f_*) = \sum_{i=1}^n x_i \text{Im}\left(H^d(F^{*}, \mathcal{D}_f(S_1, R)) \to H^d(F^{*}, \mathcal{D}_f(S_1, \mathbb{C}))\right)
$$

$$
\subseteq \text{Im}\left(H^d(F^{*}, \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \to H^d(F^{*}, \mathcal{D}_f(S_1, \mathbb{C}))\right).
$$

 \Box

Corollary 3.13. Let $\kappa \in H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))$ be integral and $R \subseteq \overline{\mathcal{O}}$ be as in proposition [3.9.](#page-30-1) Then (a) μ_{κ} is a p-adic measure, and

(b) the map $H^d(F^{*\prime}, \mathcal{D}_f(S_1, L_{\kappa,R})) \otimes \overline{\mathbb{Q}} \to \mathcal{H}^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))$ is injective and κ lies in its image.

Proof. (cf. [\[Sp\]](#page-51-0), cor. 4.18.)

The image of $C^0(\mathcal{G}_p, \overline{\mathcal{O}}) \to \mathbb{C}$, $f \mapsto \int f \mu_{\kappa} = \kappa \cap \partial(f)$ is contained in $L_{\kappa,\overline{\mathcal{O}}}$ since $\partial(f) \in H_d(F^*, C_c^0(\underline{S}_1, \overline{\mathcal{O}}))$. Condition (iii) in the proposition implies that $L_{\kappa,\overline{\mathcal{O}}}$ is a finitely generated $\overline{\mathcal{O}}$ -module, from which (a) follows.

(b): In the proof of (ii) \Rightarrow (iii) above, the right-hand vertical map in [\(3.17\)](#page-30-2) is injective, thus the left-hand map tensored with \overline{Q} also is (and κ lies in its image), since the horizontal maps are isomorphisms after tensoring with \overline{Q} . \Box

Remark 3.14. Let κ be integral with Dedekind ring R as above. By (b) of the corollary, we can view κ as an element of $H^d(F^*, \mathcal{D}_f(S_1, L_{\kappa,R})) \otimes \overline{\mathbb{Q}}$. Put $V_{\kappa} :=$ $L_{\kappa,R} \otimes_R \mathbb{C}_p$; let $\overline{\kappa}$ be the image of κ under the composition

$$
H^d(F^{*'} , \mathcal{D}_f(S_1, L_{\kappa,R})) \otimes_R \overline{\mathbb{Q}} \to H^d(F^{*'} , \mathcal{D}_f(S_1, L_{\kappa,R})) \otimes_R \mathbb{C}_p \to H^d(F^{*'} , \mathcal{D}_f^b(S_1, V_{\kappa})),
$$

where the second map is induced by $\mathcal{D}_f(S_1, L_{\kappa,R}) \otimes_R \mathbb{C}_p \to \mathcal{D}_f^b(S_1, V_{\kappa})$. By lemma [3.10](#page-30-3) (a), $\bar{\kappa}$ does not depend on the choice of R.

Since μ_{κ} is a *p*-adic measure, $\mu_{\overline{k}}$ allows integration of all continuous functions $f \in C(\mathcal{G}_p, \mathbb{C}_p)$, and by abuse of notation, we write $L_p(s, \kappa) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\kappa}(d\gamma) :=$ $L_p(s,\overline{\kappa})$ (cf. remark [3.6\)](#page-26-4). So $L_p(s,\kappa)$ has values in the finite-dimensional \mathbb{C}_p -vector space V_{κ} .

4 p-adic L-functions of automorphic forms

We keep the notations from chapter [3;](#page-23-0) so F is again a number field with r real embeddings and s pairs of complex embeddings.

For an ideal $0 \neq \mathfrak{m} \subseteq \mathcal{O}_F$, we let $K_0(\mathfrak{m})_v \subseteq G(\mathcal{O}_{F_v})$ be the subgroup of matrices congruent to an upper triangular matrix modulo \mathfrak{m} , and we set $K_0(\mathfrak{m}) :=$ $\prod_{v \nmid \infty} K_0(\mathfrak{m})_v, K_0(\mathfrak{m})^S := \prod_{v \nmid \infty, v \notin S} K_0(\mathfrak{m})_v$ for a finite set of primes S. For each $\mathfrak{p}|p$, let $q_p = N(p)$ denote the number of elements of the residue class field of F_p .

We denote by $|\cdot|_{\mathbb{C}}$ the square of the usual absolute value on \mathbb{C} , i.e. $|z|_{\mathbb{C}} = z\overline{z}$ for all $z \in \mathbb{C}$, and write $|\cdot|_{\mathbb{R}}$ for the usual absolute value on \mathbb{R} in context.

Definition 4.1. Let $\mathfrak{A}_0(G, \underline{2}, \chi_Z)$ denote the set of all *cuspidal automorphic repre*sentations $\pi = \otimes_v \pi_v$ of $G(\mathbb{A}_F)$ with central character χ_Z such that $\pi_v \cong \sigma(|\cdot|_{F_v}^{1/2}, |\cdot|_{F_v}^{-1/2})$ at all archimedian primes v. Here we follow the notation of [\[JL\]](#page-50-0); so $\sigma(|\cdot|_{F_v}^{1/2}, |\cdot|_{F_v}^{-1/2})$ is the discrete series of weight 2, $\mathcal{D}(2)$, if v is real, and is isomorphic to the principal series representation $\pi(\mu_1, \mu_2)$ with $\mu_1(z) = z^{1/2} \overline{z}^{-1/2}$, $\mu_2(z) = z^{-1/2} \overline{z}^{1/2}$ if v is complex (cf. section 4.5 below).

We will only consider automorphic representations that are *p*-ordinary, i.e π_{p} is ordinary (in the sense of chapter [2\)](#page-5-0) for every $p|p$.

Therefore, for each $\mathfrak{p}|p$ we fix two non-zero elements $\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2} \in \mathcal{O} \subseteq \mathbb{C}$ such that $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ is an ordinary, unitary representation. By the classification of unitary representations (see e.g. [\[Ge\]](#page-50-7), Thm. 4.27), a spherical representation $\pi_{\alpha_{p,1},\alpha_{p,2}} =$ $\pi(\chi_1, \chi_2)$ is unitary if and only if either χ_1, χ_2 are both unitary characters (i.e. $|\alpha_{\mathfrak{p},1}| = |\alpha_{\mathfrak{p},2}| = \sqrt{q_{\mathfrak{p}}}\rangle^{\text{iii}}$, or $\chi_{1,2} = \chi_0 |\cdot|^{ \pm s}$ with χ_0 unitary and $-\frac{1}{2} < s < \frac{1}{2}$. A special representation $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}} = \pi(\chi_1,\chi_2)$ is unitary if and only if the central character $\chi_1\chi_2$ is unitary. In all three cases, we have thus $\max\{|\alpha_{\mathfrak{p},1}|, |\alpha_{\mathfrak{p},2}|\} \geq \sqrt{q_{\mathfrak{p}}}$. Without loss of generality, we will assume the $\alpha_{\mathfrak{p},i}$ to be ordered such that $|\alpha_{\mathfrak{p},1}| \leq |\alpha_{\mathfrak{p},2}|$ for all $\mathfrak{p}|p.$

As in chapter [2,](#page-5-0) we define $a_{\mathfrak{p}} := \alpha_{\mathfrak{p},1} + \alpha_{\mathfrak{p},2}, \nu_{\mathfrak{p}} := \alpha_{\mathfrak{p},1} \alpha_{\mathfrak{p},2}/q_{\mathfrak{p}}.$

Let $\underline{\alpha_i} := (\alpha_{\mathfrak{p},i}, \mathfrak{p}|p)$, for $i = 1, 2$. We denote by $\mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$ the subset of all $\pi \in \mathfrak{A}_0(G, 2, \chi_Z)$ such that $\pi_{\mathfrak{p}} = \pi_{\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2}}$ for all $\mathfrak{p}|p$.

Let $S_1 \subseteq S_p$ be the set of places such that π_p is the Steinberg representation (i.e. $\alpha_{\mathfrak{p},1} = \nu_{\mathfrak{p}} = 1, \, \alpha_{\mathfrak{p},2} = q$ ^{iv}

For later use we note that $\pi^{\infty} = \otimes_{v \nmid \infty} \pi_v$ is known to be defined over a finite extension of \mathbb{Q} , the smallest such field being the field of definition of π (cf. [\[Sp\]](#page-51-0)).

ⁱⁱⁱTo avoid confusion: By $|\alpha_{\mathfrak{p},i}|$ we always mean the archimedian absolute value of $\alpha_{\mathfrak{p},i} \in \mathbb{C}$; whereas in the context of the *p*-adic characters χ_i , $|\cdot|$ always means the *p*-adic absolute value, unless otherwise noted.

ivNote that all $\mathfrak{p}|p$ with $\alpha_{\mathfrak{p},1} = \nu_{\mathfrak{p}} \in \overline{\mathcal{O}}^*$, i.e. $\alpha_{\mathfrak{p},2} = q$, already lie in S_1 , since $|\alpha_{\mathfrak{p},2}| < q$ in the spherical case. $L_p(s, \pi)$ should have an exceptional zero for each $\mathfrak{p} \in S_1$, according to the exceptional zero conjecture.

4.1 Upper half-space

Let $\mathcal{H}_2 := \{z \in \mathbb{C} | \text{Im}(z) > 0\} \cong \mathbb{R} \times \mathbb{R}^*$ be the complex upper half-plane, and let $\mathcal{H}_3 := \mathbb{C} \times \mathbb{R}_+^*$ be the 3-dimensional upper half-space. Each \mathcal{H}_m is a differentiable manifold of dimension *i*. If we write $x = (u, t) \in \mathcal{H}_m$ with $t \in \mathbb{R}^*_+$, *u* in \mathbb{R} or \mathbb{C} , respectively, it has a Riemannian metric $ds^2 = \frac{dt^2 + du \, d\overline{u}}{t}$ $\frac{du \, du}{dt}$, which induces a hyperbolic geometry on \mathcal{H}_m , i.e. the geodesic lines on \mathcal{H}_m are given by "vertical" lines $\{u\}\times\mathbb{R}_+^*$ and half-circles with center in the line or plane $t = 0$.

We have the decomposition $GL_2(\mathbb{C}) = B'_{\mathbb{C}} \cdot Z(\mathbb{C}) \cdot K_{\mathbb{C}}$, where $B'_{\mathbb{C}}$ is the subgroup we have the decomposition $\text{GL}_2(\mathbb{C}) = D_{\mathbb{C}} \cdot \mathbb{Z}(\mathbb{C}) \cdot \mathbb{R}_{\mathbb{C}}$, where $D_{\mathbb{C}}$
of matrices $\binom{\mathbb{R}_+^*}{0}$, Z is the center, and $K_{\mathbb{C}} = \text{SU}(2)$ (cf. [By] $\binom{k_{+}^{*}C}{0}$, Z is the center, and $K_{\mathbb{C}} = \text{SU}(2)$ (cf. [\[By\]](#page-50-2), Cor. 43); and analogously $\widetilde{GL}_2(\mathbb{R})^+ = B'_{\mathbb{R}} \cdot Z(\mathbb{R}) \cdot K_{\mathbb{R}}$ with $B'_{\mathbb{R}} = \{(\begin{smallmatrix} y & x \\ 0 & 1 \end{smallmatrix}) | x \in \mathbb{R}, y \in \mathbb{R}_+^*\}$ and $K_{\mathbb{R}} = SO(2)$.

We can identify $B'_\mathbb{C}$ with \mathcal{H}_3 via $\left(\begin{smallmatrix} t & z \\ 0 & 1 \end{smallmatrix}\right) \mapsto (z, t)$, and $B'_\mathbb{R}$ with \mathcal{H}_2 via $\left(\begin{smallmatrix} y & x \\ 0 & 1 \end{smallmatrix}\right) \mapsto x+iy$. This gives us natural projections

$$
\pi_{\mathbb{R}} : GL_2(\mathbb{R})^+ \twoheadrightarrow GL_2(\mathbb{R})^+ / \mathbb{R}^* SO(2) \cong \mathcal{H}_2
$$

and

$$
\pi_{\mathbb{C}} : GL_2(\mathbb{C}) \to GL_2(\mathbb{C})/\mathbb{C}^* \operatorname{SU}(2) \cong \mathcal{H}_3.
$$

The corresponding left actions on cosets are invariant under the Riemannian metrics on \mathcal{H}_m , and can be given explicitly as follows:

 $GL_2(\mathbb{R})^+$ operates on $\mathcal{H}_2 \subseteq \mathbb{C}$ via Möbius transformations,

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix} (z) := \frac{az+b}{cz+d},
$$

and $GL_2(\mathbb{C})$ operates on \mathcal{H}_3 by

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix} (z,t) := \left(\frac{(az+b)(\overline{cz+d}) + a\overline{c}t^2}{|cz+d|^2 + |ct|^2}, \frac{|ad-bc|t}{|cz+d|^2 + |ct|^2} \right)
$$

 $([By], (3.12))$ $([By], (3.12))$ $([By], (3.12))$; specifically, we have

$$
\begin{pmatrix} t & z \\ 0 & 1 \end{pmatrix} (0,1) = (z,t) \quad \text{for } (z,t) \in \mathcal{H}_3.
$$

A differential form ω on \mathcal{H}_m is called *left-invariant* if it is invariant under the pullback L_g^* of left multiplication $L_g: x \mapsto gx$ on \mathcal{H}_m , for all $g \in G$. Following [\[By\]](#page-50-2), eqs. (4.20), (4.24), we choose the following basis of left invariant differential 1-forms on \mathcal{H}_3 :

$$
\beta_0 := -\frac{dz}{t}, \quad \beta_1 := \frac{dt}{t}, \quad \beta_2 := \frac{d\overline{z}}{t},
$$

and on \mathcal{H}_2 (writing $z = x + iy \in \mathcal{H}_2$):

$$
\beta_1:=\frac{dz}{y},\quad \beta_2:=-\frac{d\overline{z}}{y}.
$$

We note that a form $f_1\beta_1 + f_2\beta_2$ is harmonic on \mathcal{H}_2 if and only if f_1/y and f_2/y are holomorphic functions in z ([\[By\]](#page-50-2), lemma 60).

Let $k \in {\mathbb{R}, \mathbb{C}}$. The Jacobian $J(g, (0, 1))$ of left multiplication by g in $(0, 1) \in \mathcal{H}_m$ with respect to the basis $(\beta_i)_i$ gives rise to a representation

$$
\varrho = \varrho_k : Z(k) \cdot K_k \to \mathrm{SL}_m(\mathbb{C})
$$

with $\varrho|_{Z(k)}$ trivial, which on K_k is explicitly given by

$$
\varrho_{\mathbb{C}}\begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} = \begin{pmatrix} u^2 & 2uv & v^2 \\ -u\overline{v} & u\overline{u} - v\overline{v} & v\overline{u} \\ \overline{v}^2 & -2\overline{uv} & \overline{u}^2 \end{pmatrix},
$$

resp.

$$
\varrho_{\mathbb{R}}\begin{pmatrix}\cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta)\end{pmatrix} = \begin{pmatrix}e^{2i\vartheta} & 0 \\ 0 & e^{-2i\vartheta}\end{pmatrix}
$$

([\[By\]](#page-50-2), (4.27), (4.21)). In the real case, we will only consider harmonic forms on \mathcal{H}_2 that are multiples of β_1 , thus we sometimes identify $\varrho_{\mathbb{R}}$ with its restriction $\varrho_{\mathbb{R}}^{(1)}$ $\binom{1}{k}$ to the first basis vector β_1 ,

$$
\varrho_{\mathbb{R}}^{(1)} : SO(2) \to S^1 \subseteq \mathbb{C}^*, \quad \kappa_{\vartheta} = \begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} \mapsto e^{2i\vartheta}.
$$

For each i, let ω_i be the left-invariant differential 1-form on $GL_2(k)$ which coincides with the pullback $(\pi_{\mathbb{C}})^*\beta_i$ at the identity. Write $\underline{\omega}$ (resp. β) for the column vector of the ω_i (resp. β_i). Then we have the following lemma from [\[By\]](#page-50-2):

Lemma 4.2. For each i, the differential ω_i on G induces β_i on \mathcal{H}_m , by restriction to the subgroup $B'_k \cong \mathcal{H}_m$. For a function $\phi : G \to \mathbb{C}^m$, the form $\phi \cdot \underline{\omega}$ (with \mathbb{C}^m considered as a row vector, so \cdot is the scalar product of vectors) induces $f \cdot \beta$, where $f: \mathcal{H}_m \to \mathbb{C}^m$ is given by

$$
f(z,t) := \phi\left(\begin{pmatrix} t & z \\ 0 & 1 \end{pmatrix}\right).
$$

(See [\[By\]](#page-50-2), Lemma 57.)

To consider the infinite primes of F all at once, we define

$$
\mathcal{H}_{\infty}:=\prod_{i=0}^d\mathcal{H}_{m_i}=\prod_{i=0}^{r-1}\mathcal{H}_2\times\prod_{i=r}^d\mathcal{H}_3
$$

(where $m_i = 2$ if σ_i is a real embedding, and $= 3$ if σ_i is complex), and let $\mathcal{H}_{\infty}^{0} := \prod_{i=1}^{d} \mathcal{H}_{m_i}$ be the product with the zeroth factor removed.^v

For each embedding σ_i , the elements of $\mathbb{P}^1(F)$ are cusps of \mathcal{H}_{m_i} : for a given complex embedding $F \hookrightarrow \mathbb{C}$, we can identify F with $F \times \{0\} \hookrightarrow \mathbb{C} \times \mathbb{R}_{\geq 0}$ and define the "extended upper half-space" as $\overline{\mathcal{H}_3} := \mathcal{H}_3 \cup F \cup \{\infty\} \subseteq \mathbb{C} \times \overline{\mathbb{R}}_{\geq 0} \cup \{\infty\};$

^vThe choice of the 0-th factor is for convenience; we could also choose any other infinite place, whether real or complex.

similarly for a given real embedding $F \hookrightarrow \mathbb{R}$, we get the extended upper half-plane $\overline{\mathcal{H}_2} := \mathcal{H}_2 \cup F \cup \{\infty\}$. A basis of neighbourhoods of the cusp ∞ is given by the sets $\{(u, t) \in \mathcal{H}_m | t > N\}$, $N \gg 0$, and of $x \in F$ by the open half-balls in \mathcal{H}_m with center $(x, 0)$.

Let $G(F)^{+} \subseteq G(F)$ denote the subgroup of matrices with totally positive determinant . It acts on \mathcal{H}^0_{∞} by composing the embedding

$$
G(F)^+ \hookrightarrow \prod_{v \mid \infty, v \neq v_0} G(F_v)^+, \qquad g \mapsto (\sigma_1(g), \dots, \sigma_d(g)),
$$

with the actions of $G(\mathbb{C})^+ = G(\mathbb{C})$ on \mathcal{H}_3 and $G(\mathbb{R})^+$ on \mathcal{H}_2 as defined above, and on $\Omega_{\text{harm}}^d(\mathcal{H}_{\infty}^0)$ by the inverse of the corresponding pullback, $\gamma \cdot \underline{\omega} := (\gamma^{-1})^* \underline{\omega}$. Both are left actions.

Denote by $S_{\mathbb{C}}$ (resp. $S_{\mathbb{R}}$) the set of complex (resp. real) archimedian primes of F. For each complex v, we write the codomain of ρ_{F_v} as

$$
\varrho_{F_v}: Z(F_v) \cdot K_{F_v} \to \mathrm{SL}_3(\mathbb{C})=: \mathrm{SL}(V_v),
$$

for a three-dimensional C-vector space V_v . We denote the harmonic forms on $GL_2(F_v)$, \mathcal{H}_{F_v} defined above by $\underline{\omega_v}$, $\underline{\beta_v}$ etc.

Let $V = \bigotimes_{v \in S_{\mathbb{C}}} V_v \cong (\mathbb{C}^3)^{\otimes s}, Z_{\infty} = \prod_{v | \infty} Z(F_v), K_{\infty} = \prod_{v | \infty} K_{F_v}.$ We can merge the representations ϱ_{F_v} for each $v | \infty$ into a representation

$$
\varrho = \varrho_{\infty} := \bigotimes_{v \in S_{\mathbb{C}}} \varrho_{\mathbb{C}} \otimes \bigotimes_{v \in S_{\mathbb{R}}} \varrho_{\mathbb{R}}^{(1)} : Z_{\infty} \cdot K_{\infty} \to SL(V),
$$

and define *V*-valued vectors of differential forms $\underline{\omega} := \bigotimes_{v \in S_{\mathbb{C}}} \underline{\omega}_v \otimes \bigotimes_{v \in S_{\mathbb{R}}} \omega_v^1$, $\underline{\beta} := \bigotimes_{v \in S_{\mathbb{C}}} \beta_v \otimes \bigotimes_{v \in S_{\mathbb{R}}} (\beta_v)_1$ on $GL_2(F_\infty)$ and \mathcal{H}_∞ , respectively. $v \in S_{\mathbb{C}}$ $\frac{\beta_v}{\beta_v} \otimes \bigotimes_{v \in S_{\mathbb{R}}} (\beta_v)_1$ on $GL_2(F_\infty)$ and \mathcal{H}_∞ , respectively.

4.2 Automorphic forms

Let $\chi_Z : \mathbb{A}_F^* / F^* \to \mathbb{C}^*$ be a Hecke character that is trivial at the archimedian places. We also denote by χ_Z the corresponding character on $Z(\mathbb{A}_F)$ under the isomorphism $\mathbb{A}_F^* \to Z(\mathbb{A}_F), a \mapsto (\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix}).$

Definition 4.3. An automorphic cusp form of parallel weight 2 with central character χ_Z is a map $\phi: G(\mathbb{A}_F) \to V$ such that

- (i) $\phi(z\gamma g) = \chi_Z(z)\phi(g)$ for all $g \in G(\mathbb{A}), z \in Z(\mathbb{A}), \gamma \in G(F)$.
- (ii) $\phi(gk_{\infty}) = \phi(g)\rho(k_{\infty})$ for all $k_{\infty} \in K_{\infty}$, $g \in G(\mathbb{A})$ (considering V as a row vector).

(iii) ϕ has "moderate growth" on $B'_{\mathbb{A}} := \{$ $\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \in G(\mathbb{A})\}, \text{ i.e. } \exists C, \lambda \ \forall A \in B'_{\mathbb{A}}:$ $\|\phi(A)\| \leq C \cdot \sup(|y|^\lambda, |y|^{-\lambda})$ (for any fixed norm $\|\cdot\|$ on V); and $\phi|_{G(\mathbb{A}_{\infty})}\cdot \underline{\omega}$ is the pullback of a harmonic form $\omega_{\phi}=f_{\phi}\cdot \underline{\beta}$ on \mathcal{H}_{∞} .

- (iv) There exists a compact open subgroup $K' \subseteq G(\mathbb{A}^{\infty})$ such that $\phi(gk) = \phi(g)$ for all $g \in G(\mathbb{A})$ and $k \in K'$.
- (v) For all $g \in G(\mathbb{A}_F)$,

$$
\int_{\mathbb{A}_F/F} \phi\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g\right) dx = 0. \qquad \text{(``Cuspidality")}
$$

We denote by $\mathcal{A}_0(G, \text{harm}, \underline{2}, \chi_Z)$ the space of all such maps ϕ .

For each $g^{\infty} \in A_F^{\infty}$, let $\omega_{\phi}(g^{\infty})$ be the restriction of $\phi(g^{\infty}, \cdot) \cdot \underline{\omega}$ from $G(A_F^{\infty})$ to \mathcal{H}_{∞} ; it is a $(d+1)$ -form on \mathcal{H}_{∞} .

We want to integrate $\omega_{\phi}(g^{\infty})$ between two cusps of the space \mathcal{H}_{m_0} . (We will identify each $x \in \mathbb{P}^1(F)$ with its corresponding cusp in $\overline{\mathcal{H}_{m_0}}$ in the following.) The geodesic between the cusps $x \in F$ and ∞ in \mathcal{H}_{m_0} is the line $\{x\} \times \mathbb{R}_+^* \subseteq \mathcal{H}_{m_0}$ and the integral of ω_{ϕ} along it is finite since ϕ is uniformly rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form ϕ is rapidly decreasing modulo the center on a fundamental domain $\mathcal F$ of $GL_2(F)\backslash GL_2(\mathbb A_F);$ *i.e.* there exists an integer r such that for all $N \in \mathbb{N}$ there exists a $C > 0$ such that

$$
\phi(zg) \le C|z|^r \|g\|^{-N}
$$

for all $z \in Z(\mathbb{A}_F)$, $g \in \mathcal{F} \cap SL_2(\mathbb{A}_F)$. Here $||g|| := \max\{|g_{i,j}|, |(g^{-1})_{i,j}|\}_{i,j \in \{1,2\}}$.

(See [\[CKM\]](#page-50-13), Thm. 2.2; or [\[Kur78\]](#page-50-14), (6) for quadratic imaginary F .)

In fact, the integral of $\omega_{\phi}(g^{\infty})$ along $\{x\} \times \mathbb{R}_{+}^{*} \subseteq \mathcal{H}_{m_0}$ equals the integral of $\phi(g^{\infty}, \cdot) \cdot \underline{\omega}$ along a path $g_t \in GL_2(F_{\infty_0}), t \in \mathbb{R}^*_+$, where we can choose

$$
g_t = \frac{1}{\sqrt{t}} \begin{pmatrix} t & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{t}} & \frac{x}{\sqrt{t}} \\ 0 & \sqrt{t} \end{pmatrix},
$$

and thus have $||g_t|| = \sqrt{t}$ for all $t \gg 0$, $||g_t|| = C \frac{1}{\sqrt{t}}$ \overline{t} for $t \ll 1$, so the integral $\int_x^{\infty} \omega_{\phi}(g^{\infty}) \in \Omega_{\text{harm}}^d(\mathcal{H}_{\infty}^0)$ is well-defined by the theorem.

For any two cusps $a, b \in \mathbb{P}^1(F)$, we now define

$$
\int_a^b \omega_{\phi}(g^{\infty}) := \int_a^{\infty} \omega_{\phi}(g^{\infty}) - \int_b^{\infty} \omega_{\phi}(g^{\infty}) \in \Omega_{\text{harm}}^d(\mathcal{H}_{\infty}^0).
$$

Since ϕ is *uniformly* rapidly decreasing ($||g_t||$ does not depend on x, for $t \gg 0$), this integral along the path $(a, 0) \to (a, \infty) = (b, \infty) \to (b, 0)$ in \mathcal{H}_{m_0} is the same as the limit (for $t \to \infty$) of the integral along $(a, 0) \to (a, t) \to (b, t) \to (b, 0)$; and since ω_{ϕ} is harmonic (and thus integration is path-independent within \mathcal{H}_{m_0}) the latter is in fact independent of t, so equality holds for each $t > 0$, or along any path from $(a, 0)$ to $(b, 0)$ in \mathcal{H}_{m_0} . Thus we have

$$
\int_a^b \omega_{\phi}(g^{\infty}) + \int_b^c \omega_{\phi}(g^{\infty}) = \int_a^c \omega_{\phi}(g^{\infty})
$$

for any three cusps $a, b, c \in \mathbb{P}^1(F)$. Let $Div(\mathbb{P}^1(F))$ denote the free abelian group of divisors of $\mathbb{P}^1(F)$, and let $\mathcal{M} := \text{Div}_0(\mathbb{P}^1(F))$ be the subgroup of divisors of degree 0.

We can extend the definition of the integral linearly to get a homomorphism

$$
\mathcal{M} \to \Omega_{\text{harm}}^{d}(\mathcal{H}_{\infty}^{0}), \quad m \mapsto \int_{m} \omega_{\phi}(g^{\infty}).
$$

\nFor $\gamma \in G(F)^{+}$, $g \in G(\mathbb{A}^{\infty})$, $m \in \mathcal{M}$ and $x_{\infty}^{0} \in G(F_{S_{\infty}^{0}})$, we have
\n
$$
\gamma^{*}\left(\int_{\gamma m} \omega_{\phi}(\gamma g)\right)(x_{\infty}^{0}) = \int_{\gamma m} \omega_{\phi}(\gamma g)(\gamma x_{\infty}^{0})
$$
\n
$$
= \int_{\gamma m} \phi(\gamma g, \gamma x_{\infty}^{0}, *) \cdot \omega
$$
\n
$$
= \int_{\gamma m} \phi(g, x_{\infty}^{0}, \gamma^{-1} *) \cdot \underline{\omega} \qquad \text{(by (i) of definition 4.3)}
$$
\n
$$
= \int_{m} \phi(g, x_{\infty}^{0}, *) \cdot \underline{\omega} \qquad \text{(since } \underline{\omega} \text{ is } G(F_{\infty})\text{-left invariant)}
$$
\n
$$
= \int_{m} \omega_{\phi}(g)(x_{\infty}^{0}),
$$

i.e.

$$
\gamma^* \left(\int_{\gamma m} \omega_{\phi}(\gamma g) \right) = \int_m \omega_{\phi}(g). \tag{4.1}
$$

Now let **m** be an ideal of F prime to p, let χ_Z be a Hecke character of conductor dividing m , and a_1, a_2 as above.

Definition 4.5. We define $S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2})$ to be the C-vector space of all maps

$$
\Phi: G(\mathbb{A}^p) \to \mathcal{B}^{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, V) = \mathrm{Hom}(\mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, \mathbb{C}), V)
$$

such that:

- (a) ϕ is "almost" $K_0(\mathfrak{m})$ -invariant (in the notation of [\[Ge\]](#page-50-7)), i.e. $\phi(gk) = \phi(g)$ for all $g \in G(\mathbb{A}^p)$ and $k \in \prod_{v \nmid \mathfrak{m}p} G(\mathcal{O}_v)$, and $\phi(gk) = \chi_Z(a)\phi(g)$ for all $v|\mathfrak{m}$, $k =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0(\mathfrak{m})_v$ and $g \in G(\mathbb{A}^p)$.
- (b) For each $\psi \in \mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, \mathbb{C})$, the map

$$
\langle \Phi, \psi \rangle : G(\mathbb{A}) = G(F_p) \times G(\mathbb{A}^p) \to V, (g_p, g^p) \mapsto \Phi(g^p)(g_p \psi)
$$

lies in $\mathcal{A}_0(G, \text{harm}, \underline{2}, \chi_Z)$.

Note that (a) implies that ϕ is K'-invariant for some open subgroup $K' \subseteq K_0(\mathfrak{m})^p$ of finite index([\[By\]](#page-50-2)/[\[We\]](#page-51-1)).

4.3 Cohomology of $GL_2(F)$

Let M be a left $G(F)$ -module and N an $R[H]$ -module, for a ring R and a subgroup $H \subseteq G(F)$. Let $S \subseteq S_p$ be a set of primes of F dividing p; as above, let $\chi = \chi_Z$ be a Hecke character of conductor $\mathfrak m$ prime to p.

Definition 4.6. For a compact open subgroup $K \subseteq K_0(\mathfrak{m})^S \subseteq G(\mathbb{A}^{S,\infty})$, we denote by $A_f(K, S, M; N)$ the R-module of all maps $\Phi: G(\mathbb{A}^{S,\infty}) \times M \to N$ such that

- 1. $\Phi(gk,m) = \Phi(g,m)$ for all $g \in G(\mathbb{A}^{S,\infty})$, $m \in M$, $k \in \prod_{v \nmid \mathfrak{m}p} G(\mathcal{O}_v)$;
- 2. $\Phi(gk) = \chi_Z(a)\Phi(g)$ for all $v|\mathfrak{m}, k =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0(\mathfrak{m})_v$ and $g \in G(\mathbb{A}^{S,\infty}),$ $m \in M$.

We denote by $\mathcal{A}_f(S, M; N)$ the union of the $\mathcal{A}_f(K, S, M; N)$ over all compact open subgroups K .

 $\mathcal{A}_f(S,M;N)$ is a left $G(\mathbb{A}^{S,\infty})$ -module via $(\gamma \cdot \Phi)(g,m) := \Phi(\gamma^{-1}g,m)$ and has a left H-operation given by $(\gamma \cdot \Phi)(g, m) := \gamma \Phi(\gamma^{-1}g, \gamma^{-1}m)$, commuting with the $G(\mathbb{A}^{S,\infty})$ -operation.

In contrast to our previous notation, we consider two subsets $S_1 \subseteq S_2 \subseteq S_p$ in this section. We put $(\underline{\alpha_1}, \underline{\alpha_2})_{S_1} := \{(\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2}) | \mathfrak{p} \in S_1\}$, we set

$$
\mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) = \mathcal{A}_f(S_2, M; \mathcal{B}^{(\underline{\alpha_1}, \underline{\alpha_2})_{S_1}}(F_{S_1}, N));
$$

we write $A_f(\mathfrak{m}, (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) := A_f(K_0(\mathfrak{m}), (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N)$. If $S_1 =$ S_2 , we will usually drop S_2 from all these notations.

We have a natural identification of $A_f(\mathfrak{m},(\alpha_1,\alpha_2)_S, M; N)$ with the space of maps $G(\mathbb{A}^{S,\infty}) \times M \times \mathcal{B}_{(\underline{\alpha_1}, \underline{\alpha_2})_S}(F_S, R) \to N$ that are "almost" K-invariant.

Let $S_0 \subseteq S_1 \subseteq S_2 \subseteq S_p$ be subsets. The pairing [\(2.11\)](#page-21-2) induces a pairing

$$
\langle \cdot, \cdot \rangle : \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) \times \mathcal{B}_{(\underline{\alpha_1}, \underline{\alpha_2})_{S_0}}(F_{S_0}, R) \to \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S_2, M; N),
$$
\n(4.2)

which, when restricting to K -invariant elements, induces an isomorphism

$$
\mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) \cong \mathcal{B}^{(\underline{\alpha_1}, \underline{\alpha_2})_{S_1 - S_0}}(F_{S_1 - S_0}, \mathcal{A}_f(\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S_2, M; N). \tag{4.3}
$$

Putting $S_0 := S_1 - \{ \mathfrak{p} \}$ for a prime $\mathfrak{p} \in S_1$, we specifically get an isomorphism

$$
\mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) \cong \mathcal{B}^{\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2}}(F_{\mathfrak{p}}, \mathcal{A}_f(\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S_2, M; N).
$$

Lemmas [2.11](#page-13-2) and [2.12](#page-14-0) now immediately imply the following:

Lemma 4.7. Let $S \subseteq S_p$, $\mathfrak{p} \in S$, $S_0 := S - {\mathfrak{p}}$. Let $K \subseteq G(\mathbb{A}^{S,\infty})$ be a compact open subgroup.

(a) If $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ is spherical, we have exact sequences

$$
0 \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; N) \to Z \xrightarrow{\mathcal{R} - \nu_p} Z \to 0
$$

and

$$
0 \to Z \to \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N) \xrightarrow{T-a_p} \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N) \to 0
$$

for a $G(\mathbb{A}^{S_0,\infty})$ -module Z and a compact open subgroup $K_0 = K \times K_{\mathfrak{p}}$ of $G(\mathbb{A}^{S_0,\infty})$.

(b) If $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ is special (with central character $\chi_{\mathfrak{p}}$), we have exact sequences

$$
0 \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; N) \to Z' \to Z \to 0
$$

and

$$
0 \to Z \to \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to 0,
$$

$$
0 \to Z' \to \mathcal{A}_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to \mathcal{A}_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to 0,
$$

with $Z := \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S, M; N(\chi_{\mathfrak{p}}))$ and $Z' := \mathcal{A}_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S, M; N(\chi_{\mathfrak{p}})),$ where $K_0 = K \times K_p$ and $K'_0 = K \times K'_p$ are compact open subgroups of $G(\mathbb{A}^{S_0,\infty})$.

Proposition 4.8. Let $S \subseteq S_p$ and let K be a compact open subgroup of $G(\mathbb{A}^{S,\infty})$.

(a) For each flat R-module N (with trivial $G(F)$ -action), the canonical map

$$
H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)) \otimes_R N \to H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; N))
$$

is an isomorphism for each $q \geq 0$.

(b) If R is finitely generated as a Z-module, then $H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)$ is finitely generated over R.

Proof. (cf. [\[Sp\]](#page-51-0), Prop. 5.6)

(a) The exact sequence of abelian groups $0 \to \mathcal{M} \to \text{Div}(\mathbb{P}^1(F)) \cong \text{Ind}_{B(F)}^{G(F)} \mathbb{Z} \to$ $\mathbb{Z} \to 0$ induces a short exact sequence of $G(\mathbb{A}^{S,\infty})$ -modules

$$
0 \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathbb{Z}; N) \to \text{Coind}_{B(F)^+}^{G(F)^+} \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathbb{Z}; N) \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; N) \to 0.
$$
 (4.4)

Using the five-lemma on the associated diagram of long exact cohomology sequences $H^q(\cdot, R) \otimes_R N$ (which is exact due to flatness) and $H^q(\cdot, N)$, it is enough to show that [\(4.4\)](#page-39-0) holds for $\mathcal{A}_f(K,(\underline{\alpha_1}, \underline{\alpha_2})_S,\mathbb{Z};\cdot)$ and $\mathrm{Coind}_{B(F)^+}^{G(F)^+}\mathcal{A}_f(K,(\underline{\alpha_1}, \underline{\alpha_2})_S,\mathbb{Z};\cdot)$ instead of $\mathcal{A}_f(K,(\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; \cdot)$. By lemma [4.7,](#page-38-1) it is furthermore enough to consider the case $S = \emptyset$. Since $\mathcal{A}_f(K, \mathbb{Z}; N) \cong \text{Coind}_{K}^{G(\mathbb{A}^{\infty})} N$, we thus have to show that

$$
H^q(G(F)^+,\mathrm{Coind}_K^{G(\mathbb{A}^{\infty})}R)\otimes_R N \to H^q(G(F)^+,\mathrm{Coind}_K^{G(\mathbb{A}^{\infty})}N),
$$

$$
H^q(B(F)^+,\mathrm{Coind}_K^{G(\mathbb{A}^{\infty})}R)\otimes_R N \to H^q(B(F)^+,\mathrm{Coind}_K^{G(\mathbb{A}^{\infty})}N)
$$

are isomorphisms for all $q \geq 0$ and all flat R-modules N.

Since every flat module is the direct limit of free modules of finite rank, it suffices to show that $N \mapsto H^q(G(F)^+$, Coind $_K^{G(\mathbb{A}^{\infty})}$ N) and $N \mapsto H^q(B(F)^+$, Coind $_K^{G(\mathbb{A}^{\infty})}$ N) commute with direct limits.

For $g \in G(\mathbb{A}^{\infty})$, put $\Gamma_g := G(F)^+ \cap gKg^{-1}$, By the strong approximation theorem, $G(F)^{+}\backslash G(\mathbb{A}^{\infty})/K$ is finite. Choosing a system of representatives g_1, \ldots, g_n , we have

$$
H^q(G(F)^+,\mathrm{Coind}_K^{G(\mathbb{A}^{\infty})}N)=\bigoplus_{i=1}^n H^q(\Gamma_{g_i},N).
$$

Since the groups Γ_g are arithmetic, they are of type (VFL), and thus the functors $N \mapsto H^q(\Gamma_g, N)$ commute with direct limits by [\[Se2\]](#page-51-2), remarque on p. 101.

Similarly, the Iwasawa decomposition $G(\mathbb{A}^{\infty}) = B(\mathbb{A}^{\infty}) \prod_{v \nmid \infty} G(O_v)$ implies that $B(F)^+\backslash G(\mathbb{A})$ Therefore, the same arguments show that $N \mapsto H^q(B(F)^+$, Coind $_K^{G(\mathbb{A}^{\infty})}$ N) commutes with direct limits.

(b) This follows along the same line of reasoning as (a), since $H^q(\Gamma_g, R)$ is finitely generated over $\mathbb Z$ by [\[Se2\]](#page-51-2), remarque on p. 101. \Box

With the notation as above, we define

$$
H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; R)) := \varinjlim H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; R))
$$

where the limit runs over all compact open subgroups $K \subseteq G(\mathbb{A}^{S,\infty})$; and similarly define $H^q_*(B(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)$. The proposition immediately implies

Corollary 4.9. Let $R \to R'$ be a flat ring homomorphism. Then the canonical map

$$
H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)) \otimes_R R' \to H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R')
$$

is an isomorphism, for all $q \geq 0$.

If $R = k$ is a field of characteristic zero, $H_*^q(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; R)$ is a smooth $G(\mathbb{A}^{S,\infty})$ -module, and we have

$$
H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; k)^K = H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; k).
$$

We identify $G(F)/G(F)^+$ with the group $\Sigma = {\pm 1}^r$ via the isomorphism

$$
G(F)/G(F^+) \xrightarrow{\det} F^*/F^*_{+} \cong \Sigma
$$

(with all groups being trivial for $r = 0$). Then Σ acts on $H_*^q(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; k)$ and $H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; k)$ by conjugation. For $\pi \in \mathfrak{A}_{0}(G, \underline{2})$ and $\underline{\mu} \in \Sigma$, we write $H^q_*(G(F)^+,\cdot)_{\pi,\underline{\mu}} := \text{Hom}_{G(\mathbb{A}^{S,\infty})}(\pi^S, H^q_*(G(F)^+,\cdot))_{\underline{\mu}}$.

Now we can show that π occurs with multiplicity 2^r in $H_*^q(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; k)$:

Proposition 4.10. Let $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \alpha_1, \alpha_2)$, $S \subseteq S_p$. Let k be a field which contains the field of definition of π . Then \overline{for} every $\mu \in \Sigma$, we have

$$
H_*^q(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; k)_{\pi, \underline{\mu}} = \begin{cases} k, & \text{if } q = d; \\ 0, & \text{if } q \in \{0, \dots, d - 1\} \end{cases} \tag{4.5}
$$

Proof. (cf. $[Sp]$, prop. 5.8)

First, assume $S = \emptyset$. The sequence [\(4.4\)](#page-39-0) induces a cohomology sequence

$$
\ldots \to H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) \to H^q_*(B(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) \to H^q_*(G(F)^+, \mathcal{A}_f(\mathcal{M}, k))
$$

$$
\to H^{q+1}_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) \to \ldots
$$

Harder([\[Ha\]](#page-50-3)) has determined the action of $G(\mathbb{A}^{\infty})$ on $H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$ and $H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$: For $q < d$, $H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$ is a direct sum of onedimensional representations; for $q = d$ there is a $G(\mathbb{A}^{\infty})$ -stable decomposition

$$
H^{d+1}_{*}(G(F)^{+}, \mathcal{A}_{f}(\mathbb{Z}, k)) = H^{d+1}_{\text{cusp}} \oplus H^{d+1}_{\text{res}} \oplus H^{d+1}_{\text{Eis}},
$$

with the last two summands again being direct sums of one-dimensional representations, and

$$
H^{d+1}_{\text{cusp}}(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))_{\pi, \underline{\mu}} \cong k
$$

 $(Hal, 3.6.2.2); H_*^q(B(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$ always decomposes into one-dimensional $G(\mathbb{A}^{\infty})$ -representations. Since π^{S} does not map to one-dimensional representations, this proves the claim for $S = \emptyset$.

Now for $S = S_0 \cup {\{\mathfrak{p}\}\}$ and $\pi_{\mathfrak{p}}$ spherical, lemma [4.7\(](#page-38-1)a) and the statement for S_0 give an isomorphism

$$
H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, \mathcal{M}; k))_{\pi, \underline{\mu}} \cong H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S}, \mathcal{M}; k))_{\pi, \underline{\mu}}
$$

since the Hecke operators T_p , \mathcal{R}_p act on the left-hand side by multiplication with $a_{\mathfrak{p}}$ or $\nu_{\mathfrak{p}}$, respectively. If $\pi_{\mathfrak{p}}$ is special, we can similarly deduce the statement for S from that for S_0 , using the first exact sequence of lemma [4.7\(](#page-38-1)b) (cf. [\[Sp\]](#page-51-0)), since the results of $[Ha]$ also hold when twisting k by a (central) character. \Box

4.4 Eichler-Shimura map

Given a subgroup $K_0(\mathfrak{m})^p \subseteq G(\mathbb{A}^{p,\infty})$ as above, there is a map

$$
I_0: S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \to H^0(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \Omega_{\text{harm}}^d(\mathcal{H}_\infty^0)))
$$

given by

$$
I_0(\Phi): (\psi, (g, m)) \mapsto \int_m \omega_{\langle \Phi, \psi \rangle}(1_p, g),
$$

for $\psi \in \mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, \mathbb{C}), g \in G(\mathbb{A}^{p,\infty}), m \in \mathcal{M}$, where 1_p denotes the unity element in $G(F_n)$.

This is well-defined since both sides are "almost" $K_0(\mathfrak{m})$ -invariant, and the $G(F)^+$ invariance of $I_0(\Phi)$ follows from the similar invariance for differential forms, and the definition of the $G(F)$ +-operations on $\mathcal{A}_f(M, N)$, $\mathcal{B}_{\alpha_1,\alpha_2}(F_p, N)$ and $\Omega_{\text{harm}}^d(\mathcal{H}_{\infty}^0)$: For each $\psi \in \mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, \mathbb{C}), g \in G(\mathbb{A}^{p,\infty}), m \in \mathcal{M}$, we have

$$
(\gamma I_0(\Phi))(\psi, (g, m)) = \gamma I_0(\Phi)(\gamma^{-1}\psi, (\gamma^{-1}g, \gamma^{-1}m))
$$

\n
$$
= \gamma \cdot \int_{\gamma^{-1}m} \omega_{\langle \Phi, \gamma^{-1}\psi \rangle}(1_p, \gamma^{-1}g)
$$

\n
$$
= (\gamma^{-1})^* \int_{\gamma^{-1}m} \omega_{\langle \Phi, \gamma^{-1}\psi \rangle}(1_p, \gamma^{-1}g)
$$

\n
$$
= \int_m \omega_{\langle \Phi, \gamma^{-1}\psi \rangle}(\gamma 1_p, g) \qquad \text{(by (4.1))}
$$

\n
$$
= I_0(\Phi)(\psi, (g, m)).
$$

We have a complex $A_f(m, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \mathbb{C}) \to C^{\bullet} := A_f(m, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \Omega^{\bullet}_{\text{harm}}(\mathcal{H}^0_{\infty})).$ Therefore we get a map

$$
S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \to H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \mathbb{C}))
$$
(4.6)

by composing I_0 with the edge morphism $H^0(G(F)^+, C^d) \to H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \mathbb{C}))$ of the spectral sequence

$$
H^q(G(F)^+, C^p) \implies H^{p+q}(G(F)^+, C^{\bullet}).
$$

Using the map $\delta^{\underline{\alpha_1}, \underline{\alpha_2}}$: $\mathcal{B}^{\underline{\alpha_1}, \underline{\alpha_2}}(F, V) \to \text{Dist}(F_p^*, V)$ from section [2.7,](#page-21-0) we next define a map

$$
\Delta_V^{\alpha_1, \alpha_2}: S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \to \mathcal{D}(S_1, V) \tag{4.7}
$$

by

$$
\Delta_V^{\alpha_1,\alpha_2}(\Phi)(U,x^p) = \delta^{\alpha_1,\alpha_2} \left(\Phi \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} \right) (U)
$$

for $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}), x^p \in \mathbb{I}^p$, and we denote by $\Delta^{\underline{\alpha_1}, \underline{\alpha_2}} : S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \rightarrow$ $\bigotimes_{v|\infty} (\omega_v)_1, \bigotimes_{v|\infty} (\beta_v)_1$ in section [4.1\)](#page-33-0): $\mathcal{D}(S_1,\mathbb{C})$ its $(1,...,1)$ th coordinate function (i.e. corresponding to the harmonic forms

$$
\Delta^{\underline{\alpha_1}, \underline{\alpha_2}}(\Phi)(U, x^p) = \delta^{\underline{\alpha_1}, \underline{\alpha_2}}\left(\Phi\begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix}\right)_{(1,\ldots,1)}(U).
$$

Since for each complex prime $v, S^1 \cong SU(2) \cap T(\mathbb{C})$ operates via ϱ_v on Φ , $\Delta^{\underline{\alpha_1}, \underline{\alpha_2}}$ is easily seen to be S^1 -invariant, i.e. it lies in $\mathcal{D}'(S_1, \mathbb{C})$.

We also have a natural (i.e. commuting with the complex maps of each C^{\bullet}) family of maps

$$
\mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \Omega_{\text{harm}}^i(\mathcal{H}_\infty^0)) \to \mathcal{D}_f(S_1, \Omega^i(U_\infty^0, \mathbb{C}))
$$
(4.8)

for all $i \geq 0$, and

$$
A_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \mathbb{C}) \to \mathcal{D}_f(S_1, \mathbb{C})
$$
\n(4.9)

(the $i = -1$ -th term in the complexes), by mapping $\Phi \in \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \cdot)$ first to

$$
(U, x^{p,\infty}) \mapsto \Phi\left(\begin{pmatrix} x^{p,\infty} & 0\\ 0 & 1 \end{pmatrix}, \infty - 0\right) \left(\delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U)\right) \in \Omega_{\text{harm}}^i(\mathcal{H}_\infty^0) \text{ resp. } \in \mathbb{C},
$$

and then for $i \geq 0$ restricting the differential forms to $\Omega^{i}(U_{\infty}^{0})$ via

$$
U^0_{\infty} = \prod_{v \in S^0_{\infty}} \mathbb{R}^*_+ \hookrightarrow \prod_{v \in S^0_{\infty}} \mathcal{H}_v = \mathcal{H}^0_{\infty}.
$$

One easily checks that [\(4.8\)](#page-42-0) and [\(4.9\)](#page-42-1) are compatible with the homomorphism of "acting groups" $F^{*'} \hookrightarrow G(F)^+$, $x \mapsto {x \choose 0}$, so we get induced maps in cohomology

$$
H^0(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \Omega_{\text{harm}}^d(\mathcal{H}_\infty^0))) \to H^0(\mathcal{D}_f(S_1, \Omega^d(U_\infty^0, \mathbb{C}))) \tag{4.10}
$$

and

$$
H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \mathbb{C})) \to H^d(F^{*,\prime}, \mathcal{D}_f(S_1, \mathbb{C})),\tag{4.11}
$$

which are linked by edge morphisms of the respective spectral sequences to give a commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

$$
S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \xrightarrow{\qquad (4.6)} H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \mathbb{C}))
$$

$$
\downarrow^{\Delta \underline{\alpha_1}, \underline{\alpha_2}} \qquad \qquad \downarrow^{\qquad (4.11)}
$$

$$
\mathcal{D}'(\mathcal{G}_m, \mathbb{C}) \xrightarrow{\qquad \phi \mapsto \kappa_{\phi}} H^d(F^{*,f}, \mathcal{D}_f(\mathbb{C}))
$$

Proof. The given diagram factorizes as

$$
S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \xrightarrow{I_0} H^0(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \Omega_{\text{harm}}^d(\mathcal{H}_{\infty}^0))) \longrightarrow H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \mathbb{C}))
$$
\n
$$
\downarrow^{\Delta^{\underline{\alpha_1}, \underline{\alpha_2}}}
$$
\n
$$
\mathcal{D}'(\mathcal{G}_m, \mathbb{C}) \xrightarrow{\qquad \qquad} H^0(\mathcal{D}_f(S_1, \Omega^d(U_{\infty}^0, \mathbb{C}))) \xrightarrow{\qquad \qquad} H^d(F^{*'}, \mathcal{D}_f(\mathbb{C}))
$$

The right-hand square is the naturally commutative square mentioned above; the commutativity of the left-hand square can be checked by hand:

Let $\Phi \in S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2})$. Then $I_0(\Phi)$ is the map $(\psi, (g, m)) \mapsto \int_m \omega_{\langle \Phi, \psi \rangle}(1_p, g),$ which is mapped under [\(4.10\)](#page-43-1) to

$$
(U, x^{p,\infty}) \rightarrow \int_0^{\infty} \omega_{\langle \Phi, \delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U) \rangle} \left(1_p, \begin{pmatrix} x^{p,\infty} & 0 \\ 0 & 1 \end{pmatrix}\right) \Big|_{\substack{U^0_{\infty}}} = \int_0^{\infty} \Phi_{(1,\dots,1)} \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} (\delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U)) \frac{dt_0}{t_0} \frac{dt_1}{t_1} \dots \frac{dt_d}{t_d};
$$

along the other path, Φ is mapped under $\Delta^{\alpha_1,\alpha_2}$ to the map

$$
(U, x^p) \mapsto \delta^{\underline{\alpha_1}, \underline{\alpha_2}} \left(\Phi \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} \right)_{(1,\dots,1)} (U) = \Phi_{(1,\dots,1)} \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} (\delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U))
$$

and then also to

$$
(U, x^{p,\infty}) \mapsto \int_0^\infty \Phi_{(1,\dots,1)}\begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} (\delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U)) d^\times r_0 d^\times r_1 \dots d^\times r_d
$$

(with $x^p = (x^{p,\infty}, r_0, r_1, \dots, r_d)$).

4.5 Whittaker model

We now consider an automorphic representation $\pi = \otimes_{\nu} \pi_{\nu} \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2}).$ Denote by $\mathfrak{c}(\pi) := \prod_{v \text{ finite}} \mathfrak{c}(\pi_v)$ the conductor of π .

Let $\chi : \mathbb{I}^{\infty} \to \mathbb{C}^*$ be a unitary character of the finite ideles; for each finite place v, set $\chi_v = \chi|_{F_v^*}$. For each prime v of F, let \mathcal{W}_v denote the Whittaker model of π_v . For each finite and each real prime, we choose $W_v \in \mathcal{W}_v$ such that the local L-factor equals the local zeta function at $g = 1$, i.e. such that

$$
L(s, \pi_v \otimes \chi_v) = \int_{F_v^*} W_v \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \chi_v(x) |x|^{s - \frac{1}{2}} d^\times x \tag{4.12}
$$

for any unramified quasi-character $\chi_v : F_v^* \to \mathbb{C}^*$ and $\text{Re}(s) \gg 0$.

This is possible by [\[Ge\]](#page-50-7), Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, W_v can be chosen such that $SO(2)$ operates on W_v via ϱ_v for real archimedian v, and is "almost" $K_0(\mathfrak{c}(\pi_v))$ -invariant for finite v.

For complex primes v of F, we can also choose a W_v satisfying [\(4.12\)](#page-44-1) and which behaves well with respect to the SU(2)-action ϱ_v , as follows:

By [\[Kur77\]](#page-50-15), there exists a three-dimensional function

$$
\underline{W_v} = (W_v^0, W_v^1, W_v^2) : G(F_v) \to \mathbb{C}^3
$$

such that $W_v^i \in \mathcal{W}_v$ for all i, and such that $SU(2)$ operates by the right via ϱ_v on $\underline{W_v}$; i.e. for all $g \in G(F_v)$ and $h =$ $\begin{pmatrix} u & v \end{pmatrix}$ $-\overline{v}$ \overline{u} \setminus $\in SU(2)$, we have $W_{v}(qh) = W_{v}(q)M_{3}(h),$

where

$$
M_3(h) = \begin{pmatrix} u^2 & 2uv & v^2 \\ -u\overline{v} & u\overline{u} - v\overline{v} & v\overline{u} \\ \overline{v}^2 & -2\overline{u}\overline{v} & \overline{u}^2 \end{pmatrix}.
$$

Note that W_v^1 is thus invariant under right multiplication by a diagonal matrix $\int u = 0$ $0 \quad \overline{u}$ \setminus with $u \in S^1 \subseteq \mathbb{C}$. Since π_v has trivial central character for archimedian v by our assumption, a function in \mathcal{W}_v is also invariant under $Z(F_v)$. Thus we have

$$
W_v^1\left(g\begin{pmatrix}u&0\\0&1\end{pmatrix}\right) = W_v^1(g) \quad \text{for all } g \in G(F_v), \ u \in S^1.
$$

 W_v^1 can be described explicitly in terms of a certain Bessel function, as follows. The modified Bessel differential equation of order $\alpha \in \mathbb{C}$ is

$$
x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} - (x^{2} + \alpha^{2})y = 0.
$$

Its solution space (on ${Re z > 0}$) is two-dimensional; we are only interested in the second standard solution K_v , which is characterised by the asymptotics

$$
K_v(z) \sim \sqrt{\frac{\pi}{2z}} \ e^{-z}
$$

(as defined in [\[We\]](#page-51-1); see also [\[DLMF\]](#page-50-16), 10.25).^{vi}

^{vi}Note that [\[Kur77\]](#page-50-15) uses a slightly different definition of the K_v , which is $\frac{2}{\pi}$ times our K_v .

By [\[Kur77\]](#page-50-15), we have W_v^1 $\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} = \frac{2}{\pi}$ $\frac{2}{\pi}x^2K_0(4\pi x).$

 $(W_v^0$ and W_v^2 can also be described in term of Bessel functions; they are linearly dependent and scalar multiples of $x^2 K_1(4\pi x)$.

By [\[JL\]](#page-50-0), Ch. 1, Thm. 6.2(vi), $\sigma(|\cdot|_{\mathbb{C}}^{1/2}, |\cdot|_{\mathbb{C}}^{-1/2}) \cong \pi(\mu_1, \mu_2)$ with $\mu_1(z) = z^{1/2} \overline{z}^{-1/2} = |z|_{\mathbb{C}}^{-1/2} z, \qquad \mu_2(z) = z^{-1/2} \overline{z}^{1/2} = |z|_{\mathbb{C}}^{-1/2} \overline{z};$

and the L-series of the representation is the product of the L-factors of these two characters:

$$
L_v(s, \pi_v) = L(s, \mu_1)L(s, \mu_2) = 2(2\pi)^{-(s+\frac{1}{2})}\Gamma(s+\frac{1}{2}) \cdot 2(2\pi)^{-(s+\frac{1}{2})}\Gamma(s+\frac{1}{2})
$$

= $4(2\pi)^{-(2s+1)}\Gamma(s+\frac{1}{2})^2$.

On the other hand, letting $d^{\times}x = \frac{dx}{|x|}$ $\frac{dx}{|x|_{\mathbb{C}}} = \frac{dr}{r}$ $\frac{dr}{r}d\vartheta$ (for $x = re^{i\vartheta}$), we have for $Re(s) > -\frac{1}{2}$ $\frac{1}{2}$:

$$
\int_{\mathbb{C}^*} W_v^1 \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} |x|_{\mathbb{C}}^{s-\frac{1}{2}} d^{\times} x = \int_{S^1} \int_{\mathbb{R}_+} W_v^1 \begin{pmatrix} re^{i\vartheta} & 0 \\ 0 & 1 \end{pmatrix} |x|_{\mathbb{C}}^{s-\frac{1}{2}} \frac{dr}{r} d\vartheta
$$
\n
$$
= 4 \int_0^{\infty} x^2 K_0 (4\pi x) x^{2s-1} \frac{dx}{x}
$$
\n(invariance under SU(2) · Z(F_v) gives a constant integral w.r.t. ϑ)\n
$$
= 4 (4\pi)^{-2s+1} \int_0^{\infty} K_0(x) x^{2s} dx
$$
\n
$$
= 4 (4\pi)^{-2s+1} 2^{2s-1} \Gamma(s + \frac{1}{2})^2 \qquad \text{(by [DLMF] 10.43.19)}
$$
\n
$$
= 4 (2\pi)^{-2s+1} \Gamma(s + \frac{1}{2})^2
$$

Thus we have

$$
\int_{\mathbb{C}^*} W_v^1 \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} |x|_{\mathbb{C}}^{s-\frac{1}{2}} d^{\times} x = (2\pi)^2 L_v(s, \pi_v)
$$

for all $\text{Re}(s) > -\frac{1}{2}$ $rac{1}{2}$.

We set $W_v := (2\pi)^{-2} W_v^1$; thus (4.12) holds also for complex primes.

Now that we have defined W_v for all primes v, put $W^p(g) := \prod_{v \nmid p} W_v(g_v)$ for all $g = (g_v)_v \in G(\mathbb{A}^p).$

We will also need the vector-valued function $\underline{W}^p : G(\mathbb{A}_F) \to V$ given by

$$
\underline{W}^p(g) := \prod_{v \nmid p \text{ finite or } v \text{ real}} W_v(g_v) \cdot \bigotimes_{v \text{ complex}} (2\pi)^{-2} \underline{W}_v(g_v).
$$

4.6 p -adic measures of automorphic forms

Now return to our $\pi \in \mathfrak{A}_0(G, 2, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$. We fix an additive character $\psi : \mathbb{A} \to \mathbb{C}^*$ which is trivial on F, and let ψ_v denote the restriction of ψ to $F_v \hookrightarrow A$, for all primes v. We further require that $\ker(\psi_{\mathfrak{p}}) = \mathcal{O}_{\mathfrak{p}}$ for all $\mathfrak{p}|p$, so that we can apply the results of chapter [2.](#page-5-0)

As in chapter [2,](#page-5-0) let $\mu_{\pi_{\mathfrak{p}}} := \mu_{\alpha_{\mathfrak{p},1}/\nu_{\mathfrak{p}}} = \mu_{q_{\mathfrak{p}}/\alpha_{\mathfrak{p},2}}$ denote the distribution $\chi_{q_{\mathfrak{p}}/\alpha_{\mathfrak{p},2}}(x)\psi_{\mathfrak{p}}(x)dx$ on $F_{\mathfrak{p}}$, and let $\mu_{\pi_p} := \prod_{\mathfrak{p} | p} \mu_{\pi_{\mathfrak{p}}}$ be the product distribution on $F_p := \prod_{\mathfrak{p} | p} F_{\mathfrak{p}}$.

Define $\phi = \phi_{\pi} : \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}^p \to \mathbb{C}$ by

$$
\phi(U, x^p) := \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix}.
$$

By proposition [2.15\(](#page-18-0)a), we have for each $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$:

$$
\begin{array}{rcl}\n\phi(x_pU, x^p) & = & \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta x_p U) W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix} \\
& = & \sum_{\zeta \in F^*} W_U \begin{pmatrix} \zeta x_p & 0 \\ 0 & 1 \end{pmatrix} W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix} \\
& = & \sum_{\zeta \in F^*} W \begin{pmatrix} \zeta x & 0 \\ 0 & 1 \end{pmatrix},\n\end{array}
$$

where $W(g) := W_U(g_p)W^p(g^p)$ lies in the global Whittaker model $\mathcal{W} = \mathcal{W}(\pi)$ for all $g = (g_p, g^p) \in G(\mathbb{A})$, putting $W_U := W_{1_U}$; so ϕ is well-defined and lies in $\mathcal{D}(S_1, \mathbb{C})$ (since W is smooth and rapidly decreasing; distribution property, F^* - and $U^{p,\infty}$ invariance being clear by the definitions of ϕ and W^p).

Let $\mu_{\pi} := \mu_{\phi_{\pi}}$ be the distribution on \mathcal{G}_p corresponding to ϕ_{π} , as defined in [\(3.9\)](#page-27-1), and let $\kappa_{\pi} := \kappa_{\phi_{\pi}} \in H^d(F^{*}, \mathcal{D}_f(S_1, \mathbb{C}))$ be the cohomology class defined by [\(3.10\)](#page-28-0) and [\(3.11\)](#page-28-1).

Theorem 4.12. Let $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$; we assume the $\alpha_{\mathfrak{p},i}$ to be ordered such that $|\alpha_{\mathfrak{p},1}| \leq |\alpha_{\mathfrak{p},2}|$ for all $\mathfrak{p}|p.^{\text{vii}}$

(a) Let $\chi : \mathcal{G}_p \to \mathbb{C}^*$ be a character of finite order with conductor $\mathfrak{f}(\chi)$. Then we have the interpolation property

$$
\int_{\mathcal{G}_p} \chi(\gamma) \mu_{\pi}(d\gamma) = \tau(\chi) \prod_{\mathfrak{p} \in S_p} e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}) \cdot L(\tfrac{1}{2}, \pi \otimes \chi),
$$

where

$$
e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}) = \begin{cases} \frac{(1 - \alpha_{\mathfrak{p},1} x_{\mathfrak{p}} q_{\mathfrak{p}}^{-1})(1 - \alpha_{\mathfrak{p},2} x_{\mathfrak{p}}^{-1} q_{\mathfrak{p}}^{-1})(1 - \alpha_{\mathfrak{p},2} x_{\mathfrak{p}} q_{\mathfrak{p}}^{-1})}{(1 - x_{\mathfrak{p}} \alpha_{\mathfrak{p},2}^{-1})}, & \text{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi)) = 0 \text{ and } \pi \text{ spherical,} \\ \frac{(1 - \alpha_{\mathfrak{p},1} x_{\mathfrak{p}} q_{\mathfrak{p}}^{-1})(1 - \alpha_{\mathfrak{p},2} x_{\mathfrak{p}}^{-1} q_{\mathfrak{p}}^{-1})}{(1 - x_{\mathfrak{p}} \alpha_{\mathfrak{p},2}^{-1})}, & \text{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi)) = 0 \text{ and } \pi \text{ special,} \\ (\alpha_{\mathfrak{p},2}/q_{\mathfrak{p}})^{\text{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi))}, & \text{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi)) > 0 \end{cases}
$$

^{vii}So we have $\chi_{\mathfrak{p},1} = |\cdot|\chi_{\mathfrak{p},2}$ for all special $\pi_{\mathfrak{p}}$.

and $x_{\mathfrak{p}} := \chi_{\mathfrak{p}}(\varpi_{\mathfrak{p}}).$

(b) Let $U_p := \prod_{\mathfrak{p} \mid p} U_{\mathfrak{p}}$, put $\phi_0 := (\phi_{\pi})_{U_p}$. Then

$$
\int_{\mathbb{I}/F^*} \phi_0(x) d^\times x = \prod_{\mathfrak{p} \mid p} e(\pi_{\mathfrak{p}}, 1) \cdot L(\tfrac{1}{2}, \pi).
$$

(c) κ_{π} is integral (cf. definition [3.11\)](#page-30-4). For $\mu \in \Sigma$, let $\kappa_{\pi,\mu}$ be the projection of κ_{π} to $H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))_{\pi,\underline{\mu}}$. Then $\kappa_{\pi,\underline{\mu}}$ is integral of rank 1.

Proof. (a) We consider χ as a character on \mathbb{I}_F/F^* (which is unitary and trivial on \mathbb{I}_{∞}), and choose a subgroup $V \subseteq U_p$ such that $\chi_p|_V = 1$ (where $\chi_p := \chi|_{F_p}$) and V is a product of subgroups $V_{\mathfrak{p}} \subseteq U_{\mathfrak{p}}$.

Let $W_V \in \mathcal{W}_p$ be the product of the W_{V_p} , as defined in prop. [2.15,](#page-18-0) set $W(g) :=$ $W^p(g^p)W_V(g_p) \in \mathcal{W}$, and let

$$
\phi_V(x) := \phi(x_p V, x^p) = \sum_{\zeta \in F^*} W \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix}.
$$

Since π is unitary, we have $|\alpha_{\mathfrak{p},2}| \geq \sqrt{q_{\mathfrak{p}}} > 1 = |\chi_{\mathfrak{p}}(\varpi_{\mathfrak{p}})|$ for all \mathfrak{p} , thus $e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}|\cdot|_{\mathfrak{p}}^s)$ is always non-singular, and we will be able to apply proposition [2.6](#page-7-1) locally below.

We want to show that the equality

$$
[U_p:V] \int_{\mathbb{I}_F/F^*} \chi(x)|x|^s \phi_V(x) d^{\times} x = N(\mathfrak{f}(\chi))^s \tau(\chi) \prod_{\mathfrak{p} \mid p} e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}} | \cdot |_p^s) \cdot L(s + \frac{1}{2}, \pi \otimes \chi)
$$

holds for $s = 0$. Since both the left-hand side and $L(s + \frac{1}{2})$ $\frac{1}{2}$, $\pi \otimes \chi$) are holomorphic in s (see [\[Ge\]](#page-50-7), Thm. 6.18 and its proof), it suffices to show this equality for $\text{Re}(s) \gg 0$.

For such s, we have

$$
[U_p : V] \int_{\mathbb{I}_F/F^*} \chi(x)|x|^s \phi_V(x) d^{\times} x = \int_{\mathbb{I}_F} \chi(x)|x|^s W \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x \qquad (\text{def. of } \phi_V)
$$

\n
$$
= [U_p : V] \int_{F_p^*} \chi_p(x)|x|^s W_U \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x \cdot \int_{\mathbb{I}_F^p} \chi^p(y)|y|^s W^p \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} d^{\times} y
$$

\n
$$
= \prod_{\substack{\mathfrak{p} \mid p \\ \mathfrak{p} \mid p}} \int_{F_{\mathfrak{p}}^*} \chi_p(x)|x|_{\mathfrak{p}}^s \mu_{\pi_{\mathfrak{p}}}(dx) \cdot L_{S_p}(s + \frac{1}{2}, \pi \otimes \chi) \qquad \text{(by prop. 2.15 and (4.12))}
$$

\n
$$
= \prod_{\substack{\mathfrak{p} \mid p \\ \mathfrak{p} \mid p}} (e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}} | \cdot |_{\mathfrak{p}}^s) \tau(\chi_{\mathfrak{p}} | \cdot |_{\mathfrak{p}}^s)) \cdot L(s + \frac{1}{2}, \pi \otimes \chi) \qquad \text{(by prop. 2.6)}
$$

\n
$$
= N(\mathfrak{f}(\chi))^s \tau(\chi) \prod_{\mathfrak{p} \mid p} e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}} | \cdot |_{\mathfrak{p}}^s) \cdot L(s + \frac{1}{2}, \pi \otimes \chi).
$$

For $s = 0$, we get the claimed statement, since by (3.9) we have

$$
\int_{\mathcal{G}_p} \chi(\gamma) \mu_\pi(d\gamma) = \int_{\mathbb{I}_F/F^*} \chi(x) \phi(dx_p, x^p) d^\times x^p = [U_p : V] \int_{\mathbb{I}_F/F^*} \chi(x) \phi_V(x) d^\times x.
$$

(b) This follows immediately from (a), setting $\chi = 1$, since $\tau(1) = 1$.

(c) Let $\lambda_{\underline{\alpha_1}, \underline{\alpha_2}} \in \mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, \mathbb{C})$ be the image of $\otimes_{v|p} \lambda_{a_v, \nu_v}$ under the map [\(2.13\)](#page-22-0). For each $\psi \in \mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F_p, \mathbb{C})$, define

$$
\langle \Phi_{\pi}, \psi \rangle (g^p, g_p) := \sum_{\zeta \in F^*} \lambda_{\underline{\alpha_1}, \underline{\alpha_2}} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g_p \cdot \psi \right) \underline{W}^p \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g^p \right)
$$

$$
=: \sum_{\zeta \in F^*} \underline{W_{\psi}} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g \right)
$$

for a V-valued function W_{ψ} whose every coordinate function is in $\mathcal{W}(\pi)$.

This defines a map $\Phi_{\pi}: G(\mathbb{A}^p) \to \mathcal{B}_{\frac{\alpha_1,\alpha_2}{2}}(F_p, V)$. In fact, Φ_{π} lies in $S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2})$, where **m** is the prime-to-*p* part of $f(\pi)$:

Condition (a) of definition [4.5](#page-37-1) follows from the fact that the W_v are almost $K_0(\mathfrak{c}(\pi_v))$ -invariant, for $v \nmid p, \infty$.

For condition (b), we check that $\langle \Phi_{\pi}, \psi \rangle$ satisfies the conditions (i)-(v) in the definition of $\mathcal{A}_0(G, \text{harm}, 2, \chi)$:

Each coordinate function of $\langle \Phi_{\pi}, \psi \rangle$ lies in (the underlying space of) π by [\[Bu\]](#page-50-8), Thm. 3.5.5, thus $\langle \Phi, \psi \rangle$ fulfills (i) and (v), and has moderate growth. (ii) and (iv) follow from the choice of the W_v and W_v .

Now since $\pi_v \cong \sigma(|\cdot|_v^{1/2}, |\cdot|_v^{-1/2})$ for $v|\infty$, it follows from those conditions that $\langle \Phi, \psi \rangle_{B'_{F_v}} \cdot \underline{\beta_v} = C \sum_{\zeta \in F^*} \underline{W_v} \left(\begin{smallmatrix} \zeta t & 0 \\ 0 & 1 \end{smallmatrix} \right) \cdot \underline{\beta_v}$ is harmonic for each archimedian place v of F: for real v, it is well-known that $f(z)/y$ is holomorphic for $f \in \mathcal{D}(2)$, and thus $f \cdot (\beta_v)_1$ is harmonic; for complex v, this is also true, see e.g. [\[Kur78\]](#page-50-14), p. 546 or [\[We\]](#page-51-1).

Now we have

$$
\Delta^{\underline{\alpha_1}, \underline{\alpha_2}}(\Phi_{\pi})(U, x^p) = \delta^{\underline{\alpha_1}, \underline{\alpha_2}} \left(\Phi \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} \right)_{(1, \dots, 1)} (U)
$$

\n
$$
= \sum_{\zeta \in F^*} \lambda_{\underline{\alpha_1}, \underline{\alpha_2}} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} \delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U) \right) W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix}
$$

\n
$$
\stackrel{(*)}{=} \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix} = \phi_{\pi}(U, x^p),
$$

where $(*)$ follows from the calculation (with w_0 as defined in Ch. 2)

$$
\lambda_{\underline{\alpha_1}, \underline{\alpha_2}} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} \delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U) \right) = \prod_{\mathfrak{p} \mid p} \int_{F_{\mathfrak{p}}} \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} \delta_{\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2}}(1_U) \left(\underline{w}_0 \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & 1 \end{pmatrix} \psi_{\mathfrak{p}}(-x) dx \right)
$$

\n
$$
= \prod_{\mathfrak{p} \mid p} \int_{F_{\mathfrak{p}}} \delta_{\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2}}(1_U) \underbrace{\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & 1 \end{pmatrix} \right)}_{= \begin{pmatrix} 0 & 1 \\ -\zeta^{-1} & -x \end{pmatrix}
$$

\n
$$
= \prod_{\mathfrak{p} \mid p} \int_{F_{\mathfrak{p}}} \chi_{\alpha_{\mathfrak{p},2}}(-x) \chi_{\alpha_{\mathfrak{p},1}}(-1) 1_U(-x\zeta) \psi_{\mathfrak{p}}(-x) dx
$$

\n
$$
= \int_{\zeta U} \prod_{\mathfrak{p} \mid p} \chi_{\alpha_{\mathfrak{p},2}}(-x) \psi_{\mathfrak{p}}(-x) dx = \mu_{\pi_{\mathfrak{p}}}(\zeta U)
$$

for all $\zeta \in F^*$.

Let R be the integral closure of $\mathbb{Z}[a_{\mathfrak{p}}, \nu_{\mathfrak{p}}; \mathfrak{p}]$ in its field of fractions; thus R is a Dedekind ring $\subseteq \mathcal{O}$ for which $\mathcal{B}_{\underline{\alpha_1}, \underline{\alpha_2}}(F, R)$ is defined. $\mathbb C$ is flat as an R-module (since torsion-free modules over a $\overline{\text{Ded}}$ extended ring are flat); thus by proposition [4.8,](#page-39-1) the natural map

$$
H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, R)) \otimes \mathbb{C} \to H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \mathbb{C}))
$$

is an isomorphism. The map (4.11) can be described as the "R-valued" map

$$
H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, R)) \to H^d(F^{*,r}, \mathcal{D}_f(R))
$$

tensored with C. By proposition [4.11,](#page-43-2) κ_{π} lies in the image of [\(4.11\)](#page-43-0), and thus in $H^d(F^{*\prime}, \mathcal{D}_f(R)) \otimes \mathbb{C}$; i.e. it is integral.

Similarly, it follows from propositions [4.8](#page-39-1) and [4.10](#page-40-0) that $\kappa_{\pi,\mu}$ is integral of rank 1. \Box

Corollary 4.13. μ_{π} is a p-adic measure.

Proof. By proposition [3.8,](#page-28-6) $\mu_{\pi} = \mu_{\phi_{\pi}} = \mu_{\kappa_{\pi}}$. Since κ_{π} is integral, $\mu_{\kappa_{\pi}}$ is a p-adic measure by corollary [3.13.](#page-31-0) \Box

We can now define the *p-adic L-function* of $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$ by

$$
L_p(s,\pi) := L_p(s,\kappa_{\pi}) := L_p(s,\kappa_{\pi,+}) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\pi}(d\gamma)
$$

for all $s \in \mathbb{Z}_p$, where N is the p-adic cyclotomic character (definition [3.4;](#page-26-5) cf. remark [3.14\)](#page-31-1). $L_p(s,\pi)$ is a locally analytic function with values in the one-dimensional \mathbb{C}_p -vector space $V_{\kappa_{\pi,+}} = L_{\kappa,\overline{\mathcal{O}},+} \otimes_{\overline{\mathcal{O}}} \mathbb{C}_p$.

References

- [BL] L. Barthel, R. Livne: *Modular Representations of* GL² *of a Local Field: The Ordinary, Unramified Case.* Journal of Number Theory 55, 1-27 (1995).
- [By] J. Bygott: *Modular Forms and Modular Sumbols over Imaginary Quadratic Fields.* PhD thesis, 1998.
- [Br] K. Brown: *Cohomology of Groups.* Graduate Texts in Mathematics, Springer-Verlag, 1982.
- [Bu] D. Bump: *Automorphic Forms and Representations.* Cambridge University Press, 1998.
- [CKM] J. Cogdell, H. Kim, M. Murty: *Lectures on automorphic L-functions.* Fields Institute Monographs, 20. American Mathematical Society, Providence, RI, 2004.
- [DLMF] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/
- [Ge] S. Gelbart: *Automorphic forms on adele groups.* Princeton University Press and University of Tokyo Press, 1975.
- [GS] R. Greenberg, G. Stevens: p*-adic L-functions and* p*-adic periods of modular forms.* Invent. Math. 111 (1993), 407-447.
- [Ha] G. Harder: *Eisenstein cohomology of arithmetic groups. The case GL2*. Invent. Math. 89 (1987), 37-118.
- [Har] Sh. Haran: p*-adic L-functions for modular forms.* Compositio Math. 62 (1987), no. 1, 3146.
- [Hi] H. Hida: *L-invariants of Tate curves.* Pure Appl. Math. Q. 5, 1343-1384 (2009)
- [JL] H. Jacquet; R. P. Langlands: *Automorphic forms on GL(2).* Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.
- [Kud] St. Kudla: *From Modular Forms to Automorphic Representations.* In: Bump, Cogdell et al.: *An Introduction to the Langlands Program*, Birkhäuser Boston, 2004.
- [Kur77] P. F. Kurcanov: *The zeta-function of elliptic curves over certain abelian extensions of imaginary quadratic fields.* English translation in: Math. USSR-Sb. 31 (1977), no. 1, 49-62 (1978).
- [Kur78] P. F. Kurcanov: *Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms.* English translation in: Math. USSR Izvestija, Vol 12 (1978), No. 3, 543-555.
- [MTT] B. Mazur, J. Tate and J. Teitelbaum: *On* p*-adic analogues of the conjectures of Birch and Swinnerton-Dyer*. Invent. Math. 84 (1986), 1-48.
- [Neu] J. Neukirch: *Algebraische Zahlentheorie*. Springer-Lehrbuch, 1992.
- [Se1] J.-P. Serre: *Trees*. Springer Monographs in Mathematics, 1980.
- [Se2] J.-P. Serre: *Cohomologie des groupes discrets*. Ann. of Math. Studies 70 (1971), 77-169.
- [Sp] M. Spieß: *On special zeros of* p*-adic L-functions of Hilbert modular forms*. Invent. Math., April 2013 (to be published in print), http://link.springer.com/article/10.1007/s00222-013-0465-0
- [We] A. Weil: *Dirichlet Series and Automorphic Forms*. Lecture Note in Mathematics, Springer-Verlag, 1971.