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Introduction

Let F be a number field (with adele ring AF ), and p a prime number. Let π =
⊗

v πv
be an automorphic representation of GL2(AF ). Attached to π is the automorphic
L-function L(s, π), for s ∈ C, of Jacquet-Langlands [JL]. Under certain conditions
on π, we can also define a p-adic L-function Lp(s, π) of π, with s ∈ Zp. It is related
to L(s, π) by the interpolation property: For every character χ : Gp → C∗ of finite
order we have

Lp(0, π ⊗ χ) = τ(χ)
∏

p|p
e(πp, χp) · L(12 , π ⊗ χ),

where e(πp, χp) is a certain Euler factor (see theorem 4.12 for its definition) and τ(χ)
is the Gauss sum of χ.
Lp(s, π) was defined by Haran [Har] in the case where π has trivial central charac-

ter and πp is a spherical principal series representation for all p|p. For a totally real
field F , Spieß [Sp] has given a new construction of Lp(s, π) that also allows for πp
to be a special (Steinberg) representation for some p|p.

Here, we generalize Spieß’ construction of Lp(s, π) to automorphic representations
π over any number field, with arbitrary central character. As in [Sp], we will assume
that π is ordinary at all primes p|p (cf. definition 2.5), that πv is discrete of weight
2 at all real infinite places v, and a similar condition at the complex places.
Throughout most of this thesis, we follow [Sp]; for section 4.1, we follow Bygott

[By], Ch. 4.2, who in turn follows Weil [We].

We define the p-adic L-function of π as an integral of the p-adic cyclotomic charac-
ter N with respect to a certain measure µπ on the Galois group Gp of the maximal
abelian extension that is unramified outside p and ∞, specifically

Lp(s, π) :=

∫

Gp

N (γ)sµπ(dγ)

(cf. section 4.6 for details). Heuristically, µπ is the image of µπp ×W p ( x
p 0
0 1 ) d

×xp

under the reciprocity map IF = F ∗
p × Ip → Gp of global class field theory. Here

µπp =
∏

p|p µπp is the product of certain local distributions µπp on F
∗
p attached to πp,

d×xp is the Haar measure on the group Ip =
∏′

v∤p F
∗
v of p-ideles, and W p =

∏

v∤pWv

is a specific Whittaker function of πp := ⊗v∤pπv.

The structure of this work is the following: In chapter 2, we describe the local
distributions µπp on F ∗

p ; they are the image of a Whittaker functional under a map
δ on the dual of πp. For constructing δ, we describe πp in terms of what we call
the “Bruhat-Tits graph” of F 2

p : the directed graph whose vertices (resp. edges)
are the lattices of F 2

p (resp. inclusions between lattices). Roughly speaking, it is a
covering of the (directed) Bruhat-Tits tree of GL2(Fp) with fibres ∼= Z. When πp is
the Steinberg representation, µp can actually be extended to all of Fp.
In chapter 3, we attach a p-adic distribution µφ to any map φ(U, xp) of an open

compact subset U ⊆ F ∗
p :=

∏

p|p F
∗
p and an idele xp ∈ Ip (satisfying certain con-

ditions). Integrating φ over all the infinite places, we get a cohomology class
κφ ∈ Hd(F ∗′,Df (C)) (where d = r + s − 1 is the rank of the group of units of
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F , F ∗′ ∼= F ∗/µF is a maximal torsion-free subgroup of F ∗, and Df (C) is a space of
distributions on the finite ideles of F ). We show that µφ can be described solely in
terms of κφ, and µφ is a (vector-valued) p-adic measure if κφ is “integral”, i.e. if
it lies in the image of Hd(F ∗′,Df (R)), for a Dedekind ring R consisting of “p-adic
integers”.
In chapter 4, we define a map φπ by

φπ(U, x
p) :=

∑

ζ∈F ∗

µπp(ζU)W
p

(
ζxp 0
0 1

)

(U ⊆ F ∗
p compact open, xp ∈ Ip). φπ satisfies the conditions of chapter 3, and we

show that κφπ is integral by “lifting” the map φπ 7→ κφπ to a function mapping an
automorphic form to a cohomology class in Hd(GL2(F )

+,Af ), for a certain space of
functions Af . (Here GL2(F )

+ is the subgroup of M ∈ GL2(F ) with totally positive
determinant.) For this, we associate to each automorphic form ϕ a harmonic form
ωϕ on a generalized upper-half space H∞, which we can integrate between any two
cusps in P1(F ).
Then we can define the p-adic L-function Lp(s, π) :=

∫

Gp
N (γ)sµπ(dγ) as above,

with µπ := µφπ . By a result of Harder [Ha], Hd(GL2(F )
+,Af )π is one-dimensional,

which implies that Lp(s, π) has values in a one-dimensional Cp-vector space.

Our construction has the following potential application: If E is a modular elliptic
curve over F corresponding to π (i.e. the local L-factors of the Hasse-Weil L-function
L(E, s) and of the automorphic L-function L(s− 1

2
, π) coincide at all places v of F ),

we define the p-adic L-function of E as Lp(E, s) := Lp(s, π). The condition that
π be ordinary at all p|p means that E must have good ordinary or multiplicative
reduction at all places p|p of F .
The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum [MTT]

for F = Q, and by Hida [Hi] for totally real F ) states that

ords=0 Lp(E, s) ≥ n, (0.1)

where n is the number of p|p at which E has split multiplicative reduction, and gives

an explicit formula for the value of the n-th derivative L
(n)
p (E, 0) as a multiple of

L(E, 1). The conjecture was proved in the case F = Q by Greenberg and Stevens
[GS] and independently by Kato, Kurihara and Tsuji.
In [Sp], Spieß has used his new construction of Lp(E, s) := Lp(s, π) to prove the

conjecture for all totally real number fields F . Our generalization of Lp(s, π) might
therefore be well-suited for proving the conjecture for general F .

Acknowledgements. I would like to thank Michael Spieß for suggesting and advising
this thesis, and for many helpful discussions. I am also thankful to Werner Hoffmann
for a useful discussion, and to the CRC 701, ‘Spectral Structures and Topological
Methods in Mathematics’, for providing financial support during most of my studies.
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1 Preliminaries

Let X be a totally disconnected locally compact topological space, R a topological
Hausdorff ring. We denote by C(X , R) the ring of continuous maps X → R, and
let Cc(X , R) ⊆ C(X , R) be the subring of compactly supported maps. When R has
the discrete topology, we also write C0(X , R) := C(X , R), C0

c (X , R) := Cc(X , R).

We denote by Co(X ) the set of all compact open subsets of X , and for an R-module
M we denote by Dist(X ,M) the R-module of M -valued distributions on X , i.e. the
set of maps µ : Co(X ) → M such that µ(

⋃n
i=1 Ui) =

∑n
i=1 µ(Ui) for any pairwise

disjoint sets Ui ∈ Co(X ).

For an open set H ⊆ X , we denote by 1H ∈ C(X , R) the R-valued indicator func-
tion of H on X .

Throughout this paper, we fix a prime p and embeddings ι∞ : Q →֒C, ιp : Q →֒Cp.
Let O denote the valuation ring of Q with respect to the p-adic valuation induced
by ιp.

We write G := GL2 throughout the thesis, and let B denote the Borel subgroup of
upper triangular matrices, T the maximal torus (consisting of all diagonal matrices),
and Z the center of G.

For a number field F , we let G(F )+ ⊆ G(F ) and B(F )+ ⊆ B(F ) denote the cor-
responding subgroups of matrices with totally positive determinant, i.e. σ(det(g))
is positive for each real embedding σ : F →֒R. (If F is totally complex, this is an
empty condition, so we have G(F )+ = G(F ), B(F )+ = B(F ) in this case.) Simi-
larly, we define G(R)+ and G(C)+ = G(C).

1.1 p-adic measures

Definition 1.1. Let X be a compact totally disconnected topological space. For
a distribution µ : Co(X ) → C, consider the extension of µ to the Cp-linear map
C0(X ,Cp) → Cp ⊗Q C, f 7→

∫
fdµ. If its image is a finitely-generated Cp-vector

space, µ is called a p-adic measure.

We denote the space of p-adic measures on X by Distb(X ,C) ⊆ Dist(X ,C). It
is easily seen that µ is a p-adic measure if and only if the image of µ, considered
as a map C0(X ,Z) → C, is contained in a finitely generated O-module. A p-adic
measure can be integrated against any continuous function f ∈ C(X ,Cp).

4



2 Local results for representations with arbitrary

central character

For this chapter, let F be a finite extension of Qp, OF its ring of integers, ̟ its
uniformizer and p = (̟) the maximal ideal. Let q be the cardinality of OF/p, and
set U := U (0) := O×

F , U
(n) := 1 + pn ⊆ U for n ≥ 1.

We fix an additive character ψ : F → Q
∗
with kerψ = OF . We let | · | be the

absolute value on F ∗ (normalized by |̟| = q−1), ord = ord̟ the additive valuation,
and dx the Haar measure on F normalized by

∫

OF
dx = 1. We define a (Haar)

measure on F ∗ by d×x := q
q−1

dx
|x| (so

∫

O×

F
d×x = 1).

2.1 Gauss sums

Recall that the conductor of a character χ : F ∗ → C∗ is by definition the largest
ideal pn, n ≥ 0, such that kerχ ⊇ U (n), and that χ is unramified if its conductor is
p0 = OF .
We will need the following two easy lemmas of [Sp]:

Lemma 2.1. Let X ⊆ {x ∈ F ∗| ord(x) ≤ −2} be a compact open subset such that
aU (− ord(a)−1) ⊆ X for all a ∈ X. Then

∫

X

ψ(x)d×x = 0.

(cf. [Sp], lemma 3.1)

Lemma 2.2. Let χ : F ∗ → C∗ be a quasicharacter of conductor pf , f ≥ 1, and let
a ∈ F ∗ with ord(a) 6= −f . Then we have

∫

U

ψ(ax)χ(x)d×x = 0.

(cf. [Sp], lemma 3.2)

Definition 2.3. Let χ : F ∗ → C∗ be a quasi-character with conductor pf . The
Gauss sum of χ (with respect to ψ) is defined by

τ(χ) := [U : U (f)]

∫

̟−fU

ψ(x)χ(x)d×x.

For a locally constant function g : F ∗ → C, we define
∫

F ∗

g(x)dx := lim
n→∞

∫

x∈F ∗,−n≤ord(x)≤n
g(x)dx,

whenever that limit exists. Then we have the following formula:

Lemma 2.4. Let χ : F ∗ → C∗ be a quasi-character with conductor pf . For f = 0,
assume |χ(̟)| < q. Then we have

∫

F ∗

χ(x)ψ(x)dx =

{
1−χ(̟)−1

1−χ(̟)q−1 if f = 0

τ(χ) if f > 0.
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Proof. (cf. [Sp], lemma 3.4)
For a ∈ F ∗, we have

∫

U

ψ(ax)d×x =







1, if ord(a) ≥ 0

− 1
q−1

, if ord(a) = −1

0, if ord(a) ≤ −2 (by lemma 2.1).

(2.1)

Since d×x = dx
(1−1/q)|x| , this implies

∫

F ∗

χ(x)ψ(x)dx =
∞∑

n=−∞
(1− 1/q)q−n

∫

̟nU

χ(x)ψ(x)d×x.

For f > 0, all summands except the (−f)th are zero by lemma 2.2, thus we have

∫

F ∗

χ(x)ψ(x)dx = (1− 1/q)qf
∫

̟−fU

χ(x)ψ(x)d×x = τ(χ)

by the definition of τ (since [U : U (f)] = (1− 1/q)qf ).
For f = 0, we have by (2.1)

∫

F ∗

χ(x)ψ(x)dx = (1− 1/q)

(

− q

(q − 1)χ(̟)
+

∞∑

n=0

(χ(̟)q−1)n

)

= − 1

χ(̟)
+

1− 1/q

1− χ(̟)q−1
(since |χ(̟)| < q)

=
1− χ(̟)−1

1− χ(̟)q−1
.

2.2 Tamely ramified representations of GL2(F )

For an ideal a ⊂ OF , let K0(a) ⊆ G(OF ) be the subgroup of matrices congruent to
an upper triangular matrix modulo a.

Let π : GL2(F ) → GL(V ) be an irreducible admissible infinite-dimensional rep-
resentation (where V is a C-vector space), with central quasicharacter χ. It is
well-known (e.g [Ge], Thm. 4.24) that there exists a maximal ideal c(π) = c ⊂ OF ,
the conductor of π, such that the space V K0(c),χ = {v ∈ V |π(g)v = χ(a)v ∀g =
(
a b
c d

)
∈ K0(c)} is non-zero (and in fact one-dimensional). A representation π is

called tamely ramified if its conductor divides p.
If π is tamely ramified, then π is the spherical resp. special representation π(χ1, χ2)

(in the notation of [Ge] or [Sp]):
If the conductor is OF , π is (by definition) spherical and hence a principal series

representation π(χ1, χ2) for two unramified quasi-characters χ1 and χ2 with χ1χ
−1
2 6=

| · |±1 ([Bu], Thm. 4.6.4).
If the conductor is p, then π = π(χ1, χ2) with χ1χ

−1
2 = | · |±1.

For α ∈ C∗, we define a character χα : F ∗ → C∗ by χα(x) := αord(x).

6



So let now π = π(χ1, χ2) be a tamely ramified irreducible admissible infinite-
dimensional representation of GL2(F ); in the special case, we assume χ1 and χ2 to
be ordered such that χ1 = | · |χ2.
Set αi := χi(̟)

√
q ∈ C∗ for i = 1, 2. (We also write π = πα1,α2 sometimes.) Set

a := α1 + α2, ν := α1α2/q. Define a distribution µα1,ν := µα1/ν := ψ(x)χα1/ν(x)dx
on F ∗.

For later use, we will need the following condition on the αi:

Definition 2.5. π = πα1,α2 is called ordinary if a and ν both lie in O∗
(i.e. they

are p-adic units in Q). Equivalently, this means that either α1 ∈ O∗
and α2 ∈ qO∗

,
or vice versa.

Proposition 2.6. Let χ : F ∗ → C∗ be a quasi-character with conductor pf ; for
f = 0, assume |χ(̟)| < |α2|. Then the integral

∫

F ∗ χ(x)µα1/ν(dx) converges and we
have ∫

F ∗

χ(x)µα1/ν(dx) = e(α1, α2, χ)τ(χ)L(
1
2
, π ⊗ χ),

where

e(α1, α2, χ) =







(1− α1χ(̟)q−1)(1− α2χ(̟)−1q−1)(1− α2χ(̟)q−1)

(1− χ(̟)α−1
2 )

, f = 0 and π spherical,

(1− α1χ(̟)q−1)(1− α2χ(̟)−1q−1)

(1− χ(̟)α−1
2 )

, f = 0 and π special,

(α1/ν)
−f = (α2/q)

f , f > 0,

and where we assume the right-hand side to be continuously extended to the potential
removable singularities at χ(̟) = q/α1 or = q/α2.

Proof. Case 1: f = 0, π spherical
We have

L(s, π ⊗ χ) =
1

(
1− α1χ(̟)q−(s+

1
2)
)(
1− α2χ(̟)q−(s+

1
2)
) ,

so

L(1
2
, π ⊗ χ) · τ(χ) · e(α1, α2, χ) =

1− α2q
−1χ(̟)−1

1− χ(̟)α−1
2

=
1− να−1

1 χ(̟)−1

1− α1χ(̟)ν−1q−1

=

∫

F ∗

χ(x)χα1/ν(x)ψ(x)dx

=

∫

F ∗

χ(x)µα1/ν(dx)

by lemma 2.4.
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Case 2: f = 0, π special
Assuming χ1 = | · |χ2, we have

L(s, π ⊗ χ) =
1

1− α1χ(̟)q−(s+
1
2)

and thus

L(1
2
, π ⊗ χ) · τ(χ) · e(α1, α2, χ) =

1− να−1
1 χ(̟)−1

1− α1ν−1χ(̟)q−1

=

∫

F ∗

χ(x)χα1/ν(x)ψ(x)dx

=

∫

F ∗

χ(x)µα1/ν(dx).

by lemma 2.4.

Case 3: f > 0
In this case, L(s, π ⊗ χ) = 1 for s > 0 and

∫

F ∗

χ(x)µα1/ν(dx) = τ(χ · χα1/ν)

= qf−1(q − 1)

∫

̟−fU

ψ(x)χ(x)χα1/ν(x)d
×x

= (α1/ν)
−fqf−1(q − 1)

∫

̟−fU

ψ(x)χ(x)d×x

= e(α1, α2, χ) · τ(χ) · L(12 , π ⊗ χ).

2.3 The Bruhat-Tits graph T̃
Let Ṽ denote the set of lattices (i.e. submodules isomorphic to O2

F ) in F
2, and let Ẽ

be the set of all inclusion maps between two lattices; for such a map e : v1 →֒ v2 in
Ẽ , we define o(e) := v1, t(e) := v2. Then the pair T̃ := (Ṽ , Ẽ) is naturally a directed
graph, connected, with no directed cycles (specifically, Ẽ induces a partial ordering
on Ṽ). For each v ∈ Ṽ , there are exactly q + 1 edges beginning (resp. ending) in v,
each.

Recall that the Bruhat-Tits tree T = (V , ~E) of G(F ) is the directed graph whose
vertices are homothety classes of lattices of F 2 (i.e. V = Ṽ/ ∼, where v ∼ ̟iv

for all i ∈ Z), and the directed edges e ∈ ~E are homothety classes of inclusions of

lattices. We can define maps o, t : ~E → V analogously. For each edge e ∈ ~E , there
is an opposite edge e′ ∈ ~E with o(e′) = t(e), t(e′) = o(e); and the undirected graph
underlying T is simply connected. We have a natural “projection map” π : T̃ → T ,
mapping each lattice and each homomorphism to its homothety class. Choosing a

(set-theoretic) section s : V → Ṽ , we get a bijection V ×Z
∼=−→ Ṽ via (v, i) 7→ ̟is(v).
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The group G(F ) operates on Ṽ via its standard action on F 2, i.e. gv = {gx|x ∈ v}
for g ∈ G(F ), and on Ẽ by mapping e : v1 → v2 to the inclusion map ge : gv1 → gv2.
The stabilizer of the standard vertex v0 := O2

F is G(OF ).

For a directed edge e ∈ ~E of the Bruhat-Tits tree T , we define U(e) to be the
set of ends of e (cf. [Se1]/[Sp]); it is a compact open subset of P1(F ), and we have
gU(e) = U(ge) for all g ∈ G(F ).

For n ∈ Z, we set vn := OF ⊕ pn ∈ Ṽ , and denote by en the edge from vn+1

to vn; the “decreasing” sequence (π(e−n))n∈Z is the geodesic from ∞ to 0. (The
geodesic from 0 to ∞ traverses the π(vn) in the natural order of n ∈ Z.) We have
U(π(en)) = p−n for each n.

Now (following [BL] and [Sp]), we can define a ”height” function h : V → Z as
follows: The geodesic ray from v ∈ V to ∞ must contain some π(vn) (n ∈ Z),
since it has non-empty intersection with A := {π(vn)|n ∈ Z}; we define h(v) :=
n − d(v, π(vn)) for any such vn; this is easily seen to be well-defined, and we have
h(π(vn)) = n for all n ∈ Z. We have the following lemma of [Sp]:

Lemma 2.7. (a) For all e ∈ E , we have

h(t(e)) =

{

h(o(e)) + 1 if ∞ ∈ U(e),

h(o(e))− 1 otherwise.

(b) For a ∈ F ∗, b ∈ F , v ∈ V we have

h

((
a b
0 1

)

v

)

= h(v)− ord̟(a).

Proof. (cf. [Sp], Lemma 3.6)
(a) is clear from the definition of h. For (b) we can assume v = π(v0) =: v0 since
B′(F ) := {( a b0 1 ) |a ∈ F ∗, b ∈ F} operates transitively on V . Put e := ( a b0 1 ) π(e0);
since U(e) = aOF + b does not contain ∞, we have

h

((
a b
0 1

)

v0

)

= h(t(e)) = h(o(e))− 1 = h

((
a̟−1 b
0 1

)

v0

)

− 1.

If b 6= 0, we can iterate this n times such that ord(a̟−n) ≥ ord b and get

h

((
a b
0 1

)

v0

)

= h

((
a̟−n b
0 1

)

v0

)

− n = h

((
a̟−n 0
0 1

)

v0

)

− n

= h

((
a 0
0 1

)

v0

)

= h(π(v− ord(a))) = − ord(a).

2.4 Hecke structure of T̃
Let R be a ring, M an R-module. We let C(Ṽ ,M) be the R-module of maps
φ : Ṽ → M , and C(Ẽ ,M) the R-module of maps Ẽ → M . Both are G(F )-modules
via (gφ)(v) := φ(g−1v), (gc)(e) := c(g−1e).
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We let Cc(Ṽ ,M) ⊆ C(Ṽ ,M) and Cc(Ẽ ,M) ⊆ C(Ẽ ,M) be the (G(F )-stable) sub-
modules of maps with compact support, i.e. maps that are zero outside a finite set.
We get pairings

〈- , -〉 : Cc(Ṽ , R)× C(Ṽ ,M) →M, 〈φ1, φ2〉 :=
∑

v∈Ṽ

φ1(v)φ2(v) (2.2)

and
〈- , -〉 : Cc(Ẽ , R)× C(Ẽ ,M) →M, 〈c1, c2〉 :=

∑

e∈Ẽ

c1(v)c2(v). (2.3)

We define Hecke operators T,R : C(Ṽ ,M) → C(Ṽ ,M) by

Tφ(v) =
∑

t(e)=v

φ(o(e)) and Rφ := ̟φ (i.e. Rφ(v) = φ(̟−1v))

for all v ∈ Ṽ . These restrict to operators on Cc(Ṽ , R), which we sometimes denote
by Tc and Rc for emphasis. With respect to (2.2), Tc is adjoint to TR, and Rc is
adjoint to its inverse operator R−1 : Cc(Ṽ , R) → Cc(Ṽ , R).

T and R obviously commute, and we have the following Hecke structure theorem
on compactly supported functions on Ṽ (an analogue of [BL], Thm. 10):

Theorem 2.8. Cc(Ṽ , R) is a free R[T,R±1]-module (where R[T,R±1] is the ring of
Laurent series in R over the polynomial ring R[T ], with R and T commuting).

Proof. Fix a vertex v0 ∈ Ṽ . For each n ≥ 0, let Cn be the set of vertices v ∈ Ṽ
such that there is a directed path of length n from v0 to v in Ṽ , and such that
d(π(v0), π(v)) = n in the Bruhat-Tits tree T . So C0 = {v0}, and Cn is a lift of the
”circle of radius n around v0” in T , in the parlance of [BL].
One easily sees that

⋃∞
n=0Cn is a complete set of representatives for the projec-

tion map π : Ṽ → V ; specifically, for n > 1 and a given v ∈ Cn−1, Cn contains
exactly q elements adjacent to v in Ṽ ; and we can write Ṽ as a disjoint union
⋃

j∈Z
⋃∞
n=0 Rj(Cn).

We further define V0 := {v0} and choose subsets Vn ⊆ Cn as follows: We let V1 be
any subset of cardinality q. For n > 1, we choose q − 1 out of the q elements of Cn
adjacent to v′, for every v′ ∈ Cn−1, and let Vn be the union of these elements for all
v′ ∈ Cn−1. Finally, we set

Hn,j := {φ ∈ Cc(Ṽ , R)| Supp(φ) ⊆
n⋃

i=0

Rj(Ci)} for each n ≥ 0, j ∈ Z,

Hn :=
⋃

j∈ZHn,j, and H−1 := H−1,j := {0}. (For ease of notation, we identify v ∈ Ṽ
with its indicator function 1{v} ∈ Cc(Ṽ , R) in this proof.)

Define T ′ : Cc(Ṽ , R) → Cc(Ṽ , R) by

T ′(φ)(v) :=
∑

t(e)=(v),

o(e)∈Rj(Cn)

φ(o(e)) for each v ∈ Rj(Cn−1), j ∈ Z;
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T ′ can be seen as the ”restriction to one layer”
⋃∞
n=0 Rj(Cn) of T . We have T ′(v) ≡

T (v) mod Hn−1 for each v ∈ Hn, since the ”missing summand” of T ′ lies in Hn−1.
We claim that for each n ≥ 0, the set Xn,j :=

⋃n
i=0 RjT n−i(Vi) is an R-basis for

Hn,j/Hn−1,j. By the above congruence, we can replace T by T ′ in the definition of
Xn,j.
The claim is clear for n = 0. So let n ≥ 1, and assume the claim to be true for all

n′ ≤ n. For each v ∈ Cn−1, the q points in Cn adjacent to v are generated by the
q − 1 of these points lying in Vn, plus T

′v (which just sums up these q points). By
induction hypothesis, v is generated by Xn−1,0, and thus (taking the union over all
v), Cn is generated by T ′(Xn−1,0) ∪ Vn = Xn,0. Since the cardinality of Xn,0 equals
the R-rank of Hn,0/Hn−1,0 (both are equal to (q+1)qn−1), Xn,0 is in fact an R-basis.
Analoguously, we see that Hn,j/Hn−1,j has Rj(Xn,0) = Xn,j as a basis, for each

j ∈ Z.
From the claim, it follows that

⋃

j∈ZXn,j is an R-basis of Hn/Hn−1 for each n, and

that V :=
⋃∞
n=0 Vn is an R[T,R±1]-basis of Cc(Ṽ , R).

For a ∈ R and ν ∈ R∗ , we let B̃a,ν(F,R) be the ”common cokernel” of T − a and
R− ν in Cc(Ṽ , R), namely B̃a,ν(F,R) := Cc(Ṽ , R)/(Im(T − a)+ Im(R− ν)); dually,
we define B̃a,ν(F,M) := ker(T − a) ∩ ker(R− ν) ⊆ C(Ṽ ,M).

For a lattice v ∈ Ṽ , we define a valuation ordv on F as follows: For w ∈ F 2,
the set {x ∈ F |xw ∈ v} is some fractional ideal ̟mOF ⊆ F (m ∈ Z); we
set ordv(w) := m. This map can also be given explicitly as follows: Let λ1, λ2
be a basis of v. We can write any w ∈ F 2 as w = x1λ1 + x2λ2; then we have
ordv(w) = min{ord̟(x1), ord̟(x2)}. This gives a ”valuation” map on F 2, as one
easily checks. We restrict it to F ∼= F ×{0} →֒F 2 to get a valuation ordv on F , and
consider especially the value at e1 := (1, 0).

Lemma 2.9. Let α, ν ∈ R∗, and put a := α+qν/α. Define a map ̺ = ̺α,ν : Ṽ → R
by ̺(v) := αh(π(v))ν− ordv(e1). Then ̺ ∈ B̃a,ν(F,R).

Proof. One easily sees that
(
v 7→ ν− ordv(e1)

)
∈ ker(R− ν). It remains to show that

̺ ∈ ker(T − a):
We have the Iwasawa decomposition G(F ) = B(F )G(OF ) = {( ∗ ∗

0 1 )}Z(F )G(OF );
thus every vertex in Ṽ can be written as ̟iv with v = ( a b0 1 ) v0, with i ∈ Z, a ∈
F ∗, b ∈ F .
Now the lattice v = ( a b0 1 ) v0 is generated by the vectors λ1 = ( a0 ) and λ2 =

( b1 ) ∈ O2
F , so e1 = a−1λ1 and thus ordv(e1) = ord̟(a

−1) = − ord̟(a). The q + 1
neighbouring vertices v′ for which there exists an e ∈ Ẽ with o(e) = v′, t(e) = v
are given by Niv, i ∈ {∞} ∪ OF/p, with N∞ := ( 1 0

0 ̟ ), and Ni := (̟ i
0 1 ) where

i ∈ OF runs through a complete set of representatives mod ̟. By lemma 2.7,
h(π(N∞v)) = h(π(v)) + 1 and h(π(Niv)) = h(π(v)) − 1 for i 6= ∞. By considering
the basis {Niλ1, Niλ2} of Niv for each Ni, we see that ordN∞v(e1) = ordv(e1) and
ordNiv(e1) = ordv(e1)− 1 for i 6= ∞. Thus we have
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(T̺)(v) =
∑

t(e)=v

αh(π(o(e)))ν− ordo(e)(e1) = αh(π(v))+1ν− ordv e1 + q · αh(π(v))−1ν1−ordv(e1)

= (α + qα−1ν)αh(π(v))ν− ordv e1 = a̺(v),

and also (T̺)(̟iv) = (TR−i̺)(v) = R−i(a̺)(v) = a̺(̟iv) for a general ̟iv ∈ Ṽ ,
which shows that ̺ ∈ ker(T − a).

If a2 6= ν(q + 1)2 (we will call this the ”spherical case”i), we put Ba,ν(F,R) :=
B̃a,ν(F,R) and Ba,ν(F,M) := B̃a,ν(F,M).

In the ”special case” a2 = ν(q + 1)2, we need to assume that the polynomial
X2 − aνX + qν−1 ∈ R[X] has a zero α′ ∈ R. Then the map ̺ := ̺α′,ν ∈ C(Ṽ , R)
defined as above lies in B̃aν,ν−1

(F,R) = ker(TR− a)∩ ker(R−1 − ν) by Lemma 2.9,
since aν = α′+ qν−1/α′. In other words, the kernel of the map 〈·, ̺〉 : Cc(Ṽ , R) → R
contains Im(T − a) + Im(R− ν); and we define

Ba,ν(F,R) := ker (〈·, ̺〉) / (Im(T − a) + Im(R− ν))

to be the quotient; evidently, it is an R-submodule of codimension 1 of B̃a,ν(F,R).
Dually, T −a and R−ν both map the submodule ̺M = {̺ ·m,m ∈M} of C(Ṽ ,M)
to zero and thus induce endomorphisms on C(Ṽ ,M)/̺M ; we define Ba,ν(F,M) to
be the intersection of their kernels.

In the special case, since ν = α2, Lemma 2.9 states that ̺(gv0) = χα(ad)̺(v0) =

χα(det g)̺(v0) for all g =

(
a b
0 d

)

∈ B(F ), and thus for all g ∈ G(F ) by the Iwasawa

decomposition, since G(OF ) fixes v0 and lies in the kernel of χα ◦ det. By the mul-
tiplicity of det, we have (g−1̺)(v) = ̺(gv) = χα(det g)̺(v) for all g ∈ G(F ), v ∈ Ṽ .
So φ ∈ ker〈·, ̺〉 implies 〈gφ, ̺〉 = 〈φ, g−1̺〉 = χα(det g)〈φ, ̺〉 = 0, i.e. ker〈·, ̺〉 and
thus Ba,ν(F,R) are G(F )-modules.

By the adjointness properties of the Hecke operators T and R, we have pairings
coker(Tc − a)× ker(TR− a) →M and coker(Rc − ν)× ker(R−1 − ν) →M , which
”combine” to give a pairing

〈- , -〉 : Ba,ν(F,R)× Baν,ν−1

(F,M) →M

(since ker(TR−a)∩ker(R−1−ν) = ker(T−aν)∩ker(R−ν−1)), and a corresponding

isomorphism Baν,ν−1
(F,M)

∼=−→ Hom(Ba,ν(F,R),M).

Definition 2.10. Let G be a totally disconnected locally compact group, H ⊆ G an
open subgroup. For a smooth R[H]-module M , we define the (compactly) induced

iWe use this term since these pairs of a, ν will later be seen to correspond to a spherical
representation of GL2(F ). The case a2 = ν(q + 1)2 means that there exists an α ∈ R∗ with
a = α(q + 1), ν = α2, which will correspond to a special representation.
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G-representation of M , denoted IndGHM , to be the space of maps f : G → M such
that f(hg) = f(g) for all g ∈ G, h ∈ H, and such that f has compact support
modulo H. We let G act on IndGHM via g · f(x) := f(xg). (We can also write
IndGHM = R[G]⊗R[H] M , cf. [Br], III.5.)
We further define CoindGHM := HomR[H](R[G],M). Finally, for an R[G]-module

N , we write resGH N for its underlying R[H]-module (“restriction of scalars”).

By Theorem 2.8, Tc − a (as well as Rc − ν) is injective, and the induced map

Rc − ν : coker(Tc − a) = Cc(Ṽ , R)/ Im(Tc − a) → coker(Tc − a)

(of R[T,R±1]/(T − a) = R[R±1]-modules) is also injective. Now since G(F ) acts
transitively on Ṽ , with the stabilizer of v0 := O2

F being K := G(OF ), we have an

isomorphism Cc(Ṽ , R) ∼= Ind
G(F )
K R. Thus we have exact sequences

0 → Ind
G(F )
K R

T−a−−→ Ind
G(F )
K R −→ coker(Tc − a) −→ 0 (2.4)

and (for a, ν in the spherical case)

0 → coker(Tc − a)
R−ν−−→ coker(Tc − a) → Ba,ν(F,R) → 0, (2.5)

with all entries being free R-modules. Applying HomR(·,M) to them, we get:

Lemma 2.11. We have exact sequences of R-modules

0 → ker(TR− a) → Coind
G(F )
K M

T−a−−→ Coind
G(F )
K M → 0

and, if Ba,ν(F,M) is spherical (i.e. a2 6= ν(q + 1)2),

0 → Baν,ν−1

(F,M) → ker(TR− a)
R−ν−−→ ker(TR− a) → 0.

For the special case, we have to work a bit more to get similar exact sequences:

By [Sp], eq. (22), for the representation St−(F,R) := B−(q+1),1(F,R) (i.e. ν = 1,
α = −1) with trivial central character, we have an exact sequence of G-modules

0 → IndGKZ R → IndGK′Z R → St−(F,R) → 0, (2.6)

where K ′ = 〈W 〉K0(p) is the subgroup of KZ generated by W := ( 0 1
̟ 0 ) and

the subgroup K0(p) ⊆ K of matrices that are upper-triangular modulo p. (Since
W 2 ∈ Z, K0(p)Z is a subgroup of K ′ of order 2.) Now (π, V ) can be written as
π = χ ⊗ St− for some character χ = χZ (cf. the proof of lemma 2.14 below), and
we have an obvious G-isomorphism

(π, V ) ∼= (π ⊗ (χ ◦ det), V ⊗R R(χ ◦ det)),

where R(χ ◦ det) is the ring R with G-module structure given via gr = χ(det(g))r
for g ∈ G, r ∈ R. Tensoring (2.6) with R(χ ◦ det) over R gives an exact sequence of
G-modules

0 → IndGKZ χ→ IndGK′Z χ→ V → 0. (2.7)
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It is easily seen that R(χ ◦ det) fits into another exact sequence of G-modules

0 → IndGH R
(̟ 0
0 1 )−χ(̟) id

−−−−−−−−−→ IndGH R
ψ−→ R(χ ◦ det) → 0,

whereH := {g ∈ G| det g ∈ O×
F } is a normal subgroup containingK, (̟ 0

0 1 ) (f)(g) :=
f((̟ 0

0 1 )
−1 g) for f ∈ IndGH R = {f : G → R|f(Hg) = f(g) for all g ∈ G}, g ∈ G,

is the natural operation of G, and where ψ is the G-equivariant map defined by
1U 7→ 1.
Now since H ⊆ G is a normal subgroup, we have IndGH R

∼= R[G/H] as G-modules
(in fact G/H ∼= Z as an abstract group). Let X ⊆ G be a subgroup such that the
natural inclusion X/(X∩H) →֒G/H has finite cokernel; let giH, i = 1, . . . n be a set
of representatives of that cokernel. Then we have a (non-canonical) X-isomorphism
⊕n

i=0 Ind
X
X∩H → IndGH R defined via (1(X∩H)x)i 7→ 1Hxgi for each i = 1, . . . , n (cf.

[Br], III (5.4)).
Using this isomorphism and the “tensor identity” IndGHM⊗N ∼= IndGH(M⊗resGH N)

for any groups H ⊆ G, H-module M and G-module N ([Br] III.5, Ex. 2), we have

IndGKZ R⊗R IndGH R
∼= IndGKZ(res

G
KZ(Ind

G
H R))

= IndGKZ((Ind
KZ
KZ∩H R)

2)

= (IndGKZ(Ind
KZ
K R))2 = (IndGK R)

2

(since KZ/KZ ∩H →֒G/H has index 2), and similarly

IndGK′Z R⊗R IndGH R
∼= IndGK′Z(res

G
K′Z(Ind

G
H R))

∼= IndGK′Z((Ind
K′Z
K′Z∩H R)

2)

∼= (IndGK′ R)2

and thus, we can resolve the first and second term of (2.7) into exact sequences

0 → (IndGK R)
2 → (IndGK R)

2 → IndGKZ χ→ 0,

0 → (IndGK′ R)2 → (IndGK′ R)2 → IndG〈W 〉K0(p)Z
χ→ 0.

Dualizing (2.7) and these by taking Hom(·,M) for an R-module M , we get a
“resolution” of Baν,ν−1

(F,M) in terms of coinduced modules:

Lemma 2.12. We have exact sequences

0 →Baν,ν−1

(F,M) → CoindGK′ZM(χ) → CoindGKZM(χ) → 0,

0 →CoindGKZM(χ) → (CoindGK R)
2 → (CoindGK R)

2 → 0,

0 →CoindGK′ZM(χ) → (CoindGK′ R)2 → (CoindGK′ R)2 → 0

for all special Ba,ν(F,R) (i.e. a2 = ν(q+1)2), where χ = χZ is the central character.

It is easily seen that the above arguments could be modified to get a similar set
of exact sequences in the spherical case as well (replacing K ′ by K everywhere), in
addition to that given in lemma 2.11; but we will not need this.
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2.5 Distributions on T̃
For ̺ ∈ C(Ṽ , R) we define R-linear maps

δ̺̃ : C(Ẽ ,M) → C(Ṽ ,M), δ̺̃(c)(v) :=
∑

v=t(e)

̺(o(e))c(e)−
∑

v=o(e)

̺(t(e))c(e),

δ̺̃ : C(Ṽ ,M) → C(Ẽ ,M), δ̺̃(φ)(e) := ̺(o(e))φ(t(e))− ̺(t(e))φ(o(e)).

One easily checks that these are adjoint with respect to (2.2) and (2.3), i.e. we
have 〈δ̺̃(c), φ〉 = 〈c, δ̺̃(φ)〉 for all c ∈ Cc(Ẽ , R), φ ∈ C(Ṽ ,M). We denote the maps
corresponding to ̺ ≡ 1 by δ := δ̃1, δ

∗ := δ̃1.

For each ̺, the map δ̺̃ fits into an exact sequence

Cc(Ẽ , R)
δ̺̃−→ Cc(Ṽ , R)

〈·,̺〉−−→ R → 0

but it is not injective in general: e.g. for ̺ ≡ 1, the map Ẽ → R symbolized by

·
1

��

−1
// ·
−1

��· 1
// ·

(and zero outside the square) lies in ker δ.

The restriction δ∗|Cc(Ṽ,R) to compactly supported maps is injective since T̃ has no
directed circles, and we have a surjective map

coker
(
δ∗ : Cc(Ṽ , R) → Cc(Ẽ , R)

)
→ C0(P1(F ), R)/R, c 7→

∑

e∈Ẽ

c(e)1U(π(e))

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits tree
T ). Its kernel is generated by the functions 1{e}−1{e′} for e, e′ ∈ Ẽ with π(e) = π(e′).

For ̺1, ̺2 ∈ C(Ṽ , R) and φ ∈ C(Ṽ ,M) it is easily checked that

(
δ̺̃1 ◦ δ̺̃2

)
(φ) = (T + TR)(̺1 · ̺2) · φ− ̺2 · (T + TR)(̺1 · φ).

For a′ ∈ R and ̺ ∈ ker(T +TR−a′) , applying this equality for ̺1 = ̺ and ̺2 = 1
shows that δ̺̃ maps Im δ∗ into Im(T + TR− a′), so we get an R-linear map

δ̺̃ : coker
(
δ∗ : Cc(Ṽ , R) → Cc(Ẽ , R)

)
→ coker(Tc + TcRc − a′).

Let now again α, ν ∈ R∗, and a := α + qν/α. We let ̺ := ̺α,ν ∈ B̃a,ν(F,R)
as defined in lemma 2.9, and write δ̃α,ν := δ̺̃. Since δ̃α,ν maps 1{e} − 1{̟e} into
Im(R− ν), it induces a map

δ̃α,ν : C
0(P1(F ), R)/R → Ba,ν(F,R)
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(same name by abuse of notation) via the commutative diagram

coker δ∗
δ̃α,ν

//

��

coker(Tc + TcRc − a′)

mod (R−ν)
��

C0(P1(F ), R)/R
δ̃α,ν

// Ba,ν(F,R)
with a′ := a(1 + ν), since ̺ ∈ Ba,ν(F,R) ⊆ ker(T + TR− a′).

Lemma 2.13. We have ̺ (gv) = χα(d/a
′)χν(a′)̺(v), and thus

δ̃α,ν(gf) = χα(d/a
′)χν(a

′)gδ̃α,ν(f),

for all v ∈ Ṽ, f ∈ C0(P1(F ), R)/R and g =

(
a′ b
0 d

)

∈ B(F ).

Proof. (a) Using lemma 2.7(b) and the fact that ordgv(e1) = − ord̟(a
′) + ordv(e1),

we have

̺

((
a′ b
0 d

)

v

)

= αh(v)−ord̟(a′/d)νord̟(a′)−ordv(e1) = χα(d/a
′)χν(a

′)̺(v)

for all v ∈ Ṽ . For f and g as in the assertion, we thus have

δ̃α,ν(gf)(v) =
∑

v=t(e)

̺(o(e))f(g−1e)−
∑

v=o(e)

̺(t(e))f(g−1e)

=
∑

g−1v=t(e)

̺(o(ge))f(e)−
∑

g−1v=o(e)

̺(t(ge))f(e)

= χα(d/a
′)χν(a

′)̺(v)




∑

g−1v=t(e)

̺(o(e))f(e)−
∑

g−1v=o(e)

̺(t(e))f(e)





= χα(d/a
′)χν(a

′)gδ̃α,ν(f)(v).

We define a function δα,ν : Cc(F
∗, R) → Ba,ν(F,R) as follows: For f ∈ Cc(F

∗, R),
we let ψ0(f) ∈ Cc(P

1(F ), R) be the extension of x 7→ χα(x)χν(x)
−1f(x) by zero to

P1(F ). We set δα,ν := δ̃α,ν ◦ ψ0. If α = ν, we can define δα,ν on all functions in
Cc(F,R).
We let F ∗ operate on Cc(F,R) by (tf)(x) := f(t−1x); this induces an action of

the group T 1(F ) := {( t 0
0 1 ) |t ∈ F ∗}, which we identify with F ∗ in the obvious way.

With respect to it, we have

ψ0(tf)(x) = χα(t)χν(t)
−1tψ0(f)(x)

and
δ̃α,ν(tf) = χ−1

α (t)χν(t)tδ̃α,ν(f),
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so δα,ν is T 1(F )-equivariant.

For an R-module M , we define an F ∗-action on Dist(F ∗,M) by
∫
fd(tµ) :=

t
∫
(t−1f)dµ. Let H ⊆ G(F ) be a subgroup, and M an R[H]-module. We define an

H-action on Baν,ν−1
(F,M) by requiring 〈φ, hλ〉 = h ·〈h−1φ, λ〉 for all φ ∈ Ba,ν(F,M),

λ ∈ Baν,ν−1
(F,M), h ∈ H. With respect to these two actions, we get a T 1(F ) ∩H-

equivariant mapping

δα,ν : Baν,ν−1

(F,M) → Dist(F ∗,M), δα,ν(λ) := 〈δα,ν(·), λ〉

dual to δα,ν .

2.6 Local distributions

Now consider the case R = C. Let χ1, χ2 : F
∗ → C∗ be two unramified characters.

We consider (χ1, χ2) as a character on the torus T (F ) of GL2(F ), which induces a
character χ on B(F ) by

χ

(
t1 u
0 t2

)

:= χ1(t1)χ2(t2).

Put αi := χi(̟)
√
q ∈ C∗ for i = 1, 2. Set ν := χ1(̟)χ2(̟) = α1α2q

−1 ∈ C∗, and
a := α1 + α2 = αi + qν/αi for either i. When a and ν are given by the αi like this,
we will often write Bα1,α2(F,R) := Ba,ν(F,R) and Bα1,α2(F,M) := Baν,ν−1

(F,M) (!)
for its dual.
In the special case a2 = ν(q+1)2, we assume the χi to be sorted such that χ1 = |·|χ2

(not vice versa).

Let B(χ1, χ2) denote the space of continuous maps φ : G(F ) → C such that

φ

((
t1 u
0 t2

)

g

)

= χα1(t1)χα2(t2)|t1|φ(g) (2.8)

for all t1, t2 ∈ F ∗, u ∈ F , g ∈ G(F ). G(F ) operates canonically on B(χ1, χ2) by
right translation (cf. [Bu], Ch. 4.5). If χ1χ

−1
2 6= | · |±1, B(χ1, χ2) is a model of

the spherical representation π(χ1, χ2); if χ1χ
−1
2 = | · |±1, the special representation

π(χ1, χ2) can be given as an irreducible subquotient of codimension 1 of B(χ1, χ2).
ii

Lemma 2.14. We have a G-equivariant isomorphism B̃a,ν(F,C) ∼= B(χ1, χ2). It
induces an isomorphism Ba,ν(F,C) ∼= π(χ1, χ2) both for spherical and special repre-
sentations.

Proof. We choose a “central” unramified character χZ : F ∗ → C satisfying χ2
Z(̟) =

ν; then we have χ1 = χZχ0
−1, χ2 = χZχ0 for some unramified character χ0. We set

a′ :=
√
q (χ0(̟)−1 + χ0(̟)), which satisfies a = χZ(̟)a′.

For a representation (π, V ) of G(F ), by [Bu], Ex. 4.5.9, we can define another
representation χZ ⊗ π on V via

(g, v) 7→ χZ(det(g))π(g)v for all g ∈ G(F ), v ∈ V,

iiNote that [Bu] denotes this special representation by σ(χ1, χ2), not by π(χ1, χ2).
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and with this definition we have B(χ1, χ2) ∼= χZ ⊗B(χ−1
0 , χ0). Since B(χ−1

0 , χ0) has
trivial central character, [BL], Thm. 20 (as quoted in [Sp]) states that

B(χ−1
0 , χ0) ∼= Ba′,1(F,C) ∼= Ind

G(F )
KZ R/ Im(T − a′).

Define a G-linear map φ : IndGK R → χZ⊗ IndGKZ R by 1K 7→ (χZ ◦det) ·1KZ . Since
1K (resp. (χZ ◦det) ·1KZ) generates IndGK R (resp. χZ⊗ IndGKZ R) as a C[G]-module,
φ is well-defined and surjective.
φ maps R1K = (̟ 0

0 ̟ ) 1K to

(̟ 0
0 ̟ ) ((χZ ◦ det) · 1KZ) = χZ(̟)2 · ((χZ ◦ det) · 1KZ) = ν · φ(1K).

Thus Im(R − ν) ⊆ kerφ, and in fact the two are equal, since the preimage of the
space of functions of support in a coset KZg (g ∈ G(F )) under φ is exactly the
space generated by the 1Kzg, z ∈ Z(F ) = Z(OF ){(̟ 0

0 ̟ )}Z.
Furthermore, φ maps T1K =

∑

i∈OF /(̟)∪{∞}Ni1K (with the Ni as in Lemma 2.9)
to ∑

i

χZ(det(Ni)) · ((χZ ◦ det) ·Ni1KZ) = χZ(̟) · (χZ ◦ det)T1KZ

(since det(Ni) = ̟ for all i),and thus Im(T − a) is mapped to Im
(
χZ(̟)T − a

)
=

Im
(
χZ(̟)(T − a′)

)
= Im(T − a′).

Putting everything together, we thus have G-isomorphisms

Cc(Ṽ ,C)/
(
Im(T − a) + Im(R− ν)

) ∼= IndGK R/
(
Im(T − a) + Im(R− ν)

)

∼= χZ ⊗
(
IndGKZ R/ Im(T − a′)

)
(via φ)

∼= χZ ⊗ B(χ−1
0 , χ0) ∼= B(χ1, χ2).

Thus, Ba,ν(F,C) is isomorphic to the spherical principal series representation π(χ1, χ2)
for a2 6= ν(q + 1)2.
In the special case, Ba,ν(F,C) is aG-invariant subspace of B̃a,ν(F,C) of codimension

1, so it must be mapped under the isomorphism to the unique G-invariant subspace
of B(χ1, χ2) of codimension 1 (in fact, the unique infinite-dimensional irreducible
G-invariant subspace, by [Bu], Thm. 4.5.1), which is the special representation
π(χ1, χ2).

By [Bu], section 4.4, there exists thus for all pairs a, ν a Whittaker functional λ on
Ba,ν(F,C), i.e. a nontrivial linear map λ : Ba,ν(F,C) → C such that λ (( 1 x

0 1 )φ) =
ψ(x)λ(φ). It is unique up to scalar multiples.
From it, we furthermore get a Whittaker model Wa,ν of Ba,ν(F,C):

Wa,ν := {Wξ : GL2(F ) → C | ξ ∈ Ba,ν(F,C)},

where Wξ(g) := λ(g · ξ) for all g ∈ GL2(F ). (see e.g. [Bu], Ch. 3, eq. (5.6).)

Now write α := α1 for short. Recall the distribution µα,ν = ψ(x)χα/ν(x)dx ∈
Dist(F ∗,C). For α = ν, it extends to a distribution on F .

Proposition 2.15. (a) There exists a unique Whittaker functional λ = λa,ν on
Ba,ν(F,C) such that δα,ν(λ) = µα,ν.
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(b) For every f ∈ Cc(F
∗,C), there exists W = Wf ∈ Wa,ν such that

∫

F ∗

(af)(x)µα,ν(dx) = Wf

(
a 0
0 1

)

.

If α = ν, then for every f ∈ Cc(F,C), there exists Wf ∈ Wa,ν such that

∫

F

(af)(x)µα,ν(dx) = Wf

(
a 0
0 1

)

.

(c) Let H ⊆ U = O×
F be an open subgroup, and put WH := W1H . For every

f ∈ C0
c (F

∗,C)H we have

∫

F ∗

f(x)µα,ν(dx) = [U : H]

∫

F ∗

f(x)WH

(
x 0
0 1

)

d×x.

Proof. (a) (cf. [Sp], prop. 3.10 for the first part) We let the additive group F act on
Cc(F,C) by (x · f)(y) := f(y − x), and on C0(P1(F ),C)/C by xφ := ( 1 x

0 1 )φ. Thus
the functional

Λ : Cc(F,C) → C, f 7→
∫

F

f(x)ψ(x)dx

satisfies Λ(xf) = ψ(x)Λ(f) for all x ∈ F and all f ∈ Cc(F,C), and there is an
F -equivariant isomorphism

C0(P1(F,C)/C → Cc(F,C), φ 7→ f(x) := φ(x)− φ(∞).

Thus the composite

St(F,C) := C0(P1(F,C)/C
∼=−→ Cc(F,C)

Λ−→ C (2.9)

is a Whittaker functional of the Steinberg representation.

Let now λ : Ba,ν(F,C) → C be a Whittaker functional of Ba,ν(F,C). By lemma
2.13,

(λ ◦ δ̃α,ν)(uφ) = λ(uδ̃α,ν(φ)) = ψ(x)λ(δ̃α,ν(φ)),

so λ ◦ δ̃α,ν(φ) is a Whittaker functional if it is not zero.
To describe the image of δ̃α,ν , consider the commutative diagram

Cc(Ẽ , R)
δ̃α,ν

//

(2.10)

��

Cc(Ṽ , R)
φ 7→φ·̺

��

Cc(Ẽ , R) δ
// Cc(Ṽ , R)

〈·,1〉
// R // 0

where the vertical maps are defined by

Cc(Ẽ , R) → Cc(Ẽ , R), c 7→
(
e 7→ c(e)̺(o(e))̺(t(e))

)
(2.10)
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resp. by mapping φ to v 7→ φ(v)̺(v); both are obviously isomorphisms.
Since the lower row is exact, we have Im δ = ker〈·, 1〉 =: C0

c (Ṽ , R) and thus
Im δ̃α,ν = ̺−1 · C0

c (Ṽ , R).
Since λ 6= 0 and Ba,ν(F,C) is generated by (the equivalence classes of) the 1{v},

v ∈ Ṽ , there exists a v ∈ Ṽ such that λ(1{v}) 6= 0. Let φ be this 1{v}, and let
u = ( 1 x

0 1 ) ∈ B(F ) such that x /∈ kerψ = OF . Then

̺ · (uφ− φ) = ̺ · (1{u−1v} − 1{v}) = ̺(v)(1{u−1v} − 1{v}) ∈ C0
c (Ṽ , R)

by lemma 2.13, so 0 6= uφ− φ ∈ Im δ̃α,ν , but λ(uφ− φ) = ψ(x)λ(φ)− λ(φ) 6= 0.
So λ ◦ δ̃α,ν 6= 0 is indeed a Whittaker functional. By replacing λ by a scalar mul-

tiple, we can assume λ ◦ δ̃α,ν = (2.9).

Considering λ as an element of Baν,ν−1
(F,C) ∼= Hom(Ba,ν(F,C),C), we have

δα,ν(λ)(f) = 〈δα,ν(f), λ〉
= Λ(χαχ

−1
ν f)

=

∫

F ∗

χα(x)χ
−1
ν (x)f(x)ψ(x)dx

= µα,ν(f).

(b) For given f , set Wf (g) := λ(g · δα,ν(f)). Then Wf ∈ Wa,ν , and for all a ∈ F ∗

we have:

Wf

(
a 0
0 1

)

= λ

((
a 0
0 1

)

δα,ν(f)

)

= λ(δα,ν(af)) (by the T 1(F )-invariance of δα,ν)

=

∫

F ∗

(af)(x)µα,ν(dx).

(c) Without loss of generality we can assume f = 1aH for some a ∈ F ∗.
We have

∫

F ∗

1aH(x)µα,ν(dx) =

∫

F ∗

1H(a
−1x)µα,ν(dx)

=

∫

F ∗

(a · 1H)(x)µα,ν(dx)

= WH

(
a 0
0 1

)

by (b),

and since the left-hand side is invariant under replacing a by ah (for h ∈ H), the
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right-hand side also is, so we can integrate this constant function over H:

= [U : H]

∫

H

WH

(
ax 0
0 1

)

d×x

= [U : H]

∫

F ∗

1H(x)WH

(
ax 0
0 1

)

d×x

= [U : H]

∫

F ∗

1H(a
−1x)WH

(
x 0
0 1

)

d×x

= [U : H]

∫

F ∗

1aH(x)WH

(
x 0
0 1

)

d×x.

2.7 Semi-local theory

We can generalize many of the previous constructions to the semi-local case, con-
sidering all primes p|p at once.
So let F1, . . . , Fm be finite extensions of Qp, and for each i, let qi be the number

of elements of the residue field of Fi. We put F := F1 × · · · × Fm.
Let R again be a ring, and ai ∈ R, νi ∈ R∗ for each i ∈ {1, . . . ,m}. Put

a := (a1, . . . , am), ν := (ν1, . . . , νm). We define Ba,ν(F ,R) as the tensor product

Ba,ν(F ,R) :=
m⊗

i=1

Bai,νi(Fi, R).

For an R-module M , we define Baν,ν−1
(F ,M) := HomR(Ba,ν(F ,R),M); let

〈·, ·〉 : Ba,ν(F ,R)× Baν,ν−1

(F ,M) →M (2.11)

denote the evaluation pairing.

We have an obvious isomorphism

m⊗

i=1

C0
c (F

∗
i , R) → C0

c (F
∗, R),

⊗

i

fi 7→
(

(xi)i=1,...,m 7→
m∏

i=1

fi(xi)

)

. (2.12)

Now when we have αi,1, αi,2 ∈ R∗ such that ai = αi,1 + αi,2 and νi = αi,1αi,2q
−1
i ,

we can define the T 1(F )-equivariant map

δα1,2
:= δα1,ν : C

0
c (F ,R) → Ba,ν(F ,R)

as the inverse of (2.12) composed with
⊗m

i=1 δαi,1,νi .
Again, we will often write Bα1,α2(F,R) := Baν,ν−1(F,R) and Bα1,α2(F,M) :=

Baν,ν−1
(F,M).

If H ⊆ G(F ) is a subgroup, and M an R[H]-module, we define an H-action on
Baν,ν−1

(F,M) by requiring 〈φ, hλ〉 = h · 〈h−1φ, λ〉 for all φ ∈ Ba,ν(F,M),

λ ∈ Baν,ν−1
(F,M), h ∈ H, and get a T 1(F ) ∩H-equivariant mapping

δα1,α2 : Baν,ν−1

(F,M) → Dist(F ∗,M), δα1,α2(λ) := 〈δα1,α2(·), λ〉.
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Finally, we have a homomorphism

m⊗

i=1

Baiνi,ν−1
i (Fi, R)

∼=−→
m⊗

i=1

HomR(Baiνi,ν−1
i
(Fi, R), R)

→ Hom(Ba1,ν1(F1, R),Hom(Ba2,ν2(F2, R),Hom(. . . , R))...)
∼=−→ Baν,ν−1

(F,R).

(2.13)

where the second map is given by ⊗ifi 7→ (x1 7→ (x2 7→ (. . . 7→∏

i fi(xi))...), and
the last map by iterating the adjunction formula of the tensor product.
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3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers OF . For each finite
prime v, let Uv := O∗

v. Let A = AF denote the ring of adeles of F , and I = IF
the group of ideles of F . For a finite subset S of the set of places of F , we denote
by AS := {x ∈ AF | xv = 0 ∀v ∈ S} the S-adeles and by IS the S-ideles, and put
FS :=

∏

v∈S Fv, US :=
∏

v∈S Uv, U
S :=

∏

v/∈S Uv (if S contains all infinite places of
F ), and similarly for other global groups.
For ℓ a prime number or ∞, we write Sℓ for the set of places of F above ℓ, and

abbreviate the above notations to Aℓ := ASℓ , Ap,∞ := ASp∪S∞ , and similarly write
Ip, I∞, Fp, F∞, U∞, Up, U

p,∞, I∞ etc.

Let F have r real embeddings and s pairs of complex embeddings. Set d := r+s−1.
Let {σ0, . . . , σr−1, σr, . . . , σd} be a set of representatives of these embeddings (i.e. for
i ≥ r, choose one from each pair of complex embeddings), and denote by∞0, . . . ,∞d

the corresponding archimedian primes of F . We let S0
∞ := {∞1, . . . ,∞d} ⊆ S∞.

We fix an additive character ψ : A → C∗ which is trivial on F , and let ψv denote
the restriction of ψ to Fv →֒A, for all primes v; we assume that ker(ψv) = OFv for
all p|p.
For each place v, let dxv denote the associated self-dual Haar measure on Fv, and

dx :=
∏

v dxv the associated Haar measure on AF . We define Haar measures d×xv
on F ∗

v by d×xv := cv
dxv
|xv |v , where cv = (1− 1

qv
)−1 for v finite, cv = 1 for v|∞.

For v|∞ complex, we use the decomposition C∗ = R∗
+×S1 (with S1 = {x ∈ C∗; |x| = 1})

to write d×xv = d×rv dϑv for variables rv, ϑv with rv ∈ R∗
+, ϑv ∈ S1.

Let S1 ⊆ Sp be a set of primes of F lying above p, S2 := Sp − S1. Let R be a
topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

C(S1, R) := C(FS1 × F ∗
S2

× Ip,∞/Up,∞, R);

and let Cc(S1, R) be the submodule of all compactly supported f ∈ C(S1, R). We
write C0(S1, R), C0

c (S1, R) when R is assumed to have the discrete topology.

Definition 3.2. For an R-module M , let Df (S1,M) denote the R-module of maps

φ : Co(FS1 × F ∗
S2
)× Ip,∞F →M

that are Up,∞-invariant and such that φ(·, xp,∞) is a distribution for each xp,∞ ∈ Ip,∞F .

Since Ip,∞F /Up,∞ is a discrete topological group, Df (S1,M) naturally identifies with
the space of M -valued distributions on FS1 × F ∗

S2
× Ip,∞F /Up,∞. So there exists a

canonical R-bilinear map

Df (S1,M)× C0
c (S1, R) →M, (φ, f) 7→

∫

f dφ, (3.1)
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which is easily seen to induce an isomorphism Df (S1,M) ∼= HomR(C0
c (S1, R),M).

For a subgroup E ⊆ F ∗ and an R[E]-module M , we let E operate on Df (S1,M)
and C0

c (S1, R) by (aφ)(U, xp,∞) := aφ(a−1U, a−1xp,∞) and (af)(x∞) := f(a−1x∞) for
a ∈ E, U ∈ Co(FS1 × F ∗

S2
), x· ∈ I·F ; thus we have

∫
(af) d(aφ) = a

∫
f dφ for all

a, f, φ.
When M = V is a finite-dimensional vector space over a p-adic field, we write

Db
f (S1, V ) for the subset of φ ∈ Df (S1, V ) such that φ is even a measure on

FS1 × FS2 × Ip,∞F /Up,∞.

Definition 3.3. For a C-vector space V , define D(S1, V ) to be the set of all maps
φ : Co(FS1 × F ∗

S2
)× Ip → V such that:

(i) φ is invariant under F× and Up,∞.

(ii) For xp ∈ Ip, φ(·, xp) is a distribution of Fp.

(iii) For all U ∈ Co(FS1×F ∗
S2
), the map φU : I = F×

p ×Ip → V, (xp, x
p) 7→ φ(xpU, x

p)
is smooth, and rapidly decreasing as |x| → ∞ and |x| → 0.

We will need a variant of this last set: Let D′(S1, V ) be the set of all maps φ ∈
D(S1, V ) that are ”(S1)s-invariant”, i.e. such that for all complex primes ∞j of F
and all ζ ∈ S1 = {x ∈ C∗; |x| = 1}, we have

φ(U, xp,∞j , ζx∞j
) = φ(U, xp,∞j , x∞j

) for all xp = (xp,∞j , x∞j
) ∈ Ip.

There is an obvious surjective map

D(S1, V ) → D′(S1, V ), φ 7→
(

(U, x) 7→
∫

(S1)s
φ(U, x)dϑr · · · dϑr+s−1

)

given by integrating over (S1)s ⊆ (C∗)s →֒ I∞.

Let F ∗′ ⊆ F ∗ be a maximal torsion-free subgroup (so that F/F ∗′ ∼= µF , the roots
of unity of F ). If F has at least one real embedding, we specifically choose F ∗′ to be
the set F ∗

+ of all totally positive elements of F (i.e. positive with respect to every
real embedding of F ). For totally complex F , there is no such natural subgroup
available, so we just choose F ∗′ freely. We set

E ′ := F ∗′ ∩O×
F ⊆ O×

F ,

so E ′ is a torsion-free Z-module of rank d. E ′ operates freely and discretely on the
space

Rd+1
0 :=

{

(x0, . . . , xd) ∈ Rd+1|
d∑

i=0

xi = 0

}

via the embedding

E ′ →֒ Rd+1
0

a 7→ (log |σi(a)|)i∈S∞
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(cf. proof of Dirichlet’s unit theorem, e.g. in [Neu], Ch. 1), and the quotient Rd+1
0 /E ′

is compact. We choose the orientation on Rd+1
0 induced by the natural orientation

on Rd via the isomorphism Rd ∼= Rd+1
0 , (x1, . . . , xd) 7→ (−∑d

i=1 xi, x1, . . . , xd). So
Rd+1

0 /E ′ becomes an oriented compact d-dimensional manifold.

Let Gp be the Galois group of the maximal abelian extension of F which is unram-
ified outside p and ∞; for a C-vector space V , let Dist(Gp, V ) be the set of V -valued
distributions of Gp. Denote by ̺ : IF/F

∗ → Gp the projection given by global reci-
procity.

3.2 Global measures

Now let V = C, equipped with the trivial F ∗′-action. We want to construct a
commutative diagram

D(S1,C)
φ 7→µφ

&&N
N

N
N

N
N

N
N

N
N

N

φ 7→κφ
// Hd
(
F ∗′,Df (S1,C)

)

κ 7→µκ=κ∩∂(·)uulllllllllllll

Dist(Gp,C)

(3.2)

First, let R be any topological Hausdorff ring. Let E ′ denote the closure of E ′ in
Up. The projection map pr : I∞/Up,∞ → I∞/(E ′ × Up,∞) induces an isomorphism

pr∗ : Cc(I
∞/(E ′ × Up,∞), R) → H0(E ′, Cc(I

∞/Up,∞, R)),

and the reciprocity map induces a surjective map ̺ : I∞/(E ′ × Up,∞) → Gp.
Now we can define a map

̺♯ : H0(F
∗′/E ′, Cc(I

∞/(E ′ × Up,∞), R)) → C(Gp, R)
[f ] 7→

(

̺(x) 7→
∑

ζ∈F ∗′/E′

f(ζx) for x ∈ I∞/(E ′ × Up,∞)
)

.

This is an isomorphism, with inverse map f 7→ [(f ◦ ̺) · 1F ], where 1F is the
characteristic function of a fundamental domain F of the action of F ∗′/E ′ on I∞/U∞.
We get a composite map

C(Gp, R)
(̺♯)−1

−−−→ H0

(
F ∗′/E ′, Cc(I

∞/(E ′ × Up,∞), R)
)

pr∗−−→ H0

(
F ∗′/E ′, H0(E ′, Cc(I

∞/Up,∞, R))
)

−→ H0

(
F ∗′/E ′, H0(E ′, Cc(S1, R))

)
,

(3.3)

where the last arrow is induced by the “extension by zero” from Cc(I
∞/Up,∞, R) to

Cc(S1, R).
Now let η ∈ Hd(E

′,Z) ∼= Z be the generator that corresponds to the given orien-
tation of Rd+1

0 . This gives us, for every R-module A, a homomorphism

H0

(
F ∗′/E ′, H0(E ′, A)

) ∩η
// H0

(
F ∗′/E ′, Hd(E

′, A)
)
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Composing this with the edge morphism

H0

(
F ∗′/E ′, Hd(E

′, A)
)
→ Hd(F

∗′, A) (3.4)

(and setting A = Cc(S1, R)) gives a map

H0

(
F ∗′/E ′, H0(E ′, Cc(S1, R))

)
→ Hd

(
F ∗′, Cc(S1, R)

)
(3.5)

We define
∂ : C(Gp, R) → Hd

(
F ∗′, Cc(S1, R)

)

as the composition of (3.3) with this map.
Now, letting M be an R-module equipped with the trivial F ∗′-action, the bilinear

form (3.1)

Df (S1,M)× Cc(S1, R) → M

(φ, f) 7→
∫

f dφ

induces a cap product

∩ : Hd
(
F ∗′,Df (S1,M)

)
×Hd

(
F ∗′, Cc(S1, R)

)
→ H0(F

∗′,M) =M. (3.6)

Thus for each κ ∈ Hd(F ∗′,Df (S1,M)), we get a distribution µκ on Gp by defining

∫

Gp

f(γ) µκ(dγ) := κ ∩ ∂(f) (3.7)

for all continuous maps f : Gp → R.

Now let M = V be a finite-dimensional vector space over a p-adic field K, and let
κ ∈ Hd(F ∗′,Db

f (S1, V )). We identify κ with its image in Hd(F ∗′,Df (S1, V )); then
it is easily seen that µκ is also a measure, i.e. we have a map

Hd(F ∗′,Db
f (S1, V )) → Distb(Gp, V ). (3.8)

Definition 3.4. The p-adic cyclotomic character N : Gp → Z∗
p is defined by re-

quiring γζ = ζN (γ) for γ ∈ Gp and all p-power roots of unity ζ. We put N (γ)s :=
expp(s logp(N (γ))) for all s ∈ Zp.

Definition 3.5. Let K be a p-adic field, V a finite-dimensional K-vector space. We
define the p-adic L-function of κ ∈ Hd(F ∗′,Db

f (S1, V )) as

Lp(s, κ) :=

∫

Gp

N (γ)sµκ(dγ)

for all s ∈ Zp.
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Remark 3.6. Let Σ := {±1}r, where r is the number of real embeddings of F . The
group isomorphism Z/2Z ∼= {±1}, ε 7→ (−1)ε, induces a pairing

〈·, ·〉 : Σ → {±1}, 〈((−1)εi)i, ((−1)ε
′
i)i〉 := (−1)

∑
i εiε

′
i .

For a field k of characteristic zero, a k[Σ]-module V and µ = (µ0, . . . , µr−1) ∈ Σ, we
put Vµ := {v ∈ V | 〈µ, ν〉v = νv ∀ν ∈ Σ}, so that we have V =

⊕

µ∈Σ Vµ. We write

vµ for the projection of v ∈ V to Vµ, and v+ := v(1,...,1).

We identify Σ with F ∗/F ∗′ via the isomorphism Σ ∼=
∏r−1

i=0 R
∗/R∗

+
∼= F ∗/F ∗′. Then

for each F ∗-module M , Σ acts on Hd(F ∗′,Df (S1,M)) and on Hd(F ∗′,Db
f (S1,M)).

The exact sequence Σ ∼=
∏r−1

i=0 R
∗/R∗

+ = I∞/I0∞ → Gp → G+
p → 0 of class field

theory (where I0∞ is the maximal connected subgroup of I∞) yields an action of Σ
on Gp. We easily check that (3.8) is Σ-equivariant, and that the map γ 7→ N (γ)s

factors over Gp → G+
p . Therefore we have Lp(s, κ) = Lp(s, κ+).

For φ ∈ D(S1, V ) and f ∈ C0(I/F ∗,C), let

∫

I/F ∗

f(x)φ(d×xp, x
p) d×xp := [Up : U ]

∫

I/F ∗

f(x)φU(x) d
×x,

where we choose an open set U ⊆ Up such that f(xpu, x
p) = f(xp, x

p) for all
(xp, x

p) ∈ I and u ∈ U ; such a U exists by lemma 3.7 below.
Since this integral is additive in f , there exists a unique V -valued distribution µφ

on Gp such that
∫

Gp

f dµφ =

∫

I/F ∗

f(̺(x))φ(d×xp, x
p) d×xp (3.9)

for all functions f ∈ C0(Gp, V ).

Lemma 3.7. Let F : I/F ∗ → X be a locally constant map to a set X. Then there
exists an open subgroup U ⊆ I such that f factors over I/F ∗U .

Proof. (cf. [Sp], lemma 4.20)
I∞ =

∏

v|∞ Fv is connected, thus f factors over f : I/F ∗I∞ → X. Since I/F ∗I∞
is profinite, f further factors over a subgroup U ′ ⊆ I∞ of finite index, which is
open.

Let U0
∞ :=

∏

v∈S0
∞
R∗

+; the isomorphisms U0
∞

∼= Rd, (rv)v 7→ (log rv)v, and Rd ∼=
Rd+1

0 give it the structure of a d-dimensional oriented manifold (with the natural
orientation). It has the d-form d×r1 · . . . · d×rd, where (by slight abuse of notation)
we choose d×ri on F∞i

corresponding to the Haar measure d×xi resp. d×ri on
R∗

+ ⊆ F ∗
∞i

.

E ′ operates on U0
∞ via a 7→ (|σi(a)|)i∈S0

∞
, making the isomorphism U0

∞
∼= Rd+1

0

E ′-equivariant.
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For φ ∈ D′(S1, V ), set

∫ ∞

0

φ d×r0 : Co(FS1 × F ∗
S2
)× Ip,∞0 → C

(U, xp,∞0) 7→
∫ ∞

0

φ(U, r0, x
p,∞0) d×r0,

where we let r0 ∈ F∞0 run through the positive real line R∗
+ in F∞0 . Composing

this with the projection D(S1, V ) → D′(S1, V ) gives us a map

D(S1, V ) → H0
(
F ∗′,Df (S1, C

∞(U0
∞, V ))

)
,

φ 7→
∫

(S1)s

(∫ ∞

0

φ d×r0

)

dϑr dϑr+1 . . . dϑr+s−1

(3.10)

(where C∞(U0
∞, V ) denotes the space of smooth V -valued functions on U0

∞), since
one easily checks that

∫∞
0
φ d×r0 is F ∗′-invariant.

Define the complex C• := Df (S1,Ω
•(U0

∞, V )). By the Poincare lemma, this is a
resolution of Df (S1, V ). We now define the map φ 7→ κφ as the composition of
(3.10) with the composition

H0
(
F ∗′,Df (S1, C

∞(U0
∞, V ))

)
→ H0(F ∗′, Cd) → Hd(F ∗′,Df (S1, V )), (3.11)

where the first map is induced by

C∞(U0
∞, V ) → Ωd(U0

∞, V ), f 7→ f(r1, . . . , rd)d
×r1 · . . . · d×rd, (3.12)

and the second is an edge morphism in the spectral sequence

Hq(F ∗′, Cp) ⇒ Hp+q(F ∗′,Df (S1, V )). (3.13)

Specializing to V = C, we now have:

Proposition 3.8. The diagram (3.2) commutes, i.e., for each φ ∈ D(S1,C), we
have

µφ = µκφ .

Proof. (cf. [Sp], prop. 4.21)
We define a pairing

〈 , 〉 : D(S1,C)× C0(Gp,C) → C

as the composite of (3.10)× (3.3) with

H0
(
F ∗′,Df (S1, C

∞(U0
∞,C))

)
×H0

(
F ∗′/E ′, H0(E ′, C0

c (S1,C))
)

∩−→ H0

(
F ∗′/E ′, H0(E ′, C∞(U0

∞,C))
)
→ H0(F

∗′/E ′,C) ∼= C, (3.14)

where ∩ is the cap product induced by (3.1), and the second map is induced by

H0
(
E ′, C∞(U0

∞,C)
)
→ C, f 7→

∫

U0
∞/E′

f(r1, . . . , rd) d
×r1 . . . d

×rd. (3.15)
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An easy computation shows that

〈φ, f〉 =
∫

Gp

f(γ) µφ(dγ) for all f ∈ C0(Gp,C).

So we need to show that κφ∩∂(f) = 〈φ, f〉; i.e. it suffices to show that the diagram

H0
(
F ∗′,Df (S1, C

∞(U0
∞,C))

)
×H0

(
F ∗′/E ′, H0(E ′, C0

c (S1,C))
)

(3.11)×(3.5)

��

(3.14)

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

C

Hd(F ∗′,Df (S1,C))×Hd

(
F ∗′, C0

c (S1,C)
)

∩

22fffffffffffffffffffffffffffff

(3.16)

commutes. For this consider the commutative diagram

H0(F ∗′,Df (S1, C
∞(U0

∞
,C)))×H0(F

∗′/E′, H0(E′, C0
c (S1,C)))

id×η

��

∩
// H0(F

∗′/E′, H0(E′, C∞(U0
∞
,C)))

η

��

H0(F ∗′,Df (S1, C
∞(U0

∞
,C)))×H0(F

∗′/E′, Hd(E
′, C0

c (S1,C)))

3×id

��

∩
// H0(F

∗′/E′, Hd(E
′, C∞(U0

∞
,C)))

4

��

H0(F ∗′,Df (S1,Ω
d(U0

∞
,C)))×H0(F

∗′/E′, Hd(E
′, C0

c (S1,C)))

id×5

��

∩
// H0(F

∗′/E′, Hd(E
′,Ωd(U0

∞
)))

6

��

H0(F ∗′,Df (S1,Ω
d(U0

∞
,C)))×Hd(F

∗′, C0
c (S1,C)))

7×id

��

∩
// Hd(F

∗′,Ωd(U0
∞
))

8

��

Hd(F ∗′,Df (S1,C))×Hd(F
∗′, C0

c (S1,C)))
∩

// H0(F
∗′,C) = C

where the horizontal maps are cap-products induced by the pairing (3.1), η denotes
cap-product with η, 3 and 4 are induced by (3.12), 5 and 6 by the edge morphism
(3.4), and 7 and 8 by an edge morphism of (3.13) and a homological spectral se-
quence for the resolution 0 → C → Ω•(U0

∞), respectively.

Since the composition of the left-hand-side vertical maps is (3.11)× (3.5), we need
to show that the composition of the right-hand-side vertical maps is induced by
(3.15). But this follows easily from the commutativity of the diagram

H0(E ′, C∞(U0
∞,C))

(3.12)
∗
//

∩η
��

H0(E ′,Ωd(U0
∞,C))

//

∩η
��

Hd(E ′,C)

∩η
��

Hd(E
′, C∞(U0

∞,C))
(3.12)

∗
// Hd(E

′,Ωd(U0
∞,C))

// H0(E
′,C)

since for a d-form on the d-dimensional oriented manifold M := Rd+1
0 /E ′ ∼= U0

∞/E
′,

integration overM corresponds to taking the cap product with the fundamental class
η of M under the canonical isomorphism Hd

dR(M) ∼= Hd
sing(M) = Hd(E ′,C).
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3.3 Integral cohomology classes

Definition 3.9. For κ ∈ Hd(F ∗′,Df (S1,C)) and a subring R of C, we denote the
image of

Hd(F
∗′, C0

c (S1, R)) → H0(F
∗′,C) = C, x 7→ κ ∩ x

by Lκ,R. (“Module of periods of R”)

Lemma 3.10. Let R ⊆ Q be a Dedekind ring.
(a)For a subring R′ ⊇ R of C, we have Lκ,R′ = R′Lκ,R.
(b) If κ 6= 0, then Lκ,R 6= 0.

Proof. (cf. [Sp], lemma 4.15)
(a) We have C0

c (S1, R
′) = C0

c (S1, R) ⊗ R′, and since R′ is a flat R-module, we have
Hd(F

∗′, C0
c (S1, R

′)) = Hd(F
∗′, C0

c (S1, R))⊗R′.

(b) The pairing (3.1), and thus the cap-product (3.6), is non-degenerate for M =
R = C. Thus Lκ,C 6= 0, and (a) implies Lκ,R 6= 0.

Definition 3.11. A nonzero cohomology class κ ∈ Hd(F ∗′,Df (S1,C)) is called
integral if κ lies in the image of Hd(F ∗′,Df (S1, R)) ⊗R C → Hd(F ∗′,Df (S1,C))
for some Dedekind ring R ⊆ O. If, in addition, there exists a torsion-free R-
submodule M ⊆ Hd(F ∗′,Df (S1, R)) of rank ≤ 1 (i.e. M can be embedded into R,
by the classification of finitely generated R-modules) such that κ lies in the image
of M ⊗R C → Hd(F ∗′,Df (S1,C)), then κ is integral of rank ≤ 1.

Proposition 3.12. Let κ ∈ Hd(F ∗′,Df (S1,C)). The following conditions are equiv-
alent:

(i) κ is integral (resp. integral of rank ≤ 1).

(ii) There exists a Dedekind ring R ⊆ O such that Lκ,R is a finitely generated
R-module (resp. a torsion-free R-module of rank ≤ 1).

(iii) There exists a Dedekind ring R ⊆ O, a finitely generated R-module M (resp.
a torsion-free R-module of rank ≤ 1) and an R-linear map f : M → C
such that κ lies in the image of the induced map f∗ : Hd(F ∗′,Df (S1,M)) →
Hd(F ∗′,Df (S1,C)).

Proof. (cf. [Sp], prop. 4.17)
(i) ⇒ (ii): Let R be such that κ lies in the image of Hd(F ∗′,Df (S1, R)) ⊗R C →
Hd(F ∗′,Df (S1,C)). Then κ =

∑n
i=1 xiκi with xi ∈ C, κi ∈ Im(Hd(F ∗′,Df (S1, R)))

(with n ≤ 1 if κ has rank ≤ 1) and thus Lκ,R ⊆∑n
i=1 xiLκi,R ⊆∑n

i=1 xiR.

(ii) ⇒ (iii): We have a commutative diagram

Hd(F ∗′,Df (S1, Lκ,R)) //

��

HomR(Hd(F
∗′, C0

c (S1, R)), Lκ,R)

��

Hd(F ∗′,Df (S1,C)) // HomR(Hd(F
∗′, C0

c (S1, R)),C)

(3.17)
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where the horizontal maps are given by the cap-product and the vertical ones are
induced by the inclusion Lκ,R →֒C. By the universal coefficient theorem (using
the isomorphism Df (S1,M) ∼= HomR(C0

c (S1, R),M)), the lower horizontal map is
an isomorphism, and the kernel and cokernel of the upper horizontal map are R-
torsion; since the map κ ∩ · lies in HomR(Hd(F

∗′, C0
c (S1, R)), Lκ,R), some multiple

a · κ, a ∈ R∗, must have a preimage in Hd(F ∗′,Df (S1, Lκ,R)). Thus we can choose
M = Lκ,R and f : Lκ,R → C, x 7→ a−1x in (iii).

(iii) ⇒ (i): Since f(M) is a torsion-free finitely generated module over a Dedekind
ring, it can be embedded into a free module Rn →֒C (with n ≤ 1 if M has rank
≤ 1). Then f factorizes over M → f(M) →֒Rn →֒C, and thus f∗ factorizes over
Hd(F ∗′,Df (S1, R

n)). Thus, we can assume that M = Rn.
Now let x1, . . . , xn ∈ C be the images of the standard basis of M under f . Then

we have

κ ∈ Im(f∗) =
n∑

i=1

xi Im
(
Hd(F ∗′,Df (S1, R)) → Hd(F ∗′,Df (S1,C))

)

⊆ Im
(
Hd(F ∗′,Df (S1, R))⊗R C → Hd(F ∗′,Df (S1,C))

)
.

Corollary 3.13. Let κ ∈ Hd(F ∗′,Df (S1,C)) be integral and R ⊆ O be as in propo-
sition 3.9. Then
(a) µκ is a p-adic measure, and
(b) the map Hd(F ∗′,Df (S1, Lκ,R))⊗Q → Hd(F ∗′,Df (S1,C)) is injective and κ lies
in its image.

Proof. (cf. [Sp], cor. 4.18.)
The image of C0(Gp,O) → C, f 7→

∫
fµκ = κ ∩ ∂(f) is contained in Lκ,O since

∂(f) ∈ Hd(F
∗′, C0

c (S1,O)). Condition (iii) in the proposition implies that Lκ,O is a

finitely generated O-module, from which (a) follows.
(b): In the proof of (ii)⇒ (iii) above, the right-hand vertical map in (3.17) is injec-
tive, thus the left-hand map tensored with Q also is (and κ lies in its image), since
the horizontal maps are isomorphisms after tensoring with Q.

Remark 3.14. Let κ be integral with Dedekind ring R as above. By (b) of the
corollary, we can view κ as an element of Hd(F ∗′,Df (S1, Lκ,R)) ⊗ Q. Put Vκ :=
Lκ,R ⊗R Cp; let κ be the image of κ under the composition

Hd(F ∗′,Df (S1, Lκ,R))⊗R Q → Hd(F ∗′,Df (S1, Lκ,R))⊗R Cp → Hd(F ∗′,Db
f (S1, Vκ)),

where the second map is induced by Df (S1, Lκ,R) ⊗R Cp → Db
f (S1, Vκ). By lemma

3.10 (a), κ does not depend on the choice of R.
Since µκ is a p-adic measure, µκ allows integration of all continuous functions

f ∈ C(Gp,Cp), and by abuse of notation, we write Lp(s, κ) :=
∫

Gp
N (γ)sµκ(dγ) :=

Lp(s, κ) (cf. remark 3.6). So Lp(s, κ) has values in the finite-dimensional Cp-vector
space Vκ.
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4 p-adic L-functions of automorphic forms

We keep the notations from chapter 3; so F is again a number field with r real
embeddings and s pairs of complex embeddings.
For an ideal 0 6= m ⊆ OF , we let K0(m)v ⊆ G(OFv) be the subgroup of ma-

trices congruent to an upper triangular matrix modulo m, and we set K0(m) :=
∏

v∤∞K0(m)v, K0(m)S :=
∏

v∤∞,v /∈SK0(m)v for a finite set of primes S. For each p|p,
let qp = N(p) denote the number of elements of the residue class field of Fp.
We denote by | · |C the square of the usual absolute value on C, i.e. |z|C = zz for

all z ∈ C, and write | · |R for the usual absolute value on R in context.

Definition 4.1. Let A0(G, 2, χZ) denote the set of all cuspidal automorphic repre-

sentations π = ⊗vπv ofG(AF ) with central character χZ such that πv ∼= σ(| · |1/2Fv
, | · |−1/2

Fv
)

at all archimedian primes v. Here we follow the notation of [JL]; so σ(| · |1/2Fv
, | · |−1/2

Fv
)

is the discrete series of weight 2, D(2), if v is real, and is isomorphic to the princi-
pal series representation π(µ1, µ2) with µ1(z) = z1/2z −1/2, µ2(z) = z−1/2z1/2 if v is
complex (cf. section 4.5 below).

We will only consider automorphic representations that are p-ordinary , i.e πp is
ordinary (in the sense of chapter 2) for every p|p.
Therefore, for each p|p we fix two non-zero elements αp,1, αp,2 ∈ O ⊆ C such

that παp,1,αp,2 is an ordinary, unitary representation. By the classification of unitary
representations (see e.g. [Ge], Thm. 4.27), a spherical representation παp,1,αp,2 =
π(χ1, χ2) is unitary if and only if either χ1, χ2 are both unitary characters (i.e.
|αp,1| = |αp,2| = √

qp)
iii, or χ1,2 = χ0| · |±s with χ0 unitary and −1

2
< s < 1

2
. A special

representation παp,1,αp,2 = π(χ1, χ2) is unitary if and only if the central character χ1χ2

is unitary. In all three cases, we have thus max{|αp,1|, |αp,2|} ≥ √
qp. Without loss

of generality, we will assume the αp,i to be ordered such that |αp,1| ≤ |αp,2| for all
p|p.
As in chapter 2, we define ap := αp,1 + αp,2, νp := αp,1αp,2/qp.
Let αi := (αp,i, p|p), for i = 1, 2. We denote by A0(G, 2, χZ , α1, α2) the subset of

all π ∈ A0(G, 2, χZ) such that πp = παp,1,αp,2 for all p|p.

Let S1 ⊆ Sp be the set of places such that πp is the Steinberg representation (i.e.
αp,1 = νp = 1, αp,2 = q).iv

For later use we note that π∞ = ⊗v∤∞πv is known to be defined over a finite ex-
tension of Q, the smallest such field being the field of definition of π (cf. [Sp]).

iiiTo avoid confusion: By |αp,i| we always mean the archimedian absolute value of αp,i ∈ C;
whereas in the context of the p-adic characters χi, | · | always means the p-adic absolute value,
unless otherwise noted.

ivNote that all p|p with αp,1 = νp ∈ O∗

, i.e. αp,2 = q, already lie in S1, since |αp,2| < q in
the spherical case. Lp(s, π) should have an exceptional zero for each p ∈ S1, according to the
exceptional zero conjecture.
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4.1 Upper half-space

Let H2 := {z ∈ C| Im(z) > 0} ∼= R × R∗
+ be the complex upper half-plane, and let

H3 := C × R∗
+ be the 3-dimensional upper half-space. Each Hm is a differentiable

manifold of dimension i. If we write x = (u, t) ∈ Hm with t ∈ R∗
+, u in R or C,

respectively, it has a Riemannian metric ds2 = dt2+du du
t

, which induces a hyperbolic
geometry on Hm, i.e. the geodesic lines on Hm are given by “vertical” lines {u}×R∗

+

and half-circles with center in the line or plane t = 0.

We have the decomposition GL2(C) = B′
C · Z(C) ·KC, where B

′
C is the subgroup

of matrices
(
R∗
+ C

0 1

)
, Z is the center, and KC = SU(2) (cf. [By], Cor. 43); and

analogously GL2(R)
+ = B′

R · Z(R) · KR with B′
R = {( y x0 1 ) |x ∈ R, y ∈ R∗

+} and
KR = SO(2).
We can identify B′

C with H3 via ( t z0 1 ) 7→ (z, t), and B′
R with H2 via ( y x0 1 ) 7→ x+ iy.

This gives us natural projections

πR : GL2(R)
+
։ GL2(R)

+/R∗ SO(2) ∼= H2

and
πC : GL2(C) ։ GL2(C)/C

∗ SU(2) ∼= H3.

The corresponding left actions on cosets are invariant under the Riemannian met-
rics on Hm, and can be given explicitly as follows:
GL2(R)

+ operates on H2 ⊆ C via Möbius transformations,

(
a b
c d

)

(z) :=
az + b

cz + d
,

and GL2(C) operates on H3 by

(
a b
c d

)

(z, t) :=

(
(az + b)(cz + d) + act2

|cz + d|2 + |ct|2 ,
|ad− bc|t

|cz + d|2 + |ct|2
)

([By], (3.12)); specifically, we have

(
t z
0 1

)

(0, 1) = (z, t) for (z, t) ∈ H3.

A differential form ω on Hm is called left-invariant if it is invariant under the
pullback L∗

g of left multiplication Lg : x 7→ gx on Hm, for all g ∈ G. Following [By],
eqs. (4.20), (4.24), we choose the following basis of left invariant differential 1-forms
on H3:

β0 := −dz
t
, β1 :=

dt

t
, β2 :=

dz

t
,

and on H2 (writing z = x+ iy ∈ H2):

β1 :=
dz

y
, β2 := −dz

y
.

33



We note that a form f1β1 + f2β2 is harmonic on H2 if and only if f1/y and f2/y are
holomorphic functions in z ([By], lemma 60).

Let k ∈ {R,C}. The Jacobian J(g, (0, 1)) of left multiplication by g in (0, 1) ∈ Hm

with respect to the basis (βi)i gives rise to a representation

̺ = ̺k : Z(k) ·Kk → SLm(C)

with ̺|Z(k) trivial, which on Kk is explicitly given by

̺C

(
u v
−v u

)

=





u2 2uv v2

−uv uu− vv vu
v2 −2uv u2



 ,

resp.

̺R

(
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)

=

(
e2iϑ 0
0 e−2iϑ

)

([By], (4.27), (4.21)). In the real case, we will only consider harmonic forms on H2

that are multiples of β1, thus we sometimes identify ̺R with its restriction ̺
(1)
R to

the first basis vector β1,

̺
(1)
R : SO(2) → S1 ⊆ C∗, κϑ =

(
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)

7→ e2iϑ.

For each i, let ωi be the left-invariant differential 1-form on GL2(k) which coincides
with the pullback (πC)

∗βi at the identity. Write ω (resp. β) for the column vector
of the ωi (resp. βi). Then we have the following lemma from [By]:

Lemma 4.2. For each i, the differential ωi on G induces βi on Hm, by restriction
to the subgroup B′

k
∼= Hm. For a function φ : G → Cm, the form φ · ω (with Cm

considered as a row vector, so · is the scalar product of vectors) induces f · β, where
f : Hm → Cm is given by

f(z, t) := φ

((
t z
0 1

))

.

(See [By], Lemma 57.)

To consider the infinite primes of F all at once, we define

H∞ :=
d∏

i=0

Hmi
=

r−1∏

i=0

H2 ×
d∏

i=r

H3

(where mi = 2 if σi is a real embedding, and = 3 if σi is complex), and let
H0

∞ :=
∏d

i=1 Hmi
be the product with the zeroth factor removed.v

For each embedding σi, the elements of P1(F ) are cusps of Hmi
: for a given

complex embedding F →֒C, we can identify F with F × {0} →֒C × R≥0 and de-
fine the ”extended upper half-space“ as H3 := H3 ∪ F ∪ {∞} ⊆ C × R≥0 ∪ {∞};

vThe choice of the 0-th factor is for convenience; we could also choose any other infinite place,
whether real or complex.
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similarly for a given real embedding F →֒R, we get the extended upper half-plane
H2 := H2 ∪ F ∪ {∞} . A basis of neighbourhoods of the cusp ∞ is given by the
sets {(u, t) ∈ Hm|t > N}, N ≫ 0, and of x ∈ F by the open half-balls in Hm with
center (x, 0).

Let G(F )+ ⊆ G(F ) denote the subgroup of matrices with totally positive deter-
minant . It acts on H0

∞ by composing the embedding

G(F )+ →֒
∏

v|∞,v 6=v0

G(Fv)
+, g 7→ (σ1(g), . . . , σd(g)),

with the actions of G(C)+ = G(C) on H3 and G(R)+ on H2 as defined above, and
on Ωd

harm(H0
∞) by the inverse of the corresponding pullback, γ · ω := (γ−1)∗ω. Both

are left actions.

Denote by SC (resp. SR) the set of complex (resp. real) archimedian primes of F .
For each complex v, we write the codomain of ̺Fv as

̺Fv : Z(Fv) ·KFv → SL3(C) =: SL(Vv),

for a three-dimensional C-vector space Vv. We denote the harmonic forms on
GL2(Fv), HFv defined above by ωv, βv etc.

Let V =
⊗

v∈SC
Vv ∼= (C3)⊗s, Z∞ =

∏

v|∞ Z(Fv), K∞ =
∏

v|∞KFv . We can merge

the representations ̺Fv for each v|∞ into a representation

̺ = ̺∞ :=
⊗

v∈SC

̺C ⊗
⊗

v∈SR

̺
(1)
R : Z∞ ·K∞ → SL(V ),

and define V -valued vectors of differential forms ω :=
⊗

v∈SC
ωv ⊗

⊗

v∈SR
ω1
v , β :=

⊗

v∈SC
βv ⊗

⊗

v∈SR
(βv)1 on GL2(F∞) and H∞, respectively.

4.2 Automorphic forms

Let χZ : A∗
F/F

∗ → C∗ be a Hecke character that is trivial at the archimedian places.
We also denote by χZ the corresponding character on Z(AF ) under the isomorphism
A∗
F → Z(AF ), a 7→ ( a 0

0 a ).

Definition 4.3. An automorphic cusp form of parallel weight 2 with central char-
acter χZ is a map φ : G(AF ) → V such that

(i) φ(zγg) = χZ(z)φ(g) for all g ∈ G(A), z ∈ Z(A), γ ∈ G(F ).

(ii) φ(gk∞) = φ(g)̺(k∞) for all k∞ ∈ K∞, g ∈ G(A) (considering V as a row
vector).

(iii) φ has “moderate growth“ on B′
A := {

(
y x
0 1

)

∈ G(A)}, i.e. ∃C, λ ∀A ∈ B′
A :

‖φ(A)‖ ≤ C · sup(|y|λ, |y|−λ) (for any fixed norm ‖·‖ on V );

and φ|G(A∞) · ω is the pullback of a harmonic form ωφ = fφ · β on H∞.
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(iv) There exists a compact open subgroup K ′ ⊆ G(A∞) such that φ(gk) = φ(g)
for all g ∈ G(A) and k ∈ K ′.

(v) For all g ∈ G(AF ),

∫

AF /F

φ

((
1 x
0 1

)

g

)

dx = 0. (“Cuspidality”)

We denote by A0(G, harm, 2, χZ) the space of all such maps φ.

For each g∞ ∈ A∞
F , let ωφ(g

∞) be the restriction of φ(g∞, ·) · ω from G(A∞
F ) to

H∞; it is a (d+ 1)-form on H∞.

We want to integrate ωφ(g
∞) between two cusps of the spaceHm0 . (We will identify

each x ∈ P1(F ) with its corresponding cusp in Hm0 in the following.) The geodesic
between the cusps x ∈ F and ∞ in Hm0 is the line {x}×R∗

+ ⊆ Hm0 and the integral
of ωφ along it is finite since φ is uniformly rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form φ is rapidly
decreasing modulo the center on a fundamental domain F of GL2(F )\GL2(AF );
i.e. there exists an integer r such that for all N ∈ N there exists a C > 0 such that

φ(zg) ≤ C|z|r‖g‖−N

for all z ∈ Z(AF ), g ∈ F ∩ SL2(AF ). Here ‖g‖ := max{|gi,j|, |(g−1)i,j|}i,j∈{1,2}.

(See [CKM], Thm. 2.2; or [Kur78], (6) for quadratic imaginary F .)

In fact, the integral of ωφ(g
∞) along {x} × R∗

+ ⊆ Hm0 equals the integral of
φ(g∞, ·) · ω along a path gt ∈ GL2(F∞0), t ∈ R∗

+, where we can choose

gt =
1√
t

(
t x
0 1

)

=

( 1√
t

x√
t

0
√
t

)

,

and thus have ‖gt‖ =
√
t for all t ≫ 0, ‖gt‖ = C 1√

t
for t ≪ 1, so the integral

∫∞
x
ωφ(g

∞) ∈ Ωd
harm(H0

∞) is well-defined by the theorem.

For any two cusps a, b ∈ P1(F ), we now define

∫ b

a

ωφ(g
∞) :=

∫ ∞

a

ωφ(g
∞)−

∫ ∞

b

ωφ(g
∞) ∈ Ωd

harm(H0
∞).

Since φ is uniformly rapidly decreasing (‖gt‖ does not depend on x, for t ≫ 0),
this integral along the path (a, 0) → (a,∞) = (b,∞) → (b, 0) in Hm0 is the same as
the limit (for t→ ∞) of the integral along (a, 0) → (a, t) → (b, t) → (b, 0); and since
ωφ is harmonic (and thus integration is path-independent within Hm0) the latter is
in fact independent of t, so equality holds for each t > 0, or along any path from
(a, 0) to (b, 0) in Hm0 . Thus we have
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∫ b

a

ωφ(g
∞) +

∫ c

b

ωφ(g
∞) =

∫ c

a

ωφ(g
∞)

for any three cusps a, b, c ∈ P1(F ). Let Div(P1(F )) denote the free abelian group of
divisors of P1(F ), and let M := Div0(P

1(F )) be the subgroup of divisors of degree 0.

We can extend the definition of the integral linearly to get a homomorphism

M → Ωd
harm(H0

∞), m 7→
∫

m

ωφ(g
∞).

For γ ∈ G(F )+, g ∈ G(A∞), m ∈ M and x0∞ ∈ G(FS0
∞
), we have

γ∗
(∫

γm

ωφ(γg)

)

(x0∞) =

∫

γm

ωφ(γg)(γx
0
∞)

=

∫

γm

φ(γg, γx0∞, ∗) · ω

=

∫

γm

φ(g, x0∞, γ
−1∗) · ω (by (i) of definition 4.3)

=

∫

m

φ(g, x0∞, ∗) · ω (since ω is G(F∞)-left invariant)

=

∫

m

ωφ(g)(x
0
∞),

i.e.

γ∗
(∫

γm

ωφ(γg)

)

=

∫

m

ωφ(g). (4.1)

Now let m be an ideal of F prime to p, let χZ be a Hecke character of conductor
dividing m, and α1, α2 as above.

Definition 4.5. We define S2(G,m, α1, α2) to be the C-vector space of all maps

Φ : G(Ap) → Bα1,α2(Fp, V ) = Hom(Bα1,α2(Fp,C), V )

such that:

(a) φ is “almost” K0(m)-invariant (in the notation of [Ge]), i.e. φ(gk) = φ(g)
for all g ∈ G(Ap) and k ∈ ∏v∤mpG(Ov), and φ(gk) = χZ(a)φ(g) for all v|m,

k =

(
a b
c d

)

∈ K0(m)v and g ∈ G(Ap).

(b) For each ψ ∈ Bα1,α2(Fp,C), the map

〈Φ, ψ〉 : G(A) = G(Fp)×G(Ap) → V, (gp, g
p) 7→ Φ(gp)(gpψ)

lies in A0(G, harm, 2, χZ).

Note that (a) implies that φ is K ′-invariant for some open subgroup K ′ ⊆ K0(m)p

of finite index ([By]/[We]).
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4.3 Cohomology of GL2(F )

Let M be a left G(F )-module and N an R[H]-module, for a ring R and a subgroup
H ⊆ G(F ). Let S ⊆ Sp be a set of primes of F dividing p; as above, let χ = χZ be
a Hecke character of conductor m prime to p.

Definition 4.6. For a compact open subgroup K ⊆ K0(m)S ⊆ G(AS,∞), we denote
by Af (K,S,M ;N) the R-module of all maps Φ : G(AS,∞)×M → N such that

1. Φ(gk,m) = Φ(g,m) for all g ∈ G(AS,∞), m ∈M , k ∈∏v∤mpG(Ov);

2. Φ(gk) = χZ(a)Φ(g) for all v|m, k =

(
a b
c d

)

∈ K0(m)v and g ∈ G(AS,∞),

m ∈M .

We denote by Af (S,M ;N) the union of the Af (K,S,M ;N) over all compact open
subgroups K.

Af (S,M ;N) is a left G(AS,∞)-module via (γ · Φ)(g,m) := Φ(γ−1g,m) and has
a left H-operation given by (γ · Φ)(g,m) := γΦ(γ−1g, γ−1m), commuting with the
G(AS,∞)-operation.

In contrast to our previous notation, we consider two subsets S1 ⊆ S2 ⊆ Sp in this
section. We put (α1, α2)S1 := {(αp,1, αp,2)|p ∈ S1}, we set

Af ((α1, α2)S1 , S2,M ;N) = Af (S2,M ;B(α1,α2)S1 (FS1 , N));

we write Af (m, (α1, α2)S1 , S2,M ;N) := Af (K0(m), (α1, α2)S1 , S2,M ;N). If S1 =
S2, we will usually drop S2 from all these notations.
We have a natural identification of Af (m, (α1, α2)S,M ;N) with the space of maps

G(AS,∞)×M × B(α1,α2)S(FS, R) → N that are “almost” K-invariant.

Let S0 ⊆ S1 ⊆ S2 ⊆ Sp be subsets. The pairing (2.11) induces a pairing

〈·, ·〉 : Af ((α1, α2)S1 , S2,M ;N)× B(α1,α2)S0
(FS0 , R) → Af ((α1, α2)S0 , S2,M ;N),

(4.2)
which, when restricting to K-invariant elements, induces an isomorphism

Af (K, (α1, α2)S1 , S2,M ;N) ∼= B(α1,α2)S1−S0 (FS1−S0 ,Af (α1, α2)S0 , S2,M ;N). (4.3)

Putting S0 := S1 − {p} for a prime p ∈ S1, we specifically get an isomorphism

Af (K, (α1, α2)S1 , S2,M ;N) ∼= Bαp,1,αp,2(Fp,Af (α1, α2)S0 , S2,M ;N).

Lemmas 2.11 and 2.12 now immediately imply the following:

Lemma 4.7. Let S ⊆ Sp, p ∈ S, S0 := S − {p}. Let K ⊆ G(AS,∞) be a compact
open subgroup.
(a) If παp,1,αp,2 is spherical, we have exact sequences

0 → Af (K, (α1, α2)S,M ;N) → Z
R−νp−−−→ Z → 0
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and

0 → Z → Af (K0, (α1, α2)S0 ,M ;N)
T−ap−−−→ Af (K0, (α1, α2)S0 ,M ;N) → 0

for a G(AS0,∞)-module Z and a compact open subgroup K0 = K ×Kp of G(AS0,∞).

(b) If παp,1,αp,2 is special (with central character χp) , we have exact sequences

0 → Af (K, (α1, α2)S,M ;N) → Z ′ → Z → 0

and

0 →Z → Af (K0, (α1, α2)S0 ,M ;N)2 → Af (K0, (α1, α2)S0 ,M ;N)2 → 0,

0 →Z ′ → Af (K
′
0, (α1, α2)S0 ,M ;N)2 → Af (K

′
0, (α1, α2)S0 ,M ;N)2 → 0,

with Z := Af (K0, (α1, α2)S0 , S,M ;N(χp)) and Z
′ := Af (K

′
0, (α1, α2)S0 , S,M ;N(χp)),

where K0 = K ×Kp and K ′
0 = K ×K ′

p are compact open subgroups of G(AS0,∞).

Proposition 4.8. Let S ⊆ Sp and let K be a compact open subgroup of G(AS,∞).

(a) For each flat R-module N (with trivial G(F )-action), the canonical map

Hq(G(F )+,Af (K, (α1, α2)S,M;R))⊗R N → Hq(G(F )+,Af (K, (α1, α2)S,M;N))

is an isomorphism for each q ≥ 0.

(b) If R is finitely generated as a Z-module, then Hq(G(F )+,Af (K, (α1, α2)S,M;R)
is finitely generated over R.

Proof. (cf. [Sp], Prop. 5.6)

(a) The exact sequence of abelian groups 0 → M → Div(P1(F )) ∼= Ind
G(F )
B(F ) Z →

Z → 0 induces a short exact sequence of G(AS,∞)-modules

0 → Af (K, (α1, α2)S,Z;N) → Coind
G(F )+

B(F )+ Af (K, (α1, α2)S,Z;N)

→ Af (K, (α1, α2)S,M;N) → 0.
(4.4)

Using the five-lemma on the associated diagram of long exact cohomology sequences
Hq(·, R)⊗RN (which is exact due to flatness) andHq(·, N) , it is enough to show that

(4.4) holds for Af (K, (α1, α2)S,Z; ·) and Coind
G(F )+

B(F )+ Af (K, (α1, α2)S,Z; ·) instead of

Af (K, (α1, α2)S,M; ·). By lemma 4.7, it is furthermore enough to consider the case

S = ∅. Since Af (K,Z;N) ∼= Coind
G(A∞)
K N , we thus have to show that

Hq(G(F )+,Coind
G(A∞)
K R)⊗R N → Hq(G(F )+,Coind

G(A∞)
K N),

Hq(B(F )+,Coind
G(A∞)
K R)⊗R N → Hq(B(F )+,Coind

G(A∞)
K N)

are isomorphisms for all q ≥ 0 and all flat R-modules N .
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Since every flat module is the direct limit of free modules of finite rank, it suffices
to show that N 7→ Hq(G(F )+,Coind

G(A∞)
K N) and N 7→ Hq(B(F )+,Coind

G(A∞)
K N)

commute with direct limits.

For g ∈ G(A∞), put Γg := G(F )+∩gKg−1, By the strong approximation theorem,
G(F )+\G(A∞)/K is finite. Choosing a system of representatives g1, . . . , gn, we have

Hq(G(F )+,Coind
G(A∞)
K N) =

n⊕

i=1

Hq(Γgi , N).

Since the groups Γg are arithmetic, they are of type (VFL), and thus the functors
N 7→ Hq(Γg, N) commute with direct limits by [Se2], remarque on p. 101.

Similarly, the Iwasawa decomposition G(A∞) = B(A∞)
∏

v∤∞G(Ov) implies that

B(F )+\G(A∞)/K is finite. Therefore, the same arguments show that

N 7→ Hq(B(F )+,Coind
G(A∞)
K N) commutes with direct limits.

(b) This follows along the same line of reasoning as (a), since Hq(Γg, R) is finitely
generated over Z by [Se2], remarque on p. 101.

With the notation as above, we define

Hq
∗(G(F )

+,Af ((α1, α2)S,M ;R)) := lim−→Hq(G(F )+,Af (K, (α1, α2)S,M ;R))

where the limit runs over all compact open subgroups K ⊆ G(AS,∞); and similarly
define Hq

∗(B(F )+,Af ((α1, α2)S,M;R). The proposition immediately implies

Corollary 4.9. Let R → R′ be a flat ring homomorphism. Then the canonical map

Hq
∗(G(F )

+,Af ((α1, α2)S,M;R))⊗R R
′ → Hq

∗(G(F )
+,Af ((α1, α2)S,M;R′)

is an isomorphism, for all q ≥ 0.

If R = k is a field of characteristic zero, Hq
∗(G(F )

+,Af ((α1, α2)S,M ;R) is a smooth
G(AS,∞)-module, and we have

Hq
∗(G(F )

+,Af ((α1, α2)S,M ; k)K = Hq(G(F )+,Af (K, (α1, α2)S,M ; k).

We identify G(F )/G(F )+ with the group Σ = {±1}r via the isomorphism

G(F )/G(F+)
det−→ F ∗/F ∗

+
∼= Σ

(with all groups being trivial for r = 0). Then Σ acts onHq
∗(G(F )

+,Af ((α1, α2)S,M ; k)
and Hq(G(F )+,Af (K, (α1, α2)S,M ; k) by conjugation.
For π ∈ A0(G, 2) and µ ∈ Σ, we writeHq

∗(G(F )
+, ·)π,µ := HomG(AS,∞)(π

S, Hq
∗(G(F )

+, ·))µ.

Now we can show that π occurs with multiplicity 2r inHq
∗(G(F )

+,Af ((α1, α2)S,M; k):

Proposition 4.10. Let π ∈ A0(G, 2, χZ , α1, α2), S ⊆ Sp. Let k be a field which
contains the field of definition of π. Then for every µ ∈ Σ, we have

Hq
∗(G(F )

+,Af ((α1, α2)S,M; k)π,µ =

{

k, if q = d;

0, if q ∈ {0, . . . , d− 1} (4.5)
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Proof. (cf. [Sp], prop. 5.8)
First, assume S = ∅. The sequence (4.4) induces a cohomology sequence

. . .→ Hq
∗(G(F )

+,Af (Z, k)) → Hq
∗(B(F )+,Af (Z, k)) → Hq

∗(G(F )
+,Af (M, k))

→ Hq+1
∗ (G(F )+,Af (Z, k)) → . . .

Harder ([Ha]) has determined the action of G(A∞) on Hq
∗(G(F )

+,Af (Z, k)) and
Hq

∗(G(F )
+,Af (Z, k)): For q < d, Hq

∗(G(F )
+,Af (Z, k)) is a direct sum of one-

dimensional representations; for q = d there is a G(A∞)-stable decomposition

Hd+1
∗ (G(F )+,Af (Z, k)) = Hd+1

cusp ⊕Hd+1
res ⊕Hd+1

Eis ,

with the last two summands again being direct sums of one-dimensional represen-
tations, and

Hd+1
cusp(G(F )

+,Af (Z, k))π,µ ∼= k

([Ha], 3.6.2.2); Hq
∗(B(F )+,Af (Z, k)) always decomposes into one-dimensional

G(A∞)-representations. Since πS does not map to one-dimensional representations,
this proves the claim for S = ∅.
Now for S = S0 ∪ {p} and πp spherical, lemma 4.7(a) and the statement for S0

give an isomorphism

Hq
∗(G(F )

+,Af ((α1, α2)S0 ,M; k))π,µ ∼= Hq
∗(G(F )

+,Af ((α1, α2)S,M; k))π,µ

since the Hecke operators Tp, Rp act on the left-hand side by multiplication with
ap or νp, respectively. If πp is special, we can similarly deduce the statement for S
from that for S0, using the first exact sequence of lemma 4.7(b) (cf. [Sp]), since the
results of [Ha] also hold when twisting k by a (central) character.

4.4 Eichler-Shimura map

Given a subgroup K0(m)p ⊆ G(Ap,∞) as above, there is a map

I0 : S2(G,m, α1, α2) → H0(G(F )+,Af (m, α1, α2,M; Ωd
harm(H0

∞)))

given by

I0(Φ) : (ψ, (g,m)) 7→
∫

m

ω〈Φ,ψ〉(1p, g),

for ψ ∈ Bα1,α2(Fp,C), g ∈ G(Ap,∞),m ∈ M, where 1p denotes the unity element in
G(Fp).
This is well-defined since both sides are “almost” K0(m)-invariant, and the G(F )+-

invariance of I0(Φ) follows from the similar invariance for differential forms, and the
definition of the G(F )+-operations on Af (M,N), Bα1,α2(Fp, N) and Ωd

harm(H0
∞): For

each ψ ∈ Bα1,α2(Fp,C), g ∈ G(Ap,∞),m ∈ M, we have
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(γI0(Φ))(ψ, (g,m)) = γI0(Φ)(γ
−1ψ, (γ−1g, γ−1m))

= γ ·
∫

γ−1m

ω〈Φ,γ−1ψ〉(1p, γ
−1g)

= (γ−1)∗
∫

γ−1m

ω〈Φ,γ−1ψ〉(1p, γ
−1g)

=

∫

m

ω〈Φ,γ−1ψ〉(γ1p, g) (by (4.1))

= I0(Φ)(ψ, (g,m)).

We have a complex Af (m,α1, α2,M;C) → C• := Af (m, α1, α2,M; Ω•
harm(H0

∞)).
Therefore we get a map

S2(G,m, α1, α2) → Hd(G(F )+,Af (m, α1, α2,M;C)) (4.6)

by composing I0 with the edge morphismH0(G(F )+, Cd) → Hd(G(F )+,Af (m, α1, α2,M;C))
of the spectral sequence

Hq(G(F )+, Cp) =⇒ Hp+q(G(F )+, C•).

Using the map δα1,α2 : Bα1,α2(F, V ) → Dist(F ∗
p , V ) from section 2.7, we next define

a map

∆
α1,α2

V : S2(G,m, α1, α2) → D(S1, V ) (4.7)

by

∆
α1,α2

V (Φ)(U, xp) = δα1,α2

(

Φ

(
xp 0
0 1

))

(U)

for U ∈ Co(FS1 × FS2), x
p ∈ Ip, and we denote by ∆α1,α2 : S2(G,m, α1, α2) →

D(S1,C) its (1,...,1)th coordinate function (i.e. corresponding to the harmonic forms
⊗

v|∞(ωv)1,
⊗

v|∞(βv)1 in section 4.1):

∆α1,α2(Φ)(U, xp) = δα1,α2

(

Φ

(
xp 0
0 1

))

(1,...,1)

(U).

Since for each complex prime v, S1 ∼= SU(2) ∩ T (C) operates via ̺v on Φ, ∆α1,α2 is
easily seen to be S1-invariant, i.e. it lies in D′(S1,C).

We also have a natural (i.e. commuting with the complex maps of each C•) family
of maps

Af (m, α1, α2,M,Ωi
harm(H0

∞)) → Df (S1,Ω
i(U0

∞,C)) (4.8)

for all i ≥ 0, and
Af (m, α1, α2,M,C) → Df (S1,C) (4.9)

(the i = −1-th term in the complexes), by mapping Φ ∈ Af (m, α1, α2,M, ·) first to

(U, xp,∞) 7→ Φ

((
xp,∞ 0
0 1

)

,∞− 0

)

(δα1,α2(1U)) ∈ Ωi
harm(H0

∞) resp. ∈ C,
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and then for i ≥ 0 restricting the differential forms to Ωi(U0
∞) via

U0
∞ =

∏

v∈S0
∞

R∗
+ →֒

∏

v∈S0
∞

Hv = H0
∞.

One easily checks that (4.8) and (4.9) are compatible with the homomorphism of
“acting groups” F ∗′ →֒G(F )+, x 7→

(
x 0
0 1

)
, so we get induced maps in cohomology

H0(G(F )+,Af (m, α1, α2,M,Ωd
harm(H0

∞))) → H0(Df (S1,Ω
d(U0

∞,C))) (4.10)

and
Hd(G(F )+,Af (m, α1, α2,M,C)) → Hd(F ∗′,Df (S1,C)), (4.11)

which are linked by edge morphisms of the respective spectral sequences to give a
commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

S2(G,m, α1, α2)
(4.6)

//

∆
α1,α2

��

Hd(G(F )+,Af (m, α1, α2,M,C))

(4.11)
��

D′(Gm,C)
φ 7→κφ

// Hd
(
F ∗′,Df (C)

)

Proof. The given diagram factorizes as

S2(G,m, α1, α2)
I0

//

∆α1,α2

��

H0(G(F )+,Af (m, α1, α2,M,Ωd
harm(H0

∞
))) //

(4.10)

��

Hd(G(F )+,Af (m, α1, α2,M,C))

(4.11)

��

D′(Gm,C) // H0(Df (S1,Ω
d(U0

∞
,C))) // Hd

(
F ∗′,Df (C)

)

The right-hand square is the naturally commutative square mentioned above; the
commutativity of the left-hand square can be checked by hand:

Let Φ ∈ S2(G,m, α1, α2). Then I0(Φ) is the map (ψ, (g,m)) 7→
∫

m
ω〈Φ,ψ〉(1p, g),

which is mapped under (4.10) to

(U, xp,∞) 7→
∫ ∞

0

ω〈Φ,δα1,α2 (1U )〉

(

1p,

(
xp,∞ 0
0 1

))∣
∣
∣
∣U0

∞

=

∫ ∞

0

Φ(1,...,1)

(
xp 0
0 1

)

(δα1,α2(1U))
dt0
t0

dt1
t1
. . .

dtd
td

;

along the other path, Φ is mapped under ∆α1,α2 to the map

(U, xp) 7→ δα1,α2

(

Φ

(
xp 0
0 1

))

(1,...,1)

(U) = Φ(1,...,1)

(
xp 0
0 1

)

(δα1,α2(1U))

and then also to

(U, xp,∞) 7→
∫ ∞

0

Φ(1,...,1)

(
xp 0
0 1

)

(δα1,α2(1U)) d
×r0 d

×r1 . . . d
×rd

(with xp = (xp,∞, r0, r1, . . . , rd)).

43



4.5 Whittaker model

We now consider an automorphic representation π = ⊗νπν ∈ A0(G, 2, χZ , α1, α2).
Denote by c(π) :=

∏

v finite c(πv) the conductor of π.
Let χ : I∞ → C∗ be a unitary character of the finite ideles; for each finite place

v, set χv = χ|F ∗
v
. For each prime v of F , let Wv denote the Whittaker model of πv.

For each finite and each real prime, we choose Wv ∈ Wv such that the local L-factor
equals the local zeta function at g = 1, i.e. such that

L(s, πv ⊗ χv) =

∫

F ∗
v

Wv

(
x 0
0 1

)

χv(x)|x|s−
1
2 d×x (4.12)

for any unramified quasi-character χv : F
∗
v → C∗ and Re(s) ≫ 0.

This is possible by [Ge], Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, Wv can be
chosen such that SO(2) operates onWv via ̺v for real archimedian v, and is “almost”
K0(c(πv))-invariant for finite v.
For complex primes v of F , we can also choose a Wv satisfying (4.12) and which

behaves well with respect to the SU(2)-action ̺v, as follows:

By [Kur77], there exists a three-dimensional function

Wv = (W 0
v ,W

1
v ,W

2
v ) : G(Fv) → C3

such that W i
v ∈ Wv for all i, and such that SU(2) operates by the right via ̺v on

Wv; i.e. for all g ∈ G(Fv) and h =

(
u v
−v u

)

∈ SU(2), we have

Wv(gh) = Wv(g)M3(h),

where

M3(h) =





u2 2uv v2

−uv uu− vv vu
v2 −2uv u2



 .

Note that W 1
v is thus invariant under right multiplication by a diagonal matrix

(
u 0
0 u

)

with u ∈ S1 ⊆ C. Since πv has trivial central character for archimedian v

by our assumption, a function in Wv is also invariant under Z(Fv). Thus we have

W 1
v

(

g

(
u 0
0 1

))

= W 1
v (g) for all g ∈ G(Fv), u ∈ S1.

W 1
v can be described explicitly in terms of a certain Bessel function, as follows.

The modified Bessel differential equation of order α ∈ C is

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.

Its solution space (on {Re z > 0}) is two-dimensional; we are only interested in
the second standard solution Kv, which is characterised by the asymptotics

Kv(z) ∼
√

π

2z
e−z

(as defined in [We]; see also [DLMF], 10.25).vi

viNote that [Kur77] uses a slightly different definition of the Kv, which is 2
π
times our Kv.

44



By [Kur77], we have W 1
v

(
x 0
0 1

)

= 2
π
x2K0(4πx).

(W 0
v and W 2

v can also be described in term of Bessel functions; they are linearly
dependent and scalar multiples of x2K1(4πx).)

By [JL], Ch. 1, Thm. 6.2(vi), σ(| · |1/2C , | · |−1/2
C ) ∼= π(µ1, µ2) with

µ1(z) = z1/2z −1/2 = |z|−1/2
C z, µ2(z) = z−1/2z1/2 = |z|−1/2

C z;

and the L-series of the representation is the product of the L-factors of these two
characters:

Lv(s, πv) = L(s, µ1)L(s, µ2) = 2 (2π)−(s+ 1
2
)Γ(s+ 1

2
) · 2 (2π)−(s+ 1

2
)Γ(s+ 1

2
)

= 4 (2π)−(2s+1)Γ(s+ 1
2
)2.

On the other hand, letting d×x = dx
|x|C = dr

r
dϑ (for x = reiϑ), we have for

Re(s) > −1
2
:

∫

C∗

W 1
v

(
x 0
0 1

)

|x|s−
1
2

C d×x =

∫

S1

∫

R+

W 1
v

(
reiϑ 0
0 1

)

|x|s−
1
2

C

dr

r
dϑ

= 4

∫ ∞

0

x2K0(4πx)x
2s−1 dx

x
(invariance under SU(2) · Z(Fv) gives a constant integral w.r.t. ϑ)

= 4 (4π)−2s+1

∫ ∞

0

K0(x)x
2s dx

= 4 (4π)−2s+1 22s−1 Γ(s+ 1
2
)
2

(by [DLMF] 10.43.19)

= 4 (2π)−2s+1 Γ(s+ 1
2
)2

Thus we have
∫

C∗

W 1
v

(
x 0
0 1

)

|x|s−
1
2

C d×x = (2π)2 Lv(s, πv)

for all Re(s) > −1
2
.

We set Wv := (2π)−2 W 1
v ; thus (4.12) holds also for complex primes.

Now that we have defined Wv for all primes v, put W p(g) :=
∏

v∤pWv(gv) for all

g = (gv)v ∈ G(Ap).
We will also need the vector-valued function W p : G(AF ) → V given by

W p(g) :=
∏

v∤p finite or v real

Wv(gv) ·
⊗

v complex

(2π)−2Wv(gv).
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4.6 p-adic measures of automorphic forms

Now return to our π ∈ A0(G, 2, χZ , α1, α2). We fix an additive character ψ : A → C∗

which is trivial on F , and let ψv denote the restriction of ψ to Fv →֒A, for all primes
v. We further require that ker(ψp) = Op for all p|p, so that we can apply the results
of chapter 2.
As in chapter 2, let µπp := µαp,1/νp = µqp/αp,2 denote the distribution χqp/αp,2(x)ψp(x)dx

on Fp, and let µπp :=
∏

p|p µπp be the product distribution on Fp :=
∏

p|p Fp.

Define φ = φπ : Co(FS1 × F ∗
S2
)× Ip → C by

φ(U, xp) :=
∑

ζ∈F ∗

µπp(ζU)W
p

(
ζxp 0
0 1

)

.

By proposition 2.15(a), we have for each U ∈ Co(FS1 × F ∗
S2
):

φ(xpU, x
p) =

∑

ζ∈F ∗

µπp(ζxpU)W
p

(
ζxp 0
0 1

)

=
∑

ζ∈F ∗

WU

(
ζxp 0
0 1

)

W p

(
ζxp 0
0 1

)

=
∑

ζ∈F ∗

W

(
ζx 0
0 1

)

,

where W (g) := WU(gp)W
p(gp) lies in the global Whittaker model W = W(π) for all

g = (gp, g
p) ∈ G(A), putting WU := W1U ; so φ is well-defined and lies in D(S1,C)

(since W is smooth and rapidly decreasing; distribution property, F ∗- and Up,∞-
invariance being clear by the definitions of φ and W p).

Let µπ := µφπ be the distribution on Gp corresponding to φπ, as defined in (3.9),
and let κπ := κφπ ∈ Hd(F ∗′,Df (S1,C)) be the cohomology class defined by (3.10)
and (3.11).

Theorem 4.12. Let π ∈ A0(G, 2, χZ , α1, α2); we assume the αp,i to be ordered such
that |αp,1| ≤ |αp,2| for all p|p.vii
(a) Let χ : Gp → C∗ be a character of finite order with conductor f(χ). Then we

have the interpolation property
∫

Gp

χ(γ)µπ(dγ) = τ(χ)
∏

p∈Sp

e(πp, χp) · L(12 , π ⊗ χ),

where

e(πp, χp) =







(1− αp,1xpq
−1
p )(1− αp,2x

−1
p q−1

p )(1− αp,2xpq
−1
p )

(1− xpα
−1
p,2)

, ordp(f(χ)) = 0 and π spherical,

(1− αp,1xpq
−1
p )(1− αp,2x

−1
p q−1

p )

(1− xpα
−1
p,2)

, ordp(f(χ)) = 0 and π special,

(αp,2/qp)
ordp(f(χ)), ordp(f(χ)) > 0

viiSo we have χp,1 = | · |χp,2 for all special πp.
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and xp := χp(̟p).

(b) Let Up :=
∏

p|p Up, put φ0 := (φπ)Up. Then

∫

I/F ∗

φ0(x)d
×x =

∏

p|p
e(πp, 1) · L(12 , π).

(c) κπ is integral (cf. definition 3.11). For µ ∈ Σ, let κπ,µ be the projection of κπ
to Hd(F ∗′,Df (S1,C))π,µ. Then κπ,µ is integral of rank 1.

Proof. (a) We consider χ as a character on IF/F
∗ (which is unitary and trivial on

I∞), and choose a subgroup V ⊆ Up such that χp|V = 1 (where χp := χ|Fp) and V
is a product of subgroups Vp ⊆ Up.
Let WV ∈ Wp be the product of the WVp, as defined in prop. 2.15, set W (g) :=

W p(gp)WV (gp) ∈ W , and let

φV (x) := φ(xpV, x
p) =

∑

ζ∈F ∗

W

(
ζxp 0
0 1

)

.

Since π is unitary, we have |αp,2| ≥ √
qp > 1 = |χp(̟p)| for all p, thus e(πp, χp| · |sp)

is always non-singular, and we will be able to apply proposition 2.6 locally below.
We want to show that the equality

[Up : V ]

∫

IF /F ∗

χ(x)|x|sφV (x)d×x = N(f(χ))sτ(χ)
∏

p|p
e(πp, χp| · |sp) · L(s+ 1

2
, π ⊗ χ)

holds for s = 0. Since both the left-hand side and L(s+ 1
2
, π⊗χ) are holomorphic in

s (see [Ge], Thm. 6.18 and its proof), it suffices to show this equality for Re(s) ≫ 0.
For such s, we have

[Up : V ]

∫

IF /F ∗

χ(x)|x|sφV (x)d×x =

∫

IF

χ(x)|x|sW
(
x 0
0 1

)

d×x (def. of φV )

= [Up : V ]

∫

F ∗
p

χp(x)|x|sWU

(
x 0
0 1

)

d×x ·
∫

IpF

χp(y)|y|sW p

(
y 0
0 1

)

d×y

=
∏

p|p

∫

F ∗
p

χp(x)|x|spµπp(dx) · LSp(s+
1
2
, π ⊗ χ) (by prop. 2.15 and (4.12))

=
∏

p|p

(
e(πp, χp| · |sp)τ(χp| · |sp)

)
· L(s+ 1

2
, π ⊗ χ) (by prop. 2.6)

= N(f(χ))sτ(χ)
∏

p|p
e(πp, χp| · |sp) · L(s+ 1

2
, π ⊗ χ).

For s = 0, we get the claimed statement, since by (3.9) we have

∫

Gp

χ(γ)µπ(dγ) =

∫

IF /F ∗

χ(x)φ(dxp, x
p)d×xp = [Up : V ]

∫

IF /F ∗

χ(x)φV (x)d
×x.

47



(b) This follows immediately from (a), setting χ = 1, since τ(1) = 1.

(c) Let λα1,α2 ∈ Bα1,α2(Fp,C) be the image of ⊗v|pλav ,νv under the map (2.13). For
each ψ ∈ Bα1,α2(Fp,C), define

〈Φπ, ψ〉(gp, gp) :=
∑

ζ∈F ∗

λα1,α2

((
ζ 0
0 1

)

gp · ψ
)

W p

((
ζ 0
0 1

)

gp
)

=:
∑

ζ∈F ∗

Wψ

((
ζ 0
0 1

)

g

)

for a V -valued function Wψ whose every coordinate function is in W(π).

This defines a map Φπ : G(Ap) → Bα1,α2(Fp, V ). In fact, Φπ lies in S2(G,m, α1, α2),
where m is the prime-to-p part of f(π):
Condition (a) of definition 4.5 follows from the fact that the Wv are almost

K0(c(πv))-invariant, for v ∤ p,∞.
For condition (b), we check that 〈Φπ, ψ〉 satisfies the conditions (i)-(v) in the

definition of A0(G, harm, 2, χ):
Each coordinate function of 〈Φπ, ψ〉 lies in (the underlying space of) π by [Bu],

Thm. 3.5.5, thus 〈Φ, ψ〉 fulfills (i) and (v), and has moderate growth. (ii) and (iv)
follow from the choice of the Wv and Wv.

Now since πv ∼= σ(| · |1/2v , | · |−1/2
v ) for v|∞, it follows from those conditions that

〈Φ, ψ〉|B′
Fv

· βv = C
∑

ζ∈F ∗ Wv

(
ζt 0
0 1

)
· βv is harmonic for each archimedian place v of

F : for real v, it is well-known that f(z)/y is holomorphic for f ∈ D(2), and thus
f ·(βv)1 is harmonic; for complex v, this is also true, see e.g. [Kur78], p. 546 or [We].

Now we have

∆α1,α2(Φπ)(U, x
p) = δα1,α2

(

Φ

(
xp 0
0 1

))

(1,...,1)

(U)

=
∑

ζ∈F ∗

λα1,α2

((
ζ 0
0 1

)

δα1,α2(1U)

)

W p

(
ζxp 0
0 1

)

(*)
=

∑

ζ∈F ∗

µπp(ζU)W
p

(
ζxp 0
0 1

)

= φπ(U, x
p),

where (*) follows from the calculation (with w0 as defined in Ch. 2)

λα1,α2

((
ζ 0
0 1

)

δα1,α2(1U)

)

=
∏

p|p

∫

Fp

(
ζ 0
0 1

)

δαp,1,αp,2(1U)

(

w0

(
1 x
0 1

))

ψp(−x)dx

=
∏

p|p

∫

Fp

δαp,1,αp,2(1U)
((

0 1
−1 0

)(
1 x
0 1

)(
ζ−1 0
0 1

)

︸ ︷︷ ︸

)

ψp(−x)dx

=
(

0 1
−ζ−1 −x

)

=
∏

p|p

∫

Fp

χαp,2(−x)χαp,1(−1) 1U(−xζ) ψp(−x) dx

=

∫

ζU

∏

p|p
χαp,2(−x)ψp(−x)dx = µπp(ζU)
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for all ζ ∈ F ∗.

Let R be the integral closure of Z[ap, νp; p|p] in its field of fractions; thus R is
a Dedekind ring ⊆ O for which Bα1,α2(F,R) is defined. C is flat as an R-module
(since torsion-free modules over a Dedekind ring are flat); thus by proposition 4.8,
the natural map

Hd(G(F )+,Af (m, α1, α2,M, R))⊗ C → Hd(G(F )+,Af (m, α1, α2,M,C))

is an isomorphism. The map (4.11) can be described as the ”R-valued” map

Hd(G(F )+,Af (m, α1, α2,M, R)) → Hd
(
F ∗′,Df (R)

)

tensored with C. By proposition 4.11, κπ lies in the image of (4.11), and thus in
Hd
(
F ∗′,Df (R)

)
⊗ C; i.e. it is integral.

Similarly, it follows from propositions 4.8 and 4.10 that κπ,µ is integral of rank
1.

Corollary 4.13. µπ is a p-adic measure.

Proof. By proposition 3.8, µπ = µφπ = µκπ . Since κπ is integral, µκπ is a p-adic
measure by corollary 3.13.

We can now define the p-adic L-function of π ∈ A0(G, 2, χZ , α1, α2) by

Lp(s, π) := Lp(s, κπ) := Lp(s, κπ,+) :=

∫

Gp

N (γ)sµπ(dγ)

for all s ∈ Zp, where N is the p-adic cyclotomic character (definition 3.4; cf. remark
3.14). Lp(s, π) is a locally analytic function with values in the one-dimensional
Cp-vector space Vκπ,+ = Lκ,O,+ ⊗O Cp.
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