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Abstrat

We determine the three-loop e�etive parameters of the dimensionally redued theory of EQCD

as mathing oe�ients to full QCD. The mass parameter m
E

is interpreted as the high tem-

perature, perturbative ontribution to the Debye sreening mass of hromo-eletri �elds and

enters the pressure of QCD at the order of g7. The e�etive oupling g
E

an be used to om-

pute the spatial string tension of QCD. However, we suspet that the e�etive oupling g
E

obtains through renormalization ontributions from higher order operators that have not yet

been taken into aount. Therefore our result re�ets the (still divergent) ontribution from the

super-renormalizable EQCD Lagrangian. In addition, we present a new method for omput-

ing tensor sum-integrals and provide a generalization to the known omputation tehniques of

spetales-type sum-integrals.
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Chapter 1

Motivation

The theory of strong interations is well established for roughly �fty years and its validity has

been tested many times [1℄. It is known that the underlying theory is Quantum Chromodynamis

(QCD), a quantum �eld theory whose degrees of freedom are massive fermions and massless

gluons, both subjet to the non-abelian SU(3) symmetry group.

Closely related to the the Yang-Mills theory, whih is the underlying theory of the gluoni

integrations, is the asymptoti freedom of quarks and gluons [2, 3℄ in the UV and the on�nement

of quarks at low energies [4℄.

Tehnially, QCD an be handled at high energies with the standard quantum �eld theory

approah of a perturbative weak oupling expansion in terms of the QCD oupling, sine it is

very small in the energy region mentioned, a diret onsequene of asymptoti freedom. This

method leads to the famous Feynman-diagram mahinery of omputing physial observables.

However, at low energies, whih are the energies of interest, perturbative expansion breaks

down, as the strong oupling indeed beomes strong. Physially, the aessible degrees of freedom

are not quarks and gluons anymore, but rather mesons and baryons, whose masses are mostly

generated by interations and merely (≈ 1%) by the onstituent quark masses [5℄.

The question of how the transition from low energy hadroni matter to a state of an almost

non-interating gas of quarks and gluons, a quark-gluon plasma (QGP)[6, 7, 8℄ ours, is ad-

dressed within the framework of statistial mehanis of quantum �elds. On the experimental

side it was the heavy ion ollision programs performed at LBNL (Berkley) and later on at BNL

(RHIC), GSI and nowadays also at LHC, that have boosted the researh in the �eld of ther-

mal QCD. On the theoretial side it was the numerial approah within the framework of �eld

theories disretized on a lattie that have provided �rst results on QGP and on the QCD phase

diagram (for a theoretial review on the matter, see [9℄). Even though less advaned as in the

zero temperature ase, analytial omputations within thermal �eld theory have found a wide

use not only in partile physis but also on osmology related problems [10, 11, 12℄. Also, they

turn out to be very fruitful as they an approah regions in the phase diagram of QCD that are

di�ult to aess with lattie simulations, suh as regions with �nite hemial potential [13, 14℄

or even with a magneti bakground [15, 16, 17℄.

There have been many hallenges on both the numerial (via lattie simulations) and the

analytial (weak-oupling expansion) side so that even after deades of researh we are still in

the situation in whih only limited temperature and density sales an be addressed with any of

the approahes and they hardly overlap. Therefore a permanent hek with the omplementary

method has beome a widely aepted proedure.
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In quantum �eld theory the omplexity of typial alulations shows a rapid grow with

every loop order, suh that nowadays, when state of the art omputations reah even the �ve-

loop order at zero temperature [18℄, it has beome a standard to rely on omputer-algebrai

tools. The omputational proedure has also standardized: the Feynman diagram generation

is followed by group-theoretial algebras and salarization of the integrals. The typially large

number of integrals is redued to a small set of master integrals that are omputed analytially

or numerially. The last step represents the tehnially most demanding task and has boosted

the development of integral solving tehniques.

Multi-loop alulation tehniques in zero-temperature �eld theory are muh more advaned

as in the ase of thermal �eld theory as their appliability, hene their demand spans over all

partile ollision related subjets. Some of the most fruitful integral solving methods and math-

ematial advanes in the �eld inlude keywords like: Integration by Parts (IBP) [19℄, di�erene

equations [20℄, setor deomposition [21℄, Mellin Barnes transformations [22℄, di�erential equa-

tions [23℄, Harmoni Polylogarithms [24℄. An introdution to Feynman integral alulus an be

found in [25℄. Some of the methods are implemented in software pakages like Reduze [26℄ and

FIESTA [27℄.

Due to the �nite temperature, quantum �eld theories exhibit a di�erent analytial struture;

we are onfronted not with integrals but rather with so-alled sum-integrals. This makes a one-

to-one transfer of zero-temperature tehniques di�ult and even makes their feasibility à priori

unertain.

Keeping all these ideas in mind, the present thesis intends to provide yet another building

blok towards multi-loop omputations in high temperature QCD. Preisely, we ompute two

mathing oe�ients, m
E

and g
E

, of the low temperature e�etive theory of thermal QCD,

namely Eletrostati QCD (EQCD). Besides having the aim of a proof-of-priniple of the per-

turbative expansion that in the zero-temperature ase works so well, we also have two diret

appliations of our result. The e�etive mass m
E

enters the QCD pressure at O(g7) in the

oupling. This is the ontribution to the �rst order beyond the famous non-perturbative term

∝ g6. The most diret veri�ation of the onvergent nature of the perturbative expansion is

-preisely in the spirit of testing analytial results against lattie results- the omputation of the

spatial string tension σs, a non-perturbative quantity de�ned in the framework of lattie QCD

and being the subjet of investigation ever sine.

In addition, this thesis aims to o�er a ontribution to multi-loop alulation tehniques

in thermal �eld theory; one more, borrowing a method from zero-temperature �eld theory, we

provide an adapted method of omputing tensor sum-integrals and we generalize the omputation

proedure �rst developed by Arnold and Zhai [28℄ to a broad lass of so-alled spetales-type

sum-integrals of mass dimension two and zero.

The thesis is strutured as follows: The �rst hapter gives a short introdution on the basi

onepts of thermal �eld theory and of the theory of QCD in the �nite temperature piture as the

theory of our investigation. From there, the renormalization program for eliminating ultraviolet

(UV) divergenes and the resummation program for eliminating infrared (IR) divergenes for

bosoni degrees of freedom are skethed. Finally, we make some general onsiderations on multi-

sale theories and e�etive theories as a preparation of the seond hapter.

In hapter two we provide a possible way out of the IR-divergene problem within the

framework of e�etive �eld theories by making use of the sale separation in thermal QCD. We

then set the mathing oe�ients to be determined in the physial ontext of Debye sreening

and of the spatial string tension. The atual alulations are performed in the bakground
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�eld gauge, sine it onsiderably simpli�es the mathing omputation. Finally we present the

tehnialities of Feynman diagram generation and their redution to a small set of master sum-

integrals.

The third hapter represents the main part of the thesis. Here we apply Tarasov's method

[29℄ for tensor redution to the onrete ase of a master sum-integral. Afterwards, the gen-

eral properties of spetales-type sum-integrals are presented and demonstrated on a onrete

example. With the experiene gained we generalize the proedure to a set of arbitrary param-

eters in the onstrain of two and zero mass dimensions. Finally, we provide two more onrete

omputations of sum-integrals that do not ompletely obey our previously determined generi

rules.

In the last hapter, we give the result on the renormalized e�etive mass to three-loop order

and present the results on the e�etive oupling. As it turns out, in order to omplete the

omputation, renormalization onstants from higher order operators are required. Finally we

disuss the future omputation on the renormalization onstants and present an outlook for the

present work.
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Chapter 2

Introdution

In the following, we give a short introdution on the theory, in whih our work is embedded.

While making use of the simple model of a salar �eld theory, we point out the tehnial problems

that arise in this ontext and set the stage for a possible solutions presented in hapter 3.

2.1 Thermodynamis of quantum �elds

Quantum �eld theory at �nite temperatures is an extension of statistial quantum mehanis to

inlude speial relativity. As it desribes the thermodynamial properties of relativisti partiles,

it �nds diret use in problems related to the early Universe where thermal aspets of the Standard

Model (SM) [30, 31℄ beome important. Throughout this thesis, natural units are employed,

~ = c = kB = 1.
As in the non-relativisti ase, the entral quantity is the partition funtion, the sum over

all possible states of the system symbolially written as [32℄:

Z = Tre−βĤ , β ≡ 1/T . (2.1)

Tehnially, in the ase of quantum mehanis it is possible to �nd a onrete representation

of the partition funtion in terms of a path integral by making use of the position spae |x〉
and the momentum spae representation |p〉. The extension to �elds an be performed, if one

onsiders quantum statistial mehanis as a 0+1 dimensional quantum �eld theory and extends

the theory to d+ 1 dimensions. In that sense, the operator x̂(t) an be regarded as a �eld at a

�xed spae point, φ̂(0, t). Thus, the partition funtion in thermal �eld theory is:

Z = C

∫

φ(β,x)=±φ(0,x)
Dφ exp

[

−
∫ 1/T

0
dτ

∫

ddxLE(φ, ∂µφ)

]

, (2.2)

where the onstant C is in�nite but will never play a role in atual omputations, as seen later

on. As a short hand notation, we employ:

Z = C

∫

Dφe−SE , SE =

∫

x
LE ,

∫

x
≡
∫ 1/T

0
dτ

∫

ddx . (2.3)

The τ -diretion is bounded and the temperature T enters the partition funtion via the

upper integration limit. Due to the fat that the �elds obey (anti-)periodi boundary onditions
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if they are (fermioni) bosoni, the time omponent of the momentum in Fourier spae is disreet:

P ≡ (p0,p) , p0 =

{

2πnT , n ∈ Z for bosons

π(2n + 1)T , n ∈ Z for fermions

. (2.4)

At this point, the formal equivalene between thermal �eld theory and the path-integral

formulation of quantum �eld theory at zero temperature beomes lear. By starting from the

usual generating funtional, it is possible to obtain Eq. (2.2) by simply performing a Wik

rotation, t → τ ≡ −it. This leads to a hange of the weight inside the path integral, i → (−1)
and of the metri, from Minkovskian to Eulidean, gµν = diag(1, 1, 1, 1).

In the following, we keep the Lagrangian as general as possible. It an be split into a kineti

term quadrati in the �elds and an interation term with higher powers in the �elds.

LE = L0 + LI

=
1

2
(∂µφ)(∂

µφ) +
1

2
m2φ2 + V (φ) , V (φ) ∝ λφn≥2 .

(2.5)

In order to introdue the mathematial quantities needed later suh as propagators, n-point
Green's funtions or vertex funtions, some de�nitions are needed. The free expetation value

of an observable is denoted with:

〈O〉0 =
C
∫
Dφ O e−S0

C
∫
Dφ e−S0

, (2.6)

sine only the free Lagrangian is used as a weighting fator and loop orretions are exatly zero.

The expetation value of two time-ordered �elds is the free propagator of the �eld (f. Eq. 4.6

later):

D0(x1, x2) ≡ 〈0|T{φ(x1)φ(x2)}|0〉0 =
C
∫
Dφ φ(x1)φ(x2) e−S0

C
∫
Dφ e−S0

=
∑
∫

P

eiP (x−y)

P 2 +m2
, (2.7)

where the integration measure is de�ned in Eq. (4.5). In momentum-spae the propagator is

simply

1

D0(P ) =
1

P 2 +m2
. (2.8)

Next, we de�ne the full n-point Green's funtion as:

G(x1, ..., xn) ≡ 〈φ1...φn〉 =
1

ZC
∫

Dφφ1...φne−SE , φi ≡ φ(xi) . (2.9)

In order to ompute the Green's funtion, a Taylor expansion of e−SI
in terms of λ has to

be performed, by using the splitting in Eq. (2.5):

G(x1, ..., xn) =

∫
Dφφ1...φne−S0

∑∞
j=0

(−SI )
j

j!
∫
Dφ e−SE

∑∞
j=0

(−SI )j

j!

. (2.10)

1

For simpliity, we use the same notation in momentum spae as it is always lear from the ontext whih

representation is used.
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By using Wik's theorem, eah new term of the sum generates diagrams aording to all

the possibilities of ontrating the n external �elds to the 4 × j internal �elds. Due to the

numerator, all disonneted diagrams vanish. This is illustrated for the one-loop 2-point funtion

by expanding the denominator as:

1
1+x ≈ 1− x.

G(x1, x2) =
s s 3 × s s × ✍✌✎☞✍✌✎☞s 12 × ss s✍✌✎☞

1 − 3 × ✍✌✎☞✍✌✎☞s +...

= s s 12 × ss s✍✌✎☞
+ O(λ2) .

If we modify the partition funtion, by introduing a soure term J(x) as

Z[J ] = C

∫

Dφ exp
[

−SE −
∫

x
J(x)Q(x)

]

, (2.11)

we an de�ne the full n-point Green's funtion in terms of a soure derivative:

G(x1, ..., xn) =
−δ
δJ1

...
−δ
δJn

W [J = 0] , J1 ≡ J(x1) , (2.12)

with

W [J ] ≡ lnZ[J ] . (2.13)

By taking the logarithm of Z, the disonneted piees exatly anel and only the onneted

ones remain. Thus, W [J ] an be regarded as the generating funtional of onneted Green's

funtions.

In the following we perform a Legendre transformation of the form:

Γ[φ̄] =W [J ]−
∫

x
J(x)φ̄(x) . (2.14)

The new variable φ̄ is the �eld on�guration that minimizes Γ[φ̄] in the limit J(x) = 0:

φ̄ = −δW [J ]

δJ(x)
(2.15)

as seen from:

δΓ[φ̄]

δφ̄(x)
=
δW [J ]

δJ(x)

δJ(x)

δφ̄(x)
− δJ(x)

δφ̄(x)
φ̄(x)− J(x) = −J(x) . (2.16)

By taking the seond derivative of Eq. (2.14), we obtain:

δ2Γ

δφ̄2
= −δJ

δφ̄
=

[

− δφ̄
δJ

]−1

= −
[
δ2W

δJ2

]−1

= −D−1 , (2.17)

where D denotes the full propagator:

D(x1, x2) ≡ G(x1, x2) . (2.18)
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Figure 2.1: Relation between onneted and one-partile irreduible two-point funtions.

We rewrite Eq. (2.17) as:

D ×
(

−δ
2Γ

δφ̄2

)

×D = D , (2.19)

or diagrammatially as in Fig. (2.1).

In onlusion, the vertex funtional de�ned in Eq. (2.14) is the generating funtional of

one-partile irreduible diagrams. Further, if we de�ne the self-energy Π as:

D =
1

P 2 +m2 +Π(P )
=

1

D−1
0 +Π(P )

, (2.20)

where D0 is the free propagator, we an relate the self-energy to the two-point vertex funtion

as:

Π(P ) = −P 2 −m2 − δ2Γ

δφ̄2

= −P 2 −m2 +
δ2 lnZ[J = 0]

δJ2

∣
∣
∣
∣
1PI

(2.21)

Conluding, the self-energy of a �eld is simply the one-partile irreduible two-point funtion

from whih the free propagator has been subtrated. Later on, this will be the starting point of

the omputation.

Finally, we relate the earlier de�ned funtions to thermodynamial observables by using

their de�nitions from statistial mehanis. In this way, observables suh as the free energy, the

pressure or the entropy an be obtained:

f = −p = T

V
lnZ[J ]

∣
∣
∣
∣
J(x)=0

s = − ∂f

∂T
.

(2.22)

2.2 Path-integral formulation of QCD

So far, we have formulated statistial mehanis in terms of a path-integral of a simple salar �eld.

In the following, the theory of QCD will be introdued, as a starting point of our alulation.

The most important property that the theory of QCD and that of salars share, is their bosoni

nature and therefore the same low energy behavior, whih is very di�erent from that of fermioni

�elds.

Historially, the theory of Quantum Chromodynamis was preeded by Gell-Mann's so-alled

Eightfold Way, whih was an attempt to order the inreasing number of newly disovered parti-

les, similar to the previously established SU(2) isospin symmetry of neutrons and protons, in

a systemati way.
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The proposal to onstrut the �elementary� partiles out of so-alled quarks (spin 1/2 and

frational eletri harge: ±1/3, ±2/3) demanded a new property/harge of the quarks that

should take up 3 values in order for the mesons and the baryons to be in onordane with

Pauli's exlusion priniple

2

.

Their mathematial desription is grounded on the priniple of loal gauge invariane of

�olored� matter partiles that naturally introdues gauge bosons as an intermediating olor

�eld.

Consider an n-tuple �eld in olor-spae (f. [33℄):

Φ =






φ1
...

φNc




 . (2.23)

where φ may be either a salar or a spinor �eld, and Nc is the number of olors.

Next, we onstrut a generi theory ontaining these �elds, whih is Lorentz invariant and

invariant under loal phase transformations of the �elds, that is gauge invariant:

Φ → Φ
′ ≡ V (x)Φ ⇒ L(Φ, ∂µΦ) = L′

(Φ
′
, ∂µΦ

′
) , V (x) ≡ eiT

aαa(x) . (2.24)

The N2
c − 1 matries Ta ≡ T a

are the generators of the SU(Nc) group under whih the

Lagrange density is invariant.

In the fundamental representation (T a
is Nc ×Nc) we have (together with the vetor spae

spanned by the T a
's) the Lie Algebra:

[T a, T b] = ifabcT c , (2.25)

with the normalization relation

Tr(T aT b) =
δab

2
. (2.26)

�Tr� is the trae of the matrix and fabc are alled struture onstants and are totally antisym-

metri: fabc = −2iTr([T a, T b]T c). Another useful representation is the adjoint representation

in whih the generators T a
are of dimension (N2

c − 1)× (N2
c − 1) and:

(T b
A)ac = ifabc , ([T b

A, T
c
A])ae = if bcd(T d

A)ae . (2.27)

In this representation, the Casimir quadrati operator is simply the number of olors: CA = Nc.

When allowing independent phase variations of the �elds at any spae-time point, the deriva-

tive term (whih is simply the subtration of the �elds at neighboring points) needs to be mod-

i�ed with a salar quantity that transforms as U(x, y) → V (x)U(x, y)V †(y), in order for the

derivative to behave properly under phase transformations:

nµ∂µΦ = lim
ǫ→0

Φ(x+ ǫn)− Φ(x)

ǫ
→ nµDµΦ = lim

ǫ→0

Φ(x+ ǫn)− U(x+ ǫn, x)Φ(x)

ǫ
, (2.28)

where nµ is a unit vetor and U(x, y) an be expanded in the separation of the two points:

U(x+ ǫn, x) ≈ 1− igǫnµAa
µT

a , Dµ ≡ ∂µ − igAa
µT

a , (2.29)

2

That is, to allow for the ground state of baryons to exhibit spin 3/2 (e.g. The ∆++
baryon).
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with g being the oupling onstant.

Thus, this new quantity naturally introdues N2
c −1 vetor gauge �elds that need to transform

as:

Aa
µT

a → V (x)

(

Aa
µT

a +
i

g
∂µ

)

V †(x)

=

[

Aa
µ +

1

g
∂µα

a − fabcαbAc
µ

]

T a +O(g2) .

(2.30)

so that the Lagrange density ontaining the ovariant derivative remains gauge invariant.

For the theory to be omplete, a kineti term for the newly introdued vetor �elds is

needed. The kineti term an be obtained onstruting a term bilinear in the gauge �elds out

of the ovariant derivative, or using so-alled Wilson loops (f. Chapter 15 of [33℄).

Finally, the Lagrangian for the gauge �elds, whih throughout the thesis will be onsidered

to be the gluoni part of the full QCD Lagrangian, looks like:

L
g

= −1

2
TrFµνFµν = −1

4
F a
µνF

a
µν , (2.31)

where the trae is performed in olor spae and the �eld strength tensor Fµν ≡ F a
µνT

a
is de�ned

as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + igfabcAb

µA
c
ν . (2.32)

The fermioni part of the thermal QCD Lagrangian ontains spinors that solve the Dira

equation in Eulidean metri:

(γ̃µ∂̃µ +m)ψ = 0 , (2.33)

where ∂̃0 ≡ ∂τ , ∂̃i = ∂i and γ̃
µ
are the four 4 × 4 Eulidean gamma matries. They are four-

dimensional objets in Dira spae and anti-ommute like Grassmann numbers, ab = −ba. The
fermioni part of the QCD Lagrangian, onstruted to be gauge invariant by substituting the

derivative ∂µ with the ovariant derivative Dµ, is:

L
f

=

Nf∑

f=1

ψ̄f (γ̃
µD̃µ +m)ψf . (2.34)

The sum in Eq. (2.35) is over the fermion �avors Nf and ψ̄ ≡ ψ†γ0.
The QCD Lagrangian adds up to:

L
QCD

= L
f

+ L
g

=

Nf∑

f

ψ̄f (iγ
µDµ −m)ψf − 1

2
TrFµνF

µν .
(2.35)

However, when plugging the Lagrangian (2.35) into the partition funtion from Eq. (2.2)

3

,

the quantity is in�nite beause the integration over the gauge �elds runs over all physially

equivalent gage on�gurations. To overome this problem, the Faddeev-Popov proedure is

employed. Integration is restrited only to a gauge-on�guration orbit, set by a gauge �xing

ondition G(A) = 0 whih is hosen to be the generalized Lorentz gauge:

G(A) = ∂µA
a
µ(x)− ωa(x) , (2.36)

3

The integration measure reads now DADψ̄Dψ.
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From here the gauge-�xing term in the Lagrangian emerges:

L
g−f = −1

ξ
Tr

[

(∂µAµ)
2
]

. (2.37)

However, this proedure generates a gauge-�xing determinant in the path-integral that ex-

pliitly depends on the gauge �elds and therefore is expressed as a funtional integral over

Grassmann �elds:

det

[
∂µDµ

g

]

=

∫

DcDc̄ exp
[

−
∫

x
c̄(∂µDµ)c

]

. (2.38)

This leads to a term in the Lagrangian ontaining ghost �elds:

L
ghost

= ∂µc̄
a∂µc

a + gfabc∂µc̄
aAb

µc
c . (2.39)

Finally, the full QCD partition funtion reads:

Z = C

∫

periodi

DA
∫

periodi

Dc̄Dc
∫

anti-periodi

Dψ̄Dψ exp
[
−S

QCD

[A, ψ̄, ψ, c̄, c]
]
,

S
QCD

=
1

4
F a
µνF

a
µν +

1

2ξ

[
∂Aa

µ

]2
+ ∂µc̄

a∂µc
a + gfabc∂µc̄

aAb
µc

c +
∑

f

ψ̄f (γ̃µD̃µ +m)ψf .
(2.40)

Extension to the partition funtion with a soure term J(x) is straightforward.

2.3 Renormalization of ultraviolet divergenes

When atually omputing physial observables by using strutures similar to those in Eq. (2.10),

the results are in general in�nite due to the large momentum behavior of the integrals (hene

ultraviolet divergene). Their divergene is traed bak to the fat that the Lagrangian does

not ontain physial quantities suh as physial �elds, eletri harge or mass, but rather some

theoretial (bare) ones (.f. Ref. [34℄).

To overome this problem, one has to follow three steps. The �rst step is to regularize

the integrals, sine tehnially they are the soure of the UV divergenes. The seond step is to

hoose some renormalization onditions that set a �xed �nite value for the renormalized/physial

quantities at a ertain energy sale. In the last step, by relating the bare quantities to the

renormalized ones, it is possible to absorb all divergenes into the renormalization onstants of

the spei� renormalized quantities. One the renormalization onstants are known, all physial

quantities are assured to be �nite.

In pratie, divergenes ome from strutures like:

∫ ∞

−∞
d4p

1

[p2 +m2]2
. (2.41)

This integral diverges for high enough momentum, as the integrand runs like 1/p. A straight-

forward so-alled regularization shemes for parameterizing the divergenes is the momentum

ut-o�, in whih an upper limit on p2 is imposed:

∫ ∞

−∞
d4p

1

[p2 +m2]2
= 2π2

∫ Λ

0
dp

p3

[p2 +m2]2
= π2

[

ln
Λ2

m2
+

m2

Λ2 +m2
+ ln

(

1 +
m2

Λ2

)

− 1

]

.

(2.42)
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In the �nal result the momentum ut-o� has to be removed, Λ → ∞.

A mathematially muh more onvenient regularization sheme that will be used throughout

the thesis, is the so-alled dimensional-regularization sheme, in whih the dimension of the

theory and thus the dimension of the resulting integrals is analytially ontinued to d→ d− 2ǫ,
with ǫ > 0 being a small parameter that is taken to be zero at the and of the alulation. Details

on the sheme are to be found for instane in [35℄. Sine Eq. (2.41) hanges its dimensionality

to 2 − 2ǫ, an arbitrary sale has to be introdued to render its dimension unhanged, thus

∫
→ µ2ǫ

∫
. The divergent integral from Eq. (2.41) beomes:

µ2ǫ
∫ ∞

−∞
d4−2ǫp

1

[p2 +m2]2
= π2−ǫ

(
µ2

m2

)ǫ

Γ(ǫ) = π2
[
1

ǫ
+ ln

µ2

m2
− γE − lnπ

]

. (2.43)

Even though in both equations, (2.42) and (2.43), we enounter the new mass sale within

the logarithm, only Λ has the diret physial interpretation of an upper energy sale to whih

the omputation is reliable. As in Eq. (2.43) the divergene omes from 1/ǫ rather than from

µ4, its physial meaning is not obvious from the beginning. However, as it enters in logarithms,

∝ lnµ2/m2
, their relative ontribution to the �nal result for a �xed energy sale is an indiation

of the reliability of the result at the given sale

5

.

There is a ertain freedom in hoosing the renormalization onstants. Taking for simpliity

the salar �eld theory, they usually are de�ned as:

φB =
√

ZφφR

λB = ZλλR

m2
B = Zm2 m2

R .

(2.44)

Closely related to the regularization sheme is the renormalization sheme. A very useful

and the most used sheme is the so-alled Minimal Subtration sheme (MS) [36℄ and variations

thereof, suh as the MS -sheme [37℄ with

µ2 = µ̄2eγE/4π . (2.45)

Sine for any modi�ation of the mass sale µ2ǫ → µ2ǫf(ǫ) the ounter-terms remain un-

hanged, we an write them as:

Z = 1 +

L∑

n=1

[
λRµ

−2ǫ

(4π)2

]n n∑

k=1

cn,k
ǫk

, (2.46)

with L being the number of loops and cn,k are omplex numbers.

The MS proedure is the following. By inserting Eq. (2.44) into the φ4 Lagrangian for

instane, it is possible to split it into the part in whih all quantities have been replaed by the

renormalized ones and a ounter-term piee:

L
ren

=
1

2
(∂µφR)

2 +
1

2
m2

Rφ
2
R +

λRµ
2ǫ

4
φ4R

+
1

2
(Zφ − 1)(∂µφR)

2 +
1

2
(ZφZm2 − 1)m2

Rφ
2
R + (ZλZ

2
φ − 1)

λRµ
2ǫ

4
φ4R .

(2.47)

4

The sale µ is kept arbitrary but �nite.

5

For a onrete example on this matter, see hapter 5.

14



The ounter terms are all at least of O(λR) (f. Eq. 2.46) and do not enter tree-level omputa-

tions, as should be the ase.

The oe�ients cn,k from Eq. (2.46) are determined by alulating the renormalization

onditions with the renormalized Lagrangian, Eq. (2.47), and by absorbing order by order the

divergenes into the renormalization onstants.

If the renormalization onstants are known to a given order in λR, then any other physial

quantity an be omputed in this way. However, new interations with new Feynman rules

emerge from the ounter-terms. Therefore, this proedure is tedious due to the large number of

diagrams that arise.

The seond method that will also be used in this thesis is simply to ompute quantities with

the original Lagrangian ontaining only bare quantities L(φB ,mB). In the divergent result these

quantities are then replaed by the renormalized ones with Eq. (2.44). In this way a �nite result

is assured.

In priniple, all physial quantities are renormalization presription independent. However,

sine in pratie the perturbative expansion is trunated at a �nite order, the renormalization

presription enters the physial (renormalized) quantities through an arbitrary mass sale (suh

as µ̄ for MS ). The equation that desribes the hange of the renormalized parameters with

respet to the hange of the mass sale, is alled renormalization group equation (RGE). For a

single-mass theory and for a mass-independent sheme (suh as MS ) it looks like:

[

µ
∂

∂µ
+ β(λR)

∂

∂λR
+ γm(λR)mR

∂

∂mR
− nγ(λR)

]

Γn
R(p, λR,mR, µ) = 0 . (2.48)

A very important quantity of the previous equation is the so-alled beta funtion β(λR) that
desribes the hange of the oupling with the hange of the sale:

µ
d

dµ
λR = β(λR) . (2.49)

In general the beta funtion is expressed as a perturbative expansion in the renormalized

oupling:

β(λR) = β0
λ2R
16π2

+ β1

(
λ2R
16π2

)2

+ ... . (2.50)

The sign of the beta oe�ients βi determine the strength of the oupling at high energies;

positive oe�ients suh as those of quantum eletrodynamis make sure that at high energies

the oupling strength grows. QCD has negative oe�ients and this leads to its famous property

of being asymptotially free.

By plugging in the �rst term on the right hand side (rhs.) of Eq. (2.50) into Eq. (2.49) we

obtain

λR(µ) = −16π2

β0

1

ln µ
µ0

(2.51)

as a leading order approximation for the running of the oupling with the energy sale. From

here, the QCD renormalization is straightforward.
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2.4 Resummation of infrared divergenes

In the following, we present the infrared problem, whih is typial to any Yang-Mills theory.

Given its bosoni nature, we ompute the free energy density of a salar �eld and take the limit

m→ 0 in the end, in order to illustrate the proedure.

Considering a massive salar �eld theory with a φ4 interation: V (φ) = λ
4φ

4
, the naive free

energy density is [32℄:

f = −T
V

lnZ

= f0(m,T ) +
T

V
〈SI〉0 −

T

2V
〈S2

I 〉0,onneted + ...

(2.52)

The de�nition in Eq. (2.6) for the expetation value and the Taylor expansion of ln(1−x) ≈
−x− x2

2 ... have been used in order to generate only onneted diagrams.

The term f0 is the (salar �eld version of the) Stefan-Boltzmann law,

f0(m,T ) = −π
2T 4

90
+O(m2T 2) , (2.53)

and it ontains also a divergent fator that an be removed by renormalization. However, this

is beyond the purpose of this example.

The �rst orretion to f0 is:

f1(m,T ) = lim
V→∞

T

V

∫
Dφ
∫

x
λ
4φ(x)

4 e−S0

∫
Dφ e−S0

=
λ

4

∫

x
︸︷︷︸

=βV

lim
V→∞

∫
Dφφ(x)φ(x)φ(x)φ(x) e−S0

∫
Dφ e−S0

︸ ︷︷ ︸

3[〈φ(0)φ(0)〉0 ]2

=
3λ

4
[D0(0)]

2 =
3λ

4

[
∑
∫

P

1

P 2 +m2

]2

(2.54)

Sine the the propagator D0(x, y) depends only on x − y, terms of the form D0(x, x) are

due to translational invariane D0(0, 0). The fator 3 omes from applying Wik's theorem

that states that the free expetation value of an n-point funtion an be expressed in terms of

produts of two-point funtions:

〈φ(x1)φ(x2)...φ(xn−1)φ(xn)〉0 =
∑

all omb.

〈φ(x1)φ(x2)〉0...〈φ(xn−1)φ(xn)〉0 . (2.55)

The last term reads:

f2(m,T ) = − lim
V→∞

T

2V

λ2

16

[∫

x,y
〈φ(x)4φ(y)4〉0 −

(∫

x
〈φ(x)4〉0

)]

= −λ
2
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(2.56)

The dot on the loop denotes an extra power on the propagator, thus 1/[P 2 +m2]2.
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The �rst diagram in Eq. (2.56) does not ause divergenes in the limit m → 0, therefore it
will not enter the disussion. IR divergenes in the limit m → 0 are aused only by the seond

diagram as will be shown shortly.

For that onsider the most general one-loop sum-integral:

JA(m,T ) ≡
∑
∫

P

1

[P 2 +m2]A

= T

∫

p

1

[p2 +m2]A
+
∑
∫

P

′ 1

[P 2 +m2]A
,

(2.57)

where the sum was split into the Matsubara zero mode, p0 = 0, and the non-zero modes. For

the zero-mode the integral has a simple expression (f. Appendix B for details on solving suh

integrals):

J0
A(m,T ) = T

∫

p

1

[p2 +m2]A
=

T

(4π)
d
2

Γ(d2 −A)

Γ(A)

1

[m2]A− d
2

. (2.58)

For the non-zero mode part, a Taylor expansion for small m is performed and we obtain a

solution in terms of an in�nite series as:

J
′

A(m,T ) =
∑
∫

P

′ 1

[P 2 +m2]A

=
2T

(4π)
d
2 (2πT )2A−d

∞∑

i=1

[ −m2

(2πT )2

]i Γ(A+ i− d
2)

Γ(i+ 1)Γ(A)
ζ(2A+ 2i− d) .

(2.59)

Thus, the zero-mode part generates only terms with an odd power in m (as we onsider

d = 3), whereas the non-zero mode part generates only terms with even power in m. Moreover,

the non-zero modes part also generates divergenes that are removed by renormalization.

So, with the de�nitions at hand, we an ompute the �rst two orretions to the free energy.

The following result exludes the divergent part:

f1(m,T ) =
3λ

4

[
T 2

12
− mT

4π
+O(m2)

]2

=
3λ

4

[
T 4

144
− mT 3

24π
+O(m2T 2)

]

f2(m,T ) = −9λ2

4

T 4

144

T

8πm
+O(m) .

(2.60)

It beomes lear that the �rst divergene in the limitm → 0 is oming from f2, more preisely

from the following piee of the diagram:

[
∑
∫

P

′ 1

P 2 +m2

]2

× T

∫

p

1

[p2 +m2]2
. (2.61)

It turns out that suh ombinations of odd powers of m oming from the zero-mode piees

of the sum-integrals generate IR divergenes. So, to the n-th order the diagram that generates

the divergene is the produt of n+ 1 one-loop diagrams of whih n piees are non-zero modes

and one piee is a zero-mode integral with the propagator to the n-th power:

(−1)n+1

n!
〈Sn

I 〉0,IR → (−1)n+1

n!

(
λ

4

)n

6n2n−1(n− 1)!

[
T 2

12

]n

T

∫

p

1

[p2 +m2]n
. (2.62)
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The term 6n2n−1(n− 1)! is the symmetry fator oming from the 4n �eld ontrations:

〈φ1 φ1φ1
6

2(n−1)

φ1φ2 φ2φ2
6

2(n−2)

φ2φ3 φ3...〉0 , (2.63)

and T/12 is the leading term from the non-zero modes.

Further, by writing the zero-mode term as a derivative with respet to the mass, we obtain:

J0
1 (m,T ) =

∫

p

1

p2 +m2
=

−m
4π

=
d

dm2

(−m3

6π

)

. (2.64)

The integral in Eq. (2.62) an be re-expressed as:

∫

p

1

[p2 +m2]n
=

(−1)n

(n− 1)!

(
d

dm2

)n(m3

6π

)

. (2.65)

To this point, we have the generi n-loop term that gives rise to a divergene in the limit

m→ 0. By summing up all the piees (f. Fig. (2.2)), we obtain:

∞∑

n=1

1

n!

(
λT 2

4

)n(
d

dm2

)n(m3T

6π

)

= − T

12π

(

m2 +
λT 2

4

) 3
2

. (2.66)

The lhs. of Eq. (2.66) is simply the Taylor expansion of the rhs. around λT 2/4. It beomes

lear that, by summing up the leading IR divergent ontributions to all orders in λ, we generate
a term that permits taking the limit m → 0. It also hanges the weak oupling expansion

qualitatively, by introduing a term of the form λ3/2.

+ t + · · · + tt
. .
.

. .
.

Figure 2.2: Diagrammati resummation of the infrared divergene. The dotted loops denote

zero-mode ontribution whereas a blak dot means an additional power on the propagator. The

dashed lines denote non-zero mode loops.

Thus, the free energy density of a massless salar �eld to the resumed one-loop order is:

f(T ) = −π
2T 4

90

[

1− 15λ

32π2
+

15λ3/2

16π3
+O(λ2)

]

(2.67)

Higher orders for the free energy density are known up to O(λ5/2 lnλ). (.f. [38℄).
Physially, the massless �elds aquire an e�etive thermal mass (similar to the Debye mass

in a QED plasma), hene the zero-modes annot propagate beyond a length proportional to

m−1
e�

. An alternative approah is by starting with a Lagrange density in whih a mass term for
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the Matsubara zero-modes is added to the free part and the same amount is subtrated from the

interation part. A alulation using this tehnique to four-loop order an be found in [39, 40℄.

Of ourse non-zero modes are sreened as well, but in the weak oupling expansion their e�etive

mass ontribution plays a sub-dominant role (λT ≪ 2πT ).

Fermioni �elds do not generate IR divergenes sine their zero-mode ontribution is of the

form: ∫

p

1

(πT )2 +m2 + p2
∝
√

(πT )2 +m2 , (2.68)

and hene �nite in the limit m→ 0.

2.5 E�etive �eld theories

As seen previously, even though the original massless salar �eld theory ontains only one sale

oming from the Temperature T , a seond sale of the order of

√
λT emerges through the

resummation of the soft modes. This phenomenon is spei� to bosoni �elds, whih are the

only �elds to exhibit a zero Matsubara mode. Sine the fermioni �elds are IR safe, their aquired

thermal mass is negligible lose to the original sale T .

From here, the question arises of how to handle in a systemati way the soft sale and any

other sale that might arise at higher loops. At one-loop order, the presription states to add

up only produts of one-loop integrals in whih the momentum �ow fatorizes. However, at

higher loop orders the situation aggravates, sine also diagrams with no fatorable momentum

�ow may ontribute and keeping trak of all possible ontributions beomes umbersome.

An alternative approah in omputing IR safe observables is the e�etive �eld theory method.

The reasoning is that only at the level of physial observables the dynamial sreening of soft

modes sets in, but not at the level of the theory itself. Therefore, it is not important whih

theory works as input in the partition funtion, as long as the physial outome is the same.

In order to adopt the e�etive �eld theory approah here, the deoupling theorem [41℄ has to

hold. That is, all the e�ets depending on the higher sale an be absorbed into the rede�nition

of the renormalized parameters of the e�etive theory

6

. In addition, the requirement that the

energy sales are well separated,

√
λT ≪ 2πT , should be ful�lled.

Thus, from the starting point of a generi two mass sale theory, m ≪ M , an e�etive

low-energy �eld theory an be generated in the spirit of [42℄. By aiming at the reorganization

of the e�etive theory operators in terms of 1/M2
, the e�etive theory will generate new point

interations by integrating out the heavy sale (f. Fig. (2.3)).

Moreover, higher order operators ontaining only light �elds and ful�lling the symmetries

of the original theory need to be added to the e�etive Lagrangian. The operators an be

lassi�ed aording to their UV and IR importane. There are marginal operators that are

equally important to any sale of the e�etive �eld theory, suh as the kineti part of the

Lagrangian. Relevant operators are those that ontribute only at low energies and have a

negligible e�et in the UV regime. Suh an operator is the e�etive mass operator (∝ φ2
light

).

Finally, irrelevant operators are those that have a vanishing ontribution in the low energy regime

and are of the order O(m2/M2). Higher loop ontributions to the oe�ients are to be omputed

by a perturbative mathing of n - point vertex funtions with the requirement that they oinide

6

In fat, this requirement is mandatory for any e�etive theory and it lies in the very nature of the Standard

Model (SM) that the physis at higher sales, suh as the Plank sale, is enoded via renormalization.

19



�
�

❅
❅

❅
❅

�
�

→
�
�

❅
❅

❅
❅

�
�t

M

∝ g4/M4

Figure 2.3: Generation of e�etive verties by integrating out heavy loops. The original oupling

is taken to be ∝ gφ2
heavy

φ
light

.

up to a given order in the oupling in the low energy regime. Therefore, renormalization is equally

important in de�ning an e�etive �eld theory as well as the Lagrangian itself.

The momentum uto� regularization introdues a mass-dependent subtration sheme. There-

fore, the ounter-terms and with them the β-oe�ients of the oupling depend expliitly on

the heavy mass of the original theory. In this situation the UV uto� Λ is onsistent with the

physial interpretation of the e�etive theory. It indeed is the upper energy bound at whih

the e�etive theory is reliable. Nevertheless, Lorentz and gauge invariane are broken in this

ase. A more important disadvantage is that beyond tree-level, loop orretions may ome with

a relative ontribution of O(1), indiating a breakdown of the perturbative expansion.

The more onvenient renormalization program is the mass-independent sheme introdued

by dimensional regularization of the integrals. The arbitrary sale µ ours only in logarithms,

ln(M/µ), and does not introdue expliit powers suh as M2/µ2. Therefore, trunation of the

e�etive Lagrangian to a given order still renders a loop expansion onvergent. Higher order

operators an be added gradually aording to the aimed auray of the mathing.
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Chapter 3

Setup

In this hapter we �rst implement the e�etive theory approah for thermal QCD as a possible

solution to its multi-sale nature. Before starting the mathing omputation for the parameters

of the e�etive theory of QCD, we embed them in the piture of physial quantities of a QCD

gas via the Debye mass, the QCD pressure and the spatial string tension. In the remaining part

of the hapter we introdue the omputational framework, more spei�ally the bakground �eld

method, the mathing omputation, the diagram generation and the redution of the mathing

parameters in terms of a few master sum-integrals.

3.1 Eletrostati and Magnetostati QCD

The partiular example of the resummation of the free energy density of a salar �eld presented

in setion 2.4 an be extended to a generi presription of whether a Yang-Mills theory is IR

safe or not. Linde and Gross et al. (Ref. [43, 44℄) have argued that for a massless bosoni �eld

theory at n-loop order the most IR sensitive part of the free energy density f(T ) is the zero

Matsubara mode. If one takes into aount the thermal mass generation, so that the bosoni

propagator looks like 1/[(2πnT )2 + p2 +m2(T )], the IR sensitive part of f(T ) is (with g being

the strong oupling and qi some linear ombination of pi):

f(T ) ∝ (2πT )n+1(g2)n
∫

d3p1...d
3pn+1

2n∏

i=1

1

q2
i +m2(T )

≈ g6T 4

[
g2T

m(T )

]n−3

. (3.1)

In the ase of gluons it turns out that the temporal omponent Aa
0 behaves di�erently from

the spatial omponents Aa
i . The former one exhibits a thermal mass starting from the �rst

loop order. This omes from the fat that the Π00(p
2) omponent of the self-energy tensor Πµν

does not vanish, whereas the spatial omponents do. Therefore, in the spirit of a QED plasma,

the sreening of the olor-eletri �eld was alled Debye sreening, with the QCD Debye mass

omputed �rst by Shuryak [45℄:

m2
D(T ) =

g2T 2

3

(

Nc +
Nf

2

)

. (3.2)

By plugging this result into Eq. (3.1), we see that the perturbative expansion still is onver-

gent but the thermal mass generates a qualitative hange in the perturbative series of thermo-

dynami quantities in terms of a ontribution of the form (g2)half-integer.
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Unlikely to QED, where magneti �elds are not sreened due to the nonexistene of magneti

monopoles (∂iBi = 0), in QCD a �eld on�guration an be found in whih the divergene of

the hromo-magneti �eld is not zero, sine the orresponding equation involves the ovariant

derivative: DiBi = 0.
There is strong evidene that the �rst ontribution to a sreening mass of the spatial om-

ponents of the �elds is of order g2T (f. setion 3.2). By using the argument stated by Linde

and Eq. (3.1), it beomes lear that, when trying to go beyond �rst order all other ontributions

beome equally important as they are of O(1). In onlusion, thermal e�ets indue a third

sale related to magneti sreening, whih is purely non-perturbative.

Being onfronted with three sales, a hard sale ∝ 2πT , a soft sale ∝ gT and an ultra-

soft sale ∝ g2T , a straightforward approah in QCD omputations is to isolate eah sale

and perform the omputations independently. Obviously, the non-perturbative sale alls for

alternative methods suh as lattie QCD. In the end the ontributions have to be summed up.

A di�erent and suessful sheme of integrating out the hard sale is the hard thermal loop

framework pioneered in [46, 47℄ and pushed towards three-loop auray [48, 49, 50℄.

The sale separation has been �rst done in [51, 52, 53℄ and extended later to higher order

operators in [54℄. In these works, the hard sale was diretly integrated out generating an

e�etive Lagrangian in whih the spatial and the temporal vetor �eld omponents deouple.

Nevertheless, determining the new parameters of the theory beyond leading order is in general

di�ult as it is neessary to keep trak of diagrams with mixed propagators of zero and non-zero

modes, very similar to the disussion in setion 2.5.

Another method was employed later on in [31, 55, 56℄ that will be used also here and later for

the alulation. The proedure is to onstrut a general Lagrangian onsidering the symmetries

and properties of the original theory and to perform a mathing between them in order to

determine the parameters of the new theory.

Sine we are interested in generating an e�etive theory desribing the soft modes that do

not depend on the temporal oordinate τ , the proedure is alled dimensional redution and the

emerging e�etive �eld theory is alled Eletorstati QCD (EQCD). The symmetries involved

are spatial rotations and translations (as Lorentz invariane is broken by the heat bath), the

gauge symmetry of the original Lagrangian and the symmetry under A0 → −A0. Moreover, the

�elds do not depend on τ , so its integration will generate a simple T−1
-fator in the ation.

The gauge transformations of the �elds di�ers for Ai and A0:

Ãi →V ÃiV
−1 +

i

g
V ∂iV

−1 ,

Ã0 →V Ã0V
−1 .

(3.3)

The spatial omponents transform like gauge �elds, whereas the temporal omponent trans-

forms like a salar �eld in the adjoint representation. The �elds hange as well. At tree-level

we have Aµ =
√
T
−1
Ãµ + O(g2) and at higher loop order they obtain even gauge-dependent

ontributions [30, 57℄. However, in the following we drop the tilde on the �elds to simplify the

notation.

As the time derivative is also zero ∂0 → 0, the gluoni part of the QCD Lagrangian in Eq.

(2.31) beomes:

L0
EQCD

=
1

2
Tr{FijFij}+ Tr{[Di, A0][Di, A0]} ,

Di = ∂i + ig
E

Ai ,
(3.4)
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where [A,B] = AB−BA is the ommutator of A and B. Besides the part oming diretly from

the original QCD Lagrangian, there are in priniple in�nitely many other operators that are

allowed by symmetries and thus an be inluded. The e�etive theory is non-renormalizable.

Nevertheless, for the purpose of this work, we restrit ourselves to the operators up to dimension

4. The ation of the EQCD theory reads:

S
EQCD

=
1

T

∫

ddx
{

L0
EQCD

+m2
E

Tr[A2
0] + λ(1)(Tr[A2

0])
2 + λ(2)Tr[A4

0]
}

. (3.5)

The low energy regime of the QCD Lagrangian is desribed by a pure gauge theory oupled to

a massive salar �eld in the adjoint representation and lives in a three-dimensional (3d) volume

(hene dimensional redution). Without referring spei�ally to the �nite temperature aspets

of the problem, the UV properties of this theory an be drawn.

Trunated up to the operators shown in Eq. (3.5), this theory is super-renormalizable [58℄,

so there is only a �nite number of ultraviolet divergent diagrams, spei�ally with the topology

shown in Fig. (3.1):

✫✪
✬✩

d=3−2ǫ→ 1

ǫ
+ �nite terms .

Figure 3.1: The topology of the integrals that exhibit UV divergenes and hene ontribute to

the mass ounter-term.

They enter the mass term of the A0-�led to two-loop order, thus it is the only parameter

that requires renormalization [30, 59℄:

m2
B

= m2
R

(µ̄3) + δm2 ,

δm2 = 2(N2
c + 1)

1

(4π)2
µ−4ǫ
3

4ǫ
(−g2

E

λCA + λ2) .
(3.6)

Here, the parameter λ(2) was set to 0 and λ(1) ≡ λ beause the quarti terms in A0 in the

Lagrangian are independent only for Nc ≥ 4.

The mass parameter µ3 is the arbitrary sale introdued through the MS renormalization

sheme in the e�etive theory and it is independent of the mass sale µ of full QCD, whih

enters the expression in Eq. (3.6) after mathing (f. hapter 5). Sine the �elds and the

e�etive oupling do not require renormalization, they are renormalization group invariant (e.g.

µ3∂µ3g
2
E

= 0). On dimensional grounds the relation between the e�etive oupling in 3d and

the oupling in 4d is:

g2
E

= T [g2(µ̄)− β0 ln(µ̄/cg2T )] . (3.7)

Hene, the e�etive oupling depends on the arbitrary MS -sale µ of full QCD only and

the oe�ients in front of the logarithm are to any loop-order entirely determined by the beta

funtion (f. Eq. (2.50)) of the QCD oupling. The oe�ient cg2 an be determined by a

mathing as seen later.

In order to desribe the thermal e�ets of the theory, the mathing to the full QCD theory

of the so far undetermined parameters has to be performed. For EQCD, the hard sale ≈ 2πT
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is entirely enoded in the parameters g
E

, m
E

and λ. This an be seen through their dependene

solely on (g2)integer. The most reent results on m
E

and g
E

are to be found in [60℄.

It is possible to go a step further and to integrate out also the soft sale gT , hene to eliminate

A0. The proedure is similar to the QCD-EQCD redution; the most general Lagrangian that

satis�es the properties of the underlying theories is simply a SU(Nc) gauge theory living in three

dimensions. It is alled Magnetostati QCD (MQCD):

L
MQCD

=
1

2
TrFijFij + ... , Di = ∂i + ig

M

Ai . (3.8)

The equality between the EQCD and the MQCD gauge �elds is only at tree-level: Ãi =
˜̃Ai +O(g). Nevertheless, we drop the double tilde for simpliity.

The magneti oupling an be omputed by mathing to the theory of EQCD and is expressed

as a funtion of the EQCD parameters g
M

(g
E

,m
E

, λ(1), λ(2)..). To tree level the relation is trivial:

g
M

= g
E

. The oupling has been omputed to two-loop order in [61℄.

As the expansion of g
M

is rather in g and not in g2 (f. setion 3.3), it beomes lear that

both, the hard sale and the soft sale, enter the MQCD theory via its parameters.

In onlusion, one isolates the non-perturbative ultra-soft sale, whih is related to the

magneti sreening, in a simple three-dimensional gauge theory, whereas the hard and the soft

sales are treated analytially through the mathing to full QCD.

At this point, it is possible to use this theory in numerial lattie omputation in order

to extrat physial observables [9, 62, 63, 64℄. This an be done, if the parameters of the 4d

ontinuous theory of QCD are properly mapped onto the parameters of the equivalent 3d theory

disretized on the lattie. This non-trivial task has been extensively addressed in [65, 66, 67,

68, 69℄.

3.2 Debye sreening

The Debye mass is a fundamental property of a plasma. It quanti�es to whih extent �elds

are sreened due to thermal e�ets. It is well known that in usual QED plasmas only eletri

�elds are sreened (∇B = 0), whereas magneti �elds are not. In the non-abelian ase magneti

sreening is present due to the self-interation of gluons.

In the ase of a non-abelian plasma the situation is muh more ompliated, as for a long

time it was not even lear what the mathematially orret de�nition of the sreening mass

is. Taking the straightforward de�nition of QED, as to what onstitutes a sreening mass of

eletri �elds, namely to the �rst loop order this is simply the longitudinal part of the gluon

self-energy (polarization tensor) in the stati regime (p0 = 0) and in the limit of vanishing spatial

momentum [45℄, we obtain:

m2
D = lim

k→0
Π00(p0 = 0,k2) . (3.9)

The transverse part of the polarization tensor Πij is zero to this loop-order.

On the other hand, �rst estimates on the possible magnitude of the magneti sreening mass

ame from [70, 71℄. However, soon it beame lear that the sreening of hromo-magneti �elds

is a purely non-perturbative e�et that sales like m
magn

∝ g2T . Moreover, de�nition (3.9) does

not hold at next-to-leading order for the hromo-eletri sreening due to the expliit gauge

dependene of the eletri sreening mass [72℄.

24



After further investigations on this matter a more sensible de�nition was proposed, so that

the Debye mass is both, gauge independent and infrared safe [73, 74, 75, 76, 77, 78℄. The Debye

mass is de�ned in terms of the pole of the stati gluon propagator:

p2 +Π(p0 = 0,p2)
∣
∣
p2=−m2

D

= 0. (3.10)

A more subtle de�nition is found in [79℄.

At next-to-leading order the omputation of the Debye mass requires regularization by ex-

pliitly introduing the magneti sreening mass. Therefore, it aquires a non-perturbative on-

tribution from the ultra-soft setor that an be determined only via non-perturbative methods

[80, 79℄. Some numerial studies even suggest that the image, in whih the magneti sreening

mass is muh smaller than the eletri sreening holds only at very high temperatures [81℄.

Thus, to the �rst non-perturbative terms, the Debye mass is up [75, 81, 82℄

mD = mLO

D +
Ng2T

4π
ln
mLO

D

g2T
+ cNg

2T + dN,Nf
g3T +O(g4T ) , (3.11)

where the g2T term in the logarithm omes preisely from the magneti sreening mass: m
magn

=
c
non-pert

× g2T . The term mLO

D is the leading-order term of the Debye mass, Eq. (3.2). The

oe�ients cN and dN,Nf
are non-perturbative and are to be determined via lattie QCD [81℄

or even analytially [79℄.

Given the de�nition in Eq. (3.11), the Debye mass an be related to the mass parameter of

EQCD m
E

. First of all, m
E

is a bare parameter that requires renormalization (f. Eq. (3.6)).

The renormalized parameter m
E,ren

is the high-temperature perturbative ontribution to Eq.

(3.11), as it ontains only the hard sale. Thus, when referring to m
E

as being the Debye mass,

the perturbative ontribution thereof should be understood.

Further, the mass parameter m
E

enters the pressure of QCD at O(g7). The investigation of

the pressure of a hot gas of quarks and gluons traes bak to the seventies. It represents the

equation of state of thermal QCD and is therefore essential in understanding the phase diagram

of QCD (in partiular the high temperature and the �nite density [11℄ region).

Closely related to the previous setion, the pressure aquires ontributions from all three

sales 2πT , gT and g2T . Starting from the leading order, resummation needs to be done in

order to remove infrared divergenes. However, the famous Linde problem sets in at three-

loop order ∝ O(g6) rendering a breakdown of the perturbative expansion. Thus, resummation

hanges the analyti behavior of the pressure:

p(T ) = T 4
(
c0 + c2g

2 + c3g
3 + c4

′g4 ln(1/g) + c4g
4 + c5g

5 + c6
′g6 ln(1/g) + c6g

6
)
. (3.12)

The �rst three oe�ients c0 [45, 83℄, c3 [84℄ and c4
′
[85℄ were omputed in the lassial

piture by tedious diagram resummation. Merely the following two oe�ients c4 [28℄ and c5
[86℄ where omputed by using a modi�ed Lagrangian that expliitly inludes the EQCD mass

parameter m
E

, as pioneered in [39℄. Braaten �nally introdued the method of e�etive �eld

theories in the omputation of the pressure by individually alulating its ontributions oming

from the three di�erent sales by using their aording e�etive theories (QCD, EQCD, MQCD).

After having determined the parameters of the theories by mathing (f. setion 3.5 later) to

the desired order, all the ontributions an be summed up [55, 56℄. Finally, the last perturbative

oe�ient c6
′
was omputed in [59, 87, 88℄, whereas the oe�ient c6, whih ontains both

perturbative and non-perturbative ontributions was determined only partly up to now [89, 90℄.
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Despite the fat that, in the end infrared divergenes an be handled systematially up to the

non-perturbative sale, the onvergene of the perturbative expansion down to temperatures of

interest still remains an open issue [88, 91℄.

In this spirit, the pressure reads:

p
QCD

(T ) ≡ lim
V→∞

T

V
ln

∫

DAa
µDψDψ̄ exp [−S

QCD

]

= pE(T ) + lim
V→∞

T

V
ln

∫

DAa
iDA

a
0 exp [−S

EQCD

]

= pE(T ) + pM (T ) + lim
V→∞

T

V
ln

∫

DAa
i exp [−S

MQCD

]

= pE(T ) + pM (T ) + pG(T ) .

(3.13)

Eq. (3.13) summarizes the e�etive theory proedure in omputing thermodynamial quan-

tities. This proedure ensures that the �nal quantity does not require infrared resummation,

sine this is aounted for through the parameters of the low energy e�etive theories.

In partiular, the soft-sale ontribution of the pressure pM is expressed as an expansion in

the EQCD parameters as:

pM(T ) = Tm3
E

[

b1 +
g2
E

m
E

(

b2 ln
µ

m
E

+ b′2

)

+ b3

(
g2
E

m
E

)2

+O(λ(1), λ(2), g6
E

/m3
E

)

]

. (3.14)

The next perturbative ontribution beyond the last result known in literature is of order

O(g7). As it has an odd power in g, it is a ontribution from the soft sale, thus from the pM (T )
term

1

. Investigating Eq. (3.14) more losely by expliitly plugging in the e�etive parameters

m
E

(g) and g
E

(g), the g7 ontribution to the pressure omes only from the b1 oe�ient ∝ m3
E

.

Taking the notation from Eqs. (4.1) and (5.2) from [88℄ and Eq. (5.7), we obtain:

pM (T )

Tµ−2ǫ
∋ dAm

3
E

12π
+O(ǫ) =

dAT
3

8(4π)5

(
α2
E6√
α
E4

+ 4
√
α
E4αE8

)

g7 +O(ǫ) . (3.15)

In Eq. (5.13) the oe�ient is omputed expliitly.

3.3 Spatial string tension

The most important phenomenologial appliation of the e�etive oupling of EQCD g
E

is related

to the so-alled spatial string tension, σs(T ) of QCD. Sine it is a non-perturbative quantity, it

has been determined with lattie simulations for quite some time [62, 92, 93℄ and reently even

using novel theoretial approahes suh as the AdS/CFT duality [94℄.

It is obtained from a retangular Wilson loopWs(R1, R2) in the (x1, x2)-plane of size R1×R2.

Given the Wilson loop, the potential Vs is de�ned as:

Vs(R1) = − lim
R2→∞

1

R2
lnWs(R1, R2) . (3.16)

1

Sine g
M

ontains through its mathing to EQCD both hard (2πT ) and soft (gT ) sales, a ontribution to

the pressure at O(g7) omes also from pG(T ) and it is multiplied by the non-perturbative onstant oming from

O(g6).
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The spatial string tension σs is de�ned as the asymptoti behavior of the potential:

σs = lim
R1→∞

Vs(R1)

R1
. (3.17)

It has the dimensionality of [GeV]2 and thus expressed in lattie alulations in terms of a

dimensionless funtion of the normalized temperature [62℄:

√
σs
T

= φ

(
T

Tc

)

, (3.18)

where Tc is the QCD transition temperature (Tc ≈ 150− 160MeV [95, 96℄).

The spatial string tension an also be determined in a three-dimensional pure Yang-Mills

theory suh as MQCD as repeatedly on�rmed [97, 98, 99℄. As in this theory the magneti

oupling g
M

is the only sale and it has energy dimension one, it is possible to relate the spatial

string tension to the oupling by a non-perturbative onstant σs = c × g4
M

. The onstant was

omputed in [100℄ for Nc = 3 √
σs

g2
M

= 0.553(1) . (3.19)

This value is remarkably lose to the theoretial predition

√
σs/g

2
M

= 1/
√
π.

On the other hand, the magneti oupling g
M

has an analyti expression in terms of both,

the QCD oupling g (via g
E

) and the QCD sale in the MS sheme Λ
MS

. Aording to Eq.

(3.18), the relation between Tc and Λ
MS

is needed for a omparison to lattie results.

On the analytial side, the relation between g
M

and g
E

is known up to the seond loop-order

[61℄:

g2
M

= g2
E

[

1− 1

48

g2
E

CA

πm
E

− 17

4608

(
g2
E

CA

πm
E

)2
]

, (3.20)

where the ontributions oming from λ(1,2) are omitted [60℄:

δg2
M

g2
E

= −g2
E

CA
2(CACF + 1)λ(1) + (6CF − 1)λ(2)

384(πm
E

)2
(3.21)

sine they ontribute, in terms of the 4d oupling only to order O(g6) and are numerially

insigni�ant.

However, as lattie omputations onstantly inrease their auray and their preditive

potential, it is worth looking at higher order orretions on g
E

, oming from the mathing to

QCD. For instane at T ≈ 10Tc and using the µ
opt

-sale as de�ned in [58℄, the last term in (3.20)

gives a orretion of ≈ 20% relative to the seond term and even at T = 1000Tc the orretion
is still of 14%.

This suggests that both higher order orretions in m
E

and g
E

may give a notieable on-

tribution to g
M

but also higher order terms in the (g2
E

/m
E

)-expansion ertainly ontribute. A

rough estimate on the third expansion term in g
M

(g
E

,m
E

), namely g6
E

/m3
E

shows that at the

order g5 in g
M

(g) the ontributions oming from the oe�ients of m
E

(g) and g
E

(g) are ≈ 60%
of the oe�ient standing in front of g6

E

/m3
E

. This suggests that at higher orders both, the

expansion of g
M

as well as the higher orders in g
E

and m
E

are important.

The task to relate the theoretial predition from EQCD and MQCD to the lattie omputa-

tions translates into the determination of Tc/Λ
MS

. This has been rigorously done in [60℄ in two
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manners: via the zero temperature string tension

√
σs and via the so-alled Sommer parameter

r0 [101℄.

For the �rst method, results for the ratio Tc/
√
σs are taken from [102℄ and ombined with

the ratio Λ
MS

/
√
σs from [103℄, to obtain the needed relation Tc/Λ

MS

.

The seond method makes use of the result of r0Tc from [104℄ to ombine it with r0Λ
MS

[105℄ to again obtain the desired ratio. A disrepany with the range Tc/Λ
MS

= 1.15 ... 1.25 was

found.

Meanwhile, it is expeted that further studies in lattie simulations lead to more reliable

results, for instane for the Sommer parameter and the QCD sale [106, 107℄. This would

de�nitely narrow the unertainty of Tc/Λ
MS

on the numerial side and thus justify the need for

higher order orretions on the theoretial side.

The remarkable good agreement between the numerial and the theoretial studies given in

[60℄ support this idea:

1.0 2.0 3.0 4.0 5.0
T / T

c

0.6

0.8

1.0

1.2

T
/σ

s1/
2

4d lattice, Nτ
 1
 = 8 

T
c
 / Λ

MS
 = 1.10...1.35_

2-loop

1-loop

Figure 3.2: The lattie data omes from [62℄, whereas the theoretial urves represent the one-

and two-loop results with a variation of Tc/Λ
MS

= 1.10 to Tc/Λ
MS

= 1.35.

3.4 Bakground �eld method

In general terms, for performing a mathing omputation (very similar to the omputation of

renormalization onstants), n-point vertex funtions need to be omputed in both theories, hav-

ing as external legs the same �elds that the oupling multiplies in the Lagrangian. For instane

in determining the e�etive mass parameter m
E

, the A0 self-energy needs to be omputed. Sim-

ilarly, in omputing the e�etive oupling it is in priniple possible to hoose between omputing

3-point or 4-point vertex funtions with the gauge �elds as external lines.

However, by making use of the so-alled bakground �eld method, �rst developed in [108℄,

it is possible to ahieve quite a simpli�ation: only self-energies need to be omputed. In the

following, the line of argument from [108℄ is used to shortly present the properties and bene�ts

of the bakground �eld method.
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Starting with the e�etive ation from Eq. (2.40)

2

, we de�ne a new quantity by shifting the

gauge �elds only in the gauge ation with a so-alled bakground �eld, Aa
µ → Aa

µ +Ba
µ:

Z̃[J,B] =

∫

DAdet

[

δG̃a

δαa

]

exp

[

−S[A+B]−
∫

x

1

2ξ
G̃aG̃a +

∫

x
JA

]

=

∫

D(A+B) det

[

δG̃a

δαa

]

exp

[

−S[A+B]−
∫

x

1

2ξ
G̃aG̃a +

∫

x
J(A+B)

]

e−JB

= Z[J ]e−JB

(3.22)

with JA ≡ Ja
µA

a
µ.

The term δG̃a/δαa
is the derivative of the gauge �xing term with respet to the gauge

transformation:

Aa
µ → Aa

µ
′ = Aa

µ − fabcαb(Ac
µ +Bc

µ) +
1

g
∂µα

a . (3.23)

With this de�nition, we have a new generating funtional for onneted Green's funtions:

W̃ [J,B] = ln Z̃ [J,B] =W [J ]−
∫

x
JB , (3.24)

and by de�ning

Ãa
µ =

δW̃ [J,B]

δJa
µ

=
δ(W [J ]− JB)

δJa
µ

=
δW [j]

δJa
µ

−Ba
µ = Āa

µ −Ba
µ , (3.25)

we perform a Legendre transformation in order to obtain a modi�ed e�etive ation (the gener-

ator of 1PI funtions):

Γ̃[Ã, B] = W̃ [J,B]−
∫

x
JÃ

= W̃ [J,B]−
∫

x
JÃ =W [J ]−

∫

x
JB −

∫

x
J(Ā−B)

=W [J ]−
∫

x
JĀ = Γ[Ā] = Γ[Ã+B] .

(3.26)

In the end we set Ã = 0 and obtain:

Γ̃[0, B] = Γ[B] . (3.27)

The last equation shows that Γ̃[0, B] ontains all 1PI funtions generated by Γ[B]. Sine

the 1PI funtions are generated by omputing derivatives with respet to Ã, whih here is 0, it

means that Γ[B] is the sum of all vauum 1PI graphs in the presene of B.

There are two methods of omputing Γ̃[0, B]. The �rst one treats B exatly in suh a way

that it diretly enters the propagators and the verties in the Feynman rules. This is di�ult to

perform in pratie.

2

Note that here, the ghost �elds do not enter yet as the gauge-�xing determinant is still in the path- integral.
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The most onvenient method is to treat B perturbatively, that is to split the ation in the

following way:

S[A+B] = S0[A] + S
int

[A,B] . (3.28)

The part ontaining the original A-�elds is taken to be the free Lagrangian, thus propagators

are as usual, whereas the remaining part ontaining the B-�elds represents the interations.

Furthermore, as Γ̃ generates only vauum diagrams, the original A-�elds enter the diagrams

only as internal lines.

The e�etive ation Γ is in general not gauge-invariant due to the soure term Ja
µ . Only

for observables omputed on the mass shell, δΓ/δĀ = 0, the independene on the gauge �xing

term is reovered. The advantage of the bakground �eld method is that it retains expliit

gauge invariane for the bakground �eld. A spei� gauge �xing term G̃a
exists that ensures

gauge invariane of Γ̃[0, B] with respet to B. In other words, instead of omputing 1PI n-
point funtions in a theory with expliit gauge invariane breaking Γ[B], we rather ompute 1PI

vauum diagrams in a modi�ed theory Γ̃[0, B] that is still gauge invariant with respet to B. In
pratie, the B-�elds will enter only as external lines in the diagrams, whereas the A-�elds will
enter only as internal lines.

The gauge �xing term that ensures gauge invariane under a B-�eld variation is simply the

bakground �eld ovariant derivative of A in the adjoint representation:

G̃a = ∂µA
a
µ + gfabcAb

µB
c
µ = Da

µ(B)Aa
µ . (3.29)

By performing an adjoint group rotation on the soure term and on the original gauge �eld

Aa
µ → Aa

µ − fabcαbAc
µ , Ja

µ → Ja
µ − fabcαbJc

µ , (3.30)

the gauge invariane of Γ̃[0, B] under

Ba
µ → Ba

µ − fabcαbBc
µ +

1

g
∂µα

a
(3.31)

an be on�rmed.

The expliit gauge invariane of the ation Γ[B] onnets the renormalization onstant of

the oupling and that of the �elds due to the following reasoning. The gauge invariant ation

needs to take the form of divergent onstant×(Fµν )
2
. Aording to Eq (2.44) this would be:

(Fµν)ren = Z
1/2
A [∂µB

a
ν − ∂νB

a
µ + ZgZ

1/2
A igfabcBb

µB
c
ν ] , (3.32)

thus imposing:

Zg = Z
−1/2
A . (3.33)

Sine the Lagrangian has been hanged through the addition of the B-�eld, also the Feynman

rules will hange. They an be found in [108, 109℄.

3.5 Parameter mathing

After establishing the framework for performing the omputation, the mathing proedure is

initiated. For that, some preparations are needed. First of all, the omputation is performed in

the stati regime so that external momenta are taken purely spatial, p0 = 0. In fat, the limit
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for vanishing spatial external momenta p → 0 is onsidered as well, as will be motivated later

on.

Even though the bakground �eld B has no gauge parameter, it is introdued by hand as

a ross-hek of the validity of the �nal result: ξ
here

= 1 − ξ
standard

. The gluon propagator

beomes:

〈Ba
µ(p)B

b
ν(−p)〉 = δab

[
δµν
P 2

− ξ
PµPν

(P 2)2

]

. (3.34)

In the following the gluon self-energy is split into temporal and spatial omponents sine

we already know that the e�etive mass is related only to the A0 �elds, hene to Π00. The

tensor struture is separated from the self-energy by making use of all symmetri ombinations

of vetors and rank-two tensors that an generate the same tensor struture as in Πµν . These

are: gµν , pµpν , Pµuν + Pνuµ, where uµ = (1,0) is the rest frame of the heat bath whih is

orthogonal to the stati external momentum, uµPµ = 0. The omponents Π0i and Πi0 vanish

identially and only three independent omponent remain:

Π00(p) = Π
E

(p2) ,

Πij(p) =

(

δij −
pipj
p2

)

Π
T

(p2) +
pipj
p2

Π
L

(p2) .
(3.35)

It turns out that the longitudinal part Π
L

vanishes order by order in the loop-expansion.

For the mathing omputation of the mass parameter m
E

we use the de�nition of the Debye

mass in Eq. (3.10), disregarding the fat that the atual Debye mass ontains non-perturbative

terms. We are merely interested in its magnitude ∝ gT .
On the full QCD, side the Eq. (3.10) looks like:

p2 +Π
E

(p2)
∣
∣
p2=−m2

D

= 0 . (3.36)

On the EQCD side, we have:

p2 +m2
E

+ΠA0
EQCD

(p2)
∣
∣
∣
p2=−m2

D

= 0 . (3.37)

In the following we perform a twofold expansion in terms of the external momentum p2
and

in terms of the oupling, sine the self-energies ontain at this point the ontributions from all

orders in g. The expansion in the external momentum is justi�ed by the fat that it is evaluated

at the sale of O(gT ), whih by de�nition is a soft sale:

Π(p2) =
∞∑

n=1

Πn(0)(g
2)n + p2

∞∑

n=1

Πn
′(0)(g2)n + ... + (p2)j

∞∑

n=1

Π(j)
n (0)(g2)n . (3.38)

On the EQCD side, as all vauum diagrams are saleless, they vanish identially in the

dimensional regularization sheme that we employ, Π
EQCD

(0) = 0. Thus, from equation (3.37)

we are left with the identity:

m2
E

= m2
D . (3.39)

Eq. (3.36) however needs to be solved iteratively for every loop order. Reall that any p2

aounts for a g2T 2
term. Thus, at one-loop we break the Taylor expansion in p2

at the �rst

term (f. Eq. (3.38)):

m2
E1−loop

= Π
E1−loop

(0) = Π
E1(0)g

2 . (3.40)
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At two-loop we go to order p2
in the expansion and substitute the external momentum with Eq.

(3.40):

m2
E2−loop

= Π
E2−loop

(0)−m2
E1−loop

Π′
E1−loop

(0)

= Π
E1(0)g

2 +
[
Π
E2(0)−Π

E1(0)Π
′
E1(0)

]
g4 .

(3.41)

And �nally to three-loop, we have:

m2
E

≡ m2
E3−loop

= Π
E3−loop

(0)−m2
E2−loop

Π′
E1−loop

(0) + (−m2
E1−loop

)2Π′′
E1−loop

(0)

= Π
E1(0)g

2 +
[
Π
E2(0)−Π

E1(0)Π
′
E1(0)

]
g4 +

[
Π
E3(0)−Π

E1(0)Π
′
E2(0)

−Π′
E1(0)ΠE2(0) + Π

E1(0)(Π
′
E1(0))

2 + (Π
E1(0))

2Π′′
E1(0)

]
g6 .

(3.42)

In order to ompute the e�etive oupling, merely the self-energy of the gauge �eld is needed.

Consider the general struture of the gauge part of the EQCD Lagrangian:

L
EQCD

≈ c2B
2
i + c3gB

3
i + c4g

2B4
i . (3.43)

The oe�ient c2 is the �eld normalization in the e�etive theory and an be simply absorbed

by a rede�nition of the �eld: Bi →
√
c2Bi, thus having:

L
EQCD

≈ B2
i + c3c

−3/2
2 gB3

i + c4c
−2
2 g2B4

i . (3.44)

From here we an read o� the e�etive oupling: g
E

= c3c
−3/2
2 g = c

1/2
4 c−1

2 g. However, due to the
bakground �eld arguments of gauge symmetry, it is required that the oe�ients are idential

c2 = c3 = c4. Finally, transforming the 3d notation via saling B →
√
TB and omparing it to

the full QCD Lagrangian, we obtain:

g
E

= T 1/2c
−1/2
2 g . (3.45)

In onlusion, in order to obtain the e�etive oupling within the framework of the bak-

ground �eld theory, it is neessary to ompute the �eld normalization c2.
This an be done through the e�etive potential:

V (B̄) =

∞∑

n=2

1

n!

∫

p1

...

∫

pn

B̄a1
µ1
(p1)...B̄

an
µn
(pn)Γ

a1...an
µ1...µn

[
B̄(p1), ..., B̄(pn)

]
. (3.46)

As it is onneted to the e�etive ation, the omputation an as well be translated into mathing

the terms of the potential whih are quadrati in the �elds. Note that to the lowest order the

term proportional to the quadrati �eld is the inverse gluon propagator. It ontains two terms,

∝ δij and ∝ pipj . They both will lead to the same result as it should be, but for simpliity we

take only the δij term:

[
p2 +Π

T

(p2)
]
B2
QCD

= [p2 +ΠBi

EQCD

(p2)]B2
EQCD

= [p2 +ΠBi

EQCD

(p2)]c2B
2
QCD

.
(3.47)

Again, after expanding the self-energies, the EQCD self-energy vanishes identially and we

are left with:

p2 +Π
T

(0) + p2Π′
T

(0) + ... = c2p
2

⇒ c2 = 1 + Π′
T

(0) ,
(3.48)
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Note that the equation in the last line is exat. We have piked out only the terms proportional

to p2
, therefore a further expansion in p2

is not needed. The onstant term and the higher terms

in p2
are expeted to ontribute to an e�etive mass in the EQCD theory, whih theoretially

would be the thermal mass of the hromo-magneti �elds. But we already know that it is of

non-perturbative nature and in partiular that it vanishes at order O(gT ). This is indeed the

ase, sine the alulations later will show that Π
T

(0) = 0 at least to three-loop order.

Finally, expanding the self-energy in terms of g2,

Π′
T

(0) = g2Π′
T1(0) + g4Π′

T2(0) + g6Π′
T3(0) , (3.49)

we obtain for the e�etive oupling:

g2
E

= Tg2
{

1− g2Π′
T1 + g4

[(
Π′

T1(0)
)2 −Π′

T2(0)
]

−g6
[(
Π′

T1(0)
)3 − 2Π′

T1(0)Π
′
T2(0) + Π′

T3(0)
]}

.
(3.50)

3.6 Automatized sum-integral redution

The remaining task is to ompute the QCD gluon self-energy to three-loop order. The fermion

masses are negleted throughout the alulation, as their ontribution is sub-leading.

At this order in the oupling approximately 500 Feynman diagrams should be generated. As

the enountered task is tremendous, a omputer-algebrai approah is needed. The following

projet builds upon a two-loop alulation [60℄ and its extension is desribed in detail in [109,

110℄. Here, merely a summary is given.

The diagrams are generated with QGRAF [111℄ and further manipulated with FORM [112℄

and FERMAT [113℄. The preparation of the generated diagrams onsists of deoupling the

tensor strutures (salarization), deoupling the external momentum (Taylor expansion), the

olor sums of the SU(N)-algebra and performing the traes over gamma matries. The O(107)
generated sum-integrals an be parametrized as:

M̄ s7s8s9
s1s2s3s4s5s6;c1c2c3 =

∑
∫

PQR

ps70 q
s8
0 r

s9
0

[P 2]s1 [Q2]s2 [R2]s3 [(P +Q)2]s4 [(P +R)2]s5 [(Q−R)2]s6
, (3.51)

where the fermion signature is enoded as: P 2 = [(2n + ci)πT ]
2 + p2

, with ci = 0(1) for

bosons(fermions). As later on only pure bosoni sum-integrals are used, we adopt the simpli�-

ation

M̄ s7s8s9
s1s2s3s4s5s6;000

≡M s7s8s9
s1s2s3s4s5s6 (3.52)

The non-trivial topologies are shown in Fig. (3.3):

; ; ; ;

Figure 3.3: Non-trivial topologies at one-, two-, and three-loop order. The two-loop sum-integral

is alled sunset-type. The three-loop ones are of basketball-, spetales-, and meredes-type.
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Figure 3.4: Fermion signatures of the one- and and three-loop order master sum-integrals. There

arrow de�nes a fermion propagator and the simple lines de�ne a bosoni one.

The essential task is to redue the resulting sum-integrals to a small number of master

integrals [114℄. This has been done by implementing Laporta's algorithm [20℄ of Integration by

Parts (IBP) [19℄.

The IBP proedure generates algebrai relations between master sum-integrals of di�erent

topologies and di�erent exponent parameters by using the d-dimensional divergene theorem

[115, 116℄ (Gauss' law):

∑
∫

PQR
∂s

[

t
ps70 q

s8
0 r

s9
0

[P 2]s1 [Q2]s2 [R2]s3 [(P +Q)2]s4 [(P +R)2]s5 [(Q−R)2]s6

]

= 0 , (3.53)

where s and t are linear ombinations of p, q and r.

Additional relations among the sum-integrals are generated by performing momentum shifts.

These shifts redue also the fermion signatures to a total number of three (f. Fig. (3.4)). The

so generated under-determined system of equations is solved by using a so-alled lexiographi

ordering in order to express the most �di�ult� sum-integrals in terms of the most �simple� ones.

The �simpliity� of a sum-integral depends in general terms on the power of its propagators.

The essential di�erene to integrals enountered in zero-temperature physis is the fat that

here the momentum derivatives spei� to the IBP algorithm at only on spatial omponents,

leaving the Matsubara modes untouhed [116℄ (f. appendix D).

The IBP redution generates one- and three-loop master sum-integrals. The general struture

of the self-energy is therefore:

Π3 =
∑

j

ajAj +
∑

j

bjBj , (3.54)

where Al = (one-loop)3 are produts of sum-integrals of the �rst two types in Fig. (3.4) and Bj

are sum-integrals of the last three types in Fig. (3.4). The oe�ients aj and bj are ratios of

polynomial in d = 3− 2ǫ.

As will be extensively presented in the following hapter, state of the art tehniques for sum-

integral alulations o�er exat analyti solutions only for the one-loop and (via IBP redution)

for the two-loop ases. Methods for solving basketball- and spetales-type sum-integrals are

based on an extensive proedure of subtration of divergent parts and a numerial alulation

of the �nite remainder. It is rather a ase-by-ase analysis that permits omputation only up to

the onstant term. Unfortunately, the IBP redution generated terms that diverge in the limit

ǫ→ 0 as 1/ǫ in the ase of Π
E3 and as 1/ǫ2 for Π

T3. Therefore, a hange of basis is required in

order to proeed with the sum-integral evaluation.
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3.7 Basis transformation

The basis transformation is performed only for the gluoni part of the self-energy, thus permitting

us to solve only for the pure gluoni ase.

The task of �nding a suitable basis of master sum-integrals that do not have divergent pre-

fators onsists in reverse engineering the IBP redution proess. This task is demanding in

two ways. First of all, there is no presription to trae the algorithm bak and this translates

into a manual searh for a suitable basis. From here the seond di�ulty arises, namely to �nd

the balane between �nite pre-fators and yet simple enough master sum-integrals that an be

omputed with today's tehniques.

There is no doubt that the possible hoies are numerous, however, we have orientated our

searh to �nd sum-integrals that have already been omputed, or at least that are parametrially

lose to the known sum-integrals.

Starting with Eqs. (C.14) and (C.15) from [110℄, whih represent the Π
E3(0) and the Π′

T3(0)
ontributions and by using the IBP relations from appendix F provided by Jan Möller [117℄, we

obtain the following expressions:

C−3
A Π

E3 = −(d− 7)(d − 3)(d− 1)2

2
M000

31111−2 −
(d− 3)(d − 1)2(7d − 13)

4
V 000
111110

− 8(d− 4)(d − 3)(d − 1)2V 020
211110 +

720 − 13912d + 35443d2 − 34716d3

30(d − 7)d
[I01 ]

2I03

+
15515d4 − 3440d5 + 417d6 − 28d7 + d8

30(d − 7)d
[I01 ]

2I03

+
3024 − 48076d + 168800d2 − 261896d3 + 214359d4 − 99892d5

36(d − 7)(d − 5)(d − 2)d
I01 [I

0
2 ]

2

+
28027d6 − 4824d7 + 509d8 − 32d9 + d10

36(d− 7)(d − 5)(d − 2)d
I01 [I

0
2 ]

2
(3.55)

and

C−3
A Π′

T3 =r1(d)M
000
121110 + r2(d)M

000
211110 + r3(d)M

002
221110 + r4(d)M

020
311110 + r5(d)M

022
411110

+ r6(d)M
000
310011 + r7(d)M

000
114000 + r8(d)M

000
123000 + r9(d)M

000
222000 ,

(3.56)

with

r1(d) =
107662 − 196843d + 138960d2 − 48945d3 + 9198d4 − 837d5 + 20d6 + d7

8d(d − 5)(d− 2)(d − 1)
,

r2(d) =
94896 − 215472d + 201560d2 − 101965d3 + 30585d4 − 5566d5 + 606d6 − 37d7 + d8

8d(d− 5)(d − 2)(d− 1)
,

r3(d) =
−62− 717d + 876d2 − 330d3 + 42d4 − d5

d(d− 2)
,

r4(d) =
1440 − 7876d + 7801d2 − 3004d3 + 526d4 − 40d5 + d6

3d(d− 2)
,

r5(d) =
4(−186 + 65d + 37d2 − 13d3 + d4)(d− 6)

d(d− 2)
,
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r6(d) =
(d− 31)(d − 1)2

4d
,

r7(d) =
−25568 + 22382d − 3253d2 − 1932d3 + 806d4 − 122d5 + 7d6

2d(d− 9)(d − 2)
,

r8(d) =
110760 − 151302d + 74899d2 − 11395d3 − 1654d4 + 632d5 − 53d6 + d7

3d(d − 9)(d − 7)(d − 2)
,

r9(d) =
964718 − 2366265d + 2451867d2 − 1335353d3

24d(d − 7)(d − 5)2(d− 2)2(d− 1)
,

+
397943d4 − 61043d5 + 3225d6 + 229d7 − 25d8

24d(d − 7)(d − 5)2(d− 2)2(d− 1)
. (3.57)

Note that the sum-integrals of the formM000
abc000 are produts of one-loop tadpoles and there-

fore known analytially (f. Eq. (B.3)). The sum-integrals M000
111110 and M000

310011 have already

been alulated in [40℄ and [118℄, respetively.

Finally, we present the two mathing oe�ients to three-loop order in d dimensions. Note

the gauge independent result.

m2
E

=
g2T 2I01CA

(d− 1)2

[

1 + g2CA
(d2 − 11d+ 46)I02

6
+ g4C2

A

(

rm,1(d)I
0
1I

0
3 + rm,2(d)I

0
1 [I

0
2 ]

2

−(d− 3)(d − 7)M000
31111−2

2I01
− (d− 3)(7d − 13)M000

111110

4I01
− 8(d− 3)(d − 4)M020

211110

I01

)] (3.58)

with

rm,1(d) =
720 − 12472d + 9779d2 − 2686d3 + 364d4 − 26d5 + d6

30d(d − 7)
,

rm,2(d) =
3024 − 42028d + 81720d2 − 56428d3 + 19783d4 − 3898d5 + 448d6 − 30d7 + d8

36d(d − 2)(d− 5)(d − 7)
(3.59)

and

g2
E

= g2T

[

1− g2CA
d− 25

6
I02 − g4C2

A

(
(d− 1)2(d2 − 31d+ 144)I01 I

0
3

3d(d − 7)

)

+
(d− 25)2[I02 ]

2

36
+

72(d− 3)(d − 4)(4d2 − 21d − 7)[I02 ]
2

36d(d − 2)(d − 5)(d − 7)

)

+ g3C3
A

(

− r1(d)M
000
121110

− r2(d)M
000
211110 − r3(d)M

002
221110 − r4(d)M

020
311110 − r5(d)M

022
411110 − r6(d)M

000
310011

− r7(d)[I
0
1 ]

2I04 − (d− 1)2(d− 25)(d2 − 31d+ 144) + 9d(d− 7)r8(d)

9d(d − 7)
I01I

0
2I

0
3

+

(
144(d − 3)(d− 4)(d − 25)(4d2 − 21d− 7)

216d(d − 2)(d − 5)(d − 7)
− (d− 25)3

216
− r9(d)

)

[I02 ]
3

)]

.

(3.60)

The non-trivial sum-integrals in Eq. (3.55) are multiplied by a fator (d− 3), meaning that

only the divergent piees of the sum-integrals have to be determined. The remaining task is

to ompute the 7 yet unknown non-trivial master sum-integrals, M000
31111−2, V

020
211110, M

000
121110,

M000
211110, M

002
221110, M

020
311110 and M022

411110.
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Chapter 4

Master sum-integrals

This is the main part of the work and it deals with tehniques of solving 3-loop sum-integrals for

so-alled spetales type (f. Fig (4.42)). The main ideas are based on the paper by Arnold and

Zhai, [28℄ and they have been extended to the spetales type topology. In addition, we adopt

a tehnique for manipulating tensor sum-integrals, originally developed for zero temperature

integrals, in Ref. [29℄. This method turns out to be very fruitful sine the standard tehnique

for tensor struture manipulation was shown to lead outside the usual lasses of sum-integrals.

The main feature that sets sum-integrals apart from integrals enountered in zero tempera-

ture �eld theory is the sum over Matsubara modes. There are several ompliations that ome

along with this new analyti struture. First of all, the summation over the temporal ompo-

nent of the vetors breaks the rotational invariane of the integrand. Moreover, these temporal

omponents at like masses for the spae-like ones in the propagators, suh that, for a l-loop sum-

integral this fat translates into an l-sale problem. Assuming that by any given tehnique it is

possible to give a (numerial) result (ǫ-expansion) in terms of these l sales, still the summation

over these �masses� has to be performed. Sine the mass dimension of sum-integrals is usually

0 (for oupling mathing), 2 (for mass mathing) or 4 (for pressure/free energy omputations),

the summations over the Matsubara modes typially neessitate regularization

1

.

The above mentioned partiularities of sum-integrals make it di�ult to automatize their

evaluation. Up to this point, the methods presented in this hapter, are state of the art and are

based in priniple on a ase by ase analysis of the sum-integrals involved.

This hapter is strutured as follows: First, Tarasov's method for dealing with tensor integrals

is presented and applied to our partiular ase of the master sum-integral M000
31111−2. Afterwards,

we present the general properties of spetales type sum-integrals and their splitting in order

to make them aessible for the sueeding omputation. We then demonstrate the solving

tehniques on the simple example of M020
211110. A detailed presentation of this omputational

method is also to be found in Refs. [38, 40, 118, 119℄. With the experiene gained from this

partiular ase, we proeed to the generalization of the method and pave the way for the semi-

automatized omputation of (almost all) remaining master sum-integrals. All the results on the

sum-integrals an be found in setion 4.3, in subsetions 4.5.1 and 4.5.2 and in appendix A.

1

Similar to the zeta funtion regularization:

∑∞
n=1 n = ζ(−1) = −1/12.
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Notations and onventions

In the following we slightly modify the notation onvention the generi sum-integral in Eq. (3.51)

like:

M0s6s7
s1s2s3s4s50

≡ V (d; s1s2s3s4s5; s6s7) , (4.1)

and in partiular:

M000
31111−2 ≡M3,−2 (4.2)

d parameters Vi parameters Zi

3 21111;20 2 12111;02 1

31111;22 3 12111;20 2

12211;22 3

12121;22 4

5 31122;11 4

7 32222;00 5 23222;00 5

52211;00 6 23231;00 6

42221;00 7 23321;00 7

43211;00 8

33221;00 9

33212;00 10

33311;00 11

3 12111;00 12 12111;00 8

21111;00 13 12121;02 9

22111;02 14 12121;20 10

31111;20 15 12211;02 11

41111;22 16 12221;22 12

13111;02 13

02221;02 14

03121;02 15

Figure 4.1: Convention for denoting the sum-integrals and their �nite parts

In order to ensure a smooth reading, we number the sum-integrals, as well as the zero-mode

sum-integrals as shown in Fig. (4.1). The same onvention will be used to denote the numerial,

�nite piees of eah sum-integral, as in:

V (d; s1s2s3s4s5; s6s7) = Vi

V f,#(d; s1s2s3s4s5; s6s7) =
T 3d+3−2s12345+s67

(4π)2s12345−s67− 3
2
(d+1)

Vi,# ,
(4.3)

with the onvention:

s123... ≡ s1 + s2 + s3 + ... . (4.4)

The sum-integral measure is de�ned as:

∑
∫

P
≡ T

∞∑

p0=−∞

∫

p
with

∫

p
≡ µ2ǫ

∫ ∞

−∞

ddp

(2π)d
. (4.5)
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This measure is split into:

∑
∫

P
=
∑
∫

P

′
+
∑
∫

P
δp0

≡
∑

p0 6=0

∫

p
+T

∫

p
,

(4.6)

the parts denoting the omission of the p0 = 0Matsubara mode and the orresponding remainder.

In addition, we have the integral measure:

∫

P
≡ µ2ǫ

∫ ∞

−∞

dd+1P

(2π)d+1
, (4.7)

whih is the integral measure de�ned in Eq. (4.5), with the additional shift d→ d+ 1.

4.1 Taming tensor strutures

This setion follows the presentation given in Ref. [120℄.

4.1.1 Redution of 3-loop massive tensor integrals in Eulidean metri

In the following, the tehnique based on Ref. [29℄ is used to redue tensor sum-integrals typially

enountered in thermal �eld theory. We treat only a partiular ase of spetales type integrals,

needed in the alulation for M3,−2. A more generalized approah an be found in [120℄.

First, the 3-loop massive spetales-type integral with Eulidean metri is de�ned as (.f.

Fig. (4.2)):

Sd
ν1ν2ν3ν4ν5 ≡

∫

pqr

1

(p2 +m2
1)

ν1(q2 +m2
2)

ν2(r2 +m2
3)

ν3((p+ q)2 +m2
4)

ν4((p + r)2 +m2
5)

ν5
.

(4.8)

1

4

2

5

3

Figure 4.2: The generalized massive spetales-type integral.

Using the parametri representation via a Laplae transformation

1

(p2 +m2)ν
=

1

Γ(ν)

∫ ∞

0
dααν−1e−α(p2+m2) , (4.9)

we obtain

Sd
ν1ν2ν3ν4ν5 = C

∫

pqr

∫ ∞

0

5∏

i=1

(

dαiα
νi−1
i

)

e−α1(p2+m2
1) · ... · e−α5((p+r)2+m2

5) , (4.10)
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with C =
∏5

i=1 Γ(νi)
−1

.

The rearrangement of the exponents in order to obtain Gaussian integrands in the momenta

and their subsequent integration lead to:

Sd =
C

[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

1

[D(α)]
d
2

e−
∑5

i=1 αim
2
i , (4.11)

where

D(α) = α1(α2 + α4)(α3 + α5) + (α3 + α5)α2α4 + (α2 + α4)α3α5 , (4.12)

is the so-alled Symanzik polynomial and an be obtained from graph theory (.f. [121℄).

This partiular representation of loop integrals is useful sine the dimension is enoded only

as the exponent of the D(α) polynomial, besides some unimportant pre-fators.

Two types of tensor integrals needed in further alulations are de�ned as:

T d
1 µν(ν1, ν2, ν3, ν4, ν5) =

d2

da1µda2ν

(

S̃d
ν1ν2ν3ν4ν5

)

a1=0
a2=0

, (4.13)

T d
2 µνρσ(ν1, ν2, ν3, ν4, ν5) =

d4

da1µda1νda2ρda2σ

(

S̃d
ν1ν2ν3ν4ν5

)

a1=0
a2=0

, (4.14)

with

S̃d
ν1ν2ν3ν4ν5 ≡

∫

pqr

ea1·qea2·r

(p2 +m2
1)

ν1(q2 +m2
2)

ν2(r2 +m2
3)

ν3((p+ q)2 +m2
4)

ν4((p + r)2 +m2
5)

ν5
.

(4.15)

Using the α-parameterization, Eq.(4.15) beomes:

S̃d =
C

[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

1

[D(α)]
d
2

e
1

4D(α)(β1a21+β2a22+2β3a1·a2)e−
∑5

i=1 αim
2
i . (4.16)

On the one hand, using the representation of Eq. (4.15) we get for Eq. (4.13):

T d
1 µν =

∫

pqr

qµrν
(p2 +m2

1)
ν1(q2 +m2

2)
ν2(r2 +m2

3)
ν3((p + q)2 +m2

4)
ν4((p + r)2 +m2

5)
ν5
. (4.17)

On the other hand, using the representation of Eq. (4.16), we have:

T d
1 µν =

δµνC
[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

α4α5

2[D(α)]
d+2
2

e
1

4D(α)(β1a21+β2a22+2β3a1·a2)e−
∑5

i=1 αim
2
i , (4.18)

with

β1 = α1(α3 + α5) + α3(α4 + α5) + α4α5 ,

β2 = α1(α2 + α4) + α2(α4 + α5) + α4α5 ,

β3 = α4α5 .

(4.19)

Exept for some pre-fators, this integral seems to be a salar integral in d + 2 dimensions

and of the same topology as the one in Eq. (4.8) ontaining two propagators raised to a higher
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power. Therefore, by simply adjusting the pre-fators and reading o� the dimension and the

di�erent powers of the propagators, we obtain:

T d
1 µν(ν1, ν2, ν3, ν4, ν5) = δµν

(4π)3

2
ν4ν5S

d+2
ν1ν2ν3ν4+1ν5+1 . (4.20)

In onlusion, using the α-parameterization of the loop-integral it is possible to rewrite a

tensor integral as a salar integral of higher dimension but with the same topology and with the

tensor struture appearing as a pre-fator.

In order to determine a similar relation for Eq. (4.14), we perform the following alulation,

with ∂iµ ≡ ∂
∂aiµ

:

∂1µ∂1ν∂2ρ∂2σe
1

4D(α)
(β1a21+β2a22+2β3a1·a2)

∣
∣
∣a1=0
a2=0

=
1

[D(α)]2
[
β1β2δµνδρσ + β23(δµσδνρ + δµρδνσ)

]
.

(4.21)

This result shows that the tensor integral in Eq. (4.14) is expressed as a linear ombination

of 26 salar integrals of dimension d + 4. Instead of showing the result, we will exploit some

symmetries of a partiular integral, in whih m2 = m3 = m4 = m5. This partiular hoie of

the masses ensures that the massive integral (4.8) will have the same symmetries as the massless

sum-integrals we are interested in to ompute.

The proedure is to group all terms of β1β2 that lead to idential massive salar integrals

after several hanges of the integration variables. For instane, the term α2
1α3α4 will generate

an integral of the form Sd
ν1+2ν2ν3+1ν4+1ν5 whih, after a momentum translations q → −q − p

beomes Sd
ν1+2ν2+1ν3+1ν4ν5 . In this way it is possible to group all 25 terms of β1β2 into 7 terms

of whih everyone generates one salar integral.

After some alulations, we obtain for the seond tensor integral (4.14):

T d
2 µνρσ = (4π)6

{[

b1S
d+4
ν1+2ν2+1ν3+1ν4ν5

+ b2S
d+4
ν1+1ν2+1ν3+1ν4+1ν5

+ b3S
d+4
ν1ν2+1ν3+1ν4+1ν5+1

+b4S
d+4
ν1+1ν2+2ν3+1ν4ν5

+ b5S
d+4
ν1ν2+2ν3+1ν4+1ν5

+ b6S
d+4
ν1ν2+2ν3+1ν4ν5

]

δµνδρσ

+b7S
d+4
ν1ν2+2ν3+2ν4ν5

(δµνδρσ + δµσδνρ + δµρδνσ)
}

,

(4.22)

with

b1 = ν1(ν1 + 1)(ν2 + ν4)(ν3 + ν5) ,

b2 = 2ν1[ν2ν4(ν3 + ν5) + ν3ν5(ν2 + ν4)] ,

b3 = 2ν2ν3ν4ν5 ,

b4 = ν1[ν5(ν5 + 1)(ν2 + ν4) + ν4(ν4 + 1)(ν3 + ν5)] ,

b5 = ν4(ν4 + 1)ν2(ν3 + ν5) + ν5(ν5 + 1)ν3(ν2 + ν4) ,

b6 = ν4ν5[ν3(ν4 + 1) + ν2(ν5 + 1)] ,

b7 = ν4(ν4 + 1)ν5(ν5 + 1) .

(4.23)

In priniple eah new tensor index will raise the dimension of the salar integral with 2 and

the tensor struture will appear as a pre-fator of all possible ombinations of Kroneker deltas.
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4.1.2 Lowering dimension of salar integrals

By projeting out the tensor struture of massive integrals in Eulidean metri, higher dimen-

sional salar integrals are obtained, as was shown above. It is also possible to �nd a relation for

lowering the dimension of salar integrals, as will be shown in the following.

To this end, we de�ne the operator:

D(∂) ≡ D

(

αi →
∂

∂m2
i

)

=
∂

∂m2
1

∂

∂m2
2

∂

∂m2
3

+ ... (4.24)

Applying this operator to Eq. (4.11), we obtain:

D(∂)Sd
ν1ν2ν3ν4ν5 =

C
[

(4π)
d
2

]3

∫ ∞

0

5∏

i=1

dαiα
νi−1
i

1

[D(α)]
d
2

D

(
∂

∂m2
i

)

e−
∑5

i=1 αim2
i

= − 1

(4π)3
Sd−2
ν1ν2ν3ν4ν5 ,

(4.25)

where we have used that D(α) (.f. Eq. (4.12)) is a homogeneous polynomial of degree three.

On the other hand, applying D(∂) on Eq. (4.8) we get terms of the form:

∂

∂m2
i

Sd
...νi... = −νiSd

...νi+1... . (4.26)

For our partiular hoie of D(∂) we will obtain a linear ombination of eight salar integrals.

We hoose the masses to be m2 = m3 = m4 = m5 in order to relate this integral to our needed

sum-integrals later on. After some momentum translation, it is possible to rewrite all integrals

in terms of only two.

D(∂)Sd
ν1ν2ν3ν4ν5 =− ν1(ν2 + ν4)(ν3 + ν5)S

d
ν1+1ν2+1ν3+1ν4ν5

− [(ν2ν4(ν3 + ν5) + (ν2 + ν4)ν3ν5]S
d
ν1ν2+1ν3+1ν4+1ν5 .

(4.27)

Combining Eq. (4.25) and Eq. (4.27), we get an expression that relates salar integrals of

di�erent dimension:

Sd
ν1ν2ν3ν4ν5 =

(4π)−3

b8
Sd−2
ν1ν2−1ν3−1ν4−1ν5

− b9
b8
Sd
ν1+1ν2ν3ν4−1ν5 . (4.28)

where

b8 = (ν2 − 1)(ν4 − 1)(ν3 + ν5 − 1) + (ν3 − 1)(ν2 + ν4 − 2)ν5 ,

b9 = ν1(ν2 + ν4 − 2)(ν3 + ν5 − 1) .
(4.29)

These relations an be used to obtain the result in Ref. [120℄ as an alternative to Eq. (4.30).

In fat, we have used the di�erent results as a ross hek of Tarasov's method for sum-integrals.

4.1.3 Rearrangement of M3,−2

In the following Tarasov's method (Ref. [29℄) is applied to the master sum-integral M3,−2. For

that, M3,−2 is rearranged by exploiting its R↔ Q symmetry and by expanding the numerator:
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M3,−2 =
∑
∫

PQR

[
(Q−R)2

]2

P 6Q2R2(P +Q)2(P +R)2

= 2
∑
∫

PQR

Q2

P 6R2(P +Q)2(P +R)2
+ 4
∑
∫

PQR

(Q ·R)2
P 6Q2R2(P +Q)2(P +R)2

− 8
∑
∫

PQR

Q ·R
P 6R2(P +Q)2(P +R)2

+ 2
∑
∫

PQR

1

P 6(P +Q)2(P +R)2

≡ 2Ma + 4Mb − 8Mc + 2Md .

(4.30)

Mb and Mc are tensor sum-integrals. Nevertheless, Mc has a simple enough struture to be

omputed via usual projetion tehniques as will be shortly presented. For Mb it is neessary to

apply Tarasov's method.

Ma, Mc and Md

In order to alulate these sum integrals, we �rst exploit their symmetries with respet to the

integration variables, the property of dimensionless integrals to be 0 in dimensional regularization

and the fat that integrals of the type

∑∫

QQµ/[(Q
2)n] are 0 due to oddness of the integrand.

After momentum translation, we get:

Ma
Q→Q−P

= I01
∑
∫

PQ

1

P 4Q2(P +Q)2
= I01L

d(211; 00) , (4.31)

where I and L are de�ned in appendix B, Eqs. (B.3, B.6) and for these partiular values, L is

given in Eq. (B.9).

Similarly, Md is merely a produt of tadpole integrals (f. Eq. B.3):

Md = [I01 ]
2I03 . (4.32)

The sum-integral Mc is written in terms of its tensor omponents:

Mc = gµν
∑
∫

P

1

P 6
Vµ(P )Ṽν(P ) , (4.33)

with

Ṽµ(P ) =
∑
∫

Q

Qµ

(P +Q)2
Q→Q−P

= −I01Pµ . (4.34)

and

Vµ(P ) =
∑
∫

Q

Qµ

Q2(P +Q)2
=
∑
∫

Q

−Qµ − Pµ

(P +Q)2Q2

⇒ 2
∑
∫

Q

Qµ

Q2(P +Q)2
= −Pµ

∑
∫

Q

1

Q2(P +Q)2
⇒ Vµ(P ) = −1

2
PµΠ110(P ) ,

(4.35)

with Π110 de�ned in Eq. (4.43).

Eq. (4.33) yields:

Mc =
1

2
I01
∑
∫

P

1

P 4
Π110 =

1

2
I01L

d(211; 00) . (4.36)
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4.1.4 Redution of tensor sum-integral Mb

In order to redueMb, we split the numerator of the seond term in Eq. (4.30) into the temporal

and the spatial omponents:

(R ·Q)2 = (r0q0 + riqi)(r0q0 + rjqj) = r20q
2
0 + 2r0q0(r · q) + (r · q)2 (4.37)

so that we obtain:

Mb =
∑
∫

PQR

r20q
2
0

P 6Q2R2(P +Q)2(P +R)2
︸ ︷︷ ︸

≡V (3;31111;22)

+2
∑
∫

PQR

r0q0(r · q)
P 6Q2R2(P +Q)2(P +R)2

+
∑
∫

PQR

(r · q)2
P 6Q2R2(P +Q)2(P +R)2

,

(4.38)

The �rst term in Eq. (4.38) is a regular salar sum-integral whereas the last two terms

ontain a tensor struture that will be treated with the methods shown previously.

The seond term an be identi�ed with (f. Eq. 4.20):

∑
∫

PQR

r0q0(r · q)
P 6Q2R2(P +Q)2(P +R)2

= T 3
∑

p0q0r0

r0q0T1
d
ii(3, 1, 1, 1, 1)

∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

=
(4π)3

2
δiiT

3
∑

p0q0r0

r0q0S
d+2
31122

∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

= d
(4π)3

2

∑
∫ {d+2}

PQR

r0q0
P 6Q2R2(P +Q)4(P +R)4

≡ d
(4π)3

2
V (5; 31122; 11) .

(4.39)

This manipulation is possible due to the fat that we have identi�ed the masses of the integral

of Eq. (4.20) with the Matsubara modes whih we sum over. By using the onstraint on the

masses (.f. m2 = ... = m5), we ensure that both the sum-integrals and the massive integrals

exhibit the same symmetries.

Finally the third term of Eq. (4.38) is written as (f. Eq. (4.22)):

∑
∫

PQR

(r · q)2
P 6Q2R2(P +Q)2(P +R)2

= T 3
∑

p0q0r0

T d
2 ijij(3, 1, 1, 1, 1)

∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

=
(4π)6

4
T 3

∑

p0q0r0

[

δijδij

(

2Sd+4
32222 + 48Sd+4

52211 + 24Sd+4
42221 + 24Sd+4

43211

+ 8Sd+4
33221 + 4Sd+4

33212 + 3Sd+4
33311

)

+ (δijδij + δiiδjj)4S
d+4
33311

]
∣
∣
∣
∣
∣ m1=p0

...
m5=p0+r0

=
(4π)6

4
d

[

2
∑
∫ {d+4}

PQR

1

P 6Q4R4(P +Q)4(P +R)4
+ 48

∑
∫ {d+4}

PQR

1

P 10Q4R4(P +Q)2(P +R)2
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+ 24
∑
∫ {d+4}

PQR

1

P 8Q4R4(P +Q)4(P +R)2
+ 24

∑
∫ {d+4}

PQR

1

P 8Q6R4(P +Q)2(P +R)2

+ 8
∑
∫ {d+4}

PQR

1

P 6Q6R4(P +Q)4(P +R)2
+ 4
∑
∫ {d+4}

PQR

1

P 6Q6R4(P +Q)2(P +R)4

+4(2 + d)
∑
∫ {d+4}

PQR

1

P 6Q6R6(P +Q)2(P +R)2

]

. (4.40)

We have managed to express Eq. (4.38) as a sum of nine 3-loop salar sum-integrals of

di�erent dimensions

2

. A di�erent basis set for M3,−2 an be found in [120℄:

M3,−2 = 2[I01 ]
2I03 − 2I01L

d(211; 00) + 4V (3; 31111; 22) + 4d(4π)3V (5; 31122; 11)

+ d(4π)6 [2V (7, 32222; 00) + 48V (7, 52211; 00) + 24V (7; 42221; 00)

+ 24V (7; 43211; 00) + 8V (7; 33221; 00) + 4V (7; 33212; 00) + 4(d+ 2)V (7; 33311; 00)] .
(4.41)

4.2 Properties of spetales-types. Splitting

The goal is to express the sum-integrals as a Laurent expansion in ǫ up to O(ǫ0). Experiene

shows that every loop an exhibit at most a pole of order 1, 1/ǫ, so that the highest degree of

divergene enountered is 1/ǫ3. The basi idea in omputing three-loop sum-integrals originates

from the paper of Arnold and Zhai [28℄. It is based on two essential properties of the sum-

integrals.

The �rst property is related to the topology. For three-loop sum-integrals of basketball and

spetales type it is possible to perform a deomposition into one-loop strutures, by utting the

diagram as demonstrated in Fig (4.3). In this way, the one-loop strutures are treated separately

and plugged in the overall integration.

P

P+Q

R

P+R

Q =
∑
∫

P

P

R

P+RP+Q

Q

Figure 4.3: One-loop substrutures of V-type sum-integrals.

The seond property originates in the fat that the propagator (and therefore the one-

loop generalized 2-point funtion) has a simpler struture in on�guration spae rather then

in momentum spae, if the struture itself is �nite when setting ǫ = 0. Therefore, the idea is to

subtrat from the one-loop substrutures terms whih generate divergenes and then to express

the �nite remainder via a Fourier transformation in on�guration spae.

In order to perform a proper splitting of the sum-integral, the origin of divergenes should

be investigated. We all ultraviolet (UV) divergenes those that arise from the limit of high

momenta, p → ∞ and p0 → ∞. The infrared (IR) divergenes refer here to those arising

whenever some Matsubara-mode is set to zero, p0 = 0. There is no need to distinguish between

2

Notie that d = 3 − 2ǫ is still valid, and that deviating values are expliitly denoted in the notation of the

integral as: V (d+ 2ǫ, ...)
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these divergenes in the �nal result (that is, to expliitly use ǫ
IR

and ǫ
UV

) sine the mathing

proedure in the e�etive theory setup presented in setion 3.5 is taking are of separating them.

Thus, the most general form of a spetales-type sum-integral is rewritten as:

V (d; s1, ..., s5; s6s7) ≡

1

4

2

5

3
=
∑
∫

P

Πs2s4s6Πs3s5s7

[P 2]s1
, (4.42)

with the generalized one-loop 2-point funtion:

Πabc =
∑
∫

Q

qc0
[Q2]a[(P +Q)2]b

. (4.43)

In the following, we investigate the analyti behavior of the substrutures and separate the

ontributions that give rise to (IR and UV) divergenes. This splitting is kept as general as

possible. As it turns out, it an be applied to almost all sum-integrals enountered in our

omputation.

4.2.1 UV divergenes

First, we onentrate on the UV divergenes of the substrutures and the UV divergenes they

may generate in the overall integration. It is possible to isolate them into three terms.

For that, notie that the sum in the 2-point funtion inreases its omplexity onsiderably

and therefore it is replaed by an shifted integral into the omplex plane as in the thermal sum

formula [122, 123℄:

S ≡ T
∑

p0

f(p0) =

∫ ∞

−∞

dp0
2π

f(p0) +

∫ ∞−i0+

−∞−i0+

dp0
2π

[f(p0) + f(−p0)]nB(ip0)

= S0 + ST ,

(4.44)

with

nB(ip0) =
1

eip0/T − 1
. (4.45)

The funtion f needs to be analyti in the omplex plane and regular on the real axis. In

addition it should grow slower then eβ|p| at large |p|, so that the ontour of integration an be

losed in the omplex plane, as shown later.

The �rst part of the expression is the zero temperature limit of the sum (obvious by the

expliit lak of the T-parameter and denoted by ΠB
, .f. Eq. (4.46) below), whereas the seond

term is the thermal remainder of the sum.

ΠB
abc =

∫

Q

qc0
[Q2]a[(P +Q)2]b

. (4.46)
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The latter part of the sum is UV �nite. However, it might happen that by plugging this

remainder in the overall P -integration, it will generate some further divergenes. Therefore,

the reipe is to subtrat from the remainder Π0−B
as many leading terms as neessary in its

asymptoti expansion of P (.f. subsetion 4.2.3). These leading UV terms are denoted with

ΠC
and their onrete de�nition is given in Eq. (4.110).

There is one additional term needed for a proper expansion, denoted as ΠD
. It is related to

the zero-temperature term, ΠB
. Sine the zero temperature term exhibits an ǫ divergene (.f.

Eq. (4.108, B.2) below), the term is onstruted just to anel this divergene by introduing

an arbitrary parameter αi whih will anel in the end:

ΠD
abc =

(P 2)ǫ

(αiT 2)ǫ
ΠB

abc . (4.47)

In this way, the ombination ΠB−D
abc an always be onstruted to be �nite, (of O(ǫ0)).

With these ideas in mind, we an now perform a preliminary splitting of the produt of two

suh one-loop strutures

3

, denoting for brevity Πi ≡ Πabc , i = 1, 2:

Π1Π2 =
1

2
Π0−B

1 Π0−B
2 +ΠB−D

1 Π0−B
2 +ΠD

1 Π
0−B
2 +

1

2
ΠB

1 Π
B
2 + (1 ↔ 2) . (4.48)

The �rst two terms, as well as the �rst two terms from (1 ↔ 2) are (in priniple) �nite when

plugged in into Eq. (4.42) and an be omputed in on�guration spae, whereas all the other

terms are expressed in momentum spae via zeta and gamma funtions.

This splitting is to be understood as a guideline. In general there are some onditions for

how many terms should be subtrated from the Π's. They are related to the super�ial degree

of divergene of the sum-integral (.f. subsetion 4.2.3).

4.2.2 IR divergenes

There are two soures of divergenes that may our. The �rst one is related to the zero

Matsubara-mode of the overall integration variable p0 = 0 and the other may our within the

one-loop 2-point funtion Πs1s2s3 .

In the latter ase, the IR divergene is oming from the zero Matsubara mode, thus we de�ne

that partiular ontribution as

4

:

ΠE
ab0 =

∫

q

1

[q2]s1 [(p + q)2 + p20]
s2
. (4.49)

Note that only s3 = 0 gives a �nite ontribution to the IR part. This integral an now be

simply regarded as a massive one-loop tadpole in d dimensions. Thus, it an be manipulated

with standard zero temperature tehniques suh as Integration by Parts (IBP) relations (.f.

appendix D).

There are two situations in whih the IR-sensitive part has to be subtrated. The �rst

senario ours whenever the following ondition is true:

max(2s1 − s3, 2s2) > d . (4.50)

3

The fator 1/2 avoids over ounting in (1 ↔ 2).
4

There is a seond IR divergene arising when s2 is su�iently high. In that situation, the mode q0 = −p0
will generate an IR divergene, that will our even for non-vanishing s3. Nevertheless, this ase does not arise

here.
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In this ase Πs1s2s3 is IR divergent and the following splitting should be performed: Π =
Π0−E +ΠE

, otherwise the �nite piee of the 2-point funtion yields a ontribution of the form:

1
q0=0 . In both ases, Πabc(p0 = 0) and Πabc(p0 6= 0), this behavior has to be aounted for. In

addition, a ΠE(p0 = 0) may have to be subtrated even if the ondition is not ful�lled in order

to render the overall integration over p IR safe. In this situation one may think of ΠE
as the IR

ounterpart of ΠC
.

4.2.3 Splitting

Considering the most general spetales type sum-integral from Eq. (4.42), after subtrating

the divergent zero temperature parts from the sub-loops the integrand runs as (.f. leading UV

behavior of the sub-loops, Eq. 4.110):

Π0−B
s2s4s6Π

0−B
s3s5s7

[P 2]s1
= [P 2]−s1−min(s2−s6/2,s4)−min(s3−s7/2,s5) . (4.51)

Therefore, the ondition for the �rst term of Eq. (4.48) to be UV �nite, reads:

− 2s1 −min(2s2 − s6, 2s4)−min(2s3 − s7, 2s5) ≤ −d− 2 , (4.52)

or

c0 = θ(d− 2(s1 − 1)−min(2s2 − s6, 2s4)−min(2s3 − s7, 2s5)) . (4.53)

Should this ondition not be ful�lled, leading UV terms (ΠC
) have to be subtrated, as

seen through the Heaviside theta funtion. However, it turns out that for sum-integrals of mass

dimension 2 only basketball type sum-integrals may exhibit a non-vanishing c0, whereas for the
spetale-types enountered here, it varies between -4 and 0.

Further, sine ΠB−D
abc goes as lnP 2/[P 2]a+b− c

2
− d+1

2
, the ondition for the seond term in Eq.

(4.48) to be UV �nite, reads:

− 2s124 + (d+ 1) + s6 −min(2s3 − s7, 2s5) ≤ −2− d , (4.54)

or

c2 = θ(2d+ 3− 2s124 + s6 −min(2s3 − s7, 2s5)) . (4.55)

In this way, a better splitting is:

Π1Π2 =
1

2

[

Π0−B
1 − c0Π

C
1

] [

Π0−B
2 − c0Π

C
2

]

+ΠB−D
1

[

Π0−B
2 − c2Π

C
2

]

+ c0Π
C
1 Π

0−B
2

+ΠD
1

[

Π0−B
2 − c2Π

C
2

]

+ c2Π
B
1 Π

C
2 +

c0
2
ΠC

1 Π
C
2 +

1

2
ΠB

1 Π
B
2 + (1 ↔ 2) .

(4.56)

In the ase where the Matsubara mode of the overall integration variable is zero, p0 = 0, the
only potentially divergent terms are the zero temperature and the zero-mode parts, Π{B,E}

. We

have determined an empirial rule for deiding whih part should be subtrated and whih not

and it is related to the super�ial degree of divergene of the substrutures. The following rule

works for all Πs1s2s3(p0 = 0) exept for Π110, for whih both terms need to be subtrated.

ΠA
abc = θ(d+ 2− 2a− 2b+ c)ΠB

abc + θ(2a+ 2b− c− 2− 2d)ΠE
abc . (4.57)
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Thus, for the p0 = 0 part, the separation of the substrutures looks like:

Π1(p0 = 0)Π2(p0 = 0) =
1

2
Π0−A

1 (p0 = 0)Π0−A
2 (p0 = 0) + ΠA

1 (p0 = 0)Π0
2(p0 = 0) + (1 ↔ 2) .

(4.58)

Finally, summarizing all divergenes, the generi splitting beomes:

V (d; s1, ..., s5; s6s7) =
∑
∫

P

Πs2s4s6Πs3s5s7

[P 2]s1

=
∑
∫

P
δp0

1
2Π

0−A
s2s4s6Π

0−A
s3s5s7 +ΠA

s2s4s6Πs3s5s7 + (246 ↔ 357)

[P 2]s1

∣
∣
∣
∣
∣
IBP

+
∑
∫

P

′
1
2Π

0−B−c0C
s2s4s6 Π0−B−c0C

s3s5s7 +ΠB−D
s2s4s6Π

0−B−c2C
s3s5s7 + (246 ↔ 357)

[P 2]s1

+

{

∑
∫

P

′ c0Π
C
s2s4s6Π

0−B
s3s5s7 +ΠD

s2s4s6Π
0−B−c2C
s3s5s7 + c2Π

B
s2s4s6Π

C
s3s5s7 + (246 ↔ 357)

[P 2]s1

+
∑
∫

P

′
c0
2 Π

C
s2s4s6Π

C
s3s5s7 +

1
2Π

B
s2s4s6Π

B
s3s5s7 + (246 ↔ 357)

[P 2]s1

}

≡ V z(ero−mode) + V f(inite) +
{

V d(ivergent)
}

.

(4.59)

Again, V f
ontains all neessary subtrations to make the integrals �nite, and V d

all sub-

trated terms. More expliitly, we have:

∑
∫

P

′
1
2Π

0−B−c0C
s2s4s6 Π0−B−c0C

s3s5s7 + (246 ↔ 357)

[P 2]s1
≡ V f,1

i

∑
∫

P

′ ΠB−D
s2s4s6Π

0−B−c2C
s3s5s7 + (246 ↔ 357)

[P 2]s1
≡ V f,2a

i + V f,2b

i
if a = b
= V f,2

i .

(4.60)

The zero-mode ontribution V z
is a speial ase for itself, sine in general it is not possible to

eliminate all divergenes by only subtrating ontributions Π{B,E}
from the one-loop strutures.

In that sense, the divergenes are muh too �high�. To �lower� them, IBP relations are used

(only for V z
!):

∂

∂pi
pi ◦

∑
∫

P
δp0

Πs2s4s6Πs3s5s7

[P 2]s1
→ #1

∑
∫

P
δp0

Πs2s4s6Πs3s5s7

[P 2]s1−1

+#2
∑
∫

P
δp0

Πs2−1s4s6Πs3s5s7

[P 2]s1
+#3

∑
∫

P
δp0

Πs2s4s6Πs3−1s5s7

[P 2]s1
+ ...

(4.61)

Therefore, only after IBP redution, the splitting program of the sub-loops an be used. The

zero mode divergent and respetively �nite parts are denoted with Zd

and Z f

. Details on IBP

zero-mode redution are to be found in appendix D.

Finally, in Fig. (4.4) we provide the splitting oe�ients from Eqs. (4.53) and (4.55), for all

the sum-integrals that obey this generi separation proedure.
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d V(s1,...,s8) c0 c1 c2

3 21111;020 0 1 1

31111;022 0 1 1

21111;000 0 0 0

31111;020 0 0 0

41111;022 0 0 0

5 31122;011 0 1 1

7 32222;000 0 0 0

52211;000 0 0 0

42221;000 0 0 0

43211;000 0 1 0

33221;000 0 1 0

32212;000 0 1 0

33311;000 0 1 1

Figure 4.4: Splitting oe�ients of the sum-integrals.

4.3 A �rst example, V (3; 21111; 20)

In the following, we demonstrate both the splitting proedure and the atual omputation of

eah term in part on one of the two non-trivial master sum-integrals that enters the three-loop

term of the mass parameter (3.58), V (3, 21111; 20) [124℄ (.f. Fig. (4.5)). Based on this example

it is possible to generalize the omputation to a generi set of parameters. Thus, the remaining

sum-integrals are to be treated in a similar way, by using the formulas from setion 4.4. The

orresponding result an be found in Appendix A.

Figure 4.5: Sum-integral V (3, 21111; 20). The dot denotes an extra power on the propagator

and the �×� denotes a quadrati Matsubara-mode in the numerator.

The sum-integral is split as:

V (3; 21111; 20) =
∑
∫

P

′ Π0−B
112 Π0−B

110 +ΠB−D
112 Π0−B−C

110 +ΠB−D
110 Π0−B−C

112

[P 2]2

+
∑
∫

P

′ ΠD
112Π

0−B−C
110 +ΠB

112Π
C
110 +ΠD

110Π
0−B−C
112 +ΠB

110Π
C
112 +ΠB

112Π
B
110

[P 2]2

+
∑
∫

P
δp0

Π112Π110

[P 2]2
.

(4.62)

The presription is to ompute the �nite parts �rst and the divergent terms in the end. The

zero-mode ontribution generates two additional sum-integrals via IBP transformations.
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4.3.1 Building bloks of the sum-integral

Before starting the atual omputation, we de�ne all neessary piees in both momentum spae

and in on�gurations spae. For a detailed presentation of their omputation, see setion 4.4.

The zero temperature piee of Π110 is aording to Eq. (4.46):

ΠB
110 =

∫

Q

1

Q2(P +Q)2
=
g(1, 1, d + 1)

[P 2]2+
d+1
2

=
µ2ǫΓ(ǫ)Γ2(1− ǫ)

(4π)2−ǫΓ(2− 2ǫ)[P 2]ǫ
, (4.63)

where the integral an be solved via Feynman parameters (.f. Eq. (B.1)) and g is de�ned in

Eq. (B.2).

The zero temperature part of Π0
112 is:

ΠB
110 =

∫

Q

q20
Q2(P +Q)2

= uµuν

∫

Q

QµQν

Q2(P +Q)2
uµ = (1,0) . (4.64)

The tensor integral is solved by using the standard projetion tehnique with the ansatz:

∫

Q

QµQν

Q2(P +Q)2
= AP 2gµν +BPµPν ⇒







∫

Q

=Q2

︷ ︸︸ ︷

gµνQµQν
Q2(P+Q)2

= 0 = P 2((d+ 1)A+B)

∫

Q

=1
4 [(P+Q)2−P2−Q2]2

︷ ︸︸ ︷

PµPνQµQν
Q2(P+Q)2

= P 4

4 ΠB
110 = P 4(A+B)

,

(4.65)

where we have used the property gµνgµν = d+ 1 = 4− 2ǫ. By solving the system of equations,

we obtain:

ΠB
112 =

g(1, 1, d + 1)

4d

(d+ 1)p20 − P 2

[P 2]2+
d+1
2

. (4.66)

As presented in more detail in setion (4.4), the leading UV ontributions ΠC
are simply

obtained by adding up the ontributions of Π with the external momentum �ow (P ) going

through eah propagator in the limit P → ∞:

ΠC
110 = lim

P→∞

[
∑
∫

P

1

Q2(P +Q2)
+
∑
∫

Q

1

Q2(P +Q2)

]

=
2

P 2

∑
∫

Q

1

Q2
=

2I01
P 2

ΠC
112 = lim

P→∞

[
∑
∫

P

1

Q2(P +Q2)
+
∑
∫

Q

(−q0 − p0)
2

Q2(P +Q2)

]

=
2

P 2

∑
∫

Q

q20
Q2

+
p20
P 2

∑
∫

Q

1

Q2
=

2I11 + p20I
0
1

P 2
.

(4.67)

For de�ning these quantities in on�guration spae, we use the inverse Fourier transform of

the propagator (.f. Eq. (4.112))

1
P 2 = 1

4π

∫
d3r eipr

r e−|p0|r
. In this way, Π110 and Π112 beome:

Π110 = T

∫
d3q

(2π)3

∫

d3r

∫

d3s
eiqr+i(q+p)s

16π2rs

∞∑

q0=−∞
e−|q0|r−|p0+q0|s

= T

∫

d3r

∫

d3sδ(3)(r+ s)
ei(p)s

16π2rs

∞∑

q0=−∞
e−|q0|r−|p0+q0|s

=
T 3

4

∫

d3r
eipr

r̄2
e−|p0|rf3,110(r̄, |p̄0|) ,

(4.68)
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and similarly

Π112 = π2T 5

∫

d3r
eipr

r̄2
e−|p0|rf3,112(r̄, |p̄0|) , (4.69)

with

f3,110(x, n) =
∞∑

m=−∞
e−(|m|+|m+n|−|n|)x = coth x+ |n| ; f3,112(x, n) =

∞∑

m=−∞
m2e−(|m|+|m+n|−|n|)x ,

(4.70)

given in Eqs. (E.5 and E.6).

In a similar way, we ompute Π
{B,C}
{110,112}. Notie that the Γ(ǫ) term from Eq. (4.63), that

exhibits a 1/ǫ pole, anels the Γ(ǫ) term from the denominator of Eq. (4.112), and renders the

quantity �nite:

Π
{B,C}
{110,112} =

T 3

4

∫

d3r
eipr

r̄2
e−|p0|r

{

fB,C
3,110(x, y), (2πT )

2fB,C
3,112(x, y)

}

, (4.71)

with the de�nitions of f to be found in appendix E.

4.3.2 Finite parts

With the previously alulated building bloks, we an ompute all piees in the splitting of Eq.

(4.62).

The �rst �nite piee of the sum-integral reads:

V f,1(3; 21111; 20) =
∑
∫

P

′ Π0−B
112 Π0−B

110

P 4

=
π2T 9

4

∑

p0

′
∫

d3r

∫

d3s
e−|p0|(r+s)

r̄2s̄2
f0−B
3,112(r̄, |p̄0|)f0−B

3,110(s̄, |p̄0|)
[
∫

d3p

(2π)3
eip(r+s)

P 4

]

=
T 2

2(4π)4

∑

p0

′

∫ ∞

0
dr̄ds̄ e−|p0|(r+s)f0−B

3,112(r̄, |p̄0|)f0−B
3,110(s̄, |p̄0|)

∫ π

0
dθ sin θ

e−|p0|
√
r2+s2+2rs cos θ

|p̄0|

=
T 2

(4π)4

∫ ∞

0
dxdy

1

xy

∞∑

n=1

e−n(x+y)

n3

[

e−n|x−y|(1 + n|x− y|)− e−n(x+y)(1 + n(x+ y))
]

×
[
1

2
(n+ coth x)csch 2x+

n2

2
coth x+

n

6
− 1

2x3
− n

2x2
− n2

2x

]

×
[

coth y − 1

y

]

=
T 2

(4π)4
× 0.014356026(1) .

(4.72)

In the seond line of the previous equation, we have simply plugged in the 2-point funtions

and have performed the Fourier transform (Eq. (4.112)). Afterwards we have resaled the

integrand and have performed the on�guration spae angular integrations by hoosing the

spherial oordinates suh that: |r + s| =
√

r2 + s2 + 2rs[polar angle]. The remaining angular

integration beomes trivial. Finally, the sum an be performed analytially. The two dimensional

integration is performed with Mathematia [125℄ numerially.
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The seond �nite piee onsists of two terms:

V f,2a(3; 21111; 20) + V f,2b(3, 21111, 20) =
∑
∫

P

′

[

ΠB−D
112 Π0−B−C

110

[P 2]2
+

ΠB−D
110 Π0−B−C

112

[P 2]2

]

. (4.73)

Expanding the terms ΠB−D
in ǫ, we obtain:

ΠB−D
110

1

(4π)2
= ln

α1T
2

P 2
and ΠB−D

112 =
4p20 − P 2

12(4π)2
ln
α2T

2

P 2
. (4.74)

As αi is a dummy variable that anels in the �nal result, it an be hosen to simplify the

omputation. For αi = 4π2 no term of the form ln(onst) will appear in the integral and the

�rst term of Eq. (4.74) simply reads:

∑
∫

P

′ ΠB−D
112 Π0−B−C

110

[P 2]2
=

T 4

48(4π)2

∑

p0

′
∫

d3p

(2π)3
(P 2 − 4p20) ln P̄

2

P 4

∫

d3r
eipr

r̄2
e−|p0|rf0−B−C

3,110 (r̄, |p̄0|)

=
T 2

48(2π)5

∑

p0

′
∫ ∞

0
dr̄ e−|p0|rf0−B−C

3,110 (r̄, |p̄0|)
∫ ∞

0
dp̄
p2(4p̄20 − P̄ 2)

P̄ 4
ln P̄ 2 sin pr

pr

= − T 2

6(4π)4

∞∑

n=1

∫ ∞

0
dx

[

coth x− 1

x
− x

3

]
e−2nx

x

×
[

γE(1− 2nx) + 2nx+ e2nx(1 + 2nx)Ei(−2nx)− (1− 2nx) ln
2n

x

]

=
T 2

(4π)4
× (0.001351890(1)) .

(4.75)

In the seond line we have resaled the integral and have performed the angular integration

of r and p (.f. Eqs (C.4, C.6)). Afterwards, the momentum integration was performed as in

Eq. (C.12).

The seond term is omputed in a similar way:

∑
∫

P

′ ΠB−D
110 Π0−B−C

112

[P 2]2
= − T 2

(4π)4

∞∑

n=1

∫ ∞

0
dx

[
1

2
(n+ coth x)csch 2x+

n2

2
cothx

+
n

6
− 1

2x3
− n

2x2
− n2

2x
+

x

30
− n2x

6

]
e−2nx

n

[

1− γE + e2nxEi(−2nx) + ln
2n

x

]

=
T 2

(4π)4
× (−0.006354602(1)) .

(4.76)

A good onsisteny hek is not to set α to a partiular value and to hek that in the �nial

result of the sum-integral is α-independent. The numerial value is obtained by performing the

integral numerially for the �rst 10000 terms of n. In order to get an estimate of the remainder,

we have �tted the the integral between n = 10.001 and n = 100.000 to a power law f(n) = an−b

and have performed the summation n = 10.001...∞ analytially. Thus, by hopping the sum at

n = 10.000 we get a relative error of O(10−10).
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4.3.3 Divergent parts

Aording to the splitting in Eq. (4.56) there are for the non-zero modes p0 6= 0 �ve divergent

terms. Keeping in mind that terms like

∑∫

PΠ
0/[P 2] are two-loop sum-integrals (.f. Eq. B.6

and for �xed parameters, they are in appendix B) and by using the de�nitions in Eqs. (4.6, B.3,

B.5), we obtain:

∑
∫

P

′ ΠD
112Π

0−B−C
110

P 4
=

g(1, 1, d + 1)

4d(αT 2)2−
d+1
2

∑
∫

P

′ (d+ 1)p20 − P 2

P 4

[

Π0
110 −

g(1, 1, d + 1)

[P 2]2−
d+1
2

− 2I01
P 2

]

=
g(1, 1, d + 1)

4d(αT 2)2−
d+1
2

[

(d+ 1)
(

Ld(211; 20) − g(1, 1, d + 1)I1
4− d+1

2

− 2I01 × I13

)

− Ld(111; 00) + Jd(111; 0) + g(1, 1, d + 1)I0
3− d+1

2

+ 2I01 × I02

]

=
T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ

(

− 7

72
+ lnG− ln 2π

12

)

+O(ǫ0)

]

,

(4.77)

∑
∫

P

′ ΠB
112Π

C
110

P 4
=
∑
∫

P

′ g(1, 1, d + 1)

4d

(d+ 1)p20 − P 2

[P 2]2−
d+1
2

2I01
[P 2]3

=
g(1, 1, d + 1)I01

2d

[

(d+ 1)I1
5− d+1

2

− I0
4− d+1

2

]

=
T 2

48(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ
+

1

2
+ γE + 24 lnG+O(ǫ)

]

,

(4.78)

∑
∫

P

′ ΠD
110Π

0−B−C
112

P 4
=
g(1, 1, d + 1)

(αT 2)2−
d+1
2

∑
∫

P

′

[

Π0
112

P 4
− (d+ 1)p20 − P 2

4d

g(1, 1, d + 1)

[P 2]2−
d+1
2

1

P 4

−
(

I01
p20
P 2

+
2I11
P 2

)
1

P 4

]

=
g(1, 1, d + 1)

(αT 2)2−
d+1
2

[

Ld(211; 02) − Jd(211; 1) − g(1, 1, d + 1)

4d

×
(

(d+ 1)I1
4− d+1

2

− I0
3− d+1

2

)

− I01 × I13 − 2I11 × I03

]

=
T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ

(

− 5

48
− γE

24
+

lnG

2
+
ζ(3)

120

)

+O(ǫ0)

]

,

(4.79)

∑
∫

P

′ ΠB
110Π

C
112

P 4
=
∑
∫

P

′ g(1, 1, d + 1)

[P 2]2−
d+1
2

1

P 4

(

I01
p20
P 2

+
2I11
P 2

)

= g(1, 1, d + 1)
[

I01 × I1
5− d+1

2

+ 2I11 × I0
5− d+1

2

]

=
T 2

96(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
9

2
+ γE + 24 lnG− 4ζ(3)

5

)

+O(ǫ0)

]

,

(4.80)
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and

∑
∫

P

′ ΠB
112Π

B
110

P 4
=
g(1, 1, d + 1)2

4d

∑
∫

P

′ (d+ 1)p20 − P 2

[P 2]2−
d+1
2

1

[P 2]2−
d+1
2

1

P 4

=
g(1, 1, d + 1)2

4d

[
(d+ 1)I15−d − I04−d

]

=
−1

48(4π)4

(
µ2e−γE

4πT 2

)3ǫ [
1

ǫ2
+

72 lnG− 1

ǫ
+ 2 +

7π2

4
+ 360 lnG− 216ζ

′′
(−1) +O(ǫ)

]

.

(4.81)

G ≈ 1.2824 is the Glaisher onstant. And the γE onstant, along with the Stieltjes onstants

are de�ned via:

ζ(1 + x) =
1

x
+ γE +

∞∑

i=1

γi
(−x)i
i!

. (4.82)

The generi formulas for the divergent parts are listed in Eqs. (4.137, 4.138, 4.139).

4.3.4 Zero-modes

The zero-mode omponent of V (3; 21111; 20) exhibits an IR divergene that annot be ured

by simply subtrating di�erent terms from the one-loop substrutures, as in Eq. (4.57). This

behavior stems from the δp0/[P
2]2 fator in the overall integration. Therefore, we use IBP

relations to lower the exponent of P and afterwards to apply proper splitting to the sum-integrals

emerging from the IBP redution:

∂pp ◦
∑
∫

P
δp0

Π112Π110

[P 2]2
= 0 . (4.83)

Using Eq. (D.1), we obtain:

p∂pδp0Π110 =
[
−p2Π210 −Π110 + I02

]
δp0 (4.84)

and

p∂pδp0Π112 =
[
−p2Π212 −Π112 + I12

]
δp0 . (4.85)

With the produt rule in Eq. (4.83) and by plugging in the relations for the substrutures,

we obtain:

∑
∫

P
δp0

Π112Π110

P 4
=

1

d− 6

∑
∫

P
δp0

[
Π210Π112

P 2
+

Π212Π110

P 2
− I02

Π112

P 4
− I12

Π110

P 4

]

=
Z(3; 12111; 02) + Z(3; 12111; 20) − I02 × Jd(211; 1) − I12 × Jd(211; 0)

d− 6
.

(4.86)

The last two terms are of the form 1loop×2loop, and are trivial to ompute (f. Eqs.

(B.3,B.5)). The �rst two terms are zero-mode 3-loop sum-integrals that need further manipula-

tion.
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4.3.5 Zero-mode masters

For V (3; 21111; 20), we enountered two non-trivial zero-mode sum-integrals that are alulated

now in detail. In addition, the de�nitions of two new 2-point funtions (and their divergent

piees) are needed here, both in momentum spae and in on�guration spae. Sine the method

of omputing them was presented in subsetion 4.3.1, we simply refer to their de�nitions in

appendix E.

For Z(3; 12111; 02) we have the splitting:

Z(3; 12111; 02) =
∑
∫

P
δp0

1

P 2

[

Π0−E
210 Π0−B

112 +Π210Π
B
112 +ΠE

210Π112

]

. (4.87)

The �rst term is �nite and aording to Eqs.(E.16, E.6, E.24), it looks like:

∑
∫

P
δp0

Π0−E
210 Π0−B

112

P 2
=
T 7

32

∫
d3p

(2π)3
1

p2

∫

d3r

∫

d3s
eip(r+s)

r̄s̄2
f0−E
3,210(r̄, 0)f

0−B
3,112(s̄, 0)

=
T 2

4(2π)5

∫ ∞

0
dr̄ds̄ r̄f0−E

3,210(r̄, 0)f
0−B
3,112(s̄, 0)

[∫ ∞

0
dp̄

sin pr

pr

sin ps

ps

]

= − 4T 2

(4π)4

∫ ∞

0
dxdy

x ln
(
1− e−2x

)

x+ y + |x− y|

(
coth y csch 2y

2
− 1

2y3

)

=
T 2

(4π)4

∫ ∞

0
dy

1− y3 coth y csch 2y

12y4
[
+4y3 − 2π2y + 3(2iπy2 + Li3

(
e2y
)
)− 3ζ(3)

]

=
T 2

(4π)4
×−0.02850143769881264033(1) .

(4.88)

In the seond line we have performed all angular integrations (.f. Eqs. (C.4, C.6)). After-

wards integration over p was done as in Eq. (C.8). In the seond last line of Eq. (4.88) the

integration over x was performed by separating the interval into [0, y] and [y,∞] and solving the

parts individually. The generi formula for the �nite term an be found in 4.131.

At last, the divergent, analyti terms read (f. Eqs (4.49, B.2, B.5)):

∑
∫

P
δp0

1

P 2

[
Π210Π

B
112 +ΠE

210Π112

]

= −g(1, 1, d + 1)

4d
Jd(2− d+ 1

2
, 2, 1; 0) + Tg(2, 1, d)Jd(4− d

2
, 1, 1; 1) .

(4.89)

The seond zero-mode sum-integral, Z(3; 12111; 20) is split as:

Z(3; 12111; 20) =
∑
∫

P
δp0

1

P 2

[

Π0−B
212 Π0−B−E

110 +Π212Π
B+E
112 +ΠB

212Π110

]

. (4.90)

The �nite term requires the same steps as Eq. (4.88):

∑
∫

P
δp0

Π0−E
212 Π0−B−E

112

P 2
=

2T 2

(4π)4

∫ ∞

0
dxdy

x

x+ y + |x− y|

(
csch 2x

2
− 1

2x2

)(

coth y − 1

y
− 1

)

=
T 2

(4π)4

∫ ∞

0
dy

(1 + y − y coth y)(y + ln y + ln csch y)

2y2

=
T 2

(4π)4
× 1.197038267(1) .

(4.91)
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The divergent, analyti terms read:

∑
∫

P
δp0

1

P 2

[

Π212Π
B+E
112 +ΠB

212Π110

]

= g(1, 1, d + 1)Jd(3− d+ 1

2
, 2, 1; 1)

+ Tg(1, 1, d)Jd(3− d

2
, 2, 1, 1) +

2g(1, 1, d + 1)− g(2, 1, d + 1)

4d
Jd(3− d+ 1

2
, 1, 1; 0) .

(4.92)

Finally, we sum up all terms:

Z(3; 12111; 02) = − T 2

24(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+

(
16

3
− 5γE + 2 ln 2 + 5 ln π − 24Z1

)

+O(ǫ0)

]

,

(4.93)

Z(3; 12111; 20) = − T 2

16(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

8− γE + ln
π

4

)

+ (24− 16γE

+ 24 ln 2
(

1− γE + ln
π

4

)

− 27γE
2

2
+

37π2

12
+ 36 ln2 2 + (16− 9γE) ln

π

4

+
9

2
ln2

π

4
− 36γ1 − 16Z2

)

+O(ǫ0)

]

.

(4.94)

4.3.6 Results

In the end, we add up the terms of the previous setion and obtain the ǫ-expansion up to O(ǫ)
of the seond master sum-integral of the e�etive mass parameter.

V (3; 21111; 20) =
1

96

T 2

(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
55

6
+ γE + 24 lnG

)

+ v2 +O(ǫ)

]

. (4.95)

v2 = −673

36
+ ln 2

(

−68

3
− 8γE + 288 lnG+

8ζ(3)

5

)

+ γE

(
79

6
− 72 lnG

)

− 31γE
2

2
+

143π2

36
− 8 ln2 2 + 300 lnG+ 16 ln π + 8 ln2 π − 48γ1

− 2ζ(3)

5
− 8ζ

′
(3)

5
+ 72ζ

′′
(−1) + n2

≈ 93.089439628(1) .

(4.96)

And

n2 = +96V2 − 32(Z1 + Z2) ≈ −36.495260342(1) . (4.97)

By using the de�nition in Eq. (4.30) and the results from appendix A for the omponent

spetales sum-integrals, the last building blok of the e�etive mass beomes

5

:

M3,−2 =
−5

36

T 2

(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
11

30
+ γE + 24 lnG

)

+m+O(ǫ)

]

, (4.98)

5

The onstant term m shows a deviation from the result in [120℄ of 1%, most probably due to the poor

numeris. However, at this point we ould not loate the exat error soure. Fortunately the term m is not

needed in the �nal omputation.
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with

m = −491

225
+ ln 2

(

−12 +
16γE
5

+
384 lnG

5
− 2ζ(3)

25

)

+ lnG

(
2506

25
− 168γE

5

)

+
536γE
75

− 99γE
2

10
+

377π2

150
− 24 ln2 2

5
− 48 ln π

5
+

24 ln2 π

5
− 112γ1

5
− 23ζ(3)

150

− 72

5
ζ
′′
(−1) +

ζ
′
(3)

25
+ n1

≈ 42.1672(1)

(4.99)

with

n1 = −144V3

5
− 432V4

5
− 216V5

5
− 5184V6

5
− 2592V7

5
− 2592V8

5
− 864V9

5

− 432V10

5
− 432V11 −

144(Z1 + Z2)

25
− 1188Z3

5
+ 432Z4 −

1512Z5

5
≈ −2.17594(1) .

(4.100)

4.4 Generalizing the sum-integral omputation

In subsetion 4.2.3 we have determined a general separation of the sum-integral suh that

any piee an be omputed in part with ertain methods. Moreover, the onrete example

of V (3; 21111; 20) indiates that generalization of the omputation proedure an be ahieved

to a ertain extent.

In order to proeed with the omputation of the �nite and divergent parts, the di�erent

building bloks of the one-loop strutures need to be determined in more detail than previously

in subsetion 4.3.1.

In Eq. (4.46), the de�nition for the zero-temperature part of the 2-point funtion in Eq.

(4.43) is given. It is an analyti funtion in P 2
and p0 but a losed formula for generalized

parameters is yet unknown. Therefore, only the needed ases s3 = 0, 1, 2 are expliitly alulated.
For s3 = 0, we have an integrand with rotational invariane and the integral an be solved in

d+ 1-dimensional spherial oordinates (.f. Eq. B.2).

For the remaining ases, s3 = 1, 2, the most general (tensor) zero-temperature part of Eq.

(4.43) is de�ned as:

∫

Q

Qµ1 × ...×Qµn

[Q2]a[(P +Q)2]b
. (4.101)

The ommon projetion tehnique expresses the tensor integral as a linear ombination of all

possible tensors made out of the metri tensor, gµ1µ2 and out of the external momentum Pµ.

They are the basis vetors of the tensor spae.

∫

Q

Qµ1 × ...×Qµn

[Q2]a[(P +Q)2]B
=
∑

σ(n)

[n/2]
∑

j=0

B̃
σ(n)
n,j+1





[n/2]−j
∏

i=1

gµ2i−1µ2i × P 2



×





n∏

i=2([n/2]−j)+1

Pµi



 , (4.102)

where [n] denotes the integer part of n and in partiular, whenever we have a ombination

inluding an ǫ-term, we always onsider:

[number ± c× ǫ] ≡ [number] . (4.103)
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The �rst sum

∑

σ(n) denotes the sum over all possible ombinations of µ1, ..., µn taking into

aount the gµν = gνµ symmetry and the ommutativity of gµν and Pµ. The oe�ients are

omputed by ontrating eah side of the equation with every �basis vetor� and by solving then

the system of equations (having a unique solution) with respet to the oe�ients B̃
σ(n)
n,j+1. Our

onrete ase however simpli�es, sine we need only the q0 = UµQµ ase with Uµ ≡ (1,0). In this
situation, the sum over all possible ombinations of the term gµ1µ2×...×gµ2i+1µ2i×Pµ2i+1×...×Pµn

simply redue upon ontration with Uµ1 ...Uµn to (symm. fat.)×pn−2i+1
0 . We therefore absorb

the symmetry fator into the oe�ient and rede�ne: (symm. fat.)× B̃
σ(n)
n,j+1 ≡ Bn,j+1. In the

end we have:

∫

Q

qc0
[P 2]a[(P +Q)2]b

=

[c/2]
∑

j=0

Bc,j+1





c∏

i=2([c/2]−j)+1

p0



 [P 2][c/2]−j

=

[c/2]
∑

j=0

Bc,j+1 × p
{c}+2j
0 × [P 2][c/2]−j ,

(4.104)

where {c} = c− 2 [c/2] ≡ 1
2 [1− (−1)c] =

{

0, c even

1, c odd

.

The oe�ients B are assumed to be known, sine they are simply the solution of the system

of [c/2] equations. Their general struture is a linear ombination of salar integrals of the form

1

[P 2]x

∫

Q

1

[Q2]a+y[(P +Q)2]b−x−y
. (4.105)

Sine these salar integrals are all proportional to 1/[P 2]a+b− d+1
2
, we rede�ne the general

expression of the zero-temperature part of Π as:

∫

Q

qc0
[P 2]a[(P +Q)2]b

=

[c/2]
∑

j=0

Ac,j+1
p
{c}+2j
0 × [P 2][c/2]−j

[P 2]a+b− d+1
2

, (4.106)

A key ingredient in determining the oe�ients Ac,j is to rewrite salar produts as 2(PQ) =
(P +Q)2 −P 2 −Q2

when generating the system of [c/2] equations. In the end we have (a ≡ s1,
b ≡ s2):

A1,1 =
1

2
[g(s1, s2 − 1, d+ 1)− g(s1, s2, d+ 1)− g(s1 − 1, s2, d+ 1)]

A2,1 =
1

4d
[2g(s1 − 1, s2, d+ 1) + 2g(s1, s2 − 1, d+ 1) + 2g(s1 − 1, s2 − 1, d+ 1)

− g(s1, s2 − 2, d+ 1)− g(s1 − 2, s2, d+ 1)− g(s1, s2, d+ 1)]

A2,2 = g(s1 − 1, s2, d+ 1)− (d+ 1)A2,1 ,

(4.107)

with g(a, b, d) de�ned in Eq. (B.2). The dependene of A on {s1, s2, d} is implied. In summary:

∫

Q

{1, q0, q20}
[Q2]s1 [(P +Q)2]s2

=
{g(s1, s2, d+ 1), p0A1,1, A2,1P

2 +A2,2p
2
0}

[P 2]s12−
d+1
2

. (4.108)
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For the leading UV part of Π0−B
abc , Eq.(4.44) is used:

Π0−B
abc =

∫

q

∫ ∞−i0+

−∞−i0+

dq0
2π

qc0
[q20 + q2]a

[

1

[(q0 + p0)2 + (q+ p)2]b

+
1

[(q0 − p0)2 + (q+ p)2]b

]

1

eiq0/T − 1
.

(4.109)

The integration over q0 has to be performed using the residue theorem. In order to extrat the

leading UV piee out of the integral, an asymptoti expansion in terms of p2
is arried out. In

this way the integrand simpli�es and integration over q an be performed for eah term of the

expansion in part. These terms represent the leading UV piees of Π0−B
.

There is a muh simpler way to extrat (at least the �rst two) leading UV ontributions

(ΠC
abc) out of the thermal part of Πabc, as will be disussed now [28℄.

P

P

Figure 4.6: Extration of leading UV piee out of Π(P ).

By adding up the ontributions in whih the external momentum �ows through both loop

lines and by taking the limit P → ∞, one obtains the leading momentum behavior multiplied

by some one-loop tadpole.

ΠC
abc = lim

P→∞

∑
∫

Q

qc0
[Q2]a[(P +Q)2]b

+ lim
P→∞

∑
∫

Q

(−q0 − p0)
c

[(P +Q)2]a[Q2]b

=

[
∑
∫

Q

qc0
[Q2]a

]
1

[P 2]b
+ (−1)c

c∑

n=0

(
c

n

)
pc−n
0

[P 2]a

[
∑
∫

Q

qn0
[Q2]b

]

=
ηcI

c/2
a

[P 2]b
+ (−1)c

c∑

n=0

(
c

n

)
ηnp

c−n
0

[P 2]a
I
n/2
b ,

(4.110)

where ηi =
1+(−1)[i]

2 =

{

0, i odd

1, i even
.

The term ηi needs to be inluded as Iba ontains by de�nition only even powers in the

Matsubara mode. Thus, we have to make sure that terms with odd powers in the Matsubara

modes vanish. The seond term of the right hand side (rhs) of Eq. (4.110) is obtained by

performing a momentum translation, Q→ −Q− P .
The last term needed for the omputation of the sum-integral is ΠE(p0 = 0). It is simply a

generalized one-loop self-energy in d dimensions. This ase is largely used for the zero modes:

ΠE
ab0(p0 = 0) =

g(a, b, d)

(p2)a+b−d/2
. (4.111)

With these de�nitions, the �nite and divergent parts an �nally be omputed.
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4.4.1 Finite parts

This setup follows the one in [120℄, but with a slightly di�erent approah on the �nite piees.

The entral formula for performing the �nite terms in on�guration spae is the inverse Fourier

transformation of the propagator:

1

[P 2]s
=

21−s

(2π)d/2Γ(s)

∫

d3reipr
(
p20
r2

) d−2s
4

K d
2
−s(|p0|r) , (4.112)

where Kν(x) is the modi�ed Bessel funtion of the seond kind, Eq. (C.1).

Based on this de�nition the general one-loop funtion an be omputed in on�guration

spae. By plugging Eq. (4.112) into Eq. (4.43) and by performing the momentum integration,

we get:

Πs1s2s3 =
T22−s12

(2π)dΓ(s1)Γ(s2)

∑

q0

qs30

∫

ddr r2s12−deipr[q20 ]
d−2s1

4 [(q0 + p0)
2]

d−2s2
4

×K d
2
−s1

(|q0|r)K d
2
−s2

(|q0 + p0|r) .
(4.113)

Using the de�nition in Eq. (C.2) that expliitly determines the Bessel funtion of half-integer

argument, we obtain:

Πs1s2s3 =
(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rfd,s1s2s3(r̄, |p̄0|) , (4.114)

with

fd,s1s2s3(x, n) = e|n|x
∞∑

m=−∞

|| d2−s1|− 1
2 |∑

i=0

|| d2−s2|− 1
2 |∑

j=0

(
i+
∣
∣d
2 − s1

∣
∣− 1

2

)
!

i!
(
−i+

∣
∣d
2 − s1

∣
∣− 1

2

)
!

×
(
j +

∣
∣d
2 − s2

∣
∣− 1

2

)
!

j!
(
−j +

∣
∣d
2 − s2

∣
∣− 1

2

)
!

ms3 |m| d−1
2

−s1−i|n+m| d−1
2

−s2−j

(2x)i+j
e−x(|m|+|n+m|) .

(4.115)

The funtion fd,s1s2s3(x, n) is in general some funtion f(coth x, |n|) and spei� values are

expliitly shown in appendix E:

The zero temperature part ΠB
is in general a produt of a simple propagator-like struture

of the form [P 2]−ǫ
and a divergent pre-fator. Therefore, the Γ(ǫ)−1

from Eq. (4.112) anels

the divergene of the pre-fator and renders the zero-temperature piee in on�guration spae

�nite

6

.

ΠB
s1s2s3 =

(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rfBd,s1s2s3(r̄, |p̄0|) , (4.116)

with

fBd,s1s20 =
(4π)

d+1
2 g(s1, s2, d+ 1)Γ(s1)Γ(s2)

Γ
(
s12 − d+1

2

) |n|d−s12

×
|| 12−s12+d|− 1

2 |∑

j=0

(
j +

∣
∣1
2 − s12 + d

∣
∣− 1

2

)
!

j!(−j +
∣
∣1
2 − s12 + d

∣
∣− 1

2)!
(2|n|x)−j .

(4.117)

6

It is not the ase for Π210 for whih only ΠB+C
210 is �nite in d = 3.
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The de�nitions for s3 = 1, 2 are straightforward.

For the leading UV part, we simply plug Eq. (4.110) into Eq. (4.112):

ΠC
s1s2s3 =

(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rfCd,s1s2s3(r̄, |p̄0|) , (4.118)

with

fCd,s1s2s3(x, n) =
ηs3(2π)

d+1
2 2s1Γ(s1)I

s3/2
s1

(2πT )d+1−2s1+s3
x

d+1
2

−s1 |n| d+1
2

−s2κ d
2
−s2

(|n|x)

+ (−1)s3
s3∑

i=0

ηi

(
s3
i

)
(2π)

d+1
2 2s2Γ(s2)I

i/2
s2

(2πT )d+1−2s2+i
x

d+1
2

−s2 |n| d+1
2

−s1ns3−iκ d
2
−s1

(|n|x) .
(4.119)

where κ is de�ned in Eq. (C.2).

After de�ning the building bloks of the omputation in on�guration spae, all three generi

types of �nite piees an be determined.

We start with the term:

V f,1(d; s1s2s3s4s5; s6s7) ≡
∑
∫

P

′ Π0−B
s2s4s6Π

0−B
s3s5s7

[P 2]s1
. (4.120)

There is a spei� ordering in the omputation that guarantees the analyti manipulation of this

sum-integral to at most a double integral from 0 to ∞. The presription is the following:

• Plug in the de�nitions from Eq.(4.114, 4.116) by �rst expliitly omputing the sums in

Eq.(4.115, 4.117).

• Perform the momentum integration/Fourier transformation, Eq. (4.114):

∫

p

eip(r+s)

[P 2]a
=

2−a

(2π)
d−1
2 Γ(a)

e−|p0||r+s||p0|
d−1
2

−a|r+ s| d−1
2

−a

×
|| d2−a|− 1

2 |∑

j=0

(
j +

∣
∣d
2 − a

∣
∣− 1

2

)
!

j!
(
−j
∣
∣d
2 − a

∣
∣− 1

2

)
!
(2|p0||r+ s|)−j .

(4.121)

• Perform the angular integrations of the on�guration spae variables. Notie that, by

onveniently hoosing the axes in suh a way that the angle between r and s is the polar

angle, all remaining angular integrations beome trivial (.f. Eq. (C.4)). The angle

integration generates the funtion ha,b(r, s, |p0|), Eq. (C.9).

• Perform summation over p0. It is not always worthwhile for a numerial integration to

perform it. It turns out that for terms in higher dimensions it is more e�ient to sum up

the �rst few terms of the numerially integrated double integral.

• resaling (to avoid a dimension-full integrand) an be performed at any stage of the om-

putation.
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The generi result is:

V f,1(d; s1s2s3s4s5; s6s7) =

T 3(d+1)−2s12345+s67

2
5
2
(d−1)−s12345+s46

[
∏5

i=1 Γ(si)
]

π−1/2Γ(d2 )Γ(
d−1
2 )(4π)2s12345−s67− 3

2
(d+1)

×
∫ ∞

0
dx1dx2 x

s24−2
1 xs35−2

2

∞∑

n=1

e−n(x1+x2)

na−
d−1
2

f0−B
s2s4s6(x1, n)f

0−B
s3s5s7(x2, n)

×
|| d2−s1|− 1

2 |∑

j=0

(
j +

∣
∣d
2 − s1

∣
∣− 1

2

)
!

j!
(
−j +

∣
∣d
2 − s1

∣
∣− 1

2

)
!

h− d+1
2

+s1−j, d−3
2
(x1, x2, n)

(2n)j
.

(4.122)

The seond lass of �nite terms is of the form:

V f,2(d; s1s2s3s4s5; s6s7) ≡
∑
∫

P

′ ΠB−D
s2s4s6Π

0−B−C
s3s5s7

[P 2]s1
. (4.123)

Due to the B−D term, whose ǫ-expansion generates a term of the type lnP 2+ln α× onst,

the integral will ontain a trivial part whih is merely a two-loop sum-integral (to be omputed

analytially) and a ompliated term that neessitates a numerial evaluation.

ΠB
abc −ΠD

abc =
(
[P 2]−ǫ − [αT 2]−ǫ

)
∑[c/2]

j Ac,j+1[P
2][c/2]−jp

{c}+2j
0

[P 2][a+b− d+1
2 ]

=

[c/2]
∑

j

(−ǫAc,j+1)
︸ ︷︷ ︸

O(ǫ0)

[P 2][c/2]−jp
{c}+2j
0

[P 2][a+b− d+1
2 ]

[

ln
P 2

4π2
− ln

αT 2

4π2

]

+O(ǫ) .

(4.124)

The trivial part ontains the dummy variable α and makes sure that it anels the α-
dependene in the divergent piee so that in the end the sum-integral is indeed α-independent.

By plugging in the seond term in Eq. (4.124) in Eq. (4.123), we obtain:

V f,2

∣
∣
lnα

= ln
αT 2

4π2

[
s6
2
]

∑

j

(ǫAs6,j+1)
∑
∫

P

′ [P 2][s6/2]−jp
{s6}+2j
0

[P 2][s24−
d+1
2 ]+s1

Π0−B−C
s3s5s7 . (4.125)

Terms of the form

∑∫ ′

P
p
s5
0

[P 2]s1
Πs2s3s4 are simply two-loop sum-integrals (with the p0 = 0

mode subtrated) that an be redued via IBP relations to produts of one-loop tadpoles (. f.

Eq. (B.6)):

∑
∫

P

′ ps50
[P 2]s1

Πs2s3s4 = Ld(s1s2s3; s4s5)− [1− δ0,s5 ]J
d(s1s2s3; s4) . (4.126)

The delta funtion takes are that the zero-mode subtration makes sense only for s5 = 0 for

whih a zero-mode is existent. All the other terms are simply produts of one-loop tadpoles

de�ned in Eq. (B.3). So by plugging in Eqs. (4.46, 4.110) into Eq. (4.125), we get:
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V f,2

∣
∣
lnα

= ln
αT 2

4π2

[ s62 ]∑

j=0

ǫ→0
︷ ︸︸ ︷

(ǫAs6,j+1)

[

Ld

([

s24 −
d+ 1

2

]

−
[s6
2

]

+ s1 + j, s3, s5; {s6}+ 2j, s7

)

− δ0,{s6}+2j × ηs7 × Jd

([

s24 −
d+ 1

2

]

−
[s6
2

]

+ s1 + j, s3, s5;
s7
2

)

−
[ s72 ]∑

i=0

As7,i+1 × η{s7}+{s6}+2(i+j) × I
{s7}+{s6}

2
+i+j

s135− d+1
2

+[s24− d+1
2 ]−[ s62 ]−[

s7
2 ]+i+j

− ηs7 × η{s6}+2j × I
s7
2

s3 × I
{s6}
2

+j

s15+[s24− d+1
2 ]−[ s62 ]+j

− (−1)s7
s7∑

i=0

(
s7
i

)

× ηi × ηs7+{s6}−i+2j × I
i
2
s5 × I

s7
2
+

{s6}
2

− i
2
+j

s13+[s24− d+1
2 ]−[ s62 ]+j

]

.

(4.127)

The �rst term in Eq. (4.123) is now:

V f,2

∣
∣
lnP 2 =

∑
∫

P

′

[ s62 ]∑

j=0

(−ǫAs6,j+1)
p
{s6}+2j
0

[P 2]s1+[s24−
d+1
2 ]−[ s62 ]+j

ln
P 2

4π2
Π0−B−C

s3s5s7 . (4.128)

The ordering of integration is:

• Perform angular integration of on�guration spae variable, Eq. (C.5, C.6)

• Angular integration of the momentum spae variable beomes trivial.

• Perform integration of radial omponent of momentum variable, whih generates the fun-

tion la,d, Eq. (C.12).

• Resaling an be performed at any stage.

The outome is

V f,2

∣
∣
lnP 2 =

√
π

Γ(d2)Γ(s3)Γ(s5)

T 2d−2s135+s67+2−2[s24− d+1
2 ]

2
3d−1

2
−1−s35+s7(4π)2s135−s67+2[s24− d+1

2 ]−d−1

×
∞∑

n=1

∫ ∞

0
dxxs35−2e−nxf0−B−C

d,s3s5s7
(x, n)

[ s62 ]∑

j=0

−ǫAs6,j+1 × ns6−2[ s62 ]+2j

2s6−[
s6
2 ]−s1−[s24− d+1

2 ]+j

×
ls1+[s24− d+1

2 ]−[ s62 ]+j,d(x, n)

Γ
(
s1 +

[
s24 − d+1

2

]
−
[
s6
2

]
+ j
) .

(4.129)

The last lass of �nite integrals is part of the zero-mode ontribution V z,f
.

The IBP zero-mode redution program proeeds this step (.f. appendix D). It works in suh

a way, that the new obtained zero-mode sum-integrals an be alulated with a similar splitting

proedure as for the non-zero ase. That means, that potentially IR divergent piees stem only

from the one-loop substrutures, Π. The proper subtration should render the remainder �nite

(.f. 48).
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The generi �nite part is then:

V z,f(d; s1s2s3s4s5; s6s7) =
∑
∫

P
δp0

1

[P 2]s1
Π0−A

s2s4s6Π
0−A
s3s5s7 . (4.130)

Similarly to the �rst two �nite parts, there is some presription of the ordering in whih

the integrals should be performed. During integration, two di�erent ases need to be taken into

aount: s1 6= 0 and s1 = 0.

• s1 6= 0 ase:

� Perform the angular integration of the on�guration spae variables, Eq. (C.5).

� Perform the integration over the radial part of the momentum variable, Eq. (C.8).

It's angular integral is trivial.

• s1 = 0 ase:

� The momentum integral is the integral representation of the Dira delta funtion. It

generates a δ(3)(r+s) and eliminates diretly one of the on�guration spae integrals.

� Perform angular integration of the on�guration spae variable, Eq. (C.4).

• Resale the integral.

• For a ertain ombination of exponent parameters, the integration an be redued to 1

dimension. E.g. Z(3; 1212; 20).

The general result for the s1 6= 0 ase is:

V z,f =
∑
∫

P
δp0

Π0−A
s2s4s6Π

0−A
s3s5s7

[P 2]s1

=

√
πΓ(d2 − s1)

2d−1−s2345+2s1+s67Γ(d2)
2
[
∏5

i=1 Γ(si)
]

T 3(d+1)−2s12345+s67

(4π)−
3
2
(d+1)+2s12345−s67

×
∫ ∞

0
dx1dx2 x

s24−2
1 xs35−2

2 f0−A
d,s2s4s6

(x1, 0)f
0−A
d,s3s5s7

(x2, 0)as1,d(x1, x2) .

(4.131)

Sine Eq. (4.57) shows that in any sum-integral of interest, there is (at least) one substruture

of the form Π0−E
, that is, for whih summation over the Matsubara modes need not to be

performed a priori, we give an alternative expression for this substruture (.f Eq. (E.4)), in

partiular for the ase s1 = 0:

V z,f =
∑
∫

P
δp0Π

0−E
s2s4s6Π

0−B
s3s5s7

=

√
π

22d−1−s2345+s67Γ(d2)
[
∏5

i=2 Γ(si)
]

T 3(d+1)−2s2345+s67

(4π)−
3
2
(d+1)+2s2345−s67

×
∫ ∞

0
dxxs2345−d−3f0−B

d,s3s5s7
(x, 0)

|| d2−s3|− 1
2 |∑

i=0

(
i+
∣
∣d
2 − s3

∣
∣− 1

2

)
!

i!
(
−i+

∣
∣d
2 − s3

∣
∣− 1

2

)
!

×
|| d2−s5|− 1

2 |∑

j=0

(
j +

∣
∣d
2 − s5

∣
∣− 1

2

)
!

j!
(
−j +

∣
∣d
2 − s5

∣
∣− 1

2

)
!

Lis24−s6−d+1+i+j

(
e−2x

)

(2x)i+j
(4.132)
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with

Lis (x) =

∞∑

n=1

xn

ns
. (4.133)

4.4.2 Divergent parts

With the expressions of the divergent piees Π{B,C,E}
in Eqs. (4.108, 4.110, 4.49, 4.111) and

through their simple propagator-type struture, it beomes lear that the divergent parts of the

sum-integral are formed of at most two-loop sum-integrals, but predominantly of some fatorized

one-loop strutures.

There are in priniple two types of divergent strutures that our. The �rst one is of the

form:

ΠD
1 Π

0
2, or Π

C
1 Π

0
2 . (4.134)

These have the property that all propagators are of the form 1/[P 2]Z and the two-loop sum-

integrals that they form, an be systematially redued to a produt of one-loop by IBP. By

realling the de�nition of a two-loop sum-integral, Eq. (B.6), and also the fat that the zero

Matsubara mode is omitted in the outermost integration, we have:

∑
∫

P

′ pa0
[P 2]b

Π0
cfg =

∑
∫

P

pa0
[P 2]b

Π0
cfg −

∑
∫

P
δp0

pa0
[P 2]b

Π0
cfg . (4.135)

The �rst term on the right hand side is a standard two-loop sum-integral, (Ld(bcf ; ag)) and
the seond term is -only if a = 0- a speial two-loop sum-integral de�ned in Eq. (B.5), Jd(bcf ; g)
and otherwise 0.

The other ase ours if we are dealing with any ombination of Π{B,C,D,E}
. In that ase, it

is not exluded to obtain some ombinations of propagators of the form 1/[P 2]Z+ǫ
. The result

will be some produt of simple one-loop tadpoles or Jd
(in the ase of ΠE

). In addition, the

omission of zero Matsubara mode is irrelevant, sine it gives rise to a saleless integral, with in

dimensional regularization is 0:

∑
∫

P
δp0

1

[P 2]a
= 0 . (4.136)

With these ideas in mind, we have 5 types of divergent strutures (omitting those multiplied
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by c0). The �rst divergent part is of the form:

V d,1(d; s1s2s3s4s5; s6s7) =
∑
∫

P

′ ΠD
s2s4s6Π

0−B−c2C
s3s5s7

[P 2]s1
+ (246 ↔ 357)

=
1

(αT 2)ǫ

[s6/2]∑

i=0

As6,i+1

[

Ld

(

s124 −
[d] + 1

2
−
[s6
2

]

+ 1, s3, s5; {s6}+ 2i, s7

)

− δ0,{s6}+2i × ηs7J
d

(

s124 −
[d] + 1

2
−
[s6
2

]

+ 1, s3, s5;
s7
2

)

−
[s7/2]∑

j=0

As7,j+1η{s6}+{s7}+2(i+j) × I
{s6}+{s7}

2
+i+j

s12345−1− d+[d]
2

−[ s62 ]−[
s7
2 ]+i+j

− c2ηs7 × η{s6}+2i × I
s7
2

s3 × I
{s6}
2

+i

s1245− [d]+1
2

−[ s62 ]+i

− c2(−1)s7
s7∑

k=0

(
s7
k

)

ηkη{s6}+2i+s7−k × I
k
2
s5 × I

{s6}+s7−k

2
+i

s1234− [d]+1
2

−[ s62 ]+i

]

+ (246 ↔ 357) .

(4.137)

Reall that [x] means the integer part of x, partiularly [3− 2ǫ] = 3.
The seond term is of the form:

V d,2(d; s1s2s3s4s5; s6s7) =
∑
∫

P

′ ΠB
s2s4s6Π

C
s3s5s7

[P 2]s1
+ (246 ↔ 357)

=

[s6/2]∑

i=0

As6,i+1

[

ηs7 × η{s6}+2i × I
s7
2
s3 × I

{s6}
2

+i

s1245− d+1
2

−[ s62 ]+i

+ (−1)s7
s7∑

j=0

(
s7
j

)

ηjη{s6}+2i+s7−j × I
j
2
s5 × I

{s6}+s7−j

2
+i

s1234− d+1
2

−[ s62 ]+i



+ (246 ↔ 357) .

(4.138)

Finally, the last divergent part of the non-zero modes is:

V d,3(d; s1s2s3s4s5; s6s7) =
∑
∫

P

′ ΠB
s2s4s6Π

B
s3s5s7

[P 2]s1

=

[s6/2]∑

i=0

[s7/2]∑

j=0

As6,i+1 ×As7,j+1 × η{s6}+{s7}+2(i+j) × I
{s6}+{s7}

2
+i+j

s12345−d−1−[ s62 ]−[
s7
2 ]+i+j

.

(4.139)

The divergent parts that may our in the zero-mode integrals are:

V d,z,1(d; s1s2s3s4s5; s6s7) =
∑
∫

P
δp0

ΠE
s2s4s6Πs3s5s7

[P 2]s1

= δ0,s6 × ηs7 × Tg(s2, s4, d)× Jd

(

s124 −
d

2
, s3, s5;

s7
2

)

,

(4.140)

and

V d,z,2(d; s1s2s3s4s5; s6s7) =
∑
∫

P
δp0

ΠB
s2s4s6Πs3s5s7

[P 2]s1

= δ0,{s6} × ηs7 ×As6,1 × Jd

(

s124 −
d+ 1

2
−
[s6
2

]

, s3, s5;
s7
2

)

.

(4.141)

Conrete examples of divergent part alulations are given in the next two setions.
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4.5 Dimension zero sum-integrals

All the sum-integrals of mass dimension zero enter the three-loop term of the e�etive oupling

in Eq. (3.60). They are di�erent from the previous lass beause, �rstly not all of them an

be treated the splitting presription given in Eq. (4.56) and they are the �rst known three-loop

sum-integrals that exhibit the full power of divergene, namely ǫ−3
.

In this setion the alulation of two sum-integrals for whih splitting di�ers from Eq. (4.56)

is presented in more detail. The remaining sum-integrals are to be found in Appendix A.

4.5.1 Example 1: V (3; 12111; 00)

This subsetion follows the omputation in Ref. [126℄. In order to improve legibility, we will

denote for the moment this sum-integral from Fig. (4.7) as: V12 ≡ V (3; 12111; 00), aording to

the onvention of naming the �nite parts (.f. Table 4.1).

Figure 4.7: Sum-integral V (3, 12111; 00).

It is due to the expliit p0 = 0 mode in Π210 expressed in on�guration spae (and that would

generate a 1/0 term), that one has to subtrat the IR part rather than the zero temperature

part. In this sense, we have the following splitting:

V12 ≡
∑
∫

P

Π210Π110

P 2

=
∑
∫

P

′ Π0−E
210 Π0−B

110

P 2
+
∑
∫

P

′ ΠE
210Π

0−B
110

P 2
+
∑
∫

P

′ ΠB−D
110 Π0−E−B−C

210

P 2
+
∑
∫

P

′ ΠD
110Π

0−E
210

P 2

+
∑
∫

P

′ ΠB−D
110 ΠB+C

210

P 2
+
∑
∫

P

′ ΠE
210Π

B
110

P 2
+
∑
∫

P
δp0

Π210Π110

P 2

= V f,1
12 + V f,2

12 + V f,3
12 + V d,1

12 + V d,2
12 + V d,3

12 + V z
12 ,

(4.142)

with V f
12 = V f,1

12 + V f,2
12 + V f,3

12 .

Finite parts

Using the de�nitions in Eqs. (4.114, E.5, E.23) we get for the �rst part of V f
1 :

V f,1
12 =

∑
∫

P

′ (Π210 −ΠE
210)(Π110 −ΠB

110)

P 2

= T
∑

p0

′
∫

d3p

(2π)3
1

P 2

T

2(4π)2

∫

d3r
1

r̄
eipr

∑

q0

′ 1

|q̄0|
e−|q0|r−|q0+p0|r T

3

4

·
∫

d3s
1

s̄2
eips

(

coth s̄− 1

s̄

)

e−|p0|s .

(4.143)
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Notie, that the sum in Π210 is not performed yet; it turns out that the sum-integral an be

redued to a one-dimensional integral if the order of summation and integration are swithed

(opposed to the presription from page 62).

After performing �rst the momentum integration and afterwards averaging over the angles

in on�guration spae, Eq. (C.9), we obtain:

V f,1
12 =

2

(4π)6

∑

n,m

′

∫ ∞

0
dx

∫ ∞

0
dy

1

y

(

coth y − 1

y

)
1

|n||m|e
−|n|y−(|m|+|m+n|)y

·
(

e−|n||x−y| − e−|n|(x+y)
)

.

(4.144)

We now perform the integration over x. The ase for whih |m| + |m+ n| − |n| = 0 has to

be treated separately. After arefully splitting the interval over m aordingly, and performing

the x-integration, we get:

V f,1
12 =

2

(4π)6

∑

n

′

∫ ∞

0
dy

(

coth y − 1

y

)
e−2|n|y

|m| H|n|+

+
2

(4π)6

∑

n

′
∑

m∈(−∞,−|n|−1)
∪(1,∞)

∫ ∞

0
dy

1

y

(

coth y − 1

y

)
e−2|n|y

|n||m|
1− e−|m|y−|m+n|y+|n|y

|m|+ |m+ n| − |n|

+
2

(4π)6

∑

n,m

′
∫ ∞

0
dy

1

y

(

coth y
1

y

)
1

|n||m|
e−|m|y−|m+n|y−|n|y − e−2|n|y

|m|+ |m+ n|+ |n| ,

(4.145)

where Hn is the harmoni number of n: Hn =
∑n

i=1 1/i.
By expliitly resolving the summation intervals and using symmetry transformations of the

form m → −m and m→ m+ |n|, we an rewrite the term as:

V f,1
12 =

4

(4π)6

∞∑

n=1

∫ ∞

0
dy

(

coth y − 1

y

)
e−2ny

n
Hn

+
2

(4π)6

∞∑

n=1

∫ ∞

0
dy

1

y

(

coth y − 1

y

)
e−2ny

n

∞∑

m=1

(
1− e−2my

)
(

1

m2
− 1

(m+ n)2

)

.

(4.146)

Performing �rst the integration over m:

∞∑

m=1

1

m2
= ζ(2) =

π2

6
,

∞∑

m=1

e−2my

m2
= Li2

(
e−2y

)
,

∞∑

m=1

1

(m+ n)2
= ψ(1)(n+ 1),

∞∑

m=1

e−2my

(m+ n)2
= e−2yΦ(e−2y, 2, 1 + n) ,

(4.147)

Li2(x) being the Dilog funtion, ψ(1)
the Polygamma funtion and Φ the Hurwitz Lerhphi

funtion, we obtain:

V f,1
12 =

2

(4π)6

∫ ∞

0
dy

1

y

(

coth y − 1

y

)[(
π2

6
− Li2(e

−2y)

) ∞∑

n=1

e−2ny

n
+ 2y

∞∑

n=1

e−2ny

n
Hn

−
∞∑

n=1

e−2ny

n
ψ(1)(n+ 1) + e−2y

∞∑

n=1

e−2ny

n
Φ(e−2y, 2, n + 1)

]

.

(4.148)
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It turns out that the sums over n an be performed analytially, by using the integral

representations of the speial funtions involved:

∞∑

n=1

e−2ny

n
= Li1

(
e−2y

)
= − ln(1− e−2y) . (4.149)

For the seond sum in Eq. (4.148), we use the identity Hn = ψ(n+1) + γE and the integral

representation of ψ:

ψ(z) =

∫ ∞

0
dt

(
e−t

t
− e−zt

1− e−t

)

. (4.150)

By �rst performing the sum, we get:

∞∑

n=1

e−2ny

n
ψ(n + 1) = −

∫ ∞

0
dt e−t

[
ln(1− e−2y)

t
− ln(1− e−2y−t)

1− e−t

]

.
(4.151)

We now turn our attention to the seond term in the brakets and by using the transformation

1− e−t = u, we obtain:
∫ ∞

0
dt

ln(1 − e−2y−t)

1− e−t
e−t =

∫ 1

0
du

ln(1− e−2y + e−2yu)

u

=

∫ 1

0

du

u
ln(1− e−2y) +

∫ 1

0
du

ln
(

1− e−2y

e−2y−1u
)

u

= ln(1− e−2y)

∫ 1

0

du

u
− Li2

(
e−2y

e−2y − 1

)

.

(4.152)

We rewrite now the following integrals as:

∫ ∞

0
dt
e−t

t

e−t→v
= −

∫ 1

0

dv

ln v
;

∫ 1

0

du

u

u→1−v
=

∫ 1

0

dv

1− v
. (4.153)

Next, we make use of the de�nition of the γE onstant, γE =
∫ 1
0 dv

(
1

ln v + 1
1−v

)

and obtain:

∞∑

n=1

e−2ny

n
Hn = −Li2

(
e−2y

e−2y − 1

)

. (4.154)

For the sum involving ψ(1)
and Φ, we use their integral representations and employ the same

approah as above.

ψ(1)(z) =

∫ ∞

0
dt

te−zt

1− e−t
; Φ(z, s, a) =

1

Γ(s)

∫ ∞

0
dt
ts−1e−at

1− ze−t
. (4.155)

Finally, we get:

V f,1
12 =

1

(4π)6

∫ ∞

0
dy

1− y coth y

3y2

[

8y(π2 − 3iπy + y2) + ln(e2y − 1)
(
−2π2 + 24iπy + 12y2

+3 ln(e2y − 1)(−2iπ − 4y + ln(e2y − 1))
)
− 3(π + i ln(e2y − 1))2 ln

1 + coth y

2

−6 ln(1− e−2y) Li2
(
e−2y

)
− 12y Li2

(
coth y + 1

2

)

+ 6Li3 (−2ey sinh y)

]

=
1

(4π)6
V12,1 =

1

(4π)6
· 0.6864720593640618954(1) .

(4.156)
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The seond �nite part of Eq. (4.142), aording to the IBP redution of ΠE
210 in Eq. D.5:

V f,2
12 =

∑
∫

P

′
ΠE

210

Π110 −ΠB
110

P 2

= T
∑

p0

′

∫
d3p

(2π)3

(

− T

4π

|p0|
P 4

)
1

P 2

T 3

4

∫

d3r
1

r̄2
eipr

(

coth r̄ − 1

r̄

)

e−|p0|r .
(4.157)

Momentum integration and resaling are performed:

V f,2
12 = − 2

(4π)6

∞∑

n=1

∫ ∞

0
dx

(
x

n
+

1

n2

)(

coth x− 1

x

)

e−2nx .
(4.158)

First the integration and afterwards the summation an be done analytially:

V f,2
12 =

2

(4π)6

∞∑

n=1

3 + 2n− 4n lnn+ 4nψ(n)− 2n2ψ(1)(n)

4n3

= − 1

(4π)6

(

(2π)2 lnG− π2

3
ln 2π − π2

6
− 3

2
ζ(3)

)

.

(4.159)

For omputing:

V f,3
12 =

∑
∫

P

′ ΠB−D
110 Π0−E−B−C

210

P 2
, (4.160)

the generi formula in Eq. (4.129) an be used, notiing that only the ombination ΠB+C
210 makes

sense in d = 3 dimension, sine every piee is divergent individually and only their sum is �nite.

Therefore we have, Eqs. (E.15, E.25):

V f,3
12 = − T

8π2

∑

p0

′

∫
d3p

(2π)3

(
ln P̄ 2

P 2
− ln

α1

4π2
1

P 2

)
T

2(4π)2

∫

d3r
1

r̄
eipr

×
[

f0−E
3,210(r̄, |p̄0|)− fB+C

3,210 (r̄, |p̄0|)
]

,

(4.161)

Finally, we obtain:

V f,3
12 = ln

α1

4π2
2− 2γE

2 − 4γ1 − ζ(3)
6

(4π)6

− 4

(4π)6

∞∑

n=1

∫ ∞

0
dxe−2nx

[

e2nxB(e−2x, n+ 1, 0) +Hn − ln(1− e−2x)

−
(

γE − e2nxEi(−2nx) + ln
n

2x
+

x

6n

)]

·
[(

ln
2n

x
− γE

)

− Ei(−2nx)e2nx
]

=
1

(4π)6

[

ln
α1

4π2

(

2− 2γE
2 − 4γ1 −

ζ(3)

6

)

+ V1,3

]

,

(4.162)

with V12,3 = −3.202(1).
The summation over the seond part onverges very slowly and the evaluation of the in-

tegrand itself is tedious sine it ontains speial funtions. The summation was done up to

n = 7000 with a relative error ofO(10−3) and beyond that a power-law funtion (a·n−b
, b ≈ 1.89)

was used to �t the data in the interval [9000, 19000]. The analyti summation n = 9001...∞
gives an error of O(10−4).
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Divergent parts

The divergent parts are:

V d,1
12 =

∑
∫

P

′
ΠD

110

Π210 −ΠE
210

P 2

=
g(1, 1, d + 1)

(
√
α1T )3−d

[

Ld(121; 00) − Jd(121; 0) − Jd(211; 0)
]

=
1

2(4π)6

(

µ2e
γE
3
− ln(4πα1)

3

T 2

)3ǫ [
1

ǫ3
+

3

ǫ2
+

1

ǫ

(

9− 4γE
2 +

π2

12
− 8γ1

)

+

(

23− 12γE
2 +

16γE
3

3
− 5π2

12
+ 16π2 lnG− 4π

3
ln 2π

− 24γ1 + 16γEγ1 + 8γ2 − 7ζ(3)

)

+O(ǫ)

]

,

(4.163)

V d,2
12 =

∑
∫

P

′
(ΠB

110 −ΠD
110)

ΠC
210

P 2

= g(1, 1, d + 1)
∑
∫

P

′

(

1

(P 2)2−
d+1
2

− 1

(α1T 2)2−
d+1
2

)[

g(2, 1, d + 1)

(P 2)3−
d+1
2

+
I02
P 2

+
I01
P 4

]

1

P 2

= g(1, 1, d + 1)

[

g(2, 1, d + 1)I05−d + I02I
0
4− d+1

2

+ I01I
0
5− d+1

2

−
g(2, 1, d + 1)I0

4− d+1
2

+ [I02 ]
2 + I01I

0
3

(α1T 2)2−
d+1
2





= − 1

3(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ3
+

1

ǫ2

(

3− 3 lnα1

2

)

+
1

ǫ

(

7− 9γE
2

2
+
π2

4
+ 3γE ln 4π

− 3

2
[ln 4π]2 − 6γ1 − lnα1

(
9

2
+

3

2
γE +

3

2
ln 4π

)

+
3[lnα1]

2

4

)

+O(ǫ0)

]

,

(4.164)

and

V d,3
12 =

∑
∫

P

′ ΠB
110Π

E
210

P 2
= g(1, 1, d + 1)Jd

(

2, 3 − d+ 1

2
, 1; 0

)

= − 1

96(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+

(
7

2
+ 3γE − 72 lnG+ 3 lnπ

)]

+O(ǫ) .

(4.165)

Notie that:

V d,1
12 + V d,2

12 =
1

6(4π)6

(
µ2

T 2

)3ǫ
1

ǫ3

[

1 + [...] · ǫ+ [...] · ǫ2+

+
(

...+ ln
α1

4π2
(−12 + 12γE

2 + 24γ1 + ζ(3))
)

· ǫ3
]

.

(4.166)

From here we ould read o� the analyti expression for Eq. (4.162).
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Zero mode-master

Here we brie�y present the alulation of one of the zero-mode masters oming from V (3; 12111; 00).
As already mentioned on page 48, from Π110 both the zero temperature and the zero-mode on-

tribution have to be subtrated, suh that we end with:

Z(3; 12111; 00) =
∑
∫

P
δp0

Π210Π110

P 2

=
∑
∫

P
δp0

Π0−E
210 Π0−B−E

110

P 2
+
∑
∫

P
δp0

ΠE
210Π110

P 2
+
∑
∫

P
δp0

Π210Π
B+E
110

P 2
.

(4.167)

Thus, the �nite part is:

Z f(3; 12111; 00) =
∑
∫

P
δp0

Π0−E
210 Π0−B−E

110

P 2

= − 4

(4π)6

∫ ∞

0
dxdy

x+ y − |x− y|
y

ln(1− e−2x)

(

coth y − 1

y
− 1

)

= − 2

3(4π)6

∫ ∞

0
dy
y coth y − y − 1

y2
(
−2π2y + 6iπy2 + 4y3 + 3Li3

(
e2y
)
− 3ζ(3)

)

=
Zf

(4π)6
=

1

(4π)6
× (−5.16622349123187417171(1)) .

(4.168)

The divergent terms are:

∑
∫

P
δp0

ΠE
210Π110 +Π210Π

B+E
110

P 2
= Tg(2, 1, d)Jd(4− d

2
, 1, 1; 0)

+ g(1, 1, d + 1)Jd(3− d+ 1

2
, 2, 1; 0) + Tg(1, 1, d)Jd(3− d

2
, 2, 1; 0) .

(4.169)

And �nally:

Z(3; 12111; 00) =
1

(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ

(
π2

3
− ζ(3)

2

)

+

(

γE + lnπ +
4

3

)(

π2 +
3ζ(3)

2

+ ζ(3)

(

3 ln 2− 11

3

)

− 24π2 lnG− 3ζ
′
(3) + Z8

)]

.

(4.170)

4.5.2 Example 2: V (3; 22111; 02)

Figure 4.8: Sum-integral V (3, 22111; 02).
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This is the last sum-integral (f. Fig. (4.8)) for whih the splitting of Eq. (4.56) does not

apply:

V14 =
∑
∫

P

Π210Π112

P 4

=
∑
∫

P

′ Π0−E
210 Π0−B

112

P 4
+
∑
∫

P

′ ΠE
210Π

0−B
112

P 4
+
∑
∫

P

′ ΠB−D
112 Π0−E−B−C

210

P 4

+
∑
∫

P

′ ΠD
112Π

0−E
210

P 4
+
∑
∫

P

′ ΠB−D
112 ΠB+C

210

P 4
+
∑
∫

P

′ ΠE
210Π

B
112

P 4
+
∑
∫

P
δp0

Π210Π112

P 4

= V f,1
14 + V f,2

14 + V f,3
14 + V d,1

14 + V d,2
14 + V d,3

14 + V z
14 .

(4.171)

Finite part

The �rst �nite part, we treat in the same way as Eq. (4.143); we �rst perform p integration,

Eq. (C.9) and resale the integral.

V f,1
14 =

∑
∫

P

′ Π0−E
210 Π0−B

112

P 4

=
1

(4π)6

∑

m,n

′
∫ ∞

0
dxdy

1

y

e−|m|x−|m+n|x−|n|y

|n|3|m| f0−B
3,112(y, |n|)

×
[

e−|n||x−y|(1− |n||x− y|)− e−|n|(x+y)(1− |n|(x+ y))
]

.

(4.172)

It beomes lear that integration over x and summation over m is muh more demanding in

this ase. Therefore, we use the generalized formulas in Eqs. (C.19, C.18) and obtain:

V f,1
14 =

1

144(4π)6

∞∑

n=1

∫ ∞

0
dy
e−2ny

n4y4
[
3y3e−2y

(
n2 coth y + (n + coth y)csch 2y

)
− 3

− ny(3 + 3ny − y2)
]
×
{
−6n

[
−3Φ(e−2y, 2, 1 + n) + nΦ(e−2y, 3, 1 + n)

]

+
[
(3− 2n)nπ2 + 6 [γE + ψ0(1 + n)] [1 + 2n (y(3 + ny)− 1)]

+ 12n(y − 1)(ln[1− e−2y] + Φ(e−2y, 1, 1 + n)) + 3n ((−6 + 4ny)ψ1(1 + n)

− nψ2(1 + n) + (4n − 4ny − 6) Li2
(
e−2y

)
− 2nLi3

(
e−2y

)
+ 2nζ(3)

)]}

=
1

(4π)6
× (0.1544(1)) .

(4.173)

The seond �nite term, is after momentum integration and saling simply:

V f,2
14 =

∑
∫

P

′ ΠE
210Π

0−B
112

P 4

= − 1

3(4π)6

∞∑

n=1

∫ ∞

0
dx
x2

n3

(

1 +
3

nx
+

3

n2x2

)

f0−B
3,112e

−2nx

=
1

(4π)6
× (−0.101108838933043(1)) .

(4.174)

The sum has been done analytially and the integration numerially.
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The third �nite part is aording to Eq. (4.129):

V f,3
14 =

∑
∫

P

′ ΠB−D
112 Π0−E−B−C

210

P 4

=
1

3(4π)6

∫ ∞

0
dxx

∞∑

n=1

f0−E−B−C
3,210 (x, n)e−nx

[
l3,1(x, n)− 2n2l3,2(x, n)

]

= − 1

3(4π)6

∞∑

n=1

∫ ∞

0
dxe−2nx

[

e2nxB(e−2x, 1 + n, 0) + e2nxEi(−2nx) +Hn − x

6

− ln(1− e−2x)− ln
neγE

2x

]

×
[

2nx+ e2nx(1 + 2nx)Ei(−2nx) + (2nx− 1) ln
2n

xeγE

]

= −0.162(1) .
(4.175)

These �nite parts are time onsuming as they ontain speial funtions. Moreover their

onvergene is very low. For the last �nite part, the integral has to be evaluated up to n =
150.000 in order to obtain an relative error of O(10−9).

Divergent parts

The divergent parts are simply:

V d,1
14 =

∑
∫

P

′ ΠD
112Π

0−E
210

P 4
=
∑
∫

P

′ (d+ 1)p20 − P 2

4d

g(1, 1, d + 1)

(α2T 2)2−
d+1
2

Π0−E
210

P 4

=
g(1, 1, d + 1)

4d(α2T 2)2−
d+1
2

[

(d+ 1)
∑
∫

P

′ p20Π
0
210

P 4
−∑
∫

P

′ Π0
210

P 4

−(d+ 1)
∑
∫

P

′∑
∫

Q
δq0

p20
P 4Q4(P +Q)2

+
∑
∫

P

′∑
∫

Q
δq0

1

P 2Q4(P +Q)2

]

=
g(1, 1, d + 1)

4d(α2T 2)2−
d+1
2

[

(d+ 1)Ld(221; 20) −
(

Ld(121; 00) − Jd(121; 0)
)

−(d+ 1)Jd(221; 1) + Jd(211; 0)
]

,

(4.176)

V d,2
14 =

∑
∫

P

′ ΠB−D
112 ΠB+C

210

P 4

=
g(1, 1, d + 1)

4d

∑
∫

P

′ (d+ 1)p20 − P 2

P 4

[

1

(P 2)2−
d+1
2

− 1

(α2T 2)2−
d+1
2

]

×
[

g(2, 1, d + 1)

(P 2)3−
d+1
2

+
I02
P 2

+
I01
P 4

]

=
g(1, 1, d + 1)

4d

[

(d+ 1)
(

g(2, 1, d + 1)Î1
5− d+1

2

(α2) + I02 Î
1
3 (α2) + I01 Î

1
4 (α2)

)

−
(

g(2, 1, d + 1)Î0
4− d+1

2

(α2) + I02 Î
0
2 (α2) + I01 Î

0
3 (α2)

)]

,

(4.177)
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V d,3
14 =

∑
∫

P

′ ΠE
210Π

B
112

P 4
=
∑
∫

P

′∑
∫

Q
δq0

1

Q4(P +Q)2
g(1, 1, d + 1)

4dP 4

(d+ 1)p20 − P 2

(P 2)2−
d+1
2

=
g(1, 1, d + 1)

4d

[

(d+ 1)Jd

(

2, 4 − d+ 1

2
, 1; 1

)

− Jd

(

2, 3− d+ 1

2
, 1; 0

)]

.

(4.178)

Zero-mode

The zero-mode ontribution simpli�es via IBP redution to (.f. Eq. (D.30)):

V z
14 =

Z(3; 12211; 02) + Z(3; 12121; 02) − I12 × Jd(221; 0)

d− 5
. (4.179)

The expliit values for the zero-mode masters are in appendix (A).

Summing up, we notie that the generalization of the splitting proedure and the generi

formulas of the individual piees simplify the work onsiderably. Even in the two onrete

example presented at last, we have partially borrowed some of the generi results from setion

4.4.
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Chapter 5

Results

At this point we have omputed all neessary piees in order to determine m
E

and g
E

. We plug

in the omputed sum-integrals into Eqs. (3.58) and (3.60) and provide the �nal, renormalized

results on the mathing oe�ients. We �nd out that in the ase of the e�etive oupling we

still need to onsider operators of higher dimension in the Lagrangian from Eq. (3.5). Further,

we disuss in whih way the higher order operators will enter our omputation by pointing out

the UV properties of the diagrams that ontain the new interations. We end the urrent thesis

with an outlook on this work, spei�ally on �nishing the omputation of g
E

and on a wider

prospetive: on the need of new tehniques for solving sum-integrals.

5.1 Debye mass

With the master sum-integrals at hand M000
31111−2, M

000
11110 and M020

211110, we are able to express

Eq. (3.58) in d = 3− 2ǫ dimensions. However, the mass parameter is expressed in terms of the

4d bare oupling g2 and thus it requires renormalization to render the parameter �nite.

For that, we reall the relation between the bare and the renormalized oupling from Eq.

(2.44), here rewritten as: g2B = Zgg
2(µ̄) and the ombination µ−2ǫg2(µ̄) is dimensionless. We

have dropped the subsript R for simpliity. The renormalization onstant Zg has to be known

to three-loop order in terms of the beta oe�ients of QCD.

By starting from the ondition that the bare oupling g2B should not depend on the mass

sale µ, we obtain the RGE equation for the renormalized oupling and relate it afterwards to

the renormalization onstant

µ
d

dµ
g2B

!
= 0 = µ

d

dµ
Zgg

2(µ̄) , (5.1)

with Zg taking the general form (2.46):

Zg = 1 +
g(µ̄)2µ−2ǫ

(4π)2
c1,1
ǫ

+

[
g(µ̄)2µ−2ǫ

(4π)2

]2 (c2,2
ǫ2

+
c2,1
ǫ

)

+

[
g(µ̄)2µ−2ǫ

(4π)2

]3 (c3,3
ǫ3

+
c3,2
ǫ2

+
c3,1
ǫ

)

+O(g8) .

(5.2)
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As we intend to obtain the RGE equation in terms of the beta oe�ients in the limit

1 ǫ→ 0,

µ
d

dµ
g2(µ̄) =

β0
(4π)2

g4(µ̄) +
β1

(4π)4
g6(µ̄) +

β2
(4π)6

g8(µ̄) +O(g10) , (5.3)

we relate the unknown oe�ients ci,j to βi and obtain:

Zg = 1 +
g(µ̄)2µ−2ǫ

(4π)2
β0
2ǫ

+

[
g(µ̄)2µ−2ǫ

(4π)2

]2(
β1
4ǫ

+
β20
4ǫ2

)

+

[
g(µ̄)2µ−2ǫ

(4π)2

]3(
β2
6ǫ

+
7β0β1
24ǫ2

+
β30
8ǫ3

)

,

(5.4)

were

β0 =
−22CA

3
, β1 =

−68C2
A

3
, β2 =

−2857C3
A

27
, (5.5)

are the �rst three beta oe�ients for the pure gluoni QCD [5℄.

In addition, we reall that EQCD is a super-renormalizable theory with the mass-term as the

only parameter requiring renormalization (f. Eq. (3.6)). To obtain the orret ounter-term,

we need the tree-level EQCD mathing oe�ients λ and gE with respet to the renormalized

4d oupling, g(µ̄) [127℄:

δm2
E

= 2(N2
c + 1)

1

(4π)2
µ−4ǫ
3

4ǫ
(−g2EλCA + λ2)

= 2(N2
c + 1)

1

(4π)2
µ−4ǫ
3

4ǫ
(−g(µ̄)2T )

(
20

3

C2
A

N2
c + 1

g(µ̄)4µ−2ǫT

(4π)2

)

CA +O(g8)

= −10C3
A

3ǫ

T 2

(4π)4
g(µ̄)6µ−4ǫ

3 µ−2ǫ +O(g8) .

(5.6)

Due to reasons of dimensionality, the mathing introdues an extra term µ−2ǫ
as only the

ombination g2(µ)µ−2ǫ
is dimensionless. Hene m2

E

is of dimension two. By using Eq. (5.6) for

the de�nition of the renormalized mass, the divergene in Eq. (3.58) is exatly anelled and we

obtain the renormalized e�etive mass in EQCD to three-loop order:

m
E

2
,ren = T 2

[

g2(µ̄)(α
E4 + ǫα

E5) +
g4(µ̄)

(4π)2
(α

E6 + ǫβ
E2) +

g6(µ̄)

(4π)4
α
E8

]

+O(g8(µ̄)) . (5.7)

The known oe�ients α
E4, αE5, αE6 and β

E2 from [60℄ (an the referenes therein) are

reovered. The onstant terms in ǫ are

α
E4 =

CA

3
, α

E6 = −β0CAL+
5C2

A

9
, (5.8)

where

L ≡ ln
µ̄eγE

4πT
. (5.9)

Finally de�ning

L3 ≡ ln
µ23e

z1

4πT 2
; z1 =

ζ ′(−1)

ζ(−1)
, (5.10)

1

Before taking ǫ → 0, note that Eq. (5.3) ontains on the rhs. terms like [g2(µ̄)µ−2ǫ]n to math the dimen-

sionality with the lhs.
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we obtain for the last oe�ient the following expression:

α
E8 =

C3
A

27

[

484L2 + 244L − 180L3 +
1091

2
− 56ζ(3)

5

]

. (5.11)

Note that the oe�ients in front of the logarithm L are entirely determined by the beta oe�-

ients and the e�etive mass oe�ients of lower order: e.g. 484C3
A/27 = −β30 . The three-loop

result depends on two arbitrary sales µ̄ and µ3, the �rst one oming from the 4d renormalization,

whereas the seond sale enters through the 3d renormalization.

For plotting the result, the onrete running of the 4d oupling with respet to the energy

sale is needed. For that, Eq. (5.3) is solved iteratively to three-loop order [5, 128℄

g2(µ̄)

(4π)2
= − 1

β0t
− β1 ln t

β30t
2

− 1

β30t
3

(
β21
β20

(ln2 t− ln t− 1) + β2

)

, (5.12)

with t = ln[µ̄/Λ
MS

], and Λ
MS

is the QCD sale de�ned in the MS sheme [37, 128℄.

There is a freedom in hoosing the arbitrary mass sales µ and µ3. We employ the standard

proedure to hoose the �optimal� value that minimizes the one-loop e�etive oupling g
E

[58,

129℄: µ
opt

= 4πe−γE−1/22T . In order to inspet the sensitivity of the result with respet to the

arbitrary sale, we vary it in the range µ
opt

/2 and 2µ
opt

. As we have no information on an

optimal sale for µ3, we simply set it equal to µ.

1 5 10 50 100 500 1000

1.0

2.0

3.0

1.5

T�LMS

m
E
²�

T
²

Figure 5.1: The normalized mass parameter m2
E

/T 2
up to one-, two- and three loops (dotted,

dashed and ontinuous lines) as a funtion of T/Λ
MS

.

The plot in Fig. (5.1) shows the mass parameter up to the one-, two- and three-loop order

and with the �xed µ
opt

. It shows a slight inrease of the three-loop result with respet to the

lower loops. Moreover, the plot indiates the onvergene of the perturbative expansion to a

limiting value, as the orretion to the two-loop result is muh smaller then the orretion from

one to two loops. Remarkably, the onvergene shows to hold up to temperatures near the QCD

sale.
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1- loop
2 - loop
3- loop

Nc =3

1 10 100 1000
0.5

1.0

1.5

2.0

2.5

3.0

3.5

T�LMS

m
E
²�

T²

Figure 5.2: The normalized mass parameter m2
E

/T 2
up to one-, two- and three loops (ontinuous

(red), dashed (yellow) and dotted (blak) lines) as a funtion of T/Λ
MS

. The olored bands ome

due to the variation of the optimal sale µ
opt

.

In Fig. (5.2), we plot the mass parameter to inreasing loop order and with the variation of

the arbitrary sale. Indeed, the onvergene is on�rmed again as the sensitivity on the arbitrary

sale is slightly smaller than for the one- and two-loop ases.

In the end, we provide the renormalized ontribution to the QCD pressure to O(g7), oming

from the mass parameter (f. Eq. (3.15) and [88℄):

pM (T )|m3
E,ren

=
54dAT

4C
7/2
A√

3(4π)5

[

605 ln2
µ̄eγE

4πT
+ 299 ln

µ̄eγE

4πT
− 180 ln

µ23e
z1

4πT 2
+

2207

4
− 56ζ(3)

5

]

g7 .

(5.13)

5.2 E�etive oupling

For omputing the e�etive oupling, we perform the same steps as for the mass parameter; we

plug in the master sum-integrals omputed in the previous hapter into Eq. (3.60) and perform

the renormalization of the QCD oupling. The outome is:

g2
E

= T

[

g2(µ̄) +
g4(µ̄)

(4π)2
(α

E7 + ǫβ
E3) +

g6(µ̄)

(4π)4
(γ

E1 + ǫβ
E5) +

g8(µ̄)

(4π)6
α′
E9 +O(g10)

]

. (5.14)

The oe�ients α
E7, βE3 and γE1 an be found in [60℄ and ontain also the fermioni degrees

of freedom. Here, we present merely the gluoni piees:

α
E7 = −β0L+

CA

3
, γ

E1 = −β1L+

[

β0L− CA

3

]2

+
C2
A

18
(341− 20ζ(3)) . (5.15)
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And �nally:

α′
E9 = −61ζ(3)C3

A

5ǫ

+

{
10648

27
L3 +

1408

3
L2 +

(
14584

27
− 4394ζ(3)

45

)

L+
9187

36
− 1136γE

9
− 68γE

2 − 1064γE
3

9

− 10333π2

1134
− 188γEπ

2

25
+

124π4

2835
− 4216π2z1

189
+

1136 ln 2

9
− 104γE

2 ln 2

3
+

1844π2 ln 2

63

+
4216π2 lnπ

189
− 136γ1 −

1168γEγ1
3

− 208γ1 ln 2

3
− 688γ2

3
+

1503337ζ(3)

9450

+
3214γEζ(3)

45
+

28z1ζ(3)

3
− 410ζ(3) ln 2

27
+

29ζ(5)

81
− 8852ζ ′(3)

135
+ 303.8(1)

}

C3
A .

(5.16)

The most striking property is the presene of a divergent term, even after renormalization.

The terms in front of the logarithms L are entirely determined by the beta oe�ients and the

oe�ients of the lower loop-order of g
E

. The numerial term 303.8(1) has a very low auray

mostly due to the �nite terms in Eqs. (4.162) and (4.175).

In the following we disuss the divergent term in Eq. (5.16). Reall that the Lagrangian used

in this omputation (Eq. (3.5)) is super-renormalizable and thus the 3d e�etive oupling does

not exhibit any divergent ounter-terms that ould anel the leftover divergene. Obviously,

we have overlooked something.

The possibility of a tehnial error in evaluating the master sum-integrals or in performing the

IBP redution is very low, sine the master sum-integrals were ross heked independently

2

,

and the same IBP redution was used for the mass parameter. Moreover, the expliit gauge

independent result onsolidates our arguments.

Therefore, we inspet the idea that higher order operators in the e�etive Lagrangian may

ontribute with a divergent fator to the e�etive oupling g
E

at the order g8.

5.3 Higher order operators

The hint that we may not have onsidered operators of high enough dimension omes preisely

from the ζ(3)-term multiplying the divergent piee in Eq. (5.16), as the same term is found for

all the tree-level mathing oe�ients of the dimension six operators in [54℄:

∆L
EQCD

= −g
2ζ(3)Nc

32π4T 2
Tr

{
ig

90
FµνFνρFρµ − 19

90
(DµFµν)

2 − 19ig

15
F0µFµνFν0

+
1

30
(DµFµ0)

2 − 6ig

5
A0(DµFµν)F0ν +

11

6
g2A2

0F
2
µν

}

.

(5.17)

Here, we employ the fundamental representation and ∂0 = 0. By adding Eq. (5.17) to

the original Lagrangian, the theory beomes non-renormalizable. Therefore, we expet to �nd

renormalization onstants for the �elds and for the e�etive oupling starting with O(g8). To

�nd diagrams, whih are potentially divergent at O(g8) and have the orret struture in order

2

The most ompliated sum-integralM000
311111−2 was expressed in terms of a di�erent set of higher dimensional

sum-integrals as in Ref. [120℄ and the results agree.
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to be regarded as renormalization ounter-terms, the new verties have to be extrated from the

Lagrangian.

As a simple exerise, we read o� the possible verties that emerge from the operators, without

expliitly performing the Lorentz-index symmetrization or the olor algebra. We are merely

interested in the power of the 4d oupling g and in the power of the momentum that multiplies

the verties. Fig. (5.3) shows all possible verties. The general struture of a nL-partile vertex
is found to be vL ∝ gnLk6−nL

.

Figure 5.3: The verties emerging from the dimension six operators (5.17). The urly lines are

the gauge �elds Aa
i and the full lines are the adjoint salar �elds Aa

0.

≡ g8G(d,p2)

Figure 5.4: A generi 2-loop integral with a dimension 6 vertex that may ontribute to the

e�etive oupling renormalization at O(g8).

A diret onsequene of d = 3− 2ǫ is the fat that divergent integrals arise only in integrals

with an even number of loops . Hene, we look for a simple and divergent integral to ontribute to

the e�etive oupling ounter-term. As it turns out, one of the simplest divergent sum-integrals

in whih one of the inner lines is the �rst dimension-six vertex from Fig. (5.3) is G(d,p2) (f.
Fig. (5.4)). A quik inspetion shows that it behaves due to dimensional reasons like:

G(3 − 2ǫ,p2) =∝ 1

ǫ
+ ln

p2

µ2
+ �nite . (5.18)

This kind of divergene would preisely aount for the oupling renormalization onstant to

O(g8).

However, there are other possible new diagrams that appear already at O(g6), suh as shown

in Fig. (5.5). They are of dimension two and naturally would be proportional to m2
. These

potentially aount for the mass renormalization already at O(g6), an order that is entirely de-

termined by the super-renormalizable Lagrangian. In fat, having a loser look on the integral

M(d,m2), it beomes lear that the dimension-six vertex in the diagram has the role of ontrat-

ing the propagator to a point. Thus, we obtain in fat no ontribution to any renormalization
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onstant, beause the two-loop integral fatorizes into a produt of two one-loop integrals:

M(3− 2ǫ,m2) ∝ = �nite . (5.19)

≡ g6M(d,m2)

Figure 5.5: A generi two-loop integral with a dimension-six vertex, that may ontribute already

at O(g6) to the mass renormalization. As the mass ounter-term is already determined preisely

within the super-renormalizable theory, all ontributions of this form should anel.

In onlusion, we expet that, by adding the dimension-six operators to the Lagrangian in

Eq. (3.5), as the theory beomes non-renormalizable, ounter-terms emerge preisely to O(g8)
to anel the divergene in Eq. (5.16).

Therefore, the remaining task is to determine all the renormalization onstants of the �elds

Aa
i and Aa

0, and of the e�etive oupling gE by a standard proedure of omputing two- and

four-point funtions to two-loop order in d = 3−2ǫ dimensions. As the bakground �eld method

an be applied in this situation as well, the proedure redues merely to a two-point funtion

omputation.

In addition, no further diagrams need to be evaluated in EQCD sine the mathing proedure

of setion 3.5 employed a Taylor expansion in the external momentum, making all loop integrals

on the EQCD side to vanish identially. Thus, in this omputation the only ontribution from

the new operators is through the renormalization onstants.

5.4 Outlook

In the present thesis, the mass parameter m
E

and the e�etive oupling g
E

of EQCD have

been omputed to three-loop order as mathing oe�ients to full QCD. The usual tehnique of

omputing three- or four-point funtions was simpli�ed to omputing only two-point funtions

by applying the bakground �eld method. The task was simpli�ed further by omputing the

vertex funtions in the limit of vanishing external momenta that led to identially vanishing

integrals on the EQCD side.

The demanding task was handled with omputer algebrai software. To three-loop order

≈ 500 Feynman diagrams were generated and redued via IBP relations to a set of a few tens

of master sum-integrals. As their pre-fators diverge in d = 3 − 2ǫ dimensions, a lever basis

transformation was performed that ould eliminate the divergent pre-fators at the prie of

introduing sum-integrals of a higher omplexity.

Finally, the master sum-integrals have been solved by partly generalizing the known teh-

niques [28℄ and by borrowing a method from zero-temperature �eld theory of tensor integral

manipulation [29℄.

The mass parameter ontributes to the omputed order to the QCD pressure starting with

order g7. We did not manage to �nalize the omputation on the e�etive oupling as it turns
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out that ontributions from higher order operators enter our result through the renormalization

of the �elds and of the oupling, starting with O(g8). After determining these renormalization

onstants, the result on the e�etive oupling an be used in determining the spatial string

tension of QCD, as already done in [60℄.

The remaining task is to ompute the renormalization onstants to O(g8), whih involves

a two-loop omputation of two-point funtions within the framework of the modi�ed, non-

renormalizable Lagrangian of EQCD. This omputation is not expeted to be mathematially

demanding but rather demanding on the organizational side, as we have 14 new types of inter-

ations.

One the e�etive oupling is ompleted to three-loop order, a omputation of the magneti

oupling g
M

would be desirable for a more aurate determination of the spaial string tension

(f. setion 3.3).

An extension of the present results to the fermioni setor is indiated due to the reasons

of ompleteness. However, we do not expet a quantitative hange in Fig. (5.1). For that, a

similar basis transformation needs to be performed for the master sum-integrals with a fermioni

signature. There are reason to believe that a suitable basis does exist with both, �nite pre-fators

and simple enough master sum-integrals as to be manageable with the present tehniques.

On a wider perspetive, the present omputation has shown that state of the art tehniques

for solving sum-integrals are pushed to their limit. There is ertainly a need for new methods

that permit the omputation of sum-integrals in priniple to arbitrarily high order in ǫ and for a

wider lass of topologies. A future omputation of the omplete QCD pressure to O(g6) involves
four-loop sum-integrals of whih only few topologies an be handled with the methods presented

here. Any diagram that ontains a meredes-type subdiagram is in priniple unsolvable yet.

Also, at O(g6) three-loop sum-integrals have to be known up to O(ǫ) due to renormalization.

At last, one ould mention the extension from a senario of massless fermions to the massive

ase and ideally to the ase with �nite hemial potential. All these additions would hange the

analytial struture of the sum-integrals. These tehnialities have to be overome eventually

if we want to push reliable analytial results loser towards the non-perturbative region in the

QCD phase diagram.
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Appendix A

Integrals

In this appendix, we gather all piees for the remaining sum-integrals that are the building

bloks of M3,−2 and of ΠT and that were not expliitly omputed in the main text.

A.1 Finite parts

For a large number of these integrals, the last summation over Matsubara-modes was not per-

formed analytially as this usually generated integrands ontaining hundreds of terms. Instead,

we have evaluated the integral numerially for every mode individually and have trunated

the sum suh that the remainder would not exeed a �xed relative ontribution usually taken

O(10−9). The relative ontribution of the remainder was determined by interpolating the the

sum with a power-law f(n) = an−b
and by performing the summation from the trunated term

to ∞ analytially. As some of the piees showed a very low onvergene, we trunated the sums

to a relative error of O(10−5).

A.1.1 First �nite piee

These terms are of the form:

∑
∫

P

′ Π0−B
s2s4s6Π

0−B
s3s5s7

[P 2]s1
, (A.1)

and their generi result is Eq. (4.122):

V f,1(3; 31111; 22) =
T 2

(4π)4
V3,1 =

T 2

(4π)4
× (0.0046390318(1)) , (A.2)

V f,1(5; 31122; 11) =
T 2

(4π)7
V4,1 =

T 2

(4π)7
× (0.00199480835(1)) , (A.3)

V f,1(7; 32222; 00) =
T 2

(4π)10
V5,1 =

T 2

(4π)10
× (5.495(1) × 10−7) , (A.4)

V f,1(7; 52211; 00) =
T 2

(4π)10
V6,1 =

T 2

(4π)10
× (3.5741(1) × 10−7) , (A.5)

V f,1(7; 42221; 00) =
T 2

(4π)10
V7,1 =

T 2

(4π)10
× (4.2900(1) × 10−7) , (A.6)
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V f,1(7; 43211; 00) =
T 2

(4π)10
V8,1 =

T 2

(4π)10
× (8.8987(1) × 10−7) , (A.7)

V f,1(7; 33221; 00) =
T 2

(4π)10
V9,1 =

T 2

(4π)10
× (8.277(1) × 10−7) , (A.8)

V f,1(7; 33212; 00) =
T 2

(4π)10
V10,1 =

T 2

(4π)10
× (0.0000119229(1)) , (A.9)

V f,1(7; 33311; 00) =
T 2

(4π)10
V11,1 =

T 2

(4π)10
× (0.0003192203(1)) , (A.10)

V f,1(3; 21111; 00) =
1

(4π)6
V13,1 =

1

(4π)6
× (0.09378301925(1)) , (A.11)

V f,1(3; 31111; 20) =
1

(4π)6
V15,1 =

1

(4π)6
× (0.02978074457(1)) , (A.12)

V f,1(3; 41111; 22) =
1

(4π)6
V16,1 =

1

(4π)6
× (0.01099409787(1)) . (A.13)

A.1.2 Seond �nite piee

The generi result of these integrals is Eq. (4.123):

V f,2(3; 31111; 22) =
T 2

(4π)4
V3,2 =

T 2

(4π)4
× (−0.000721758(1)) , (A.14)

V f,2(5; 31122; 11) =
T 2

(4π)7
V4,2 =

T 2

(4π)7
× (−0.000106808(1)) , (A.15)

V f,2(7; 32222; 00) =
T 2

(4π)10
V5,2 =

T 2

(4π)10
× (−0.00028062(1)) , (A.16)

V f,2(7; 52211; 00) =
T 2

(4π)10
V6,2 =

T 2

(4π)10
× (7.8965(1) × 10−5) , (A.17)

V f,2a+2b(7; 42221; 00) =
T 2

(4π)10
(V7,2a + V7,2b)

=
T 2

(4π)10
× [(−7.8964(1) × 10−5) + (7.0158(1) × 10−5)] , (A.18)

V f,2a+2b(7; 43211; 00) =
T 2

(4π)10
(V8,2a + V8,2b)

=
T 2

(4π)10
× [(−7.8964(1) × 10−5) + (−3.5715(1) × 10−5)] , (A.19)

V f,2a+2b(7; 33221; 00) =
T 2

(4π)10
(V9,2a + V9,2b)

=
T 2

(4π)10
× [0 + (−7.606(1) × 10−5)] , (A.20)

V f,2a+2b(7; 33212; 00) =
T 2

(4π)10
(V10,2a + V19,2b)
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=
T 2

(4π)10
× [(−1.4031(1) × 10−4) + (7.1430(1) × 10−5)] , (A.21)

V f,2(7; 33311; 00) =
T 2

(4π)10
V11,2 =

T 2

(4π)10
× (1.4286(1) × 10−4) , (A.22)

V f,2(3; 21111; 00) =
1

(4π)6
V13,2 =

1

(4π)6
× (−0.9507801527(1)) , (A.23)

V f,2a+2b(3; 31111; 20) =
1

(4π)6
(V15,2a + V15,2b)

=
1

(4π)6
× [(−0.0169179735(1)) + (−0.08467859163(1))] , (A.24)

V f,2(3; 41111; 22) =
1

(4π)6
V16,2 =

1

(4π)6
× (−0.015384387080(1)) . (A.25)

A.1.3 Finite parts for the zero-modes

Here, we list the onrete results for Eqs. (4.131, 4.132):

Z f(3; 12211; 22) =
T 2

(4π)4
Z3 =

T 2

(4π)4
× (0.190165350(1)) , (A.26)

Z f(3; 12121; 22) =
T 2

(4π)4
Z4 =

T 2

(4π)4
× (−0.012563934311(1)) , (A.27)

Z f(7; 23222; 00) =
T 2

(4π)10
Z5 =

T 2

(4π)10
× (0.000275985995(1)) , (A.28)

Z f(7; 23231; 00) =
T 2

(4π)10
Z6 =

T 2

(4π)10
× (0.0000305224843(1)) , (A.29)

Z f(7; 23321; 00) =
T 2

(4π)10
Z7 =

T 2

(4π)10
× (0.00208559268(1)) , (A.30)

Z f(3; 12121; 02) =
1

(4π)6
Z9 =

1

(4π)6
× (−0.0417499660(1)) , (A.31)

Z f(3; 12121; 20) =
1

(4π)6
Z10 =

1

(4π)6
× (−2.0660279047(1)) , (A.32)

Z f(3; 12211; 02) =
1

(4π)6
Z11 =

1

(4π)6
× (−0.5170838408(1)) , (A.33)

Z f(3; 12221; 22) =
1

(4π)6
Z12 =

1

(4π)6
× (−0.2399902511(1)) , (A.34)

Z f(3; 13111; 02) =
1

(4π)6
Z13 =

1

(4π)6
× (−0.04487446214(1)) , (A.35)

Z f(3; 02221; 02) =
1

(4π)6
Z14 =

1

(4π)6
× (−0.07420667719(1)) , (A.36)

Z f(3; 03121; 02) =
1

(4π)6
Z15 =

1

(4π)6
× (−0.01111795886(1)) . (A.37)
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A.2 Zero-modes results

Finally, we gather all remaining sum-integrals. Besides the zero-mode sum-integrals enountered

in Eqs. (4.93, 4.94, 4.170), also the following ones are required. They are built up from the

�nite piees listed above and from divergent piees from Eqs. (4.140, 4.141) and by using the

generi splitting of Eq. (4.58):

Z(3; 12211; 22) =
−1

8

T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+ 4− 3γE + 3 lnπ − 8Z3 +O(ǫ)

]

, (A.38)

Z(3; 12121; 22) =
1

48

T 2

(4π)4

(
µ2

T 2

)3ǫ [
1

ǫ
+

2

3
− 3γE + 3 ln π + 48Z4 +O(ǫ)

]

, (A.39)

Z(3; 12121; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [

−π
2

36

1

ǫ
+ π2

(

− 1

54
− γE

12
+ 2 lnG− lnπ

12

)

− 3ζ(3)

20
+Z9 +O(ǫ)

]

,
(A.40)

Z(3; 12121; 20) =
1

(4π)6

(
µ2

T 2

)3ǫ [(
π2

12
− ζ(3)

4

)
1

ǫ
+
π2

4
(3 + γE − 24 lnG+ lnπ)

+ ζ(3)

(−5

3
+

3γE
4

+
3 ln 4π

4

)

− 3ζ
′
(3)

2
+ Z10 +O(ǫ)

]

,

(A.41)

Z(3; 12211; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

12

1

ǫ
+ π2

(
1

3
+
γE
4

− 4 lnG+
ln(π/4)

12

)

− 7ζ(3)

4
+ Z11 +O(ǫ)

]

,
(A.42)

Z(3; 12221; 22) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

48

1

ǫ
+
π2

16
(3 + γE − 24 lnG+ lnπ) +Z12 +O(ǫ)

]

,
(A.43)

Z(3; 13111; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

72

1

ǫ
+ π2

(
13

108
+
γE
24

− lnG+
ln(π)

24

)

− ζ(3)

40
+ Z13 +O(ǫ)

]

,
(A.44)

Z(3; 02221; 02) =

=
1

(4π)6

(
µ2

T 2

)3ǫ [
π2

12

1

ǫ
+ π2

(
γE
4

− 6 lnG+
ln(π)

4

)

+
3ζ(3)

4
+ Z14 +O(ǫ)

]

,
(A.45)

Z(3; 03121; 02) =
1

(4π)6

(
µ2

T 2

)3ǫ [

0× 1

ǫ
+
π2

6
− ζ(3)

4
+ Z15 +O(ǫ)

]

, (A.46)
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Z(7; 23222; 00) =
−1

720

T 2

(4π)10

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
16

15
− γE + ln

π

4

)

+O(ǫ0)

]

, (A.47)

Z(7; 23231; 00) =
1

960

T 2

(4π)10

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
2

5
− γE + ln

π

4

)

+O(ǫ0)

]

, (A.48)

Z(7; 23222; 00) =
−1

720

T 2

(4π)10

(
µ2

T 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
16

15
− γE + ln

π

4

)

+O(ǫ0)

]

. (A.49)

A.3 Remaining sum-integral results

The remaining sum-integrals entering the de�nition of M3,−2 (.f. Eq. (4.30)) and also the

sum-integrals with mass dimension zero entering ΠT are listed below. The results for the 7-

dimensional sum-integrals are shown only up to the onstant term, beause they will not enter

the �nal result in the mass parameter.

V (3; 31111; 22) =
1

288

T 2

(4π)4

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
1

12
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.50)

V (5; 31122; 11) =
−1

162

T 2

(4π)7

(
µ2

4πT 2

)3ǫ [

0× 1

ǫ2
+

1

ǫ
+O(ǫ0)

]

, (A.51)

V (7; 32222; 00) =
−7

4320

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
17

105
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.52)

V (7; 52211; 00) =
−19

17280

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

− 61

285
+ γE + 24 lnG

)

+O(ǫ0)

]

,

(A.53)

V (7; 42221; 00) =
19

2160

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
1747

2280
− 25γE

38
+

78 lnG

19
+

63 ln 2π

19

)

+O(ǫ0)

]

,

(A.54)

V (7; 43211; 00) =
1

640

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

−281

810
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.55)

V (7; 33221; 00) =
7

17280

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

−13

30
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.56)
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V (7; 33212; 00) =
−1

576

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
1

18
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.57)

V (7; 33311; 00) =
−1

540

T 2

(4π)10

(
µ2

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(

− 7

20
+ γE + 24 lnG

)

+O(ǫ0)

]

, (A.58)

V (3; 12111; 00) =

=
1

6(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ3
+

3

ǫ2
+

1

ǫ

(

13 − 6γE
2 +

3π2

4
− 12γ1 − 3ζ(3)

)

+

(

51− 42γE
2 + 4π2

(
19

16
+ ln 2π − 12 lnG

)

+ 2 ln 2
(
12− 12γE

2 − 24γ1 − ζ(3)
)

+ γE (−24− 24γ1 + 18ζ(3)) − 84γ1 − 36γ2 +
25ζ(3)

2
− 16ζ

′
(3) + 6(V12 + Z8)

)]

+O(ǫ)

=
1

6(4π)6

[
µ2

T 2

)3ǫ (
1

ǫ3
− 2.86143

ǫ2
+

15.2646

ǫ
− 45.2(1) +O(ǫ)

]

,

(A.59)

with

V12,1 + V12,3 + Z8 = −7.68(1) . (A.60)

The largest unertainty omes from V12,3.

V (3; 21111; 000) =

=
1

3(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ3
+

2

ǫ2
+

1

ǫ

(

8− 6γE
2 +

3π2

4
− 12γ1 + ζ(3)

)

+

(

16 + 24γE
2 ln 2 +

π2

6
(7 + 96 ln G− 8 ln 2π) + 24γ1(γE + 2 ln 2) + 36γ2

−
(
43

3
+ 6γE

)

ζ(3) + 6ζ
′
(3) + (3V13 − 2Z8)

)

+O(ǫ)

]

=
1

3(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ3
− 3.86

ǫ2
+

20.93

ǫ
− 60.38 +O(ǫ)

]

,

(A.61)

with

V13,1 + V13,2 −
2

3
Z8 ≈ 2.5870483449(1) . (A.62)
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V (3; 22111; 002) =

= − 5

48(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ
+

(
209

30
+ π2

(
5

9
+

4γE
5

− 4 ln 2

5

)

+ ζ(3)

(
4 ln 2

15
− 2087

225

)

− 28γE
5

− 24γE
2

5
− π4

225
+

28 ln 2

5
− 48γ1

5
− 4ζ

′
(3)

15

− 48

5
V14 +

24

5
Z9

)

+O(ǫ)

]

= − 5

48(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ
− 5.04 +O(ǫ)

]

(A.63)

with

V14,1 + V14,2 + V14,3 −
1

2
(Z9 + Z11) = 0.17(1) , (A.64)

with the largest error oming from V14,3.

V (3; 31111; 020) =

=
1

8(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ2
+

1

ǫ

(
13

3
+

2ζ(3)

15

)

+

(
140

9
− 20γE

3
+

20 ln 2

3

− π4

900
+ π2

(
35

36
+

5γE
9

− 7 ln 2

15
− 16 lnG

15
+

4 ln π

45

)

+ ζ(3)

(

−107

50
− 4γE

5
+

2 ln 2

3
+ 8 lnG

)

− 10γE
2 − 20γ1 −

8ζ
′
(3)

15

+8V15 +
4

5
(Z9 + Z10)

)

+O(ǫ)

]

=
1

8(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ2
− 1.36

ǫ
+ 10.80 +O(ǫ)

]

,

(A.65)

with

V15,1 + V15,2 + V15,3 +
1

10
(Z9 + Z10) = −0.2825936076(1) . (A.66)
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V (3; 41111; 022) =

=
1

432(4π)6

(
µ2eγE

4πT 2

)3ǫ [
1

ǫ3
+

5

ǫ2
+

1

ǫ

(
341

18
− 6γE

2 +
3π2

4
− 12γ1 + 5ζ(3)

)

+

(
985

18
+ 6γE + π2

(
107

84
− γE − 43 ln 2

35
+

936 lnG

35
− 78 ln π

35

)

+ ζ(3)

(
1243

70
− 30γE + 10 ln 2 + 120 lnG

)

+ γ1 (−52 + 24γE + 48 ln 2)

+ 2γE
2(12 ln 2− 13) +

23π4

1050
− 8 ln 2 + 36γ21 + 10ζ

′
(3) + 432V16

+
54

35
(−6Z9 − 44Z12 − 4Z13 + Z14 + 4Z15)

)

+O(ǫ4)

]

=
1

432(4π)6

(
µ2

T 2

)3ǫ [
1

ǫ3
− 0.86

ǫ2
+

19.10

ǫ
+ 18.89 +O(ǫ)

]

,

(A.67)

with

V16,1 + V16,2 +
1

280
(4Z15 + Z14 − 4Z13 − 44Z12 − 6Z9) = 0.0344343(1) . (A.68)
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Appendix B

Analyti funtions

Here we ollet some analyti funtions that are the main building bloks of the divergent

piees of the master integrals. They are obtained by either expressing the integral in spherial

oordinates or by using the Feynman parameterization of the form:

1

Aa1
1

. . .
1

Aan
n

=
Γ(a1 + · · ·+ an)

Γ(a1) . . .Γ(an)

∫ ∞

0
dx1 . . .

∫ ∞

0
dxn

δ(1 − x1 − · · · − xn)x
a1−1
1 . . . xan−1

n

[x1A1 + . . . xnAn]a1+...an
.

(B.1)

The massless one-loop generalized propagator at zero temperature is:

µ−2ǫg(s1, s2, d) = µ−2ǫ(p2)s12−
d
2

∫

q

1

(q2)s1 [(p+ q)2]s2
=

Γ(d2 − s1)Γ(
d
2 − s2)Γ(s12 − d

2)

(4π)
d
2Γ(s1)Γ(s2)Γ(d− s12)

. (B.2)

The generalized one-loop tadpole is:

µ−2ǫIab ≡ µ−2ǫ∑
∫

P

(p20)
a

[P 2]b
=

2T (2πT )d+2a−2bΓ(b− d
2)

(4π)
d
2Γ(b)

ζ(−d− 2a+ 2b) , (B.3)

and a variation thereof is:

Îab (α) = Ia
b+2− d+1

2

− Iab

(αT 2)2−
d+1
2

. (B.4)

A speial two-loop tadpole is:

µ−4ǫJd(s1s2s3; s4) = µ−4ǫ∑
∫

PQ
δp0

(p20)
s4

[P 2]s1 [Q2]s2 [(P +Q)2]s3

=
2T 2(2πT )2d−2s123+2s4

(4π)d
Γ(d2 − s1)Γ(s12 − d

2)Γ(s13 − d
2 )Γ(s123 − d)

Γ(d2 )Γ(s2)Γ(s3)Γ(s1123 − d)
ζ(2s123 − 2s4 − 2d) .

(B.5)

The generalized two-loop sum-integral

Ld(s1s2s3; s4s5) =
∑
∫

PQ

ps40 q
s5
0

[P 2]s1 [Q2]s2 [(P +Q)2]s3
(B.6)

an always be redued via IBP relations to a produt of one-loop tadpole integrals multiplied

by a ratio over polynomials in d. The expliit redution of all two-loop sum-integrals that are

needed in the alulations, are:
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Ld(111; 00) = 0 , (B.7)

Ld(211; 20) = 0 , (B.8)

Ld(211; 00) = − 1

(d− 2)(d − 5)
[I02 ]

2 , (B.9)

Ld(311; 22) =
−d3 + 12d2 − 51d+ 76

4(d− 5)(d − 7)
I01 × I02 , (B.10)

Ld(211; 02) =
d− 3

d− 5
I01 × I02 , (B.11)

Ld(221; 20) = − (d− 1)(d − 4)

2(d− 2)(d− 5)(d − 7)
[I02 ]

2 , (B.12)

Ld(311; 20) =
(d− 4)2

(d− 2)(d − 5)(d − 7)
[I02 ]

2 , (B.13)

Ld(311; 02) =
(d− 3)(d − 4)

2(d− 2)(d − 5)(d − 7)
[I02 ]

2 +
d− 4

d− 7
I01 × I03 , (B.14)

Ld(411; 22) = − (d− 4)2(d− 5)

8(d− 2)(d− 7)(d − 9)
[I02 ]

2 − (d− 5)(d − 6)

6(d− 9)
I01 × I03 , (B.15)

Ld(421; 00) =
−6(d(d − 13) + 28)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 , (B.16)

Ld(322; 00) =
12(d − 8)(d − 5)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 , (B.17)

Ld(312; 11) = − (d− 3)(d − 5)(d − 6)

2(d− 2)(d− 7)(d − 9)
I02 × I03 , (B.18)

Ld(331; 00) =
−12(d − 8)(d− 5)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 , (B.19)

Ld(232; 00) =
12(d − 8)(d − 5)

(d− 2)(d − 4)(d − 9)(d− 11)
I03 × I04 . (B.20)
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Appendix C

Con�guration spae de�nitions

Here we give the remaining building bloks for the �nite piees of the sum-integrals. For writing

the propagators in on�guration spae, a entral ingredient is the modi�ed Bessel funtion of

the seond kind with half-integer order:

Kν(z) =

√
π

2

e−z

√
z
κν(z) , (C.1)

with

κν(z) =

||ν|− 1
2 |∑

j=0

(
j + |ν| − 1

2

)
!

j!
(
−j + |ν| − 1

2

)
!
(2z)−j

, ν − 1

2
∈ Z . (C.2)

The Bessel funtion enters the Fourier transformation of the propagator:

∫

p

e−ipr

[P 2]a
=

21−a

(2π)d/2Γ(a)

(
p20
r2

) d−2a
4

K d
2
−a(
√

p20r
2) . (C.3)

The integrals in on�guration spae are expressed in terms of spherial oordinates. The

d-dimensional integration measure is:

∫

dΩd ≡
∫ π

0
· · ·
∫ 2π

0
sind−2 φ1dφ1 sin

d−3 φ2dφ2· · · sin φd−2dφd−2dφd−1

= 2

d−2∏

i=0

√
πΓ(1/2 + i/2)

Γ(1 + i/2)
=

2π
d
2

Γ(d/2)
.

(C.4)

If the integrand ontains a salar produt of the form p · r, it is always possible to hoose the

orientation of the oordinate system in suh a way that p · r = pr cosφ1. Therefore, we have:

∫

dΩde
ipr =

2π
d
2

Γ(d/2)
0F1

(
d

2
,−(pr)2

4

)

, (C.5)

with 0F1 being the on�uent Hypergeometri funtion. Conretely:

∫

dΩ{3,5,7}e
ipr = 4π

{
sin pr

pr
, 2π

sin pr − pr cos pr

(pr)3
, (2π)2

3 sin pr − 3pr cos pr − (pr)2 sin pr

(pr)5

}

.

(C.6)
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These de�nitions are used to ompute the generi integral:

∫

ddp
1

[p2]n

∫

dΩrdΩse
ip(r+s) =

2π
d
2

Γ(d2)

21−4n(4π)dΓ(d2 − n)

Γ(n)Γ(d2)
× an,d(r, s) , (C.7)

with

an,d =
2F1(1− n, d2 − n, d2 ,

(r+s−|r+s|)2
(r+s+|r−s|)2 )

(r + s+ |r − s|)d−2n
. (C.8)

The integration was performed by going to spherial oordinates in the p-variable and by hoosing
the orientation of the oordinates system suh that: p(r + s) = pr cosφr,1 + ps cosφs,1. In this

way the other two angular integration beome trivial. 2F1 is the Gauss Hypergeometri funtion.

This integral is used for the zero-mode �nite piee alulation (Eqs. 4.131, 4.132).

The next generi angular integration needed in the omputation of the �rst �nite piee, Eq.

(4.122), is of the form:

ha,b(x, y, n) =

∫ π

0
e−n|x+y||x+ y|a sin2b+1 θdθ

=
1

nxy

b∑

i=0

(
b

i

) 2i∑

j=0

(−1)i+j

(
2i

j

)

Γ(4i − 2j + a+ 2)
(x2 + y2)j

(2xy)2i

×
4i−2j+a+1
∑

k=0

e−n|x−y||x− y|4i−2j+a−k+1 − e−n|x+y||x+ y|4i−2j+a−k+1

nkΓ(4i− 2j + a− k + 2)
.

(C.9)

where n > 0, a ≥ −1, b ≥ 0 and x and y are vetors with xy = xy cos θ.
In order to ompute the seond �nite piee, Eq. (4.123), we need an integral of the form:

∫ ∞

0
dp

pd−1

[P 2]a
lnP 2

∫

dΩde
ipr

= −∂a
pd−1

[P 2]a
× 2π

d
2

Γ(d2)
0F1(

d

2
,−(pr)2

4
)

= −2π
d
2 ∂a

[

Γ−1(a)

(
2|p0|
r

) d
2
−a

Ka− d
2
(|p0|r)

]

.

(C.10)

After performing the derivative with respet to a, we de�ne the integral as:
∫ ∞

0
dp

pd−1

[P 2]a
lnP 2

∫

dΩde
ipr = 2−a(2π)

d+1
2 Γ−1(a)la,d(r, |p0|) , (C.11)

with

la,d(x, n) =

√
π

2

(n

x

) d
2
−a
[(

ψ(a) + ln
2n

x

)

Ka− d
2
(nx)− ∂aKa− d

2
(nx)

]

. (C.12)

Eq. (10.2.34) of Ref. [130℄ gives a relation between the derivative of Kn(x) at n = ±1/2 and

the funtion Ei(x). From this relation we derive all other derivatives of higher |n|. So, starting
from Eq. (10.2.34) of Ref.[130℄:

∂

∂ν
Kν(x)

∣
∣
∣
∣
ν=± 1

2

= ∓
√

π

2x
Ei(−2x)ex , (C.13)
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and using the reursion formula:

fn−1(z)− fn+1(z) = (2n+ 1)z−1fn(z), fn(z) = (−1)n+1
√

π/(2z)Kn+ 1
2
(z) , (C.14)

we obtain:

∂

∂ν
Kν(x)

∣
∣
∣
∣
ν=± 3

2

= ±
√

π

2x

[

Ei(−2x)ex
(

1− 1

x

)

+
2

x
e−x

]

, (C.15)

∂

∂ν
Kν(x)

∣
∣
∣
∣
ν=± 5

2

= ±
√

π

2x

[

Ei(−2x)ex
(

−1 +
3

x
− 3

x2

)

+
2

x

(

1 +
4

x

)

e−x

]

. (C.16)

The following generi formula is used in alulating the �rst �nite piee of V (3; 12111; 00)
and V (3; 22111; 02). It shows how to perform the integration in on�guration spae before

performing the sum of one of the Π's. There are two ases:

s−a,b,c(y, α) =
∑

m,n

′ e−|n|y

|n|a|m|b
∫ ∞

0
dxe−(|m|+|m+n|)xe−|n||x−y|αc|x− y|c.

(C.17)

α is simply a ontrol parameter. The prime in the sum denotes omission of the zero-mode. After

splitting the integration interval into [0, y] and [y,∞) and arefully splitting the summation

intervals, so that for any interval the integration is �nite, we obtain:

s−a,b,c(y, α) =
∞∑

n=1

∞∑

m=1

{

2αc
c∑

k=0

(
c

k

)

yc−k(−1)k
e−2ny

n2

(
1

mb
+

1

(m+ n)b

)

×
(

Γ(k + 1)

(2m)k+1
− e−2my

2m

k∑

i=0

yk−i

(2m)i
Γ(k + 1)

Γ(k − i+ 1)

)

+ 2αcδm,1
yc+1

1 + c

e−2ny

na

+ 2αc
c∑

k=0

(
c

k

)

(−y)k
c−k∑

i=0

yc−k−i Γ(c− k + 1)

Γ(c− k − i+ 1)

×
[

δm,1
e−2ny

na
Hb,n

(2n)i+1
+
e−(2m+2n)y

na

(
1

mb
+

1

(m+ n)b

)
1

(2m+ 2n)i+1

]}

.

(C.18)

The seond ase is:

s+a,b,c(x, α) =
∑

m,n

′ e−|n|y

|n|a|m|b
∫ ∞

0
dxe−(|m|+|m+n|)xe−|n|(x+y)αc(x+ y)c

=

∞∑

n=1

∞∑

m=1

{

2αc
c∑

k=0

(
c

k

)

yc−kΓ(k + 1)
e−2ny

na

[

δm,1
Hb,n

(2n)k+1

+

(
1

mb
+

1

(m+ n)b

)
1

(2m+ 2n)k+1

]}

.

(C.19)

Here, Hb,n =
∑n

i=1 n
−b

is the Harmoni number of order b, and the fator δm,1 states that the

summation over m should be omitted.
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Appendix D

IBP redution for zero-modes

In this appendix we present the strategy for mapping the zero-mode sum-integrals to others

that an be omputed by using the separation of Eq. (4.58). For that, the derivative of the

propagator is needed:

p∂p
δp0

[P 2]n
= −2n

δp0
[P 2]n

,

q∂p
δp0

[P 2]n
= −nδp0

(P +Q)2 − P 2 −Q2

[P 2]n+1
,

p∂p
δp0

[(P +Q)2]n
= p∂q

δp0
[(P +Q)2]n

= −nδp0
(P +Q)2 + P 2 −Q2

[(P +Q)2]n+1
,

q∂q
δp0

[(P +Q)2]n
= q∂p

δp0
[(P +Q)2]n

= −nδp0
(P +Q)2 − P 2 +Q2 − 2q20

[(P +Q)2]n+1
.

(D.1)

Before turning the attention to the zero-mode sum-integrals, we shortly present the IBP

redution of ΠE
210, needed in the omputation of V (3; 12111; 00). Aording to Eq. (D.1), we

an write down two relations for ΠE
ab0 as:

∂qq ◦∑
∫

Q
δq0

1

[Q2]a[(P +Q)2]b
= 0 ⇒

[
(d− 2a− b)− b1−2+ + bP 22+

]
ΠE

ab0 = 0 , (D.2)

and

∂qp ◦ ΠE
ab0 = 0 ⇒

[
(a− b)− a1+2− + b1−2+ + aP 21+ − bP 22+ + 2bp202

+
]
ΠE

ab0 = 0 , (D.3)

with I±Z(d; ...si..., s6s7) = Z(d; ...si ± 1..., s6s7). Applying it on the onrete ase of ΠE
110, we

obtain:

ΠE
120 =

1

P 2

[
ΠE

020 − (d− 3)ΠE
110

]
; ΠE

210 =
1

P 2

[
(P 2 − 2p20)Π

E
120 −ΠE

020

]
, (D.4)

leading to:

ΠE
210 = (d− 3)

2p20 − P 2

P 4
ΠE

110 −
2p20
P 4

ΠE
020 . (D.5)
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The �rst term vanishes in the limit of d = 3 and the seond term is simply:

ΠE
020 = T

∫

q

1

q2 + p20
=

T

8π|p0|
. (D.6)

Now we turn our attention to the general IBP relation for a zero-mode sum-integral:

∂pp◦Z(d; s1s2s3s4s5; s6s7) = 0
[
(d− 2s1 − s4 − s5) + s44

+
(
2− − 1−

)
+ s55

+
(
3− − 1−

)]
Z(d; s1s2s3s4s5; s6s7) = 0 ,

(D.7)

In addition to this equation, also a boundary ondition is needed for the �rst parameter s1
of Z. When looking at Eq. (C.8) the obvious ondition for that, in order to have a onverging

momentum integral, is d−1 ≥ 2s1. This means for instane, that zero-modes of the form Z(7; 3...)
should be manageable. It turns out however that for some ombination of the other parameters,

in other words due to the partiular form of f0−A
7,abc, the integral annot be rendered onvergent

through subtration of simple terms. This implies that only for Z(7; 2...) all ombinations of

parameters lead to IR �manageable� results.

In the following the ase of Z(3; 21111; 20) is skipped, sine it is treated in the main text.

For the ase of Z(5; 31122; 11), we have the relation:

Z(5; 31122; 11) = 0 , (D.8)

due to the fat that the substrutures Π121 are identially zero for p0 = 0. Due to the summation

the terms anel exatly:

Πab1(p0 = 0) =
∑
∫

Q

q0
(Q2)a[q20 + (p+ q)2]a

q0→−q0
= −Πab1(p0 = 0) . (D.9)

D.1 IBP for Z(3; 31111; 22)

Applying Eq. (D.7) on the sum-integral in ase, we obtain:

(d− 8)Z(3; 31111; 22) − 2Z(3; 22111; 22) + I12J
d(311; 1) = 0 . (D.10)

Note that we have used the property of the one-loop struture: Πabc(p0 = 0) = Πbac(p0 = 0)
and the fatorization I×Jd

in ase one parameter is equal to zero. The zero-mode Z(3; 22111; 22)
does not ful�ll the above mentioned ondition, so a seond IBP redution needs to be performed:

(d− 5)Z(3; 22111; 22) − Z(3; 12121; 22) − Z(3; 12211; 22) + I12 × Jd(221; 1) = 0 , (D.11)

so that in the end we have:

Z(3; 31111; 22) =
2

d− 8

[
Z(3; 12211; 22) + Z(3; 12121; 22) − I12 × J(221; 1)

d− 5
− I12 × Jd(311; 1)

]

.

(D.12)
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D.2 IBP for zero-modes in d = 7− 2ǫ

This set of sum-integrals turns out to have a ommon basis set of only three sum-integrals. The

proedure is to start from the sum-integral with the highest parameter s1 and redue it step by

step via IBP to the desired order of Z(7; 2...). So we have:

(d− 10)Z(7; 52211; 00) − 2Z(7; 42221; 00) = 0 . (D.13)

This requires:

(d− 10)Z(7; 42221; 00) − Z(7; 32222; 00) − 2Z(7; 33221; 00) + 2Z(7; 43211; 00) = 0 . (D.14)

From here, we need three more relations:

(d− 10)Z(7; 32222; 00) − 4Z(7; 23222; 00) + 4Z(7; 33212; 00) = 0

(d− 6)Z(7; 33221; 00) − Z(7; 23222; 00) − 2Z(7; 23231; 00) = 0

(d− 9)Z(7; 43211; 00) − Z(7; 33212; 00) − Z(7; 33221; 00) + Z(7; 42221; 00) = 0 .

(D.15)

Up to this point, we still need to redue the following zero-mode:

(d− 8)Z(7; 33311; 00) − 2Z(7; 23321; 00) + Z(7; 33212; 00) = 0 . (D.16)

And �nally, from the previous equation, we still need to redue:

(d− 9)Z(7; 33212; 00) − Z(7; 23222; 00) − 2Z(7; 23321; 00)+

Z(7; 32222; 00) + 2Z(7; 33311; 00) = 0 .
(D.17)

From this system of equations, we obtain the following solutions for our zero-modes:

Z(7; 32222; 00) = 4
(d(d− 18) + 76)Z5 − 2(d − 10)Z7

(d− 6)(d − 9)(d− 12)
,

Z(7; 52211; 00) =
4(3d − 32)(d − 8)Z5 + 8(d− 9)(d − 12)Z6 − 4(6d − 56)Z7

(d− 6)(d − 8)(d − 9)(d− 11)(d − 12)
,

Z(7; 42221; 00) =
d− 10

2
Z(7; 52211; 00) ,

Z(7; 43211; 00) =
(d− 8) ((2d− 53)d + 340)Z5 + 2(d − 12)2(d− 9)Z6

(d− 6)(d − 8)(d − 9)(d− 11)(d − 12)

+
2(d − 10) ((d− 20)d + 104)Z7

(d− 6)(d− 8)(d − 9)(d− 11)(d − 12)
, (D.18)

Z(7; 33221; 00) =
Z5 + 2Z6

d− 6
,

Z(7; 33212; 00) =
(d− 8)(d− 14)Z5 + 2(d− 10)2Z7

(d− 6)(d − 9)(d − 12)
,

Z(7; 33311; 00) =
2(14 − d)Z5 + 2(d(d − 21) + 106)Z7

(d− 6)(d − 9)(d − 12)

where we have denoted (table 4.1):

Z(7; 23222; 00) = Z5; Z(7; 23231; 00) = Z6; Z(7; 23321; 00) = Z7 . (D.19)
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D.3 IBP redution for the master-integrals of mass dimension

zero

In this ase, the redution generates a larger basis set as the original one, this being due to the

presene of Matsubara modes in the numerator of some propagators, whih has the onsequene

that the new basis sets overlap only sparsely.

The approah is the same as previously; the �rst zero-mode Z(3; 12111; 00) does not need

further redution. In the following we generate IBP relations as:

(d− 6)Z(3; 21111; 00) − 2Z(3; 12111; 00) + 2Z(3; 22101; 00) = 0 , (D.20)

(d− 5)Z(3; 22111; 02) − Z(3; 12121; 02) − Z(3; 12211; 02) + Z(3; 22210; 02) = 0 . (D.21)

This relations are not oupled and already give the needed result. In the following, we

proeed to the last two zero-modes sum-integrals, that require several steps of IBP redution.

First:

(d− 8)Z(3; 31111; 20) − Z(3; 22111; 02) − Z(3; 22111; 20) + Z(3; 32101; 02)+

Z(3; 32101; 20) = 0 .
(D.22)

This equation alls for two other equations:

(d− 5)Z(3; 22111; 02) − Z(3; 12121; 02) − Z(3, 12211; 02) + Z(3; 22210; 02) = 0 , (D.23)

and

(d− 5)Z(3; 22111; 20) − Z(3; 12121; 20) − Z(3, 12211; 02) + Z(3; 22210; 20) = 0 . (D.24)

Finally we have:

(d− 10)Z(3; 4111; 22) − 2Z(3; 32111; 22) + 2Z(3; 42101; 22) = 0 (D.25)

and the subsequent relations are:

(d− 7)Z(3; 32111; 22) − Z(3; 22121; 22) − Z(3; 22211; 22) + Z(3; 32210; 22) = 0 ,

(d− 7)Z(3; 22121; 22) − Z(3; 12221; 22) − 2Z(3; 13121; 22) +

+2Z(3; 23111; 22) + Z(3; 22220; 22) = 0 ,

(d− 4)Z(3; 22211; 22) − 2Z(3; 12221; 22) = 0 ,

(d− 6)Z(3, 23111; 22) − Z(3; 13121; 22) − Z(3; 13211; 22) +

+Z(3; 22121; 22) + Z(3; 23210; 22) = 0 . (D.26)

Thus, the new basis set is muh larger than the initial one. In order to avoid new substru-

tures, suh as Π322 and Π312, we use an additional IBP relation to transform then into already

known substrutures:
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∂qq ◦ Πij0(p0 = 0) = 0

⇒ (d− 2i− j)Πij0 + 2iΠi+1,i,2 − jΠi−1,j+1,0 + jp2Πi,j+1,0 + 2jΠi,j+1,2 = 0 ,
(D.27)

leading to:

Π322 = −1

8

[
(d− 6)Π220 − 2Π310 + 2p2Π320

]

Π312 = −1

4

[
(d− 6)Π210 + 2Π222 + p2Π220

]
.

(D.28)

Thus, we obtain the following result in terms of the new eight basis zero-mode masters:

Z(3; 21111; 00) =
2Z(3; 12111; 00) − 2I02J

d(211; 0)

d− 6
, (D.29)

Z(3; 22111; 02) =
Z(3; 12211; 02) + Z(3; 12121; 02) − I12J

d(221; 0)

d− 5
, (D.30)

Z(3; 31111; 20) =
Z(3; 12121; 02) + Z(3; 12121; 20) + 2Z(3; 12211; 02)

(d− 8)(d − 5)

− I12J
d(221; 0) + I02J

d(221; 1) + (d− 5)(I02J
d(311; 1) + I12J

d(311; 0))

(d− 5)(d − 8)
, (D.31)

Z(3; 41111; 22) =
Z(3; 02221; 02) − I12J

d(122; 0) + (d− 6)
[
Z(3; 12211; 02) + I12J

d(221; 0)
]

(d− 10)(d − 8)(d− 7)(d − 5)

+
2Z(3; 13111; 02) − (d− 6)Z(3; 12121; 02)

2(d− 10)(d − 8)(d− 5)
+

Z(3; 03121; 02)

400 − 170d + 23d2 − d3

+
(6d− 40)Z(3; 12221; 22) − 2(d− 4)I12J

d(222; 1)

(d− 10)(d − 8)(d − 7)(d− 4)
− 2I12J

d(321; 1)

70− 17d + d2

− 2I12J
d(411; 1)

d− 10
. (D.32)
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Appendix E

Con�guration spae de�nitions for Π
abc

This appendix provides details about the onrete form of all the needed one-loop strutures

Πabc in on�guration spae used in the �nite piees of the master integrals.

Reall formula (4.114):

Π0,B,C,E
s1s2s3 =

(2πT )2d+1−2s12+s3

2s12(2π)dΓ(s1)Γ(s2)

∫

ddr r̄s12−d−1eipre−|p0|rf0,B,C,E
d,s1s2s3

(r̄, |p̄0|) . (E.1)

In the following all the f 's are provided. First we start with f0d,abc. It is in general a funtion

of f(cothx, |n|), aording to:

∞∑

m=−∞
e−(|m|+|n+m|−|n|) = |n|+ coth x (E.2)

and, for any polynomial in |m|:
∞∑

m=−∞
e−(|m|+|n+m|−|n|)p(|m|) =

|n|
∑

m=0

p(|m|) + p(−∂2r)
1

e2r − 1
+ e2|n|rp(−∂2r)

e−2|n|r

e2r − 1
. (E.3)

In addition, note that for p0 = 0, fd,abc(x, 0) redues to a sum of polylogarithms aording

to: ∞∑

n=1

e−2nx

na
= Lia

(
e−2x

)
. (E.4)

Denoting c ≡ coth x, we have:

f03,110(x, n) = c+ |n| , (E.5)

f03,112(x, n) =
|n|+ 3c|n|2 + 2|n|3 + 3(c2 − 1)(c+ |n|)

6
, (E.6)

f03,212(x, n) =
−1 + c2 + |n|(c+ |n|)

2
, (E.7)

f05,121(x, n) = −n(3(c+ |n|) + (−2 + 3c2 + 3c|n|+ 2|n|2)x)
6x

, (E.8)

f07,210(x, n) =
18(c2 + c|n|+ |n|2 − 1)x+ (12c(c2 − 1) + 2(6c2 − 7)|n| + 3c|n|2 + 5|n|3)x2

6x3
,

(E.9)
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+
36(c + |n|) + (3 + 9c4 − 9c|n|+ 9c3|n| − 4|n|2 + |n|4 + 3c2(|n|2 − 4))x3

12x3
, (E.10)

f07,220(x, n) =
6c(1 + |n|x) + 3x(c2 − 1)(2 + (c+ |n|)x) + |n|(6 + 6|n|x+ (|n|2 − 1)x2)

6x2
,

(E.11)

f07,310(x, n) =
3x(c2 − 1)(3 + cx+ nx) + 3c(6 + nx(3 + nx)) + n(18 + x(x+ n(9 + 2nx)))

6x2
,

(E.12)

f07,320(x, n) =
(c2 − 1)x+ (c+ |n|)(2 + |n|x)

2x
, (E.13)

f07,330(x, n) = c+ |n| . (E.14)

Next, we provide the f 's with spei� parameters that may demand an a priori subtration

of the ΠE
piees to avoid 1/0 terms in the summation. These piees are needed only for the

zero-mode parts, so that we set n = 0:

f0−E
3,210(x, n) = e2|n|xB(e−2x, |n|+ 1, 0) +H|n| − ln(1− e−2x) , (E.15)

f0−E
3,210(x, 0) = −2 ln(1− e−2x) , (E.16)

f0−E
3,220(x, 0) = 2Li2

(
e−2x

)
, (E.17)

f03,222(x, 0) = c− 1 , (E.18)

f0−E
3,310(x, 0) = 2Li2

(
e−2x

)
+

2Li3
(
e−2x

)

x
, (E.19)

f0−E
3,320(x, 0) = 2Li3

(
e−2x

)
+

2Li4
(
e−2x

)

x
, (E.20)

f0−E
3,330(x, 0) = 2Li4

(
e−2x

)
+

4Li5
(
e−2x

)

x
+

2Li6
(
e−2x

)

x2
, (E.21)

where

B(x, a, b) =

∫ x

0
dtta−1(1− t)b−1 , (E.22)

is the inomplete Beta funtion.

Now we provide the zero temperature de�nitions of f 1:

fB3,110(x, n) = |n|+ 1

x
, (E.23)

fB3,112(x, n) =
|n|3
3

+
1

2x3
+

|n|
2x2

+
n2

2x
, (E.24)

fB+C
3,210 (x, n) = γE + e2|n|xEi(−2|n|x) + ln

|n|
2x

+
x

6|n| , (E.25)

fB3,212(x, n) =
1

2x2
+

|n|
x

+ |n|2 , (E.26)

fB5,121(x, n) = − n

x2
− n|n|

x
− n3

3
, (E.27)

fB7,210(x, n) =
35

4x4
+

35|n|
4x3

+
15|n|2
4x2

+
5|n|3
6x

+
|n|4
12

, (E.28)

1

Note that only the ombination ΠB+C
210 is �nite in d = 3 dimensions.
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fB7,220(x, n) =
5

2x3
+

5|n|
2x2

+
|n|2
x

+
|n|3
6

, (E.29)

fB7,310(x, n) =
5

x3
+

5|n|
x2

+
2|n|2
x

+
|n|3
3

, (E.30)

fB7,320(x, n) =
3

2x2
+

3|n|
2x

+
|n|2
2

. (E.31)

(E.32)

And �nally, we show the neessary leading UV terms:

fC3,112(x, n) =
|n|2x
6

− x

30
, (E.33)

fC5,121(x, n) = −n
6
− n|n|x

6
, (E.34)

fC7,310(x, n) =
1

2x
+

|n|
2

+
|n|2x
6

+
x3

1890
, (E.35)

fC7,320(x, n) =
1

6
+

|n|x
6

+
x2

180
. (E.36)
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Appendix F

IBP relations for the basis hanges

In this appendix, we give the needed IBP relation in d = 3− 2ǫ dimensions, in order to perform

the suitable basis transformation of (C.14) and (C.15) from [110℄, to render oe�ients �nite in

the limit ǫ→ 0. These relations are part of a large database of IBP relations that was provided

by Jan Möller [117℄. The relations presented here were hosen in the spirit desribed in setion

3.7.

For Π
E3, they are:

M000
111110 =

148 − 60d+ 6d2

3(d− 5)(d − 4)2
M000

210011 +
16

3(d− 4)2
M000

310011 , (F.1)

M020
211110 =

−240 + 134d − 21d2 + d3

2(d− 7)(d − 6)(d− 5)(d − 4)2
M000

113000

+
896− 446d + 73d2 − 4d3

2(d− 7)(d − 6)2(d− 5)(d− 4)
M000

122000

+
299728 − 275712d + 100444d2 − 18108d3 + 1615d4 − 57d5

12(d − 7)(d − 6)(d − 5)2(d− 4)2
M000

210011

+
−24 + 3d

2(d− 7)(d − 5)(d− 4)
M220011002

+
−80 + 18d− d2

2(d− 7)(d − 6)(d− 5)(d − 4)
M020

310011

+
51232 − 23128d + 3470d2 − 173d3

6(d− 7)(d − 6)(d − 5)(d − 4)2
M200

310011

+
512

(d− 6)(d− 5)(d − 4)2
M600

510011 , (F.2)

M000
31111−2 =

p1,1(d)

2(d − 8)(d − 7)(d − 6)(d− 4)2(d− 3)(d − 2)(3d − 20)
M000

113000

− p1,2(d)

2(d− 8)2(d− 7)(d − 6)2(d− 4)2(d− 3)(d − 2)(3d − 20)
M000

122000

+
p1,3(d)

12(d − 8)(d− 7)(d − 6)(d − 5)(d− 4)2(d− 3)(d − 2)(3d − 20)
M000

210011
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+
p1,4(d)

2(d− 8)(d − 7)(d − 6)(d− 4)2(d− 3)(d − 2)(3d − 20)
M002

220011

− −18367680 + 12301488d − 3275264d2 + 433278d3 − 28477d4 + 744d5

2(d− 8)(d − 7)(d − 6)(d − 4)(d − 3)(d− 2)(3d − 20)
M020

310011

− 72(−12 + d)(−10 + d)

(d− 8)(d − 7)(d − 4)(d − 3)(d− 2)(3d − 20)
M130

410011

− 1024(2691 − 777d + 56d2)

(d− 8)(d − 6)(d − 4)2(d− 3)(d − 2)
M600

510011

+
98304

(d− 8)(d − 6)(d − 4)2(d− 3)(d − 2)
M640

530011 , (F.3)

with

p1,1(d) = 59336640 − 63078320d + 28473920d2 − 7490234d3 + 1336901d4 − 174277d5

+ 16160d6 − 928d7 + 24d8 ,

p1,2(d) = 2855308800 − 3237773312d + 1591362144d2 − 442880256d3 + 76305228d4

− 8326788d5 + 561189d6 − 21310d7 + 348d8 ,

p1,3(d) = 26632233600 − 35846652912d + 20928142876d2 − 6924466708d3

+ 1420678191d4 − 185150687d5 + 14974094d6 − 687360d7 + 13716d8 ,

p1,4(d) = 108234240 − 89067072d + 30550848d2 − 5590308d3 + 575340d4

− 31557d5 + 720d6 . (F.4)

For Π′
T3, we have:

M022
411110 =

p2,1(d)

8(d − 7)(d− 8)(d − 9)(d− 4)(d − 5)2(d− 6)2(d− 3)2
M000

114000

+
p2,2(d)

4(d − 8)(d− 9)(d − 4)(d − 5)2(d− 6)2(d− 7)2(d− 3)2
M000

123000

+
p2,3(d)

256(d − 7)(d− 8)(d − 9)(d− 4)(d − 5)2(d− 6)2(d− 3)2
M000

220011

+
p2,4(d)

384(d − 4)(d− 8)(d − 9)(d− 2)(d − 6)2(d− 7)2(d− 3)2(d− 5)3
M000

222000

+
−p2,5(d)

128(d − 7)(d− 8)(d − 9)(d− 4)(d − 5)2(d− 6)2(d− 3)2
M000

310011

+
p2,6(d)

4(d − 7)(d− 8)(d − 9)(d − 4)(d − 5)2(d− 6)2(d− 3)2
M002

320011

+
−p2,7(d)

8(d − 7)(d− 8)(d − 9)(d − 4)(d − 5)2(d− 6)2(d− 3)2
M020

410011

+
−24(269d4 − 8320d3 + 95490d2 − 479860d + 888021)

(d− 6)(d− 7)(d − 9)(d − 4)(d − 5)2(d− 3)2
M220

510011

+
8(8047d4 − 247972d3 + 2849686d2 − 14485888d + 27502047)

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M400

510011

+
−30720(49d2 − 711d + 2623)

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M800

710011
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+
−368640

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M730

730−111

+
−1290240

(d− 6)(d − 7)(d− 9)(d − 4)(d − 5)2(d− 3)2
M820

820−111 , (F.5)

with

p2,1(d) =(d− 2)(8d9 − 368d8 + 7504d7 − 89111d6 + 683254d5 − 3608255d4

+ 14256518d3 − 46293495d2 + 116182716d − 152317971) ,

p2,2(d) =4d10 − 204d9 + 4803d8 − 72029d7 + 809167d6 − 7339813d5 + 52777475d4

− 278994927d3 + 986568461d2 − 2048698083d + 1870829946 ,

p2,3(d) =79869d8 − 4037326d7 + 87620700d6 − 1061968604d5 + 7812514612d4

− 35356262430d3 + 94351342448d2 − 130527026040d + 64326147651 ,

p2,4(d) =96d11 − 86421d10 + 5375292d9 − 153305147d8 + 2586291594d7

− 28437667028d6 + 212405026246d5 − 1089048350724d4

+ 3775673987846d3 − 8444268898919d2 + 10951876160526d − 6212405250801 ,

p2,5(d) =168943d8 − 9557016d7 + 235488122d6 − 3301073030d5 + 28792746146d4

− 160004011372d3 + 553185231922d2 − 1087803532662d + 931423919427 ,

p2,6(d) =11d7 + 1645d6 − 89139d5 + 1794069d4 − 18776435d3 + 109500887d2

− 339147237d + 436796199 ,

p2,7(d) =3(2171d7 − 113535d6 + 2540413d5 − 31533199d4 + 234594837d3

− 1046679269d2 + 2595120339d − 2760725997) , (F.6)

M020
311110 =

p3,1(d)

4(d− 5)(d − 6)(d − 7)(d − 8)(d − 4)(d− 3)2
M000

114000

+
−p3,2(d)

2(d − 4)(d − 6)(d − 8)(d− 3)(d − 7)2(d− 5)2
M000

123000

+
−p3,3(d)

128(d − 6)(d − 7)(d − 8)(d− 4)(d − 5)2(d− 3)2
M000

220011

+
p3,4(d)

64(d − 4)(d − 6)(d − 8)(d − 2)(d− 7)2(d− 3)2(d− 5)3
M000

222000

+
p3,5(d)

64(d − 6)(d − 7)(d − 8)(d − 4)(d− 5)2(d− 3)2
M000

310011

+
3(d+ 1)(3d − 19)(d − 9)

2(d − 4)(d − 6)(d − 8)(d− 3)(d − 5)2
M002

320011

+
−3(d− 9)(53d3 − 1123d2 + 7891d − 18437)

4(d − 4)(d − 6)(d − 7)(d− 8)(d − 3)(d− 5)2
M020

410011

+
−288(d − 9)

(d− 4)(d − 7)(d− 3)2(d− 5)2
M220

510011

+
−96(57d2 − 876d + 3355)

(d− 7)(d − 4)(d− 5)2(d− 3)2
M400

510011
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+
122880

(d− 7)(d − 4)(d− 5)2(d− 3)2
M800

710011 , (F.7)

with

p3,1(d) =3(d− 9)(5d2 − 42d + 1)(d− 2) ,

p3,2(d) =8d6 − 273d5 + 3858d4 − 29038d3 + 123676d2 − 285521d + 281754 ,

p3,3(d) =3(1199d6 − 41508d5 + 578831d4 − 4114536d3 + 15388613d2

− 27364596d + 15595005) ,

p3,4(d) =1143d8 − 55758d7 + 1176024d6 − 13988986d5 + 102457978d4

− 471885410d3 + 1329287528d2 − 2080966998d + 1371885519 ,

p3,5(d) =3(2357d6 − 96694d5 + 1642835d4 − 14793300d3

+ 74449531d2 − 198518262d + 219089661) , (F.8)

M002
221110 =

3(d− 2)

2(d− 5)(d− 6)(d − 3)
M000

114000 +
−d2 + 9d− 24

(d− 6)(d− 3)(d − 5)2
M000

123000

+
−(11d2 − 72d + 141)(3d − 19)

64(d − 6)(d − 3)(d− 5)2
M000

220011

+
9d4 − 136d3 + 684d2 − 1368d + 1131

96(d − 3)(d − 6)(d − 2)(d − 5)3
M000

222000

+
−(3d− 19)(7d2 − 102d+ 339)

32(d − 6)(d − 3)(d− 5)2
M000

310011

+
3d− 19

(d− 6)(d − 5)2
M002

320011 +
−9(3d− 19)(d − 7)

2(d − 6)(d− 3)(d − 5)2
M020

410011

+
−96

(d− 3)(d − 5)2
M220

510011 +
32

(d− 3)(d − 5)2
M400

510011 , (F.9)

M000
211110 =

7d3 − 97d2 + 405d − 459

(d− 5)(d− 6)(d − 4)(d − 3)2
M000

220011

+
−2(5d4 − 102d3 + 748d2 − 2322d + 2511)

3(d− 4)(d − 6)(d− 2)(d − 5)2(d− 3)2
M000

222000

+
−2(7d2 − 84d+ 249)(d − 7)

(d− 5)(d − 6)(d− 4)(d − 3)2
M000

310011 +
512

(d− 5)(d− 4)(d − 3)2
M400

510011 , (F.10)

and

M000
121110 =

1

d− 3
M000

220011 −
1

3(d− 3)(d − 2)
M000

222000 . (F.11)
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