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Introduction

This thesis contributes to the extended mathematical description of qua-
sicrystals. In 1982, the materials scientist Dan Shechtman performed experiments
with electron diffraction of an Al86Mn14 alloy. It was expected to observe a diffrac-
tion pattern featuring crystallographic point symmetries that correspond to
one of the eleven Laue groups. In two and three-dimensional space, the peri-
odic structure of crystals is only compatible with d-fold rotational symmetry
where d ∈ {1, 2, 3, 4, 6} [Cox61, Sec. 4.5]. Instead, Shechtman observed a diffrac-
tion pattern featuring sharp Bragg peaks with a tenfold rotational symmetry
from which he inferred the presence of long-range order beyond the realm of
perfect crystals. The publication of his results [SBGC84] in 1984 provoked
a controversial discussion in the physics community about its reliability and
correctness. Nevertheless, other scientists were able to find empirical evidence for
the existence of quasicrystal structures, and in 2010 the Icosahedrite [BSYL11],
a mineral with the configuration Al63Cu24Fe13 which possesses a quasicrystal
phase and that was originally discovered in Siberia in 1979, was accepted by
the Internataional Mineralogical Association. This development culminated in
Shechtman being awarded the 1999 Wolf Prize in Physics and the 2011 Nobel
Prize in Chemistry.

One important tool in the mathematical modelling of quasicrystals is the
theory of tilings of Rd. We refer to [BGM02] for a gentle and illustrative intro-
duction. Here, a tiling is a countable partition T = {Ti}i∈I of Rd subject to the
conditions that each tile Ti ⊂ Rd is closed and T ◦i ∩ T ◦j = ∅. Placing atoms at
the vertices of each Ti leads to a point set of which the Fourier transform yields
a good description of the diffraction pattern of a quasicrystal. One of the most
prominent instances in two dimensions is the famous Penrose tiling which is
constructed via two prototiles and that features fivefold rotational symmetry
without any translational invariance. A finite patch is illustrated in Figure 0.1.

In general, the structure of systems with pure point diffraction is fairly well
understood and a considerable amount of examples is known, including the
class of so-called model sets. Nevertheless, there are still unsolved problems
such as the famous Pisot substitution conjecture [Fog02, Ch. 7], although it
is solved for two-letter Pisot substitutions [SS02, Cor. 5.4], or the problem of
homometry; see [LM11, TB12, Ter13] for background. Less is known in the
realm of systems inducing mixed spectra. In this case, the understanding in
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iv INTRODUCTION

Figure 0.1. A circular patch of the Penrose tiling with kites
and darts as prototiles.

the presence of entropy is only at its beginning [BBM10, BLR07], and it is
most desirable to work out particular examples. The mathematical treatment
of precisely such an example in one dimension that arises from a substitution
dynamical system is the purpose of this thesis.

In a deterministic setting, substitution dynamical systems are well under-
stood and an extensive amount of literature has grown; see [BG13, Fog02, Kit98,
LM95, Lot02, Que10] amongst others. In 1989, Godrèche and Luck [GL89] ex-
tended the study of conventional substitutions and introduced the notion of local
mixtures of substitution rules on the basis of a fixed probability vector along
the random Fibonacci substitution. They suggested heuristic considerations for
the computation of topological entropy and the spectral type of the diffraction
measure. In this thesis, we generalise this analysis by considering the family of
random noble means substitutions and offer a mathematical survey of several
associated dynamic and analytic aspects.
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Outline of the thesis

In Chapter 1, we collect the necessary mathematical tools for the treatment
of the main content of this thesis. This preliminary part comprises the general
mathematical notation that will be applied and relevant concepts from symbolic
dynamics, discrete point sets in Rd and measure theory. We try to be as thorough
as possible here, in order to focus on the main matter in the following chapters.
Note that we dispense with most proofs in Chapter 1 but present sufficient
references for further reading.

In Chapter 2, the central families of substitution rules for our concern are
introduced. To begin with, the family N of (deterministic) noble means substi-
tutions is considered and some important properties are gathered. Many of these
properties follow from the characterisation of general primitive substitutions
which is why we only make explicit the content which is actually relevant in
the rest of the treatment. The main part of Chapter 2 is concerned with the
extension of N to the family R of random noble means substitutions. Here, we
derive basic results for the mathematical treatment of the associated dynamical
system (Xm, S) where S denotes the shift andm ∈ N is a substitution parameter.

In Chapter 3, we study the complexity of random noble means words in
terms of the topological entropy Hm. After some initial computations concerning
the complexity function and a short discussion of the problems arising here, we
give an explicit formula for Hm and study its behaviour for large m.

Chapter 4 deals with the construction of a translation-invariant (or shift-
invariant) measure µm on Xm. In the first instance, the known concept of
the induced substitution is extended to the stochastic regime and elementary
properties are derived. In particular, the primitivity of the induced substitution
matrix M is an expedient result here. It paves the way for the definition of µm
via the entries of the statistically normalised right Perron–Frobenius eigenvector
of M on the cylinder sets of Xm. Subsequently, we prove the ergodicity of µm
which facilitates the proper treatment of the diffraction measure of random
noble means sets in Chapter 6. The result reads as follows.

Theorem. For an arbitrary but fixed m ∈ N, let Xm ⊂ AZ
2 be the two-sided

discrete stochastic hull of the random noble means substitution and µm be
the S-invariant probability measure on Xm introduced in Eq. (4.6). For any
f ∈ L1(Xm, µm) and for an arbitrary but fixed s ∈ Z, the identity

lim
n→∞

1
n

n+s−1∑
i=s

f(Six) =
∫
Xm

f dµm

holds for µm-almost every x ∈ Xm.

In Chapter 5, we leave the realm of symbolic dynamics and attend to the
description of geometric realisations Λ (and ΛR in the randomised case) of
(random) noble means words as (subsets of) regular model sets. We start with a
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brief introduction to the theory of iterated function systems and the concept
of cut and project schemes. Subsequently, the necessary parameters for the
description of Λ as model sets are computed. As the main result of Chapter 5,
we prove that each element ΛR of the continuous stochastic hull features the
Meyer property.

In Chapter 6, the diffraction measure γ̂Λ,m of a typical random noble means
set is computed. After a brief introduction to the general theory of the diffraction
of discrete point sets, we study a deterministic recursion for the computation of
γ̂Λ,1 that leads to a diffraction spectrum with both a pure point and an absolutely
continuous part. Explicitly, we prove that the Lebesgue decomposition in this
case reads

γ̂Λ,1 = (γ̂Λ,1)� + (γ̂Λ,1)pp + φ(k)λ,
where the precise nature of (γ̂Λ,1)� stays an open problem. We surmise that
(γ̂Λ,1)� in fact vanishes and present some numerical evidence supporting this
conjecture. Finally, an inflation-invariant approach to the pure point part of
γ̂Λ,m is discussed.

All function plots and numerical calculations in this thesis are produced
with the open source computer algebra system Sage [Sage]. The typesetting of
the text has been done with LATEX.
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CHAPTER 1

Preliminaries

In Section 1.1 we begin with the determination of the most important general
mathematical notation that will be applied throughout the text. There and in the
rest of the treatment we will try not to deviate too much from well-established
standards in this regard.

In Chapters 1 to 4 we will study the behaviour of symbolic sequences over
a finite set of symbols and under the action of certain maps. To this end, we
will constitute the necessary terminology, review basic concepts of symbolic
dynamics and collect relevant results in Section 1.2. We refer to [BG13, Ch. 4],
[LM95, Ch. 1] and [Lot02] for a broader overview in this context.

Section 1.3 is devoted to a short survey concerning basic ideas for the
discussion of discrete point sets in Rd that will be introduced (in fact as subsets
of R) in Chapter 5 as an interpretation of symbolic sequences. A detailed
derivation can be found in [BG13, Ch. 2].

The purpose of Section 1.4 is to give a brief summary of analytic and
measure-theoretic tools that will be applied in Chapters 5 and 6. The general
theory can be achieved in standard textbooks like [RS81, Lan93] and especially
[Die70, Rud87].

1.1. Notation

We refer to the natural numbers as N = {1, 2, 3, . . .} and define N0 := {0}∪N.
As usual, we abbreviate the integers, the rationals, the reals and the complex
numbers by Z, Q, R and C. Moreover, we will use the common shorthands
R+ := {x ∈ R | x > 0} and R>0 := R+ ∪ {0}.

If S, T are any sets, we denote by S ∪̇T the disjoint union of S and T . Let
S ⊂ Rd where ⊂ is understood to include equality of sets, then the volume of S,
with respect to d-dimensional Lebesgue measure λ, is referred to as vol(S). The
interior of S is written as S◦ and S is its closure with respect to the standard
metric topology on Rd (unless stated otherwise). The open ball of radius r
with centre x ∈ Rd is denoted by Br(x), where we will often use the shorthand
Br := Br(0). The standard scalar product in Cd is denoted as

〈x | y〉 :=
d∑
i=1

xiyi

for x, y ∈ Cd. Note that 〈· | ·〉 is linear in the second argument.
1



2 1. PRELIMINARIES

The ring of square (d× d)–matrices over a commutative ring R is indicated by
Mat(d,R), where we mostly restrict to the cases R = Z or R = R, respectively.
For M ∈ Mat(d,R), by M > 0, M > 0 or M � 0 we mean that M consists of
non-negative entries only, non-negative entries with at least one being positive
or of solely positive entries, and we will adapt this notation for elements in Rd.
We refer to the eigenvalue spectrum of M as σ(M) and to the spectral radius
of M as ρ(M).

The vector space of continuous functions X −→ C is denoted by C(X) and
as usual, L1(X,µ) is the vector space of µ-integrable complex-valued functions
on X where we will simply write L1(X) if there is no confusion about the
underlying measure µ.

1.2. Symbolic dynamics

1.2.1. Letters and words. For n ∈ N, let An :=
{
ai | 1 6 i 6 n

}
be a

set with finitely many distinct elements. We call An an alphabet and refer to
its elements as letters. Any finite string of letters is called a (finite) word. If
w = w0w1 · · ·w`−1 is a word then w̃ := w`−1w`−2 · · ·w0 is the reversal of w
and we refer to |w| = ` = |w̃| as the length of w and w̃, respectively. In the
case of w = w̃, we call w a (finite) palindrome. The empty word is denoted
by the symbol ε and we define |ε| := 0. By a subword v of w we mean any
connected substring of w and write v C w in this case. If we want to emphasise
the precise location of a subword, we write w[s,t] := wsws+1 · · ·wt−1wt C w for
0 6 s 6 t 6 ` − 1, and we set w[s,t] := ε in the case of s > t. The occurrence
number of a word v as a subword of w is defined as the cardinality of the index
set

{
s | v = w[s,s+|v|−1]

}
and we write |w|v for this quantity. Furthermore, the

set
A`n :=

{
aj1aj2 · · · aj` | 1 6 j1, j2 , . . . , j` 6 n

}
is defined to be the set of all words of length `, including the special case
A0
n := {ε}. The Kleene hull

A∗n :=
⋃
`>0
A`n

identifies the set of all words over the alphabet An, and it forms a free monoid
with neutral element ε, where multiplication is given by concatenation. The
latter means that two arbitrary words v = v0 · · · vs and w = w0 · · ·wt in A∗n are
connected via vw := v0 · · · vsw0 · · ·wt. Figure 1.1 indicates {a, b}∗ as a binary
tree.

Let S ⊂ A∗n be any non-empty set of words. Then, F`(S) denotes the set of
all subwords of length ` of elements in S and we call F`(S) the `th factor set
of S. If we omit the index, F(S) is understood to be the set of all subwords of
elements in S.

For the extension of the notion of a (finite) word to infinite sequences of
letters in An, we call w = (wi)i∈N0

∈ AN0
n a semi-infinite word. Accordingly, we
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ε

a

aa

aaa aab

ab

aba abb

b

ba

baa bab

bb

bba bbb

Figure 1.1. All possible words over the alphabet A2 = {a, b}
up to length 3 in lexicographic order.

denote by
w = · · ·w−3w−2w−1 |w0w1w2 · · · = (wi)i∈Z ∈ AZ

n

a bi-infinite word, where the vertical bar indicates the reference point. Here, we
refer to the set

AZ
n :=

{
(wi)i∈Z | wi ∈ An

}
as the full n-shift. Several of the concepts introduced above for finite words
carry over mutatis mutandis to this setting.

The alphabet An is equipped with the discrete topology and is compact
in it. Providing AN0

n and AZ
n with the product topology, by an application of

Tychonoff’s theorem [Lan93, Thm. 3.12], both spaces are compact as well. An
open, closed and countable basis for the topology of AZ

n is given by the class
Z(AZ

n) of cylinder sets

Zk(v) :=
{
w ∈ AZ

n | w[k,k+`−1] = v
}

(1.1)

for any k ∈ Z and v ∈ A`n and we refer to [Bil12, Sec. 2], [LM95, Ch. 6] and
[Que10, Ch. 4] for general background. Here, two elements v, w ∈ AZ

n are close
if they agree on a large region around the index 0. Therefore, the topology is
called the local topology. Furthermore, the full n-shift can be equipped with a
metric. To begin with, we denote d1(v, w) := |{i | vi 6= wi}| as the Hamming
distance of finite words v, w ∈ A`n. This concept can be extended to AZ

n via

d2(v, w) :=
∑
`>0

d1
(
v[−`,`], w[−`,`]

)
2` (1.2)

for v, w ∈ AZ
n, and to AN0

n analogously by considering d1
(
v[0,`], w[0,`]

)
in Eq. (1.2)

instead. This metric generates the local topology introduced above.
For the study of iteration limits of substitution rules (Section 1.2.2 below),

it is convenient to consider A`n as being embedded in AN0
n or AZ

n; refer to [Fog02,
Sec. 1.1.3] in this regard.
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1.2.2. Substitution Mappings. A substitution rule, or just a substitution
for short, on an alphabet An is a monoid endomorphism ϑ : A∗n −→ A∗n, with
the property that ϑ(ai) 6= ε for all 1 6 i 6 n. Thus, a substitution is an element
of the monoid of endomorphisms on A∗n which we denote by End(A∗n). Later,
it will become more convenient to also allow the application of ϑ to words
with negative exponents. As this will only be relevant in two situations, we
will extend the definition then temporarily. The general theory is not affected
by this modification; refer to [BG13, Ch. 4] for a comprehensive treatment of
substitution rules in this setting. The endomorphism property ϑ(vw) = ϑ(v)ϑ(w)
for any v, w ∈ A∗n ensures that a substitution is completely characterised by the
images of the letters in An under ϑ and we will restrict to these simple cases for
the definition of all studied substitutions. From now on, we will refer to ϑ(w)
as an image of w under ϑ. Note that ϑ extends to mappings AN0

n −→ AN0
n and

AZ
n −→ AZ

n via concatenation.

Remark 1.1 (Continuity of substitution mappings). Let ϑ be any substitution
on An and v, w ∈ AZ

n with v 6= w. Then, there is a k ∈ Z with vk 6= wk and |k|
minimal with this property. If k = 0, we have

d2
(
ϑ(v), ϑ(w)

)
6
∞∑
i=0

2i+ 1
2i = 3

∞∑
i=0

1
2i 6 3 d2(v, w).

If k 6= 0, we find

v[1−|k|,|k|−1] = w[1−|k|,|k|−1] and ϑ(v)[`,r] = ϑ(w)[`,r],

where ` := −∑|k|−1
i=1 |ϑ(v−i)| and r := ∑|k|−1

i=0 |ϑ(vi)|. With mk := min{|`|, r} we
obtain

d2
(
ϑ(v), ϑ(w)

)
6
∞∑

i=mk+1

2(i−mk)
2i = 1

2mk
∞∑
i=0

i+ 1
2i = 1

2mk−2 .

On the other hand, we have

1
2|k|−2 = 2

∞∑
i=|k|

1
2i 6 2

∞∑
i=|k|

d1
(
v[−i,i], w[−i,i]

)
2i = 2 d2(v, w).

As mk > |k|, we finally get

d2
(
ϑ(v), ϑ(w)

)
6 2 d2(v, w)

and therefore the Lipschitz continuity of ϑ on AZ
n. �

A convenient way of simplifying concrete calculations is the assignment of
a matrix describing the action of a substitution ϑ in terms of the occurrence
numbers of letters. For any such ϑ on the alphabet An, we define its substitution
matrix to be

Mϑ :=
(
|ϑ(aj)|ai

)
16i,j6n ∈ Mat(n,Z).
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The (Abelianisation) map

φ : A∗n −→ Zn, w 7−→ φ(w) :=
(
|w|a1

, . . . ,|w|an
)T
,

where xT denotes the transpose of x, keeps track of the occurrence numbers
of the letters in a word w ∈ A∗n. It is easy to verify that Mϑ◦ϕ = MϑMϕ for
ϑ, ϕ ∈ End(A∗n) and Mk

ϑ φ(w) = φ
(
ϑk(w)

)
for any k ∈ N0. For a detailed

derivation of this process called Abelianisation, we refer to [BG13, Ch. 4.1].
Note that there is no one-to-one correspondence between substitutions and their
substitution matrices in general, as we will see in Chapter 2 below. Many decisive
properties of the substitution itself can nevertheless be derived by analysing the
corresponding substitution matrix.

Definition 1.2 (Irreducibility and primitivity of matrices). A non-negative
matrixM ∈ Mat(n,R) is called irreducible if for each pair (i, j) with 1 6 i, j 6 n,
there is a power k ∈ N such that (Mk)ij > 0. The matrix M is called primitive
if there is a k ∈ N such that Mk � 0.

Definition 1.3 (Irreducibility and primitivity of substitutions). A substitution
ϑ on An is called irreducible if for each pair (i, j) with 1 6 i, j 6 n, there is a
power k ∈ N such that ai is a subword of ϑk(aj). The substitution ϑ is primitive
if there is a k ∈ N such that ai is a subword of ϑk(aj) for all 1 6 i, j 6 n.

It is immediate that a substitution ϑ is irreducible (primitive) if and only if
Mϑ is an irreducible (primitive) matrix.

Primitivity of a substitution enables the application of a powerful tool,
central to the complete rest of this text.

Theorem 1.4 (Perron–Frobenius, [Sen06, Que10]). If M ∈ Mat(d,R) is a
primitive matrix, there exists a simple eigenvalue λ of M with the following
properties:

(a) λ ∈ R+.
(b) λ = ρ(M) and λ > |µ| for any µ ∈ σ(M) different from λ.
(c) With λ can be associated a left eigenvector L and a right eigenvector R,

both consisting of strictly positive entries. Those eigenvectors are unique
up to scalar multiplication. �

This connection of the positivity of a matrix with its spectral properties was
proved in 1907 by Oscar Perron [Per07] and extended to irreducible matrices by
Georg Frobenius [Fro12] in 1912, wherefore it is also called the Perron–Frobenius
theorem.

From now on, the eigenvalue and the eigenvectors stated in Theorem 1.4
are called the PF eigenvalue and the PF eigenvectors.

Remark 1.5 (Perron–Frobenius for irreducible matrices). In the irreducible
case, assertion (b) of Theorem 1.4 reduces to λ > |µ|. There are precisely d
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eigenvalues λ satisfying λ = |µ| which are{
λ e2π ik/d | 0 6 k 6 d− 1

}
,

where d > 1 is the period of M . Even more remarkable is the invariance of the
complete eigenvalue spectrum under the action of the cyclic group of order d;
refer to [Sen06, Sec. 1.4] for proofs and background information. As a precious
source for various aspects and implications of Theorem 1.4 we refer to [Mey00,
Ch. 8]. �

The primitivity of a substitution ϑ implies that limk→∞|ϑk(x)| =∞ for any
letter x ∈ An, provided n > 2 because if j ∈ N is such that ϑj(x) contains all
letters of the alphabet, then |ϑj(x)| > n and consequently |ϑij(x)| > ni for all
i ∈ N. One can prove that the letter frequencies, that is the limit

lim
k→∞

1
|ϑk(x)|φ

(
ϑk(x)

)
,

always exist and that they do not depend on the choice of the letter x ∈ An
[Que10, Prop. 5.8].

A convenient normalisation of the right PF eigenvectorR ∈ Rd of a primitive
substitution matrix is

‖R‖1 =
d∑
i=1
|Ri| =

d∑
i=1
Ri = 1.

Here, the Perron–Frobenius theorem permits us to interpret the entries of R as
the frequencies of all letters in An with respect to a fixed point (see below) of the
underlying substitution [Que10, Cor. 5.4]. Additionally, the left PF eigenvector
can be used to construct a geometric counterpart of a primitive substitution.
This concept will be introduced in Chapter 5 for the noble means example.

Definition 1.6 (Legality of words). A word w ∈ A∗n is legal with respect to a
substitution ϑ, if there is some k ∈ N and some x ∈ An such that w C ϑk(x).

Note that ε is always a legal word. Although this might not seem to be
a fruitful observation, we do not want to exclude this case here for technical
reasons.

Let w(0) := w−1 |w0 ∈ A2
n be legal with respect to a substitution ϑ and

w(k) := ϑ(w(k−1)) for k ∈ N. Then, a bi-infinite word w ∈ AZ
n with the property

lim
k→∞

w(k) = w = ϑ(w) (1.3)

is called a bi-infinite fixed point of ϑ with legal seed w(0), where the limit in
Eq. (1.3) is taken in the local topology. Omitting the legality of seeds might
lead to contradicting conclusions about the two-sided discrete hull (see below)
of a substitution; compare [BG13, Exa. 4.2] in this context. In the following, the
term fixed point is always understood to be the bi-infinite sequence introduced
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above. If we restrict to its semi-infinite analogue, we will explicitly emphasise
this.

In this regard, the primitivity of a substitution has the following important
consequence.

Lemma 1.7 ([BG13, Lem. 4.3]). If ϑ is a primitive substitution on An for
n > 2, there exists some k ∈ N and some w ∈ AZ

n with w being a fixed point of
ϑk. �

Let S : AZ
n −→ AZ

n be the shift map. An application of S to a word w slides
all letters one position to the left, that is S

(
(wk)k∈Z

)
:= (wk+1)k∈Z. Accordingly,

there is an inverse mapping, that shifts all letters one position to the right, that
means S−1((wk)k∈Z) = (wk−1)k∈Z. Moreover, both S and S−1 are continuous,
onto and one-to-one on AZ

n, which turns S into a homeomorphism. This is a
convenient advantage over the situation on AN0

n , where S is neither invertible
nor one-to-one. Compare also [Fog02, Ch. 1] in this regard.

Definition 1.8 (Two-sided discrete hull). Let ϑ be a primitive substitution
and w ∈ AZ

n be a fixed point of ϑk for some k ∈ N. The set

Xϑ :=
{
Sjw | j ∈ Z

}
⊂ AZ

n

is called the two-sided discrete hull of the substitution ϑ, where the closure is
taken in the local topology.

Note that the claimed existence of the fixed point is a consequence of
Lemma 1.7 and that the two-sided discrete hull is invariant under the action
of both the shift and the substitution. More generally, we call any closed and
shift-invariant subset X ⊂ AZ

n a two-sided subshift.

Lemma 1.9. Let X ⊂ AZ
n be any subshift. The restriction S

∣∣
X : X −→ X is a

homeomorphism.

Proof. This is an immediate consequence of S being a homeomorphism on
AZ
n and X being shift-invariant. �

Remark 1.10 (Two-sided discrete hulls from semi-infinite fixed points). Accord-
ing to Definition 1.8, a bi-infinite fixed point of ϑk is needed for the construction
of Xϑ. As stated in [BG13, Rem. 4.1], it is also possible to build the correct
two-sided discrete hull via semi-infinite fixed points. Even if ϑk admits the
construction of the fixed point v |w ∈ AZ

n, it might happen that there is a
k′ < k with the property that ϑk′ possesses either v or w as a semi-infinite fixed
point. This constitutes a convenient technical simplification which we will use
in Chapter 5 in the noble means case. �

In the case of a primitive substitution ϑ, two different fixed points v, w ∈ AZ
n

of ϑk give rise to the same two-sided discrete hull Xϑ; compare [BG13, Lem. 4.2
and Prop. 4.2]. In this sense, Xϑ is uniquely defined [BG13, Thm. 4.1].
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Remark 1.11 (Cylinder sets of subshifts). If X ⊂ AZ
n is any subshift, the class

of cylinder sets Z(X) is induced by Z(AZ
n) via the subspace topology. Here, we

get
Z(X) :=

{
Z ∩ X | Z ∈ Z(AZ

n)
}
. �

We close this section with some terminology concerning the characterisation of
substitutions in the centre of our interest. A bi-infinite word w ∈ AZ

n is called
periodic if there is some k ∈ Z \ {0}, such that Skw = w and non-periodic, when
no such k exists. We call a primitive substitution ϑ aperiodic, if the uniquely
defined two-sided discrete hull of ϑ contains no periodic element. A convenient
way of determining the aperiodicity of primitive substitutions is provided by
the following result.

Theorem 1.12 ([BG13, Thm. 4.6]). Let ϑ be a primitive substitution with
substitution matrix Mϑ. If the PF eigenvalue of Mϑ is irrational, then ϑ is
aperiodic. �

In Chapter 5, we will offer a geometric interpretation of the PF eigenvalue
as the inflation multiplier of an induced geometric inflation rule.

An algebraic integer α > 1 is called a Pisot–Vijayaraghavan number, or
a PV number for short, if its algebraic conjugates α1 , . . . , αk, except α itself,
comply with |αi| < 1. If α is a PV number and an algebraic unit, we call α a PV
unit. Last but not least, we refer to a substitution rule ϑ as a Pisot substitution
if Mϑ has a largest and simple eigenvalue λ > 1 and all eigenvalues µ of Mϑ

different from λ satisfy 0 < |µ| < 1. For a comprehensive treatment of Pisot
substitutions we refer to [Sin06].

1.3. Point sets

Here, we concentrate on point sets in Rd where the special case of d = 1 is
considered in Chapters 5 and 6. To begin with, we define for U , V ⊂ Rd by

U ± V :=
{
u± v | u ∈ U, v ∈ V

}
the Minkowski sum (difference) of the sets U and V . A set consisting of one
point is called a singleton set and countable unions of singletons are called
point sets. A point set P ⊂ Rd is discrete if there is an r := r(x) > 0 such that
Br(x) ∩ P = {x} for each x ∈ P . The set P is uniformly discrete if there is an
r > 0 such that Br(x) ∩Br(y) = ∅, for any distinct x, y ∈ P . Moreover, P is
relatively dense if there is an R > 0 such that Rd = P +BR(0). We define

rp(P ) := sup
{
r > 0 | Br(x) ∩Br(y) = ∅ for all distinct x, y ∈ P

}
,

Rc(P ) := inf
{
R > 0 | P +BR(0) = Rd

}
.

The number rp(P ) is called the packing radius and Rc(P ) the covering radius
of P .
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Definition 1.13 (Delone and Meyer set). A point set P ⊂ Rd is called a Delone
set if it is uniformly discrete and relatively dense. Moreover, P is a Meyer set, if
it is relatively dense and P − P is uniformly discrete.

Let P ⊂ Rd be a discrete point set. For x ∈ Rd and r > 0, we call any set S of
the form Br(x)∩P a patch of P . The point set P is repetitive if for any patch S
there is a radius R > 0 such that BR(y) contains at least one translate of S for
any y ∈ Rd. Furthermore, P has finite local complexity (or is an FLC set) if the
set

{
Br(x) ∩ P | x ∈ P

}
, for any r > 0, contains only finitely many non-empty

patches up to translations. Last but not least, a point set P is locally finite if
K ∩ P contains only finitely many elements, for any compact K ⊂ Rd.

1.4. Functional analysis and measure theory

We start with a brief recollection of basic tools from functional analysis. We
denote by

S(Rd) :=
{
f ∈ C∞(Rd) | ∀α, β ∈ Nd0 : sup

x∈Rd
|xαDβf(x)| <∞

}
the Schwartz space of functions of rapid decrease. We prefer addressing S(Rd)
as the space of test functions below. Let f , g ∈ S(Rd). Then, the convolution of
f and g is defined by

(f ∗ g)(x) :=
∫
Rd
f(x− y)g(y) dy =

∫
Rd
f(y)g(x− y) dy

and the Fourier transform of f ∈ S(Rd) is

f̂(k) :=
∫
Rd

e−2π i〈k|x〉 f(x) dx.

The same definitions apply in the case of f , g ∈ L1(Rd). The dual space S ′(Rd)
of linear functionals T : S(Rd) −→ C is the space of tempered distributions. The
Fourier transform of a tempered distribution T is defined by T̂ (f) := T (f̂) for
all test functions f ∈ S(Rd).

Example 1.14 (Dirac distribution). In Chapter 6, we will frequently make use
of the Dirac distribution (or measure)

δx : S(Rd) −→ C, f 7−→ δx(f) := f(x).

Its Fourier transform reads

δ̂x(f) = δx(f̂) = f̂(x) =
∫
Rd

e−2π i〈x|y〉 f(y) dy,

and we will use the common shorthand δ̂x = e−2π i〈x|y〉. The Dirac distribution
also defines a measure, given by

δx(B) :=
{ 1, if x ∈ B,

0, otherwise,
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for any Borel set B ⊂ Rd. �

1.4.1. Measure theory. In Chapters 4, 5 and 6, measure-theoretic tools
are applied to study certain subsets of Rd and the hull of some substitution
rule. Here, we work in the context of a locally compact Hausdorff space X. In
this situation, it is convenient to introduce the notion of a measure via linear
functionals [Die70, Ch. XIII].

Let Cc(X) denote the vector space of complex-valued continuous functions
with compact support. Now, a complex-valued measure onX is a linear functional

µ : Cc(X) −→ C, f 7−→ µ(f),

with the property that for each compact K ⊂ X, there is a real constant cK > 0
such that |µ(f)| 6 cK‖f‖∞ for all f ∈ Cc(X) with support in K. As usual,
‖f‖∞ := sup{|f(x)| | x ∈ K} is the supremum norm of f . The space M(X)
of complex-valued measures is equipped with the vague (= weak-∗) topology
[Die70, Ch. XIII.4]. Here, a sequence (µn)n∈N converges vaguely to a measure
µ if the sequence

(
µn(f)

)
n∈N converges to µ(f) in C for all f ∈ Cc(X). A

suitable decomposition of µ into its real/imaginary and positive/negative parts,
along with an application of the Riesz–Markov representation theorem [Rud87,
Thm. 2.14] yields a one-to-one correspondence between regular Borel measures
on X and the measures defined by the approach via linear functionals [Die70,
Ch. XIII.2 and Ch. XIII.3]. This justifies the parallel usage of measures of Borel
sets µ(B) and measures of functions µ(f). The link between these points of view
is established via µ(1B) = µ(B), where 1B denotes the characteristic function

1B : X −→ {0, 1}, 1B(x) :=
{ 1, if x ∈ B,

0, otherwise.

As 1B /∈ Cc(X), one has to apply the regularity of µ to achieve suitable approx-
imations from above and from below; see [Die70, Ch. XIII.7] for background
information. The conjugate of a measure µ ∈ M(X) is defined by the map
f 7−→ µ(f) for any f ∈ Cc(X). This again defines a measure which is denoted
by µ. Now, a measure µ is real if µ = µ and a real measure µ is called positive if
µ(f) > 0 for all f > 0. The set of real and positive measures on X is abbreviated
byM+

R (X). A measure µ ∈ M(X) is called finite if |µ|(X) is finite where |µ|
denotes the total variation of µ. The latter is the smallest positive measure such
that |µ(f)| 6 |µ|(f) for all non-negative f ∈ Cc(X). We define

P(X) :=
{
µ ∈M+

R (X) | ‖µ‖ = 1
}

as the set of probability measures on X, where ‖µ‖ := |µ|(X). By the Banach–
Alaoglu theorem [RS81, Thm. IV.21], the unit ball B1 inM(X) is compact in
the vague topology and P(X) is a closed subset of B1 which then implies the
compactness of P(X). Furthermore, µ ∈M(X) is translation bounded if

sup
{
|µ|(x+K) | x ∈ X

}
<∞
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for any compact K ⊂ X. Moreover, µ ∈ M(X) is called positive definite if
µ(f ∗ f̃) > 0 for all f ∈ Cc(X), where f̃(x) := f(−x) is the reflection of f .
Analogously, we define µ̃(f) := µ(f̃).

Now, we restrict the exposition explicitly to X = Rd as we want to study
the decomposition of a measure into its pure point and continuous parts with
respect to Lebesgue measure. For any µ ∈M+

R (Rd), the set

Pµ :=
{
x | µ({x}) 6= 0

}
is called the set of pure points (also the support of Bragg peaks) of µ and for
any Borel set B we define

µpp(B) :=
∑

x∈B∩Pµ

µ({x}) = µ
(
B ∩ Pµ

)
as the pure point part of µ. In general, a measure µ ∈M+

R (Rd) is pure point if
µ(B) = ∑

x∈B µ({x}) for any Borel set B. Furthermore, we define µc := µ−µpp
and observe µc({x}) = 0 for all x ∈ Rd and say that µc has no pure points. A
measure µ is called absolutely continuous with respect to Lebesgue measure if
there is a locally integrable function f such that

µ(g) =
∫
g dµ =

∫
gf dλ = λ(gf),

for g ∈ Cc(Rd). Here, f is called the Radon–Nikodym density of µ relative to
λ. A measure µ is called singular relative to Lebesgue measure if and only if
µ(B) = 0 for some measurable set B ⊂ Rd with λ(Rd \ B) = 0. A measure
that is singular relative to λ without having any pure points is called singular
continuous.

Theorem 1.15 ([RS81, Thm. I.13 and Thm. I.14]). Any positive, regular Borel
measure µ ∈M+

R (Rd) has a unique decomposition

µ = µpp + µac + µsc,

where µpp is pure point, µac is absolutely continuous and µsc is singular contin-
uous with respect to Lebesgue measure. �

The statement of Theorem 1.15 and the preceding discussion can be gen-
eralised to complex-valued regular Borel measures µ via a decomposition of µ
into its real/imaginary and positive/negative parts; see [Die70, Ch. XIII.16] and
[BG13, Prop. 8.4] for background information.

We close this chapter with some basic operations on measures that will be
needed in Chapter 6. If µ ∈M(Rd) is any finite measure, its Fourier transform
reads

µ̂(k) :=
∫
Rd

e−2π i〈k|x〉 dµ(x).
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Moreover, there is the notion of convolution of finite measures µ, ν ∈ M(Rd)
defined as

(µ ∗ ν)(f) :=
∫
Rd

∫
Rd
f(x+ y) dµ(x) dν(y) (1.4)

for any f ∈ Cc(Rd).
As the convolution of measures in Eq. (1.4) is well-defined only if the involved

measures are both finite (or one finite and the other one translation bounded
[BG13, Thm. 8.5]), we have to extend the concept in the setting of infinite
measures. We define the Eberlein convolution of µ, ν ∈M(Rd) as

µ~ ν := lim
r→∞

µr ∗ νr
vol(Br)

, (1.5)

where µr and νr are the restrictions of µ and ν to Br(0). The limit in Eq. (1.5)
need not exist, but if µ and ν are translation bounded, there is at least one
accumulation point [BG13, Prop. 9.1]. This will be the relevant situation in
Chapter 6.



CHAPTER 2

Noble means substitutions

In this chapter, we introduce two families of substitutions to which we will
restrict ourselves during the rest of this work. We start in Section 2.1 with
the family N of (deterministic) noble means substitutions of which the famous
Fibonacci substitution is presumably its most prominent and best examined
member; compare for example [Sin06, Fog02, BG13]. After a brief collection of
some important properties, we extend N to a one-parameter family R of random
substitutions in Section 2.2, where R can be regarded as a generalisation of the
random Fibonacci substitution that was introduced in [GL89, Sec. 5.1].

2.1. The deterministic case

Here, we work over the binary alphabet A2 = {a, b}. For an arbitrary but
fixed m ∈ N and any 0 6 i 6 m, the substitution ζm,i : A∗2 −→ A∗2 is defined as

ζm,i :
{
a 7−→ aibam−i,

b 7−→ a,
where Mm := Mζm,i

:=
(
m 1
1 0

)
(2.1)

is its substitution matrix, which does not depend on i. As det(Mm) = −1,
the substitution matrix is unimodular. This is a convenient property when the
question for a cut and project description of associated point sets arises, which
will be discussed in Chapter 5. For a detailed description of non-unimodular
cases, we refer to [Sin06, Ch. 6.10]. For fixed m ∈ N, we denote by

N := Nm :=
{
ζm,i | 0 6 i 6 m

}
the family of noble means substitutions (NMS); see Figure 2.1 for a representation
for each of its members as a directed pseudo graph. AsM2

m � 0, each substitution
in Nm is primitive, hence there is a power k ∈ N such that ζkm,i admits the
construction of a bi-infinite fixed point by Lemma 1.7. In the case of 0 < i < m,
all ζm,i directly yield one and the same fixed point for all legal seeds a | a, a | b
and b | a, whereas for i = 0, we get two different fixed points for ζ2

m,i with legal
seeds a | a and a | b, and for i = m there are two fixed points with respect to ζ2

m,i

with legal seeds a | a and b | a. Note that each of the legal seeds b | a, in the case
of i = 0, and a | b, in the case of i = m, leads to the same fixed point as the one
with seed a | a. Furthermore, it is clear that b | b is not a legal seed in the sense
of Definition 1.6 for any m or i. Considering v := aibam−i, all these assertions

13
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a b

Figure 2.1. The associated pseudo graph for ζm,i is independent
of i. The loop at a is traversed m times.

can directly be deduced from the first iterations

a | a
ζm,i−−−→ v | v

ζm,i−−−→ viavm−i | viavm−i

ζm,i−−−→ (viavm−i)i v(viavm−i)m−i | (viavm−i)i v(viavm−i)m−i

ζm,i−−−→ · · ·

(2.2)

and their analogues for the other legal seeds a | b and b | a, by distinguishing the
relevant cases for 0 6 i 6 m.

Remark 2.1 (The cases i = 0 and i = m). It is worthwhile to mention that
ζm,0 maps the fixed point w(a|a) of ζ2

m,0 to the fixed point w(a|b) of ζ2
m,0 and vice

versa. Here, w(x|y) denotes the fixed point with seed x | y. Analogously, ζm,m
maps the fixed point w(a|a) of ζ2

m,m to the fixed point w(b|a) of ζ2
m,m and also

the other way around. This can be understood via Eq. (2.2). Moreover, it is
easy to check that ζm,i admits the construction of semi-infinite fixed points in
these cases because we can take the convergent semi-infinite sequences to the
left or right of the reference point, respectively, for this purpose. Recall also
Remark 1.10 in this context. �

The characteristic polynomial of Mm reads Pm(x) = x2 −mx − 1 and its
roots are given by

λm := m+
√
m2 + 4
2 and λ′m := m−

√
m2 + 4
2 = m− λm,

which identifies λm as the PF eigenvalue of Mm. Here, we find a justification
for the term ‘noble means substitution’. The continued fraction expansion of λm
reads [m;m,m,m, . . .]. This leads to the golden mean λ1 = [1; 1, 1, 1, . . .], the
silver mean λ2 = [2; 2, 2, 2, . . .] and so forth.

Evidently, λm is an algebraic unit satisfying λm > 1 for all m ∈ N and from
λ2
m −mλm − 1 = 0, we conclude the identity λ−1

m = −λ′m. As a consequence, we
have −1 < λ′m < 0 for all m ∈ N, which finally means that λm is a PV unit and
each ζm,i a Pisot substitution. The sequence (λ′m)m∈N is strictly increasing and
tends to 0 as m→∞. Refer to Table 2.1 for representations of the first five λm
and λ′m together with their numerical approximations.
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m λm N(λm) λ′m N(λ′m)

1 1
2(1 +

√
5) 1.618034 1

2(1−
√

5) −0.618034
2 1 +

√
2 2.414214 1−

√
2 −0.414214

3 1
2(3 +

√
13) 3.302776 1

2(3−
√

13) −0.302776
4 2 +

√
5 4.236068 2−

√
5 −0.236068

5 1
2(5 +

√
29) 5.192582 1

2(5−
√

29) −0.192582

Table 2.1. The numbers λm, λ′m and their numerical approxi-
mations for 1 6 m 6 5.

2.1.1. The NMS hull. We refer to Xm,i := Xζm,i as the two-sided discrete
hull of ζm,i in the sense of Definition 1.8. As λm is irrational for all m ∈ N,
we conclude from Theorem 1.12 that Xm,i contains no periodic element. This
identifies each ζm,i as an aperiodic substitution rule. Moreover, due to [BG13,
Prop. 4.5], each Xm,i is a Cantor set, that is a metrisable, compact, perfect and
totally disconnected topological space. We refer to [Car00, Ch. 2] and [Els11,
Ch. 2.8] for background information.

For notational convenience, we introduce D′m (and D′m,`) as the set of ζm,i-
legal words (of length `) in the sense of Definition 1.6. The ‘primed’ versions
provide distinguishability with regard to the stochastic situation that we consider
from Section 2.2 on.

Lemma 2.2 ([Fog02, Lem. 1.1.2]). For any two sequences v, w ∈ AZ
n, the

following statements are equivalent:

(a) v ∈
{
Skw | k ∈ Z

}
.

(b) For every r, s ∈ N, there is an integer t(r, s) ∈ Z with the property
v[−r,s] = w[t(r,s),t(r,s)+r+s].

(c) F`({v}) ⊂ F`({w}) for all ` ∈ N. �

Let w ∈ AZ
2 be a fixed point of some ζm,i (or ζ2

m,i). Now, we consider

v ∈ Xm,i =
{
Skw | k ∈ Z

}
and apply Lemma 2.2. This immediately yields a characterisation of Xm,i via
the sets of ζm,i-legal words which means that

Xm,i =
{
w ∈ AZ

2 | F({w}) ⊂ D′m
}
. (2.3)

This constitutes another simplification of the definition of Xm,i in the cases i = 0
and i = m (besides the one given in Remark 1.10), respectively. Refer also to
Corollary 2.4 below in this context. Obviously, this approach is not restricted to
the NMS family.
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Our final goal from Section 2.2 on will be the mixture of all noble means
substitutions for an arbitrary but fixed natural number m. The substitutions of
this family are similar to each other in the following sense.

Let Fn := 〈a1 , . . . , an〉 be the free group, generated by the letters of An. For
an arbitrary substitution ϑ on the alphabet An and a fixed v ∈ Fn, we denote
by ϑv(w) := vϑ(w)v−1, for any w ∈ A∗n, the conjugate substitution to ϑ. As
indicated on page 4, we now consider the natural extension of substitution rules
in the sense of Section 1.2.2 by considering endomorphisms of Fn. This can be
done by defining ϑ(a−1

i ) :=
(
ϑ(ai)

)−1 for 1 6 i 6 n; see [Lot02, Sec. 2.3.5] for
background information. In this setting, we call a substitution non-negative if
the images of all ai consist of letters with exclusively non-negative exponents.
For w = w0w1 · · ·w` ∈ A∗n, the definition of ϑv implies

ϑv(w) = vϑ(w)v−1 = vϑ(w0)ϑ(w1) · · ·ϑ(w`)v−1

= vϑ(w0)v−1vϑ(w1)v−1v · · · v−1vϑ(w`)v−1

= ϑv(w0)ϑv(w1) · · ·ϑv(w`),

because we have v−1v = ε in Fn, wherefore it is enough to test conjugacy on
all ai ∈ An. Applying this to ϑ := ζm,j and v := ai−j for a fixed m ∈ N and
0 6 i, j 6 m, we get

ai−jζm,j(a)aj−i = ai−jajbam−jaj−i = aibam−i = ζm,i(a).
The equation for the letter b looks similarly and this implies that all ζm,i are
pairwise conjugate. Moreover, all ζm,i are non-negative substitutions, which
means that the agreement of all Xm,i is a special case of the following result.

Proposition 2.3 ([BG13, Prop. 4.6]). Let ϑ be a primitive substitution on the
finite alphabet An, and let v be a finite word such that ϑv is a non-negative
substitution as well. Then, ϑv is primitive and ϑ and ϑv define the same two-sided
discrete hull. �

Corollary 2.4. Let m ∈ N be arbitrary and fixed. Then, all members of Nm
define the same two-sided discrete hull.

Proof. This is an immediate consequence of Proposition 2.3 and the preceding
discussion. �

As Eq. (2.3) and Corollary 2.4 suggest, it is unnecessary to distinguish
the sets of ζm,i-legal words for different i. That justifies the suppression of
i-dependence in the notation of D′m and D′m,`, respectively. Still in the light of
Corollary 2.4, we define X′m as the noble means hull that is

X′m := Xm,0 = · · · = Xm,m.

For any w ∈ AZ
n, the reflection of w is defined by w̃ = (w̃i)i∈Z := (w−i−1)i∈Z,

relative to the reference point. Furthermore, w is quasi-palindromic if w contains
arbitrarily long palindromes as subwords and w is an infinite palindrome, if
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w̃ = Skw for some k ∈ Z. The two-sided discrete hull Xϑ of a substitution ϑ is
called reflection symmetric, if w ∈ Xϑ implies w̃ ∈ Xϑ and the same terminology
carries over to subsets of A∗n. If Xϑ contains at least one infinite palindrome, ϑ
is called palindromic.

Proposition 2.5 ([HKS95, Lem. 3.1]). If ϑ is a primitive substitution on the
alphabet An = {a1 , . . . , an}, with ϑ(ai) = pqi for all 1 6 i 6 n, where p and all
qi are palindromes, then ϑ is palindromic. �

Theorem 2.6 ([Tan07, Thm. 3.13]). If ϑ is a primitive substitution with fixed
point w ∈ AZ

2 , then F({w}) is reflection symmetric if and only if w is quasi-
palindromic. �

The following two properties of the substitutions ζm,i are of independent
interest.

Lemma 2.7. For any m ∈ N, the two-sided discrete hull X′m is reflection
symmetric.

Proof. Applying Proposition 2.5 with

p = ε, qa = am/2bam/2 and qb = a if m is even,
p = a, qa = a(m−1)/2ba(m−1)/2 and qb = ε if m is odd,

yields the palindromicity of ζm,i in the cases of

i = 1
2m and i = 1

2(m− 1) + 1.

Note that, in the special case of m = 1, we only have a semi-infinite fixed
point for ζ1,1 itself but due to Remark 2.1 this suffices to construct the correct
two-sided discrete hull. According to [Tan07, Lem. 3.10] the fixed points in
these cases are quasi-palindromic which is by Theorem 2.6 equivalent to D′m
being reflection symmetric. With the characterisation of X′m given in Eq. (2.3)
combined with Corollary 2.4, this implies the reflection symmetry of X′m. �

Lemma 2.8. If w ∈ A∗2, one has for any 0 6 i 6 m that

˜ζm,i(w)am−2i = am−2iζm,i(w̃).

Proof. If w = w0w1 · · ·w` then

˜ζm,i(w) =
(
ζm,i(w0) · · · ζm,i(w`)

)̃
= ˜ζm,i(w`) · · · ˜ζm,i(w0)

= ζm,m−i(w`) · · · ζm,m−i(w0)
= am−2iζm,i(w`)a2i−m · · · am−2iζm,i(w0)a2i−m

= am−2iζm,i(w̃)a2i−m. �

Let us sum up the properties we have collected about the family Nm as
follows.
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Lemma 2.9. For an arbitrary but fixed m ∈ N, each member of Nm is a
primitive and aperiodic Pisot substitution with unimodular substitution matrix.
Its two-sided discrete hulls Xm,i are uncountable and reflection symmetric, and
the Xm,i coincide for 0 6 i 6 m. �

2.2. The randomised case

In this section, we establish the fundamentals for the local mixture of
substitutions from the noble means family. Here, the term local means that,
for each letter x of some word w, we randomly apply an element of Nm to x,
for a fixed m ∈ N. This can be regarded as a generalisation of global mixtures
where some element of Nm is randomly chosen and then applied to all letters
in w. The local mixture in the special case of m = 1 was first considered in
[GL89, Sec. 5.1] and more than twenty years later in [Lüt10]. There, one also
finds heuristic considerations concerning the computation of topological entropy
and the spectral type of the diffraction measure. We begin this section with the
general idea of a random substitution.

Definition 2.10 (Random substitution). A substitution ϑ : A∗n −→ A∗n is called
stochastic or a random substitution if there are k1 , . . . , kn ∈ N and probability
vectors {

pi = (pi1 , . . . , piki) | pi ∈ [0, 1]ki and
ki∑
j=1

pij = 1, 1 6 i 6 n
}
,

such that

ϑ : ai 7−→


w(i,1), with probability pi1,

...
...

w(i,ki), with probability piki ,

for 1 6 i 6 n where each w(i,j) ∈ A∗n. The substitution matrix is defined by

Mϑ :=
( kj∑
q=1

pjq|w(j,q)|ai
)
ij
∈ Mat(n,Z).

Remark 2.11 (Randomised subword relation). In the stochastic situation we
agree on a slightly modified notion of the subword relation. For any v, w ∈ A∗n,
by v C• ϑk(w) we mean that v is a subword of at least one image of w under ϑk
for any k ∈ N. Similarly, by v =• ϑk(w) we mean that there is at least one image
of w under ϑk that coincides with v. �

Definition 2.12 (Irreducibility and primitivity for random substitutions). A
random substitution ϑ : A∗n −→ A∗n is irreducible if for each pair (i, j) with
1 6 i, j 6 n, there is a power k ∈ N such that ai C• ϑk(aj). The substitution ϑ
is primitive if there is a k ∈ N such that ai C• ϑk(aj) for all 1 6 i, j 6 n.
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Remark 2.13. As in the deterministic case, a random substitution ϑ is irre-
ducible (primitive) if and only if Mϑ is an irreducible (primitive) matrix. This
follows immediately from Definition 2.12 and Definition 1.2. �

Now, let m ∈ N and pm = (p0 , . . . , pm) be a probability vector that are
both assumed to be fixed. That means pm ∈ [0, 1]m+1 and ∑m

j=0 pj = 1. The
random substitution ζm : A∗2 −→ A∗2 is defined by

ζm :


a 7−→


ζm,0(a), with probability p0,

...
...

ζm,m(a), with probability pm,
b 7−→ a,

(2.4)

and the one-parameter family R = {ζm}m∈N is called the family of random noble
means substitutions (RNMS). We refer to the pj as the choosing probabilities and
call ζm(w) for any w ∈ A∗2 an image of w under ζm. Of course, the deterministic
cases of Section 2.1 (choose the corresponding pj = 1) and incomplete mixtures,
with several pj = 0, are included here, but we are mainly interested in the
generic cases where pm � 0. This is a standing assumption for the rest of the
treatment, where we occasionally comment on the disregarded cases if this seems
appropriate.

The substitution matrix of ζm in the sense of Definition 2.10 is given by

Mm :=
(∑m

j=0 pj |ζm,j(a)|a 1∑m
j=0 pj |ζm,j(a)|b 0

)
=
(
m 1
1 0

)
.

We do not distinguish in notation between the deterministic and the stochastic
case here, as the correct meaning will always be clear from the context.

Example 2.14 (Random Fibonacci substitution). One possible image of a | a
under ζ3

1 can be derived via

a | a
ζ1−−→ ba | ab

ζ1−−→ aab | aba
ζ1−−→ abbaa | baaab

ζ1−−→ · · ·

Black letters mean that the according image results from the action of ζ1 on b
whereas red and blue words indicate the two possibilities one has when evaluating
ζ1 on a. Note that the image w = abbaa | baaab is not legal with respect to any
of the two deterministic Fibonacci substitutions ζ1,0 and ζ1,1 because w contains
bb as a subword. �

Lemma 2.15. For all m ∈ N, the substitution ζm is primitive.

Proof. This is an immediate consequence of Definition 2.12. �

Remark 2.16 (Local vs. global mixtures). Note that, due to Corollary 2.4,
the global mixture of the substitutions in Nm would not enlarge the two-sided
discrete hull, whereas we will see shortly that the local mixture adds considerably
to X′m. �



20 2. NOBLE MEANS SUBSTITUTIONS

Remark 2.17 (ζm as a random variable). Below, it will be convenient to
interpret ζm as a random variable ζm : A∗2 −→ A∗2 with the possible outcomes

ζm(a) ∈
{
aibam−i | m ∈ N, 0 6 i 6 m

}
and ζm(b) = a.

Here, we do not distinguish in notation between the meaning of ζm as a substi-
tution rule and as a random variable but we agree on referring to ζkm(w) as a
realisation of w with respect to ζkm in this context. �

2.2.1. Legal and exact RNMS words. In the stochastic setting, a
slightly modified notion of legality of words is needed that incorporates all
possible images of b under ζkm in the sense of Remark 2.11.

Definition 2.18 (Legal and exact words). A word w ∈ A∗2 is called legal (or
ζm-legal) if there is a k ∈ N such that w C• ζkm(b). For ` > 0, we define

Dm :=
{
w ∈ A∗2 | w is ζm-legal

}
and Dm,` :=

{
w ∈ Dm | |w| = `

}
.

If w =• ζkm(b) for some k ∈ N0, we refer to w as an exact substitution word. We
define for any k > 1 the set of exact substitution words (of order k) as

Gm,k :=
{
w ∈ A∗2 | w =• ζk−1

m (b)
}
.

Obviously, all subwords of legal words are legal words again. Furthermore,
non-empty legal words have the property that they are mapped to non-empty
legal words by ζm because if w ∈ Dm, there is a k ∈ N with w C• ζkm(b). Applying
ζm once more, immediately leads to ζm(w) C• ζk+1

m (b) which is the legality of
ζm(w).

There is an alternative approach to the derivation of Gm,k via the following
recursively defined concatenation rule that will become an important tool when
studying entropy and diffraction later. For k > 3, we define

Gm,k :=
m⋃
i=0

m∏
j=0
Gm,k−1−δij

with Gm,1 := {b} and Gm,2 := {a} , (2.5)

where δij denotes the Kronecker function. The product in Eq. (2.5) is understood
via the concatenation of words, introduced on page 2. That the substitution-
based approach to exact words of Definition 2.18 actually provides the same
sets Gm,k as the one via the concatenation rule, follows from an easy proof by
induction over k. As all possible images ζm(a) have the same word lengths, we
can recursively compute the lengths of exact substitution words. For k > 3, we
define

`m,k := m`m,k−1 + `m,k−2 with `m,1 := 1 and `m,2 := 1. (2.6)

Here, we have |w| = `m,k for any exact substitution word w ∈ Gm,k. Furthermore,
we define Gm := limk→∞ Gm,k. Due to [Nil12, Prop. 7], this is a well-defined set
because for a fixed m ∈ N, k > 3 and r > 0 we have(

Gm,k
)
[0,`m,k−2] =

(
Gm,k+r

)
[0,`m,k−2].
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Remark 2.19 (Legal and exact words). It is immediate that not all ζm-legal
words can be exact, as one can see from the words aa, bb ∈ Dm,2 \ Gm,3. That
indicates |Gm,k| < |Dm,`m,k | for k > 3. Furthermore, one might suspect that the
sets of legal words are considerably enlarged when compared to the deterministic
situation (regard the word bb again) which will be discussed in Chapter 3 in
some detail. �

2.2.2. The RNMS hull. In the deterministic setting, we defined the two-
sided discrete hull of primitive substitutions via fixed points. In the context of
random substitutions, there is no direct analogue of a fixed point, which means
that we have to adjust the definition of the hull here.

Definition 2.20 (Two-sided discrete stochastic hull). For an arbitrary but fixed
m ∈ N, define

Xm :=
{
w ∈ AZ

2 | w is an accumulation point of
(
ζkm(a | a)

)
k∈N0

}
.

The two-sided discrete stochastic hull Xm is defined as the smallest closed
and shift-invariant subset of AZ

2 with Xm ⊂ Xm. Elements of Xm are called
generating random noble means words.

As Xm is a closed subset of the compact Hausdorff space AZ
2 , the two-

sided discrete stochastic hull is also compact. This implies that each sequence(
ζkm(a | a)

)
k∈N possesses at least one accumulation point which means that Xm

is non-empty.

Remark 2.21 (The role of pm). In principle, the sets Dm,`, Gm,k and the
stochastic hull Xm depend on the choice of pm. For example, the word bb is
no longer legal if one has p0 = 0 or pm = 0. In contrast, the above sets are
invariant under different choices of pm, as long as pm � 0. As this is our standing
assumption, we do not explicitly emphasise the pm-dependence. �

The next result characterises Xm by the ζm-legal subwords as we have
similarly seen before in the deterministic case in Eq. (2.3) on page 15. The
special case of m = 1 can be found in [Lüt10, Rem. 7].

Proposition 2.22. For any m ∈ N, we have
(a) Xm =

{
w ∈ AZ

2 | F({w}) ⊂ Dm
}
,

(b) Xm is invariant under ζm,
(c) X′m ⊂ Xm and X′m 6= Xm.

Proof. Let (v(n))n∈N0 be a two-sided growing sequence, that is defined by
v(n) := ζm(v(n−1)) with any ζm-legal seed v(0). As Xm is a compact space, there
exists a convergent subsequence (v(ni))i∈N with limi→∞ v

(ni) = v, where the
limit is taken in the local topology. By the definition of the stochastic hull, we
have v ∈ Xm and, due to its shift invariance, we also get Skv ∈ Xm for all k ∈ Z
as well as {Skv | k ∈ Z} ⊂ Xm, where the closure is again taken in the local
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topology. By the definition of Xm, we now know that F(
{
Skv | k ∈ Z

}
) ⊂ Dm.

As this reasoning is valid for an arbitrary element in Xm, we find

Xm ⊂
{
w ∈ AZ

2 | F({w}) ⊂ Dm
}
.

Conversely, let u ∈
{
w ∈ AZ

2 | F({w}) ⊂ Dm
}
. Then, u[−`,`] ∈ Dm for all

` ∈ N and by the definition of Dm, there is a sequence
(
Sj`ζk`m (b)

)
`∈N with j` ∈ Z

and k` ∈ N such that
u[−`,`] =

(
Sj`ζk`m (b)

)
[−`,`]

for all ` ∈ N. Then, (a) is implied by lim`→∞ S
j`ζk`m (b) = u. Assertion (b) follows

by the observation that ζm(Dm) ⊂ Dm, as noted on page 20, and an application
of (a). For the proof of the first part of (c), it is enough to notice that Xm
contains the fixed points of all ζm,i (or ζ2

m,i). That the inclusion is proper can be
deduced from bb /∈ D′m for all m ∈ N, combined with an application of (a). �

Remark 2.23 (Identical realisations). Let

r : Z −→ A∗2 ×A∗2, i 7−→
(
ζ(i)
m (a), ζ(i)

m (b)
)

be a fixed bi-infinite realisation of the random variable ζm, where ζ
(i)
m denotes

the realisation at the index i. Then, we define the map

Rr : AZ
2 −→ AZ

2 , w = (wi)i∈Z 7−→
(
pr(wi)

)
i∈Z,

where pr projects wi to the first component of ri if wi = a and to the second
component if wi = b. Now, two elements v, w ∈ Xm are called identically realised
if both v and w are mapped via Rr with respect to the very same realisation r.

This concept carries over to arbitrary random substitutions on An and can
be applied to finite and semi-infinite words as well. �

Remark 2.24. Note that the substitution ζm is not one-to-one on Xm. To
see this, let us consider the case m = 1. The general case can be treated
analogously. Let w ∈ AZ

2 be the fixed point of ζ2
1,1 with legal seed a | a. According

to Proposition 2.22(c), we know that w ∈ X1. By considering the first iterates
of ζ2

1,1, it is easy to see that w is of the form w = Pba |S. Due to Remark 2.1,
ζ1,1(w) = w′ is the fixed point of ζ2

1,1 with legal seed b | a and is of the form
w′ = Pab |S ∈ X1. Applying ζ1 to w and w′ yields

ζ1(w) = ζ1(P )
{
aab

aba

}
| ζ1(S) and ζ1(w′) = ζ1(P )

{
aba

baa

}
| ζ1(S).

Here, in the computation of ζ1(w) and ζ1(w′), we assume that P and S are
identically realised. As the word aba appears in both images in the middle
part, we conclude that although w 6= w′ there exist images of w and w′ with
ζ1(w) = ζ1(w′). �

Remark 2.25 (Pre-images in Xm). Restricting to identical realisations in the
sense of Remark 2.23, the continuity of ζm is just a special case of Remark 1.1.
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Now, let w ∈ Xm be any element of the two-sided discrete stochastic hull. We
want to show that there is at least one v ∈ Xm with ζm(v) =• w. Finding pre-
images is obviously connected with the choice of a concrete realisation which
means that we can make use of the continuity of ζm, that was established in
Remark 1.1, here. Recall that, due to Proposition 2.22, all finite subwords of
w are ζm-legal. This means that there is a k ∈ N such that for all ` ∈ N0
the centrally positioned subword w[−`,`] of w is a subword of ζkm(b) and we
choose k minimal with this property. This implies that there is some image
v` := ζk−1

m (b) with w[−`,`] C• ζm(v`) and we choose the indexing of ζm(v`) such
that its subword w[−`,`] is again centrally positioned around the reference point.
Due to the compactness of Xm, there is a sequence (`i)i∈N such that the limit
v := limi→∞ v`i exists. Putting things together yields

w = lim
i→∞

w[−`i,`i] = lim
i→∞

ζm(v`i) = ζm
(

lim
i→∞

v`i
)

= ζm(v).

Here, the second equality is the definition of the local topology and the third
equality the continuity of ζm. As we saw in Remark 2.24, the pre-image of
any such w is in general not uniquely defined. This is a further difference to
the purely deterministic cases where this uniqueness holds and this property
is known as unique recognisability; we refer to [Que10, Sec. 5.5.2] and [Fog02,
Sec. 7.2.1] for background. �

Definition 2.26 (Topologically transitive). Let X be a metric space and
T : X −→ X a continuous map. The system (X,T ) is topologically transi-
tive if, for every pair of non-empty open sets U , V ⊂ X, there is a k ∈ Z such
that T k(U) ∩ V 6= ∅.

Theorem 2.27 ([Wal00, Thm. 5.8]). Let X be a compact metric space and
T : X −→ X be a homeomorphism. The system (X,T ) is topologically transitive
if and only if there exists a point x ∈ X such that its orbit

{
T k(x) | k ∈ Z

}
is

dense in X. �

The following Proposition is a generalisation of the corresponding result in
the special case of m = 1 that was proved in [Lüt10, Thm. 5].

Proposition 2.28. For any m ∈ N, the system (Xm, S) is topologically transi-
tive.

Proof. Consider v ∈ X′m ⊂ Xm. As bb /∈ D′m,2, the letter a is relatively dense in
v. We define a sequence (w(k))k∈N by w(0) := v andw(k) := ζkm(w(0)) such that the
first |Gm,k+2| a’s, positioned centrally around the marker of w(0), are bijectively
mapped by ζkm onto the words in Gm,k+2. This construction directly implies
(w(k))k∈N ⊂ Xm by Proposition 2.22(b) and Gm,k+2 ⊂ F({w(k)}). According to
[Nil12, Prop. 10], we get Dm,`m,k+1

⊂ F(Gm,k+2) for all k > 2 which implies
Dm,q ⊂ F(Gm,k+2) for all q 6 `m,k+1. We end up with Dm,q ⊂ F({w(k)}) for all
q 6 `m,k+1. As Xm is a compact metric space, there is a subsequence

(
w(ki)

)
i∈N
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converging to a word w ∈ Xm and Dm ⊂ F({w}) which means

{Skw | k ∈ Z} = Xm.

The assertion follows by an application of Lemma 1.9 and Theorem 2.27. �

The bi-infinite word w, constructed in the proof of Proposition 2.28, is the
closest analogon to a fixed point that we can reach in the stochastic setting.
In all deterministic cases of N , one knows that for all w ∈ X′m, the shift orbit
{Skw | k ∈ Z} is dense in X′m. This stronger property is called the minimality
of the system (X′m, S) and it applies to (deterministic) primitive substitutions
in general [Que10, Prop. 5.5]. Note that the system (Xm, S) cannot be minimal
because of Proposition 2.22(c).

2.2.3. RNMS as a stochastic process. As pointed out on page 18, the
locality of ζm-applications means that we decide on each occurrence of the letter
a separately which of the m+ 1 possible realisations we choose. This amounts to
(m+ 1)|w|a different realisations of any word w ∈ A∗2 under ζm. Furthermore, we
can attach to each of the possible outcomes of ζkm(b) for any k ∈ N its realisation
probability that results from the tree structure that is indicated in Figure 2.2.

Here, we have to cope with a slight technical difficulty. Interpreting successive
applications of ζm as a graph, Figure 2.2 indicates that the leaves at an arbitrary
depth k need not be distinct. This means that in general there is more than one
path from the root b to any exact word w =• ζkm(b). Attaching the realisation
probabilities to these words, we would rather identify leaves containing equal
words and suitably attach a single realisation probability. This can be formalised
as follows. Firstly, we introduce a map that identifies equal words and sums
their realisation probabilities. To this end, consider a family S :=

{
(wi, pi)

}
i∈I ,

for a finite index set I, consisting of pairs that hold finite words in A∗2 in
the first component and real numbers in the second. Now, we define the set
{wi1 , . . . , win} := ⋃

i∈I{wi} where {i1 , . . . , in} ⊂ I and n ∈ N. Note that we
have identified multiple occurrences of words in S and now suitably attach real
numbers. Therefore, let

qk :=
∑
i∈I,

wi=wk

pi for all k ∈ {i1 , . . . , in}.

Then, we define a map h via h(S) :=
{
(wi1 , qi1) , . . . ,(win , qin)

}
. There are

precisely (m+ 1)|w|a sequences

t :=
(
t1, t2 , . . . , t|w|a

)
∈
{
0 , . . . ,m

}|w|a =: T (w),

corresponding to all possible realisations of any word w ∈ A∗2 under ζm. For any
family S := {(wi, pi)}i∈I , with a finite index set I, we define a new map, again
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b a
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baaba
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ababa
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Figure 2.2. The graph shows all possible realisations of ζ4
1 (b),

provided p1 � 0. The red path represents one of the 16 possible
realisations of ζ4

1 (b). Note that not all images are distinct and in
particular, the realisation probability for the word aabba equals
p2

0p
2
1.

denoted as ζm, by

ζm(S) := h

{ ⋃̇
(w,pw)∈S

( ⋃̇
t∈T (w)

{(
ζ(t)
m (w), pw

∏
k∈t

pk

)})}
,

where ζ(t)
m (w) refers to the realisation of w with respect to t. Note that the

disjoint union is meant to preserve the multiplicity of equal elements because h
still has to cope with the corresponding probabilities. As the intuition behind this
procedure is rather obvious, we do not aim to be more rigorous at this point. Now,
we inductively define the attachment of realisation probabilities to exact RNMS
words. Provide the word b with the probability 1 and let ζm

({
(b, 1)

})
:=
{
(a, 1)

}
.

Now, assume that the family of pairs

ζk−1
m

({
(b, 1)

})
=
{
(wi, pi)

}
i∈I

with all wi distinct is already defined. Then, we set

ζkm
({

(b, 1)
})

:= ζm

(
ζk−1
m

({
(b, 1)

}))
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for k > 2. This defines a stochastic process (see [DV-J03] for background
information) that we we will refer to as (Zm,k)k∈N :=

(
ζk−1
m

({
(b, 1)

}))
k∈N.

Next, we deduce a stochastic process (Gm,k)k∈N, based on the concatenation
rule of Eq. (2.5). To this end, we introduce the (non-commutative) relation

� :
(
A∗2 × [0, 1]

)
×
(
A∗2 × [0, 1]

)
−→ A∗2 × [0, 1],

(v, pv)� (w, pw) 7−→ (vw, pvpw),
which means that we have concatenation of words in the first component and
multiplication of real numbers in the second. Moreover, we define the family

S � T :=
{
(v, pv)� (w, pw) | (v, pv) ∈ S, (w, pw) ∈ T

}
,

for families S := {(vi, pi)}i∈I , T := {(wj , pj)}j∈J with any finite index sets I
and J . Based on this, for any k > 3, we define

Gm,k := h

{ m⋃̇
i=0

(( m⊙
j=0

Gm,k−1−δij

)
�
{
(ε, pi)

})}
, (2.7)

with Gm,1 :=
{
(b, 1)

}
and Gm,2 :=

{
(a, 1)

}
. The next result validates the

intuition that we need not distinguish the stochastic processes (Zm,k)k∈N and
(Gm,k)k∈N.

Lemma 2.29. The sequences (Zm,k)k∈N and (Gm,k)k∈N define identical sto-
chastic processes.

Proof. First, we show by induction over n ∈ N that ζm(Gm,n) = Gm,n+1. This
is obvious for n = 1, 2 and we assume that the claim holds for all k 6 n. Then,

ζm(Gm,n+1) = h

{ m⋃̇
i=0

(( m⊙
j=0

ζm(Gm,n−δij )
)
�
{
(ε, pi)

})}

= h

{ m⋃̇
i=0

(( m⊙
j=0

Gm,n+1−δij

)
�
{
(ε, pi)

})}
= Gm,n+2,

(2.8)

where the first equality is implied by the Bernoulli structure of the process. The
second equality, as well as the third, follow by induction and the definition of
the set Gm,n+2. The assertion now follows again by induction because n-fold
application of Eq. (2.8) yields

Zm,n+1 = ζnm
(
{(b, 1)}

)
= ζnm(Gm,1) = ζm(Gm,n) = Gm,n+1. �

Now, if w ∈ Gm,k, there is a pair (w, pw) ∈ Gm,k and pw is called the realisation
probability of the exact word w induced by the stochastic process Gm,k.



CHAPTER 3

Topological entropy

This chapter is devoted to the examination of the amount of disorder (or
complexity) inherent in the substitution ζm. A suitable starting point for the
measurement of disorder of an arbitrary substitution rule ϑ on a finite alphabet
An is the analysis of the number of legal words with a fixed length. We refer to the
map C : N −→ N, assigning to the natural number ` the number of ϑ-legal words
of this length, as the complexity function of ϑ. In general, we are less interested in
the explicit values of this function but rather in the asymptotic behaviour of C(`)
as `→∞. As C(`) > `+ 1 for all aperiodic substitutions [Que10, Prop. 5.11],
the complexity function alone is an insufficient tool when one is interested in
more sophisticated assertions on disorder. One reasonable requirement for a
decent measure in this regard is that it assigns to any substitution a real number
between 0 and a constant K > 0. Taking the values of C into account, to
structurally easy substitution rules (as periodic ones) should be assigned the
value 0 and K to the full n-shift on the alphabet An. For other substitutions
the measure should increase according to C between 0 and K.

Definition 3.1 (Topological entropy). Let ϑ be a substitution on the alphabet
An and C the complexity function of ϑ. Then, we denote by

H := lim
`→∞

log
(
C(`)

)
`

(3.1)

the topological entropy of ϑ.

Note that the logarithm in Eq. (3.1) is understood to be the natural logarithm
with base e. It might seem tempting to decide for a base identical to the number
of letters in the considered alphabet, as this would normalise H to 1 with respect
to the full n-shift, but in order to stay consistent with the existing literature
[Khi57, GL89] and [Nil12], concerning the noble means setting, we stick to the
above choice.

Obviously, the complexity function meets C(k + `) 6 C(k)C(`) for all k,
` ∈ N, which makes H a subadditive function. The existence of the limit in
Eq. (3.1) in this setting is a well-known result; see [Gri99, Thm. II.2] and [Hil48,
Thm. 6.6.1] for a proof which is based on Fekete’s Lemma [Fek23].

For an overview of further concepts of entropy, we refer to [Ber95]. The
computation of diverse notions of entropy along several examples of random
substitutions has recently been undertaken in [Win11].

27
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We have seen in Chapter 2 that each member of the noble means family is a
primitive and aperiodic substitution, which means that each single corresponding
complexity function meets `+ 1 6 C(`) 6 K` [Que10, Prop. 5.12] for a constant
K that is independent of `. It is not difficult to prove that for any m ∈ N, the
fixed points of all members of Nm are so-called Sturmian sequences which means
that the complexity function satisfies C(`) = ` + 1 for all ` ∈ N0; see [Lot02,
Ch. 2] for general background.

Proposition 3.2. For any m ∈ N, each fixed point of any member of Nm is a
Sturmian sequence.

Proof. Let

τ0 :
{
a 7−→ b,

b 7−→ a,
τ1 :

{
a 7−→ ab,

b 7−→ a,
τ2 :

{
a 7−→ ba,

b 7−→ a,

be the generators of the Sturmian monoid; see [Lot02, Ch. 2] for background.
Then, it is easy to compute that

ζm,i = τ0 ◦
(
τ0 ◦ τ2

)m−i ◦ (τ0 ◦ τ1
)i
.

This implies that each ζm,i is a Sturmian morphism. According to [Lot02,
Thm. 2.3.23], the Sturmian morphisms are precisely the non-negative invertible
substitutions (see below) on F2. As each fixed point of a primitive and invertible
substitution is Sturmian [Fog02, Cor. 9.2.7], this implies the assertion. �

Extending the notion of substitution rules to F2, as we have previously done
on page 16, we could have also worked with the inverse of ζm,i directly. Here,
a substitution ϑ : F2 −→ F2 is invertible if there is a map ϕ : F2 −→ F2 with
(ϑ ◦ ϕ)(w) = (ϕ ◦ ϑ)(w) = w for all w ∈ F2. In the noble means case we find

ζ−1
m,i :

{
a 7−→ b,

b 7−→ b−iabi−m,
where M−1

m = M−1
ζm,i

=
(

0 1
1 −m

)
is its (generalised) substitution matrix. The detour via the Sturmian monoid
and the corresponding decomposition of ζm,i is an interesting alternative and
plays a role in the computation of Rauzy fractals and cutting sequences; refer to
[BFS12] and references therein.

Corollary 3.3. The topological entropy of ζm,i vanishes for all m ∈ N and
0 6 i 6 m.

Proof. This is an immediate consequence of Proposition 3.2 and Definition 3.1.
�

These results are not surprising due to the deterministic setting, whereas
the picture changes in the stochastic situation. In Section 3.1, we will observe
that the computation of the complexity function Cm : N −→ N, ` 7−→ |Dm,`|
of ζm is a difficult problem for general `, and we will give a closed formula for
words of length ` 6 2m+ 2. In Section 3.2, we briefly review an argument by
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Nilsson [Nil12] in order to compute the topological entropy of ζm without the
explicit knowledge of Cm and inspect its behaviour as m→∞.

3.1. Complexity of the RNMS

The complexity of the substitution ζm is measured by the sets of legal
words and their cardinalities. Here, we show a simple way of describing the
structure of legal words and we specify a closed expression for |Dm,`| in the case
of 0 6 ` 6 2m + 2. The explicit computation of the complexity function for
arbitrary word lengths stays an open problem. Recall that we assume pm � 0,
which means that we have to take all m+ 1 possible images of the letter a into
account.

We attack the problem via two simple observations. Firstly, the structure of
legal words is characterised by the occurrence numbers and legal distributions
of the letter b. Secondly, the application of ζm to the letter a produces the letter
b exactly once. This leads to the following key property.

Lemma 3.4. Let m ∈ N be fixed. For any 0 6 ` 6 2m+ 2, one has a` ∈ Dm,`.

Proof. It is true that b2 ∈ Dm,2, but bk with k > 3 is not an element of
Dm,k. The subword consisting solely of consecutive a’s of maximal length can
be deduced from

ba2m+2b C• ζm(ab2a),
where it is easy to check that ab2a ∈ Dm,4 for any m ∈ N. This implies the
assertion. �

Lemma 3.5. Let m ∈ N be fixed. For any 0 6 ` 6 m+ 2, one has

|Dm,`| = 1 +
(
`+ 1

2

)
.

Proof. Let w ∈ Dm,`, so |w|b 6 2. Assume |w|b > 3, then there is a legal word
v with |v|a > 3 and w C• ζm(v). Without loss of generality, let w C• ζm(a3) such
that |w| is minimal. Then, we get

ambamb2am C• ζm(a3)

and consequently |w| > m + 3, which is a contradiction to our assumption.
Furthermore, it is true that a2 ∈ Dm,2 and thus all subwords of length ` of
ζm(a2) are elements of Dm,`. It is easy to check that all words w ∈ A`2 with
|w|b ∈ {0, 1, 2} appear as a subword of ζm(a2). Consequently, we have

|Dm,`| =
(
`

0

)
+
(
`

1

)
+
(
`

2

)
= 1 +

(
`+ 1

2

)
. �

This sequence is listed in the On-Line Encyclopedia of Integer Sequences
[OEIS] under the reference number A000124 and it is known as the lazy caterer’s
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sequence. It computes the maximal number of pieces formed when slicing a
pancake with ` cuts.

Lemma 3.6. Let m ∈ N be fixed. For m+ 3 6 ` 6 2m+ 2, one has

|Dm,`| =
3∑
i=0

(
`

i

)
− 1

6m(m+ 1)(3`− 2m− 4). (3.2)

Proof. Analogously to the proof of Lemma 3.5, we conclude that |w|b 6 3 for
|w| 6 2m+2 by applying ζm to the word a4, which is legal because of Lemma 3.4
and m > 1. Obviously, all words of length ` containing the letter b at most twice
are again elements of Dm,`. Between three subsequent b’s, the letter a must occur
at least m times, as we can see from ambaibam−ibam C• ζm(a3). As the word b3
is not legal, we have two boundary conditions for the combinatorial inspection
of all subwords of ζm(a3). It is again easy to check that all w ∈ A`2 with |w|b = 3
and under the two boundary conditions are subwords of ζm(a3), hence there
cannot be more. We may distinguish two possibilities for the distribution of the
three b’s in a word w ∈ Dm,`.

Two b’s in a row. Without loss of generality, we may look at a general image
of the word a3 that is

am−iaib2amajbam−j C• ζm(a3). (3.3)

As we are interested in subwords of length m+ 3 6 ` 6 2m+ 2, this leads to
the equation ` = m+ 3 + (i+ j) with i+ j 6 m− 1. According to Eq. (3.3), the
number of possible distributions is obviously symmetric in the position of the
word b2. Consequently, we have exactly

2
`−m−2∑
k=1

k = (`−m− 2)(`−m− 1)

possibilities of constructing a legal word in this case.
Three isolated b’s. Let g(a, b) be the occurrence number of the letter a

between thrice the letter b. Then, we have m 6 g(a, b) 6 ` − 3. We list all
possible images according to the numbers g(a, b). That means we consider

am−ibaiajbam−jakbam−k C• ζm(a3)

and we define vi,j,k := baiajbam−jakb with |vi,j,k| = m+ 3 + (i+ k). By defining
p := i + k, we get ` −m − p − 2 possible images for fixed p. As we also have
m+ p− 1 possibilities to distribute m+ p− 1 times the letter a between three
b’s, we finally get

`−m−3∑
i=0

(`−m− i− 2)(m+ i− 1)

possibilities of constructing a legal word.
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m \ ` 0 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 4 7 13 22 39 67 108 183 305 510 851
2 1 2 4 7 11 19 32 50 83 136 211 342 549
3 1 2 4 7 11 16 26 42 65 95 149 234 358
4 1 2 4 7 11 16 22 34 53 80 116 161 240
5 1 2 4 7 11 16 22 29 43 65 96 137 189
6 1 2 4 7 11 16 22 29 37 53 78 113 159
7 1 2 4 7 11 16 22 29 37 46 64 92 131
8 1 2 4 7 11 16 22 29 37 46 56 76 107
9 1 2 4 7 11 16 22 29 37 46 56 67 89
10 1 2 4 7 11 16 22 29 37 46 56 67 79

Table 3.1. The cardinalities of Dm,` for 1 6 m 6 10 and for
0 6 ` 6 12 are shown. In each row, all numbers are computed
by the formulas given in Lemma 3.5 and Lemma 3.6 up to the
underlined entry. The computation of the remaining entries is
based on recursive strategies as described in [Nil12].

Adding the two cases leads to

(`−m− 2)(`−m− 1) +
`−m−3∑
i=0

(`−m− i− 2)(m+ i− 1)

possibilities. Together with Lemma 3.5 that covers the cases |w|b 6 2, and by
direct algebraic manipulation we get Eq. (3.2). �

It is possible to further extend this formula to 2m+ 3 6 ` 6 2m2 + 3m+ 2
by the same method because

(amb)2m+2 bam C• ζm(a2m+3),
which leads to a minimum word length of (2m+ 1)(m+ 1) + 2 = 2m2 + 3m+ 3
for a word v with |v|b > 2m+ 3. Note that this bound is not sharp any more
because the word a2m+3 is not legal, which means that a legal word, generating
a word containing 2m+ 3 times the letter b must have a strictly larger length
than 2m+ 3.

Furthermore, the problem of counting legal subwords under the assumption
that several of the choosing probabilities vanish, can be treated in the same
fashion.

Remark 3.7 (Extension to arbitrary word lengths). Unfortunately, this method
is ineligible for deriving the cardinalities of the sets of ζm-legal words with an
arbitrary word length. Applying the substitution to legal words, which we
understand the structure of, in order to control the images and understand their
structure, leads to a recursive problem. �
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`1,k 2 3 5 8 13 21

|D1,`1,k | 4 7 22 108 1356 65800
|G1,k| 2 3 8 30 288 10080

Table 3.2. Comparison of the number of legal and exact words
of length `1,k for 3 6 k 6 8.

3.2. Topological entropy of the RNMS

From now on, the topological entropy of ζm is denoted by Hm. As we have
seen in Section 3.1, we cannot directly compute Hm via Cm. In [GL89], the
authors computed H1 under the implicit assumption that

lim
n→∞

log
(
C1(`1,n)

)
`1,n

= lim
n→∞

log
(
|G1,n|

)
`1,n

. (3.4)

As Table 3.2 suggests, the sets of legal and exact words differ significantly in
magnitude which makes Eq. (3.4) a non-trivial assertion that was recently proved
in the following generality.

Theorem 3.8 ([Nil12, Thm. 3]). For an arbitrary but fixedm ∈ N, the logarithm
of the growth rate of the size of the set of exact random noble means words equals
the topological entropy of the random noble means chain, that is

Hm = lim
n→∞

log
(
Cm(`m,n)

)
`m,n

= lim
n→∞

log
(
|Gm,n|

)
`m,n

. �

Recall that limn→∞ Gm,n was introduced on page 20. This asymptotic identity
provides the simplification we need for the computation ofHm as we can explicitly
compute the size of all Gm,n.

Proposition 3.9 ([Nil12, Prop. 6]). Let m ∈ N be fixed and n > 3. Then,

|Gm,n| =
n−1∏
i=2

(
m(n− i) + 1

)dm,i−1 ,

where (dm,n)n∈N is the sequence defined by dm,n := mdm,n−1 + dm,n−2 with
dm,1 := 1 and dm,2 := m− 1. �

Via a standard approach [GKP94, Sec. 7.3] for solving linear recursions, we
achieve explicit representations of the sequences `m,n and dm,n which read

`m,n = (1− λ′m)λn−1
m − (1− λm)(λ′m)n−1

λm − λ′m
,

dm,n = (m− 1− λ′m)λn−1
m − (m− 1− λm)(λ′m)n−1

λm − λ′m
,



3.2. TOPOLOGICAL ENTROPY OF THE RNMS 33

m Hm m Hm m Hm m Hm
1 0.444399 6 0.287298 11 0.210664 16 0.168566
2 0.408550 7 0.267301 12 0.200411 17 0.162292
3 0.371399 8 0.250127 13 0.191221 18 0.156524
4 0.338619 9 0.235230 14 0.182933 19 0.151199
5 0.310804 10 0.222185 15 0.175417 20 0.146268

Table 3.3. Topological entropy Hm for 1 6 m 6 20.

for fixed m ∈ N and all n > 1. We obtain

lim
n→∞

dm,n−i
`m,n

= lim
n→∞

(m− 1− λ′m)λn−1−i
m − (m− 1− λm)(λ′m)n−1−i

(1− λ′m)λn−1
m − (1− λm)(λ′m)n−1

= m− 1− λ′m
1− λ′m

· 1
λim

= λm − 1
1− λ′m

· 1
λim

for all i ∈ N because limn→∞(λ′m)n = 0 for any m ∈ N. By an application
of Theorem 3.8 and of Proposition 3.9, the topological entropy can now be
represented as

Hm = lim
n→∞

log
(
|Gm,n|

)
`m,n

= lim
n→∞

log
(∏n−1

i=2 (m(n− i) + 1)dm,i−1
)

`m,n

= lim
n→∞

n−1∑
i=2

dm,n−i
`m,n

log
(
m(i− 1) + 1

)
= λm − 1

1− λ′m

∞∑
i=2

log
(
m(i− 1) + 1

)
λim

> 0.

In [GL89], on the (implicit) basis of Theorem 3.8, the entropy per letter for
m = 1 is computed to be

H1 =
∞∑
i=2

log(i)
λi+2

1
≈ 0.444399 > 0,

which can be recovered here because (λ1−1)/(1−λ′1) = 1/λ2
1. Refer to Table 3.3

for numerical values of Hm with 1 6 m 6 20 and to Figure 3.1 for an illustration
of the behaviour of Hm for larger m. These approximations are consistent with
the results of Section 3.1. There, within the manageable bounds of word lengths,
we have seen that the number of legal subwords of an arbitrary but fixed length
decreases if the parameter m grows. This is nothing but a reformulation of
decreasing entropy. Independently of Section 3.1, this behaviour is not surprising
because the lengths of the images ζm(a) grow strictly in m. Consequently,
growing parts of any element in Xm are completely characterised by ζm(a) which
intuitively suggests a decreasing behaviour of Cm in m. This intuition can be
made rigorous as follows.
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Figure 3.1. Topological entropy Hm for 1 6 m 6 1000.

Proposition 3.10. For any m ∈ N, one has Hm > Hm+1. In addition, the
topological entropy satisfies Hm

m→∞−−−−→ 0.

Proof. For the proof of the first part, we represent Hm in the form

Hm = λm − 1(
1− λ′m

)
λ

3/2
m

∞∑
i=1

log(mi+ 1)
λ
i−1/2
m

and define

P(m) := λm − 1(
1− λ′m

)
λ

3/2
m

and S(m) :=
∞∑
i=1
Si(m) :=

∞∑
i=1

log(mi+ 1)
λ
i−1/2
m

.

Interpreting P as a function R+ −→ R+, its first derivative with respect to m
reads

d
dmP(m) = − m− 4

2
√
m2 + 4

(
1− λ′m

)2
λ

3/2
m

and is strictly negative for m > 4. Analogously, the first derivative of the ith
summand Si(m) of the second factor reads

d
dmSi(m) = −

λ
1/2−i
m

(
(2i− 1)(im+ 1) log(im+ 1)− 2i

√
m2 + 4

)
√

2
√
m2 + 4(im+ 1)

.

For all i ∈ N, the sign of d
dmSi(m) only depends on the sign of the term

S ′i(m) := (2i− 1)(im+ 1) log(im+ 1)− 2i
√
m2 + 4.

In the case of m > 5, we find that S ′1(m) > 0 and S ′i(m) < S ′i+1(m) for all i ∈ N.
This implies the monotonic behaviour of the factors P(m) and S(m) and therefore
also of the product Hm in the case of m > 5. The cases m ∈ {1, 2, 3, 4, 5} can be
estimated separately; see also the numerical values of Table 3.3. For the proof
of the second part, recall that differentiation of the geometric series for x ∈ R
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and |x| < 1, yields
∞∑
i=1

ixi−1 = d
dx

∞∑
i=0

xi = d
dx

1
1− x = 1

(x− 1)2 . (3.5)

Then, for m > 1 and with log(x+ 1) 6
√
x for x > 0, we get

λm − 1
1− λ′m

∞∑
i=1

log(mi+ 1)
λi+1
m

6
λm − 1
1− λ′m

∞∑
i=1

√
mi

mi+1

6
λm − 1
1− λ′m

1
m
· 1√

m

∞∑
i=1

i
( 1
m

)i−1

and because of Eq. (3.5) this is

= λm − 1
1− λ′m

1
m
· 1√

m

1
(1/m− 1)2 .

As m→∞, we have

lim
m→∞

λm − 1
1− λ′m

1
m
· 1√

m

1
(1/m− 1)2

= lim
m→∞

λm − 1
1− λ′m

1
m
· lim
m→∞

1√
m

1
(1/m− 1)2

= lim
m→∞

1
1/m3/2 − 2/m1/2 +m1/2 = 0.

The last equality holds because λm/m tends to 1 as m→∞, and λ′m to 0 as
stated before. Finally, this proves limm→∞Hm = 0. �





CHAPTER 4

Frequency of RNMS subwords

In the context of (deterministic) primitive substitution rules ϑ on An, one
knows that the frequency of each letter exists and that it is encoded in the
statistically normalised right PF eigenvector of Mϑ. In [Que10, Sec. 5.4.1], the
concept of the induced substitution ϑ` is introduced, where ϑ` is again a primitive
substitution [Que10, Lem. 5.3] on the alphabet of ϑ-legal words of length `.
Consequently, the statistically normalised right PF eigenvector of the induced
substitution matrix holds the frequencies of these legal words [Que10, Cor. 5.4].

In this chapter, we aim at a generalisation of Queffelec’s method to the
stochastic situation of the random noble means cases. Here, it is not enough
to prove the primitivity of some induced substitution matrix but the interpre-
tation of the entries of the statistically normalised right PF eigenvector as the
frequencies of legal subwords will require some ergodicity argument.

Section 4.1 is devoted to the essentials about the induced substitution rule
concerning the random noble means cases and a remarkable property of the
eigenvalue spectrum of the induced substitution matrices is derived that has also
been observed for (deterministic) primitive substitution rules [Que10, Prop. 5.19].
In Section 4.2, we will deal with the construction of a shift-invariant probability
measure µm on Xm and we will prove the ergodicity of µm.

4.1. The induced substitution

In the following, the idea is to consider a substitution (ζm)` that acts on the
alphabet Dm,` of ζm-legal words of length `. Here, we denote D∗m,` as the set of
finite words with respect to this alphabet. In order to get the frequencies of finite
subwords right, the definition of (ζm)` has to incorporate the different lengths
of the images ζm(a) and ζm(b). This guarantees that subwords are neither over-
nor undercounted relative to each other. As we deal with the stochastic situation
here, we also have to take the realisation probabilities of subwords in the image
of some word w ∈ Dm,` under ζm into account.

If w = w0w1 · · ·w`−1 is a word of length `, recall that w[i,j] denotes the
subword wi · · ·wj C w of length j − i+ 1 for 0 6 i 6 j 6 `− 1. In the light of
Definition 2.10, we introduce the notion of the substitution (ζm)` induced by
ζm as follows.

37
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Definition 4.1 (Induced substitution). Let ` ∈ N and ζm : A∗2 −→ A∗2 be a
random noble means substitution for some fixed m ∈ N. Then, we refer to

(ζm)` : D∗m,` −→ D∗m,`

as the induced substitution defined by

(ζm)` : w(i) 7−→


u(i,1) :=

(
v

(i,1)
[k,k+`−1]

)
06k6|ζm(w(i)

0 )|−1
, with probability pi1,

...
...

u(i,ni) :=
(
v

(i,ni)
[k,k+`−1]

)
06k6|ζm(w(i)

0 )|−1
, with probability pini ,

where w(i) ∈ Dm,` and v(i,j) ∈ Dm is an image of w(i) under ζm with probability
pij .

Note that Definition 4.1 is not restricted to the RNMS cases but works for
any random substitution on An when the obvious modifications are considered.
In particular, it is compatible with ζkm. Recall that we assume pm � 0 which
means that the set {v(i,1) , . . . , v(i,ni)} consists of all possible images of w(i)

under ζm. This leads to a well-defined substitution rule because

|ζm(w(i))| = |ζm(w(i)
0 )ζm(w(i)

[1,`−1])| > |ζm(w(i)
0 )|+ `− 1.

Remark 4.2. For w ∈ D∗m,`, we have

(ζm)`(w) =
(
(ζm)`(wi)

)
06i6|w|−1.

Note that all images (ζm)`(wi) are generated with respect to the same image of
w under ζm. �

Lemma 4.3. For any m, ` ∈ N and k ∈ N0, we have (ζm)k` = (ζkm)`.

Proof. We perform induction over k. The claim is obvious for k = 0, 1 and we
assume validity for all j 6 k − 1. Let w ∈ Dm,` and

w
ζm−−→ w(1) ζm−−→ w(2) ζm−−→ · · · ζm−−→ w(k−1) ζm−−→ w(k)

such that w(k) is an image of ζkm(w). Then,

(ζm)k` (w) = (ζm)`
(
(ζm)k−1

` (w)
)

= (ζm)`
(
(ζk−1
m )`(w)

)
=
(
(ζm)`

(
w

(k−1)
[i,i+`−1]

))
06i6|ζk−1

m (w0)|−1

=
(
w

(k)
[i,i+`−1]

)
06i6|ζkm(w0)|−1

= (ζkm)`(w).

Here, the second equality is implied by the induction hypothesis and the fourth
equality follows from Remark 4.2. �
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w(i) ∈ D1,2 v(i,j) u(i,j) P w(i) ∈ D1,2 v(i,j) u(i,j) P

aa abab (ab)(ba) p2
1 ab aba (ab)(ba) p1

abba (ab)(bb) p0p1 baa (ba)(aa) p0
baab (ba)(aa) p0p1 ba aab (aa) p1
baba (ba)(ab) p2

0 aba (ab) p0
bb aa (aa) 1

Table 4.1. The action of (ζm)` for m = 1 and ` = 2 is shown.
Recall the notation of Definition 4.1.

Following Definition 2.10 for anym, ` ∈ N and with the notation of Definition 4.1,
the induced substitution matrix is given by

Mm,` := M(ζm)
`

:=
( nj∑
q=1

pjq|u(j,q)|w(i)

)
ij
∈ Mat(|Dm,`|,R), (4.1)

where we fix the order of legal subwords w(i) to be lexicographic. Furthermore,
the (extended) Abelianisation map is defined by

φ` :
⋃
j∈J
D∗m,` −→ R|Dm,`|,

w = {w(j)}j∈J 7−→
(∑
j∈J

pj |w(j)|v(1) , . . . ,
∑
j∈J

pj |w(j)|v(k)

)
,

where
{
v(1) , . . . , v(k)} = Dm,`, J is a finite index set and the {pj}j∈J are the

probability weights attached to the words {w(j)}j∈J . Again, we can describe
the action of (ζm)` on a finite word w ∈ D∗m,` in terms of Mm,` and φ` via
Mk
m,` φ`(w) = φ`

(
(ζkm)`(w)

)
for any k ∈ N0.

Remark 4.4. Recall the notation of Definition 4.1. By construction, the column
sums of Mm,` are either equal to 1 or to m+ 1 because each letter of u(i,j) is
counted exactly once, which means that the kth column sum is equal to

|(ζm)`(w(k))|(pk1 + · · ·+ pkn
k
)|w(k)|a = |ζm(w(k)

0 )| ∈ {1,m+ 1} . �

Example 4.5 (The action of (ζ1)2). For ` = 2 and m = 1, the action of (ζm)`
is illustrated in Table 4.1. Consequently, the induced substitution matrix in this
case reads

M1,2 =


p0p1 p0 1− p0 1

1− p0p1 1− p0 p0 0
1− p0p1 1 0 0
p0p1 0 0 0

 ,
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and

M1,2φ2(aa) = M1,2


1
0
0
0

 =


p0p1

1− p0p1
1− p0p1
p0p1

 = φ2
(
(ζ1)2(aa)

)
.

The characteristic polynomial of M1,2 is given by

P1,2(x) = (x2 − x− 1)(x− p0p1)(x+ p0),
which leads to the eigenvalue spectrum

σ1,2 =
{
λ1, λ

′
1, p0p1,−p0

}
. �

Remark 4.6. Note that (ζm)1 agrees with ζm, so that Mm,1 = M1 but that
there is a significant difference between the cases ` = 1 and ` > 2. Whereas the
situation is rather clear for ` = 1, as we saw in Chapter 2, there is no immediate
reason why (ζm)` andMm,` respectively, should still be primitive for ` > 2. From
Definition 4.1 and Eq. (4.1), we conclude that the local mixing has a direct
influence on Mm,` and in general makes its entries non-integral. �

In a preliminary step, we pave the way for the application of Theorem 1.4
to the induced substitution matrices and therefore show the primitivity of all
Mm,`. Note that it is clear from the construction that Mm,` > 0.

Proposition 4.7. For pm � 0, the induced substitution (ζm)` is primitive for
all m, ` ∈ N.

Proof. Let u, v ∈ Dm,`. From the definition of ζm, we conclude that there
is an image v′ =• ζm(v0) such that v′0 = a. The legality of u means that there
is a power ku ∈ N with u C• ζkum (a) and this implies the existence of an image
w =• ζku+1

m (v) such that u is a subword of w0 · · ·w|ζkum (a)|−1. Due to Lemma 4.3,
we know that

w′ :=
(
w[s,s+`−1]

)
06s6|ζku+1

m (v0)|−1 = (ζm)ku+1
` (v).

The letters of this image consist of all subwords of w of length ` starting in the
word w0 · · ·w|ζku+1

m (v0)|−1. We have ζku+1
m (v0) =• ζkum (v′) where v′ starts with the

letter a by construction which implies
|ζku+1
m (v0)| > |ζkum (a)|.

Therefore, we have |w′|u > 0, which settles the irreducibility of (ζm)`. Note that
the choice of the power ku is independent of v.

For the proof of primitivity, we consider u, v ∈ Dm,`. Along the same lines
as in the above discussion, we conclude that

u C• ζn(ku+1)
m (v) for all n ∈ N

and u is a letter of the corresponding image of v under (ζm)n(ku+1)
` . Now, let

κ := lcm
{
ku + 1 | u ∈ Dm,`

}
.
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Then, there is an image (ζm)κ` (v) containing u for all u, v ∈ Dm,` which is the
primitivity of (ζm)`. �

Corollary 4.8. For pm � 0, the induced substitution matrix Mm,` is primitive
for all m, ` ∈ N.

Proof. This is an immediate consequence of Proposition 4.7 and Remark 2.13.
�

Remark 4.9 (Primitivity of (ζm)` for pm > 0). The proof of Proposition 4.7
is valid for the induced substitution ϑ` with respect to any random substitution
ϑ : A∗n −→ A∗n which meets the following property. There is a letter ai ∈ An
such that

(a) for all aj ∈ An, there exists an image w =• ϑ(aj) with w0 = ai,
(b) for all ϑ-legal words w ∈ A∗n, there is a k ∈ N with w C• ϑk(ai).

In the RNMS case, property (b) complies with an arbitrary choice of pm because
of Lemma 2.15 and Lemma 2.9. In contrast, property (a) is incompatible with
p0 = 1 because the first letter of ζm,0(a) is a b and a switch from ai = a to
ai = b does not avoid this problem. Nevertheless, also in the deterministic
cases, (ζm,i)` is primitive for all 0 6 i 6 m [Que10, Lem. 5.3]. In the case of
incomplete mixtures, the proof is still valid but one has to be careful about the
dimension of Mm,`. Choose pm � 0 and p′m > 0 with several zero components.
In numerous cases, one has |Dm,`(pm)| > |Dm,`(p′m)| (e.g., choose p0 = 0 or
pm = 0 which eliminates bb as a legal subword) and even Mm,` ∈ Mat(`+ 1,R)
in the deterministic cases, as we have seen in Proposition 3.2. �

The following Proposition is important for two reasons. Firstly, it shows
that the induced substitution matrix, in the case of ` = 2, only depends on the
three parameters m, p0 and pm, although all m+2 parameters m, p0 , . . . , pm are
considered for the construction ofMm,2. Secondly, the case ` = 2 characterises the
eigenvalue spectrum of Mm,` for any ` > 3, in the sense that only the eigenvalue
0 is possibly added with increasing word length, as we will see explicitly in
Proposition 4.12.

Proposition 4.10. For an arbitrary but fixed m ∈ N and word length ` = 2,
the induced substitution matrix reads

Mm,2 =


m− 1 + p0pm m− 1 + p0 1− p0 1

1− p0pm 1− p0 p0 0
1− p0pm 1 0 0
p0pm 0 0 0

 ,
with corresponding characteristic polynomial

Pm,2(x) = (x2 −mx− 1)(x− p0pm)(x+ p0),

eigenvalue spectrum
σm,2 =

{
λm, λ

′
m, p0pm,−p0

}
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and statistically normalised right PF eigenvector

Rm,2 =



2(λm−1)
m(1+p0pm)−(2+2λm−m)(−1+p0pm)

2(1−p0pm)
m(1+p0pm)−(2+2λm−m)(−1+p0pm)

2(1−p0pm)
m(1+p0pm)−(2+2λm−m)(−1+p0pm)

2(1+λ′m)p0pm
m(1+p0pm)−(2+2λm−m)(−1+p0pm)

 .

Proof. We investigate each entry mij of Mm,2 combinatorially. The presence
of the six 0-entries is obvious. As (aa) =• (ζm)2(bb), it is immediately clear that
m1,4 = 1. The remaining entries can be derived as follows.

• m2,3. We have

ab C• ζm(ba) = ζm(b)ζm(a) = aζm(a),

which implies that we have to choose the image ζm(a) = bam here. This
image is chosen with probability p0 and therefore m2,3 = p0.
• m1,3. Here, we have aa C• ζm(ba) = aζm(a), which means that ζm(a) can
be chosen as any of the images of the set

{
aibam−i | 1 6 i 6 m

}
and

therefore aa is chosen with probability ∑m
j=1 pj = 1− p0 = m1,3.

• m3,2. We know that |ζm(ab)| = m + 2 and |ζm(ab)|b = 1. Because of
|ζm(a)| = m + 1, the word ba is included exactly once in each image of
(ζm)2(ab). The probability is therefore ∑m

j=0 pj = 1 = m3,2.
• m2,2. Here, the argument is similar to the previous case with the exception,
that the word ζm(a) starts with the letter b with probability p0. Therefore,
ab cannot be a subword in this case. This implies m2,2 = 1− p0.
• m1,2. As |ζm(ab)| = m + 2, the letter (aa) occurs at most m times in

(ζm)2(ab) and exactly m times only for ζm(ab) = bam+1 which is chosen
with probability p0. In the remaining possible images, (aa) occurs exactly
m− 1 times, such that

m1,2 = mp0 + (m− 1)
m∑
j=1

pj

= mp0 + (m− 1)(1− p0) = m− 1 + p0.

• m4,1. There is only one possibility for the construction of (bb) in (ζm)2(aa);
on the first a we choose ζm,m and on the second one ζm,0. This leads to
m4,1 = p0pm.
• m3,1. In fact, this is the case complementary to m4,1, because (ba) occurs
exactly once in each image of

(
ζm
)
2(aa), with the only exception in the

case where we choose ζm,m on the first a and ζm,0 on the second. This
happens with probability p0pm, which means m3,1 = 1− p0pm.
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• m2,1. A simple counting argument similar to the case of m1,2 shows that

m2,1 =
( m∑
i=1

pi

m∑
j=1

pj

)
+
(
2p0

m−1∑
i=1

pi

)
+ p2

0 + p0pm

= (1− p0)2 + 2p0(1− p0 − pm) + p2
0 + p0pm

= 1− p0pm.

• m1,1. Similarly to m2,1, we find

m1,1 =
(
mp0

m∑
i=1

pi

)
+
(
(m− 1)

m∑
i=1

pi

m∑
j=1

pj

)

+
(
(m− 2)p0

m−1∑
i=1

pi

)
+ (m− 1)(p0pm + p2

0)

= mp0(1− p0) + (m− 1)(1− p0)2

+ (m− 2)p0(1− p0 − pm) + (m− 1)(p0pm + p2
0)

= m− 1 + p0pm.

These entries constitute the matrix Mm,2 and therefore determine Pm,2, σm,2
and Rm,2. �

As soon as the complexity function Cm(`) and the attributed set of legal
words Dm,` is known, it is easy to compute the matrices Mm,` and therefore
the right PF eigenvectors by the same method. We proceed with a minor
technical preparation for the proof of Proposition 4.11. Here, for some matrix
M ∈ Mat(d,R), we denote by NM the set of non-zero eigenvalues of M .

Lemma 4.11. Let A,B ∈ Mat(d,R). Assume that for all polynomials q ∈ R[x]
the following properties hold:

(1) If q(A) = 0, then there is a k ∈ N with q(B)Bk = 0.
(2) If q(B) = 0, then there is a k ∈ N with q(A)Ak = 0.

Then, one has NA = NB.

Proof. Firstly, we consider the minimal polynomial µA of A. Here, we have
µA(A) = 0 and, because of the first property, there exists a k ∈ N and a
polynomial p ∈ R[x] with p(x)µB(x) = µA(x)xk and µB the minimal polynomial
of B. Thus, each non-zero eigenvalue of B is also a non-zero eigenvalue of A or
NB ⊂ NA. Interchanging the roles of A and B, along with an application of the
second property, then proves the assertion. �

The following result is based on [Que10, Prop. 5.10], suitably spelled out
for the stochastic situation of (ζm)`.
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Proposition 4.12. For any m ∈ N and ` > 3, the eigenvalue spectrum of
the matrices Mm,` is the same as that of Mm,2, possibly with the additional
eigenvalue zero.

Proof. We fix any w = w0w1 · · ·w`−1 ∈ Dm,`. Based on Definition 4.1, we
introduce the following abbreviated notation

(ζkm)`(w) :=
{(
v

(j)
[s,s+`−1]

)
06s6δ(k)

}
j∈J

,

where δ(k) := |ζkm(w0)| − 1 and {v(j)}j∈J , for a finite index set J , is the set of
images of w under ζkm. We omitted the notation of the realisation probabilities
here because we do not refer to them explicitly in the following. As all possible
images of ζkm(w0) have the same length and all ζm,i are primitive, we can choose
k := k` ∈ N sufficiently large to ensure that

|ζkm(w0)|+ `− 2 < |ζkm(w0)|+ |ζkm(w1)| (4.2)

and we fix this choice for ` and k for the rest of the proof. Consequently, all
images of w under (ζkm)` are determined by the images ζkm(w0) and ζkm(w1).
We define a map π2 : Dm,` −→ Dm,2 that sends a legal word of length ` to
the subword consisting of the first two letters, thus π2(w0 · · ·w`−1) := w0w1.
Moreover, we consider the map π2,`,k : Dm,2 −→ D∗m,`, defined by

π2,`,k(w0w1) :=
{(
v

(j)
[s,s+`−1]

)
06s6δ(k)

}
j∈J

,

for all w0w1 ∈ Dm,2 with

ζkm(w0w1) =
{
v

(j)
0 v

(j)
1 · · · v

(j)
|ζkm(w0)|−1v

(j)
|ζkm(w0)| · · · v

(j)
|ζkm(w0w1)|−1

}
j∈J

,

for a finite index set J . Now, we extend these maps to

π2 : D∗m,` −→ D∗m,2 and π2,`,k : D∗m,2 −→ D∗m,`,

via concatenation. From this, we directly deduce π2 ◦ π2,`,k = (ζkm)2 because

(π2 ◦ π2,`,k)(w0w1) =
{
π2

(
v

(j)
[s,s+`−1]

)
06s6δ(k)

}
j∈J

=
{(
π2

(
v

(j)
[s,s+`−1]

))
06s6δ(k)

}
j∈J

=
{(
v

(j)
[s,s+1]

)
06s6δ(k)

}
j∈J

= (ζkm)2(w0w1).

Similarly, one shows that π2,`,k ◦ π2 = (ζkm)` and (ζm)` ◦ π2,`,k = π2,`,k ◦
(
ζm
)
2.

Finally, we end up with the commutative diagram shown in Figure 4.1. With
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D∗m,` D∗m,` D∗m,`

D∗m,2 D∗m,2 D∗m,2

(ζkm)` (ζm)`

(ζm)2 (ζkm)2

π2 π2π2,`,k π2,`,k

Figure 4.1. Relationships between the maps (ζm)2, (ζm)`, π2
and π2,`,k.

Mm,`, M2 and M2,`,k being the matrices corresponding to the mappings (ζm)`,
π2 and π2,`,k, this implies

M2,`,k φ2
(
π2(w)

)
= φ`

(
(ζkm)`(w)

)
,

for any w ∈ D∗m,` and the corresponding commutative diagram on the level of
matrices, with ξ := π2(w), is shown in Figure 4.2. From this diagram, we deduce
the identity

Mm,`M2,`,k = M2,`,kMm,2.

For any polynomial q ∈ R[x] of degree n ∈ N, we find

M2,`,k q(Mm,2) = M2,`,k

n∑
i=0

aiM
i
m,2 =

n∑
i=0

aiM2,`,kM
i
m,2

=
n∑
i=0

aiM
i
m,`M2,`,k = q(Mm,`)M2,`,k.

(4.3)

Reapplying the diagram of Figure 4.2, we achieve

M2,`,k q(Mm,2)M2 = q(Mm,`)M2,`,kM2 = q(Mm,`)Mk
m,`. (4.4)

Suppose now that Mm,2 is a root of q. Then, by Eq. (4.4), the polynomial
r(x) = q(x)xk annihilates Mm,`. A further application of Eq. (4.3) provides

M2M2,`,k q(Mm,2) = M2 q(Mm,`)M2,`,k

=⇒ Mk
m,2 q(Mm,2) = M2 q(Mm,`)M2,`,k.

Thus, Mm,2 is a root of r provided q(Mm,`) = 0. According to Lemma 4.11, the
matrices Mm,2 and Mm,` have the same non-zero eigenvalues. �

The key to the proof of Proposition 4.12 clearly was the observation from
Eq. (4.2). There, we pointed out that the action of (ζm)` is essentially charac-
terised by the images of words of length 2 under ζkm. At the same time, this is
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φ`(w) φ`
(
(ζkm)`(w)

)
φ`
(
(ζk+1
m )`(w)

)

φ2(ξ) φ2
(
(ζm)2(ξ)

)
φ2
(
(ζk+1
m )2(ξ)

)

Mk
m,` Mm,`

Mm,2 Mk
m,2

M2 M2M2,`,k M2,`,k

Figure 4.2. Relationships between the matrices Mm,2, Mm,`,
M2 and M2,`,k.

an intuitive explanation why the spectrum of Mm,` is to a great extent fixed by
that of Mm,2.

Corollary 4.13. If Rm,2 is a right PF eigenvector of Mm,2, then M2,`,kRm,2
is a right PF eigenvector of Mm,`.

Proof. This is an immediate consequence of

Mm,`M2,`,k = M2,`,kMm,2. �

Example 4.14 (Induced PF eigenvectors). Corollary 4.13 provides a convenient
method for the computation of Rm,` in the case of ` > 3 which is particularly
useful for numerical simulations in Chapter 6. Recall that we get Rm,2 for all
m ∈ N from Proposition 4.10. We choose m = 1, ` = 3 and p1 = (1/4, 3/4).
From Eq. (4.2), we deduce that we have to consider the images of w under ζ2

1
for all w ∈ D1,2. The legal subwords of length 2 and 3 are given by

D1,2 = {aa, ab, ba, bb} and D1,3 = {aaa, aab, aba, abb, baa, bab, bba}.

Now, we have to compute the matrix M2,3,2 ∈ Mat(7× 4,R) and statistically
normalise the vector M2,3,2R1,2. We find

M2,3,2 =



39
128

9
64

3
64 0

187
256

27
32

5
32

3
16

119
128

31
32

21
32

5
8

9
256

3
64

9
64

3
16

187
256

21
32

11
32

3
16

15
64

19
64

33
64

5
8

9
256

3
64

9
64

3
16


and R1,3 ≈



0.056215
0.210795
0.320083
0.030941
0.210795
0.140229
0.030941


. �
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4.2. Ergodicity

In this section, we construct a shift-invariant probability measure µm on Xm
and prove its ergodicity. This, in conjunction with Corollary 4.8 and Theorem 1.4,
identifies the entries of the statistically normalised right PF eigenvector of Mm,`

as the frequencies of ζm-legal words.

4.2.1. A shift-invariant probability measure on the RNMS hull.
Let X be a set equipped with the Borel σ-algebra B := BX on which a regular
Borel measure µ is defined. We call the triple (X,B, µ) a measure space (or a
probability space if µ ∈ P(X)). If G is a group and T : X 7−→ X a continuous
map, one is interested in the behaviour of X under some group action g 7−→ Tg
of G on X. Here, we call T a transformation of the space X. For the purpose of
this section, we will study the action of Z on subshifts X (in particular on Xm)
via the shift S and its iterates Sk for k ∈ Z.

Definition 4.15 (Invariant sets and measures). Let T be a transformation of
the probability space (X,B, µ). A Borel set B ∈ B is T -invariant if T−1B = B.
Furthermore, the measure µ is T -invariant if T.µ(B) := µ(T−1B) = µ(B) for
all Borel sets B ∈ B and we refer to PT (X) :=

{
µ ∈ P(X) | T.µ = µ

}
as the

set of T -invariant probability measures on X.

Note that the map P(X) −→ P(X), µ 7−→ T.µ, in Definition 4.15 is again
a continuous map, this time on P(X) [Wal00, Thm. 6.7].

Now, we consider a transformation T of the measure space (X,B, µ) and
a T -invariant Borel set B ∈ B. Then, also T−1(X \B) = X \B and it would
suffice to restrict the study of T to the cases T |B and T |X\B. If additionally
µ(B) ∈ (0, 1), the study of the new transformation may be considerably easier.
If instead µ(B) = 0 or µ(X \B) = 0, we can neglect the set B or X \B. This
preliminary line of thought motivates the following Definition.

Definition 4.16 (Ergodicity). If (X,B, µ) is a probability space, then µ is
called ergodic if all members B of B with the property T−1B = B satisfy
µ(B) = 0 or µ(B) = 1.

Intuitively, this means that a system cannot be further decomposed into
invariant components of positive measure. In the light of the identification of
regular Borel measures and linear functionals as introduced in Section 1.4.1,
a function f ∈ L1(X,µ) is called T -invariant if T.f(x) := f(T−1x) = f(x) for
µ-almost every x ∈ X. Here, the measure µ is ergodic if and only if the only
invariant functions are constant µ-almost everywhere. One important tool in
this context is the following result.

Theorem 4.17 (Birkhoff, [Wal00, Thm. 1.14]). Let X ⊂ AZ
n be any subshift and

µ be an S-invariant regular Borel probability measure on X. If f ∈ L1(X, µ), then
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the sequence
( 1
n

∑n−1
i=0 f(Six)

)
n∈N converges, for µ-almost every x ∈ X, to an S-

invariant function F ∈ L1(X, µ) that satisfies
∫
X F dµ =

∫
X f dµ. Moreover, if µ

is an ergodic probability measure, the function F is constant µ-almost everywhere
and

lim
n→∞

1
n

n−1∑
i=0

f(Six) =
∫
X
f dµ (4.5)

holds for µ-almost x ∈ X. �

In the situation of Theorem 4.17, we denote limn→∞
1
n

∑n−1
i=0 f(Six) as the time

mean of f at x, provided this limit exists. The space mean of f is defined as∫
X f dµ. The significance of Birkhoff’s theorem for our concern is that the time
means and the space means are equal for µ-almost every x ∈ X if and only if µ
is ergodic. One direction is the statement around Eq. (4.5). For the converse,
assume that Eq. (4.5) holds for µ-almost every x ∈ X. Then, we find

µ(B) =
∫
X
1B dµ = lim

n→∞
1
n

n−1∑
i=0

1B(Six) ∈ {0, 1}

for any S-invariant set B ∈ B, which is the ergodicity of µ. If the agreement of
space and time mean holds for all x ∈ X, then the measure is uniquely ergodic
[Que10, Sec. 4.1.2].

Now, we consider the shift S (and the Z-action on Xm via k 7−→ Sk) on
Xm. Recall that S is a homeomorphism of Xm. For any w ∈ Xm, we define the
sequence

(µn)n∈N :=
( 1

2n+ 1

n∑
i=−n

S−i.δw

)
n∈N
⊂ P(Xm).

From the compactness ofP(Xm), we get the existence of a converging subsequence
and µ = limi→∞ µni is an S-invariant probability measure by construction. Thus,
we find that PS(Xm) 6= ∅ but this alone is quite unsatisfactory because we strive
for a measure that is not only S-invariant but also ergodic. Therefore, we bring
Corollary 4.8 and Theorem 1.4 into position in order to define a probability
measure on the cylinder sets Z(Xm) that were introduced in Remark 1.11.

Remark 4.18 (The semi-algebra Z(Xm)). The class Z(Xm) forms a semi-algebra
that generates the Borel σ-algebra Bm on Xm. That is

• ∅ ∈ Z(Xm),
• Z1, Z2 ∈ Z(Xm) =⇒ Z1 ∩ Z2 ∈ Z(Xm),
• Z ∈ Z(Xm) =⇒ Xm \ Z = ⋃n

i=1Zi, where each Zi ∈ Z(Xm) and
Z1 , . . . ,Zn are pairwise disjoint.

This is a well-known fact and the proof is an immediate consequence of the
definition of a cylinder set. �
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Now, let w ∈ Dm,` be any ζm-legal word. Then, we define the measure µm on
Zk(w) ∈ Z(Xm) by

µm
(
Zk(w)

)
:= Rm,`(w), (4.6)

for any k ∈ Z, where Rm,`(w) is the entry of the statistically normalised right
PF eigenvector of Mm,` with respect to the word w. According to [Que10,
Sec. 5.4], this is a consistent definition of a measure on Z(Xm) and there is
an extension of µm to the Borel σ-algebra Bm [Par05, Cor. 2.4.9]. Due to
[Par05, Prop. 2.5.1], this extension is unique and we will denote it again as µm.
Furthermore, µm ∈ P(Xm) because for any k ∈ Z and ` ∈ N, we have

µm(Xm) = µm

( ⋃̇
w∈D

m,`

Zk(w)
)

=
∑

w∈Dm,`

µm
(
Zk(w)

)
=
∑

w∈Dm,`

Rm,`(w) = 1.

Moreover, the S-invariance of µm is an immediate consequence of the fol-
lowing result.

Theorem 4.19 ([Wal00, Thm. 1.1]). Let T be a transformation of the proba-
bility space (X,B, µ). If S is a semi-algebra generating B such that T−1M ∈ B

and µ(T−1M) = µ(M) for all M ∈ S, then µ is T -invariant. �

One easily shows that S−1Zk−1(w) = Zk(w) and with

µm
(
S−1Zk(w)

)
= µm

(
Zk+1(w)

)
= Rm,`(w) = µm

(
Zk(w)

)
,

we find µm ∈ PS(Xm) by an application of Theorem 4.19.

4.2.2. Ergodicity of µm. We would like to interpret the entries of Rm,`

as the frequencies of ζm-legal subwords. This is a known fact in the context
of (deterministic) primitive substitutions and therefore also in the case of
all members of Nm. Here, one additionally knows that the ergodic S-invariant
probability measure [Que10, Thm. 5.6] on X′m is unique, so the system is uniquely
ergodic. This will no longer be the case in the stochastic setting, but we can
prove the ergodicity of µm. One important ingredient is Etemadi’s formulation
of the strong law of large numbers that only requires the sequence of random
variables to be pairwise independent.

Theorem 4.20 (Etemadi, [Ete81, Thm. 1]). Let (Xi)i∈N be a family of pairwise
independent, identically distributed, complex random variables with common
distribution µ, subject to the integrability condition Eµ(|X1|) <∞. Then,

1
n

n∑
i=1

Xi
n→∞−−−→

a.s.
Eµ(X1) =

∫
R
x dµ(x). �

Here, Eµ(X) denotes the mean of the random variable X with respect to
the measure µ. The following Proposition constitutes the main result of this
chapter.
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. . .
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a

u v

m

x′

ζm(x′)

ζm

Figure 4.3. The words u, v ∈ Dm,` are independent as of the
shift by `+m positions. The word ζm(a) can have non-empty
overlap with precisely one of the two words.

Proposition 4.21. For an arbitrary but fixed m ∈ N, let Xm ⊂ AZ
2 be the

two-sided discrete stochastic hull of the random noble means substitution and
µm be the S-invariant probability measure on Xm introduced in Eq. (4.6). For
any f ∈ L1(Xm, µm) and for an arbitrary but fixed s ∈ Z, the identity

lim
n→∞

1
n

n+s−1∑
i=s

f(Six) =
∫
Xm

f dµm (4.7)

holds for µm-almost every x ∈ Xm.

Proof. Let x ∈ Xm be an arbitrary element of the stochastic hull. The idea is
to consider the characteristic function 1Z of some cylinder set Z ∈ Z(Xm) and
to interpret X :=

(
1Z(Six)

)
i∈N as a family of µm-distributed random variables

in order to invoke Theorem 4.20. For this purpose, we have to deal with the
pairwise independence of elements in X. In Remark 2.25, we pointed out that
there exists an element x′ ∈ Xm with ζm(x′) =• x which means that we can study
the structure of x that is induced by the action of ζm on some element of Xm. For
two finite subwords u, v ∈ Dm,` of x, we denote by uev the overlap of u and v in
x and by |uev| its number of letters. Certainly, u and v cannot be independent if
|uev| > 0, but we have to take more into account. Possibly, u and v may contain
parts of the image of the same letter under ζm. As |ζm(a)| = m+1 > 1 = |ζm(b)|,
it is sufficient to ensure that at most one of the overlaps ue ζm(a) and v e ζm(a)
is non-empty for the very same letter a C x′, as illustrated in Figure 4.3. Now,
define for any i ∈ Z, ` ∈ N and a fixed t ∈ Z, the family

(Xi,k)k∈N0
:=
((
Si+k(`+m)x

)
[t,t+`−1]

)
k∈N0

.

Then, each X ∈
{
(Xi,k)k∈N0

| s 6 i 6 ` + m + s − 1
}
consists of pairwise

independent words in the sense pointed out above. Furthermore, for any v ∈ Dm,`,
we consider the characteristic function of the cylinder set Zt(v) ∈ Z(Xm), defined
by

1Zt(v)(x) :=
{

1, if x[t,t+`−1] = v,

0, otherwise.
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This leads to

lim
n→∞

1
n

n+s−1∑
i=s

1Zt(v)(Six)

= lim
n→∞

1
n

`+m+s−1∑
i=s

bn−1−i
`+m c∑
k=0

1Zt(v)
(
Si+k(`+m)x

)

= lim
n→∞

1
`+m

`+m+s−1∑
i=s

1
bn−1−i
`+m c+ 1

bn−1−i
`+m c∑
k=0

1Zt(v)
(
Si+k(`+m)x

)
. (4.8)

For s 6 i 6 ` + m + s − 1, we consider the family
(
1Zt(v)(Si+k(`+m)x)

)
k∈N0

and apply Theorem 4.20 to each of the inner sums of Eq. (4.8) separately and
appropriately put the resulting means together. Thus, Eq. (4.8) is almost surely

= 1
`+m

`+m+s−1∑
i=s

Eµm
(
1Zt(v)(Six)

)
= Eµm

(
1Zt(v)(x)

)
=
∫
Xm

1Zt(v) dµm.

Note that the penultimate equality is implied by Theorem 1.4 and the uniqueness
of Rm,` stated therein.

To finish the proof, we need to extend the presented arguments to an arbitrary
function in L1(Xm, µm). We define

Γ :=
{∑
Z∈S

aZ1Z | S ⊂ Z(Xm) finite and aZ ∈ C
}

as the set of simple functions on the measure space
(
Xm,Bm, µm

)
. By linearity,

the validity of Eq. (4.7) for 1Zt(v) extends to an arbitrary function in Γ. Due to
the Stone–Weierstraß theorem [Lan93, Thm. 1.4], Γ is dense in C(Xm) and thus
also in L1(Xm, µm) [Lan93, Thm. 3.1]. This implies the assertion. �

Theorem 4.22. The measure µm ∈ PS(Xm) is ergodic.

Proof. This is an immediate consequence of Proposition 4.21 and the discussion
following Theorem 4.17. �





CHAPTER 5

NMS and RNMS sets as model sets

In this chapter, we want to transfer the inspection of the (random) noble
means substitutions from the dynamic to the geometric side. To this end, we
follow two different tracks. On the one hand, there is a rather direct derivation of
symbolic sequences to point sets in R where we can make use of our preliminary
work in Chapters 1 and 2. In particular, we will benefit once more from Perron–
Frobenius theory andmake use of the left PF eigenvector that we have disregarded
so far. This will be the purpose of Section 5.2. On the other hand, we will derive
the parameters for the description of geometric realisations of all members of
Nm (and R) as (subsets of) so-called model sets. This is contained in Section 5.3.
As the determination of these parameters is essentially based on the theory
of iterated function systems, we briefly collect the basics in this regard in
Section 5.1 and also review the results presented in [BM00a] that generalise
a famous theorem [Hut81, Thm. 3.1.3] by J. Hutchinson about attractors of
contractive iterated function systems. The advantage of this different point of
view will be a systematic description of the geometric realisations and a direct
proof of their Meyer property.

5.1. Iterated function systems

Let (X,d) be a complete metric space and KX be the set of non-empty
compact subsets of X. As we are mainly interested in X = R, one may think of
closed and bounded sets here. For any subset U ⊂ X and element x ∈ X we
denote by d(x, U) := inf

{
d(x, u) | u ∈ U

}
the distance of x from U . We wish

to interpret the set KX as a metric space itself and therefore need a notion of
distance between compact sets in KX. This is provided by the Hausdorff metric
[Wic91, Prop. 2.1.3], defined by

h(U, V ) := sup
{
d(x, V ),d(y, U) | x ∈ U, y ∈ V

}
,

which makes (KX,h) a complete metric space itself [Wic91, Prop. 2.3.2]. One
can prove [Wic91, Note 2.1.6] that for Ui, Vi ∈ KX, i ∈ I and any finite index
set I, it is true that

h
(⋃
i∈I

Ui,
⋃
i∈I

Vi

)
6 sup

{
h(Ui, Vi) | i ∈ I

}
. (5.1)

53
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Now, we consider two complete metric spaces (X1,d1), (X2,d2) and define the
set of Lipschitz continuous maps from X1 to X2 with Lipschitz constant 6 r as
Lip(r,X1, X2). If r < 1, a Lipschitz function is called a contraction.

Given a (finite) family F = {f1 , . . . , fn} of maps fi ∈ Lip(rfi , X1, X2), we
define two functions

F : X1 −→ KX2, x 7−→
n⋃
i=1
{fi(x)},

F : KX1 −→ KX2, U 7−→
n⋃
i=1

fi(U).
(5.2)

For convenience, we assign the same name to both maps in Eq. (5.2). For any
U , V ∈ KX1, we get

h
(
F (U), F (V )

)
= h

( n⋃
i=1

fi(U),
n⋃
i=1

fi(V )
)
6 sup

16i6n
h
(
fi(U), fi(V )

)
= sup

16i6n

{
sup
x∈U
y∈V

{
inf
y∈V

{
d
(
fi(x), fi(y)

)}
, inf
x∈U

{
d
(
fi(x), fi(y)

)}}}

6 sup
16i6n

rfi
· sup
x∈U
y∈V

{
d(x, V ), d(y, U)

}
= R h(U, V ),

with R := sup{rfi | 1 6 i 6 n} and the first inequality being a consequence of
Eq. (5.1). This shows that the Lipschitz continuity of F with respect to h is
implied by that of each fi.

We firstly consider the situation where X1 = X2. Here, we refer to F as an
iterated function system and call F contractive if each f ∈ F is a contraction.
We have now paved the way for an application of Banach’s contraction mapping
principle to the map F . This leads to the following result.

Theorem 5.1 ([Hut81, Thm. 3.1.3]). Let F = {f1 , . . . , fn} be a contractive
iterated function system with fi : X −→ X and a compact metric space X. Then,
there is a unique compact set A ∈ KX with the property

A = F (A) =
n⋃
i=1

fi(A).

Furthermore,
(
F `(S)

)
`∈N converges to A in the Hausdorff metric for any S ∈ KX

as `→∞. The set A is called the attractor of F . �

Theorem 5.1 can be generalised to a multi-component situation that will
become essential in Section 5.3. Instead of considering a single complete metric
space (X,d) and functions X −→ X, we start with finitely many complete
metric spaces (X1,d1) , . . . ,(Xn, dn) and study Lipschitz maps Xj −→ Xi. To
this end, we define the product space X := X1 × · · · ×Xn and equip it with the
metric d(x, y) := sup

{
di(xi, yi) | 1 6 i 6 n

}
. Here, (X,d) is a again a complete
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metric space. Let hi be the Hausdorff metric on KXi for each 1 6 i 6 n and h
the Hausdorff metric on KX.

For each pair (i, j) with 1 6 i, j 6 n, let Fij be a finite set of Lipschitz maps
f : Xj −→ Xi where we require that for each i there is at least one j such that
Fij 6= ∅. In this setting, we call F =

(
Fij
)
16i,j6n a generalised iterated function

system and F is contractive if all f ∈ Fij are contractions, for all 1 6 i, j 6 n.
From Eq. (5.2), for each pair (i, j), we get the map Fij : KXj −→ KXi, where the
corresponding Lipschitz constant rij is given by the maximum of all Lipschitz
constants of all mappings in Fij and R := sup

{
rij | 1 6 i, j 6 n

}
. Now we define

the map
Fg : KX1 × · · · × KXn −→ KX1 × · · · × KXn

by

Fg
(
U1 , . . . , Un

)
:=
( n⋃
j=1

F1j(Uj) , . . . ,
n⋃
j=1

Fnj(Uj)
)

=
( n⋃
j=1

⋃
f∈F1j

f(Uj) , . . . ,
n⋃
j=1

⋃
f∈Fnj

f(Uj)
)
,

and note that KX1×· · ·×KXn ( KX. With this notation, we get the following
result.

Proposition 5.2 ([BM00a, Prop. 4.1]). The mapping Fg is Lipschitz with
Lipschitz constant at most R. �

Finally, we return to the setting of Theorem 5.1 and can apply the contraction
mapping principle to the map Fg. This implies the existence of a uniquely defined
attractor

A = A1 × · · · ×An ∈ KX1 × · · · × KXn

for Fg. Consequently, the family {A1 , . . . , An} provides a compact solution to
the systems

Ai =
n⋃
j=1

⋃
f∈Fij

f(Aj)

for all 1 6 i 6 n. For later reference, we formulate

Corollary 5.3. Let F =
(
Fij
)
16i,j6n be a generalised contractive iterated func-

tion system. Then, there is a unique compact set A ∈ KX1 × · · · × KXn with
the property

A = Fg(A) =
( n⋃
j=1

⋃
f∈F1j

f(Aj) , . . . ,
n⋃
j=1

⋃
f∈Fnj

f(Aj)
)
. (5.3)

Furthermore, the sequence
(
F `g (S)

)
`∈N converges to A in the Hausdorff metric

for any S ∈ KX1 × · · · × KXn as `→∞. The set A is called the attractor of
F . �
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An even more general situation is considered in [BM00a, Sec. 1], where F may
consist of compact families of contractions. As we will only make use of the
finite case, we have restricted our exposition to this situation.

5.1.1. Measures on attractors of iterated function systems. The
concepts of Section 5.1 turn out to be even more useful with the observation
that the attractor of a (generalised) contractive iterated function system carries
a canonically defined invariant measure. We briefly review the basic ideas in the
single-component setting and refer to [BM00a, Sec. 4.2] for the generalisation.
The measure-theoretic background has been provided in Section 1.4.

Let (X,d) be a compact metric space and P(X) the space of all probability
measures on X. We define the Kantorovich metric on P(X) by

k(µ, ν) := sup
{
|µ(φ)− ν(φ)| | φ ∈ Lip(1, X,R)

}
and refer to [Rüs07, Ver05] for background information in this regard. A proof
that k actually is a metric that induces the vague topology can be found in
[BM00a, Prop. 2.2].

Remark 5.4. Hutchinson applies the Kantorovich metric in his pioneering
paper on iterated function systems [Hut81] without reference to Kantorovich’s
work. Most probably, Hutchinson discovered the usefulness of k independently,
which rather suggests to denote k as the Kantorovich–Hutchinson metric, but
for the sake of brevity, we stick to the above choice. �

Now, let F = {f1 , . . . , fn} be a contractive iterated function system with
fi : X −→ X for all i and A the attractor of F . Then, we define a function
µ 7−→ f.µ with f.µ(φ) := µ(φ ◦ f) for any φ ∈ C(A,X), which constitutes a map
P(X) −→ P(X). Last but not least, we introduce

Fs : P(X) −→ P(X), µ 7−→ Fs(µ) :=
n∑
i=1

sifi.µ

for any s := (s1 , . . . , sn) with si ∈ (0, 1) and ∑n
i=1 si = 1 and denote as

r := sup{ri | 1 6 i 6 n} < 1 the maximum of all contractivity constants of
functions in F . The map Fs is a contraction in the Kantorovich metric because,
for any φ ∈ Lip(1, X,R), we get

∣∣Fs(µ(φ)
)
− Fs

(
ν(φ)

)∣∣ =
∣∣∣ n∑
i=1

sifi.µ(φ)−
n∑
i=1

sifi.ν(φ)
∣∣∣

6 r
n∑
i=1

si
∣∣µ(r−1φ ◦ fi)− ν(r−1φ ◦ fi)

∣∣
6 r k(µ, ν),

where the last inequality is implied by r−1φ◦fi ∈ Lip(1, X,R). Finally, we arrive
at the following result corresponding to Theorem 5.1.
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Theorem 5.5 ([Hut81, Thm. 4.4.1]). The map Fs is a contraction in the
Kantorovich metric. Furthermore, there exists a unique measure µ ∈ P(X) such
that Fs(µ) = µ. If ν is any probability measure on X, then

(
F `s(ν)

)
`∈N converges

in the Kantorovich metric to µ as `→∞. �

In the multi-component situation, where F = (Fij)16i,j6n is a generalised
iterated function system, each f ∈ Fij gives rise to a transformation of mea-
sure spaces M(Xj) −→ M(Xi) via µj 7−→ f.µj and we strive for a family
{µ1 , . . . , µn} that is invariant under the average of all these transformations,
which means

µi :=
n∑
j=1

1
|Fij |

∑
f∈Fij

f.µj

for all 1 6 i 6 n. Here, |Fij | denotes the number of mappings in Fij and 1/|Fij |
is set to 0 if Fij = ∅. More generally, we are free to choose arbitrary weights
for each Fij and will make use of this modification if it seems appropriate. For
a justification of these adjustments, we refer to [BM00a, Sec. 4.2]. Note that
each µi separately may fail to be a probability measure. The result in the more
general situation of generalised compact contractive iterated function systems
is spelled out in [BM00a]. For later reference, we formulate the corresponding
result in the finite case as follows.

Theorem 5.6 ([BM00a, Thm. 4.4]). Let X1 , . . . , Xn be compact metric spaces
and F = (Fij)16i,j6n be a generalised contractive iterated function system.
Assume that each Fij is equipped with a fixed scalar (same for all) multiple of
counting measure ηij and that the matrix

S =
(
ηij(Fij)

)
ij
∈ Mat(n,R)

has a strictly positive right eigenvector (m1 , . . . ,mn)T , corresponding to the
eigenvalue 1. Then, there exists a unique family {µ1 , . . . , µn} of measures with
µi ∈M(Xi) and the properties

µi :=
n∑
j=1

1
ηij(Fij)

∑
f∈Fij

f.µj and µi(Xi) = mi,

for all 1 6 i 6 n. The support of µ := µ1⊗ · · ·⊗µn is contained in the attractor
of Eq. (5.3). �

The measure µ in Theorem 5.6 is called inflation-invariant (or self-similar).
Note that the choice of an appropriate scalar multiple of counting measure,
provides the normalisation of the leading eigenvalue to 1.

5.2. From dynamics to geometry

So far, we have only dealt with symbolic sequences, generated by substitutions
of the families Nm and R respectively, over the binary alphabet A2 = {a, b}.
From the primitivity of the substitution matricesMm, one can derive a geometric
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b

a b a

a
·λ1

·λ1

a a b a b a

Figure 5.1. The action of the inflation rule ζ0,1 is shown above.
The left endpoints of the resulting intervals are chosen as control
points below. The colour of the grey-filled dot depends on the
letter with which the sequence is continued to the right.

interpretation of symbolic sequences in terms of point sets in R. To this end, we
apply once more Theorem 1.4 and make use of the unique existence of strictly
positive left and right eigenvectors Lm, Rm stated therein. In the following, we
use the normalisations

Lm =
(
L(a)
m ,L(b)

m

)
= (λm, 1) and Rm =

(
R

(a)
m

R
(b)
m

)
= 1
λm + 1

(
λm
1

)
, (5.4)

where ‖Rm‖1 = 1.

Remark 5.7 (Normalisation of Lm and Rm). Note that, in the literature, one
often finds normalisations of Lm and Rm such that 〈Lm |Rm〉 = 1. Our choice
has the advantage that the Minkowski embedding (see Eq. (5.7) on page 60) of
the resulting Z-module (see the subsequent discussion) is particularly convenient
to handle. �

As stated on page 6, the entries of Rm encode the relative letter frequencies
in a fixed point of ζm,i (or ζ2

m,i). Now, the vector Lm facilitates a geometric
interpretation of all members ϑ ∈ Nm ∪ R. We assign a closed interval Ia of
length L(a)

m = λm to the letter a and a closed interval Ib of length L
(b)
m = 1 to

the letter b. The action of ϑ on the intervals can be defined as follows. Firstly,
Ia and Ib are scaled by λm and secondly, the resulting intervals are dissected
according to the substitution rule ϑ. As Lm is an eigenvector of Mm, this can
be done consistently. Formally, this defines a new map, acting on R, which
will, for convenience, again be denoted by ϑ. In this setting, we refer to ϑ as a
one-dimensional inflation rule. Note that iterating the inflation rule results in
a face-to-face tiling of the real line. This is a countable partition T = {Ti}i∈I
such that each Ti ⊂ R is a closed interval with T ◦i ∩ T ◦j = ∅ for all i, j ∈ I with
i 6= j and ⋃i∈I Ti = R. Now, we can generate attributed point sets by choosing
the left or right endpoints (both possibilities are valid, but once decided on one
side, we have to stick to it) of each Ia and Ib as control points.
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Remark 5.8. We always work with left endpoints as control points in this
chapter. �

The point sets in R resulting from this procedure are called geometric
realisations and a sketch of this is given in Figure 5.1 in the case of ζ0,1. Moreover,
we denote geometric realisations of fixed points of the substitution ζm,i (or ζ2

m,i)
as noble means sets and refer to them as Λm,i. The same method applies to the
stochastic situation where the geometric realisations of accumulation points of
the sequence

(
ζkm(a | a)

)
k∈N0

are called generating random noble means sets and
any instance of these is referred to as Λm.

Remark 5.9 (Point density of RNMS sets). The choice of the lengths of Ia
and Ib according to the entries of Lm implies that for any 0 6 i 6 m, we have

Λm,i,Λm ⊂ Z[λm] =
{
a+ bλm | a, b ∈ Z

}
⊂ R.

Now, the point density of P ∈ {Λm,i,Λm} for an arbitrary but fixed m ∈ N
reads

dens
(
P
)

= 1
〈Lm |Rm〉

= 1− λ′m√
m2 + 4

. (5.5)

We refer to [BG13, Sec. 2.1] for general background concerning the point density
of discrete point sets. �

5.3. Cut and project

In this section, we want to show that the (random) noble means sets Λm,i
(and Λm) can be constructed within one and the same cut and project scheme
as (subsets of) so-called model sets.

5.3.1. The general setting. We begin with a brief introduction to cut
and project schemes in a general setting and derive the (R)NMS case afterwards.

Definition 5.10 (Cut and project scheme). A cut and project scheme is a triple
(Rd, H,L) with a locally compact Abelian group H and a lattice L ⊂ Rd ×H.
The two canonical projections π1 : Rd ×H −→ Rd and π2 : Rd ×H −→ H are
attached and L is chosen such that π1

∣∣
L is injective and π2(L) is dense in H.

The group Rd is called the physical space and H the internal space.

Here, a lattice L is defined as a discrete subgroup of Rd ×H such that the
factor group (Rd ×H)/L is compact. We define L := π1(L) and a mapping

? : L −→ H, x 7−→ x? := π2
((
π1
∣∣
L
)−1)(x) (5.6)

that is referred to as the star map. We can regard L as the diagonal embedding
of L, that is L :=

{
(x, x?) | x ∈ L

}
; see [BG13, Sec. 3.4] for general background.

The situation derived so far is summarised in Figure 5.2.
Given a non-empty and relatively compact set W ⊂ H, we refer to

Θ(W ) :=
{
x ∈ L | x? ∈W

}
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Rd Rd ×H H

π1(L) L π2(L)

L L?

π1 π2

1− 1

?
⊂ ⊂ ⊂ dense

Figure 5.2. General cut and project scheme.

and all its Rd-translates as a model set and denote W as its window. A model
set is regular if µH(∂W ) = 0 with µH being the Haar measure of H and
∂W = W \W ◦ the boundary of W . If L? ∩ ∂W = ∅, a model set is called
generic, otherwise it is called singular .

It is possible to further generalise the concept of cut and project schemes
by considering a σ-compact, locally compact Abelian group as physical space
[Schl98, Schl00]. We shall not cover this here, as we only need the special case
of point sets in R.

A characterisation of Meyer sets in this setting is provided by the following
result.

Theorem 5.11 ([Moo97a, Thm. 9.1(i)]). A relatively dense point set P ⊂ Rd
is Meyer if and only if P is a subset of a model set. �

We now want to study whether generating random noble means sets Λm

are Meyer and embark on the following strategy for a proof. To begin with,
we describe the geometric realisations of fixed points of all members of Nm as
regular model sets and therefore calculate the corresponding windows in internal
space. Then, we use these windows for the calculation of a ‘super window’ W
with Λm ⊂ Θ(W ) and vol(W ) minimal with this property, and finally apply
Theorem 5.11.

5.3.2. The NMS case. We start by collecting the necessary data for the
description of Λm,i as model sets. We already know that the physical space in
Definition 5.10 is R and even more, we have seen in Section 5.2 that Λm,i ⊂ Z[λm]
with Z[λm] being dense in R. Now, we define the non-trivial field automorphism
on the quadratic field Q(

√
m2 + 4) that is given by

′ : Q(
√
m2 + 4) −→ Q(

√
m2 + 4), x+ y

√
m2 + 4 7−→ x− y

√
m2 + 4

as the star map here, that is x? := x′. The diagonal (Minkowski) embedding of
Z[λm] is the lattice

Lm :=
{
(x, x?) | x ∈ Z[λm]

}
⊂ R× R, (5.7)



5.3. CUT AND PROJECT 61

R R× R R

Z[λm] Lm Z[λm]

L L?

π1 π2

1− 1 1− 1

?
⊂ ⊂ ⊂ densedense

Figure 5.3. Cut and project scheme for the noble means sets Λm,i.

which leads to R as internal space. Here, the projection of Lm into the physical
space is also dense in R as π1(Lm) = Z[λm]. In particular, for any lattice L ⊂ Rd,
there exist linearly independent vectors b1 , . . . , bd ∈ Rd, called the lattice base,
with

L = Zb1 ⊕ · · · ⊕ Zbd :=
{ d∑
i=1

αibi | αi ∈ Z, 1 6 i 6 d
}
.

In the case of Lm, a lattice base is given by b1 := (1, 1)T and b2 := (λm, λ′m)T .
For later use, we note the dual lattice of Lm which is given by

L∗m :=
{
y ∈ R2 | 〈x | y〉 ∈ Z for all x ∈ Lm

}
=
〈 1√

m2 + 4

(
−λ′m
λm

)
,

1√
m2 + 4

(
1
−1

)〉
Z
. (5.8)

The cut and project scheme for the noble means sets is compactly presented in
Figure 5.3. The following things are left to be done to complete the picture.

• compute the windows Wm,i for Λm,i in internal space
• prove that vol(Wm,i) > 0 and vol(∂Wm,i) = 0
• prove that dens

(
Λm,i

)
= dens

(
Θ(Wm,i)

)
For the computation of the required windows, we will benefit from the technical
preliminaries of Section 5.1. We denote by Λ(a)

m,i and Λ(b)
m,i all points of the noble

means sets that are generated by the letters a and b, respectively, in the sense
of Section 5.2.

Remark 5.12. In the following, we consider iterated function systems resulting
from a single application of the substitution ζm,i. We have seen in Remark 2.1
that we only get semi-infinite fixed points in the cases i = 0 and i = m for
ζm,i itself. Due to Remark 1.10, this is enough to construct the correct two-
sided discrete hull wherefore it is sufficient to restrict to this technically more
convenient case. �
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As a result of the action of ζm,i on A2 for any 0 6 i 6 m, we arrive at the
following iterated function system in the physical space.

Λ(a)
m,i =

{i−1⋃
j=0

λmΛ(a)
m,i + jλm

}
∪ λmΛ(b)

m,i ∪
{m−1⋃
j=i

λmΛ(a)
m,i + jλm + 1

}
Λ(b)
m,i = λmΛ(a)

m,i + iλm.

(5.9)

With the notation of Section 5.1, we consider the (finite) iterated function system
F = (F11,F12,F21,F22) with the affine map families

F11 :=
{
λm(x+ j) | 0 6 j 6 i− 1

}
∪
{
λm(x+ j) + 1 | i 6 j 6 m− 1

}
,

F12 :=
{
λmx

}
, F21 :=

{
λm(x+ i)

}
and F22 := ∅.

Now, Eq. (5.9) can be represented as(
F11 F12
F21 F22

)(
Λ(a)
m,i

Λ(b)
m,i

)
=
(

Λ(a)
m,i

Λ(b)
m,i

)
.

As λm > 1 for all m ∈ N, F is not contractive and therefore in general not
uniquely solvable. We define

Γ(a)
m,i :=

(
Λ(a)
m,i

)? and Γ(b)
m,i :=

(
Λ(b)
m,i

)?
and study the corresponding system in the internal space, which gives

Γ(a)
m,i =

{i−1⋃
j=0

λ′mΓ(a)
m,i + jλ′m

}
∪ λ′mΓ(b)

m,i ∪
{m−1⋃
j=i

λ′mΓ(a)
m,i + jλ′m + 1

}
Γ(b)
m,i = λ′mΓ(a)

m,i + iλ′m.

(5.10)

We write F? in this case for the iterated function system.

Proposition 5.13. For an arbitrary but fixed m ∈ N and all 0 6 i 6 m, the
attractors of the iterated function system F? are given by the compact intervals

Am,i = A
(a)
m,i ∪A

(b)
m,i = iτm + [λ′m, 1],

where
A

(a)
m,i = iτm + [0, 1] and A

(b)
m,i = iτm + [λ′m, 0],

with τm := − 1
m(λ′m + 1).

Proof. Plugging the compact sets A(a)
m,i and A

(b)
m,i into Eq. (5.10) leads to

{i−1⋃
j=0

λ′mA
(a)
m,i + jλ′m

}
∪ λ′mA

(b)
m,i ∪

{m−1⋃
j=i

λ′mA
(a)
m,i + jλ′m + 1

}
.
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As −1 < λ′m < 0 and the length of A(a)
m,i is equal to 1, all unions of translates of

A
(a)
m,i overlap and consequently

= [λ′m(iτm + 1) + (i− 1)λ′m, λ′miτm] ∪ [λ′miτm, λ′m(λ′m + iτm)]
∪ [λ′m(iτm + 1) + (m− 1)λ′m + 1, λ′miτm + iλ′m + 1]

= [λ′mi(τm + 1), λ′miτm] ∪ [λ′miτm, λ′m(m+ iτm) + 1]
∪ [λ′m(m+ iτm) + 1, λ′mi(τm + 1) + 1]

= [λ′mi(τm + 1), λ′mi(τm + 1) + 1]
= iτm + [0, 1]

= A
(a)
m,i.

Furthermore, we have

λ′mA
(a)
m,i + iλ′m = [λ′m(1 + iτm) + iλ′m, λ

′
miτm + iλ′m]

= [λ′m + λ′mi(τm + 1), λ′mi(τm + 1)]
= iτm + [λ′m, 0]

= A
(b)
m,i,

so that
(
A

(a)
m,i, A

(b)
m,i

)
is a solution to the iterated function system. Since all

maps in F∗ are contractions, the assertion now follows from an application of
Corollary 5.3. �

Lemma 5.14. For an arbitrary but fixed m ∈ N and all 0 6 i 6 m, the point
density of the model set Θ(Am,i), within the cut and project scheme of Figure 5.3,
is given by

dens
(
Θ(Am,i)

)
= dens

(
Λm,i

)
.

Proof. To begin with, we order the elements of Θ(Am,i) according to their
distance from 0 and assemble them in a sequence (xi)i∈N such that ‖xi+1‖ > ‖xi‖
for all i ∈ N and some norm ‖·‖ in R. From [BG13, Thm. 7.2], we know that
the sequence (x?i )i∈N is uniformly distributed (in the sense of Weyl [Wey16]) in
Am,i. As the projection π2(Lm) is dense in the internal space, vol(Am,i) <∞
and vol(∂Am,i) = 0, the point density of Θ(Am,i) can be computed via the the
formula [Schl98, Thm. 1]

dens
(
Θ(Am,i)

)
= dens(Lm) vol(Am,i).

As dens(Lm) = |det(b1, b2)|−1 = |2λ′m − m|−1 and vol(Am,i) = 1 − λ′m, the
assertion follows from Remark 5.9 and a simple calculation. �

Lemma 5.15. For any m ∈ N and 0 6 i 6 m, the set Θ(A◦m,i) is repetitive.

Proof. We consider an arbitrary non-empty patch

P := Θ(A◦m,i) ∩ I
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of Θ(A◦m,i) with a closed interval I ⊂ R. The definition of the star map implies
P ? ⊂ A◦m,i and (−ε, ε) + P ? ⊂ A◦m,i for some ε > 0. Due to the denseness of
Z[λm] = π2(Lm) in R, we know that (−ε, ε)∩Z[λm] 6= ∅. For all t ∈ Θ

(
(−ε, ε)

)
,

the set t+ P is a patch of Θ(A◦m,i) because for any x ∈ P we get

(t+ x)? = t? + x? ∈ (−ε, ε) + P ? ⊂ A◦m,i.

As Θ
(
(−ε, ε)

)
is relatively dense, we conclude that P appears with bounded

gaps and as Θ(A◦m,i) has finite local complexity [BG13, Prop. 7.5], the assertion
follows. �

Remark 5.16 (Generic and singular model sets). Proposition 5.13 implies the
inclusion Wm,i ⊂ Am,i = iτm + [λ′m, 1]. As each Am,i is a compact interval of
length 1−λ′m ∈ Z[λm], the following short calculation shows that only the cases
i = 0 and i = m lead to singular model sets whereas the intermediate cases are
all generic,

λ′m + iτm = (m− i)λ′m
m

− i

m

{
∈ Z[λm], if i = 0 or i = m,

/∈ Z[λm], if 0 < i < m,

and the left endpoint of Am,i is an element of Z[λm] if and only if this is also
true of the right endpoint. �

Corollary 5.17. For an arbitrary but fixed m ∈ N and 0 < i < m, the windows
for the noble means sets Λm,i, within the cut and project scheme of Figure 5.3,
are given by the compact intervals Wm,i := Am,i.

Proof. From Remark 5.16, it is clear that L?m ∩ ∂Am,i = ∅, so the inclusion
Λm,i ⊂ Θ(A◦m,i) is obvious. For the converse, we assume there is an element
x ∈ Θ(A◦m,i) \ Λm,i. Then, there exists a y ∈ Λm,i such that |x− y| /∈ {1, λm}.
Consequently, the elements x and y form a patch in Θ(A◦m,i) which does not
occur in Λm,i. As Θ(A◦m,i) is repetitive by Lemma 5.15, this would imply

dens
(
Θ(A◦m,i)

)
> dens(Λm,i),

which is a contradiction to Lemma 5.14. �

For the treatment of the singular cases, let Λ(x|y)
m,i be the noble means set

resulting from the fixed point of ζ2
m,i with legal seed x | y in the cases i = 0

and i = m. The corresponding windows for the cut and project description are
denoted by W (x|y)

m,i .

Corollary 5.18. For any m ∈ N, the windows for the noble means sets

Λ(a|a)
m,0 , Λ(a|b)

m,0 , Λ(a|a)
m,m and Λ(b|a)

m,m,

within the cut and project scheme of Figure 5.3, are given by

W
(a|a)
m,0 := [λ′m, 1), W

(a|b)
m,0 := (λ′m, 1], (5.11)

W
(a|a)
m,m := (−1,−λ′m], W

(b|a)
m,m := [−1,−λ′m), (5.12)
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Figure 5.4. Cut and project setting for the substitution ζ2,1.
The strip R×W (a)

2,1 is indicated in red, and R×W (b)
2,1 in blue.

distinguished according to the legal two-letter seeds.

Proof. We only prove the first part of Eq. (5.11) as the other identities follow
similarly. In this case, it is easy to check that 1 /∈ Λ(a|a)

m,0 whereas the lattice point
(1, 1) ∈ Lm lies on the boundary of the strip R× [λ′m, 1]. By Proposition 5.13,
this implies

Λ(a|a)
m,0 ⊂ Θ

(
[λ′m, 1)

)
.

The other inclusion is again implied by Lemma 5.15 in the same way as in the
proof of Corollary 5.17. �

Corollary 5.19. For an arbitrary but fixed m ∈ N and all 0 6 i 6 m, the noble
means sets Λm,i are regular model sets.

Proof. The windows Wm,i were computed in Corollary 5.17 and Corollary 5.18
and as the Haar measure on R is the Lebesgue measure, it is immediate that
vol(Wm,i) > 0 and vol(∂Wm,i) = 0. Applying Lemma 5.14 proves the assertion.

�

The cut and project setting for the noble means sets is illustrated in Figure 5.4
in the case of ζ2,1.

Corollary 5.20. For an arbitrary but fixed m ∈ N and all 0 6 i 6 m, the noble
means sets Λm,i are Meyer.

Proof. Each Λm,i is relatively dense in R with covering radius λm/2. The
Meyer property is therefore implied by Theorem 5.11. �

Let us now focus on the description of generating random noble means sets
as subsets of model sets. The idea is to use Proposition 5.13 and the thereby
implied knowledge of the relative positions of all Wm,i to each other to derive
an interval Wm with Λm ⊂ Θ(Wm). The special case of m = 1 was treated in
[Lüt10, Prop. 6].
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Proposition 5.21. Let Λm be a generating random noble means set. Then,
Λm ⊂ Θ

(
Wm

)
with Wm := [λ′m − 1, 1− λ′m].

Proof. Assume there is a set Wm = A ∪ B in the internal space with the
property Λm ⊂ Θ(Wm) = Θ(A) ∪Θ(B). Here, the sets Θ(A) and Θ(B) denote
the left endpoints of intervals generated by the letters a and b, respectively. If
Λm is a generating random noble means set, the same is true for ζm(Λm), and the
sought-after sets Θ(A) and Θ(B) are invariant under ζm. Now, consider x ∈ Λm
and note that the interval [0, x] is always mapped to the interval λm · [0, x]. The
sets Θ(A) and Θ(B) are consequently invariant under ζm if and only if for all
0 6 i 6 m the inclusions

ζm,i
(
Θ(A)

)
⊂ Θ(A) and ζm,i

(
Θ(B)

)
⊂ Θ(B)

hold. As conditions in the physical space, we get for 0 6 i 6 m the m+1 systems

Θ(A) ⊃
{i−1⋃
j=0

λmΘ(A) + jλm

}
∪ λmΘ(B) ∪

{m−1⋃
j=i

λmΘ(A) + jλm + 1
}

Θ(B) ⊃ λmΘ(A) + iλm

and in the internal space the corresponding conjugate systems

A ⊃
{i−1⋃
j=0

λ′mA+ jλ′m

}
∪ λ′mB ∪

{m−1⋃
j=i

λ′mA+ jλ′m + 1
}

B ⊃ λ′mA+ iλ′m.

(5.13)

As only affine maps appear in Eq. (5.13), it suffices to investigate the extremal
cases i = 0 and i = m. Furthermore, we can assume that A and B are closed
intervals, because if C ∈ {A,B} satisfies all conditions of Eq. (5.13) and is no
interval, then define C = [inf C, supC]. As all involved maps are affine, C also
meets these conditions and we may define A := [α, β] and B := [γ, δ]. Among
the remaining conditions of Eq. (5.13), only the following six are not redundant:

(1) λ′m
(
β + (m− 1)

)
> α (2) λ′mδ > α (3) λ′mγ 6 β

(4) λ′m(β +m) > γ (5) λ′mα+ 1 6 β (6) λ′mα 6 δ.

Because of Proposition 5.13, we may assert the relative position γ < α 6 δ < β

of A to B. This appears to be a linear optimisation problem, which is not
uniquely solvable in general. Consequently, we additionally demand that the
interval Wm = [γ, β] be minimal, which leads to the condition λ′m(β +m) = γ.
This equation describes the largest translation to the left and if λ′m(β +m) > γ,
the length of Wm was not minimal. By solving the linear optimisation problem
of Eq. (5.13) under consideration of all given boundary conditions, we get the
intervals

A = [−1, 1− λ′m], B = [λ′m − 1,−λ′m] and Wm = [λ′m − 1, 1− λ′m].
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Figure 5.5. The strip R×
⋃m
i=0Wm,i (red) is strictly contained

in the strip R×Wm (blue). Here indicated for the case m = 2.

These intervals actually satisfy Eq. (5.13), because for i = m we get{m−1⋃
j=0

λ′mA+ jλ′m

}
∪ λ′mB = [−(λ′m)2 +mλ′m,−λ′m]

∪ [−1−mλ′m, 1 + (m− 1)λ′m]
= [−1,−λ′m] ∪ [−1−mλ′m, 1 + (m− 1)λ′m]
⊂ [−1, 1− λ′m] = A

and

λ′mA+mλ′m = [−(λ′m)2 + (m+ 1)λ′m, (m− 1)λ′m]
= [λ′m − 1, (m− 1)λ′m]
⊂ [λ′m − 1,−λ′m] = B.

Analogously, we get the corresponding inclusions for i = 0. Furthermore, the
minimality condition of Wm is fulfilled because

λ′m(β +m) = λ′m(1− λ′m +m) = λ′m − 1 = γ. �

Note that ⋃mi=0Wm,i is a strict subset of Wm, for any m ∈ N. The situation
in the case of m = 2 is illustrated in Figure 5.5.

Definition 5.22 (Continuous hull). For an arbitrary but fixed m ∈ N and
0 6 i 6 m, we define

Ym,i :=
{
t+ Λm,i | t ∈ R

}
(5.14)

as the continuous hull of the inflation rule ζm,i.

Note that the closure in Eq. (5.14) is taken with respect to the local topology.
Here, two FLC point sets M and N are close if, after a small translation, they
agree on a large interval. That is, if

M ∩ (−1/ε, 1/ε) = (−t+N) ∩ (−1/ε, 1/ε)
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for some t ∈ (−ε, ε). Accordingly, we get

Definition 5.23 (Continuous stochastic hull). For any m ∈ N, let

Ym :=
{

Λm | Λm is the geometric realisation of

an accumulation point of
(
ζkm(a | a)

)
k∈N

}
and define the continuous stochastic hull Ym of the inflation rule ζm as the
smallest closed and translation-invariant subset of D(R) (the set of Delone
subsets of R) with Ym ⊂ Ym. The elements of Ym are called generating random
noble means sets.

Remark 5.24 (Punctured continuous stochastic hull). Evidently, there is a
one-to-one correspondence between all elements of Xm and those elements of
Ym that contain 0 ∈ R. The subset

Y}m :=
{
Λ ∈ Ym | 0 ∈ Λ

}
⊂ Ym.

is called the punctured continuous stochastic hull. The elements of Y}m are
precisely the geometric realisations of random noble means words which were
considered in Section 5.2. �

Equipped with the necessary terminology, we can formulate the following
consequence of Proposition 5.21.

Theorem 5.25. Each random noble means set Λ ∈ Ym is Meyer.

Proof. Let Λm be a generating random noble means set. Evidently, Λm is
relatively dense in R with covering radius λm/2 and, by Proposition 5.21, it is a
subset of the model set Θ

(
[λ′m − 1, 1− λ′m]

)
. The Meyer property of Λm then

follows from Theorem 5.11. We know that there is a generating random noble
means set whose orbit is dense, Λm say. Now, choose an arbitrary random noble
means set Λ ∈ Ym and a converging sequence (tn + Λm)n∈N with limit Λ. For
any n ∈ N, we find

(tn + Λm)− (tn + Λm) = Λm − Λm
and therefore Λ− Λ ⊂ Λm − Λm which means that Λ is uniformly discrete. As
the relative denseness of Λ is clear, this proves the assertion. �

In general, the Meyer property of a discrete point set is an interesting
and desirable structure. For our studies of diffraction in Chapter 6, the Meyer
property of all Λ ∈ Ym is particularly important because a central result of
Strungaru [Str05, Prop 3.12] ensures the presence of an extended pure point
component in the diffraction measure of Λ.



CHAPTER 6

Diffraction of the RNMS

In this final chapter, we derive the diffraction measure of some typical
element of the continuous RNMS hull. The construction of the ergodic measure
µm on Xm provides a convenient basis in this regard because its suspension to a
measure νm on Ym is then also ergodic. The construction of νm is the purpose of
Section 6.1.1. Ensuing this, we briefly introduce the most important terminology
and concepts for the treatment of diffraction of discrete point sets in Section 6.1.2.
Recall that the basic measure-theoretic ideas have been provided in Section 1.4.1.
For the sake of completeness, we briefly deduce the diffraction measure of any
noble means set from general results covering the diffraction of regular model
sets in Section 6.2.1 and derive the RNMS cases afterwards in Section 6.2.2. The
idea for the there applied recursion-based approach with a suitable split into first
and second moments of some complex-valued random variable was pioneered by
Godrèche and Luck [GL89, Sec. 5]. We will back up their construction with as
much mathematical rigour as possible although some questions have to remain
open. Last but not least, we present an inflation-invariant approach to the pure
point part of the diffraction measure of the RNMS cases in Section 6.3.

6.1. Basic tools of RNMS diffraction

6.1.1. Suspension of µm. From the symbolic dynamics point of view, we
so far have investigated the discrete dynamical system (Xm,Z, µm), with µm
being the ergodic measure defined by the frequency of ζm-legal words that was
constructed in Section 4.2.1. Now, we are interested in an induced continuous
dynamical system, for which we can benefit from the ergodicity of µm. For the
construction of the so-called special flow, we follow the exhibition in [CFS82,
Ch. 11].

To begin with, consider a µm-integrable function f : Xm −→ R+ and the
space Mf ⊂ Xm × R, defined by

Mf :=
{
(x, y) | x ∈ Xm, 0 6 y < f(x)

}
.

We may turn Mf into a measure space itself. To this end, we equip R with the
Borel σ-algebra BR generated by the open intervals (a, b) with a, b ∈ Q and
provide Mf with the σ-algebra Bf :=

(
Bm⊗BR

)
∩Mf ; see [Par05, Prop. 2.1.5]

for background in this regard. The basic rectangles R in Mf are of the form
R := B×(a, b) withB ∈ Bm and a 6 inf

{
f(x) | x ∈ B

}
. We define the suspended

69
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measure ν∗m as the restriction of µm⊗λ to Mf where λ is the Lebesgue measure
on R and the function f is defined by

f(x) :=
{
λm, if x0 = a,

1, if x0 = b.
(6.1)

This is consistent with the concept of geometric realisations of random noble
means words as introduced in Section 5.2. The two values of f match the lengths
of the intervals that were chosen according to the normalisation of the left PF
eigenvector of Mm specified in Eq. (5.4) on page 58.

Remark 6.1 (Choice of f for the suspension). Note that one often defines f
such that

∫
f dµm = 1 in order to immediately make the suspended measure a

probability measure. This can be accomplished via the function

f(x) :=
{
λm dens(Λm), if x0 = a,

dens(Λm), if x0 = b.

As this definition does not reflect the correct interval lengths of geometric
realisations in relation to the Minkowski embedding of Eq. (5.7) and Remark 5.7,
we stick to the choice of Eq. (6.1). �

Recall that Z0(a) and Z0(b) are the cylinder sets of the letters a and b at the
index 0 in the sense of Remark 1.11 and Eq. (1.1) on page 3. Now, the measure
ν∗m of some basic rectangle R is given by ν∗m(R) = µm(B)(b− a) and we find

ν∗m(Mf ) =
∫
Xm

f dµm = µm
(
Z0(a)

)
λm + µm

(
Z0(b)

)
= λ2

m

λm + 1 + 1
λm + 1 = 1

dens(Λm) ,

where dens(Λm) = (1− λ′m)/
√
m2 + 4, due to Remark 5.9. In order to turn ν∗m

into a probability measure, we set νm := dens(Λm)ν∗m. Furthermore, we define
the special flow {St} on the measure space (Mf ,Bf , νm) by

St(x, y) :=
(
Snx, y + t−

n−1∑
k=0

f(Skx)
)

if t > 0. Here, n ∈ N is uniquely determined by
n−1∑
k=0

f(Skx) 6 y + t <
n∑
k=0

f(Skx).

Moreover, we define

St(x, y) :=


(x, y + t), if t < 0 and y + t > 0,(
S−nx, y + t+

−1∑
k=−n

f(Skx)
)
, if t < 0 and y + t < 0,
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λm

1

xSxS2xS3xS4x

. . . . . .

Xm

R

Figure 6.1. Illustration of the action of the special flow in the
space Mf ⊂ Xm × R.

where n ∈ N is uniquely defined by

−
−1∑

k=−n
f(Skx) 6 y + t < −

−1∑
k=−n+1

f(Skx).

Finally, we identify
(
x, f(x)

)
∼ (Sx, 0) and refer to Figure 6.1 for the interpre-

tation of this construction. Starting at any point k0 = (x, 0) ∈Mf , one climbs
up the fibre over k0 until

(
x, f(x)

)
is reached. This point is identified with

k1 = (Sx, 0) from where the route continues up the fibre over k1 and so forth.
According to [CFS82, Lem. 11.1.1], the measure νm is {St}-invariant which
means νm(StB) = νm(B) for any t ∈ R and any B ∈ Bf . Following [EW11,
Lem. 9.24], the measure νm is ergodic if and only if µm is ergodic which we have
already accomplished in Theorem 4.22.

The preceding discussion reveals the fact that Mf
∼= Ym and we finally

formulate our findings as follows.

Lemma 6.2. The special flow {St} is a transformation of the probability space
(Ym,Bf , νm), and the measure νm is {St}-invariant and ergodic. �

6.1.2. Essentials and notation for diffraction of discrete point sets.
For the computation of the diffraction measure of discrete point sets P ⊂ Rd,
we consider the attributed Dirac combs

δP :=
∑
x∈P

δx and δ̃P :=
∑
y∈P

δ̃y =
∑
y∈P

δ−y,

and study the properties of the family {γ(n)
P | n > 0} with

γ
(n)
P := γ

(n)
δP

:=
δPn ∗ δ̃Pn
vol(Bn) , (6.2)

where Pn := P ∩Bn(0), as n→∞. By restricting the intricacy of discrete point
sets, one finds the following convenient property of Dirac combs.
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Remark 6.3 (Dirac combs of FLC sets). Let P ⊂ Rd be an FLC set and
consider a weight function w : P −→ C with S := sup

{
|w(x)| | x ∈ P

}
< ∞.

Then, the Dirac comb
δP :=

∑
x∈P

w(x)δx

is a translation bounded measure because for any compact K ⊂ Rd we get

|δP |(y +K) 6 S
∑
x∈P

δx(y +K) 6 SN,

where N := sup
{
|P ∩ (y +K)| | y ∈ Rd

}
. As an FLC set in particular is locally

finite [BG13, Prop. 2.1], we find SN <∞. �

With the obvious modifications, we can consider Eq. (6.2) for an arbitrary
translation bounded measure µ. In this more general situation, one knows the
following result that has already been observed by Hof [Hof95, Prop. 2.2].

Proposition 6.4 ([BG13, Prop. 9.1]). If µ ∈M(Rd) is a translation bounded
measure, the family {γ(n)

µ | n > 0} is precompact in the vague topology. Any
accumulation point of this family, of which there is at least one, is translation
bounded. �

From Remark 6.3 and Proposition 6.4, we conclude that there is at least
one accumulation point γP of the family {γ(n)

P | n > 0}, provided P is an FLC
set. We refer to each accumulation point of this family as an autocorrelation
measure of δP or just an autocorrelation for short. The approach to diffraction
theory via autocorrelation measures goes back to Hof [Hof95] and a detailed
exposition can be found in [BG13, Ch. 9].

Corollary 6.5. For any Λ ∈ Ym, there is at least one autocorrelation γΛ,m.

Proof. Theorem 5.25 gives the Meyer property of Λ. The existence of γΛ,m is
then a special case of the preceding discussion. �

Proposition 6.6 ([BF75, Sec. 4]). If µ ∈M(Rd) is positive definite, its Fourier
transform exists and is a positive and translation bounded measure. �

As γΛ,m is positive definite by construction for any Λ ∈ Ym, we get the
existence of the Fourier transform γ̂Λ,m from Proposition 6.6 and we call γ̂Λ,m
the diffraction measure of Λ. In this context, we refer to [BG13, Ch. 9] for an
exposition of theoretical background and numerous examples. Our aim for the
rest of this chapter will be the study of γ̂Λ,m with a view towards its Lebesgue
decomposition that was discussed around Theorem 1.15.

6.2. Diffraction of RNMS sets

6.2.1. The NMS cases. Before we embark on the diffraction of typical
RNMS sets, we briefly treat the NMS cases. Concerning regular model sets, of
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which each noble means set Λm,i = Θ(Wm,i) is a particular instance, there is
a good understanding both of the autocorrelation and the diffraction measure.
For the sake of completeness, we cite the two decisive results in this context.
Recall that ? denotes the star map that was introduced in Eq. (5.6) on page 59.

Theorem 6.7 ([BG13, Prop. 9.8]). Consider the general cut and project scheme
of Figure 5.2 and let P = Θ(W ) be a regular model set for it, with compact
window W = W ◦. The autocorrelation measure γP of P exists and is a positive
and positive definite, translation bounded, pure point measure. It is given by

γP =
∑

z∈P−P
η(z)δz, (6.3)

with the autocorrelation coefficients

η(z) = dens(P )
µH
(
W ∩ (z? +W )

)
µH(W )

= dens(P )
µH(W )

∫
H
1W (y)1z?+W (y) dµH(y),

where µH is the Haar measure on H. In particular, one has η(0) = dens(P ). �

Theorem 6.8 ([BG13, Thm. 9.4]). Let P = Θ(W ) be a regular model set for
the general cut and project scheme of Figure 5.2 with compact window W = W ◦

and autocorrelation γP as in Eq. (6.3). The diffraction measure γ̂P is a positive
and positive definite, translation bounded, pure point measure. It is given by

γ̂P =
∑
k∈L~

I(k)δk, (6.4)

where the diffraction intensities are I(k) = |A(k)|2 with the amplitudes

A(k) = dens(P )
µH(W ) 1̂W (−k?) = dens(P )

µH(W )

∫
H
〈k?|y〉dµH(y). �

Remark 6.9 (Fourier module). Here, the Fourier module L~ is given by the
projection of the dual lattice L∗ to the physical space, that is L~ := π1(L∗). In
the NMS cases, L~m is given by

L~m := π1(L∗m) = Z[λm]/
√
m2 + 4, (6.5)

where L∗m is the dual lattice of Eq. (5.8). Simultaneously, this is the pure point
part of the dynamical spectrum of (Ym, {St}); see [BG13, App. B], [BLvE13]
and [Que10, Ch. 3] for background. �

Corollary 6.10. For an arbitrary but fixedm ∈ N and 0 6 i 6 m, the diffraction
measure of Λm,i is a positive and positive definite, translation bounded, pure
point measure. It is explicitly given by

γ̂Λm,i =
∑
k∈L~m

|Am,i(k)|2 δk, (6.6)
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Figure 6.2. Diffraction measure of any ζ1,i. All Bragg peaks
at wave number k, with 0 6 k 6 10, of height I(k) = |A(k)|2 >
dens(Λ1,i)/1000 are shown.

with the amplitudes

Am,i(k) = dens(Λm,i) e−π ik?(λ′m+1)(1−2i/m) sinc
(
πk?(1− λ′m)

)
.

Proof. To begin with, we note that the Fourier transform of the characteristic
function of an interval [a, b] ⊂ R can be represented as

1̂[a,b](x) = (b− a) e−π ix(a+b) sinc
(
πx(b− a)

)
, (6.7)

where sinc(z) := sin(z)/z. Combining Theorem 6.8 with Proposition 5.13 and
Lemma 5.14, we find

Am,i(k) =
dens(Λm,i)
vol(Wm,i)

1̂Wm,i
(−k?)

=
(1− λ′m) e−π ik?(λ′m+1)(1−2i/m) sinc

(
πk?(1− λ′m)

)
√
m2 + 4

= dens(Λm,i) e−π ik?(λ′m+1)(1−2i/m) sinc
(
πk?(1− λ′m)

)
,

by an application of Eq. (6.7). �

Remark 6.11 (Role of the amplitudes). Note that γ̂Λm,i in fact does not depend
on i because of the absolute square in Eq. (6.6). An illustration of the diffraction
measure in the golden mean cases is shown in Figure 6.2. Furthermore, there
is an important connection between the amplitudes and the corresponding
exponential sums in the following sense. For a fixed k ∈ L~m, one can show (the
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proof of [BG13, Lemma 9.4] for the silver mean case with i = 1 can be extended
to arbitrary m ∈ N and 0 6 i 6 m) that

lim
n→∞

1
vol(Bn)

∑
x∈Λm,i,n

e−2π ikx = Am,i(k),

where Λm,i,n = Λm,i ∩Bn(0). In general, it is a difficult problem to control the
growth behaviour of such sums and we will encounter precisely such an instance
shortly in the study of the RNMS cases. �

6.2.2. The RNMS cases. Also in the stochastic situation, the explicit
shape of the autocorrelation measure in Eq. (6.3) can be achieved as follows.
We consider the Dirac comb

δΛ :=
∑
x∈Λ

δx with δΛn :=
∑
x∈Λn

δx and Λn := Λ ∩Bn(0),

for any random noble means set Λ ∈ Ym. The approximating autocorrelations
in the sense of Proposition 6.4 are denoted as γ(n)

Λ,m and any accumulation point
as γΛ,m. Then, we find

lim
n→∞

γ
(n)
Λ,m = lim

n→∞

δΛn ∗ δ̃Λn
vol(Bn) = lim

n→∞
1

vol(Bn)
( ∑
x∈Λn

∑
y∈Λn

δx−y

)
= lim

n→∞
1

vol(Bn)
∑

z∈Λn−Λn

( ∑
x,y∈Λn
x−y=z

1
)
δz

= lim
n→∞

1
vol(Bn)

∑
z∈Λn−Λn

( ∑
x,x−z∈Λn

1
)
δz

=
∑

z∈Λ−Λ

(
lim
n→∞

1
vol(Bn)

∑
x,x−z∈Λn

1
)
δz.

Now, a closer study of the autocorrelation coefficients

η(z) := lim
n→∞

1
vol(Bn)

∑
x,x−z∈Λn

1 = lim
n→∞

1
vol(Bn) |Λn ∩ (z + Λn)|

is needed. As η(z) has the form of an orbit average, it is suggestive to take ad-
vantage of the ergodicity of the suspended measure νm, derived in the discussion
preceding Lemma 6.2. To this end, we proceed with a regularisation of γ(n)

Λ,m and
introduce some additional notation. In the following, we always assume that
t ∈ R, ϕ ∈ Cc(R) and µ ∈M(R). Then, the translation of ϕ by t is denoted by
τtϕ(x) := ϕ(x− t) and similarly τtµ(ϕ) := µ(τ−tϕ). Furthermore, we define the
convolution of ϕ with µ as (ϕ ∗ µ)(t) := µ(τtϕ̃) ∈ C(R) where ϕ̃(x) := ϕ(−x).

In the following, the idea is to consider the convolution of a function ϕ ∈ Cc(R)
with δΛ where the support of ϕ lies inside an interval of length < 2rp(Λ), where
rp(Λ) = 1/2 is the packing radius of Λ. The resulting object may be interpreted
as a continuous function or as a regular and translation bounded measure; refer
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to [BLvE13, Sec. 4] or [Schl00] for background information. The ergodicity of νm
on Ym, combined with the Ergodic Theorem 6.12 for continuous functions, then
yields the decisive advantage of the regularisation process. Finally, a compression
of the support of ϕ gives us the sought-after shape of the autocorrelation. One
conceivable choice for the regularisation function is the following. For any
ε < rp(Λ), we define

ϕε : R −→ R, ϕε(t) :=
{

1− |t|ε , if t ∈ (−ε, ε),
0, otherwise,

(6.8)

which is a real-valued map in Cc(R). Moreover, we set

Fε : R× Ym −→ R,

Fε(t,Λ) :=
(
ϕε ∗ δΛ

)
(t) = δΛ

(
τtϕ̃ε

)
=
∑
s∈Λ

ϕε(t− s),

and will make use of the induced function Gε : Ym −→ R that is defined by
Gε(Λ) :=

(
ϕε ∗ δΛ

)
(0). Here, one easily computes that Fε(t,Λ) = Gε(Λ − t).

The following result may be considered as a continuous analogue of Birkhoff’s
Ergodic theorem on page 47.

Theorem 6.12 ([MR13, Thm. 2.14]). Let X be any compact metrisable space
with the translation action T of Rd on X and let µ ∈ PT (X). For any function
f ∈ L1(X,µ), the sequence(

In(Λ, f)
)
n∈N :=

( 1
vol(Bn)

∫
Bn

f(−t+ Λ) dt
)
n∈N

is finite for µ-almost all Λ ∈ X and all n ∈ N. Furthermore, there is a T -
invariant function F ∈ L1(X,µ) such that µ(F ) = µ(f) and

lim
n→∞

In(Λ, f) = F (Λ), (6.9)

for µ-almost all Λ ∈ X. Moreover, the measure µ is ergodic if and only if for
every f ∈ L1(X,µ), Eq. (6.9) holds with F = µ(f) for µ-almost all Λ ∈ X. �

The treatment of the autocorrelation can now proceed by an application of
of Lemma 6.2 and Theorem 6.12. We consider the function

γΛ,ε(t) :=
(
ϕε ∗ ϕ̃ε

)
∗
(
δΛ ~ δ̃Λ

)
(t) = lim

n→∞
(Fε ∗ F̃ε)(t,Λ)

vol(Bn)
and almost surely find

γΛ,ε(t) = lim
n→∞

1
vol(Bn)

∫
Bn

(
ϕε ∗ δΛ

)
(s+ t)

(
ϕε ∗ δΛ

)
(s) ds

= lim
n→∞

1
vol(Bn)

∫
Bn

Gε(Λ− s− t)Gε(Λ− s) ds

=
∫
Ym

Gε(Λ− t)Gε(Λ) dνm(Λ) = Eνm
(
Gε(Λ− t)Gε(Λ)

)
, (6.10)
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where the third equality follows almost surely from an application of Theo-
rem 6.12 to the function

Ym −→ R, Λ 7−→ Gε(Λ− t)Gε(Λ)

and with the ergodic measure νm on Ym. Obviously, due to our choice for the
regularisation function, one could omit the complex conjugation in the above
discussion, but in order to emphasise that, in a more general setting, one is not
restricted to ϕε, we leave it as such. Considering ε↘ 0 in Eq. (6.10), we almost
surely find

γΛ,m = Eνm
(
δΛ ~ δ̃Λ

)
.

For the computation of γ̂Λ,m, we define the complex-valued random variable

Xn(k) :=
∑
x∈Λn

e−2π ikx =
∑
x∈Λn

δ̂x,

with any Λ ∈ Ym and Λn = Λ ∩ Bn(0). The autocorrelation γΛ,m is positive
definite by construction and its Fourier transform exists due to Proposition 6.6.
We find

γ̂Λ,m =
(
Eνm(δΛ ~ δ̃Λ)

)̂
= lim

n→∞
Eνm

( 1
vol(Bn) δ̂Λn

̂̃
δΛn

)
= lim

n→∞
1

vol(Bn)Eνm
(
δ̂Λn

δ̂Λn

)
= lim

n→∞
1

vol(Bn)Eνm(|Xn|2)

= lim
n→∞

1
vol(Bn) |Eνm(Xn)|2 + lim

n→∞
1

vol(Bn)
(
Eνm(|Xn|2)− |Eνm(Xn)|2

)
= lim

n→∞
1

vol(Bn) |Eνm(Xn)|2 + lim
n→∞

1
vol(Bn)Vνm(Xn), (6.11)

where Vνm(Xn) is the variance of Xn, provided that all limits exist. The idea of
breaking up γ̂Λ,m according to first and second moments will on the one hand
result in limn→∞|Eνm(Xn)|2/ vol(Bn) containing the pure point part and on the
other hand limn→∞Vνm(Xn)/ vol(Bn) being the absolutely continuous part of
γ̂Λ,m. In the following, we will restrict to the special case of m = 1 and consider
suitable subsequences to ensure the convergence in Eq. (6.11). The general case
of m ∈ N can be treated similarly.

6.2.3. The random Fibonacci case. The observations made in Sec-
tion 3.2 and Theorem 5.25 identify each random noble means set as an instance
of a Meyer set that almost surely has entropy; see [BG12, Sec. 6] for another
example. Considering recent developments [BLR07] and taking the following
result into account, we expect to find a diffraction spectrum of mixed type in
the RNMS cases.

Theorem 6.13 ([Str05, Prop. 3.12]). Let P be a Meyer set and suppose that
its autocorrelation γP exists. Then, the set of Bragg peaks lies relatively dense.
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Moreover, if P is not pure point diffractive, it has a relatively dense support for
the continuous spectrum as well. �

Here, we restrict to m = 1 and consider realisations of the random variable
Xn that correspond to exact random Fibonacci words. For n > 2, we define the
sequence

Ln := Ln−1 + Ln−2 with L0 := 1 and L1 := λ1

that possesses the closed form Ln = λn1 for any n ∈ N and furthermore, we set

Xn(k) :=
{
Xn−2(k) + e−2π ikLn−2 Xn−1(k), with probability p0,

Xn−1(k) + e−2π ikLn−1 Xn−2(k), with probability p1,
(6.12)

where X0(k) := e−2π ik and X1(k) := e−2π ikλ1 . Moreover, we define the sequences

(
Pn
)
n∈N0

:=
( 1
Ln
|E(Xn)|2

)
n∈N0

and
(
Sn
)
n∈N0

:=
( 1
Ln

V(Xn)
)
n∈N0

, (6.13)

and derive results on the convergence of (Pn)n∈N0
and (Sn)n∈N0

.

Remark 6.14 (Substitution vs. concatenation). As the definition of the random
variable Xn in Eq. (6.12) is based on the concatenation rule, defined in Eq. (2.5)
on page 20, we have to check that we are still computing the diffraction of a
random noble means set, as this was defined via a random substitution rule.
This is precisely the purpose of Lemma 2.29. �

Remark 6.15 (Restriction to exact RNMS words). Note that it is not imme-
diate that the study of Eq. (6.12) and Eq. (6.13) lead to the correct diffraction
measure. Firstly, the random variable Xn disregards all non-exact geometric
realisations. This is not a serious problem because the definition of legality of
subwords ensures that Xn contains all geometric realisations of legal words,
provided the recursion is unwinded far enough. Secondly, the first and second
moments in Eq. (6.13) are no longer computed with respect to the measure
νm but rather based on the realisation probabilities that were introduced after
Lemma 2.29 on page 26. The first and second moments of Xn certainly differ,
with respect to these distinct measures, for finite n ∈ N and although numerical
examinations strongly suggest that they coincide as n→∞, a complete proof
is missing at the moment. �

Remark 6.16 (Independence of Xn). Consider an arbitrary n ∈ N. Applying
the recursion on Xn once, yields Xn−1 and Xn−2 on the right hand side of
Eq. (6.12). Now, Xn−1 depends on the geometric realisations of elements in
G1,n−2, but these are obviously independent of the realisations with respect
to the above Xn−2. In this sense, the random variables Xn−1 and Xn−2 are
independent and we have E(Xn−1Xn−2) − E(Xn−1)E(Xn−2) = 0. Instead of
introducing further notation to emphasise this minor subtlety, we leave it at
that because we will use this property only once below. �
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We proceed with the derivation of recursion formulas for E
(
Xn(k)

)
and V

(
Xn(k)

)
.

For the sake of readability, we introduce the following abbreviations.

en := e−2π ikLn , cosn := cos(2πkLn), Xn := Xn(k),

En := E
(
Xn(k)

)
and Vn := E

(∣∣Xn(k)
∣∣2)− ∣∣E(Xn(k)

)∣∣2, (6.14)

for any n ∈ N and k ∈ R. Using the definition ofXn in Eq. (6.12), it is immediate
that for n > 2, we have

En = E
(
p0(Xn−2 + en−2Xn−1) + p1(Xn−1 + en−1Xn−2)

)
= (p1 + p0 en−2)En−1 + (p0 + p1 en−1)En−2,

(6.15)

where E0 = e−2πik and E1 = e−2πikλ1 . Firstly, we consider the sequence (Sn)n∈N0
.

Applying Eq. (6.15) for any n > 2, we find

Vn = E
(
p0|Xn−2 + en−2Xn−1|2 + p1|Xn−1 + en−1Xn−2|2

)
− |En|2

= Vn−1 + Vn−2

+ 2p0p1

{(
1− cosn−2

)
|En−1|2 +

(
1− cosn−1

)
|En−2|2

− Re
[(

1− en−1 − en−2 + en−1 en−2
)
En−1En−2

]}
+ 2 Re

[(
p0 en−2 +p1en−1

)(
E(Xn−1Xn−2)− En−1En−2

)]
(∗)

= Vn−1 + Vn−2 + 2p0p1Ψn,

with V0 = V1 = 0 and

Ψn := Ψn(k) :=
(
1− cosn−2

)
|En−1|2 +

(
1− cosn−1

)
|En−2|2

− Re
[(

1− en−1 − en−2 +en−1 en−2
)
En−1En−2

]
= 1

2
∣∣(1− en−2)En−1 − (1− en−1)En−2

∣∣2 > 0, (6.16)

for any n > 2. We have used that E(Xn−1Xn−2)− En−1En−2 = 0 in (∗) which
was discussed in Remark 6.16. Our study of the sequence (Sn)n∈N0

proceeds
with some preparing notes on the sequence (Ψn)n>2. The illustrations of Ψn,
with n ∈ {2, 3, 4}, in Figure 6.3 suggest the boundedness of each Ψn and a
monotonic behaviour. This can be made rigorous by the following result.

Lemma 6.17. For all n > 2, the function Ψn is real analytic. Moreover, one
has Ψn(k) 6 2 and Ψn+1(k) 6 Ψn(k) for all k ∈ R.

Proof. The representation of Eq. (6.16) immediately shows the analyticity
of Ψn because sums and products of trigonometric functions are real analytic.
Next, we observe that

Ψ2(k) = 1
2
∣∣∣(1− e−2π ik) e−2π ikλ1 −(1− e−2π ikλ1) e−2π ik

∣∣∣2
= 1− cos

(
2πk(1− λ1)

)
6 2.
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Figure 6.3. The function Ψn is shown with n = 2 (red), n = 3
(blue) and n = 4 (green).

Now, for n > 2 we define ψn := ψn(k) := (1 − en−2)En−1 − (1 − en−1)En−2.
Applying the recursion for En once on the first summand and using the recursion
Ln = Ln−1 + Ln−2 implies

ψn+1 = (1− en−1)En − (1− en)En−1

= (1− en−1)
(
(p1 + p0 en−2)En−1 + (p0 + p1 en−1)En−2

)
− (1− en)En−1

= −(p0 + p1 en−1)
(
(1− en−2)En−1 − (1− en−1)En−2

)
= −(p0 + p1 en−1)ψn. (6.17)

This yields the monotonicity of Ψn because
|ψn+1| = |p0ψn + p1 en−1 ψn| 6 p0|ψn|+ p1|ψn| = |ψn|,

and therefore

Ψn+1(k) = 1
2 |ψn+1(k)|2 6 1

2 |ψn(k)|2 = Ψn(k). �

Proposition 6.18. For any n ∈ N0, consider the function φn : R −→ R>0,
defined by

φn(k) := 1
Ln

V
(
Xn(k)

)
.

On R, the sequence (φn)n∈N0
converges uniformly to the continuous function

φ : R −→ R>0, with

φ(k) := 2p0p1λ1√
5

∞∑
i=2

λ−i1 Ψi(k). (6.18)
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Figure 6.4. The density function φn is shown with n = 10 and
p1 = (1/2, 1/2).

Proof. From the recursion relation Vn = Vn−1 +Vn−2 +2p0p1Ψn, we conclude
the representation

lim
n→∞

φn(k) = lim
n→∞

2p0p1
Ln

n∑
i=2

`1,n+1−iΨi(k) = 2p0p1λ1√
5

∞∑
i=2

λ−i1 Ψi(k),

where `1,n denotes the nth Fibonacci number as introduced in Eq. (2.6). Next,
we observe that φ is convergent because an application of Lemma 6.17 yields

φ(k) 6 4p0p1λ1√
5

∞∑
i=0

λ−i−2
1 = 4p0p1λ1√

5
6

λ1√
5
.

Thus, φ is bounded and the sum consists of non-negative elements only. The
uniformity of the convergence is implied by the following short calculation

|φn(k)− φ(k)| = 2p0p1

∣∣∣ n∑
i=2

(`1,n+1−i
Ln

− λ1−i
1√
5

)
Ψi(k)−

∞∑
i=n+1

λ1−i
1√
5

Ψi(k)
∣∣∣

6 4p0p1

(∣∣∣(λ′1)n−1

λn1
√

5

n∑
i=0

(λ′1)−i
∣∣∣+ 1

λn1
√

5

∞∑
i=0

λ−i1

)
6
∣∣∣(λ′1)n−1 − 1/(λ′1)2

λn1
√

5(1− 1/λ′1)

∣∣∣+ 1
λn−2

1
√

5
, (6.19)

and both summands in the last line converge to zero, as n→∞. This means
that

lim
n→∞

sup
k∈R
|φn(k)− φ(k)| = 0,

which at the same time implies the continuity of φ. �
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Figure 6.5. An approximation to the pure point part of γ̂Λ,1,
based on the recursion in Eq. (6.15), is shown. Here, it is illus-
trated with n = 8 and p1 = (1/2, 1/2).

An illustration of φn for n = 10 is shown in Figure 6.4. Even from the (rather
mild) bound in Eq. (6.19) one can see that (φn)n∈N0

converges very quickly such
that we get a very accurate picture here.

Corollary 6.19. The roots of φ are precisely the roots of Ψ2, and they are
given by all integer multiples of λ1.

Proof. For n > 1, the recursion formula for ψn in Eq. (6.17) can be rewritten
as

ψn+1(k) = (−1)n−1ψ2(k)
n−1∏
j=1

(
p0 + p1 e−2π ikLj

)
= (−1)n−1(e−2π ikλ1 − e−2π ik) n−1∏

j=1

(
p0 + p1 e−2π ikLj

)
. (6.20)

Considering each factor of the product in Eq. (6.20) separately and including
Ψj(k) = |ψj(k)|2/2 for any j > 2, we explore the function fj : R −→ R>0 that is
defined as

fj(k) :=
∣∣p0 + p1 e−2π ikLj

∣∣2 = p2
0 + p2

1 + 2p0p1 cos(2πkLj).

Here, for all j ∈ N, the set of roots of fj reads

Rj =
{± arccos

(2p0p1−1
2p0p1

)
+ 2πq

2πLj

∣∣∣∣ q ∈ Z
}
.
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2.0 4.0 6.0 8.0 10.0

Figure 6.6. The diffraction measure for m = 1 and with
p1 = (1/2, 1/2) is illustrated. The approximation is done via the
recursion in Eq. (6.11) for n = 6.

Moreover, the expression |e−2π ikλ1 − e−2π ik|2 = 2− 2 cos
(
2πk(1− λ1)

)
vanishes

on all k ∈ λ1Z. This implies that

λ1Z ∪
n−1⋃
j=1

Rj

is the set of roots of Ψn+1 for all n > 1. Because of Lemma 6.17 and the
representation of φ in Eq. (6.18), this implies that λ1Z is the set of roots of
φ. �

Finally, Proposition 6.18 implies the vague convergence of the sequence
(Sn)n∈N0

and the existence of γ̂Λ,1 immediately yields the vague convergence of
(Pn)n∈N0

. Therefore, we almost surely find that

γ̂Λ,1 = (γ̂Λ,1)� + (γ̂Λ,1)pp + φ(k)λ,

where the precise nature of (γ̂Λ,1)� stays an open question and needs further
study in the future (see Remark 6.22 below). Following Hof [Hof95, Thm. 3.2],
we find

γ̂Λ,1({k}) = lim
n→∞

1
L2
n

∣∣E(Xn(k)
)∣∣2,

and a sketch of γ̂Λ,1({k}) and γ̂Λ,1 is illustrated in Figures 6.5 and 6.6, respectively.
Illustrations of γ̂Λ,1 for different choices of p1 are shown in Appendix A.

Remark 6.20 (Typical realisations). Due to the ergodicity of ν1, we know that
almost all realisations in Y1 feature the diffraction which we compute via the
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ensemble. These elements are called typical. For any given realisation, we can
never say whether it is typical or not. This observation can be pinned down by
considering the (deterministic) noble means sets which are included in a ν1-null
set and that yield pure point diffraction measures by Corollary 6.10. �

Remark 6.21 (Consistency with deterministic cases). Note that Proposi-
tion 6.18 is consistent with what we know about the deterministic cases Λ1,0
and Λ1,1 because due to Corollary 6.10, we know that the diffraction measure
is pure point there. Setting p0 = 0 or p1 = 0 in the representation of φ from
Eq. (6.18) indeed shows that φ ≡ 0 which means that the absolutely continuous
part vanishes here. �

Remark 6.22 (Exclusion of continuous parts). The vague convergence of the
sequence (Pn)n∈N0

alone does not avoid the presence of continuous components.
One idea for a proof of uniform convergence is the reformulation of Eq. (6.15)
in terms of a matrix product and the derivation of a sufficiently strong estimate
for a suitably chosen matrix norm. To this end, recall the notation of Eq. (6.14)
and define for n > 1 the matrices

Tn := Tn(k) :=
(
p1 + p0 en−1 p0 + p1 en

1 0

)
(6.21)

and consider for n > 0 the expression

Vn :=
(
En+1
En

)
= Tn

(
En
En−1

)
=

n−1∏
i=0

Tn−i

(
E1
E0

)
,

where ∏n−1
i=0 Tn−i is the ordered product of the matrices in Eq. (6.21). From the

inequality

|En| 6 ‖Vn‖α 6
∥∥∥n−1∏
i=0

Tn−i

∥∥∥
β
‖V0‖α 6

n−1∏
i=0
‖Tn−i‖β‖V0‖α, (6.22)

for all n ∈ N, and the identity |En| = Lεn where

ε :=
log
(
|En|

)
log(Ln) 6

1
n log(λ1)

(
log(‖V0‖α) +

n−1∑
i=0

log
(
‖Tn−i‖β

))
=: Tn,

for a suitable choice of compatible vector/matrix norms α/β, we conclude that
we have to show that limn→∞ Tn(k) < 1/2 for any k ∈ R\L~1 in order to exclude
the presence of a singular continuous part. Unfortunately, this estimate via
the sub-multiplicativity of the matrix norm is not strong enough, as numerical
evaluations of Tn suggest. Instead, one can study the Lyapunov exponent

T ′n :=
log
(
‖
∏n−1
i=0 Tn−i‖β‖V0‖α

)
n log(λ1)

resulting from the second inequality of Eq. (6.22) where the sub-multiplicativity
of the matrix norm has not been applied yet. In Appendix B, we show approxi-
mations of T ′n where α is the Euclidean vector norm and β the Frobenius matrix
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norm. Although it is very likely that γ̂Λ,1 contains no singular continuous compo-
nent, there is no proof at the moment. Concerning absolutely continuous parts,
one would inspect the expression T ′′n (k) = 2T ′n(k) that one obtains analogously
from Eq. (6.22) by considering |En|2. Here, a proof that limn→∞ T ′′n (k) < 1/2
for almost all k ∈ R is still needed. �

The general case for arbitrary m ∈ N can be handled analogously, although
the treatment of the absolutely continuous part is technically more involved.

6.3. Pure point part of γ̂Λ,m via inflation-invariant measures

Here, we access the content of Section 5.1.1 and discuss inflation-invariant
(or self-similar) measures on the attractor of the iterated function system of
Eq. (5.10) that was computed in Proposition 5.13. These measures constitute a
convenient alternative approach to the pure point part of γ̂Λ,m.

We start with a standard result concerning pushforward measures. In this
context, we define f.µ(B) := µ

(
f−1(B)

)
for a Borel set B and a measurable

function f , where f−1 is the pre-image of B under f . This matches the definition
of f.µ on functions given on page 56 after Remark 5.4.

Theorem 6.23 ([Els11, Thm. 3.1]). Let (X,Σ) and (X ′,Σ′) two measure spaces,
µ ∈M(X) finite and f : X −→ X ′ a measurable function. Let f.µ := µ ◦ f−1 be
the pushforward measure of µ under f and g : X ′ −→ K integrable with respect
to f.µ. Then, g ◦ f ∈ L1(X,µ) and∫

X′
g df.µ =

∫
X
g ◦ f dµ. �

Here, we interpret the Fourier transform of a finite measure µ as a bounded
and continuous function [Rud62, Thm. 1.3.3(a)].

Corollary 6.24. Let f : R −→ R be an affine map, defined by f(x) := ax+ b

for any a, b ∈ R and µ ∈M(R) be a finite measure. Then, we have

f̂.µ(k) = e−2π ikb µ̂(ak).

Proof. Applying Theorem 6.23, we find

f̂.µ(k) =
∫
R

e−2π ikx df.µ(x) =
∫
R

e−2π ik(ax+b) dµ(x) = e−2π ikb µ̂(ak). �

Henceforth, we pursue a similar idea as in the treatment of the set-theoretic
iterated function systems that were considered in Section 5.3.2. We study the
lift of a geometric realisation in the internal space and benefit from λm being a
PV number. This allows the application of Theorem 5.6 for the solution of the
resulting measure-theoretic iterated function system. For notational convenience,
we abbreviate ξ := λ′m in the following. For any 0 6 i 6 m, we derive from
Eq. (5.10) the following measure-theoretic iterated function system in the sense
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of Section 5.1.1,

µi,a = |ξ|
(i−1∑
j=0

fj .µi,a +
m−1∑
j=i

gj .µi,a + f0.µi,b

)
µi,b = |ξ|fi.µi,a,

(6.23)

with affine functions
fj : R −→ R, x 7−→ ξ(x+ j),
gj : R −→ R, x 7−→ ξ(x+ j) + 1,

which are precisely the contractions that constitute the iterated function system
F? in Eq. (5.10). Due to [BM00a, Sec. 7.2], this is the ‘non-overlapping’ case
which means that the measure ηij in Theorem 5.6 is counting measure, scaled
by λ−1

m ; see property NO3 in [BM00a, Sec. 7.2]. This yields the matrix

S =
(
m/λm 1/λm
1/λm 0

)
=
(
−mξ −ξ
−ξ 0

)
,

which is clearly primitive with PF eigenvalue 1 and corresponding right PF
eigenvector (1, |ξ|)T . By Theorem 5.6, the solution of the system in Eq. (6.23) is
given by the uniquely defined inflation-invariant measure µi := µi,a ⊗ µi,b where

µi,a ∈M(A(a)
m,i) and µi,b ∈M(A(b)

m,i).

Recall from Proposition 5.13 that

A
(a)
m,i = iτm + [0, 1] and A

(b)
m,i = iτm + [ξ, 0]

are the compact solutions of F?. Moreover, this system is consistent in the
following sense. One can check that the total mass of A(a)

m,i and A
(b)
m,i under µi,a

and µi,b respectively, is invariant under a single step of the iterated function
system. To this end, we observe that

A
(a)
m,i ⊂ f

−1
j (A(a)

m,i) for 0 6 j 6 i− 1,
A

(a)
m,i ⊂ g

−1
j (A(a)

m,i) for i 6 j 6 m− 1.
This implies

µi,a
(
g−1
j (A(a)

m,i)
)

= µi,a
(
f−1
j (A(a)

m,i)
)

= µi,a
(
A

(a)
m,i

)
.

Furthermore, we find A(a)
m,i ⊂ (f0 ◦ fi)−1(A(a)

m,i) and therefore

µi,a
(
(f0 ◦ fi)−1(A(a)

m,i)
)

= µi,a
(
A

(a)
m,i

)
.

After decoupling Eq. (6.23), we have

µi,a(A
(a)
m,i) = µi,a(A

(a)
m,i)|ξ|

(i−1∑
j=0

1 +
m−1∑
j=i

1 + |ξ|
)

= µi,a(A
(a)
m,i)

(
ξ2 −mξ

)
,

(6.24)
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and the assertion follows from 1 = ξ2 −mξ. In the same way, we can compute
A

(a)
m,i = f−1

i (A(b)
m,i) which means

µi,b(A
(b)
m,i) = |ξ|µi,a

(
f−1
i (A(b)

m,i)
)

= |ξ|µi,a(A
(a)
m,i). (6.25)

In particular, Eq. (6.24) and Eq. (6.25) are valid when µi,a and µi,b are chosen as
the Lebesgue measure on the corresponding windows. With this choice, one can
similarly check that Eq. (6.23) is consistent with the evaluation of µi,a and µi,b
on any open interval. An application of Theorem 5.6 then yields the following
result.

Corollary 6.25. The measures µi,a ∈M(A(a)
m,i) and µi,b ∈M(A(b)

m,i) are given
by the Lebesgue measure on the windows for the cut and project scheme of
Figure 5.3, thus

µi,a := 1
A

(a)
m,i

λ and µi,b := 1
A

(b)
m,i

λ. �

The following treatment of the Fourier transform of µi,a and µi,b can similarly
be found for the special case m = 1 in [Lüt10].

Proposition 6.26. Let µi,a and µi,b be the inflation-invariant measures de-
fined by Eq. (6.23). Then, the vector

(
µ̂i,a(k), µ̂i,b(k)

)T can be arbitrarily well
approximated by the product

|ξ|n
n∏
q=1

(∑i−1
j=0 e−2π iξqkj +∑m−1

j=i e−2π iξqk(j+1/ξ) 1
e−2π iξqki 0

)(
µ̂i,a(ξnk)
µ̂i,b(ξnk)

)
, (6.26)

where the recursion at k = 0 leads to the equation(
m 1
1 0

)(
1/
√
m2 + 4

−ξ/
√
m2 + 4

)
= λm

(
1/
√
m2 + 4

−ξ/
√
m2 + 4

)
.

Proof. By an application of Corollary 6.24, Fourier transform of the iterated
function system in Eq. (6.23) yields

µ̂i,a(k) = |ξ|
(i−1∑
j=0

e−2π iξkj µ̂i,a(ξk) +
m−1∑
j=i

e−2π iξk(j+1/ξ) µ̂i,a(ξk) + µ̂i,b(ξk)
)

µ̂i,b(k) = |ξ| e−2π iξki µ̂i,a(ξk),

which leads to(
µ̂i,a(k)
µ̂i,b(k)

)
= |ξ|

(∑i−1
j=0 e−2π iξkj +∑m−1

j=i e−2π iξk(j+1/ξ) 1
e−2π iξki 0

)(
µ̂i,a(ξk)
µ̂i,b(ξk)

)
,

and after n-fold iteration, we find Eq. (6.26). Now, recall that |ξ| < 1 and
(ξnk)n∈N tends to zero as n→∞. With k = 0 and n = 1, we find

λm

(
µ̂i,a(0)
µ̂i,b(0)

)
=
(
m 1
1 0

)(
µ̂i,a(0)
µ̂i,b(0)

)
,
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Figure 6.7. Intensities I(k) = |µ̂a(−k′) + µ̂b(−k′)|2 for the
pure point part of γ̂Λ,1. The case of p1 = (1/2, 1/2) and n = 20
with respect to Corollary 6.27 is illustrated. Compare this with
Figure 6.5, based on the recursive approach of Eq. (6.15).

which means that
(
µ̂i,a(0), µ̂i,b(0)

)T is an eigenvector of the substitution matrix
Mm. As µ̂i,a(0) + µ̂i,b(0) must equal the density of a random noble means set
(see Theorem 6.7), we fix the recursion via

µ̂i,a(0) := 1/
√
m2 + 4 and µ̂i,b(0) := −ξ/

√
m2 + 4.

Due to the compactness of A(a)
m,i and A

(b)
m,i, both µ̂i,a and µ̂i,b are uniformly

continuous. Now, define for q ∈ N and 0 6 i 6 m the matrix

Pi(ξqk) :=
(∑i−1

j=0 e−2π iξqkj +∑m−1
j=i e−2π iξqk(j+1/ξ) 1

e−2π iξqki 0

)
. (6.27)

For each ε > 0, we find a matrix Riesz product representation such that there is
an N ∈ N with the property∥∥∥∥

(
µ̂i,a(k)
µ̂i,b(k)

)
− |ξ|n

n∏
q=1

Pi(ξqk)
(
µ̂i,a(0)
µ̂i,b(0)

)∥∥∥∥
∞
< ε,

for all n > N and with the supremum norm ‖·‖∞ on R2. �

Finally, we use the preceding treatment of the deterministic cases for a
similar approach in the RNMS cases. Due to the Bernoulli structure of the
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stochastic situation, we consider

µa = |ξ|
m∑
i=0

pi

(i−1∑
j=0

fj .µa +
m−1∑
j=i

gj .µa + f0.µb

)

µb = |ξ|
m∑
i=0

pifi.µa,

(6.28)

as the suitable iterated function system for the treatment of inflation-invariant
measures in the RNMS cases. Along the same lines as in the proof of Proposi-
tion 6.26, we find the following result.

Corollary 6.27. Let µa and µb be the inflation-invariant measures defined by
Eq. (6.28). Then, the vector

(
µ̂a(k), µ̂b(k)

)T can be arbitrarily well approximated
by the product

|ξ|n
( n∏
q=1

m∑
i=0

piPi(ξqk)
)(

µ̂a(ξnk)
µ̂b(ξnk)

)
,

where Pi(ξqk) is the matrix defined in Eq. (6.27) and the recursion at k = 0
leads to the equation(

m 1
1 0

)(
1/
√
m2 + 4

−ξ/
√
m2 + 4

)
= λm

(
1/
√
m2 + 4

−ξ/
√
m2 + 4

)
. �

The pure point part of γ̂Λ,m can now be represented as

(γ̂Λ,m)pp =
∑
k∈L~m

|µ̂a(−k′) + µ̂b(−k
′)|2δk,

where L~m is the Fourier module of Eq. (6.5). An illustration of the intensities
I(k) = |µ̂a(−k′) + µ̂b(−k′)|2 is shown in Figure 6.7.

Remark 6.28 (Fourier module for local mixtures). Strictly speaking, it is not
completely clear that the Fourier module L~m is still sufficient after having
incorporated the local mixture in Eq. (6.28). Here, we can say the following.
The leading eigenvalue λm of the substitution matrix Mm is an algebraic unit
in the ring Z[λm]. Now, let T be the translation module (see [BG13, Sec.5.1.2]
or [GK97, Sec. 4] for background information) of ζm on which Mm acts via
multiplication by λm. We find that λmT = MmT = T and consequently
λ−1
m T ∗ = (MT

m)−1T ∗ = T ∗ where T ∗ is the dual module. Following [GK97,
Sec. 4], the Fourier module is then given by T ∗. The significance of the leading
eigenvalue to be a unit can be seen via the the example of the period doubling
substitution (a 7−→ ab, b 7−→ aa). Here, the substitution matrix has PF eigenvalue
λ = 2 and we find [BG13, Sec. 9.4.4] that L~ = Z[1

2 ] but Z[1
2 ] 6= 1

2Z. �





Outlook

This thesis establishes a first systematic step into the realm of local mixtures
of substitution rules. The choice of the noble means example promised some
technical simplifications because all members of Nm define the same two-sided
discrete hull. One obvious extension of the RNMS case can be found in the
local mixture of families that do no longer share this property. Concerning the
computation of the topological entropy, this has recently been done for some case
by Nilsson [Nil13]. More generally, one may raise the question for the properties
a family of substitutions must have, in order to preserve the features that we
derived in Chapters 2 to 6.

Leaving the realm of symbolic dynamics and one-dimensional inflation rules,
one significant enhancement of the theory would be a two or three-dimensional
example. The (locally) random Penrose tiling was already discussed by Godrèche
and Luck [GL89, Sec. 5.2], although a deeper mathematical analysis is desirable
here.

Apart from the aspects of substitution tilings discussed in this work, there
is a vital community studying topological invariants in this regard; see amongst
others [AP98] and [Sad08]. The cohomology of globally mixed substitution tiling
spaces has been recently studied by Gähler and Maloney [GM13]. It would be
interesting to compute the cohomology of the RNMS family and explore its
connections with other one-dimensional examples. A first step concerning the
random Fibonacci case has recently been done in [GP14].

One additional interesting field for further study is the analysis of Schrödinger
operators associated with the subshift Xm; refer to [Dam05, DEG12] for back-
ground information. Given the invariant measure µm and a continuous function
f : Xm −→ R, one defines for every w ∈ Xm a potential Uw : Z −→ R by
Uw(k) := f(Skw) and a bounded operator Hw that acts on `2(Z) via

[Hwϕ](n) = ϕ(n+ 1) + ϕ(n− 1) + Uw(n)ϕ(n).
Here, one is interested in the spectral properties of H. Whereas the situation
is rather well understood in the case of X′m, the RNMS provides a family of
examples with positive entropy of which far less is known.
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APPENDIX A

Diffraction plots for γ̂Λ,1
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Figure A.1. Pure point (red) and absolutely continuous (blue) part of γ̂Λ,1 (green),
based on the recursion for En and Vn around Eq. (6.15), for p1 = (1/10, 9/10).
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Figure A.2. Pure point (red) and absolutely continuous (blue) part of γ̂Λ,1 (green),
based on the recursion for En and Vn around Eq. (6.15), for p1 = (1/4, 3/4).
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Figure A.3. Pure point (red) and absolutely continuous (blue) part of γ̂Λ,1 (green),
based on the recursion for En and Vn around Eq. (6.15), for p1 = (1/2, 1/2).
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APPENDIX B

Numerics for the continuous parts of γ̂Λ,1

Figure B.1. Approximation of T ′n from Remark 6.22 on page 84 for
n = 20 and with vector norm α = 2 and matrix norm β = Frobenius.

Figure B.2. Approximation of T ′n from Remark 6.22 on page 84 for
n = 20 (left), n = 25 (right) and with vector norm α = 2 and matrix
norm β = Frobenius. Here, a smaller interval is considered.
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