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1 Introduction

Evolution is a complex phenomenon that is influenced by several processes such as
random reproduction (drift), mutation, selection, recombination and migration. A ma-
jor topic of population genetics research is to understand how these processes lead to
changes in the genetic structure of a population, see e.g. [15] for an overview. In this
thesis, we are particularly interested in the interplay of drift, mutation and (fertility)
selection.

The classical models of population genetics are the Wright-Fisher model and the
Moran model. Both are devoted to populations of fixed size N that evolve forward
in time (i.e. from the past to the present). The Wright-Fisher model considers non-
overlapping generations, whereas, in the Moran model, generations do overlap. As a
customary concept in population genetics, the diffusion limit, which assumes infinite
population size, weak selection and mutation, is often taken as a starting point to
analyse population development, see e.g. [11, 16] for an introduction.

In line with the historical perspective of evolutionary research, modern approaches aim
at tracing back the ancestry of a sample of individuals taken from a present population.
The result is the so-called genealogy. Classical tasks are to ask, when the most recent
common ancestor of a sample lived, and which type he had.

The central tool to describe the genealogy of a finite sample in the absence of selection
is the Kingman coalescent [27, 28], which was formulated by Kingman in the year
1982. Here, individuals are represented by lines, which merge simultaneously whenever
two individuals originate from the same ancestor. In 1997, Krone and Neuhauser [32,
37] incorporated selection and introduced the ancestral selection graph (ASG) as an
extension of the Kingman coalescent. By including so-called virtual branches in addition
to the real branches that define the true genealogy, the ASG copes with selection. See
[1] for an overview of the area.

Generically, even the ancestry of an entire population that evolves at constant size
over a long time span without recombination will eventually coalesce backwards in time
into a single ancestral line. The individuals that constitute this ancestral line are unique
and – say at time t – termed the common ancestor at time t. Their type composition
may differ substantially from the distribution at present time. This mirrors the fact
that the ancestral line consists of those individuals that are successful in the long run;
thus, its type distribution is expected to be biased towards the favourable types [17,
Sec. 1.2].

This thesis is devoted to the ancestral line in the Moran model in continuous time
with two types, mutation, and selection. The two types differ in their reproduction
rates, i.e. one type can be regarded as the ‘fit’ type, the other one as the ‘unfit’ type.

We are particularly interested in the stationary distribution of the type process along
the ancestral line, to be called the ancestral type distribution. Thereby, we build on pre-
vious works by Fearnhead [17] and Taylor [43]. They consider different augmentations;
each of them is termed common ancestor process.

Fearnhead’s approach is based on a simplified version of the ASG, which we call
pruned ASG. In addition to a single real branch, it only consists of virtual branches
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1 Introduction

of the less ‘fit’ type. Fearnhead calculates the ancestral type distribution in terms of
the coefficients of a series expansion that is related to the number of (‘unfit’) virtual
branches. The coefficients are denoted an, n > 1, and termed Fearnhead’s coefficients.
Fearnhead gives a suggestive interpretation of the an via an algorithm to simulate from
the stationary distribution of the common ancestor process.

Taylor starts from an approach of Barton, Etheridge and Sturm [3], namely, from
the structured coalescent that relies on a description of the full population, and uses
a backward-forward construction. He characterises the ancestral type distribution in
terms of the fixation probability of the offspring of all ‘fit’ individuals (regardless of the
offspring’s types). This fixation probability is calculated via a boundary value problem.
The fixation probability may be reformulated as a series expansion in the frequency of
‘unfit’ individuals, where the coefficients contain the an.

Both approaches rely strongly on analytical tools; in particular, they employ the
diffusion limit from the very beginning. The results only have partial interpretations in
terms of the graphical representation of the model (i.e., the representation that makes
all individual lineages and their interactions explicit). The aim of this thesis is to
complement the approaches of Fearnhead and Taylor by starting from the graphical
representation for a population of finite size N and staying with the resulting discrete
setting all the way through, performing the diffusion limit only at the very end. This
way, we extend previous results and gain new insight into the underlying particle picture.

The pivotal quantity is the fixation probability of the offspring of the ‘fit’ individuals.
As a main achievement, we obtain the fixation probability in the finite-size model in
closed form. Additionally, the fixation probability may be represented as an equivalent
to the series expansion in the diffusion limit, namely, with the help of a discrete analogue
to Fearnhead’s coefficients (which are denoted by aNn , 1 6 n 6 N − 1).

According to Taylor, the representation of the fixation probability is suggestive: It
is a decomposition into a neutral part and additional terms due to offspring created
by selective events. In contribution to make this interpretation more precise, we use
couplings between Moran models with and without selection, and calculate fixation
probabilities within these settings.

We furthermore aim at drawing a more fine-grained picture, which is – even for the
case of a vanishing mutation rate – still missing. Let us further comment on this: In
the Moran model with selection, fixation probabilities follow a classical result of Kimura
[26], which is based on type frequencies in the diffusion limit. Short and elegant standard
arguments today start from the discrete setting, use a first-step or martingale approach,
and arrive at the fixation probability in the form of a (normalised) series expansion
in the reproduction rate of the favourable type [11, Thm. 6.1]. It is easily seen to
converge to Kimura’s result in the diffusion limit. Recently, Mano [35] obtained the
fixation probabilities with the help of the ASG, based on methods of duality (again in
the diffusion limit); his argument is nicely recapitulated in [39].

What is still missing is a derivation within the framework of a full particle representa-
tion. To this end, we introduce an alternative particle system, which we call the labelled
Moran model, and which is particularly well-suited for finite populations under selection.
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In the new model, individuals are labelled 1, 2, . . . , N . Neutral resampling events may
take place between arbitrary labels, whereas selective events only occur in the direction
of increasing labels. With the help of elementary methods, we not only recover fixation
probabilities, but also obtain detailed insight into the nature of the selective events that
play a role in the fixation process forward in time. The number of these selective events
establishes a link to the common ancestor process in the special case without mutation:
Its distribution corresponds to the discrete version of Fearnhead’s coefficients.

A first step towards an understanding of Fearnhead’s coefficients in the Moran model
with selection and mutation is provided by a new urn model that is reminiscent of
Hoppe’s urn [21]: We have balls of two types and weights that correspond to neutral
and selective reproduction rates. By incorporating additional markings to some of the
balls, we may characterise the discrete coefficient aN1 for N = 3 and N = 4 as an explicit
probability in this new model.

The thesis is organised as follows. In Ch. 2, we start with a brief survey of our
setting in the thesis, i.e. we recapitulate the Moran model, genealogical processes and
Fearnhead’s and Taylor’s concepts concerning the common ancestor process. In Ch. 3,
we build on the framework of Fearnhead and Taylor and start from a finite population.
We calculate fixation probabilities and re-derive Taylor’s boundary value problem and
the ancestral type distribution. The derivation will be elementary and, at the same
time, it will provide a direct interpretation of the differential equation. To formalise the
additional terms in the fixation probability that go back to selective events, we go on
with a coupling approach in Ch. 4. In Ch. 5, we restrict ourselves to a Moran model
with selection. We introduce the labelled Moran model and show that it has the same
empirical type distribution as the original Moran model, provided the initial values are
chosen appropriately. Within this setting, we characterise defining events and point out
the relevance of selective defining events on the fixation process. A simulation algorithm
finally enlightens the representation given by Fearnhead and Taylor. Ch. 6 presents –
in the spirit of an outlook – modifications of Hoppe’s urn model and the corresponding
genealogical interpretations in line with the killed coalescent. At least for N = 3 and
N = 4, this urn model provides new tentative insights concerning the structure of aN1 .
Ch. 7 summarises and discusses the results.
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2 Preliminaries

In this chapter, we introduce the basic framework of the thesis. In Sec. 2.1, we start
with a short outline of the Moran model [36], which describes population development
forward in time. Sec. 2.2 devotes to the backward point of view. The main concepts,
as the Kingman coalescent and the ASG, are recapitulated. In Sec. 2.3, we introduce
the common ancestor type process and briefly summarise Fearnhead’s and Taylor’s ap-
proaches.

We stick to the presentation in the nicely written review paper of Baake and Bialowons
[1] throughout this chapter. In addition, we use the letters t and τ to indicate forward
and backward time, respectively.

2.1 The Moran model with selection and mutation

We consider a haploid population of fixed size N ∈ N in which each individual is
characterised by a type i ∈ S = {0, 1}. If an individual reproduces, its single offspring
inherits the parent’s type and replaces a randomly chosen individual, maybe its own
parent. This way, the replaced individual dies and the population size remains constant.

Individuals of type 1 reproduce at rate 1, whereas individuals of type 0 reproduce at
rate 1 + sN , sN > 0. Accordingly, type-0 individuals are termed ‘fit’, type-1 individuals
are ‘unfit’. In line with a central idea of the ASG (see Sec. 2.2.2), we decompose
reproduction events into neutral and selective ones. Neutral ones occur at rate 1 and
happen to all individuals, whereas selective events occur at rate sN and are reserved for
type-0 individuals.

Mutation occurs independently of reproduction. An individual of type i mutates to
type j at rate uNνj , uN > 0, 0 6 νj 6 1, ν0 + ν1 = 1. This is to be understood in
the sense that every individual, regardless of its type, mutates at rate uN and the new
type is j with probability νj. Note that this includes the possibility of ‘empty’ or ‘silent’
mutations, i.e. mutations from type i to type i (cf. [1, Sec. 6]).

The Moran model has a well-known graphical representation as an interacting particle
system (cf. Fig. 1). The vertical lines represent the N individuals, with time running
from top to bottom in the figure. Reproduction events are represented by arrows with
the reproducing individual at the base and the offspring at the tip. Mutation events are
marked by bullets.

We are now interested in the process
(
ZN

t

)
t>0

(or simply ZN), where ZN
t is the number

of individuals of type 0 at time t. Note that this is the type frequency representation,
which contains less information than the particle (or graphical) representation in Fig.
1 that makes interactions between individuals explicit. When the number of type-0
individuals is k, it increases by one at rate λNk and decreases by one at rate µN

k , where

λNk =
k(N − k)

N
(1 + sN) + (N − k)uNν0 and µN

k =
k(N − k)

N
+ kuNν1. (1)

Thus ZN is a birth-death process with birth rates λNk and death rates µN
k . For uN > 0
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2 Preliminaries
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Figure 1: A realisation of the Moran model for N = 8. The types (0 = fit, 1 = unfit)
are indicated for the initial population (top) and the final one (bottom).

and 0 < ν0, ν1 < 1 its stationary distribution is
(
πN
Z (k)

)
06k6N

with

πN
Z (k) = CN

k∏

i=1

λNi−1

µN
i

, 0 6 k 6 N, (2)

where CN is a normalising constant (cf. [10, p. 19], [6, p. 345]). As usual, an empty
product is understood as 1. Up to a constant C̃N , an alternative expression for the
stationary distribution is

πN
Z (k) = C̃N

(1 + sN)
k

k!(N − k)!

(
NuNν0
1 + sN

)

(k)

(NuNν1)(N−k) , 0 6 k 6 N, (3)

where y(i) := y(y + 1) · · · (y + i− 1) for y ∈ R, i ∈ N, cf. [11, Thm. 8.4], [45, Sec. 3.1].

To arrive at a diffusion, we consider the usual rescaling

(
XN

t

)
t>0

:=
1

N

(
ZN

Nt

)
t>0

,

and assume that limN→∞NuN = θ, 0 6 θ <∞, and limN→∞NsN = σ, 0 6 σ <∞. As
N → ∞, we obtain the well-known diffusion limit

(Xt)t>0 := lim
N→∞

(
XN

t

)
t>0

.

Given x ∈ [0, 1], a sequence (kN)N∈N with kN ∈ {0, . . . , N} and limN→∞ kN/N = x,
(Xt)t>0 is characterised by the drift coefficient

a(x) = lim
N→∞

(λNk
N
− µN

k
N
) = (1− x)θν0 − xθν1 + (1− x)xσ (4)

and the diffusion coefficient

b(x) = lim
N→∞

1

N

(
λNk

N
+ µN

k
N

)
= 2x(1− x). (5)

10



2.1 The Moran model with selection and mutation

Hence, the infinitesimal generator A of the diffusion is defined by

Af(x) = (1−x)x
∂2

∂x2
f(x)+[(1− x)θν0 − xθν1 + (1− x)xσ]

∂

∂x
f(x), f ∈ C2([0, 1]). (6)

The stationary density πX – known as Wright’s formula – is given by

πX(x) = C(1− x)θν1−1xθν0−1 exp(σx), (7)

where C is a normalising constant. See [11, Ch. 7, 8] or [16, Ch. 4, 5] for reviews
of diffusion processes in population genetics and [25, Ch. 15] for a general survey of
diffusion theory.

In contrast to our approach starting from the Moran model, in [3, 17, 43] the diffusion
limit of the Wright-Fisher model is chosen as the basis for the studies. This is, however,
of minor importance, since both diffusion limits differ only by a rescaling of time by a
factor of 2, which manifests itself in a diffusion coefficient in the Moran model, which
is twice the one in the Wright-Fisher model (cf. [11, Ch. 7], [16, Ch. 5] or [25, Ch.
15]). The reason for the factor 2 is the fact that reproduction events occur due to the
sampling of ordered pairs of individuals in the Moran model, but occur due to unordered
pairs in the Wright-Fisher model (cf. [1, Sec. 6], [10, p. 23] and [36]), see also Sec. 2.2.1.

Note that the particle representation of the Moran model does not carry over to the
N → ∞ limit. A way to retain a particle representation even in the diffusion limit is
provided by the lookdown construction of Donnelly and Kurtz [7, 8, 9], see [12, Ch. 5]
for an overview. Let us briefly recall the central ideas for the case without selection.

In the so-called N -particle lookdown process [7] the individuals (of a population of
size N) are randomly assigned the levels 1, . . . , N of the particle representation. We say
that the initial ordering is exchangeable [12, Ch. 5.2]. Neutral arrows (which as usually
lead to a replacement of the individual at the tip) occur at rate 2/N , but we only
allow for arrows that point from a lower to a higher level. This reproduction mechanism
guarantees that an individual may only be replaced by an individual of a lower level. But
note that the levels are not inheritable. Independently of reproduction, each individual
mutates according to the mutation process of the Moran model. As a main result in [7],
the N -particle lookdown process has the same empirical type distribution as the Moran
model at any time t, provided both processes start with the same exchangeable initial
type distribution. In particular, the N -particle lookdown process coincides with the
first N levels of the (N + k)-particle lookdown process, k ≥ 0. Hence, the construction
carries over to the N → ∞ limit.

An extension to the N -particle lookdown process is the so-called modified lookdown
[8]: On the occasion of neutral arrows from level i to j, j > i, the individual at level
N is removed, the descendant of the individual at level i moves to level j, and the
individual that occupies level k, j 6 k 6 N − 1, is shifted to level k + 1. In the
corresponding N → ∞ limit we only have reproduction events, since the removal takes
place ‘at infinity’ [12, Ch. 5.3].
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2 Preliminaries

The modified lookdown can be used to incorporate fecundity and viability selection
[9], see e.g. [2] for a recent approach in this area.

2.2 Genealogical processes

One of the central topics in population genetics is the backward point of view, i.e.
to infer information about past development from a present population. A classical
task is to ask for stochastic processes to obtain genealogies of a finite sample from the
population. A genealogy is represented by a genealogical tree, i.e. by the branches that
represent the joint history of the sample individuals, together with the types along these
branches [1, Sec. 7].

τ

00000

000

111

11111

Figure 2: The genealogy of the four sample individuals that are marked black at the
bottom is represented by fat lines. The MRCA (marked black at the top) is
of type 0, one sample individual mutates to type 1.

For a given realisation of the Moran model we extract the corresponding genealogy of
a given sample in the following way, see also Fig. 2 and [1, Sec. 7]: We start from the
sample of individuals and follow their lines in the graphical representation of the Moran
model backwards in time. Whenever we meet the tip of an arrow, we continue to trace
back the lineage at its origin. If an arrow joins two sample lines, we say that these lines
merge. The corresponding event is termed coalescence and the involved individuals go
back to the same ancestor. At each coalescence event the number of sample lines is
decreased by one, until a single line (the root of the genealogical tree) remains. The
corresponding individual is called most recent common ancestor (MRCA) of the sample.

In this context, the question arises as to how construct genealogies without concrete
realisations of the Moran model, i.e. random genealogies. Thereby, we assume that the
population is stationary and evolves according to (Xt)t>0. In the absence of selection, i.e.
σ = 0, the fundamental tool to construct so-called neutral genealogies is the Kingman
coalescent ; as the name suggests, it was introduced by Kingman [27, 28]. Its achievement
lies in the independence of mutation and reproduction processes. The incorporation of
selection compromises this independence. Krone and Neuhauser finally disposed of
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2.2 Genealogical processes

this obstacle by constructing the equivalent to the Kingman coalescent, the ancestral
selection graph (ASG) [32, 37].

In the following sections we give an introduction to neutral genealogies and the an-
cestral selection graph. We follow the presentation in [1, Sec. 7,8].

2.2.1 Neutral genealogies

In the absence of selection, reproduction rates are independent of the types. As a
consequence, we may superimpose the mutation process on the reproduction model.
Therefore, the construction of genealogies results from two steps.

First, we construct the genealogical tree without types, which is known as Kingman
coalescent, in the sense of a death process. We start from the sample individuals (of
unknown types) and work backwards in time by simultaneously merging two randomly
chosen lines: If there are n lines, we merge two randomly chosen ones at rate n(n− 1).
(Remember that a coalescence event corresponds to a reproduction event forward in
time, in which one of the sample individuals reproduces and its offspring replaces another
sample individual.) At some time, the number of lines almost surely decreases to 1 (cf.
[38, p. 112] and [4, Prop. 5.1]) and the MRCA of the sample is reached. Note that
concerning the death process it is irrelevant, whether the population evolves according
to XN (with sN = 0) or X.

In a second step, we insert the types. We choose the type of the MRCA according
to (7) (or according to (2), if we consider XN instead). We superimpose the mutation
process forward in time along the branches of the reproduction model: On each line,
mutations occur independently at rates θνi (or NuNνi), i ∈ S. If a line splits into two
(due to a coalescence event), the descendants inherit the type of their parent, i.e. of the
line prior to the splitting point.

Note that the neutral genealogies of the Moran model and the Wright-Fisher model
coincide up to a factor of 2: In the Wright-Fisher model, the probability that two individ-
uals go back to the same ancestor of the previous generation is 1/N . The corresponding
Kingman coalescent evolves only at death rate

(
n

2

)
, if there are n lines in the graph.

2.2.2 Ancestral selection graph

The basic idea in the construction of the genealogical process with selection (σ > 0) is to
isolate the reproduction process from the mutation process. In this context, the central
tool is the decomposition of reproduction events into neutral and selective reproductions
(cf. Sec. 2.1).

First, we construct a branching-coalescing graph by means of a birth-death process.
We begin with the description for XN (with sN > 0) and switch over to the diffusion
limit X afterwards. The idea is to work with what we call the extended Moran model
without types, i.e. we ignore the types and assume that all individuals are capable of
neutral and selective reproductions. That is, selective arrows appear on every line, and
when we later superimpose the types, they are only incorporated, if they originate from
type 0.

13



2 Preliminaries

For a realisation of the extended Moran model without types, we start from a sample
and trace the sample lines backwards in time. If we meet the tip of a neutral arrow, we
proceed as in Sec. 2.2.1: A neutral arrow between two lines in the branching-coalescing
graph gives rise to a coalescence event and decreases the number of lines by one. If
we meet the tip of a selective arrow, it is, due to the unknown types, unclear, if the
selective reproduction really occurs. (Note that we restrict ourselves to selective arrows
between a line in the graph and a line outside the graph (at rate n(N − n)sN if there
are n lines), since the rate to observe a selective arrow that joins two lines in the graph
(at rate n(n − 1)sN if there are n lines) tends to 0 in the diffusion limit.) There are
two possibilities: The incoming branch, i.e. the line at the origin of the selective arrow,
is the parent, or the continuing branch, i.e. the line at its tip, is the parent (cf. Fig.
3). We consider both possibilities and trace back both incoming and continuing branch.
The result is an increase in the number of lines by one, and the corresponding event is
termed branching.

After a finite time, the number of branches in the graph reduces to 1 and we stop the
described procedure. The corresponding individual is termed ultimate ancestor (UA),
the resulting graph is called ASG without types, see Fig. 3.

I

I

C

C

τ

Figure 3: The ASG without types for a given collection of neutral (solid) and selective
(dashed) arrows. The ASG is represented by fat lines, sample individuals and
the UA are marked black at the bottom and the top, respectively. Neutral
arrows imply coalescence events, selective arrows branching events. Incoming
(I) and continuing (C) branch are indicated for each branching.

The stochastic process to obtain realisations of the ASG without types, which is based
on the diffusion X, is given as follows: If the branching-coalescing graph consists of n
lines, two randomly chosen ones merge at rate n(n− 1) (cf. Sec. 2.2.1) and a randomly
chosen line splits into two at rate limN→∞ n(N − n)sN = nσ. The underlying birth-
death process almost surely reaches 1 in finite time [32, Thm. 3.2] and the construction
is finished then. As a brief explanation note that coalescence events occur at a quadratic
rate, while branching events only occur at a linear rate. A realisation is given in Fig. 4,
left.

In the second step, we insert the types to obtain the corresponding ASG with types

14



2.2 Genealogical processes

I
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C
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C
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MRCA

1

1

1

1

1

1

1

0
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0
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Figure 4: Left: The ASG without types of a sample of size 2. Right: The ASG with types
(bold and thin lines) is obtained by running the mutation process down the
graph. Running backwards in time yields the embedded genealogy (bold) and
decomposes the lines of the ASG into real (bold) and virtual (thin) branches.

(cf. Fig. 4). We choose the type of the UA according to (7). (Note that the type of
the UA is indeed distributed according to Wright’s formula, see [9, Thm. 8.2] for an
explanation in the context of the ancestral influence graph of Donnelly and Kurtz [9,
Sec. 8], or our reasoning in Sec. 2.2.3.) We superimpose the mutation process forward
in time, i.e. mutations occur at rate θνi, i ∈ S, independently on disjoint lines. At
a coalescence event the descendants inherit the parent’s type (cf. Sec. 2.2.1). At a
branching event we determine the descendant’s type as follows, see also Fig. 5: The
selective arrow is only used, if the incoming branch is of type 0. Then, the incoming
branch is the parent (the so-called parental line) and the descendant inherits the type
0. Otherwise, if the incoming branch is of the less fit type, the selective arrow is not
used and the continuing branch is the parental one. Then, the descendant inherits the
type of the continuing branch. In [42, Alg. 3.1] an algorithm to simulate the ASG with
types is given.

000

0000

1

111 1

t

IIII

CCCC

DDDD

Figure 5: For every type composition of incoming (I) and continuing (C) branches, the
parental line is marked bold. The descendant (D) inherits the type of the
parental line.
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In the final step, we extract the embedded genealogy (cf. Fig. 4). We start from the
sample of individuals and trace back their lines in the ASG with types. Every time we
meet a selective arrow, we continue to trace back only the parental line, which we have
determined in the second step. The number of lines almost surely decreases to 1 (by
means of coalescence events), the corresponding individual is the MRCA of the sample.
It may be younger than the UA of the sample (as in Fig. 4).

The lines of the genealogy are termed real, the lines outside virtual. Real branches
are the ancestral lines of the sample, whereas every branching event gives rise to a new
virtual branch.

2.2.3 Conditional ancestral selection graph

Krone and Neuhauser [32, 37] extract the genealogy of a sample of fixed size in a pro-
cedure that is subdivided into three steps. There are two crucial points to note: First,
within the construction of the ASG without types the graph is traced backwards in
time until the UA is reached, although we are only interested in the MRCA. Second,
the type-decomposition of the sample follows from the choice of the UA’s type and the
mutation process. Thus, the construction does not state the stochastic process to obtain
genealogies of samples of known types.

As an enhancement of the construction in [32, 37], the conditional ASG [40] is a tool
to generate the ASG with types with embedded genealogy of a sample of known types
backwards in time. In particular, the conditional ASG does not stop as soon as the
number of branches reduces to 1: Due to branching events, this number will almost
surely increase again.

One considers the process (Rτ ,V τ )τ>0 := ((R0,τ , R1,τ ) , (V0,τ , V1,τ))τ>0, where Ri,τ ,
i ∈ S, is the number of real type-i branches and Vi,τ , i ∈ S, is the number of virtual
type-i branches, both at time τ before the present. Since the sample at time τ = 0
consists only of real lines, V 0 = (0, 0), whereas R0 is drawn from the stationary density
(7).

Let (r, v) = ((r0, r1), (v0, v1)) be a realisation of (Rτ ,V τ )τ>0 at some time τ . The
probability to observe the marginal type configuration of (r, v), when there are r+ v :=
r0+r1+v0+v1 lineages in the ASG at time τ , is termed q(r, v). The probability q(r, v)
is time-independent and follows [40, Thm. 2.3]

q(r, v) =
(r + v)!

r0!r1!v0!v1!
p(r + v), (8)

where

p(n) := Eπ
X
(Xn0(1−X)n1) =

∫ 1

0

xn0(1− x)n1πX(x)dx (9)

for an unordered sample n = (n0, n1) of size n = n0 + n1 with ni individuals of type i,
i ∈ S. p(n) is the probability of drawing an ordered sample that has the same marginal
type distribution as n from a population in stationarity. (Note that we understand
ordered samples of size n as tuples c = (c1, . . . , cn), where cj denotes the type of the jth
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2.3 The common ancestor type process

sample individual, 1 6 j 6 n. The corresponding unordered sample is (#0(c),#1(c)),
where #i(c), i ∈ S, is the number of type-i individuals in the ordered sample c.)
The probability to draw ordered samples from a population in stationarity is invariant
under permutations of the individuals, and thus p only depends on the marginal type
distribution of the samples. This property, which is known as exchangeability, is caused
by the absence of spatial information in the Moran model, and justifies our slightly
unusual notation in (9) (cf. [1, Sec. 9]).

From (8) and (9) we can conclude that it is reasonable to choose the type of the UA
according to Wright’s density in the second step of the construction in Sec. 2.2.2. In
contrast, the state at the time of the MRCA may contain virtual branches. Thus, in
general, the type of the MRCA has not the same distribution as a sample of size 1 in
equilibrium [40, Sec. 2].

The transition rates of the conditional ASG can be read off from the following recur-
sion for the stationary sampling distribution q [40, Thm. 2.5] (see also [42, Prop. 3.1,
Alg. 3.2] to simulate the conditional ASG):

(r + v − 1 + θ + σ)q(r, v) =
∑

i∈S:

ri,vi>0

[
(ri − 1)q(r − ei, v)

+ (vi − 1 + 2ri)q(r, v − ei)
]

+ θ
∑

i,j∈S:

i 6=j,rj,vj>0

[νj(ri + 1)

r + v
q(r + ei − ej, v)

+
νj(vi + 1)

r + v
q(r, v + ei − ej)

]

+ σ
[∑

i∈S

(ri + vi)(vi + 1)

(r + v)(r + v + 1)
q(r, v + ei)

+
2(r0 + v0)(v1 + 1)

(r + v)(r + v + 1)
q(r, v + e1)

]
,

(10)

where e0 := (1, 0) and e1 := (0, 1). Note that (10) enhances the recursions given in [32,
Thm. 5.2] and [17, Sec. 1.3] and is obtained by a first-step decomposition backwards in
time. Here, the second-last row goes back to a branching event, in which both incoming
and continuing branch are of the same type, whereas the last row represents a branching
with different types of incoming and continuing branches.

As it can be seen from the rate of the transition (r, v) → (r + e
i
− e

j
, v) (third

row), which is a mutation of a real branch, the virtual branches are indispensable in the
construction of the embedded genealogy. Thus, the process of real branches backwards
in time alone would not be Markovian (cf. [1, Sec. 10]).

2.3 The common ancestor type process

As in Sec. 2.2, we assume that the population is stationary and evolves according to
the diffusion process (Xt)t>0. Then, at any time t, there almost surely exists a unique
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individual that is, at some time s > t, ancestral to the whole population (cf. Fig. 6).
(One way to see this is via [32, Thm. 3.2, Corollary 3.4], which shows that the expected
time to the UA in the ASG remains bounded even if the sample size tends to infinity.) We
say that the descendants of this individual become fixed and call it the common ancestor
at time t. The lineage of these distinguished individuals over time defines the so-called
ancestral line. Denoting the type of the common ancestor at time t by It, It ∈ S, we
term (It)t>0 the common ancestor type process or CAT process for short. Of particular
importance is its stationary type distribution α = (αi)i∈S, to which we will refer as
the ancestral type distribution. Unfortunately, the CAT process is not Markovian. But
two approaches are available that augment (It)t>0 by a second component to obtain a
Markov process. They go back to Fearnhead [17] and Taylor [43]; we will recapitulate
them below.

t t

ss

t− τ0

CA

Figure 6: Left: The common ancestor at time t (CA) is the individual whose progeny will
eventually fix in the population (at time s > t). Right: If we pick an arbitrary
individual at time t, there exists a minimal time τ0 so that the individual’s
line of ancestors (dotted) corresponds to the ancestral line (dashed) up to time
t− τ0. (Figure by Anton Wakolbinger.)

2.3.1 Fearnhead’s approach

The conditional ASG (Rτ ,V τ )τ>0 of Sec. 2.2.3 yields a tool to trace the ancestry of
a single individual backwards in time. Since there is only one real branch, Rτ = eJτ

,
where Jτ is the type of the individual’s ancestor at time τ before the present (that is,
at forward time t− τ). We write (Jτ ,V τ )τ>0 :=

(
eJτ

,V τ

)
τ>0

for short. Note that there
is a minimal time τ0 so that, for all τ > τ0, Jτ = It−τ (see also Fig. 6), provided the
underlying process (Xt)t>0 is extended to (−∞,∞).

Following [1, Sec. 9], we define (with the probability p as in (9))

p(j | n) :=
p(n+ ej)

p(n)
(11)
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2.3 The common ancestor type process

as the conditional probability to draw an individual of type j, j ∈ S, from a population
in equilibrium, provided a configuration n has already been taken from this population.

With this notation at hand, and with the help of (8) and (11), the transitions and
rates of (Jτ ,V τ )τ>0 can be obtained from recursion (10), cf. [17, Sec. 1.4] and [1, Sec.
10]. See Fig. 7 for an illustration of the transitions.

τ

τ

0

01

k

ii

i

i

ii

ii

jj

jjj

(A1) (A2) (B)

(C) (D)

Figure 7: Transitions of (Jτ ,V τ )τ>0 out of (j, v). The single ancestral line is illustrated
by the bold line, virtual lines by thin ones. Types are noted at the bottom
and the top, respectively. Boxes indicate lines that may be removed.

(A1) Mutation of the real branch, i.e. (j, v) → (i, v), occurs at rate

θνj
p(v + ei)

p(v + ej)
.

(A2) Mutation of a virtual branch, i.e. (j, v) → (j, v − ek + ei), occurs at rate

vkθνk
p(v + ej − ek)

p(v + ej)
p(i | v + ej − ek).

(B) Coalescence of two branches of type i, i.e. (j, v) → (j, v − ei), occurs at rate

(vi + δji − 1)(vi + δji)
p(v + ej − ei)

p(v + ej)
.
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(C) Branching, where the incoming branch is of type 1 and the continuing branch of
type i (thus, the continuing branch is parental), i.e. (j, v) → (j, v+ e1), occurs at
rate

σ(vi + δji)
p(v + ej + e1)

p(v + ej)
.

(D) Branching, where the incoming branch is of type 0 and the continuing branch of
type i (thus, the incoming branch is parental), i.e. (j, v) → (j, v + ei), occurs at
rate

σ(v0 + δj0)p(i | v + ej).

In [1, Sec. 10] an alternative approach towards the rates of (Jτ ,V τ )τ>0 is given
with the help of a time-reversal of continuous-time Markov chains with respect to the
(stationary) measure p. (Given a Markov chain in continuous time on a discrete state
space E that is characterised by a generator Q = (Qij)i,j∈E with stationary distribution
π = (πi)i∈E, its time-reversal (with respect to π) is defined as a continuous-time Markov
chain with generator Q̂ = (Q̂ij)i,j∈E, Q̂ij = πjQji/πi and stationary distribution π [38,
Thm. 3.7.1].)

Now, the construction of the conditional ASG of a single individual may be simplified
according to the framework in [17]. To this end, let us note the following: First, the
new type of the mutated virtual branch in transition (A2) complies with a random draw
from the stationary population, provided the sample v+ej −ek has already been taken
from this population. Second, the type of the continuing branch in transition (D) is
drawn from the stationary distribution, given the configuration v + ej has previously
been chosen; see the conditional probabilities in (A2) and (D).

Following [17, Thm. 1] and the arguments in [1, Sec. 11], sample individuals that
are randomly chosen from stationarity, conditional on the remaining sample, may be
removed from the conditional ASG of sample size 1 without compromising the Markov
property. The process of the lines after removal is still given by the transitions (A1)-(D):

Transition (D) leads to a removal of the continuing branch and thus becomes an
‘empty’ event. We only observe branchings due to (C), that is, we only attach virtual
branches of type 1 to the graph. (This constraint was already analysed by Slade [41,
Thm. 2.4] in the conditional ASG of arbitrary sample size. A reduced version of
recursion (10) is given, in which the branching rate is minimised to attachments of
virtual branches of type 1 only.) As soon as a virtual branch mutates (due to (A2)),
we remove it, and the remaining set of virtual branches contains only unfit ones. We
refer to the resulting construction as the pruned ASG. It is described by the process
(Jτ , Vτ )τ>0, where Vτ (with values in N0) is the number of virtual branches (of type 1).
Note that (Jτ , Vτ )τ>0 is termed common ancestor process (CAP) in [17].

Let v = (0, v), v ∈ N0. The transitions and rates of (Jτ , Vτ )τ>0 can be read off from
(A1)-(D) (cf. [17, Sec. 2], [1, Sec. 11]):
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(Ã) Mutation of the real branch, i.e. (j, v) → (i, v), occurs at rate

θνj
p(v + ei)

p(v + ej)
.

(B̃) Coalescence or removal of a virtual branch due to mutation, i.e. (j, v) → (j, v−1),
occurs at rate

(
(v + δj1 − 1)(v + δj1) + vθν1

)p(v + ej − e1)

p(v + ej)
.

(C̃) Branching to an incoming branch of type 1, i.e. (j, v) → (j, v + 1), occurs at rate

(v + 1)σ
p(v + ej + e1)

p(v + ej)
.

(Wakeley [46] mimics the approaches of Fearnhead [17] and Slade [41] to simplify the
conditional ASG for samples of arbitrary size. Similarly, the real lines are augmented
only by unfit virtual ones.)

Fearnhead provides a representation of the stationary distribution of the pruned ASG,
which we denote by πF . This stationary distribution is expressed in terms of constants
ρ
(k)
1 , . . . , ρ

(k)
k+1 defined by the following backward recursion:

ρ
(k)
k+1 = 0 and ρ

(k)
i−1 =

σ

i+ σ + θ − (i+ θν1)ρ
(k)
i

, k ∈ N, 2 6 i 6 k + 1. (12)

The limit ρi := limk→∞ ρ
(k)
i exists and satisfies 0 6 ρi 6 1 for all i > 1 [17, Lemma 1].

The stationary distribution of the pruned ASG is given by [17, Thm. 3]

πF (j, v) =

{
(
∏v

i=1 ρi)Eπ
X
(X(1−X)v), if j = 0,

(
∏v

i=1 ρi) (1− ρv+1)Eπ
X
((1−X)v+1), if j = 1

(13)

for all v ∈ N0. Fearnhead proves this result by straightforward verification of the
stationarity condition; the calculation is somewhat cumbersome and does not yield
insight into the connection with the graphical representation of the pruned ASG.

An interpretation is given by way of a rule for simulating from πF [17, Remark 3]:
One simultaneously chooses individuals from a population in stationarity and denotes
them as real respectively virtual branches. If we have already picked v−1, v > 1, virtual
branches and the following draw is a type-0 individual, we term it the real branch. If
the draw is a type-1 individual, it is called the real branch with probability 1− ρv and
virtual branch with probability ρv, respectively. This way, one draws individuals until
one obtains the real branch. The corresponding realisation (j, v) represents the type j
of the real branch and the number v of ‘unsuccessful’ draws from stationarity (which
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coincides with the number of unfit virtual lines). In particular,
∏v

i=1 ρi is the probability
to obtain at least v unfit virtual lines, given that the first v draws are type-1 individuals.

Marginalising over the number of virtual branches results in the stationary type dis-
tribution of the ancestral line, namely,

αj =
∑

v>0

πF (j, v). (14)

Reversing the direction of time in the pruned ASG yields an augmentation of the
CAT process (for τ > τ0) by a collection of unfit virtual branches. Obviously, the time-
reversal has the same stationary distribution (13) as the pruned ASG. Using [38, Thm.
3.7.1], we determine the transitions and the corresponding rates with the help of (Ã)-(C̃)
and (13). (See also [17, Corollary 2] for the mutation process on the real branch.)

(Â) Mutation of the real branch, i.e. (j, v) → (i, v), occurs at rate

θνi
1− ρv+1δi1
1− ρv+1δj1

.

(B̂) Removal of a virtual line, i.e. (j, v) → (j, v − 1), occurs at rate

vσ

ρv

1− ρvδj1
1− ρv+1δj1

.

(Ĉ) Branching to a virtual line, i.e. (j, v) → (j, v + 1), occurs at rate

((v + δj1)(v + 1 + δj1) + (v + 1)θν1)
ρv+1(1− ρv+2δj1)

1− ρv+1δj1
.

2.3.2 Taylor’s approach

We start to recapitulate the structured coalescent process, which is based on the work
of Kaplan et al. [24], and which is further investigated in [3] (for a brief survey see also
[15, Ch. 5.5]). One considers the process (Rτ , X̃τ )τ>0, where, as in Sec. 2.2.3, Rτ is the
ancestral type composition of a sample with configuration R0, and X̃τ is the frequency
of type-0 individuals, in both cases at time τ before the present. Since the diffusion
(Xt)t>0 of the Moran model forward in time possesses a reversible stationary measure,
(Xt)t>0 and (X̃τ )τ>0 share the same dynamics according to the infinitesimal generator
A as in (6), cf. [3, Sec. 2]. (Following [11, Ch. 7.5], A is self-adjoint with respect to
πX .) Then, the structured coalescent is characterised by the following generator G [3,
Lemma 3.1], [15, Thm. 5.14]:
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Gf(r, x) =
r0(r0 − 1)

x

(
f(r − e

0
, x)− f(r, x)

)
(15)

+
r1(r1 − 1)

1− x

(
f(r − e

1
, x)− f(r, x)

)
(16)

+ r0θν0
1− x

x

(
f(r − e

0
+ e

1
, x)− f(r, x)

)
(17)

+ r1θν1
x

1− x

(
f(r + e

0
− e

1
, x)− f(r, x)

)
(18)

+ Af(r, x),

where f(r, ·) ∈ C2([0, 1]) for all r ∈ N
2
0 \ {(0, 0)} and Af(r, x) is understood as acting

on the second component x of f(r, x) for a given r. Terms (15) and (16) represent
coalescence events within the ri individuals of type i, i ∈ S, terms (17) and (18) go back
to mutations. In the diffusion of the Moran model, coalescence events occur twice as
fast as in the Wright-Fisher diffusion (cf. Sec. 2.2.1), which is considered in [3, 15, 43].
Hence, the factors ri(ri − 1) are replaced by

(
ri
2

)
, i ∈ S, in [3, 15, 43]. See [3, Sec. 4] for

existence and uniqueness of the structured coalescent process.
Obviously, the construction in [3] is also valid for samples of size 1. One obtains

the so-called structured retrospective process [43, Sec. 2] that we denote by (Jτ , X̃τ )τ>0,
where Jτ is as usual the ancestor’s type at time τ . As in Fearnhead’s approach, there
is a minimal time τ0 so that Jτ = It−τ for all τ > τ0. Changes in the sample are only
caused by mutations, thus, the generator G simplifies to [43, Sec. 2]

Gf(0, x) = θν0
1− x

x
(f(1, x)− f(0, x)) + Af(0, x),

Gf(1, x) = θν1
x

1− x
(f(0, x)− f(1, x)) + Af(1, x),

where f is twice continuously differentiable on ({0} × (0, 1]) ∪ ({1} × [0, 1)) and has
compact support. Existence and uniqueness of the structured retrospective process are
proven in [43, Prop. 2.2].

Time-reversal (for τ > τ0) with respect to the stationary distribution of the structured
retrospective process yields the process (It, Xt)t>0, see [43, Prop. 2.7] for existence and
uniqueness. Thus, the augmentation of the CAT process relies on a description of the
full population forward in time (in the diffusion limit of the Moran model as N → ∞).
In [43] this process is termed common ancestor process (CAP), but keep in mind that
it is (Jτ , Vτ) that is called CAP in [17].

In order to derive the stationary distribution of (It, Xt)t>0, which we denote by πT ,
define h(x) as the probability that the common ancestor at a given time is of type 0,
provided that the frequency of type-0 individuals at this time is x. Obviously h(0) = 0,
h(1) = 1. Since the process is time-homogeneous, h is independent of time. The
marginal distributions of πT are α (with respect to the first variable) and πX (with
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respect to the second variable). πT may then be written as the product of the marginal
density πX(x) and the conditional probability h(x) (cf. [43, Sec. 2.1]):

πT (0, x) dx = h(x)πX(x)dx,

πT (1, x) dx = (1− h(x)) πX(x)dx.

Since πX is well-known (cf. (7)), it remains to specify h. Taylor uses a backward-forward
construction within diffusion theory to derive a boundary value problem for h, namely:

1

2
b(x)h′′(x) + a(x)h′(x)−

(
θν1

x

1− x
+ θν0

1− x

x

)
h(x) + θν1

x

1− x
= 0,

h(0) = 0, h(1) = 1.
(19)

He also shows that (19) has a unique solution. The stationary distribution of (It, Xt)t>0

is thus determined in a unique way as well. The function h is smooth in (0, 1) and its
derivative h′ can be continuously extended to [0, 1] (cf. [43, Lemma 2.3, Prop. 2.4]).

In the neutral case (i.e., without selection, σ = 0), all individuals reproduce at the
same rate, independently of their types. For reasons of symmetry, the common ancestor
thus is a uniform random draw from the population; consequently, h(x) = x. In the
presence of selection, Taylor determines the solution of the boundary value problem via
a series expansion in σ (cf. [43, Sec. 4] and see Sec. 3.4), which yields

h(x) = x+ σx−θν
0 (1− x)−θν

1 exp(−σx)

∫ x

0

(x̃− p) pθν0 (1− p)θν1 exp(σp)dp (20)

with x̃ =

∫ 1

0
pθν0+1 (1− p)θν1 exp(σp)dp
∫ 1

0
pθν0 (1− p)θν1 exp(σp)dp

=
Eπ

X
(X2(1−X))

Eπ
X
(X(1−X))

. (21)

Notice that x̃ is the conditional probability to obtain a fit individual, provided the
population is in equilibrium, a sample containing an individual of each type has already
been taken and we pick one additional individual [43, Sec. 4].

The stationary type distribution of the ancestral line now follows via marginalisation:

α0 =

∫ 1

0

h(x)πX(x)dx and α1 =

∫ 1

0

(1− h(x)) πX(x)dx. (22)

Following [43, Sec. 2.1], we define ψ(x) := h(x)− x and write

h(x) = x+ ψ(x). (23)

Since h(x) is the conditional probability that the common ancestor is fit, ψ(x) is the
part of this probability that is due to selective reproduction. Substituting (23) into (19)
leads to a boundary value problem for ψ:

1

2
b(x)ψ′′(x) + a(x)ψ′ (x)−

(
θν1

x

1− x
+ θν0

1− x

x

)
ψ(x) + σx (1− x) = 0,

ψ(0) = ψ(1) = 0.

(24)
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Here, the smooth inhomogeneous term is more favourable as compared to the divergent
inhomogeneous term in (19). Note that Taylor actually derives the boundary value
problems (19) and (24) for the more general case of frequency-dependent selection, but
restricts himself to frequency-independence to derive solution (20).

The work of Taylor now establishes a link to Fearnhead’s framework by an alternative
representation of h respectively ψ (cf. [43, Sec. 4.1]):

h(x) = x+ x
∑

n>1

an(1− x)n respectively ψ(x) = x
∑

n>1

an(1− x)n (25)

with an :=
n∏

i=1

ρi. (26)

The an, to which we refer as Fearnhead’s coefficients, can be shown to follow the second-
order forward recursion [43, Sec. 4.1]

(2 + θν1) a2 − (2 + σ + θ) a1 + σ = 0,

(n + θν1) an − (n+ σ + θ) an−1 + σan−2 = 0, n > 3.
(27)

Indeed, h(x) given as in (25) solves the boundary problem (19) and therefore equals
(20) [43, Lemma 4.1].

The forward recursion (27) is greatly preferable to the backward recursion (12), which
can only be solved approximately with initial value ρn ≈ 0 for some large n. What is
still missing is the initial value, a1. To calculate it, Taylor defines (cf. [43, Sec. 4.1])

v(x) :=
h(x)− x

x
=
ψ(x)

x
=
∑

n>1

an(1− x)n (28)

and uses

an =
(−1)n

n!
v(n)(1). (29)

(Note the missing factor of 1/n in equation (28) in [43].) This way, a straightforward
(but lengthy) calculation (that includes a differentiation of expression (20)) yields

a1 = −v′(1) = −ψ′(1) =
σ

1 + θν1
(1− x̃). (30)
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3 The common ancestor process in the discrete

setting

Our focus is on the stationary type distribution (αi)i∈S of the CAT process. We have
seen so far that it corresponds to the marginal distribution of both πT and πF , with
respect to the first variable. Our aim now is to establish a closer connection between
the properties of the ancestral type distribution and the graphical representation of the
Moran model.

We define hN as the equivalent of h in the case of finite population size N , that is, hNk
is the probability that one of the k fit individuals is the common ancestor given ZN

0 = k.
Obviously hN0 = 0, hNN = 1. Equivalently, we introduce the new function ψN

k := hNk −k/N
as the part of hNk that goes back to selective reproductions (in comparison to the neutral
case). We therefore speak of ψN (as well as of ψ) as the ‘extra’ absorption probability.

In a first step (Sec. 3.1), we concentrate on a Moran model of finite size and trace the
descendants of the initially ‘fit’ individuals forward in time. Decomposition according
to what can happen after the first step gives difference equations for hN and ψN , which
turn into the differential equations for h and ψ in the diffusion limit (Sec. 3.3). Coming
along with this approach, we solve the difference equations and obtain the fixation
probability in the finite-size model in closed form (Sec. 3.2). In a second step, we
solve the differential equation analytically (Sec. 3.4) and derive the coefficients of the
ancestral type distribution within the discrete setting and within the framework of the
diffusion limit (Sec. 3.5-3.6).

Most of our results are based on joint work with Thiemo Hustedt [23] and published
in [31].

3.1 Difference equations for hN and ψN

Note that the main contents of this section are, though in a less sophisticated way, al-
ready described in [29].

Equation for hN . Since it is essential to make the connection with the graphical
representation explicit, we start from a population of finite size N , rather than from the
diffusion limit. Namely, we look at a new Markov process (M t, Z

N
t )t>0 with the natural

filtration (FN
t )t>0, where FN

t := σ((M s, Z
N
s ) | 0 6 s 6 t). ZN

t is the number of fit
individuals as before and M t = (M0,t,M1,t) holds the number of descendants of types 0
and 1 at time t of an unordered sample with composition M 0 = (M0,0,M1,0) collected
at time 0. More precisely, we start with a FN

0 -measurable state (M 0, Z
N
0 ) = (m, k)

(this means that M 0 must be independent of the future evolution; but note that it need
not be a random sample) and observe the population evolve in forward time. At time t,
count the type-0 descendants and the type-1 descendants of our initial sample M 0 and
summarise the results in the unordered sample M t. Together with ZN

t , this gives the
current state (M t, Z

N
t ) (cf. Fig. 8).

As soon as the initial sample is ancestral to all N individuals, it clearly will be
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3 The common ancestor process in the discrete setting

t

00

0 0 01

1111

1 1
((2, 2), 3)

((1, 3), 2)

Figure 8: The process
(
M t, Z

N
t

)
t>0

. The initial sample M 0 = (2, 2) in a population of
size N = 6 (whose number of type-0 individuals is ZN

0 = 3) is marked black at
the top. Fat lines represent their descendants. At the later time (bottom), the
descendants consist of one type-0 individual and three type-1 individuals, the
entire population has two individuals of type 0. The initial and final states of
the process are noted at the right.

ancestral to all N individuals at all later times. Therefore

AN := {(m, k) : k ∈ {0, . . . , N}, m0 6 k, |m| = N} ,

where |m| = m0 + m1 for a sample m = (m0, m1), is a closed (or invariant) set of
the Markov chain. (Given a Markov chain (Y (t))t>0 in continuous time on a discrete
state space E, a non-empty subset A ⊆ E is called closed (or invariant) provided that
P(Y (s) = j | Y (t) = i) = 0 ∀ s > t, i ∈ A, j /∈ A (cf. [38, Ch. 3.2]).)

From now on we restrict ourselves to the initial value (M 0, Z
N
0 ) = ((k, 0), k), i.e. the

population consists of k fit individuals and the initial sample contains them all. Our aim
is to calculate the probability of absorption in AN , which will also give us the fixation
probability hNk of the descendants of the type-0 individuals. In other words, hNk is the
probability that the common ancestor at time 0 belongs to our fit sample M 0. It is
important to note that, given absorption in AN , the common ancestor is a random draw
from the initial sample. Therefore,

P
(
a specific type-0 individual will fix | ZN

0 = k
)
=
hNk
k
. (31)

Likewise,

P
(
a specific type-1 individual will fix | ZN

0 = k
)
=

1− hNk
N − k

. (32)

We will now calculate the absorption probabilities with the help of ‘first-step analysis’
(cf. [38, Thm. 3.3.1] and [11, Thm. 7.5], see also [11, Sec. 6.1.1] for an approach in the
case without mutation). Let us recall the method for convenience.
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3.1 Difference equations for hN and ψN

Lemma 1 (‘first-step analysis’). Assume that (Y (t))t>0 is a Markov chain in continuous
time on a discrete state space E, A ⊆ E is a closed set and Tx, x ∈ E, is the waiting
time to leave the state x. Then for all y ∈ E,

P (Y absorbs in A | Y (0) = y) =
∑

z∈E:z 6=y

P (Y (Ty) = z | Y (0) = y)

× P (Y absorbs in A | Y (0) = z) .

So let us decompose the event ‘absorption in AN ’ according to the first step away
from the initial state. Below we analyse all possible transitions (which are illustrated
in Fig. 9), state the transition rates and calculate absorption probabilities, based upon
the new state. We assume throughout that 0 < k < N .

(a) (b)

(c) (d)

t

t

Figure 9: Transitions out of ((k, 0), k). Solid lines represent type-0 individuals, dashed
ones type-1 individuals. Descendants of type-0 individuals (marked black at
the top) are represented by bold lines.

(a) ((k, 0), k) → ((k + 1, 0), k + 1):

One of the k sample individuals of type 0 reproduces and replaces a type-1 indi-
vidual. We distinguish according to the kind of the reproduction event.

(a1) Neutral reproduction rate: k(N−k)
N

.

(a2) Selective reproduction rate: k(N−k)
N

sN .

In both cases, the result is a sample containing all k + 1 fit individuals. Now
(M t, Z

N
t ) starts afresh in the new state ((k + 1, 0), k + 1), with absorption prob-

ability hNk+1.
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3 The common ancestor process in the discrete setting

(b) ((k, 0), k) → ((k − 1, 0), k − 1) :
A type-1 individual reproduces and replaces a (sample) individual of type 0. This
occurs at rate k(N − k)/N and leads to a sample that consists of all k − 1 fit
individuals. The absorption probability, if we start in the new state, is hNk−1.

(c) ((k, 0), k) → ((k − 1, 1), k − 1):
This transition describes a mutation of a type-0 individual to type 1 and occurs
at rate kuNν1. The new sample contains all k − 1 fit individuals, plus a single
unfit one. Starting now from ((k − 1, 1), k − 1), the absorption probability has
two contributions: First, by definition, with probability hNk−1, one of the k − 1 fit
individuals will be the common ancestor. In addition, by (32), the single unfit
individual has fixation probability (1− hNk−1)/(N − (k − 1)), so the probability to
absorb in AN , when starting from the new state, is

P
(
absorption in AN |

(
M 0, Z

N
0

)
= ((k − 1, 1), k − 1)

)

= hNk−1 +
1− hNk−1

N − (k − 1)
.

(d) ((k, 0), k) → ((k, 0), k + 1):
This is a mutation from type 1 to type 0, which occurs at rate (N − k)uNν0. We
then have k + 1 fit individuals in the population altogether, but the new sample
contains only k of them. Arguing as in (c) and this time using (31), we get

P
(
absorption in AN |

(
M 0, Z

N
0

)
= ((k, 0), k + 1)

)

= hNk+1 −
hNk+1

k + 1
.

Note that, in steps (c) and (d) (and already in (31) and (32)), we have used the permuta-
tion invariance of the fit (respectively unfit) lines to express the absorption probabilities
as a function of k (the number of fit individuals in the population) alone. This way,
we need not cope with the full state space of (M t, Z

N
t ). Taking together the first-step

principle with the results of (a)-(d), we obtain the linear system of equations for hN

(with the rates λNk and µN
k as in (1)):

(
λNk + µN

k

)
hNk = λNk h

N
k+1 + µN

k h
N
k−1 + kuNν1

1− hNk−1

N − (k − 1)
− (N − k)uNν0

hNk+1

k + 1
, (33)

0 < k < N , which is complemented by the boundary conditions hN0 = 0, hNN = 1.

Equation for ψN . As before, we consider
(
M t, Z

N
t

)
t>0

with start in ((k, 0), k), where
ψN is the part of absorption probability in AN that goes back to selective reproductions.
Substituting hNk = ψN

k + k/N in (33) yields the following difference equation for ψN :

(
λNk + µN

k

)
ψN
k =λNk ψ

N
k+1 + µN

k ψ
N
k−1 +

k(N − k)

N2
sN

− kuNν1
ψN
k−1

N − (k − 1)
− (N − k)uNν0

ψN
k+1

k + 1

(34)
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3.2 Solution of the difference equation

(0 < k < N), together with the boundary conditions ψN
0 = ψN

N = 0. It has a nice
interpretation, which is completely analogous to that of hN except in case (a2): If one
of the fit sample individuals reproduces via a selective reproduction event, the extra
absorption probability is ψN

k+1 + 1/N (rather than hNk+1). Here, 1/N is the neutral
fixation probability of the individual just created via the selective event; ψN

k+1 is the
extra absorption probability of all k+ 1 type-0 individuals present after the event. The
neutral contribution gives rise to the k(N − k)sN/N

2 term on the right-hand side of
(34).

3.2 Solution of the difference equation

In this section, we derive an explicit expression for the fixation probabilities hNk , that
is, a solution of the difference equation (33), or equivalently, (34). Although the cal-
culations only involve standard techniques, we perform them here explicitly since this
yields additional insight. Since there is no danger of confusion, we omit the subscript
(or superscript) N for economy of notation.

The following lemma specifies the extra absorption probabilities ψk in terms of a
recursion.

Lemma 2. Let k > 1. Then

ψN−k =
k(N − k)

µN−k

(
µN−1

N − 1
ψN−1 +

λN−k+1

(k − 1)(N − k + 1)
ψN−k+1 −

s(k − 1)

N2

)
. (35)

Remark 1. The quantity λk/(k(N − k)) = (1 + s)/N + uν0/k is well-defined for all
1 6 k 6 N , and k(N − k)/µk = (N − k)/(N−k

N
+ uν1) is well-defined even for k = 0.

Proof of Lemma 2. Let 1 < i < N − 1. Set k = i in (34) and divide by i(N − i) to
obtain
(

λi
i(N − i)

+
µi

i(N − i)

)
ψi =

(
1 + s

N
+

uν0
i+ 1

)
ψi+1 +

(
1

N
+

uν1
N − (i− 1)

)
ψi−1 +

s

N2

=
λi+1

(i+ 1)(N − i− 1)
ψi+1 +

µi−1

(i− 1)(N − i+ 1)
ψi−1 +

s

N2
.

(36)

Together with

(
λ1

N − 1
+

µ1

N − 1

)
ψ1 =

λ2
2(N − 2)

ψ2 +
s

N2
, (37)

(
λN−1

N − 1
+

µN−1

N − 1

)
ψN−1 =

µN−2

2(N − 2)
ψN−2 +

s

N2
, (38)
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3 The common ancestor process in the discrete setting

and the boundary conditions ψ0 = ψN = 0, we obtain a new linear system of equations
for the vector ψ = (ψk)06k6N . Summation over the last k equations yields

N−1∑

i=N−k+1

(
λi

i(N − i)
+

µi

i(N − i)

)
ψi =

N−2∑

i=N−k+1

λi+1

(i+ 1)(N − i− 1)
ψi+1

+

N−1∑

i=N−k+1

µi−1

(i− 1)(N − i+ 1)
ψi−1 +

s(k − 1)

N2
,

which proves the assertion.

Lemma 2 allows for an explicit solution for ψ.

Theorem 1. For 1 6 ℓ, n 6 N − 1, let

χn
ℓ :=

n∏

i=ℓ

λi
µi

and K :=
N−1∑

n=0

χn
1 . (39)

The solution of recursion (35) is then given by

ψN−k =
k(N − k)

µN−k

N−1∑

n=N−k

χn
N−k+1

(
µN−1

N − 1
ψN−1 −

s(N − 1− n)

N2

)
(40)

with

ψN−1 =
1

K

N − 1

µN−1

s

N2

N−2∑

n=0

(N − 1− n)χn
1 . (41)

An alternative representation is given by

ψN−k =
1

K

k(N − k)

µN−k

s

N2

N−k−1∑

ℓ=0

N−1∑

n=N−k

(n− ℓ)χℓ
1χ

n
N−k+1. (42)

Proof. We first prove (40) by induction over k. For k = 1, (40) is easily checked to be
true. Inserting the induction hypothesis for some k − 1 > 0 into recursion (35) yields

ψN−k =
k(N − k)

µN−k

[
µN−1

N − 1
ψN−1

+
λN−k+1

µN−k+1

N−1∑

n=N−k+1

χn
N−k+2

(
µN−1

N − 1
ψN−1 −

s(N − 1− n)

N2

)
−
s(k − 1)

N2

]
,
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3.3 Differential equations for h and ψ

which immediately leads to (40). For k = N , (40) gives (41), since ψ0 = 0 and k(N −
k)/µN−k is well-defined by Remark 1. We now check (42) by inserting (41) into (40)
and then use the expression for K as in (39):

ψN−k =
1

K

k(N − k)

µN−k

s

N2

N−1∑

n=N−k

χn
N−k+1

[
N−1∑

ℓ=0

(N − 1− ℓ)χℓ
1 −

N−1∑

ℓ=0

(N − 1− n)χℓ
1

]

=
1

K

k(N − k)

µN−k

s

N2

N−1∑

ℓ=0

N−1∑

n=N−k

(n− ℓ)χℓ
1χ

n
N−k+1.

Then we split the first sum according to whether ℓ 6 N − k − 1 or ℓ > N − k, and use
χℓ
1 = χN−k

1 χℓ
N−k+1 in the latter case:

ψN−k =
1

K

k(N − k)

µN−k

s

N2

[
N−k−1∑

ℓ=0

N−1∑

n=N−k

(n− ℓ)χℓ
1χ

n
N−k+1

+ χN−k
1

N−1∑

ℓ=N−k

N−1∑

n=N−k

(n− ℓ)χℓ
N−k+1χ

n
N−k+1

]
.

The first sum is the right-hand side of (42) and the second sum disappears due to
symmetry.

Let us note that the fixation probabilities thus obtained have been well-known for the
case with selection in the absence of mutation (see, e.g., [11, Thm. 6.1] and Ch. 5),
but, to the best of our knowledge, have not yet appeared in the literature for the case
with mutation. Note also that our calculations in Sec. 3.1 and Sec. 3.2 do not require
uN > 0 or 0 < ν0, ν1 < 1.

3.3 Differential equations for h and ψ

In Sec. 3.1 we have presented a difference equation for the conditional probability hN

(cf. (33)). To derive the boundary value problem for h from this difference equa-
tion, it remains to prove that limN→∞ hNkN = h(x), with x ∈ [0, 1], 0 < kN < N ,
limN→∞ kN/N = x and h as given as in (20).

Since hNk = k/N + ψN
k and h(x) = x + ψ(x), respectively, it suffices to show the

corresponding convergence of the ψN
k . For ease of exposition we assume in Lemma 3

and Thm. 2 that the process is stationary.

Lemma 3. Let x̃ be as in (21). Then

lim
N→∞

NψN
N−1 =

σ

1 + θν1
(1− x̃).
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3 The common ancestor process in the discrete setting

Proof. Since the stationary distribution πN
Z of

(
ZN

t

)
t>0

(cf. (2)) satisfies

n−1∏

i=1

λNi
µN
i

=
πN
Z (n)

CN

µN
n

λN0
(43)

for 1 6 n 6 N , equation (41) leads to

NψN
N−1 =

NsN
1 +NuNν1

∑N

n=1 π
N
Z (n)µN

n
N−n
N∑N

n=1 π
N
Z (n)µN

n

=
NsN

1 +NuNν1

∑N

n=1 π
N
Z (n)n(N−n)2

N3

(
1 +

NuNν1
N−n

)

∑N

n=1 π
N
Z (n)n(N−n)

N2

(
1 +

Nu
N
ν
1

N−n

) ,

where we have used (1) in the last step. The stationary distribution of the rescaled
process

(
XN

t

)
t>0

is given by
(
πN
X (i/N)

)
06i6N

, where πN
X (i/N) = πN

Z (i). Besides, the
sequence of processes

(
XN

t

)
t>0

converges to (Xt)t>0 in distribution, hence

lim
N→∞

NψN
N−1 = lim

N→∞

NsN
1 +NuNν1

EπN
X

(
XN

(
1−XN

)2 (
1 +

uNν1
1−XN

))

EπN
X

(
XN (1−XN)

(
1 +

u
N
ν
1

1−XN

))

=
σ

1 + θν1

Eπ
X
(X(1−X)2)

Eπ
X
(X(1−X))

=
σ

1 + θν1
(1− x̃),

as claimed.

Remark 2. The proof gives an alternative way to obtain the initial value a1 (cf. (30))
of recursion (27).

Theorem 2. For a given x ∈ [0, 1], let (kN)N∈N be a sequence with 0 < kN < N and
limN→∞ kN/N = x. Then

lim
N→∞

ψN
k
N
= ψ(x),

where ψ is the solution of the boundary value problem (24).

Proof. Using first Theorem 1, then (43) and finally (1), we obtain

ψN
k =

k(N − k)

µN
k

N−k∑

n=1

(
N−n∏

i=k+1

λNi
µN
i

)(
µN
N−1

N − 1
ψN
N−1 −

sN (n− 1)

N2

)

=
k(N − k)

µN
k

(
µN
k+1π

N
Z (k + 1)

)−1
N−k−1∑

n=0

µN
N−nπ

N
Z (N − n)

(
µN
N−1

N − 1
ψN
N−1 −

sNn

N2

)

=

(
1 +O

(
1

N

))(
k + 1

N

N − k − 1

N
πN
Z (k + 1)

)−1

×
1

N

N−k−1∑

n=0

πN
Z (N − n)

N − n

N

n

N

(
1 +

NuNν1
n

)(
(1 +NuNν1)Nψ

N
N−1 −NsN

n

N

)
,
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3.3 Differential equations for h and ψ

where O(1/N) denotes the Landau symbol ‘big O’ as N → ∞. In order to analyse the
convergence of this expression, define

SN
1 (k) :=

k + 1

N

N − k − 1

N
πN
Z (k + 1),

SN
2 (k) :=

1

N

N−k−1∑

n=0

πN
Z (N − n)

N − n

N

n

N

(
(1 +NuNν1)Nψ

N
N−1 −NsN

n

N

)

=

∫ 1

0

TN
k (y)dy,

SN
3 (k) :=

1

N

N−k−1∑

n=0

πN
Z (N − n)

N − n

N
uNν1

(
(1 +NuNν1)Nψ

N
N−1 −NsN

n

N

)

=

∫ 1

0

T̃N
k (y)dy

with step functions TN
k : [0, 1] → R, T̃N

k : [0, 1] → R given by

TN
k (y) :=





1{n6N−k−1}π
N
Z (N − n)N−n

N
n
N

(
(1 +NuNν1)Nψ

N
N−1 −NsN

n
N

)
,

if n
N

6 y < n+1
N
, n ∈ {0, . . . , N − 1},

0, if y = 1,

T̃N
k (y) :=






1{n6N−k−1}π
N
Z (N − n)N−n

N
uNν1

(
(1 +NuNν1)Nψ

N
N−1 −NsN

n
N

)
,

if n
N

6 y < n+1
N
, n ∈ {0, . . . , N − 1},

0, if y = 1.

Consider now a sequence (kN)N∈N as in the assumptions. Then limN→∞ πN
Z (kN) = πX(x)

(cf. [11, p. 319]), and due to Lemma 3

lim
N→∞

SN
1 (kN) = x(1− x)πX(x),

lim
N→∞

TN
k
N
(kN) = 1{y61−x}πX(1− y)(1− y)y(σ(1− x̃)− σy),

lim
N→∞

T̃N
k
N
(kN) = 0.

Since TN
k and T̃N

k are bounded, we have

lim
N→∞

SN
2 (kN) =

∫ 1−x

0

πX(1− y)(1− y)y(σ(1− x̃)− σy)dy,

lim
N→∞

SN
3 (kN) = 0,

thus

lim
N→∞

ψN
k
N
= (x(1− x)πX(x))

−1

∫ 1−x

0

πX(1− y)(1− y)y(σ(1− x̃)− σy)dy.
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3 The common ancestor process in the discrete setting

Substituting on the right-hand side yields

lim
N→∞

ψN
k
N
= (x(1− x)πX(x))

−1 σ

∫ 1

x

πX(y)y(1− y)(y − x̃)dy

= (x(1− x)πX(x))
−1 σ

[ ∫ 1

0

πX(y)y(1− y)(y − x̃)dy

+

∫ x

0

πX(y)y(1− y)(x̃− y)dy

]

= (x(1− x)πX(x))
−1 σ

∫ x

0

πX(y)y(1− y)(x̃− y)dy = ψ(x),

where the second-last equality goes back to the definition of x̃ in (21), and the last is
caused by (20), (23) and (7).

Remark 3. A proof of the convergence of the ψN
k that also includes the non-stationary

case is given in [23, Lemma 3.18, Thm. 3.19], but it is quite lengthy and cumbersome.
The simplicity of our approach (which requires the population to be stationary) is based
on the substitution of the products

∏n

i=ℓ λ
N
i /µ

N
i of Thm. 1 by the stationary distribution

πN
Z .

Remark 4. The case without mutation is particularly simple: hNk corresponds to the
fixation probability of type 0 given that there are initially k type-0 individuals in the
population. It is well-known that (cf. [11, Thm. 6.1])

hNk =

∑N−1
i=N−k(1 + sN)

i

∑N−1
i=0 (1 + sN)

i
,

which becomes with the help of the geometric series

hNk =
(1 + sN)

N−k − (1 + sN )
N

1− (1 + sN)
N

=

(
1 +

Ns
N

N

)N N−k
N −

(
1 +

Ns
N

N

)N

1−
(
1 +

Ns
N

N

)N .

We then perform the N → ∞ limit for a sequence (kN)N∈N with 0 6 kN 6 N and
limN→∞ kN/N = x, and obtain

lim
N→∞

hNk
N
=

exp(σ(1− x))− exp(σ)

1− exp(σ)
=

1− exp(−σx)

1− exp(−σ)
= h(x),

where the last equality is a classical result of Kimura [26]. In Ch. 5 a detailed investi-
gation will follow.

Differential equations for h and ψ. Rearranging difference equation (33) results in

1

2

1

N

(
λNk + µN

k

)
N2
(
hNk+1 − 2hNk + hNk−1

)

+
1

2

(
λNk − µN

k

) (
N
(
hNk+1 − hNk

)
−N

(
hNk−1 − hNk

))

+
k

N

N

N − (k − 1)
NuNν1

(
1− hNk−1

)
−
N − k

N

N

k + 1
NuNν0h

N
k+1 = 0.

(44)
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3.4 The solution of the differential equation

Let us consider a sequence (kN)N∈N with 0 < kN < N and limN→∞ kN/N = x. Ac-
cording to Thm. 2 (in the stationary case) and Remarks 3 and 4 (in the non-stationary
case), the probabilities hNkN converge to h(x) as N → ∞. Then, equation (44), with
k replaced by kN , together with (4) and (5) leads to Taylor’s boundary value problem
(19), but now with a plausible interpretation attached to it.

Equivalently, we start from the difference equation for ψN (cf. (34)) and perform
N → ∞ in the same way as for h. We obtain Taylor’s boundary value problem (24) and
now have an interpretation in terms of the graphical representation to go with it.

3.4 The solution of the differential equation

As a little detour, let us further deal with the boundary value problem (19). To solve it,
Taylor assumes that h can be expanded in a power series in σ. This yields a recursive
series of boundary value problems (for the various powers of σ), which are solved by
elementary methods and combined into a solution of h (cf. [43, Sec. 4]).

However, the calculations are slightly long-winded. In what follows we show that
the boundary value problem (19) (or equivalently (24)) may be solved in a direct and
elementary way, without the need for a series expansion. Defining

c(x) := −θν1
x

1− x
− θν0

1− x

x

and remembering the drift coefficient a(x) (cf. (4)) and the diffusion coefficient b(x) (cf.
(5)), differential equation (24) reads

1

2
b(x)ψ′′ (x) + a(x)ψ′ (x) + c(x)ψ(x) = −σx(1 − x)

or, equivalently,

ψ′′ (x) + 2
a(x)

b(x)
ψ′ (x) + 2

c(x)

b(x)
ψ(x) = −σ. (45)

Since the alternating sum of the coefficients’ derivatives is

2
c(x)

b(x)
−

d

dx
2
a(x)

b(x)
+ 0 = 0, (46)

(45) is an exact differential equation (for the concept of exactness, see [18, Ch. 3.11] or
[5, Ch. 2.6]). Solving it corresponds to solving its primitive

ψ′ (x) + 2
a(x)

b(x)
ψ(x) = −σ(x− x̃). (47)

The constant x̃ plays the role of an integration constant and will be determined by
the initial conditions later. (Obviously, (45) is recovered by differentiating (47) and
observing (46).) As usual, we consider the homogeneous equation

ϕ′ (x) + 2
a(x)

b(x)
ϕ(x) = ϕ′ (x) +

(
σ −

θν1
1− x

+
θν0
x

)
ϕ(x) = 0
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3 The common ancestor process in the discrete setting

first. According to [11, Ch. 7.4] and [16, Ch. 4.3], its solution ϕ1 is given by

ϕ1(x) = exp

(∫ x

−2
a(z)

b(z)
dz

)
= κ (1− x)−θν1 x−θν0 exp(−σx) =

2Cκ

b(x)πX(x)
.

(Note the link to the stationary distribution (if it exists) provided by the last expression
(cf. [11, Thm. 7.8] and [16, Ch. 4.5]).) Of course the same expression is obtained via
separation of variables. Again we will deal with the constant κ later.

Variation of parameters yields the solution ϕ2 of the inhomogeneous equation (47):

ϕ2(x) = ϕ1(x)

∫ x

β

−σ(p− x̃)

ϕ1(p)
dp = σϕ1(x)

∫ x

β

x̃− p

ϕ1(p)
dp. (48)

Finally, it remains to specify the constants of integration x̃, κ and the constant β to
comply with ϕ2(0) = ϕ2(1) = 0. We observe that the factor κ cancels in (48), thus its
choice is arbitrary. ϕ1(x) diverges for x → 0 and x→ 1, so the choice of β and x̃ has to
guarantee B(0) = B(1) = 0, where B(x) =

∫ x

β

x̃−p

ϕ
1
(p)
dp. Hence β = 0 and

x̃

∫ 1

0

1

ϕ1(p)
dp =

∫ 1

0

p

ϕ1(p)
dp ⇔ x̃ =

∫ 1

0
p

ϕ
1
(p)
dp

∫ 1

0
1

ϕ
1
(p)
dp
.

For the sake of completeness, l’Hôpital’s rule can be used to check that ϕ2(0) = ϕ2(1) =
0. The result indeed coincides with Taylor’s (cf. (20), (21)).

We close this section with a brief consideration of the initial value a1 of the recursions
(27). Since, by (30), a1 = −ψ′(1), it may be obtained by analysing the limit x → 1 of
(47). In the quotient a(x)ψ(x)/b(x), numerator and denominator disappear as x → 1.
According to l’Hôpital’s rule we get

lim
x→1

a(x)ψ(x)

b(x)
= lim

x→1

(−θν0 − θν1 + σ(1− 2x))ψ(x) + a(x)ψ′(x)

2(1− 2x)
=

1

2
θν1ψ

′(1),

therefore the limit x→ 1 of (47) yields

−ψ′(1)(1 + θν1) = σ(1− x̃).

Thus, we obtain a1 without the need to differentiate expression (20).

3.5 Fearnhead’s coefficients

Let us now turn to the ancestral type distribution and Fearnhead’s coefficients that
characterise it. To this end, we start from the linear system of equations for ψN =
(ψN

k )06k6N in (36)-(38). Let

ψ̃N
k :=

ψN
k

k(N − k)
(49)
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3.5 Fearnhead’s coefficients

for 1 6 k 6 N − 1. In terms of these new variables, (38) reads

−µN
N−1ψ̃

N
N−1 + µN

N−2ψ̃
N
N−2 − λNN−1ψ̃

N
N−1 +

sN
N2

= 0. (50)

We now perform linear combinations of (36) and (38) (again expressed in terms of the
ψ̃N
N−k) to obtain

n−1∑

k=1

(−1)n−k−1

(
n− 2

k − 1

)
(λNN−k + µN

N−k)ψ̃
N
N−k

=
n−1∑

k=2

(−1)n−k−1

(
n− 2

k − 1

)
λNN−k+1ψ̃

N
N−k+1 +

n−1∑

k=1

(−1)n−k−1

(
n− 2

k − 1

)
µN
N−k−1ψ̃

N
N−k−1

+
sN
N2

n−1∑

k=1

(−1)n−k−1

(
n− 2

k − 1

)

(51)

for 3 6 n 6 N−1. Noting that the last sum disappears as a consequence of the binomial
theorem, rearranging turns (51) into

n−1∑

k=0

(−1)n−k−1

(
n− 1

k

)
µN
N−k−1ψ̃

N
N−k−1 +

n−1∑

k=1

(−1)n−k

(
n− 1

k

)
λNN−kψ̃

N
N−k = 0. (52)

On the basis of equations (50) and (52) for (ψ̃N
k )16k6N−1 we will now establish a discrete

version of Fearnhead’s coefficients, and a corresponding discrete version of recursion (27)
and initial value (30). Motivated by the limiting expression (25), we choose the ansatz

hNN−k =
N − k

N
+(N−k)

k∑

i=1

aNi
k[i]
N[i+1]

respectively ψN
N−k = (N−k)

k∑

i=1

aNi
k[i]
N[i+1]

, (53)

where we adopt the usual notation

y[j] := y(y − 1) . . . (y − j + 1) (54)

for y ∈ R, j ∈ N. Again we omit the upper (and lower) population size index N (except
for the one of the aNn ) in the following theorem.

Theorem 3. The aNn , 1 6 n 6 N − 1, satisfy the following relations: aN1 = NψN−1,

(N − 2)

[(
2

N
+ uν1

)
aN2 −

(
2

N
+
N − 1

N
s+ u

)
aN1 +

N − 1

N
s

]
= 0, (55)

and, for 3 6 n 6 N − 1:

(N − n)

[( n
N

+ uν1

)
aNn −

(
n

N
+
N − (n− 1)

N
s+ u

)
aNn−1 +

N − (n− 1)

N
saNn−2

]
= 0.

(56)
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3 The common ancestor process in the discrete setting

Proof. At first we note that the initial value aN1 follows directly from (53) for k = 1.
Then, we remark that, by (49) and (53),

ψ̃N−k =
1

k

k∑

i=1

aNi
k[i]
N[i+1]

(57)

for 1 6 k 6 N − 1. To prove (55), we insert (57) into (50) and write the resulting
equality as

µN−2a
N
2 − (µN−1 − µN−2 + λN−1)(N − 2)aN1 +

(N − 1)(N − 2)

N
s = 0,

which is easily checked to coincide with (55).
To prove (56), we express (52) in terms of the aNn via (57). The first sum of (52)

becomes

n−1∑

k=0

(−1)n−k−1

(
n− 1

k

)
µN−k−1ψ̃N−k−1 =

n−1∑

k=0

(−1)n−k−1

(
n− 1

k

)
µN−k−1

k+1∑

i=1

aNi
k[i−1]

N[i+1]

=

n∑

i=1

aNi

n∑

k=i

(−1)n−k

(
n− 1

k − 1

)
(k − 1)[i−1]

N[i+1]
µN−k.

Analogously, the second sum of (52) turns into

n−1∑

k=1

(−1)n−k

(
n− 1

k

)
λN−kψ̃N−k =

n−1∑

i=1

aNi

n−1∑

k=i

(−1)n−k

(
n− 1

k

)
(k − 1)[i−1]

N[i+1]

λN−k.

Multiplying with N !, (52) is thus reformulated as

n∑

i=1

aNi (N − i− 1)[n−i](A
n
µ,i + An

λ,i) = 0, (58)

where

An
µ,i :=

n∑

k=i

(−1)n−k

(
n− 1

k − 1

)
(k − 1)[i−1]µN−k, (59)

An
λ,i :=

n−1∑

k=i

(−1)n−k

(
n− 1

k

)
(k − 1)[i−1]λN−k. (60)

It remains to evaluate the An
µ,i and the An

λ,i for 1 6 i 6 n. First, we note that

(
n− 1

k − 1

)
(k − 1)[i−1] =

(n− 1)!

(n− i)!

(
n− i

k − i

)
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3.5 Fearnhead’s coefficients

for i 6 k 6 n and apply this to the right-hand side of (59). This results in

An
µ,i =

(n− 1)!

(n− i)!

n∑

k=i

(−1)n−k

(
n− i

k − i

)
µN−k =

(n− 1)!

(n− i)!

n−i∑

k=0

(−1)k
(
n− i

k

)
µN−n+k,

where the sum corresponds to the (n− i)th difference quotient of the mapping

µ : {0, . . . , N} → R>0, k 7→ µk = −
k2

N
+ k(1 + uν1)

taken at N − n. Since µ is a quadratic function, we conclude that An
µ,i = 0 for all

1 6 i 6 n− 3. In particular, in the second difference quotient (i.e. i = n− 2) the linear
terms cancel each other and An

µ,n−2 simplifies to

An
µ,n−2 =

(n− 1)!

2

[
µN−n − 2µN−n+1 + µN−n+2

]

=
(n− 1)!

2

[
− (N − n)2 + 2(N − n+ 1)2 − (N − n+ 2)2

]
= −

(n− 1)!

N
.

For the remaining quantities An
µ,n−1 and An

µ,n we have

An
µ,n−1 = (n− 1)!(µN−n − µN−n+1) = (n− 1)!

(
1

N
(N − 2n+ 1)− uν1

)

and
An

µ,n = (n− 1)!µN−n = (n− 1)!(N − n)
( n
N

+ uν1

)
.

We now calculate the An
λ,i. Since

(
n− 1

k

)
(k − 1)[i−1] =

1

k

(n− 1)!

(n− 1− i)!

(
n− 1− i

k − i

)

for i 6 k 6 n− 1, we obtain that

An
λ,i =

(n− 1)!

(n− 1− i)!

n−1∑

k=i

(−1)n−k

(
n− 1− i

k − i

)
λN−k

k

=
(n− 1)!

(n− 1− i)!

n−1−i∑

k=0

(−1)k+1

(
n− 1− i

k

)
λN−(n−1−k)

n− 1− k
,

where the sum now coincides with the (n − 1 − i)th difference quotient of the affine
function

λ : {0, . . . , N − 1} → R>0, k 7→
λk

N − k
=

k

N
(1 + s) + uν0

taken at N − (n− 1). Consequently, An
λ,i = 0 for all 1 6 i 6 n− 3, and in An

λ,n−2 (more
precisely in the first difference quotient of λ at N − (n− 1)) the constant terms cancel
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3 The common ancestor process in the discrete setting

each other. Thus,

An
λ,n−2 = (n− 1)!

[
−
λN−(n−1)

n− 1
+
λN−(n−2)

n− 2

]

= (n− 1)!
1 + s

N
[N − (n− 2)− (N − (n− 1))] = (n− 1)!

1 + s

N

and so

An
λ,n−1 = −(n− 1)!

λN−(n−1)

n− 1
= −(n− 1)!

[
N − (n− 1)

N
(1 + s) + uν0

]
.

Combining (58) with the results for An
µ,i and An

λ,i yields the assertion (56).

It will not come as a surprise now that the discrete recursions of the aNn obtained in
Thm. 3 lead to Fearnhead’s coefficients an in the limit N → ∞. According to Sec.
3.3, ψN

kN
converges to ψ(x) for any given sequence (kN)N∈N with 0 < kN < N and

limN→∞ kN/N = x. Comparing (53) with (25), we obtain

lim
N→∞

aNn = an (61)

for all n > 1. The recursions (27) of Fearnhead’s coefficients then follow directly from
the recursions in Thm. 3 in the limit N → ∞.

3.6 Derivatives of ψ

In this section, we turn to the derivatives ψ(n)(1), n > 1, which are also closely linked
to Fearnhead’s coefficients (via (28) and (29)). More precisely, we will derive a system
of equations for the ψ(n)(1). To this end, we deal with the difference quotients of the
mapping ψN first. Again we omit the index N in the following lemma.

Lemma 4. ψ = (ψk)06k6N satisfies the following relations:

−2ψN−1 + ψN−2 =
2(N − 2)

µN−2

1

N

[(
s+

Nuν0
N − 1

)
ψN−1 −

s

N

]
(62)

and, for n > 3:

n∑

i=1

(−1)i
(
n

i

)
ψN−i =

n(N − n)

µN−n

1

N

n−1∑

i=1

(−1)i−1

(
n− 1

i

)(
s+

Nuν0
N − i

)
ψN−i. (63)

Proof. At first we note that

λN−k+1

(k − 1)(N − k + 1)
=

1

N
+

1

N

(
s+

Nuν0
N − k + 1

)
(64)
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3.6 Derivatives of ψ

and
µN−k

N − k
+
n− k

N
=

µN−n

N − n
(65)

for 1 6 k 6 n. Then, we apply this to the left-hand side of (62) after insertion of Lemma
2 for k = 2:

−2ψN−1 + ψN−2 =
2(N − 2)

µN−2

[
−
µN−2

N − 2
ψN−1 +

µN−1

N − 1
ψN−1 +

1

N
ψN−1

+
1

N

(
s+

Nuν0
N − 1

)
ψN−1 −

s

N2

]

=
2(N − 2)

µN−2

1

N

[(
s+

Nuν0
N − 1

)
ψN−1 −

s

N

]
,

which is the right-hand side of (62).
To prove (63), we express ψN−n via Lemma 2 for k = n. Due to (64), the left-hand

side of (63) becomes

n∑

i=1

(−1)i
(
n

i

)
ψN−i =

n(N − n)

µN−n

[
n−1∑

i=1

(−1)i
(
n

i

)
µN−n

n(N − n)
ψN−i + (−1)n

µN−1

N − 1
ψN−1

+ (−1)n
1

N
ψN−n+1 + (−1)n

1

N

(
s+

Nuν0
N − n + 1

)
ψN−n+1

− (−1)n
(n− 1)s

N2

]
.

Then we use (65) to split the first sum and obtain

=
n(N − n)

µN−n

[
1

N

n−2∑

i=1

(−1)i
(
n− 1

i

)
ψN−i +

n−1∑

i=1

(−1)i
(n− 1)!

i!(n− i)!

µN−i

N − i
ψN−i

+ (−1)n
µN−1

N − 1
ψN−1 + (−1)n

1

N

(
s+

Nuν0
N − n+ 1

)
ψN−n+1 − (−1)n

(n− 1)s

N2

]
.

Finally, we substitute each factor µN−iψN−i/(N − i) in the second sum according to
Lemma 2. Rearranging (again with the help of (64)) results in

=
n(N − n)

µN−n

[
1

N

n−2∑

i=1

(−1)i
(
n− 1

i

)
ψN−i +

n∑

i=1

(−1)i
(
n− 1

i− 1

)
µN−1

N − 1
ψN−1

+
1

N

n−1∑

i=2

(−1)i
(
n− 1

i− 1

)
ψN−i+1 +

1

N

n∑

i=2

(−1)i
(
n− 1

i− 1

)(
s+

Nuν0
N − i+ 1

)
ψN−i+1

−
s

N2

n∑

i=2

(−1)i
(
n− 1

i− 1

)
(i− 1)

]
.
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The first and third sum cancel each other and the second and fifth sum disappear as a
consequence of the binomial theorem. The remaining fourth sum equals the right-hand
side of (63), which proves the assertion.

Theorem 4. The ψ(n)(1), n > 1, satisfy the following relations:

ψ(2)(1) =
2

2 + θν1
[− (σ + θν0)ψ

′(1)− σ] , (66)

ψ(3)(1) =
3

3 + θν1

[
− (σ + θν0)ψ

(2)(1) + 2θν0ψ
′(1)
]

(67)

and, for n > 4:

ψ(n)(1) =
n

n+ θν1

[
− (n− 1 + σ + θ)ψ(n−1)(1)− (n− 1)σψ(n−2)(1)

]
. (68)

Proof. Since
n(N − n)

µN
N−n

1

N
=

n

n+NuNν1
(69)

for n > 1, and ψ(2)(1) = limN→∞N2
[
−2ψN

N−1 + ψN
N−2

]
and −ψ′(1) = limN→∞NψN

N−1,
(62) of Lemma 4 immediately yields the right-hand side of (66).

To prove (67) and (68), we express the difference quotients of ψN after insertion of
(63) as

n∑

i=1

(−1)i
(
n

i

)
ψN
N−i =

n(N − n)

µN
N−n

1

N

[(
sN +

NuNν0
N − (n− 1)

) n−1∑

i=1

(−1)i−1

(
n− 1

i

)
ψN
N−i

+

n−2∑

i=1

(−1)i−1

(
n− 1

i

)(
NuNν0
N − i

−
NuNν0

N − (n− 1)

)
ψN
N−i

]

=
n(N − n)

µN
N−n

1

N

[(
sN +

NuNν0
N − (n− 1)

) n−1∑

i=1

(−1)i−1

(
n− 1

i

)
ψN
N−i

−
n− 1

N − (n− 1)

n−2∑

i=1

(−1)i−1

(
n− 2

i

)
NuNν0
N − i

ψN
N−i

]
. (70)

For n = 3, the last equality directly yields

ψ(3)(1) = lim
N→∞

N3
[
−3ψN

N−1 + 3ψN
N−2 − ψN

N−3

]

= lim
N→∞

N3 3(N − 3)

µN
N−3

1

N

[(
sN +

NuNν0
N − 2

)(
2ψN

N−1 − ψN
N−2

)

−
2NuNν0

(N − 1)(N − 2)
ψN
N−1

]
,

44



3.6 Derivatives of ψ

which corresponds to the right-hand side of (67). For n > 4, we rearrange (70) to obtain

n∑

i=1

(−1)i
(
n

i

)
ψN
N−i =

n(N − n)

µN
N−n

1

N

[(
sN +

NuNν0
N − (n− 1)

) n−1∑

i=1

(−1)i−1

(
n− 1

i

)
ψN
N−i

−
n− 1

N − (n− 1)

n−2∑

i=1

(−1)i−1

(
n− 2

i

)(
sN +

NuNν0
N − i

)
ψN
N−i

−
(n− 1)sN
N − (n− 1)

n−2∑

i=1

(−1)i
(
n− 2

i

)
ψN
N−i

]

=
n(N − n)

µN
N−n

1

N

[(
sN +

NuNν0
N − (n− 1)

) n−1∑

i=1

(−1)i−1

(
n− 1

i

)
ψN
N−i

−
n− 1

N − (n− 1)

NµN
N−n+1

(n− 1)(N − n+ 1)

n−1∑

i=1

(−1)i
(
n− 1

i

)
ψN
N−i

−
(n− 1)sN
N − (n− 1)

n−2∑

i=1

(−1)i
(
n− 2

i

)
ψN
N−i

]
,

where in the last equality the second sum is replaced by (63) of Lemma 4 (with n
replaced by n− 1). Together with (69), it follows that

ψ(n)(1) = lim
N→∞

Nn

n∑

i=1

(−1)i
(
n

i

)
ψN
N−i

=
n

n + θν1

[
− (σ + θν0 + n− 1 + θν1)ψ

(n−1)(1)− (n− 1)σψ(n−2)(1)
]
,

which proves assertion (68) of Thm. 4.

Thm. 4 provides a further characterisation of ψ(n)(1).

Proposition 1. Let n > 3. Then

ψ(n)(1) =
n

n+ θν1

[
−σψ(n−1)(1) + θν0

n−1∑

i=1

(−1)n−i (n− 1)!

i!
ψ(i)(1)

]
. (71)

Proof. We prove the proposition by induction over n. According to (67) of Thm. 4, the
assertion is true for n = 3. For some n > 4, we insert the induction hypothesis for n− 1
into the right-hand side of (68):

ψ(n)(1) =
n

n+ θν1

[
(n− 1)σψ(n−2)(1)− (n− 1)θν0

n−2∑

i=1

(−1)n−1−i (n− 2)!

i!
ψ(i)(1)

− (σ + θν0)ψ
(n−1)(1)− (n− 1)σψ(n−2)(1)

]
,

45



3 The common ancestor process in the discrete setting

where the first and the last summand cancel each other. Rearranging of the remaining
summands results in

ψ(n)(1) =
n

n+ θν1

[
−σψ(n−1)(1) + θν0

n−1∑

i=1

(−1)n−i (n− 1)!

i!
ψ(i)(1)

]
,

which is the right-hand side of (71).

Note that one may derive the recursions (27) of Fearnhead’s coefficients alternatively
from the derivatives ψ(n)(1), see [29] and [23, Sec. 3.3.5]. The idea is to reformulate the
representation of Fearnhead’s an in (29) as a1 = −ψ′(1) and

an =
(−1)n

n!

n∑

i=0

(−1)n−i n!

i!
ψ(i) (1) =

(−1)n

n!
ψ(n)(1) + an−1

for n > 2, and then use Thm. 4 and Prop. 1, respectively.
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4 A coupling approach

In this chapter, we work with couplings to give alternative interpretations of the quan-
tities ψN

k = hNk − k/N and hNk − hNk−1. First, we start with a short introduction to
coupling theory (Sec. 4.1). Then, we consider applications in the Moran model without
mutation (Sec. 4.2) and go on with an extension to the case with mutation (Sec. 4.3).
Since we restrict ourselves to populations of finite size N , we omit the upper and lower
index N throughout this chapter to make our notation less complicated.

4.1 The coupling method

Coupling methods are applied in many areas of probability theory and are a useful tool
in the field of interacting particle systems. A short overview can be found in [4, Ch. 13],
an elaborate survey in [34]. [33] introduces the use of coupling methods in interacting
particle systems. We begin with a formal definition (cf. [4, Def. 13.1], [34, Ch. 1.1],
[44]).

Definition 1. (a) Let P and P ′ be two probability measures on a measurable space
(Ω,F). By a coupling of P and P ′ we mean any probability measure P̂ on (Ω,F)×
(Ω,F) such that P and P ′ are the marginal distributions of P̂ , i.e.

P̂ (A× Ω) = P (A) and P̂ (Ω×A) = P ′(A)

for all A ∈ F .

(b) Let (Yt)t>0 and (Y ′
t )t>0 be two Markov processes on a measurable space (Ω,F). A

process (Ŷt, Ŷ ′
t )t>0 on (Ω,F)× (Ω,F) is called a coupling of (Yt)t>0 and (Y ′

t )t>0 if

Ŷ
D
= Y and Ŷ ′ D

= Y ′.

Now we describe how to couple certain classes of interacting particle systems, whereas
we restrict ourselves to the state space {0, 1}S, S countable (see [20, Ch. 6, 10] and
[34, Ch. 5.3] for surveys). An interacting particle system is a (continuous-time) Markov
process (Γt)t>0 on {0, 1}S with Γt = (Γt(j))j∈S . We interpret S as a set of positions.
On each of these positions sits a particle, the one at position j, j ∈ S, is of type
Γt(j) ∈ {0, 1} at time t.

We assume that (Γt)t>0 is characterised by the so-called flip rate function c : S ×
{0, 1}S → R>0 [34, Ch. 5.3]. c is independent of time and defined as follows:

P(Γt+h(j) 6= γ(j) | Γt = γ) = c(j, γ)h+ o(h),

P(Γt+h(j) 6= γ(j),Γt+h(i) 6= γ(i) | Γt = γ) = o(h), i, j ∈ S, i 6= j,

where o(h) denotes the Landau symbol ‘little o’ as h → 0. c(j, γ) indicates the rate at
which a particle at position j changes its type (from 0 to 1 or from 1 to 0), given the
configuration of the interacting particle system is γ = (γ(j))j∈S ∈ {0, 1}S . The rate for
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4 A coupling approach

a so-called flip at position j depends on the current configuration. Almost surely we do
not observe more than one flip at the same time. Classical examples are the contact
process and the voter model (cf. [20, Ch. 6, 10]).

Note that we omit more general interacting particle systems that are characterised
by the so-called speed (or rate) function c : {0, 1}S × {0, 1}S → R>0, where c(γ, γ′),
γ, γ′ ∈ {0, 1}S, is the rate at which (Γt)t>0, when in configuration γ, jumps to γ′. As an
example see the exclusion model in [20, Ch. 10].

The next definition introduces the Vasershtein or basic coupling of interacting particle
systems that are characterised by flip rate functions (cf. [34, Ch. 5.3]).

Definition 2. Let (Γt)t>0 and (Γ′
t)t>0 be interacting particle systems on {0, 1}S with

flip rate functions c and c′, respectively. Let cmin(j, γ, γ
′) := min(c(j, γ), c′(j, γ′)), and

define the operator Cj : {0, 1}S → {0, 1}S, γ 7→ Cj(γ), as follows:

Cj(γ)(i) =

{
1− γ(i), if i = j,

γ(i), if i 6= j,

i.e., the operator Cj flips the type of a configuration at position j. Let (Γ̂t, Γ̂
′
t)t>0 be a

Markov process on {0, 1}S × {0, 1}S with the following transition rates:

(i) If γ(j) 6= γ′(j):

(γ, γ′) → (Cj(γ), γ
′) at rate c(j, γ),

(γ, γ′) → (γ, Cj(γ
′)) at rate c′(j, γ′).

(ii) If γ(j) = γ′(j):

(γ, γ′) → (Cj(γ), Cj(γ
′)) at rate cmin(j, γ, γ

′), (72)

(γ, γ′) → (Cj(γ), γ
′) at rate c(j, γ)− cmin(j, γ, γ

′), (73)

(γ, γ′) → (γ, Cj(γ
′)) at rate c′(j, γ′)− cmin(j, γ, γ

′). (74)

Then, the Markov process (Γ̂t, Γ̂
′
t)t>0 is a coupling of (Γt)t>0 and (Γ′

t)t>0.

We understand (Γ̂t, Γ̂
′
t)t>0 as an interacting particle system, where now

{(j, k) | j ∈ S, k ∈ {1, 2}}

is the set of positions. The individual that occupies position (j, 1) is understood to be
of type Γ̂t(j) at time t, the individual that occupies position (j, 2) of type Γ̂′

t(j). With
regard to our applications in the next sections, note the following observation (cf. [34,
Ch. 5.3]):

Remark 5. Assume that γ > γ′, i.e. γ(j) > γ′(j) for all j ∈ S, and

(a) c(j, γ) > c′(j, γ′) = cmin(j, γ, γ
′), if γ(j) = γ′(j) = 0,

(b) c′(j, γ′) > c(j, γ) = cmin(j, γ, γ
′), if γ(j) = γ′(j) = 1.

As a consequence, in the coupling (Γ̂t, Γ̂
′
t)t>0 we only observe transitions (72) and (73)

in case (a) and transitions (72) and (74) in case (b). In general, Γ̂t > Γ̂′
t for all t > 0

if Γ̂0 > Γ̂′
0.

48



4.2 Coupling in a Moran model with selection

4.2 Coupling in a Moran model with selection

The Moran model, as described in Sec. 2.1, is an interacting particle system. Here, the
set of positions is S = {1, . . . , N}, and particles can be considered individuals. Each of
the N positions is occupied by an individual, which is of type 0 or type 1. As already
known, these individuals mutate and reproduce (and the offspring, which inherits the
parent’s type, replaces an individual at a randomly chosen position). Reproductions
that lead to a replacement of an individual of a different type and ‘non-empty’ muta-
tions, i.e. mutations that change the type, are visible as flips in the configuration.

For the moment, we forgo the effect of mutation, thus u = 0. For a given configuration
γ ∈ {0, 1}S, define ‖γ‖ as the number of type-0 individuals in configuration γ. Let
(Γt)t>0 and (Γ′

t)t>0 be interacting particle systems on {0, 1}S , which are defined by flip
rate functions

c(j, γ) =

{
N−‖γ‖

N
, if γ(j) = 0,

‖γ‖
N
, if γ(j) = 1

(75)

and

c′(j, γ) =

{
N−‖γ‖

N
, if γ(j) = 0,

‖γ‖
N
(1 + s), if γ(j) = 1,

(76)

respectively. Obviously, (Γt)t>0 describes the evolution of N individuals according to
a Moran model with solely neutral reproductions, (Γ′

t)t>0 according to a Moran model
with both neutral and selective reproductions. Since there is no mutation, one of the two
types almost surely becomes fixed in the population. Therefore, the absorbing states of
both (Γt)t>0 and (Γ′

t)t>0 are 1 and 0, where 1 = (1, . . . , 1) and 0 = (0, . . . , 0) are vectors
of length N .

Let (Γ̂t, Γ̂
′
t)t>0 be the Vasershtein coupling (cf. Def. 2) of (Γt)t>0 and (Γ′

t)t>0 under
the assumption that Γ̂0 > Γ̂′

0, i.e. ‖Γ̂0‖ 6 ‖Γ̂′
0‖. For configurations γ, γ′ ∈ {0, 1}S

with γ > γ′, we have cmin(j, γ, γ
′) = c′(j, γ′) for j ∈ S with γ(j) = γ′(j) = 0 and

cmin(j, γ, γ
′) = c(j, γ) for j ∈ S with γ(j) = γ′(j) = 1. According to Remark 5, Γ̂t > Γ̂′

t

for all t > 0. Graphically, the Vasershtein coupling can be understood as follows:

(R1) Individuals at positions (j, 1) and (j, 2) with different types reproduce indepen-
dently. By this we will mean that the individuals at (j, 1) and (j, 2) reproduce at
times of independent Poisson processes with rate 1 and rate 1 + s, respectively.
The offspring replace, independently of each other, individuals at randomly chosen
positions in S × {1} and S × {2}, respectively.

(R2) Individuals at positions (j, 1) and (j, 2) that are of the same type reproduce together
at rate 1. By this we will mean that the individuals at (j, 1) and (j, 2) reproduce
at times of the same rate one Poisson process and replace individuals at positions
(k, 1) and (k, 2), respectively, where k is a random draw from S.
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4 A coupling approach

(R3) If both individuals at positions (j, 1) and (j, 2) are of type 0, the individual that sits
at (j, 2) reproduces additionally at rate s. This will mean that only the individual
at (j, 2) reproduces at times of a rate s Poisson process and the offspring replaces
an individual at a randomly chosen position in S ×{2}, whereas the individual at
(j, 1) does not reproduce.

We observe three absorbing states:

A0,0 := (0, 0), A1,0 := (1, 0) and A1,1 := (1, 1). (77)

Now we can build a bridge to the extra absorption probability ψk = hk − k/N (cf. Sec.
2.3.2). According to the method of coupling (cf. Def. 1), (Γt)t>0 and (Γ′

t)t>0 have the
same absorption probabilities as (Γ̂t)t>0 and (Γ̂′

t)t>0, respectively, which are independent
of the other component. Let ℓ 6 k. Then

ℓ

N
= P(Γ absorbs in 0 | ‖Γ0‖ = ℓ)

= P(Γ̂ absorbs in 0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) (78)

= P((Γ̂, Γ̂′) absorbs in A0,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0)

and

hk = P(Γ′ absorbs in 0 | ‖Γ′
0‖ = k)

= P(Γ̂′ absorbs in 0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) (79)

= P((Γ̂, Γ̂′) absorbs in A0,0 ∪A1,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0).

For the absorption probabilities in the coupling (Γ̂t, Γ̂
′
t)t>0 we obtain

P((Γ̂, Γ̂′) absorbs in A0,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) =
ℓ

N
,

P((Γ̂, Γ̂′) absorbs in A1,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = hk −
ℓ

N
, (80)

P((Γ̂, Γ̂′) absorbs in A1,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = 1−
ℓ

N
−

(
hk −

ℓ

N

)

= 1− hk.

For k = ℓ, (80) yields

P((Γ̂, Γ̂′) absorbs in A1,0 | ‖Γ̂0‖ = ‖Γ̂′
0‖ = k, Γ̂0 = Γ̂′

0) = hk −
k

N
= ψk.

This way, we obtain an alternative possibility to characterise the quantity ψk as the
absorption probability in A1,0 for the coupling (Γ̂t, Γ̂

′
t)t>0, given ‖Γ̂0‖ = ‖Γ̂′

0‖ = k, Γ̂0 =
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4.2 Coupling in a Moran model with selection

Γ̂′
0. We thus formalise the characterisation of ψk as ‘extra’ absorption probability in Sec.

2.3.2.
Additionally, our reasoning allows for a further use of the method of ‘first-step analysis’

(cf. Lemma 1). Since a detailed application of the method is given in Sec. 3.1, we just
go briefly through it at this point. Again we consider the coupling (Γ̂t, Γ̂

′
t)t>0 with

‖Γ̂0‖ = ‖Γ̂′
0‖ = k and Γ̂0 = Γ̂′

0. According to the rates given in Def. 2 and (75) and
(76), we only observe transition (72) for j ∈ S with Γ̂0(j) = Γ̂′

0(j) = 0; there are k of
these positions. In contrast, for j ∈ S with Γ̂0(j) = Γ̂′

0(j) = 1, transitions (72) and (74)
are possible; there are N − k of these positions. Thus

(
k(N − k)

N
(1 + s) +

k(N − k)

N

)
ψk =

k(N − k)

N
ψk−1 +

k(N − k)

N
ψk+1

+
k(N − k)

N
s

(
hk+1 −

k

N

)
.

Due to (1), this difference equation corresponds to (34) for u = 0. The coupling be-
tween two Moran models with and without selection, respectively, permits to formalise
our heuristic first-step interpretation of (34) in Sec. 2.3.2.

At the end, we briefly consider the coupling between two copies of the Moran model
with selection. Therefore, let (Γt)t>0 and (Γ′

t)t>0 be two interacting particle systems
that are characterised by the same flip rate function c′ as in (76). We consider the
corresponding Vasershtein coupling (Γ̂t, Γ̂

′
t)t>0 (cf. Def. 2) with initial configuration

Γ̂0 > Γ̂′
0. Again, for γ, γ′ ∈ {0, 1}S with γ > γ′, we obtain that cmin(j, γ, γ

′) = c′(j, γ′)
for j with γ(j) = γ′(j) = 0 and cmin(j, γ, γ

′) = c(j, γ) for j with γ(j) = γ′(j) = 1.
Therefore, Γ̂t > Γ̂′

t for all t > 0 (cf. Remark 5). We interpret the coupling in the
following sense:

(R1) Individuals at positions (j, 1) and (j, 2) with different types reproduce indepen-
dently.

(R2) If both individuals at positions (j, 1) and (j, 2) are of type 1, they reproduce
together at rate 1, if they are both of type 0, they reproduce together at rate 1+s.

(Γ̂t, Γ̂
′
t)t>0 absorbs almost surely in A0,0, A1,0 or A1,1 (cf. (77)). Mimicking our calcula-

tions in (78) and (79) by replacing ℓ/N by hℓ, ℓ 6 k, we obtain the following absorption
probabilities:

P((Γ̂, Γ̂′) absorbs in A0,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = hℓ,

P((Γ̂, Γ̂′) absorbs in A1,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = hk − hℓ, (81)

P((Γ̂, Γ̂′) absorbs in A1,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = 1− hk.

For k > 1, ℓ = k − 1, (81) becomes

P((Γ̂, Γ̂′) absorbs in A1,0 | ‖Γ̂0‖ = k − 1, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = hk − hk−1,

which gives an interpretation of the difference hk − hk−1 as an absorption probability in
the Vasershtein coupling. A detailed analysis of this quantity will follow in Ch. 5.
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4.3 Coupling in a Moran model with selection and mutation

This section deals with the coupling of Moran models with mutation. We consider
interacting particle systems (Γt)t>0 and (Γ′

t)t>0 on {0, 1}S with flip rate functions

c(j, γ) =

{
N−‖γ‖

N
+ uν1, if γ(j) = 0,

‖γ‖
N

+ uν0, if γ(j) = 1

and

c′(j, γ) =

{
N−‖γ‖

N
+ uν1, if γ(j) = 0,

‖γ‖
N
(1 + s) + uν0, if γ(j) = 1

(82)

and u > 0. Here, (Γt)t>0 corresponds to a Moran model with mutation but without
selection, (Γ′

t)t>0 to a Moran model with mutation and selection. The offspring of the
type-0 or the type-1 individuals will almost surely become fixed in the population (cf.
Sec. 2.3). The closed sets (cf. Sec. 3.1) of (Γt)t>0 and (Γ′

t)t>0 are

A0 := {γ ∈ {0, 1}S | individual at position j is descendant of type-0 individual ∀ j ∈ S},

A1 := {γ ∈ {0, 1}S | individual at position j is descendant of type-1 individual ∀ j ∈ S}.

We define the coupling (Γ̂t, Γ̂
′
t)t>0 between these two interacting particle systems in the

natural way:

(R1) Individuals at positions (j, 1) and (j, 2) that are of different types reproduce inde-
pendently.

(R2) Individuals at (j, 1) and (j, 2) that are of the same type reproduce together at rate
1.

(R3) If both individuals at (j, 1) and (j, 2) are of type 0, the individual that occupies
(j, 2) reproduces additionally at rate s.

(M) Individuals at (j, 1) and (j, 2) mutate together to type i at rate uνi, i ∈ S. By this
we will mean that mutations to type i occur on j × {1, 2} at times of the same
rate uνi Poisson process Pji, independently of the individual’s types on j × {1, 2}
at time t−, t ∈ Pji. Empty mutations are included.

Although Γ̂t > Γ̂′
t for all t > 0, if Γ̂0 > Γ̂′

0, the coupling almost surely absorbs in one of
the four sets Ai,j := Ai ×Aj, i, j ∈ {0, 1}. To calculate the absorption probabilities, we
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4.3 Coupling in a Moran model with selection and mutation

use the method of coupling (cf. Def. 1) in the same way as in Sec. 4.2:

ℓ

N
= P(Γ absorbs in A0 | ‖Γ0‖ = ℓ)

= P((Γ̂, Γ̂′) absorbs in A0,0 ∪A0,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k),

N − ℓ

N
= P(Γ absorbs in A1 | ‖Γ0‖ = ℓ)

= P((Γ̂, Γ̂′) absorbs in A1,0 ∪A1,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k),

hk = P(Γ′ absorbs in A0 | ‖Γ
′
0‖ = k)

= P((Γ̂, Γ̂′) absorbs in A0,0 ∪A1,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k),

1− hk = P(Γ′ absorbs in A1 | ‖Γ
′
0‖ = k)

= P((Γ̂, Γ̂′) absorbs in A0,1 ∪A1,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k).

These calculations yield

P((Γ̂, Γ̂′) absorbs in A1,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k)

− P((Γ̂, Γ̂′) absorbs in A0,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k) = hk −

ℓ

N
.

For k = ℓ, we therefore obtain a formal interpretation of the quantity ψk = hk − k/N
(in comparison to the one of Sec. 2.3.2), namely, as the difference of two absorption
probabilities in the coupling (Γ̂t, Γ̂

′
t)t>0.

We close this section with a brief consideration of a coupling between two versions of
the Moran model with selection and mutation. Let (Γt)t>0 and (Γ′

t)t>0 be two interacting
particle systems on {0, 1}S with flip rate function c′ as in (82). Here, a slightly different
coupling (Γ̂t, Γ̂

′
t)t>0 is useful, which complies with Γ̂t > Γ̂′

t for all t > 0, if Γ̂0 > Γ̂′
0.

(R1) Individuals at positions (j, 1) and (j, 2) with different types reproduce together at
rate 1.

(R2) If both individuals at (j, 1) and (j, 2) are of type 1, they reproduce together at
rate 1, if they are both of type 0, they reproduce together at rate 1 + s.

(R3) If both individuals at (j, 1) and (j, 2) are of different types, the type-0 individual
at (j, 2) reproduces additionally at rate s.

(M) Individuals at positions (j, 1) and (j, 2) mutate together to type i at rate uνi,
i ∈ S.
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According to this law for coupling, and under the assumption that Γ̂0 > Γ̂′
0, a descendant

of a type-0 individual at position (j, 1) implies that the individual at (j, 2) is also a
descendant of a type-0 individual. Therefore,

P((Γ̂, Γ̂′) absorbs in A0,1 | Γ̂0 > Γ̂′
0) = 0.

Note that this is not the case if we allow for independent reproductions at positions (j, 1)
and (j, 2) with different types. Likewise, this property fails in our previous coupling
between Moran models with and without selection due to the selective advantage of
type-0 individuals in S × {2}. In particular, this is independent of the reproduction
mechanism of individuals at positions (j, 1) and (j, 2) with different types.

Analogously to our previous calculations, the absorption probabilities of (Γ̂t, Γ̂
′
t)t>0

are

P((Γ̂, Γ̂′) absorbs in A0,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = hℓ,

P((Γ̂, Γ̂′) absorbs in A1,0 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = hk − hℓ, (83)

P((Γ̂, Γ̂′) absorbs in A1,1 | ‖Γ̂0‖ = ℓ, ‖Γ̂′
0‖ = k, Γ̂0 > Γ̂′

0) = 1− hk.

For k > 1, ℓ = k − 1, (83) includes a new point of view concerning the differences
hk − hk−1.
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In this chapter, we reanalyse the process of fixation in the Moran model with selection,
i.e. we focus on a vanishing mutation rate (uN = 0 = θ). As in Sec. 2.1, ZN

t is the
number of individuals of type 0 at time t. Remember that ZN is a birth-death process
with birth rates λNi and death rates µN

i when in state i, where now

λNi = (1 + sN )i
N − i

N
and µN

i = (N − i)
i

N
. (84)

The absorbing states are 0 and N , thus, one of the two types, 0 or 1, will almost surely
become fixed in the population in finite time. Let TN

k := min{t > 0 | ZN
t = k},

0 6 k 6 N , be the first hitting time of ZN . The fixation probability of type 0 given that
there are initially k type-0 individuals is well-known to be (cf. [11, Thm. 6.1])

hNk = P(TN
N < TN

0 | ZN
0 = k) =

∑N−1
i=N−k(1 + sN)

i

∑N−1
i=0 (1 + sN )

i
. (85)

The corresponding fixation probability of type-0 individuals in the diffusion (Xt)t>0

follows a classical result of Kimura [26], which is based on type frequencies in the
diffusion limit (see also [16, Ch. 5.3] and [25, Ch. 15]): Define the first-passage
time Tx := inf{t > 0 | Xt = x} for x ∈ [0, 1] and let σ > 0. Then

h(x) = P(T1 < T0 | X0 = x) =
1− exp(−σx)

1− exp(−σ)
. (86)

The standard derivations of (85) and (86) are based on the type frequency representa-
tion, without a connection to the particle picture. They may also be deduced directly
from Thm. 1 and (20) by inserting uN = 0 and θ = 0, respectively (see also Remark 4).
In Sec. 4.2, we already established a term-by-term interpretation of the right-hand side
of (85), i.e. of hNi − hNi−1, with the help of a coupling between two copies of the Moran
model with selection.

To obtain further insights, we first characterise fixation probabilities by way of a
reflection principle (Sec. 5.1). Sec. 5.2 introduces an alternative particle system, which
we call the labelled Moran model. Here, the main idea is that each of the N individuals
is characterised by a different reproductive behaviour, which we indicate by a label.
With the help of a coupling argument, we obtain the probability that an individual of
a particular label becomes fixed (Sec. 5.2.1). This way, we also identify reproduction
events that affect the fixation probability of a given label; they are termed defining
events (Sec. 5.2.2). The number of selective defining events turns out as the pivotal
quantity characterising fixation probabilities. In Sec. 5.3, we pass to the diffusion limit.
Sec. 5.4 establishes a connection to Fearnhead’s coefficients, both in the discrete setting
and in the diffusion limit, and points out the particle representation behind (53) and
(25). We continue with a simulation algorithm that generates the label that becomes
fixed together with the targets of the selective defining events (Sec. 5.5). Most of the
results of this chapter are published in [30].
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5 Fixation in the Moran model with selection

5.1 Reflection principle

In [11, Sec. 6.1.1] equation (85) is proven in two ways, namely, using a first-step approach
and a martingale argument, respectively. Both approaches rely on the process

(
ZN

t

)
t>0

,
without reference to an underlying particle representation. As a warm up exercise,
we complement this by an approach based on the particle picture, which we call the
reflection principle.

Definition 3. Let a graphical realisation of the Moran model be given, with ZN
0 = k,

1 6 k 6 N − 1, and fixation of type 0. Now interchange the types (i.e., replace all 0
individuals by 1 individuals and vice versa), without otherwise changing the graphical
realisation. This results in a graphical realisation of the Moran model with ZN

0 = N − k
in which type 1 becomes fixed, and is called the reflected realisation.

Put differently, in the case ZN
0 = k, 1 6 k 6 N −1, reflection transforms a realisation

in which the (offspring of the) k fit individuals become fixed (altogether, this happens
with probability hNk ) into a realisation in which the (offspring of the) unfit individuals
become fixed (which happens with probability 1−hNN−k), and vice versa. This operation
does not change the graphical structure, but the weights of the realisations are differ-
ent since a different weight is attached to some of the arrows. To make the situation
tractable, we will work with what we will call the reduced Moran model : Starting from
the original Moran model, we remove those selective arrows that appear between indi-
viduals that are both of the fit type. Obviously, this does not affect the process ZN (in
particular, it does not change the fixation probabilities), but it changes the graphical
representation. See Fig. 10 for an illustration of the reflection principle in the reduced
Moran model.

Let now ΩN be the set of graphical realisations of the reduced Moran model for
t ∈ [0, T ], where T := min{TN

0 , T
N
N }. Let PN

k be the probability measure on ΩN , given
ZN

0 = k, 1 6 k 6 N − 1. For a realisation ω ∈ ΩN with ZN
0 = k, 1 6 k 6 N − 1,

in which 0 becomes fixed (cf. Fig. 10, left), we define ω̄ ∈ ΩN as the corresponding
reflected realisation (cf. Fig. 10, right).

Our strategy will now be to deduce the fixation probabilities by comparing the weights
of ω and ω̄. To assess the relative weights of PN

k (ω)dω and PN
N−k(ω̄)dω, note first that,

since the fit individuals become fixed in ω, allN−k type-1 individuals have to be replaced
by fit ones, i.e. by arrows that appear at rate (1+sN)/N . In ω̄, the corresponding arrows
point from unfit to fit individuals and thus occur only at rate 1/N , cf. the dashed arrows
in Fig. 10. Second, we have to take into account so-called new descendants defined as
follows:

Definition 4. A descendant of a type-i individual, i ∈ S, that originates by replacing
an individual of a different type (j 6= i) is termed a new descendant of type i.

Remark 6. The total number of new descendants of type i is almost surely finite.

Every new descendant of a type-1 individual goes back to an arrow that occurs at
rate 1/N . If the fit individuals go to fixation (as in ω), all new descendants of type 1
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5.1 Reflection principle
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Figure 10: Reflection principle in the reduced Moran model: N = 8, k = 5, realisations
ω (left) and ω̄ (right). Bold lines represent type-0 individuals, thin ones type-
1 individuals; likewise, arrows emanating from type-0 (type-1) individuals are
bold (thin). Interchange of types transforms the realisation on the left into
the realisation on the right and vice versa, such that the respective other type
becomes fixed. Arrows that are marked by 1 respectively 1+sN appear at rate
1/N respectively (1 + sN)/N ; unmarked arrows appear at rate 1/N . Dashed
arrows represent the elimination of individuals (except new descendants) of
the type that eventually gets lost in the population. The births of their
new descendants and their replacements are represented by dotted arrows.
Altogether, P 8

3 (ω̄)dω = (1 + sN)
−3(1 + sN)

2(1 + sN )
−2P 8

5 (ω)dω.

must eventually be replaced by arrows that emanate from fit individuals and therefore
occur at rate (1 + sN)/N . In ω̄ this situation corresponds to new descendants of type 0
that originate from arrows at rate (1 + sN )/N and are eventually eliminated by arrows
that emanate from type-1 individuals. See the thin and bold dotted arrows in Fig. 10,
which always appear in pairs.

Let now DN
1 (ω) be the number of new descendants of type 1 in ω. Then DN

1 (ω) <∞
almost surely and we obtain for the measure of ω̄

PN
N−k(ω̄)dω = (1 + sN)

−(N−k)(1 + sN)
DN

1
(ω)(1 + sN)

−DN
1
(ω)PN

k (ω)dω

= (1 + sN)
−(N−k)PN

k (ω)dω.

Note that the effects of creating new descendants and their replacement cancel each
other, so that the relative weights of PN

N−k(ω̄)dω and PN
k (ω)dω do not depend on ω.

Since reflection provides a one-to-one correspondence between realisations with fixation
of type 0 and of type 1, respectively, we obtain the system of equations

1− hNN−k = (1 + sN)
−(N−k)hNk , 1 6 k 6 N − 1, (87)

which is supplemented by hN0 = 0 and hNN = 1, and which is solved by (85).

57



5 Fixation in the Moran model with selection

5.2 Labelled Moran model

In this section, we introduce a new particle model, which we call the labelled Moran
model, and which has the same empirical type distribution as the original Moran model
with selection, provided the initial conditions are chosen appropriately. As before, we
consider a population of fixed size N in continuous time, but now every individual is
assigned a label i ∈ {1, . . . , N} with different reproductive behaviour to be specified
below. (Be aware that label 1 (in the labelled Moran model) and type 1 (in the orig-
inal Moran model) are not identical: As it will become clear below, the reproductive
behaviour of label 1 is completely different from the one of type 1.) As in the original
Moran model, birth events are represented by arrows; they lead to a single offspring,
which inherits the parent’s label, and replaces an individual as explained below. Again
we distinguish between neutral (at rate 1/N) and selective (at rate sN/N) events. Neu-
tral arrows appear as before, at rate 1/N per ordered pair of lines, irrespective of their
labels. But we only allow for selective arrows emanating from a label i and pointing to
a label j, j > i (at rate sN/N per ordered pair of lines with such labels). Equivalently,
we may take together both types of arrows, such that an arrow points from a label i to
a label j ≤ i at rate 1/N and to label j > i at rate (1 + sN )/N . We will make use of
both points of view. The idea is to imply a graduation in fitness in the sense that label
1 is the fittest label, label 2 the second-fittest label and so forth, whereas label N finally
is the less-fittest label. That is, each label behaves as ‘unfit’ towards lower labels and
as ‘fit’ towards higher labels.

We now fix an initial population that contains all N labels so that initially position i
in the graphical representation is occupied by label i, 1 6 i 6 N . Note that this spatial
ordering does not influence the reproductive behaviour of the labels.

An example is given in Fig. 11, where neutral arrows are marked by 1 and selective
arrows by sN .

t

222
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1

1

1

1

1 3

444

4

5

5 6 7

8

8

sN

sN

sN

sN

sN

Figure 11: A realisation of the labelled Moran model for N = 8. The labels are indicated
for the initial population (top) and a later one (bottom).
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5.2 Labelled Moran model

5.2.1 Ancestors and fixation probabilities

Since there is no mutation in the labelled Moran model, one of the N labels will even-
tually take over in the population, i.e. one label will become fixed. We denote this label
by IN and term it the ancestor. Its distribution is given in Thm. 5.

Theorem 5. IN is distributed according to

ηNi := P(IN = i) = (1 + sN)
N−iηNN = hNi − hNi−1, 1 6 i 6 N, (88)

with

ηNN := P(IN = N) =
1

∑N−1
i=0 (1 + sN)

i
= 1− hNN−1. (89)

We will give two proofs of Thm. 5. The first provides an intuitive explanation and is
based on the type frequencies. In the second proof, we will use an alternative approach
in the spirit of the reflection principle of Sec. 5.1, which provides more insight into the
particle representation. This proof is somewhat more complicated, but it permits us to
classify reproduction events into those that have an effect on the fixation probability of a
given label and those that do not; this will become important later on. In analogy with
Def. 4 we understand new descendants of labels in N , N ⊆ {1, . . . , N}, as descendants
of individuals with labels in N that originate by replacing an individual of a label in
the complement of N .

First proof of Thm. 5. For a given i, let Z̄N,i
t be the number of individuals with labels in

{1, . . . , i} at time t. Like ZN , the process Z̄N,i =
(
Z̄N,i

t

)
t>0

is a birth-death process with
both rates λNj and µN

j of (84). This is because every individual with label in {1, . . . , i}
sends arrows into the set with labels in {i+1, . . . , N} at rate (1+sN)/N ; in the opposite
direction, the rate is 1/N per pair of individuals; and arrows within the label classes do
not matter. Since Z̄N,i

0 = i, the processes Z̄N,i and ZN thus have the same law provided
ZN

0 = i. As a consequence, P(IN 6 i) =
∑i

j=1 η
N
j = hNi , 1 6 i 6 N , which, together

with (85), immediately yields the assertions of Thm. 5.

Second proof of Thm. 5. This proof aims at a direct calculation of ηNi , 1 ≤ i ≤ N−1, as
a function of ηNN . Let a realisation of the labelled Moran model be given in which label N
becomes fixed (this happens with probability ηNN , still to be calculated). The basic idea
now is to move every arrow by way of a cyclic permutation of the arrows’ positions, while
keeping the initial ordering of the labels. More precisely, in the graphical representation
we move every arrow i positions to the right (or, equivalently, N − i positions to the
left). That is, we shift an arrow that appears at time t with base at position k and tip at
position ℓ, such that it becomes an arrow that emanates from position (k + i) mod N
and points to position (ℓ + i) mod N , again at time t. We thus obtain what we will
call the permuted realisation of order i. In this realisation, label i is fixed, as illustrated
in Fig. 12 for a labelled Moran model of size N = 8.
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5 Fixation in the Moran model with selection

Throughout, we keep the original meaning of the labels: Between every ordered pair
of lines with labels (i, j), arrows appear at rate (1 + sN)/N if j > i, and at rate 1/N
otherwise. Since, in the permuted realisation, we change the position of each arrow,
it now may affect a different pair of labels, which may change the arrow’s rate. As a
result, the permuted realisation has a different weight than the original one; this will
now be used to calculate ηNi . (Mathematically, the following may be seen as a coupling
argument.)

So, let ΩN be the set of realisations of the labelled Moran model for t ∈ [0, T ], where
T now is the time at which one of the labels is fixed. Let PN be the probability measure
on ΩN . For a realisation ωN ∈ ΩN in which label N becomes fixed (cf. Fig. 12, left), we
define ωi ∈ ΩN as the corresponding permuted realisation of order i (cf. Fig. 12, right).
We will now calculate ηNi by assessing the weight of the measure of ωi relative to that
of ωN . Below we run briefly through the cases to analyse the change of weight on the
various types of arrows.

1

1

1

1

1 2 3 4 5 6 7 8

8 8 888888

1 + sN 1

1 2 3 4

55555555

5 6 7 8

1 + sN1 + sN

1 + sN

1 + sN

Figure 12: Cyclic permutation. Realisations ω8 (left) and ω5 (right) in a labelled Moran
model of size N = 8. A shift of every arrow of i = 5 positions to the right
transforms ω8, in which label N = 8 becomes fixed, into ω5 (with fixation
of label i = 5). Descendants of the label that becomes fixed are marked
bold in both cases. The label sets {1, . . . , N − i} and {N − i + 1, . . . , N}
(left), and {1, . . . , i} and {i + 1, . . . , N} (right), respectively, are encircled
at the top. Arrows within these sets (solid) appear at the same rates in
ω8 and ω5. Arrows between these label sets are dotted or dashed, their
rates differ between ω8 and ω5. Arrows that are marked by 1 respectively
1 + sN appear at rate 1/N respectively (1 + sN)/N . There is exactly one
new descendant of the labels in {1, . . . , N − i} (left) and {i + 1, . . . , N}
(right), respectively. It originates from the respective first dotted arrow,
and is replaced via the second dotted arrow. Replacements of the labels
1, . . . , N − i (left) and of i+ 1, . . . , N (right), respectively, (except their new
descendants) are represented by dashed arrows. Altogether, P 8(ω5)dω8 =
(1 + sN )

−1(1 + sN)(1 + sN)
3P 8(ω8)dω8.

(a) Arrows in ωN that point from and to labels within the sets {1, . . . , N − i} or
{N − i+1, . . . , N}, respectively, turn into arrows within the sets {i+1, . . . , N} or
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5.2 Labelled Moran model

{1, . . . , i}, respectively, under the permutation. Such arrows retain their ‘direction’
(with respect to the labels) and thus appear at identical rates in ωN and ωi (cf.
the solid arrows in Fig. 12).

(b) Arrows in ωN that emanate from the set of labels {1, . . . , N − i} and point to
the set of labels {N − i + 1, . . . , N} occur at rate (1 + sN)/N and create new
descendants of labels in {1, . . . , N − i}. Since label N becomes fixed, every such
new descendant is eventually eliminated by an arrow at rate 1/N , see also the
dotted arrows in Fig. 12, left. The corresponding situation in ωi concerns new
descendants of labels in {i+1, . . . , N}, which result from neutral arrows and finally
are replaced at rate (1 + sN)/N each (cf. the dotted arrows in Fig. 12, right).

(c) It remains to deal with the replacement of the labels 1, . . . , N − i (except for their
new descendants) in ωN . Exactly N − i neutral arrows are responsible for this,
they transform into arrows at rate (1 + sN)/N through the permutation (cf. the
dashed arrows in Fig. 12).

Let now DN
6i(ωN) be the number of new descendants of labels in {1, . . . , i} in ωN

(DN
6i(ωN) <∞ almost surely). Then, (a)-(c) yield for the measure of ωi

PN(ωi)dωN = (1 + sN )
DN

6i
(ω

N
)(1 + sN)

−DN
6i

(ω
N
)(1 + sN)

N−iPN(ωN)dωN

= (1 + sN )
N−iPN(ωN)dωN .

As in the reflection principle, the effects of the new descendants cancel each other and
so the relative weights of PN(ωi)dωN and PN(ωN)dωN are independent of the particular
choice of ωN . Since the cyclic permutation yields a one-to-one correspondence between
realisations that lead to fixation of label N and label i, respectively, we obtain

ηNi = (1 + sN)
N−iηNN , 1 6 i 6 N. (90)

Finally, the normalisation

1 =
N∑

i=1

ηNi = ηNN

N∑

i=1

(1 + sN)
N−i

yields the assertion of Thm. 5.

5.2.2 Defining events

We are now ready to investigate the effect of selection in more depth. The second proof
of Thm. 5 allows us to identify the reproduction events that affect the distribution of
IN (i.e. that are responsible for the factor (1+sN)

N−IN in (88)) with the dashed arrows
in Fig. 12 (cf. case (c)), whereas dotted arrows appear pairwise and their effects cancel
each other (cf. case (b)). It suggests itself to term these reproductions defining events:
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5 Fixation in the Moran model with selection

Definition 5. A defining event is an arrow that emanates from the set of labels {1, . . . ,
IN} and targets individuals with labels in the set {IN + 1, . . . , N} that are not new
descendants of labels in {IN + 1, . . . , N}.

Loosely speaking, a defining event occurs every time the descendants of {1, . . . , IN}
‘advance to the right’. In particular, for every j ∈ {IN +1, . . . , N}, the first arrow that
emanates from a label in {1, . . . , IN} and hits the individual at position j is a defining
event. Altogether, there will be N − IN defining events until fixation. It is important
to note that they need not be reproduction events of the ancestral label IN itself. See
Fig. 13 for an illustration.

IN

∗

∗∗

IN

Figure 13: Defining events. Descendants of the ancestor IN are marked bold, defining
events are represented by dashed arrows. Left: Both defining events are
reproduction events of IN . The arrows that are indicated by ∗ and ∗∗ are not
defining events: The first one (∗) concerns only labels within {IN+1, . . . , N},
the second one (∗∗) targets a new descendant of {IN+1, . . . , N}. Right: Only
the second defining event is a reproduction event of IN , the first one of a label
less than IN .

It is clear that all defining events appear at rate (1 + sN)/N . Decomposing these
arrows into neutral and selective ones reveals that each defining event is either a selective
(probability sN/(1 + sN)) or a neutral (probability 1/(1 + sN)) reproduction event,
independently of the other defining events and of IN . Let V N

i , IN + 1 6 i 6 N , be the
corresponding family of Bernoulli random variables that indicate whether the respective
defining event is selective. Let Y N denote the number of selective defining events, that
is,

Y N :=
N∑

i=IN+1

V N
i (91)

with the independent and identically distributed (i.i.d.) Bernoulli variables V N
i just

defined. Y N will turn out as a pivotal quantity for everything to follow. Let us now
characterise its distribution, and the dependence between IN and Y N . This will also
provide us with an alternative representation of the fixation probabilities hNi .
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5.2 Labelled Moran model

It is clear from (91) that, given IN = i, Y N follows a binomial distribution with
parameters N − i and sN/(1 + sN). Thus, for 0 6 n 6 N − i, we obtain (via (88))

P(Y N = n, IN = i) =

(
N − i

n

)( sN
1 + sN

)n( 1

1 + sN

)N−i−n

ηNi =

(
N − i

n

)
snNη

N
N (92)

and thus

P(Y N = n) =
N∑

i=1

(
N − i

n

)
snNη

N
N =

N−1∑

i=0

(
i

n

)
snNη

N
N =

(
N

n+ 1

)
snNη

N
N , (93)

where the last equality is caused by the well-known identity

k∑

i=0

(
i

ℓ

)
=

(
k + 1

ℓ + 1

)
, ℓ, k ∈ N0, 0 6 ℓ 6 k. (94)

In particular, P(Y N = 0) = NηNN . Obviously, P(Y N = n), n > 1, may also be expressed
recursively as

P(Y N = n) = sN
N − n

n + 1
P(Y N = n− 1). (95)

Furthermore, equations (92) and (93) immediately yield the conditional probability

P(IN = i | Y N = n) =

(
N−i

n

)
(

N

n+1

) . (96)

The intuitive content of this important fact will become clear in Sec. 5.5. Another
interesting characterisation is the following:

Proposition 2. Let WN := Y N + 1. Then WN follows the binomial distribution with
parameters N and sN/(1 + sN ), conditioned to be positive.

Proof. Let W be a random variable distributed according to Bin(N, sN/(1+sN)). Then

P(W > 0) = 1−
1

(1 + sN)
N

=
(
1−

1

1 + sN

)N−1∑

i=0

1

(1 + sN)
i

by the geometric series. For n > 1, therefore,

P(W = n | W > 0) =

(
N

n

)
snN(1 + sN)

−N

s
N

1+s
N

∑N−1
i=0 (1 + sN)

−i
=

(
N

n

)
sn−1
N∑N−1

i=0 (1 + sN)
i
= P(Y N = n− 1),

where the last step is caused by (93). This proves the claim.
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5 Fixation in the Moran model with selection

Note that label N is obviously not capable of selective reproduction events and its
fixation implies the absence of (selective) defining events. Its fixation probability ηNN
coincides with the fixation probability of any label i, 1 6 i 6 N , in the absence of any
selective defining events: P(Y N = 0, IN = i) = ηNN , cf. (92). For this reason, we term
ηNN the basic fixation probability of every label i, 1 6 i 6 N , and express all relevant
quantities in terms of ηNN . Note that, for sN > 0, ηNN is different from the neutral fix-
ation probability, ηNi = 1/N , that applies to every label i, 1 6 i 6 N , in the case sN = 0.

Decomposition according to the number of selective defining events yields a further
alternative representation of the fixation probability hNi (cf. (85)) of the Moran model.
Consider

P(IN 6 i | Y N = n) =
1(
N

n+1

)
i∑

j=1

(
N − j

n

)
=

1(
N

n+1

)
N−1∑

j=N−i

(
j

n

)
=

(
N

n+1

)
−
(
N−i

n+1

)
(

N

n+1

) , (97)

where we have used (96) and (94). This leads us to the following series expansion in sN :

hNi = P(IN 6 i) =
N−1∑

n=0

P(IN 6 i | Y N = n)P(Y N = n)

=
N−1∑

n=0

[(
N

n + 1

)
−

(
N − i

n+ 1

)]
snNη

N
N ,

(98)

which, together with (97) and (93), also provides an alternative representation of the
extra absorption probability ψN

i = hNi − i/N :

ψN
i =

N−1∑

n=1

P(IN 6 i | Y N = n)P(Y N = n)− P(IN 6 i | Y N = 0)P(Y N
> 1)

=

N−1∑

n=1

[(
N − 1

n

)
−

(
N − i− 1

n

)]
N − i

n+ 1
snNη

N
N .

(99)

5.3 Diffusion limit of the labelled Moran model

In this section we analyse the number of selective defining events in the diffusion limit.
First of all we recapitulate from (92) and (88) that

P(Y N = n, IN 6 i) =
1

N

i∑

j=1

(
N − j

n

)( sN
1 + sN

)n( 1

1 + sN

)N−j−n

N(hNj − hNj−1).

For a sequence (iN)N∈N with iN ∈ {1, . . . , N}, limN→∞ iN/N = x, and x ∈ [0, 1], this
yields

lim
N→∞

P(Y N = n, IN/N 6 iN/N) =

∫ x

0

(σ(1− y))n

n!
exp(−σ(1 − y))h′(y)dy, (100)
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5.3 Diffusion limit of the labelled Moran model

where we have used the convergence of the binomial to the Poisson distribution. Thus,
the sequence of random variables (Y N , IN/N)N∈N converges in distribution to a pair
(Y ∞, I∞) of random variables with values in N0 × [0, 1] and distribution function (100).
Marginalisation with respect to the second variable implies that I∞ has distribution
function h. As a consequence, Y ∞ follows a Poisson distribution with parameter σ(1−
I∞) in the sense of a two-stage random experiment. That is, given I∞ = x, Y ∞

is Poisson-distributed with parameter σ(1 − x). (Of course this can also be checked
directly by taking the N → ∞ limit in (93).)

Let us now consider P(Y ∞ > n) = limN→∞ P(Y N > n). Obviously, P(Y ∞ > 0) = 1
and

P(Y ∞ = 0) = lim
N→∞

P(Y N = 0) = lim
N→∞

NηNN = lim
N→∞

[
1

N

N−1∑

i=0

(
1 +

NsN
N

) i
N
N

]−1

=

[∫ 1

0

exp(σp)dp

]−1

=
σ

exp(σ)− 1
,

(101)

where we have used (93) and (89). According to (95) we have the recursion

P(Y ∞ = n) =
σ

n + 1
P(Y ∞ = n− 1) (102)

for n > 1 and iteratively via (102) and (101)

P(Y ∞ = n) =
σn

(n+ 1)!
P(Y ∞ = 0) =

σn+1

(n+ 1)!(exp(σ)− 1)
(103)

for n > 0. With an argument analogous to that in Prop. 2, one obtains from (103)
that W∞ := Y ∞ +1 follows a Poisson distribution with parameter σ, conditioned to be
positive, i.e.

P(W∞ = n) =
σn

n!
exp(−σ)

1− exp(−σ)

for n > 1.
We now aim at expressing h in terms of a decomposition according to the values of

Y ∞ (in analogy with (98)). We recapitulate equation (97) to obtain

P(I∞ 6 x | Y ∞ = n) = lim
N→∞

P(IN 6 iN | Y N = n) = 1− lim
N→∞

(
N−i

N
n+1

)
(

N

n+1

) = 1− (1− x)n+1

(104)
for a sequence (iN)N∈N as at the beginning of the section. Then, the equivalent to (98)
is a series expansion in σ:

h(x) = P(I∞ 6 x) =
∑

n>0

P(I∞ 6 x | Y ∞ = n)P(Y ∞ = n)

=
1

exp(σ)− 1

∑

n>1

1

n!
(1− (1− x)n)σn.

(105)
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5 Fixation in the Moran model with selection

Note that this can also be derived directly from (86) by a Taylor expansion around the
point x = 1. The equivalent to (99) reads (via (104) and (103))

ψ(x) =
∑

n>1

P(I∞ 6 x | Y ∞ = n)P(Y ∞ = n)− P(I∞ 6 x | Y ∞ = 0)P(Y ∞
> 1)

=
1

exp(σ)− 1

∑

n>2

1

n!
(1− x− (1− x)n)σn.

For the sake of completeness, we briefly recapitulate how to derive (103)-(105) directly
(i.e. without taking the N → ∞ limit) from the fact that Y ∞ is Poisson-distributed
with parameter σ(1− I∞). For the distribution of Y ∞ we have

P(Y ∞ = n) =

∫ 1

0

σn(1− y)n

n!
exp(−σ(1− y))h′(y)dy =

σn+1

n!(exp(σ)− 1)

∫ 1

0

(1− y)ndy

=
σn+1

(n+ 1)!(exp(σ)− 1)
.

For the conditional probability we then obtain

P(I∞ 6 x | Y ∞ = n) =

∫ x

0
σn(1−y)n

n!
exp(−σ(1− y))h′(y)dy

σn+1

(n+1)!(exp(σ)−1)

= (n + 1)

∫ x

0

(1− y)ndy = 1− (1− x)n+1.

Combining both results leads to the representation in (105).

Finally note that (105) may also be expressed as

h(x) =
∑

n>1

(1− (1− x)n)P(W∞ = n) = E(1 − (1− x)W
∞

). (106)

Interestingly, but not unsurprisingly, this coincides with a representation given by Poka-
lyuk and Pfaffelhuber in their proof of Kimura’s fixation probability (86) [39, Lemma
2.2]. They follow an argument of Mano [35] that establishes a connection between the
ASG at stationarity and the fixation probability. A key here is the insight that the num-
ber of lines in the ASG at stationarity follows a Poisson distribution with parameter σ,
conditioned to be positive – which coincides with the distribution of W∞.

5.4 Fearnhead’s coefficients in the labelled Moran model

Our study of the labelled Moran model continues our work concerning the coefficients
aNn , 1 6 n 6 N − 1, (cf. Thm. 3) and an, n > 1, (cf. (27), (30)) of the representa-
tions (53) and (25), respectively. Although the framework of Fearnhead and Taylor only
handles the case with stationarity, we have proven the results of Thm. 1 and Thm. 3

66



5.4 Fearnhead’s coefficients in the labelled Moran model

and the convergence of hN to h (cf. Remark 4) even for u = 0 respectively θ = 0. As
a consequence, equations (53), (25), (27) and (30) are also valid in this case. It is the
purpose of this section to arrive at a thorough understanding of representations (53) and
(25). In particular, we aim at a probabilistic understanding of the coefficients aNn and an.

We begin to point out the connection to Fearnhead’s coefficients in the discrete setting
for u = 0. With the definition aN0 := 1, the recursion of the aNn simplifies to

aNn − aNn+1 = sN
N − n

n+ 1
(aNn−1 − aNn ) (107)

for 1 6 n 6 N − 2. According to Thm. 3 we obtain that

1− aN1 = 1−NψN
N−1 = N(1 − hNN−1) = NηNN = P(Y N = 0),

where the second-last equality goes back to (89) of Thm. 5 and the last one to (93).
Hence, the aNn − aNn+1, 0 6 n 6 N − 2, have the same initial value (at n = 0) and follow
the same recursion (compare (107) with (95)) as the P(Y N = n), so they agree. As a
result

aNn − aNn+1 = P(Y N = n)

for 0 6 n 6 N − 2. Via normalisation, we further have

P(Y N = N − 1) = 1−
N−2∑

n=0

(aNn − aNn+1) = aNN−1

and thus
aNn = P(Y N

> n) (108)

for 0 6 n 6 N − 1. In particular, we may reformulate (98) as

hNi =

N−1∑

n=0

(
N

n+1

)
−
(
N−i

n+1

)
(

N

n+1

) (aNn − aNn+1), (109)

where aNN := 0.
An analogue argumentation also holds in the diffusion limit for θ = 0. With the

definition a0 := 1 and the help of (61), we obtain that

P(Y ∞
> n) = lim

N→∞
P(Y N

> n) = lim
N→∞

aNn = an (110)

for n > 0. We conclude that

an − an+1 = P(Y ∞ = n) and ρn+1 =
an+1

an
= P(Y ∞

> n+ 1 | Y ∞
> n)

for n > 0 and ρn+1 as in (26). (Alternatively, this follows by mimicking our approach
in the discrete setting.) In particular, (105) may be represented as

h(x) =
∑

n>0

(1− (1− x)n+1)(an − an+1), (111)
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5 Fixation in the Moran model with selection

which is the N → ∞ limit of (109).

For u = 0 respectively θ = 0 our reasoning yields a probabilistic meaning of Fearn-
head’s coefficients by way of the distribution of the number of selective defining events.
Additionally, a probabilistic interpretation of the structure of the fixation probability
is established by decomposing according to this quantity (compare (53) and (25) with
(109) and (111), respectively). We will come back to this in the next section.

5.5 The targets of selective defining events and construction of

the ancestral line

We have, so far, been concerned with the ancestral label and with the number of selective
defining events, but have not investigated the targets of these events yet. This will now
be done. We begin with another definition, see also Fig. 14.

Definition 6. Let Y N take the value n. We then denote by JN
1 , . . . , J

N
n , with JN

1 <
· · · < JN

n , the (random) positions that are hit by the n selective defining events.

IN

sN

sN

1

Figure 14: Targets of selective defining events. The descendants of the ancestor IN are
marked bold, dashed arrows represent defining events. Here, N = 5, IN = 2,
Y N = 2, JN

1 = 3, JN
2 = 5. Note that the first selective defining event hits

position 3, which is occupied by an individual of label 4 at that time.

In terms of the family V N
i , IN + 1 6 i 6 N , of i.i.d. Bernoulli random variables (cf.

Sec. 5.2.2), the JN
1 , . . . , J

N
Y N are characterised as

{JN
1 , . . . , J

N
Y N} = {i ∈ {IN + 1, . . . , N} | V N

i = 1}.

(For Y N = 0 we have the empty set.) Given that Y N = n, the n-tuple (JN
1 , . . . , J

N
n ) is

uniformly distributed (without replacement) on the set of positions {IN + 1, . . . , N}:

P(JN
1 = j1, . . . , J

N
n = jn | IN = i, Y N = n) =

1(
N−i

n

) ,
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5.5 The targets of selective defining events and construction of the ancestral line

which implies (via (96))

P(IN = i, JN
1 = j1, . . . , J

N
n = jn | Y N = n) =

1(
N

n+1

) . (112)

Hence, the (n+1)-tuples (IN , JN
1 , . . . , J

N
n ) are sampled from {1, . . . , N} uniformly with-

out replacement. Note that WN of Prop. 2 is the size of this tuple. Note also that the
tuples do not contain any further information about the appearance of arrows in the
particle picture, i.e. we do not learn which label ‘sends’ the arrows.

It is instructive to formulate a simulation algorithm (or a construction rule) for these
tuples.

Algorithm 1. First draw the size of the tuple (IN , JN
1 , . . . , J

N
Y N ), that is, a realisation

n + 1 of WN (according to (93) respectively Prop. 2). Then simulate (IN , JN
1 , . . . , J

N
n )

in the following way:

Step 0: Generate a random number U (0) that is uniformly distributed on {1, . . . , N}.
Define I(0) := U (0). If n > 0, continue with step 1, otherwise stop.

Step 1: Generate (independently of U (0)) a second random number U (1) that is uni-
formly distributed on {1, . . . , N} \ {U (0)}.

(a) If U (1) > I(0), define I(1) := I(0), J (1)
1 := U (1).

(b) If U (1) < I(0), define I(1) := U (1), J (1)
1 := I(0).

If n > 1, continue with step 2, otherwise stop.

Step k: Generate (independently of U (0), . . . , U (k−1)) a random number U (k) that is uni-
formly distributed on {1, . . . , N} \ {U (0), . . . , U (k−1)}.

(a) If U (k) > I(k−1), define I(k) := I(k−1) and assign the variables U (k),J (k−1)
1 , . . . ,

J (k−1)
k−1 to J (k)

1 , . . . ,J (k)
k , such that J (k)

1 < · · · < J (k)
k .

(b) If U (k) < I(k−1), define I(k) := U (k), J (k)
1 := I(k−1) and J (k)

ℓ := J (k−1)
ℓ−1 for

2 ≤ ℓ ≤ k.

If n > k, continue with step k + 1, otherwise stop.

The simulation algorithm first produces a vector (U (0) , . . . , U (n)) uniformly distributed
on the set of unordered (n+ 1)-tuples and then turns it into the vector (I(n),J (n)

1 , . . . ,

J (n)
n ), which is uniformly distributed on the set of ordered (n + 1)-tuples. The latter

therefore has the same distribution as the vector of random variables (IN , JN
1 , . . . , J

N
n ),

given Y N = n (cf. (112)). The interesting point now is that we may interpret the
algorithm as a procedure for the construction of the ancestral line. It successively adds
selective arrows to realisations of the labelled Moran model, such that they coincide
with additional selective defining events. Obviously, n + 1 is the number of steps.
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5 Fixation in the Moran model with selection

In step 0, we randomly choose one of the N labels. This represents the label that
becomes fixed, i.e. the ancestor, in a particle representation with no selective defining
events (cf. Fig. 15, left). (Actually, this coincides with the neutral situation, sN = 0.)
In the following steps selective arrows are added one by one, where the point to note is
that each of them may or may not move the ancestor ‘to the left’, depending on whether
(a) (cf. Figs. 15 and 16, middle) or (b) (cf. Figs. 15 and 16, right) applies. For instance,
consider step k, that is, a realisation with k − 1 selective defining events is augmented
by a further one. In case (a), we add a selective defining event that does not change
the label that becomes fixed (i.e. the ancestor remains the same) and that targets the
newly chosen position U (k). In contrast, in case (b) the additional selective defining event
emanates from position U (k) and hits the ancestor of the previous step. The result is a
shifting of the ancestor ‘to the left’, i.e. to position U (k). To avoid misunderstandings,
we would like to emphasise that the details of the genealogies in Figs. 15 and 16 are
for the purpose of illustration only; the only thing we really construct is the sequence
of tuples (I(n),J (n)

1 , . . . ,J (n)
n ).

I(0)

1

1

1

1

I(1) J
(1)
1

1

1

1

1

sN

I(1) J
(1)
1

1

1

1

1

sN

Figure 15: Steps 0 and 1 of Algorithm 1 and corresponding genealogical interpretations.
Left: step 0 (no selective defining events), middle: step 1 (a), right: step 1
(b) (each with one selective defining event). Defining events are represented
by dashed arrows. The ancestor (I(0) and I(1), respectively) and the target
of a selective defining event (J (1)

1 , if present) are indicated at the top. Bold
lines represent the genealogy of the entire population at the bottom. In the
middle, the ancestral line is unaffected by the selective defining event. On
the right, it is shifted to a lower label; the previous ancestor (which is no
longer the true ancestor) is represented by the dotted line.

We now have everything at hand to provide a genealogical interpretation for the
fixation probabilities hNi respectively h(x) (cf. (53) respectively (25)). We have seen
that the tuples (I(n),J (n)

1 , . . . ,J (n)
n ) are constructed such that

P(I(n) = i,J (n)
1 = j1, . . . ,J

(n)
n = jn) = P(IN = i, JN

1 = j1, . . . , J
N
n = jn | Y N = n)

for all n > 0 and j1, . . . , jn ∈ {i+ 1, . . . , N}, and, via marginalisation,

P(I(n) = i) = P(IN = i | Y N = n).
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5.5 The targets of selective defining events and construction of the ancestral line

I(k−1) J
(k−1)
1 J

(k−1)
k−1

1

1

1

1

sN

sN

I(k) J
(k)
1 J

(k)
2 J

(k)
k

1

1

1

sN

sN

sN

I(k) J
(k)
1 J

(k)
2 J

(k)
k

1

1

1

1

sN

sN

sN

Figure 16: Step k of Algorithm 1 and corresponding genealogical interpretations. Sit-
uation after step k − 1 (left) and its modification according to step k (a)
(middle) and step k (b) (right). As in Fig. 15, dashed arrows represent
defining events, ancestors (I(k−1) and I(k), respectively) and targets of selec-
tive defining events (J (k−1)

1 , . . . ,J (k−1)
k−1 and J (k)

1 , . . . ,J (k)
k , respectively) are

indicated at the top. Bold lines represent the genealogy of the population
at the bottom, dotted lines correspond to lines that have been ancestors in
previous steps of Algorithm 1. Each selective defining event that goes back
to case (b) gives rise to a new dotted line.

We reformulate the decomposition of (98) to obtain

hNi = P(IN 6 i | Y N = 0)P(Y N
> 0)

+

N−1∑

n=1

[
P(IN 6 i | Y N = n)− P(IN 6 i | Y N = n− 1)

]
P(Y N

> n)

= P(I(0)
6 i)P(Y N

> 0) +
N−1∑

n=1

[
P(I(n)

6 i)− P(I(n−1)
6 i)

]
P(Y N

> n)

= P(I(0)
6 i)P(Y N

> 0) +
N−1∑

n=1

P(I(n)
6 i, I(n−1) > i)P(Y N

> n), (113)

where the last equality results from the fact that the ancestor’s label is non-increasing
in n. In (113), the fixation probability hNi is thus decomposed according to the first
step in the algorithm in which the ancestor has a label in {1, . . . , i}. The probability
that this event takes place in step n, 1 6 n 6 N − 1, may, in view of the simulation
algorithm, be expressed explicitly as

P(I(n)
6 i, I(n−1) > i) = P(I(n)

6 i, I(0), I(1), . . . , I(n−1) > i)

= P(U (n)
6 i, U (0), U (1), . . . , U (n−1) > i)

=
i

N

n−1∏

j=0

N − i− j

N − j − 1
=
i(N − i)[n]
N[n+1]

, (114)
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5 Fixation in the Moran model with selection

where y[j] is defined as in (54). Together with (108) this yields

hNi =
i

N
+ i

N−1∑

n=1

aNn
(N − i)[n]
N[n+1]

,

which is the representation (53). We thus have found a term-by-term interpretation.
In particular, (114) implies that

lim
N→∞

P(I(n)
6 iN , I

(n−1) > iN) = x(1 − x)n

for a sequence (iN )N∈N with iN ∈ {1, . . . , N} and limN→∞ iN/N = x, x ∈ [0, 1]. Thus,
in the diffusion limit, and with an = limN→∞ P(Y N > n) of (110), (113) turns into

h(x) = lim
N→∞

hNi
N
= x+

∑

n>1

x(1− x)nan,

which is the representation (25), and which is easily checked to coincide with (105) (as
obtained by the direct approach of Sec. 5.3).

Remark 7. Algorithm 1 yields a further interpretation of the extra absorption probability
ψN
i = hNi − i/N , 1 6 i 6 N , as the probability that it takes at least one step until the

ancestor has a label in {1, . . . , i}, see (113).
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6 Hoppe urns and coalescents with killing

Originally, the coalescent with killing and Hoppe’s urn model are based on a neutral
Wright-Fisher diffusion with an infinitely-many-alleles model of mutation (cf. [11, Ch.
1.3], [16, Ch. 9.5, 10.5], [21, 22]). This mutation mechanism postulates that mutations
create new types, which have never been in the population before, at a fixed rate. Within
this setting the coalescent with killing and Hoppe’s urn serve as tools to prove the Ewens
sampling formula, see e.g. [11, Ch. 1.3] and [19].

In Sec. 6.1, we carry over, and recapitulate in passing, the concepts of the coalescent
with killing and Hoppe’s urn to the neutral Moran model of size N with two types and
mutation. We consider the usual rescaling, i.e. the mutation rates are NuNνi, i ∈ S,
and assume that the population is stationary. (Note that in the cited literature the
factors νi are omitted.) This way, we obtain a genealogical construction, which we term
neutral coalescent with killing. As a tentative enhancement to incorporate selection, we
first introduce an extended version of the neutral coalescent with killing, which we call
non-neutral coalescent with killing, and second the corresponding non-neutral urn model
(Sec. 6.2). In both the neutral and the non-neutral case the type distributions according
to our models yield the stationary distribution

(
πN
Z (k)

)
06k6N

(cf. (2)). As a further
outlook, we modify the non-neutral urn model so that it provides us (at least for the
cases N = 3 and N = 4) with an interpretation of the discrete Fearnhead coefficient aN1
given as in Thm. 3 (Sec. 6.2.1). Note that we omit the population size index N in Sec.
6.1 and Sec. 6.2 and reintroduce it in Sec. 6.2.1.

6.1 The neutral case

Neutral coalescent with killing. Let us first point out the construction, to which we
refer as the neutral coalescent with killing, and which simplifies the neutral genealogy of
Sec. 2.2.1 so that it contains only non-mutant ancestors of a sample from the population.
The idea is that it is not necessary to know the full genealogy if one is only interested
in the types of a random sample. Instead, it suffices to trace back each sample line (by
merging lines in the way described in Sec. 2.2) up to the first mutation on that line
backwards in time. That is, we stop to further trace back a line and remove it from the
graph as soon as the first mutation occurs on it. Then, the mutation determines the
type of the line prior to the mutation event (in backward time), and all its descendants
in the sample are of the same type (cf. Fig. 17).

The number of non-mutant lines in the neutral coalescent with killing of a sample of
size n evolves according to a death process with rate

dk = k(k − 1) + kNu

when in state k, 1 6 k 6 n. At jump times, say from k to k − 1, two randomly chosen
lines merge because of a coalescence event with probability

k(k − 1)

dk
=

k − 1

k − 1 +Nu
.
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τ

00

0

0

0

0011

1

1
1

1

Figure 17: Neutral coalescent with killing of the entire population. Non-mutant an-
cestors are represented by fat lines, mutations by bullets. The type that a
mutation creates is noted on the right of the corresponding bullet. Each fat
line stops (possibly after a certain number of coalescence events) at the first
mutation backwards in time.

With probability
kNu

dk
=

Nu

k − 1 +Nu

a randomly chosen line is removed from the graph on account of a mutation event (we
say that the line is killed). It then obtains type i with probability νi, i ∈ S, and all its
descendants in the sample inherit the type i. The absorbing state is 0, whereas the last
jump is a mutation event.

Note that in [16, Ch. 10.5] the jumps of the death process are termed defining events,
contrary to our use of the term in Sec. 5.2.2.

A neutral urn model. The associated urn model due to Hoppe [22, Sec. 2] models
the discrete-time jump process of the neutral coalescent with killing forward in time,
and thus generates type compositions of samples (cf. [11, Thm. 1.9]). The urn contains
one mutation ball with mass Nu and several type-i balls with mass 1, i ∈ S. At each
time step a ball is drawn with replacement and with probability proportional to its
mass. If the mutation ball is chosen, a ball with mass 1 is added to the urn, it is a type-i
ball with probability νi, i ∈ S. If a type-i ball is chosen, we add one further type-i
ball. At the beginning (at time 0), the urn contains only the single mutation ball and
balls with mass 1 are added successively for n time steps. The number n corresponds
to the sample size, type-i balls represent individuals of type i, i ∈ S. A draw of the
mutation ball (with probability Nu/(k+Nu) at time k + 1) represents the appearance
of a new non-mutant ancestor due to a mutation in the neutral coalescent with killing
forward in time, a draw of a type-i ball (with probability k/(k+Nu) at time k+1) the
reproduction event of a type-i individual.

Let now πN
Z (k | n), 0 6 k 6 n, be the probability to obtain a sample that consists of
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6.2 Outlook: The non-neutral case

k type-0 individuals from the neutral coalescent with killing (in a population of size N),
given the sample size is n; our choice of notation will become clear below. πN

Z (k | n)
coincides with the probability that the corresponding urn contains k type-0 balls after
the n’th draw. Given the number of type-i balls after the k’th draw is ki, we add a
further type-i ball at time k + 1 with probability

ki +Nuνi
k +Nu

and thus

πN
Z (k | n) =

(
n

k

)∏k−1
i=0 (i+Nuν0)

∏n−k−1
i=0 (i+Nuν1)∏n−1

i=0 (i+Nu)

=

(
n

k

)
(Nuν0)(k)(Nuν1)(n−k)

(Nu)(n)
.

As a result, the type composition of a sample of size n follows a beta-binomial distribu-
tion with parameters Nuν0, Nuν1 and n (see also [45, Sec. 2]). If we consider the entire
population instead, i.e. replace n by N , we obtain the stationary distribution πN

Z (k),
0 6 k 6 N , given as in (3).

6.2 Outlook: The non-neutral case

Non-neutral coalescent with killing. Here, we deal with the question how to extend
the neutral coalescent with killing to work also with selection. In order to approach this
problem, let us tentatively consider a death process that evolves at rate

dk = (1 + s)k(k − 1) + kNu

when in state k, 0 6 k 6 n. It is assumed that, as before, the number of non-mutant
lines in a sample of size n decreases due to mutation and reproduction events, but now
every individual is capable of selective reproductions at rate Ns. At jump times, for
instance from k to k − 1, with probability

kNu

dk
=

Nu

(1 + s)(k − 1) +Nu

a randomly chosen line is killed because of a mutation event. With probability

k(k − 1)

dk
=

k − 1

(1 + s)(k − 1) +Nu

two randomly chosen lines merge by reasons of a neutral reproduction, and with prob-
ability

sk(k − 1)

dk
=

s(k − 1)

(1 + s)(k − 1) +Nu
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6 Hoppe urns and coalescents with killing

by reasons of a selective reproduction. Every time a line is removed in occurrence of
a mutation event, its type is determined in the usual way: With probability νi, i ∈ S,
the mutation creates a type-i individual and all its descendants are also of type i. As
a consequence, the types that are involved in neutral and selective reproduction events
are clarified. In our construction type-1 individuals may also give rise to selective repro-
duction events and we term the corresponding realisations for obvious reasons invalid.
On the contrary, realisations in which type-1 individuals are only involved in neutral
reproductions are called valid.

A non-neutral urn model. We modify the urn model of Sec. 6.1 by incorporating
a selective advantage of the type-0 balls. The urn now contains one mutation ball with
mass Nu and a certain number of type-i pairs. Each type-i pair consists of one neutral
type-i ball with mass 1 and one selective type-i ball with mass s, i ∈ S. As before, a
ball is drawn from the urn with replacement and with probability proportional to its
mass. If we draw the mutation ball, we add a type-i pair to the urn, i.e. a neutral and a
selective type-i ball, which are both of type i with probability νi, i ∈ S. If we choose a
type-i ball instead (independently of its status as neutral or selective), we add a type-i
pair. Again, the urn model starts with the single mutation ball and at each time step
we add two balls, one with mass 1 and one with mass s, until the urn contains 2n + 1
balls (i.e. we draw n times).

The urn model simulates the jump process of the non-neutral coalescent with killing
forward in time. As before, the draw of the mutation ball (with probability Nu/((1 +
s)k + Nu) at time k + 1) represents the occurrence of a mutation event and thus the
appearance of a new non-mutant ancestor. But now a type-i pair symbolises a single
type-i individual. The choice of a neutral or a selective type-i ball (with probabilities
k/((1 + s)k + Nu) or sk/((1 + s)k + Nu) at time k + 1, respectively) corresponds to
a neutral or a selective reproduction of a type-i individual, respectively. If at least one
selective type-1 ball is chosen within n steps, the corresponding realisation is termed
invalid, otherwise we term it valid.

From now on let n = N , i.e. the non-neutral coalescent with killing starts from
the entire population of unknown type composition. We then define πN

Z (k, valid | N),
0 6 k 6 N , as the probability to obtain a valid realisation that leads to k type-0
individuals. Again, our choice of notation will become clear below. In the associated
urn model, πN

Z (k, valid | N) is the probability of a valid realisation that results in k
type-0 pairs within N draws. Given the urn contains ki type-i pairs after the k’th draw,
we add a further type-0 pair at time k + 1 with probability

(1 + s)k0 +Nuν0
(1 + s)k +Nu

, (115)

and a type-1 pair, indeed without creating an invalid realisation, with probability

k1 +Nuν1
(1 + s)k +Nu

. (116)
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6.2 Outlook: The non-neutral case

Altogether our reasoning yields

πN
Z (k, valid | N) =

(
N

k

)∏k−1
i=0 ((1 + s)i+Nuν0)

∏N−k−1
i=0 (i+Nuν1)∏N−1

i=0 ((1 + s)i+Nu)

=

(
N

k

)
(1 + s)k

(1 + s)N

(
Nuν

0

1+s

)

(k)
(Nuν1)(N−k)

(
Nu
1+s

)
(N)

.

(117)

Note that we allow for selective type-1 balls (and thus for selective reproductions of
type-1 individuals) to guarantee independence of the ordering in which type-0 and type-
1 balls are added to the urn. Finally,

πN
Z (k, valid | N)

∑N

i=0 π
N
Z (i, valid | N)

,

0 6 k 6 N , is the probability to obtain k type-0 pairs within N draws, given the
realisation is valid. Surprisingly, it corresponds to the stationary distribution πN

Z (k),
0 6 k 6 N , of the Moran model with selection and mutation (cf. (3)).

6.2.1 The discrete Fearnhead coefficient aN1

In this section, we turn towards the discrete Fearnhead coefficient aN1 . Let us recall from
Thm. 3 that aN1 = NψN

N−1. According to a slight (but useful) modification of (41) in
Thm. 1, we obtain

aN1 = sN
N − 1

N

∑N−1
i=1 (N − i)φN,N−1

i∑N

i=1 φ
N,N
i

, (118)

where

φN,k
ℓ :=

(
ℓ−1∏

i=1

λNi

)(
k−1∏

i=ℓ

µN
i

)
(119)

for 1 6 ℓ 6 k 6 N . We now aim at specifying aN1 in terms of an urn model that is
closely linked to the non-neutral one. We include the index N (except for the one of
the rates s and u, i.e. we write s and u instead of sN and uN , respectively) to avoid
confusion when we deal with the cases N = 3 and N = 4 later on.

Again, the urn contains one mutation ball with mass Nu and a certain number of type-
i pairs, each consisting of a neutral type-i ball with mass 1 and a selective type-i ball with
mass s. But now some of the type-i pairs are marked (in comparison to the remaining
unmarked type-i pairs). The marking of a type-i pair is understood as markings of the
type-i balls that constitute the marked type-i pair. At the beginning, the urn contains
the single mutation ball, an unmarked type-0 pair and an unmarked type-1 pair. At
each time step a ball is drawn with replacement and with probability proportional to its
mass. On account of the draw of the mutation ball we add a marked type-i pair to the
urn; the specific type follows the probability measure (νi)i∈S. If we draw a marked or
unmarked type-i ball (either neutral or selective), we add a marked or unmarked type-i
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6 Hoppe urns and coalescents with killing

pair, respectively. The status as marked or unmarked is thus inheritable. Note that the
marking of a ball indicates that it originates (directly or indirectly) from a draw of the
mutation ball.

Altogether, we draw N − 1 times. The concepts of valid and invalid realisations are
understood as before: If we draw at least one (marked or unmarked) selective type-1
ball, we term the realisation valid, otherwise invalid.

Let ζN(n0, n0m, n1), n0, n0m, n1 ∈ N0, be the probability to obtain a valid realisation
that altogether contains n0 + 1 unmarked type-0 pairs, n0m marked type-0 pairs and
n1 +1 (marked or unmarked) type-1 pairs, i.e. n0 +n0m +n1 = N − 1. Since the initial
configuration of balls contains each an unmarked type-0 pair and a type-1 pair, n0 and
n1 denote how often unmarked type-0 pairs and type-1 pairs are added, respectively.

Therefore, we mimic our reasoning in (115)-(117): We consider the urn after the k’th
draw and assume that it consists of k0 + 1 and k0m unmarked and marked type-0 pairs,
respectively, and k1 + 1 type-1 pairs, i.e. k0 + k0m + k1 = k. With probability

(1 + s)(k0 + 1)

(1 + s)(k + 2) +Nu
(120)

the next draw gives rise to an increase in the number of unmarked type-0 pairs by one,
with probability

(1 + s)k0m +Nuν0
(1 + s)(k + 2) +Nu

(121)

in the number of marked type-0 pairs. Summation gives

(1 + s)(k0 + k0m + 1) +Nuν0
(1 + s)(k + 2) +Nu

, (122)

which is the probability to increase the number of both kinds of type-0 pairs by one
within the next draw. Finally, we add a type-1 pair without creating an invalid realisa-
tion with probability

k1 + 1 +Nuν1
(1 + s)(k + 2) +Nu

. (123)

Combining (120), (121) and (123) yields

ζN(n0, n0m, n1)

=

(
N − 1

n0, n0m, n1

)∏n
0
−1

i=0 (1 + s)(i+ 1)
∏n

0m−1
i=0 ((1 + s)i+Nuν0)

∏n
1
−1

i=0 (i+ 1 +Nuν1)∏N−2
i=0 ((1 + s)(i+ 2) +Nu)

=
1

mN
cum

(N − 1)!

n0m!n1!
(1 + s)n0

n
0m−1∏

i=0

((1 + s)i+Nuν0)

n
1∏

i=1

(i+Nuν1), (124)

where

mN
cum =

N−1∏

i=1

((1 + s)(i+ 1) +Nu)
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is the cumulative mass of balls in the urn, taken over all (discrete) time steps. A
combination of (122) and (123) results in

P(n0 + n0m = n, valid realisation)

=
1

mN
cum

(
N − 1

n

) n∏

i=1

((1 + s)i+Nuν0)

N−1−n∏

i=1

(i+Nuν1)

=
1

mN
cum

(
N − 1

n

) n∏

i=1

NλNi
N − i

N−1−n∏

i=1

NµN
N−i

N − i
=

1

mN
cum

NN−1

(N − 1)!
φN,N
n+1

for 0 6 n 6 N − 1, where we have used (119) in the last equality. The probability to
obtain a valid realisation then follows via marginalisation:

P(valid realisation) =
1

mN
cum

NN−1

(N − 1)!

N∑

i=1

φN,N
i . (125)

We now define Y N
s as the number of unmarked type-0 balls with mass s that are

drawn in the urn model. For the cases N = 3 and N = 4 we explicitly calculate the
conditional probability

P(Y N
s > 1 | valid realisation).

We will use (124) and the fact that every time an unmarked type-0 ball is drawn, it
has mass 1 with probability 1/(1 + s) and mass s with probability s/(1 + s). Given
the urn contains n0+1 unmarked type-0 pairs, Y N

s follows a binomial distribution with
parameters n0 and s/(1 + s).

Our results for the conditional probability will coincide with the corresponding ex-
pression in (118) and thus provide a tentative interpretation of aN1 for N = 3 and N = 4.

N = 3: We start with

P(Y 3
s > 1, valid realisation)

= [ζ3(1, 1, 0) + ζ3(1, 0, 1)]
s

1 + s
+ ζ3(2, 0, 0)

2s+ s2

(1 + s)2

and calculate the expression on the right-hand side with the help of the following
decomposition. Its choice will become clear in what follows.

(a)

ζ3(1, 0, 1)
s

1 + s
+ ζ3(2, 0, 0)

s

(1 + s)2
=

2s

m3
cum

(2 + 3uν1) =
6s

m3
cum

µ3
1.

(b)

ζ3(1, 1, 0)
s

1 + s
+ ζ3(2, 0, 0)

s+ s2

(1 + s)2
=

2s

m3
cum

(3uν0 + 1 + s) =
3s

m3
cum

λ31.
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Taking together the results of (a) and (b) with (125), we obtain

P(Y 3
s > 1 | valid realisation) = s

2

9

6µ3
1 + 3λ31

φ3,3
1 + φ3,3

2 + φ3,3
3

= a31,

where the last equality is caused by (118).

N = 4: First we consider

P(Y 4
s > 1, valid realisation) =[ζ4(1, 1, 1) + ζ4(1, 2, 0) + ζ4(1, 0, 2)]

s

1 + s

+ [ζ4(2, 1, 0) + ζ4(2, 0, 1)]
2s+ s2

(1 + s)2

+ ζ4(3, 0, 0)
3s+ 3s2 + s3

(1 + s)3

and decompose the right-hand side according to (a)-(c) below.

(a)

ζ4(1, 0, 2)
s

1 + s
+ ζ4(2, 0, 1)

s

(1 + s)2
+ ζ4(3, 0, 0)

s

(1 + s)3

=
6s

m4
cum

[1
2
(1 + 4uν1)(2 + 4uν1) + (1 + 4uν1) + 1

]

=
6s

m4
cum

(3 + 4uν1)(1 + 2uν1) =
24s

m4
cum

µ4
1µ

4
2.

(b)

ζ4(1, 1, 1)
s

1 + s
+ ζ4(2, 1, 0)

s

(1 + s)2
+ ζ4(2, 0, 1)

s + s2

(1 + s)2
+ ζ4(3, 0, 0)

s+ s2

(1 + s)3

=
6s

m4
cum

[
4uν0(1 + 4uν1) + 4uν0 + (1 + s)(1 + 4uν1) + (1 + s)

]

=
6s

m4
cum

(1 + s+ 4uν0)(2 + 4uν1) =
16s

m4
cum

λ41µ
4
2.

(c)

ζ4(1, 2, 0)
s

1 + s
+ ζ4(2, 1, 0)

s+ s2

(1 + s)2
+ ζ4(3, 0, 0)

s+ 2s2 + s3

(1 + s)3

=
6s

m4
cum

[1
2
4uν0(1 + s + 4uν0) + (1 + s)4uν0 + (1 + 2s+ s2)

]

=
6s

m4
cum

(1 + s+ 4uν0)(1 + s+ 2uν0) =
8s

m4
cum

λ41λ
4
2.
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With the help of (a)-(c) and (125) we finally have

P(Y 4
s > 1 | valid realisation) = s

3

4

3µ4
1µ

4
2 + 2λ41µ

4
2 + λ41λ

4
2

φ4,4
1 + φ4,4

2 + φ4,4
3 + φ4,4

4

= a41.

We close this section with a generalisation of the sum in (a). Thm. 6 allows for an explicit
representation in terms of the urn model, which provides us with a nice interpretation
for arbitrary N .

Theorem 6. Let N > 1. Then

P(Y N
s = 1, n0m = 0, valid realisation) =

N−1∑

i=1

ζN(i, 0, N − 1− i)
s

(1 + s)i

=
sNN−2

mN
cum

N − 1

(N − 2)!
φN,N−1
1 .

(126)

To check the assertion of Thm. 6 we first need the following identity.

Lemma 5. Let N > 1 and z ∈ R>0. Then

N∑

i=1

N−i∏

j=1

(
1 +

z

j

)
= N

N∏

j=2

(
1 +

z

j

)
.

Proof. We prove the assertion by induction over N . For N = 1 it is obviously true. For
some N > 1 we split the sum on the left-hand side according to whether i = 1 or i > 2
and insert the induction hypothesis into the second sum. This way, we obtain

N∑

i=1

N−i∏

j=1

(
1 +

z

j

)
=

N−1∏

j=1

(
1 +

z

j

)
+ (N − 1)

N−1∏

j=2

(
1 +

z

j

)

= (N + z)

N−1∏

j=2

(
1 +

z

j

)
= N

N∏

j=2

(
1 +

z

j

)
,

as claimed.

Proof of Thm. 6. First we replace ζN(i, 0, N−1− i) by the right-hand side of (124) and
reformulate the resulting expression with the help of Lemma 5 for N −1 and z = Nuν1:

N−1∑

i=1

ζN(i, 0, N − 1− i)
s

(1 + s)i
=
s(N − 1)!

mN
cum

N−1∑

i=1

1

(N − 1− i)!

N−1−i∏

j=1

(j +Nuν1)

=
s(N − 1)!

mN
cum

(N − 1)

N−1∏

j=2

(
1 +

Nuν1
j

)
.
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Then we use the identity NµN
N−j/(j(N − j)) = 1 +Nuν1/j and obtain

=
sNN−2

mN
cum

N − 1

(N − 2)!

N−1∏

j=2

µN
N−j =

sNN−2

mN
cum

N − 1

(N − 2)!
φN,N−1
1 ,

where the last equality is caused by (119).

Finally, dividing (126) by (125) yields

P(Y N
s = 1, n0m = 0 | valid realisation) = s

N − 1

N

(N − 1)φN,N−1
1∑N

i=1 φ
N,N
i

,

which is the first summand (i.e. i = 1) of aN1 in (118).

Altogether, the framework of our urn model is a first (tentative) approach to handle
Fearnhead’s coefficients in a Moran model with selection and mutation. As a beginning,
we have found a meaning of a31 and a41, which obviously remains to be cleared up properly.
Moreover, the complete understanding of the urn model of arbitrary size N , and its
genealogical interpretation are left for future research.
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7.1 Summary

In this thesis, we have reanalysed the stationary distribution of the common ancestor
process in the Moran model with selection and mutation. Thereby, the works by Fearn-
head [17] and Taylor [43] establish important results with the help of diffusion theory
and analytical tools, but the particle representation can only be partially recovered be-
hind the continuous limit. We have therefore made a first step towards complementing
the picture by attacking the problem from the discrete (finite-population) side.

The pivotal quantity considered here is the fixation probability of the offspring of all
type-0 individuals, regardless of the types of the offspring. Starting from the particle
picture and using elementary arguments of first-step analysis, we obtained a difference
equation for these fixation probabilities. In the limit N → ∞, the equation turns into
the (second-order ODE) boundary problem obtained via diffusion theory by Taylor [43],
but now with an intuitive interpretation attached to it.

We have given the solution of the difference equation in closed form; the resulting fix-
ation probabilities provide a generalisation of the well-known finite-population fixation
probabilities in the case with selection only (note that they do not require the popu-
lation to be stationary). As a little detour, we also revisited the limiting continuous
boundary value problem and solved it via elementary methods, without the need of the
series expansion employed previously.

The fixation probabilities are intimately related with the stationary type distribution
on the ancestral line and can thus be used for an alternative derivation of the recur-
sions that characterise Fearnhead’s coefficients. Fearnhead obtained these recursions
by guessing and direct (but technical) verification of the stationarity condition; Taylor
derived them in a constructive way by inserting the ansatz (28) into the boundary value
problem (24) and performing a somewhat tedious differentiation exercise. Here, we have
taken a third route that relies on the difference equation (36) and stays entirely within
the discrete setting. This way, we also obtained the discrete analogue to Fearnhead’s
coefficients.

The fixation probability may be decomposed into a neutral part plus the extra ab-
sorption probability. A coupling approach enlightens this representation: We formalised
the extra absorption probability in terms of fixation probabilities in a coupling between
Moran models. In addition, we have found interpretations for the hNk − hNℓ as fixation
probabilities in couplings.

The intriguing representation (25), which was also shown to have a discrete analogue
in terms of the aNn , carries over to the case without mutation (which turns the stationary
Markov chain into an absorbing one). Indeed, it was our motivation to reanalyse the
process of fixation in a Moran model with selection by means of the labelled Moran
model. Here, the basic idea was that selective events – in contrast to neutral ones – only
occur between ordered pairs with increasing labels. With the help of cyclic permutations
we calculated ηNi , i.e. the fixation probability of label i. These ηNi coincide with the
individual terms in the series expansion (85).
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Likewise, the selective defining events established themselves as a main tool: Fearn-
head’s aNn and an were shown to reduce to the P(Y N > n) and P(Y ∞ > n), respectively.
Additionally, we obtained a term-by-term interpretation of the fixation probability (53)
(respectively (25) in the diffusion limit) as a decomposition according to the number of
selective defining events. These may successively shift the ancestral line to the left, thus
placing more weight on the ‘fit’ individuals.

As an outlook, we finally developed a modification of Hoppe’s urn model for a Moran
model with selection and mutation, which is also closely connected to a genealogical
interpretation in the sense of the killed coalescent. Its type distribution was shown to
coincide with the stationary distribution (2). As the main benefit of the new urn model,
we started in addition to the mutation ball with certain other balls and marked those
that (directly or indirectly) originated from the mutation ball. For N = 3 and N = 4
we pointed out a connection between the coefficient aN1 and the number of marked balls.

7.2 Discussion

More than fifteen years after the discovery of the ancestral selection graph by Neuhauser
and Krone [32, 37], ancestral processes with selection and mutation constitute an active
area of research, see, e.g., the recent contributions [13, 14, 45]. Still, the ASG remains
a challenge: Despite the elegance and intuitive appeal of the concept, it is difficult to
handle when it comes to concrete applications. Indeed, only very few properties of
genealogical processes in mutation-selection balance could be described explicitly until
today (see [46, 48] for an example in the context of the conditional ASG). Even the
special case of a single ancestral line (emerging from a sample of size one) is not yet
fully understood.

In this contribution we started from the discrete setting. Altogether, the finite-
population results contain more information than those obtained within the diffusion
limit. First, because they are not restricted to weak selection, and second, because they
are more directly related to the underlying particle picture. Both motivations also un-
derlie, for example, the work by Vogl and Clemente [45], who considered small mutation
rates and derived discrete equivalents to results that already have been obtained for the
diffusion process.

But even the Moran model with selection still is the subject of state-of-the-art re-
search, particularly when it comes to ancestral processes and genealogies. See for a first
example the recent work by Pokalyuk and Pfaffelhuber [39], who reanalysed the pro-
cess of fixation under strong selection with the help of an ASG. As a second example,
one considers particle representations via the lookdown construction [7, 8, 9]; a recent
approach that investigates viability selection is introduced by Bah, Pardoux and Sow
[2].

Indeed, the labelled Moran model is reminiscent of the N-particle lookdown process.
It is interesting to compare both constructions: In the lookdown with fertility selection,
neutral arrows only point in one direction (from lower to higher levels), whereas selec-
tive arrows may appear between arbitrary levels. In contrast, the labelled Moran model
contains neutral arrows in all directions, but selective arrows only occur from lower to
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higher labels. Also, the labelled Moran model deliberately dispenses with exchange-
ability, which is an essential ingredient of the lookdown. It may be conceived that it
is possible to transform the labelled Moran model into a lookdown (by way of random
permutations), but this remains to be elucidated.

We certainly do not advertise the labelled Moran model as a general-purpose tool; in
particular, due to its arbitrary neutral arrows, it does not allow the construction of a
sequence of models with increasing N on the same probability space. However, it turned
out to be particularly useful for the purpose considered in this thesis. It enlightens the
representations (53) and (25), and provides us with interpretations of Fearnhead’s aNn
and an. The observation that our W∞, that is, 1 plus the number of selective defining
events in the diffusion limit, has the same distribution as the number of branches in the
ASG fits nicely into this context, but still requires some further thought.

Needless to say, the next challenge will be to extend the results to the case with
mutation. It is known already that the coefficients an may be interpreted as the prob-
abilities that there are n virtual branches in the pruned ASG at stationarity. But the
probabilistic content of the recursions (27) remains to be decoded.

For the cases N = 3 and N = 4 our urn model permits a tentative interpretation
of aN1 ; and the decompositions (a)-(b) and (a)-(c) are a first tentative step towards a
term-by-term interpretation. Clearly, these decompositions still remain to be clarified.
The next steps will be first to check, if it is even possible to generalise the interpretation
of aN1 for N > 5, and second to elucidate the genealogical content. A further obvious
task will be to identify the remaining coefficients aN2 , . . . , a

N
N−1.

It would also be desirable to generalise the results to finite type spaces, for example,
in the spirit of Etheridge and Griffiths [13]. They considered a multi-type Moran model
with selection and mutation and derived the corresponding dual process, which was
interpreted as a variant of the conditional ASG of a population of finite size. They also
started to represent fixation probabilities in a multi-type Moran model with selection via
this dual. Afterwards, a passage to the limit yielded the dual of the diffusion with weak
selection. In [14], this approach was imitated for a Moran model with a more general
reproduction mechanism, namely, with multiple offspring and survival depending on the
type and the brood-size.

Altogether, the thesis is a first step towards a better understanding of the particle
picture related to the common ancestor process. Given the tools and insights that have
become available, it seems to be possible, although not straightforward, to delve further
into this approach.
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