
Building Blocks for

Cognitive Robots:

Embodied Simulation and Schemata in a
Cognitive Architecture

Nikolas J. Hemion

mailto:nhemion@techfak.techfak.uni-bielefeld.de

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

Building Blocks for

Cognitive Robots:

Embodied Simulation and Schemata in a
Cognitive Architecture

Nikolas J. Hemion

Der Technischen Fakultät der Universität Bielefeld

vorgelegt zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

Juli 2013

mailto:nhemion@techfak.techfak.uni-bielefeld.de

iv

Abstract

Building robots with the ability to perform general intelligent action is a
primary goal of artificial intelligence research. The traditional approach is to
study and model fragments of cognition separately, with the hope that it will
somehow be possible to integrate the specialist solutions into a functioning
whole. However, while individual specialist systems demonstrate proficiency
in their respective niche, current integrated systems remain clumsy in their
performance. Recent findings in neurobiology and psychology demonstrate
that many regions of the brain are involved not only in one but in a variety
of cognitive tasks, suggesting that the cognitive architecture of the brain
uses generic computations in a distributed network, instead of specialist
computations in local modules. Designing the cognitive architecture for a
robot based on these findings could lead to more capable integrated systems.

In this thesis, theoretical background on the concept of embodied cognition
is provided, and fundamental mechanisms of cognition are discussed that
are hypothesized across theories. Based on this background, a view of how
to connect elements of the different theories is proposed, providing enough
detail to allow computational modeling. The view proposes a network of
generic building blocks to be the central component of a cognitive archi-
tecture. Each building block learns an internal model for its inputs. Given
partial inputs or cues, the building blocks can collaboratively restore missing
components, providing the basis for embodied simulation, which in theories
of embodied cognition is hypothesized to be a central mechanism of cogni-
tion and the basis for many cognitive functions. In simulation experiments,
it is demonstrated how the building blocks can be autonomously learned by
a robot from its sensorimotor experience, and that the mechanism of em-
bodied simulation allows the robot to solve multiple tasks simultaneously.

In summary, this thesis investigates how to develop cognitive robots under
the paradigm of embodied cognition. It provides a description of a novel
cognitive architecture and thoroughly discusses its relation to a broad body
of interdisciplinary literature on embodied cognition. This thesis hence
promotes the view that the cognitive system houses a network of active
elements, which organize the agent’s experiences and collaboratively carry
out many cognitive functions. On the long run, it will be inevitable to study
complete cognitive systems such as the cognitive architecture described in
this thesis, instead of only studying small learning systems separately, to
answer the question of how to build truly autonomous cognitive robots.

iii

iv

Contents

1 Introduction 1

1.1 Research Goals and Contributions of this Thesis 3

1.2 Outline . 5

2 Cognitive Architecture: Overview of Theoretical Paradigms and Com-
putational Models 7

2.1 Structure of the Cortex: A Brief Introduction 9

2.2 Cognitivism . 11

2.2.1 Computational Models . 13

2.2.2 Hybrid Architectures . 17

2.2.3 Implications . 19

2.3 Behavior-based Robotics . 21

2.3.1 Computational Models . 22

2.3.2 Implications . 23

2.4 Connectionism . 24

2.4.1 Computational Models . 25

2.4.2 Implications . 28

2.5 Dynamicism . 29

2.5.1 Dynamic Field Theory . 30

2.5.2 Computational Models . 36

2.5.3 Implications . 40

2.6 Discussion . 41

3 A New Cognitive Architecture Based on Embodied Simulation 45

3.1 Theoretical Background on Embodied Cognition 47

3.1.1 The Convergence-Divergence Model 48

3.1.2 Embodied Concepts and Embodied Simulation 50

3.1.3 The Concept of Schema . 55

3.1.4 Summary . 60

3.2 Related Computational Models . 63

3.2.1 Models Based on the Concept of Schema 63

3.2.2 Models of Embodied Simulation 71

3.3 A Cognitive Architecture Based on Embodied Simulation 73

v

CONTENTS

3.3.1 The Schema System . 75
3.3.2 The Motor-, Sensory- and Motivation Systems 81
3.3.3 Mechanics of the Building Blocks 81
3.3.4 Network Layout in the Schema System 86

3.4 Discussion . 87

4 Integration of Internal Models by Making Use of Redundancies 91
4.1 Integration of Internal Models in Robotics 92

4.1.1 Approaches Based on Serialization 95
4.1.2 Approaches Based on Linear Combination 95
4.1.3 Approaches Based on Prioritization 96

4.2 Making Use of Redundancies for the Integration of Internal Models . . . 97
4.2.1 Redundancy in Sensorimotor Tasks 99
4.2.2 Dynamic Selection of Solutions Using Dynamic Neural Fields . . 103
4.2.3 Distribibuted Decision Making in Co-ordinated DNFs 107
4.2.4 Summary . 111

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of Re-
dundant Mappings, and for Robot Control 112
4.3.1 Networks of Sigma-Pi Units . 115
4.3.2 Evaluation of the Sparsity in Networks of Sigma-Pi Units when

Learning Kinematics Models . 119
4.3.3 Using Multiple Queries for Distributed Decision Making 122
4.3.4 Using Networks of Sigma-Pi Units for Accurate Robot Control . 125

4.4 Simulation Experiment with the iCub Humanoid Robot 129
4.5 Discussion . 132

5 Self-Organized Learning of Multiple Internal Models 135
5.1 Bootstrapping the Learning of Internal Models by Exploiting Prelimi-

nary Model Predictions . 136
5.2 Handling Noise . 141
5.3 Example Application of Acquiring a Body-Schema 147
5.4 Discussion . 151

6 Conclusion 155
6.1 Summary . 155
6.2 Discussion in Relation to Machine Learning and the Field of Cognitive

Architecture . 157
6.2.1 Comparison with Other Cognitive Architectures 157

6.3 Discussion in Relation to Embodied Cognition and the Concept of Schema159
6.4 Outlook . 162

References 165

A Additional Mathematical Formulations 183

vi

1

Introduction

Intelligent robots as tireless helpers, aiding us in whatever situation is demanding,
dangerous, stressful, or simply unpleasant for humans. This vision has existed for
almost a century and has become ubiquitous in modern science fiction (see Figure 1.1).
Actual attempts to construct intelligent machines began with the dawn of artificial
intelligence research in the 1950s, and lead around the year 1970 to the first mobile
robot that was capable of moving around in its environment (the robot “Shakey” at
Stanford University, see Nilsson, 1969). Yet, we are still far from understanding how
to build truly autonomous robots that can be employed in our everyday situations. It
has rather become clear that this is an extremely ambitious aim, and that we do not
even know for certain in what way we should approach it.

While early work in artificial intelligence was already devoted to the goal of building
intelligent robots, the focus was placed almost entirely on the “thinking”: Endowing
computational systems with the capabilities to plan, to reason, to deliberate, etc. The
“acting”, i.e. using a physical body to manipulate and move around in the real world,
was more or less put aside and considered to be an independent problem that could
be solved once the thinking was ready. However, this approach has turned out to be
problematic: Today’s “intelligent” machines perform well, in some cases with supra-
human performance, but only as long as the human designer of the machine is able
to provide a suitable abstract description of the machine’s task. A combination of
ever increasing computing power and efficient algorithms that process huge amounts
of data has allowed these machines to become proficient for specific purposes. Famous
examples are IBM’s two computer systems “Deep Blue” and “Watson”: Deep Blue
won a chess match against world champion Garry Kasparov, and Watson competed in
the game show Jeopardy! against two human contestants, both former winners of the
game, and placed first. However, such machines remain disembodied devices that can
only passively process information and are limited to the very task they were designed
for. Robots (i.e. acting machines) on the other hand remain scarce up to today, and the
few that are available on the consumer market have rather restricted capabilities. Their
most limiting factor still seems to be their inability to freely move around and act in
unstructured environments: Vacuum-cleaning robots are restricted to planar surfaces;

1

1. INTRODUCTION

Figure 1.1: A scene from Karel Čapek’s 1920 science fiction play “R.U.R.”, showing three
robots.

flying robots require enough free space for floating, so that they can largely avoid critical
encounters with the solid parts of the world; and robots that do have legs and arms
thus far do not make very dexterous use of them, and instead rather resemble toys
(for kids and scientists alike) instead of actual helpers. “Moravec’s paradox” probably
captures this imbalance in our understanding of different aspects of cognition best:

“In hindsight, this dichotomy is not surprising, since the first multi-celled
animals appeared about a billion years ago, survival in the fierce compe-
tition over such limited resources as space, food, or mates has often been
awarded to the animal that could most quickly produce a correct action
from inconclusive perceptions. Encoded in the large, highly evolved sen-
sory and motor portions of the human brain is a billion years of experience
about the nature of the world and how to survive in it. The deliberate pro-
cess we call reasoning is, I believe, the thinnest veneer of human thought,
effective only because it is supported by this much older and much more
powerful, though usually unconscious, sensorimotor knowledge. We are all
prodigious olympians in perceptual and motor areas, so good that we make
the difficult look easy. Abstract thought, though, is a new trick, perhaps
less than 100 thousand years old. We have not yet mastered it. It is not all
that intrinsically difficult; it just seems so when we do it” (Moravec, 1988,
pp. 15–16).

Insights such as this have recently led researchers to propose a different way of
thinking: The clearcut separation between the thinking and the acting, which was

2

1.1 Research Goals and Contributions of this Thesis

assumed in earlier work in artificial intelligence, is argued to be entirely misguiding,
according to this new school. Instead, it is proposed that these apparently distinct
capabilities of a cognitive agent are just different manifestations of the same underlying
mechanisms. True cognition is said to be embodied, meaning that it is entirely linked
to the sensorimotor capabilities of the cognitive agent. Deliberating about the real
world is in many ways supported by the large amount of sensorimotor knowledge that
an agent has acquired through physical interaction with its environment. The problem
with current “intelligent” robots is that they do not posses a comparable background
of sensorimotor knowledge but operate on abstract task representations, which allows
them to seem incredibly adept at solving complex abstract tasks, but at the same time
they are hopelessly outperformed even by very young infants when it comes to natural
real-world tasks.

In response, a new way of conceiving robots has been proposed, as machines that
need to learn and develop, instead of being programmed by the human designer (see
Asada et al., 2001; Weng et al., 2001). Researchers have begun to identify possible
mechanisms that allow cognitive capabilities of an agent to emerge from its dynamic
interaction with the environment, and to demonstrate the capability of computational
models to learn through sensorimotor experience. However, to advance from build-
ing computational models of individual phenomena to constructing complete cognitive
robots, we are still lacking an understanding of how to integrate the various models, or
in short, an answer to the question: What is the cognitive architecture that supports
autonomous mental development in a robot?

1.1 Research Goals and Contributions of this Thesis

The overarching goal of this thesis is to advance the current understanding of how
cognitive robots could be developed under the paradigm of embodied cognition. More
specifically, it seeks to identify basic elements from which a cognitive archi-
tecture for a robot might be built. To this end, the interdisciplinary setting of
the study of cognitive robotics is taken into account: As part of the cognitive sciences,
cognitive robotics shares many close links with other disciplines, including psychology,
neuroscience, linguistics and philosophy (cf. Miller, 2003). For example, most com-
putational models of cognitive mechanisms are based on empirical findings from the
other disciplines, and in return allow to make new predictions and thus encourage new
empirical studies. In spite of that, also on a more theoretical level there are many con-
necting factors, which cannot be ignored. While computational models of individual
phenomena can provide convincing accounts for how these phenomena might emerge
from sensorimotor interaction, it also needs to be taken into consideration how they
relate to comprehensive theories of cognition. In the traditional approach to artifi-
cial intelligence, this was not so problematic, since it was assumed that the brain’s
operation was like that of a computer program. Consequently, individual faculties of
cognition, such as visual processing, language understanding, or planning, would be
integrated into a whole system by using the metaphor of interfaces via which informa-

3

1. INTRODUCTION

tion is passed between components. Thus, successfully developed specialist solutions to
sub-problems of cognition would be directly transferrable to the final cognitive system.
However, this is not so easily possible if cognition is assumed to be an emergent system
property: Existing computational models of emergent cognitive phenomena differ sub-
stantially on a methodological level, and a system that demonstrates the emergence of
one phenomenon cannot simply be assumed to also support the emergence of another.

Therefore, to be successful beyond individual phenomena, common grounds need to
be identified. The approach that was pursued in the scope of this thesis was to collect
prominent theories of embodied cognition across disciplines and to identify points of
agreement among them, with the goal to establish a theoretically sound basis
that is backed by empirical data, to ground the computational modeling
of generic principles for a cognitive system. Thus, while computational models
of empirically observed phenomena use specifically tuned mechanisms to demonstrate
a desired system behavior, and are evaluated by comparing the results obtained from
robot experiments with observations related to the respective phenomenon, here it is
tried to develop generic methods for the development of cognitive systems.

To demonstrate the validity of the proposed methods, example applications for
learning and control in a robot system will be used for evaluation purposes. Never-
theless, the focus of the modeling lies not on finding specific solutions for the exam-
ple applications, but on the goal to develop a generic building block and its
mechanisms for the design of a cognitive architecture, supporting the au-
tonomous acquisition of knowledge from sensorimotor experience. Empirical
evidence suggests that the mammalian cortex is composed of repeating neural structures
(Mountcastle, 1997), thus pointing to the conclusion that also the cognitive architecture
of the brain is based on generic mechanisms that are employed to process information
domain-independently (e.g. Melchner et al., 2000; O’Leary, 1989). In addition, basing
the design of a cognitive architecture on the use of generic building blocks is beneficial
also from an engineering point of view: It limits the design effort for the creation of
a cognitive system to the specification of connections in between building blocks and
the system’s sensory inputs and motor outputs. Since the internal mechanics of the
building block (i.e. the mechanisms for learning and operation) are fixed by design, it
would not be necessary to implement individual specialist components and in principle
provides a possibility for open-ended learning.

To conclude, this thesis pursues the following research goals:

G0 (overarching goal) Identify basic elements from which a cognitive architecture
for a robot might be built.

G1 Establish a theoretically sound basis that is backed by empirical data, to ground
the computational modeling of generic principles for a cognitive system.

G2 Develop a generic building block and its mechanisms for the design of a cognitive
architecture, supporting the autonomous acquisition of knowledge from sensori-
motor experience.

4

1.2 Outline

1.2 Outline

Chapter 2 introduces the general topic of cognitive architecture, and gives an overview
of current modeling approaches and existing computational cognitive architectures. For
the development of any cognitive architecture, fundamental modeling choices need to be
made with far reaching consequences. To appreciate these, it is helpful to understand
the theoretical motivation of the modeling choices in the interdisciplinary context of the
cognitive sciences. Therefore, the overview of cognitive architectures is embedded in a
description of the currently predominant theoretical paradigms for understanding cog-
nition, which are cognitivism, behavior-based robotics, connectionism and dynamicism,
accompanied by a discussion of their benefits and drawbacks.

In Chapter 3, the concept of embodied cognition is introduced with the goal to es-
tablish that it is a suitable theoretical basis to motivate the modeling of a cognitive
architecture. An overview of prominent theories and arguments in favor of an embodied
view on cognition is given. Subsequently, a view is proposed that coherently connects
several theoretical approaches and is concrete enough to support computational mod-
eling. Based on these considerations, a new cognitive architecture is proposed, which
uses a network of generic building blocks as its main component.

Following the overall description of the cognitive architecture, Chapters 4 and 5 are
concerned with the description of concrete mechanisms of the generic building block.
These are related to the questions of how to learn from sensorimotor experience, how
to implement distributed decision making and allow the system to solve multiple tasks
simultaneously, and how to decide what training samples are relevant for individual
building blocks without relying on labeled training data.

Finally, in Chapter 6 the work is summarized, and the cognitive architecture and its
mechanisms are discussed in relation to the state of the art in cognitive architecture, as
well as in relation to the interdisciplinary literature of embodied cognition. A conclusion
is drawn and suggestions for future work and improvements are given.

5

1. INTRODUCTION

6

2

Cognitive Architecture:
Overview of Theoretical
Paradigms and Computational
Models

In many scenarios where robots are applied it is possible, perfectly reasonable, and
sometimes also desirable, to engineer complex robotic systems based on the knowledge
that the human designer has of the robot’s tasks, the premise being that it can be
sufficiently well described in advance. Example scenarios where this approach has been
applied with some success include residential service robots (e.g. Wachsmuth et al.,
2010) or robots acting as a museum guide (Thrun et al., 1999). In both of these
examples it is possible to pre-specify a range of possible situations which the robot
might face, including interactions with humans, which allows to prepare the reactions
of the robot in these situations. Also the behavior of a carefully engineered system is
predictable for the designer, which is desirable in cases where a system fault entails high
cost, as for example in space robots such as the Mars Exploration Rovers (Biesiadecki
et al., 2007).

However, when the environment is difficult to model and can change unpredictably,
these systems tend to break down (Asada et al., 2001). The alternative is to develop a
system that is not highly specialized to mainly perform well in pre-specified situations,
but one that is capable of general intelligent behavior, which is the goal of work in the
research field of cognitive architecture (Laird et al., 1987). To this end, a cognitive
architecture implements a scientific hypothesis about what aspects of cognition are
independent of task (Howes and Young, 1997), that is to say, it is explored whether a
single theory of what is common among many cognitive behaviors can support all of
cognition (Lehman et al., 1996). This is different from developing systems that perform
particularly well in a specific task, as it is rather the goal to develop an integrated system
that can cope with many situations.

The definition of the generic underlying mechanisms of a cognitive architecture is

7

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

tied to subscribing to one of the paradigms of cognition that have been proposed in
the cognitive science literature. Each of these paradigms takes a significantly different
stance on the nature of cognition, what processes and structures are underlying cogni-
tion, and how a cognitive system should be analyzed. The traditional and still popular
paradigm in cognitive science is the so-called cognitivism. It assumes that “higher”
cognition is a form of computation, operating on abstract mental representations of the
world, and has served as the motivation for classical artificial intelligence. While cogni-
tivism prevails until today, it has been attacked on several grounds by the proponents of
a broader class of paradigms, which collectively are referred to as emergentism. While
the individual emergentist paradigms differ in several important ways, their common
notion is that it is a fallacy to assume higher cognition to be categorically different from
“low-level” processes, such as neural activation dynamics or reflexive motor behavior.

With the objective to survey computational models of cognitive architecture, in
this chapter the different paradigms of cognition will be reviewed, each followed by a
description of computational models that subscribe to that paradigm by the choice of
their modeled mechanisms. It is not easily possible to disentangle the paradigms of
cognition that have been proposed in the literature. Instead, in many ways, different
approaches are based on similar intuitions, make comparable assumptions or have de-
veloped an overlap in their characteristics. Nevertheless, this chapter will be organized
by introducing the following paradigms, which are often described in the literature as
full-fledged theories, or at least autonomous research programs: Cognitivism, behavior-
based robotics, connectionism, and dynamicism.

Section 2.2 will begin with describing cognitivism, which assumes that cognition
is a rule-based manipulation of structured mental representations. Cognitivism is the
predominant view in cognitive science since the middle of the last century and strongly
related to traditional artificial intelligence. In Section 2.2.2, so-called “hybrid” ar-
chitectures will be described, which combine the cognitivist approach with aspects of
other approaches, trying to benefit from the strengths of both while mitigating their
weaknesses.

In Section 2.3, the behavior-based robotics movement will be described, which from
the perspective of cognitive architecture in robotics has been the first strong challenger
of the traditional approach to designing intelligent robots. Behavior-based robotics is
an attempt to model intelligent behavior without resorting to the use of an internal
representation of the external world, and is strongly related to a concept from cognitive
neuroscience, the “motor schema”, which in turn is based on the more general concept
of “schema” from psychology, both of which will be described later on in Sections 3.2.1
and 3.1.3, respectively.

In cognitive science, connectionism (Section 2.4) has been held as the rivaling view
against cognitivism since around the early 1980s. Its main characteristic is a strong
commitment to artificial neural networks as a method and mechanisms of spreading
activation for the description of cognitive processes. Connectionism argues that repre-
sentations should not be structured and explicit in the system, as in cognitivism, but
implicitly encoded in graded activation values of neurons.

8

2.1 Structure of the Cortex: A Brief Introduction

More recently, dynamicism (Section 2.5) has been introduced in cognitive science
and has gained attention as a third view appart from cognitivism and connectionism.
Dynamicism argues that the dynamic interaction of the agent with its environment
should be the prime subject of investigation, and that the question of representation
should not be investigated in isolation, but should rather be discussed using the ter-
minology of a dynamical system, such as attractor points and instabilities. As such,
dynamicism has to some extent resemblance with the behavior-based robotics approach,
which also tries to eliminate internal representations from the system as much as pos-
sible. At the same time, a broad class of artificial neural networks also are a form
of dynamical system, and could therefore qualify as methods for investigation under
the flag of dynamicism. Thus, a subset of connectionist approaches also share strong
resemblance with dynamicism.

By no means, this short list of interdependencies can be claimed complete. Com-
pletely missing are the relations to ideas that have already been formulated in the field
of philosophy, some several centuries ago, and also to work in psychology before the
dawn of cognitive science in the middle of the last century. However, further examina-
tion, although interesting, would not serve the purpose of this discussion but make it
lengthy.

As some of the paradigms make strong commitments to how the hypothesized mech-
anisms are implemented in the brain, the chapter will begin with a very brief introduc-
tion to the structure of the cortex, to provide the necessary background.

2.1 Structure of the Cortex: A Brief Introduction

The cerebral cortex is the main site of information processing in the mammalian brain.
It plays a key role in many functions, including perception and action, but also atten-
tion, memory, learning, thought and language. On a coarse level it is already possible
to tell a certain structure with the naked eye, as fissures divide the whole cortex into a
left and a right hemispheres, and each hemisphere further into four lobes: The frontal
lobe in the front, the parietal lobe in the upper part and the temporal lobe in the lower
part of the brain, and the occipital lobe in the back (see Figure 2.1). Connections

FRONTAL
LOBE

PARIETAL
LOBE

TEMPORAL
LOBE

OCCIPITAL
LOBE

Figure 2.1: Schematic view of the brain, left side. Locations of primary sensory and
motor cortices are indicated by darker shading: Primary motor cortex is shown in blue,
primary somatosensory cortex in yellow, primary auditory cortex in green, and primary
visual cortex in red. Modified drawing from (Gray, 1918).

9

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

from and to the senses arrive at so-called primary sensory areas. Visual information
is processed in the primary visual cortex, which is located in the occipital lobe. Audi-
tory and somatosensory information arrive at the primary auditory cortex, located in
the temporal lobe, and the primary somatosensory cortex, located in the parietal lobe,
respectively. Similarly, motor information is directed to and from the primary motor
cortex, located in the frontal lobe. Based on anatomical considerations and observa-
tions in behavioral studies, the cortex can be further divided into regions, which can
be distinguished functionally, although there are no clear anatomical demarcations (for
an extensive overview of the literature, see Mesulam, 1998). There are different pro-
posed anatomical subdivisions of the cortex, or “cortical maps”, of which Brodmann’s
proposal is the most commonly used (Brodmann, 1909), which divides the cortex into
52 regions.

Neurons in the cortex are not randomly connected to each other, but connection
patterns can be found on several levels. Work on brain mapping has demonstrated the
existence of at least two kinds of intra-cortical connections (Sporns and Zwi, 2004):
On the one hand, neurons lying close together form densely interconnected clusters
with short connections between individual neurons. Neurons lying inside such a cluster
often share common dynamical properties in their firing patterns. On the other hand,
there is a sparse inter-clustered connectivity via longer connections, to allow information
exchange between neurons that are further apart from each other in the cortex. Starting
from the primary sensory and motor cortices, where uni-modal information arrives at
separate locations across the cortex, a hierarchical organization of the cortical regions
can be found (see e.g. Scannell et al., 1995). Reciprocal connections send information
from the primary sensory and motor regions to so-called association areas that fuse
information from several cortical regions, first in modality-specific association areas that
integrate information from the same modality, then from there on to higher association
areas, where information becomes increasingly multi-modal the further one goes up the
hierarchy (see Figure 2.2).

A prominent example of the hierarchical organization of parts of the cortex is de-
scribed by the “two-streams hypothesis”. According to this widely accepted view, visual
information is processed in two separate “streams” (Goodale and Milner, 1992; Mishkin
and Ungerleider, 1982; Schneider, 1969), see Figure 2.2. The dorsal pathway on the one
hand, also known as the “where stream”, is hypothesized to extract information from
the visual input on the position of objects in space, ultimately to guide the direction
of action. The ventral pathway, or “what stream”, on the other hand is said to extract
the visual appearance of objects, independent of the stimulus location on the retina1.
Both of these pathways begin at the primary visual cortex in the occipital lobe, where
information from the retina arrives. From there, the dorsal pathway follows connec-

1The name “dorsal” originates from Latin dorsalis, meaning “relating to the back”, and “ventral”
originates from Latin ventralis, meaning “abdomen”. In anatomical terms these denominate relative
locations in terms of orientation inside the body of an animal. In the brain, dorsal refers to regions
lying in the upper part, whereas ventral refers to regions lying in the lower part. In most animals, this
corresponds to the dorsal-ventral direction of the whole body, but in humans the orientation of the
brain has changed evolutionary due to the upright body posture.

10

2.2 Cognitivism

Figure 2.2: Schematic drawing of the hierarchical organization of the cortex. Circles
represent clusters of neurons (not to be taken as anatomically precise demarcations), color
shading indicates hierarchical level: Darker shaded circles represent clusters of neurons
that are closer to the primary cortical regions, brighter shaded circles represent higher as-
sociation areas. Lower level regions process uni-modal information, whereas higher cortical
regions combine more and more multi-modal information.
Arrows indicate hypothesized forward streams of information processing: Red arrows show
dorsal and ventral streams of visual information processing (upper and lower arrow, respec-
tively), green arrows show dorsal and ventral streams of auditory information processing.
Note that the direction of arrows indicates a hypothesized hierarchical organization and
should not be understood as uni-directional information transfer: Cortico-cortical connec-
tions are mostly reciprocal, also along the shown pathways (see text for explanation).

tions between regions of the cortex until reaching the parietal lobe, whereas the ventral
pathway describes connected regions that reach from the occipital lobe downwards to
the temporal lobe.

Analogously to the two-streams hypothesis of visual information processing, a simi-
lar model of auditory information processing has been proposed. Here, a dorsal stream
is thought to run from the primary auditory cortex in the temporal lobe via the parietal
lobe forward to the frontal lobe, and a ventral stream is thought to go from the primary
auditory cortex forward into an association cortex in the temporal lobe (Hickok and
Poeppel, 2007). In this model, the dorsal stream is said to be involved in a sound-
to-motor mapping, whereas the ventral stream associates sounds with meaning (see
Figure 2.2).

Note that connections between cortical regions along the “streams” are not uni-
directional, but mostly reciprocal. That is, an interpretation according to which infor-
mation is passed only in a feed-forward manner in one direction seems to be uninformed
(Goldman-Rakic, 1988).

2.2 Cognitivism

As mentioned earlier, cognitivism is the traditional and still popular view in cogni-
tive science that asserts that higher cognition, including faculties such as reasoning,
memory, planning and language, is essentially a form of computation. It is assumed
that the architecture of the mind is composed out of many functional modules (Fodor,

11

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

1983), each of which is domain-specific and operating on a certain kind of input. The
assumption of modularity is based on observations that localized cortical damage can
lead to the loss or impairment of specific cognitive abilities. For example, Broca’s area,
which is located in the lower part of the frontal lobe (roughly in Brodmann’s areas
44 and 45), is traditionally associated with language processing, since damage to this
region has been reported to cause an almost complete loss of the ability to speak (for
a review, see Dronkers et al., 2007). Combined with the observation mentioned above
that sensory input is represented in localized places across the cortex, which also gives
the sensorimotor parts of the cortex a module-like character, it gives rise to the hy-
pothesis that all of the cortex is made up of functionally distinct modules, which are
inter-wired in a complex cognitive architecture.

Thus, the cognitive architecture is thought to be very much like that of a modu-
lar computer program. “High-level” cognitive functions, such as reasoning, planning,
memory and language, are thought to be the result of abstract computations, based on
the representation of physical entities and events as “symbols” in the cognitive system,
a cognitive code on which operations are carried out and from which the behavior of
the system is determined (Pylyshyn, 1986). This fundamental idea of cognitivism is
captured in the hypothesis that any cognitive system capable of general intelligent ac-
tion is a so-called “physical symbol system” (PSS, Newell and Simon, 1976). A PSS,
as defined by Newell and Simon, consists of a set of entities, called the “symbols”, and
certain operations that can be performed to manipulate these entities, which are the
instantiation, destruction, copying and modification of symbols. A cognitive system
that implements a PSS thus operates by handling a set of “symbol tokens” (instan-
tiations of the symbols), and manipulates the symbols according to a set of rules to
come up with a plan of how to act. Some of the symbols can be directly related to our
intuitive understanding of the task domain of the system, and thus be “transparent” for
our interpretation of the system’s performance, as for example a chess playing program
might use symbols for knight, E2, castling and checkmate (cf. Clark, 2001).

When a PSS is used in a cognitive architecture for a robot or some other embodiment
(such as in ambient intelligence), it needs to deal with the problem of relating the symbol
tokens that exist inside the system to objects in the external world, which is known as
the “symbol grounding problem” (Harnad, 1990; Searle, 1980). If we consider a chess-
playing robot instead of a chess-playing computer program, it is obvious that the robot
needs to know what parts of the environment (for example in terms of image regions
in its camera input) correspond to the symbol tokens it uses for its computation, for
example where the actual chess piece is located that it plans to move. Thus, in any
cognitive architecture that uses a PSS, it needs to be accompanied by a sensorimotor
system that reliably “grounds” the symbol tokens in sensorimotor states, see Figure 2.3.

The apparent functional separation of sensory information processing in the brain,
as in the two-streams hypothesis of visual information processing, where spatial infor-
mation and information on the visual appearance are processed separately from each
other, could be seen as support for a modular view of the organization of the brain.
The interpretation would be that the processing is implemented in different “pipelines”,

12

2.2 Cognitivism

on(knight, E2) ←− true
checkmate ←− false

grounding

Figure 2.3: A chess-playing robot based on a physical symbol system: Its high-level
functions, such as planning the next move, are based on the manipulation of abstract
symbolic representations inside the robot’s program, based on sets of rules that should
reflect the objective structure of the robot’s world. The robot needs to keep its internal
representation of the world in sync with external reality, by grounding the symbols it uses
in sensorimotor states, for example by detecting the chess pieces in the camera image.

where information is passed from one distinct processing stage to the next, and in the
end, the results of the different pipelines are fused into a representation of the visual
perception. This view would be in line with the PSS hypothesis: The sensory systems
of the brain perform complex computations to extract and ground a compact, symbolic
representation of the environment, which is then used for abstract computations that
implement higher cognitive functions.

An important methodological assumption underlying the cognitivist paradigm is
that a clear distinction between different levels of analysis can be made (Griffiths et al.,
2010; Marr and Poggio, 1976): The problems faced by the system are studied on a
“computational level” in an abstract way (for example, find an object in a visual scene,
plan a journey from your home to Notre Dame in Paris, understand a spoken com-
mand), algorithms to solve the problems are studied on an “algorithmic level”, while
the way that the algorithms are actually realized is studied on the “hardware level”.
Importantly, it is argued that it is possible to decouple the different levels of analysis,
which should allow the study of cognition entirely independently of considering the way
it is implemented, for example in the neural hardware of the brain. This separation
is reflected in the way that cognition is thought to be realized in a PSS: The set of
symbols and operations that determine the system are entirely abstract definitions,
and as long as the symbol tokens are reliably grounded, there would be no difference
in the functioning of the system on the computational level of analysis when it is im-
plemented in different embodiments (for example in two robots with different sensors
and actuators).

2.2.1 Computational Models

In the cognitivist paradigm, the definition of a cognitive architecture typically entails
a description of the long-term and short-term memories, the representations that are

13

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

contained in these memories, how these representations are combined into larger-scale
representational structures, and the mechanisms that operate on the representations
(Langley et al., 2009). In the following, two candidates of the cognitivist paradigm will
be described, Soar and ACT–R. While there exist many more in the literature, these
two architectures are arguably the most prominent, and a description of their function-
ing will give a clear enough understanding of the general mechanisms underlying any
cognitive architecture in the cognitivist paradigm, to allow a discussion of the strengths
and importantly the unsolved problems of the paradigm, which follows in Section 2.2.2.

Both Soar and ACT–R are at their core a so-called production system, which is a set
of processes called productions (Simon, 1975) that operate on the symbolic representa-
tions in the system. Each production is an IF-THEN rule, the IF portion specifying a
condition in terms of symbols and their values, and the THEN portion defining what
the system should do when the associated IF portion “fires”, i.e. evaluates true. This
can either be the execution of an action or a manipulation of the symbols inside the
system. For example, a typical production rule in a service robot might look something
like “IF goal is bring-user-coffee and have-container is false THEN set goal to find-
favorite-coffee-mug”. The productions are said to be the content of long-term memory,
while the symbol tokens that they operate on are held in working memory. Production
systems can differ in terms of how the productions are selected for execution, for exam-
ple whether multiple productions can fire simultaneously or if only a single production
at a time is allowed to fire.

Soar

The idea behind the Soar Cognitive Architecture (Laird and Rosenbloom, 1996; Laird
et al., 1987; Lehman et al., 1996; Nuxoll and Laird, 2004) is to separate domain-specific
content from domain-general mechanisms, to allow the mechanisms to be applicable
across domains and to limit the need for programing to the definition of domain-specific
production rules. Soar uses two memories, a long-term memory that stores the produc-
tion rules, and a working memory in which the current world state and the system’s
goal in terms of a goal state are represented in symbolic form. Thus, Soar uses its
productions for goal-directed symbolic reasoning: The architecture implements a set of
mechanisms that search through and apply the production rules in long-term memory
to find a sequence of actions that will produce the goal state. These mechanisms are
free from domain-specific assumptions, while domain knowledge is provided by the de-
signer to the system in the form of the production rules, which are grouped together
to define different problem spaces.

While the production rule is the basic element of long-term memory, Soar’s working
memory uses a larger representation, which is called the “goal context”, consisting of
a description of the goal state, which problem space (set of rules) to use, the current
state, and an “operator” that defines the system’s next action. Processing in Soar is
performed in two repeating phases: An “elaboration” phase and a “decision” phase.
In the elaboration phase, the system repeatedly compares the current state of the
working memory with the IF -portions of the productions and fires all matching rules

14

2.2 Cognitivism

simultaneously. As some of the productions in Soar extend and manipulate the symbols
in working memory, this results in an augmentation of the current state representation
with associative knowledge from long-term memory, while other productions propose
operators for executions. The elaboration phase continues iteratively until there are
no more rules that fire, and is followed by the decision phase. The purpose of the
decision phase is to select a single operation for execution, as it is not guaranteed that
only a single operator is proposed by the productions. For this purpose, Soar makes
use of further production rules, which can tell the decision mechanism to favor one
or another operation, based on the current state of working memory. If an impasse
arises, i.e. multiple operations remain that are equally favored, the decision mechanism
generates a new goal context to extend the working memory with knowledge from
another problem domain. Processing continues in this new goal context in the same
manner, through an elaboration phase and a decision phase, which can either result in
resolving the impasse in the first goal context or can again trigger a new goal context.
This process continues until a single operation is favored over all others, which is then
executed by the system, for example by telling the motor system to execute an action.

Soar traditionally supports only one form of learning, which is called “chunking”:
Whenever an impasse arises and is successfully resolved by the addition of knowledge
from other problem domains, Soar creates a new production rule that associates the
state in which the impasse arose with the outcome of the decision mechanism. Chunk-
ing should prevent the system from having to resolve the same impasse more than once.
More recently however (Laird, 2008, 2012), Soar was extended with sub-symbolic learn-
ing mechanisms to support a slightly more graduated decision making mechanism, by
associating to each of the production rules a numeric value. These values are trained
through reinforcement learning, using an intrinsic “arousal” signal for training. The
values should provide the decision mechanism with further information on which rules
have previously led to a favorable outcome.

ACT–R

“Adaptive control of thought–rational” (ACT–R, Anderson et al., 2004; Anderson and
Lebiere, 1998), as compared to Soar, is more tightly linked to brain anatomy, as it tries
to provide a theory that is able to explain data from studies in cognitive neuroscience,
for example from brain imaging experiments. As such, ACT–R is based on the assump-
tion that the brain is composed out of functional modules that are largely encapsulated
(Fodor, 1983), an assumption which is widely accepted by proponents of the cognitivist
paradigm (see above). ACT–R focuses on how information is passed between these
modules. Like Soar, ACT–R has been developed over a longer time period and is still
being extended. As of the version ACT–R 5.0, it consists of five implemented mod-
ules, each responsible for processing a different kind of information: A visual module
identifies objects, a manual module provides an interface for controlling the hands, a
declarative module retrieves declarative information from long-term memory, a goal
module manages the system’s goals during problem solving, while a central production
system module contains procedural knowledge in the form of production rules and is

15

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

Figure 2.4: A schematic overview of ACT–R 5.0, reproduced from (Anderson et al.,
2004). See text for description.

responsible for coordinating the behavior of all other modules. Figure 2.4 is a schematic
overview of ACT–R 5.0.

Information is passed between the modules and the central production system
through “buffers” that intendedly can only hold a limited amount of information, called
“chunks”, which are lists of attribute-value pairs. As many other design choices behind
ACT–R, the decision to limit the buffer size to a limited amount of information is mo-
tivated by available data from psychological and neuroscientific studies. For example,
the visual system only provides information on a single object at a time, in the form of
an identity chunk and a location chunk (to model the ventral and the dorsal pathway
of visual information processing in the brain, cf. Section 2.1), as it is assumed that the
human brain also only processes information from a single attended visual stimulus at
a time (apart from low-level visual signal processing, which is known to be massively
parallel in nature).

The central production system matches the content of the buffers against the IF -
portions of its stored productions, and selects a single production for execution. This
is one of ACT–R’s main differences to the Soar cognitive architecture, which allows
the parallel firing of all matching productions. The selection mechanism of the single
production to fire is based on a computation of expected utility of a production for the
current goal and the state of the buffers. This computation comprises an estimation of
how likely it is that the current goal will be achieved after selecting the production, an
estimate that the system learns from experience in a Bayesian way. Thus, processing
in ACT–R happens cyclically, with the production system reading the content of the
buffers in the beginning of each cycle, then selecting a production and finally executing
it at the end of the cycle. One cycle is assumed to take approximately 50 ms to complete,

16

2.2 Cognitivism

while the processing in the other modules runs in parallel and asynchronously. Firing
productions change the content of the buffers, by which the processing is coordinated
across the modules.

The sensorimotor modules of ACT–R, i.e. the visual module and the manual module,
are not implemented as to support actual sensory information processing or motor
control, but rather simply simulate the approximate timing of the perceptual and motor
systems and only process information at the interface level between the production
system and the sensorimotor systems. On the one hand, the motor system is assumed
to take as input symbolic command descriptions for actions to be executed. The visual
system on the other hand is assumed to provide information on an attended stimulus
in symbolic form as chunks, i.e. feature lists. The production system can influence the
selection of the attended stimulus by providing top-down cues, such as “color: red” or
“vertical: top”.

2.2.2 Hybrid Architectures

The distinguishing feature of the cognitivist approach is that it assumes cognition to be
based on the processing of symbolic representations. As a consequence, there is a clear
separation of cognition into low-level sensorimotor processes and “higher cognition”
(reasoning, planning, and the like). The latter is implemented as a set of programs that
manipulate symbolic representations of the situations, and search through a collection
of fixed association rules that are stored in long-term memory to find sequences of
actions that will produce a goal state. Thus, a stable symbolic representation of the
environment is necessarily required, therefore in this approach it is the responsibility
of the sensory system to extract relevant information from raw sensory input into
crisp symbolic representations, and to ground the symbols in the input signals. The
motor system is thought to provide a set of basic actions, which are also represented
in a symbolic format (for example “open gripper” or “say apple”) to support symbolic
planning.

The focus of cognitivism clearly lies on “higher cognition”, which is studied in
isolation from sensorimotor processes on an abstract level, whereas motor control and
sensory processing are only marginally considered. Chiefly this is the case because
cognitivist approaches mainly try to reach human-level performance in problem solving
tasks, and are not primarily intended to control robots in the first place. The implicit
belief behind this approach is therefore that limitations of current systems are to a
large extent due to our insufficient understanding of the symbol-generating and symbol-
grounding sensorimotor processes, but once satisfying solutions to these problems have
been found, we can “plug in” the symbol manipulation systems for higher cognition
and will have a robot with general intelligence.

The earliest attempts to construct robots with general-purpose problem solving
capabilities go back to the work in the 1960s at Stanford University, where the robot
“Shakey” was developed (Nilsson, 1969). Shakey was equipped with a television camera,
a range finder and a bump detector, and had a mobile base so it could drive around.
Its programming was based on a decomposition of the task into the three stages of

17

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

sensing, planning and acting, where the sensing stage generated an internal world
model in a symbolic format, the planning stage used the world model to generate an
action sequence that would achieve a given goal, and the acting stage would execute
the action sequence. Shakey’s architecture and later approaches that are based on a
similar problem decomposition (e.g. Albus et al., 1989) are collectively referred to as
beloning to the “sense-plan-act paradigm” (see e.g. Orebäck and Christensen, 2003).

However, the sense-plan-act paradigm has been found to be problematic, as plan-
ning in real-world scenarios can take long and the robot would be blocked while waiting
for the planning to complete, and executing plans in a dynamic world without involving
the sensors is dangerous (Kortenkamp and Simmons, 2008). To deal with this inherent
difficulty of the sense-plan-act paradigm, it has become widely accepted among propo-
nents of the cognitivist approach that the planning, or “deliberative”, system needs to
be accompanied by an efficient sensorimotor system that should not only provide an
interface to the external world for the deliberative system, but can also reactively con-
trol the robot on its own (Orebäck and Christensen, 2003). The sensorimotor system is
allowed to operate to a large degree independently of the deliberative system to ensure
that the robot remains responsive at all times. Thus, the strict separation between
the three stages of sensing, planning and acting is blurred, and instead the deliberative
system only takes “top-down influence” on the sensorimotor system.

The deliberative sub-system is responsible for high-level functions, such as reason-
ing, planning, dialog management, etc., and is implemented using different symbolic
representations for each of these functions. For the sensorimotor sub-system on the
other hand, sub-symbolic representations for engineering sensorimotor responses are
adopted that initially were developed outside the cognitivist paradigm, such as behav-
iors (see Section 2.3) or neural networks (see Section 2.4), as they are better suited
for processing sensorimotor inputs and outputs under real-time constraints. Because of
this marriage between symbolic and sub-symbolic components from different paradigms
in one system, these architectures are called “hybrid” architectures.

The deliberative sub-system can be module-based, implementing the individual
high-level capabilities in distinct modules. This has the advantage that specially tai-
lored solutions to individual problems can be used: As the field of artificial intelligence
has fragmented into many sub-disciplines (such as computer vision, speech processing,
etc.), which each has developed its own specialist representations (Wyatt and Hawes,
2008), a modular system design can benefit from directly incorporating the individual
solutions from the sub-disciplines. Module integration and inter-module communication
is implemented using a dedicated software, which is commonly called the “middleware”
(e.g. Fitzpatrick et al., 2008; Fritsch and Wrede, 2007).

One example of a hybrid architecture design is “3T” (Bonasso et al., 1997). It is
composed out of three interacting layers or “tiers” (therefore the name): A reactive
control layer, a sequencing layer, and a deliberative layer, see Figure 2.5. The reactive
control layer is directly communicating with the robot’s sensor and motor hardware and
comprises a collection of simple behaviors, each of which tightly connects sensor input
with motor output. Here, an important concept is “situated behavior” (Kortenkamp

18

2.2 Cognitivism

World /
Environment

Reactive Skills

Sequencing

Deliberation

Partial Task Ordering

Instantiated Tasks

Actuator CommandsSensor Readings

Figure 2.5: Schematic overview of 3T, a hybrid architecture design. Reproduced from
(Bonasso et al., 1997). See text for description.

and Simmons, 2008): Many behaviors only successfully achieve a given short-range
goal when activated in the correct context. For example, a behavior that should drive
a robot down a hallway is only appropriate when the robot actually is situated in a
hallway. Therefore, the next layer in the architecture, the sequencing layer, combines
the behaviors into action sequences and attaches context information, such that behav-
iors are selected depending on the current context. Additionally, each action sequence
descriptor provides information on the change in state that it achieves, if all behav-
iors execute successfully. This allows the third layer, the deliberative layer, to search
through the library of action sequences and to compile plans.

2.2.3 Implications

The cognitivist paradigm to cognitive architecture is motivated by the assumption
that cognition is based on the manipulation of symbolic representations and proposes
a clear separation between high-level cognitive processes and low-level sensorimotor
processes. An important aspect of cognitivist architectures is that they search through
a library of associations, stored in a symbolic format in long-term memory (for example
in the form of production rules), to find sequences of actions that will transform the
current situation into a target situation. The paradigm has spawned many robots that
have been successfully applied in a variety of tasks, especially in pursuing the hybrid
architectural approach.

However, even though the goal of cognitive architecture is to create systems that are
able to cope with many situations (as mentioned at the beginning of this chapter), the
cognitivist paradigm has not been able to satisfactorily demonstrate this quality to date,
despite its continuous development for several decades. As it was noted for example
by Christensen, intelligent behavior needs to be very flexible, as the same behavior can
lead to significantly different outcomes depending on the context (Christensen, 2004), a

19

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

fact that has also been recognized by the cognitivist community (cf. Section 2.2.2). To
deal with context when applying its rule-based knowledge, a cognitivist system has to
be extended with more rules that describe how a given context influences an outcome.
However, a system that would exhibit a certain flexibility in its behavior would need to
store a vast number of rules in its long-term memory. This casts an inherent difficulty
for symbol-based cognitive systems, which is what one interpretation of the infamous
“frame problem” states (cf. Clark, 2002): It would be computationally intractable to
search through the entire database of rules to form a plan. What a general intelligent
system working on symbolic representations would need, so it seems, would be a way
to know what is relevant in a given situation. Some approaches have tried to deal with
this by adding explicit symbolic knowledge about situations, such as lists of relevant
items, for example by detailing out that balloons and cakes are relevant to birthday
parties (Minsky, 1974). Yet, this still faces the problem that the system needs a way
to determine what situation knowledge currently applies, which is again not a trivial
task. This unsolved problem of systems using symbolic representations limits their
applicability to rather sterile laboratory environments (cf. MacDorman, 1999), where
the robot only faces situations that are sufficiently well covered by its database of rules,
which in turn is not extensively large due to the limited scenario size.

The nature of flexible behavior seems to be more related to the ability to recognize
and make use of spontaneous “opportunities to interact” with the environment (Chris-
tensen, 2004; Gibson, 1977), instead of relying on a tremendous amount of rules that
apriori determine what is relevant and what not. To achieve this, the system needs
to be in a much closer relationship of co-ordinated interaction with the environment.
Instead of trying to construct an internal model of the world and using this copy to
decide on what to do, a robot should use the world itself as the primary source of infor-
mation (Brooks, 1991b; Dreyfus, 1972, 2007), thus removing the burdon of having to
maintain an up-to-date representation of the required information and instead directly
using the sensors where information is available. In the same direction, hinting to the
evaluation that the complexity of a symbol-based system seems to be out of balance
with the problem complexity when it comes to physical interaction, Pfeifer and Scheier
argue that only in “ecologically balanced” systems a successful co-ordination with the
environment can occur (Pfeifer and Scheier, 1994). A system is ecologically balanced,
if there is a match between the complexity of the sensory and the motor system, while
it would be out of balance to have a very sophisticated visual system (for example with
the goal to establish a symbol grounding) when ultimately only simple motor acts are
performed by the robot.

Other significant problems that symbol-based approaches face are related to the fact
that the knowledge of the system has to be provided by the human designer in advance,
for example in the form of production rules in the case of Soar and ACT–R. While this
has the apparent benefit of producing “transparent” systems, as the symbols that the
system uses are “meaningful” to the human designer who can thus interpret the steps
that the system took in solving a problem, at the same time it can be argued that
it is a limiting factor as the programmer-dependent representation biases the system

20

2.3 Behavior-based Robotics

and constrains it to an idealized description (Vernon et al., 2007). Furthermore, the
amount of knowledge that has to be provided to the system increases dramatically with
the complexity of the robot’s task, which quickly renders it unfeasible to formulate the
necessary knowledge in advance (Stoytchev, 2006; Weng et al., 2001).

Thus, on a practical level the symbol-based approach to cognitive architecture faces
the problem that it only performs well in small-scale scenarios, in which the human
designer has envisioned all possible situations that the robot will face and has carefully
prepared the system in advance, which is the exact opposite of the target of creating
“general intelligence”. Additionally, also on a more theoretical level, a growing number
of criticisms of the cognitivist view have been formulated over the last decade. Essen-
tially the argument is that cognition cannot be accounted for by symbolic computation,
which instead is merely an idealized description of emergent properties of the dynamic
sensorimotor processes that actually amount to cognition, and that consequentially an
alternative research program is needed in cognitive science to replace cognitivism (e.g.
Barsalou, 1999, 2008; Beer, 2000; Clark, 2001; Dreyfus, 2007; McClelland et al., 2010).
Candidates in the current cognitive science literature are connectionism and dynami-
cism, which will be described in Sections 2.4 and 2.5, respectively. Apart from these,
the “behavior-based robotics” movement has proposed an alternative to cognitivist
modeling in robotics, which will be described next.

2.3 Behavior-based Robotics

As an approach to programming robots that is radically different from the cognitivists’
symbol manipulation approach, the “behavior-based robotics” paradigm was intro-
duced in the 1990s, championed by Brooks and his group at the MIT (e.g. Brooks,
1991a). Here it was demonstrated that it is possible to build robots that solve real-
world problems without any form of “high-level” cognitive processing. Several simple
behaviors are designed and programmed that operate at all times in parallel, instead
of making the system rely on a loop that alternates between perception, abstract com-
putation and action. The behaviors compete against each other, and the winning one
gains control over the hardware.

The behavior-based robotics paradigm is intended by its proponents to replace the
cognitivist paradigm for building robots that can act in the real world (Brooks, 1986;
Pfeifer and Scheier, 1994). It is argued that instead of studying complex systems in
simple environments before scaling up the complexity of the environment, one should
begin with studying simple systems in the real world and then begin to scale up the
complexity of the system (Brooks, 1991a). The main motivation behind this paradigm
is to make robots “reactive” to environmental cues, by trying to minimize the time
between using the sensors and sending a command to the motors. Instead of making a
central planning stage responsible for generating all kinds of behaviors, every behavior
that the robot can produce is implemented in its own sub-component of the system.
Behaviors are usually implemented in ways that generate motor commands as a simple
function of the sensory input, for example by interpreting the readings of a range

21

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

wander avoid

feelforce runaway

collide

sonar motormap

robot robothalt

command

heading

force

Figure 2.6: Example of the subsumption architecture for a robot that can wander around
and avoid obstacles. In this example, the “avoid” module subsumes the “runaway” module,
meaning that the former, when it is active, can overwrite the output of the latter. Drawing
reproduced from (Brooks, 1986).

finding sensor as a “force” that pushes the robot away from obstacles (Arkin, 1989).
Examples for typical behaviors are approach-the-object or avoid-bumping-into-obstacles.
By providing the system with a set of these simple behaviors it is ensured that the most
basic functionality, such as not bumping blindly into obstacles, is always at work.

2.3.1 Computational Models

The Subsumption Architecture

The first and most influential architecture that was proposed in the behavior-based
tradition was Brooks’ “subsumption” architecture (Brooks, 1986). Behaviors are im-
plemented as modules that read values from a set of inputs and generate output values,
which can be sent to the motors or can be used by other behaviors. The architecture
is composed out of layers of behaviors, where behaviors in higher layers “subsume”
behaviors in lower layers, meaning that they can inhibit their inputs and overwrite
their outputs in situations where the lower level behaviors are uninformed or to imple-
ment longer term goals (for example, if the object in front of the robot is its charging
station and the robot needs to charge up, then avoiding a collision with the station
should be inhibited and instead a docking maneuver should be initiated). This design
principle ensures that only a single behavior will send its output to the motors at any
time, as higher-level behaviors will overwrite the outputs of lower-level behaviors, thus
there will be no conflicts between behaviors that produce outputs for the same motors.
Figure 2.6 shows a schematic for an example of the subsumption architecture.

AuRA

Arkin’s “Autonomous Robot Architecture (AuRA)” (Arkin, 1989), another example of
a behavior-based robot architecture, implements behaviors entirely as potential fields

22

2.4 Connectionism

(a) (b) (c)

Figure 2.7: An example of how AuRA uses potential fields in a navigation task. (a) The
task to navigate along a path is implemented as an attracting force with a constant drift
in the direction of travel. (b) When an obstacle is sensed, a repellent force is added in
its immediate surrounding to avoid a collision. (c) The combined potential field lets the
robot follow a path, here shown as black dots, that follows the desired path but avoids the
obstacle.

of forces: Obstacle-avoidance behaviors are repellent force fields, navigation behaviors
are attracting force fields. The rational behind using the potential field formulation
is that multiple behaviors can be combined simply by adding their forces together,
which results in a combined potential field. The robot monitors its environment and
instantiates new behaviors on the fly, for example when it senses an obstacle with
its range finders. As long as the obstacle is close, a repellent force is added in the
calculation of the current motor command. Figure 2.7 is an example of how AuRA
performs in robot navigation.

The potential field method is very specialized for navigation tasks and is prone
to local minima, as for example the robot can easily get trapped in simple dead-end
constelations of obstacles (Koren and Borenstein, 1991).

2.3.2 Implications

Behavior-based robots can cope easily with dynamic environments, as they continu-
ously monitor their sensors and almost immediately react with motor responses. The
behavior-based paradigm is known for producing robots with insect-like behavior. How-
ever, it has become clear that the design of purely behavior-based systems that should
achieve long-range goals and of behaviors that are more complex than “just” insect-like
is very difficult (Kortenkamp and Simmons, 2008). Also, behaviors are pre-defined by
the designer of the robot, and the learning of new behaviors is not addressed.

23

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

Input

Hidden

Output

wij

i

j

Figure 2.8: Schematic drawing of a connectionist system. Reproduced drawing from
(Rumelhart and Todd, 1993). See text for description.

2.4 Connectionism

Connectionism is the study of artificial neural networks and other networks of neuron-
like units as information processing devices (Medler, 1998). Connectionist systems oper-
ate by the parallel computation of numeric activation values of their units as a response
to the presentation of input. They store information in a distributed sub-symbolic for-
mat, instead of explicit logic rules. While artificial neural networks had already been
studied earlier (most notably the perceptron, see Rosenblatt, 1962), the idea was made
popular in cognitive science and other disciplines in the 1980s by Rumelhart and Mc-
Clelland and the PDP group (“parallel distributed processing”, McClelland and Rumel-
hart, 1986; Rumelhart and McClelland, 1986). Connectionist systems touch important
aspects of cognition that had been handled poorly by cognitivist approaches, such
as learning, generalization capabilities, graceful degradation and content-addressable
memory (cf. Medler, 1998). These systems are based on the parallel operation of many
simple processing units that are connected as a network, and store information implic-
itly in the form of numeric values, the connection weights, which are assigned to the
connections between the units. Information is processed by a parallel computation of
activation values for the units. A subset of the units, the “input units”, are allowed
to be externally activated, while the activation values of another subset of units, the
“output units”, determines the output of the system, see Figure 2.8.

Knowledge is not given to the system explicitly, as in cognitivism in the form of logic
rules, but is learned by the system through the processing of training samples. Learning
methods extract statistical information from sample pairs of input and output values,
and the network adapts its connection weights to approximate the training data. Thus,
when the connectionist methodology is applied to a given task, it needs to be decided
on the network structure on the one hand and the learning method on the other, and
suitable training data has to be collected.

24

2.4 Connectionism

Example connectionist models from the cognitive science literature include networks
that can categorize words according to their lexical role (Elman, 1991), networks that
learn and implicitly represent structural similarity as in semantic maps (McClelland
and Rogers, 2003; Rumelhart and Todd, 1993), and networks that select action primi-
tives in routine tasks (Botvinick and Plaut, 2004; Cooper and Shallice, 2000), to name
only a few. In machine learning, neural networks are commonly applied as a method
for function approximation and classification tasks (see Bishop, 2006). In robotics, a
common example is the learning of the forward and inverse kinematics functions (i.e.
how the angular positions of the robot’s joints determine the positions of its parts)
from self-generated examples (e.g. D’Souza et al., 2001; Herbort et al., 2010; Jordan
and Rumelhart, 1992; Reinhart and Steil, 2009).

All of the just mentioned works solve a particular task with a dedicated connectionist
model. Thus, these works show how specialist systems can be built that are flexible
in solving a specific task, but ultimately are limited to that single task. The goal of
cognitive architecture however, as already mentioned, is to develop a system with more
general capabilities, which can perform well in many tasks. It seems unreasonable
to assume that constructing a system as a bag of specialist components, following
a “one net, one task” policy, would lead to a success, and it is also implausible to
argue that it would suffice to simply increase the complexity (such as the number of
units) of a given model, as the success of these models strongly depends on a careful
selection of valid training data (cf. Clark, 2001, ch. 4). Instead, approaches to cognitive
architecture in the connectionist paradigm introduce a second level of structure, which
defines how individual sub-components are interconnected so as to produce a coherent
system. In the following, candidate connectionist architectures from the literature will
be described.

2.4.1 Computational Models

Brain-Based Devices

The group around Krichmar and Edelman has developed a series of neural-network-
based cognitive architectures for mobile robots, which they call “brain-based devices”,
following the research methodology to begin with developing a simple but functioning
system based on a neural network model, and continuously increasing the complexity
of the model by adding more details, such as neuromodulation, to iteratively produce
a more and more realistic implementation of an artificial brain (e.g. Fleischer and
Krichmar, 2007; Krichmar and Edelman, 2002, 2005; McKinstry et al., 2006). One
example is the robot “DARWIN VII”, which can learn to visually distinguish two types
of objects (Krichmar and Edelman, 2002). The robot’s system is composed of a set of
behaviors on the one hand, and several interconnected neural networks on the other,
and the goal of the robot is to learn about the properties of the different objects by
physically interacting with them. The layout of the system, in terms of which neurons in
which neural networks are connected how as well as which neurons activate a behavior
or receive activation from the sensors, is specified by design, while the weights of all

25

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

connections are learned online. After being activated, the robot’s behavior system
lets it drive around and approach the objects that are scattered on the ground. The
robot uses a gripper to “taste” the objects with a sensor in the gripper that measures
their conductivity: Striped objects are strongly conductive and “tasty”, and dotted
objects are weakly conductive and “disgusting”. At first, the robot has to approach
and “taste” every object. An “innate reflex” is triggered when a bad tasting object
is gripped, initiating an avoidance behavior. After several trials, the system’s neural
networks have learned to associate the visual pattern of the dotted objects with the bad
taste, and activation from the visual input is propagated via the learned associative
connections to motor representations for the avoid behavior. This lets the robot avoid
bad-tasting objects instead of approaching and gripping them. Thus, the system’s
trained neural networks extend innate behaviors by associating new sensory inputs
with the motor responses.

In models that are composed of several interconnected neural networks with differ-
ent types of pre-specified inter-network connections, such as the one of Krichmar and
Edelman (connections in their model can be either static excitatory, plastic excitatory,
or inhibitory, and can depend on a special “value” input or not), the result of training
depends on the exact layout of the whole system, i.e. which networks are how con-
nected. Furthermore, artificial neural networks have a limited capacity for how much
information they can store. If they are continuously adapted to new inputs, this can
lead to a situation where previously trained information is lost as the network adapts to
the new inputs, a problem that is known as “catastrophic interference” (French, 1999).
Thus, it is a problem to extend an already trained system with a new skill. This is
especially problematic in the case of cognitive robots that should continuously learn
new skills by interacting with their environment.

Epigenetic Robotics Architecture

Morse et al. have proposed the “Epigenetic Robotics Architecture” (ERA, Morse et al.,
2010) with the research goal to provide modeling constraints for a cognitive architecture.
They identify three main requirements for a cognitive architecture: (i) It should not
be the goal for the design of a system to make it perform perfectly in a designated
niche, but it should rather display ongoing development through interaction with the
environment. (ii) The system’s knowledge, gathered throughout its development and
emergent from its interaction with the environment, should be organized in recognizable
conceptual structures, making it transparent for investigation. Morse et al. argue that
otherwise, if the acquired knowledge is not transparent, we will ultimately not learn
much about the nature of human conceptual knowledge, even when the system has
achieved it. (iii) Lastly, the system should not be bound to a single domain of cognitive
performance, but should be scalable and allow to integrate a wide range of phenomena.

ERA is intended to provide “modeling guidelines” for the modeling of a cognitive
architecture, meaning that their formal implementation is not to be seen as a finalized
description of a cognitive architecture. It should rather be seen as a framework, which
they claim is consistent with emergentist theories of cognition, and can support further

26

2.4 Connectionism

Input A Input B

Input DInput C

’Hub’

Figure 2.9: The “basic ERA unit”: Multiple SOMs are activated by different inputs and
are associated with each other via bi-directional connections to a dedicated “hub” SOM.
Connection strengths are trained in a Hebbian way by strengthening connections between
winning units in the different SOMs. Drawing reproduced from (Morse et al., 2010).

extensions without overly constraining the models (Morse et al., 2010).

The architecture is defined as a network of building blocks, the “basic ERA unit”,
which itself is composed of several interconnected neural networks: An ERA unit is a
structured association of multiple self-organizing maps (SOMs; Kohonen, 1982), where
one of the maps is declared a “hub”, see Figure 2.9. All other maps are reciprocally
connected to the hub, connecting each neuron in the hub with all other neurons, and
Hebbian learning is applied to learn the connection weights. ERA commits to the the-
ory of “conceptual spaces” in the question of how information is represented, proposed
by Gardenfors, which states that entities are represented as points in high-dimensional
feature spaces, along dimensions such as size, color, weight, and so on, and concepts
correspond to regions in these spaces (Gardenfors, 2004). Hierarchy in ERA is imple-
mented by associating the hub SOMs of several ERA units with another SOM, which
is then the hub of an ERA unit on the next hierarchical level. Information process-
ing is implemented as a mechanism of spreading activation along learned associative
connections.

The main function of an ERA unit in the simulation experiments described by
Morse et al. is that of “priming”: By allowing activation to spread via the reciprocal
connections to units that have been previously co-activated, units become active also
when there is currently no direct input to them. Morse et al. exploit this property
to implement a model of the behavior observed in a label-learning study with 18- to
24-month-old infants, where it was demonstrated that the locations at which objects
have been previously presented is an important cue for infants when learning a new
label for the objects, and can even be a stronger cue than the visual appearance of the
target object (Smith and Samuelson, 2010). Morse et al. demonstrate that by driving
the robot into a body posture and thus “priming” the color feature that was previously

27

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

associated with that posture, a label can be associated to the object in its absence, and
report that the performance of their model, in terms of how often the label is associated
with the correct object across trials, is similar to that of infants as it was observed in
the original study (Morse et al., 2010).

As ERA is inteded as a framework for modeling cognitive architectures, the speci-
fication of the ERA unit (SOMs with associative connections) leaves quite much room
for adjustment. Many issues remain unaddressed, especially in relation to motor con-
trol, so that more specific mechanisms would have to be defined and implemented. For
example, if we assume a more complex scenario in which more than just three SOMs
are connected to each other, and there are many associative connections between them,
then the simple mechanism of spreading activation that was used in Morse et al.’s
experiment would quickly lead to an explosion of activation across the whole system,
where the majority of neurons would become active after just a few iterations, even
if only a few neurons had been activated by actual input. In an implementation of
a complete cognitive architecture that is based on ERA as a framework, one should
expect a substantial redefinition and extensions of the underlying mechanisms.

2.4.2 Implications

Connectionist models focus on learning knowledge through the discovery of statistical
regularities in training examples instead of hardcoding rules into structured represen-
tations. In turn, the success of the learning is dependent on the employed learning al-
gorithm and the selection of training examples. In most connectionist models, training
samples are selected by the designer and only contain relevant and informative samples,
which is a requirement for learning methods to work, as they can handle “noise” only
up to a certain degree. However, this cannot be assumed for a cognitive architecture
that should be able to learn in natural settings. For example, a common method to
let a robot learn how it can move its own hand is to let it fixate on said hand with its
cameras while randomly moving its arm around (e.g. Metta et al., 1999). During this
process, the system can generate training examples by associating each arm posture
with the corresponding position of its hand, as measured with its cameras. This can
then be used as training data for a neural network. However, this only works as long as
the training samples are only collected during times where the robot indeed fixates on
its own hand. If it tracks something else in between and includes the data as training
samples, this adds as noise to the training process. To prevent this from happening,
the system requires some way of maintaining that only valid training samples are used
(this issue will be discussed in more detail in Chapter 5, where also a solution will be
proposed), for example by hardcoding a hand detector. However, assuming that the
system knows apriori which training samples are relevant equates to assuming that it
is fixed by design what needs to be learned, which would open up the system for the
same kind of criticism as that against cognitivist systems. The described connectionist
architectures circumvent this problem, as the scenarios in which they are evaluated are
so limited in size that nothing irrelevant ever occurs.

28

2.5 Dynamicism

2.5 Dynamicism

For now more than a decade, dynamicism is a “third contender” (Eliasmith, 1996) as a
theory for cognition next to cognitivism and connectionism. Dynamicism advocates the
view that cognitive agents are complex dynamical systems (van Gelder, 1998), not only
in the evident sense as they dynamically control their body, but in the sense that they
actually are made up of interconnected dynamical systems. According to this view, it
is the dynamic interplay and the interaction of these coupled dynamical systems from
which overt behavior of the agent emerges (Barsalou et al., 2007; McClelland et al.,
2010; Thelen and Smith, 1996; van Gelder, 1998). This includes neural networks in
the agent’s brain, the agent’s body as a (bio-)mechanical dynamical system, as well as
the environment (Beer, 2000). All of these processes are intrinsically intertwined and
let cognition unfold continuously in time as the result of internal and external forces
(Erlhagen and Bicho, 2009). In this sense, the brain is “just another participant”(Clark,
1997, p. 479) in a complex process from which cognition and behavior emerges.

Dynamicism rejects the assumption that cognition is based on mapping external
reality onto an internal representation (van Gelder, 1998). This is certainly at odds
with the cognitivists’ view of cognition as a process of symbol manipulation. Moreover,
while many artificial neural networks are as a matter of fact dynamical systems, some
dynamicists also feel unsettled with connectionism as a research program and criticize
it for still being “too much like traditional cognitive theory” (Thelen and Smith, 1996,
p. 42), as many connectionist works aim at demonstrating symbol-like capabilities in
neural network models. Inputs are processed to establish a pattern of activation across
the network units as an internal representation of some external state of affairs. In
contrast, input to dynamical systems models rather serves as a perturbation of the
intrinsic dynamics of the system (Beer, 2000).

The dynamical systems approach to cognition assumes that the cognitive system
and the environment, both being complex dynamical systems, are tightly coupled with
each other in interaction. In contrast to purely reactive agents however, as for ex-
ample behavior-based robots designed according to the subsumption architecture (see
Section 2.3.1), the dynamical systems hypothesis maintains that the cognitive system
has its own internal state, which influences its next action. Thus, the system is not
merely reacting to external cues, but can initiate behavior and organize future action
in anticipation of expected environmental circumstances. It can react differently to the
exact same environmental circumstance, as its state can be different, and the trajectory
of its state can depend on its past experience (Beer, 1995, 2003).

As dynamicism is a relatively new development in cognitive science, most theories
can be said to currently still be case studies rather than sophisticated accounts, and
computational models are provided for “minimally cognitive agents” (Beer, 2003) rather
than robots. One notable exception is the “dynamic field theory”, which is currently
gaining momentum both in empirical work, as well as in computational modeling in
robotics. Therefore, in the next section, the dynamic field theory will be described as
a prime example of a dynamical systems theory of cognition. Computational models

29

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

of cognitive architecture in the dynamicist paradigm, including, but not limited to,
models of dynamic field theory follow in Section 2.5.2.

2.5.1 Dynamic Field Theory

The dynamic field theory (Erlhagen and Schöner, 2002; Johnson et al., 2008; Schöner
et al., 1997; Smith and Thelen, 2003; Thelen et al., 2001) has originally been developed
as a theory of how movement preparation is realized in the brain, and provides insights
into how the integration of information and decision making are realized in an embodied
format. As an example, consider the questions of how reaching movements or saccades
are prepared (Schöner et al., 1997): The target location for a reaching movement can
be specified by visual cues, auditory cues, somatosensory cues, but also from memory.
And in the presence of ambiguous information, for example when several objects are
present which could potentially be reached for, a single target location has to be picked
(Schöner et al., 1997). Moreover, when acting under time pressure, a decision might
need to be made under uncertain circumstances (i.e. before all available information
could be carefully processed). In psychophysical studies it has been demonstrated that
in a task where subjects had to produce cued movements where there was too little
time to properly react to the given cue, the subjects would produce a guessed movement
according to which cue could be expected (see Erlhagen and Schöner, 2002). If one of
the cues was more likely to occur than the others, subjects would tend to produce the
movement corresponding to that cue more frequently than the other movements.

In the cognitivist view, all of these processes would happen in the cognitive pro-
cessing stage: After sensory information from all modalities was extracted, all available
information would be integrated into an abstract world model, on the basis of which
a decision for an action would be made. This action would then be executed by the
motor stage. In contrast, the dynamic field theory proposes a model which can account
for these aspects on the basis of dynamic sensorimotor processes alone.

The theory is built around a specific type of neural network model, which was
originally proposed by Amari (Amari, 1977). It is a model of a neural field, i.e. not
simulating the behavior of individual neurons, but rather of a piece of neural tissue to
describe the firing pattern of populations of neurons. This kind of model is motivated
by the fact that the number of neurons and synapses in even a small piece of cortex
is so immense, that it can be meaningfully studied in the limit case, where space is
continuous (individual neurons are not modeled) and an activity landscape describes
the mean firing rates of neurons in the tissue (Coombes, 2006). The specific model of
Amari assumes that neurons are laterally connected in two ways: Neurons lying close
to each other are mutually excitatory, while neurons lying at range from each other
are mutually inhibitory (Amari, 1977) (a more detailed discussion of Amari’s model
will follow in Section 4.2.2). This connectivity pattern yields a number of interesting
dynamical properties in the activation pattern of the neural field, most important of
which, in the context of the dynamic field theory, is a competition-like behavior: When
input is presented to the neural field at different locations, the dynamics of the field will
eventually select a single location in the field which will remain active, while all other

30

2.5 Dynamicism

0.75

0.25

100
200

300
400

500

-1

0

1

time behavioral dimension

activation

Figure 2.10: Example of the evolution of activity in a one-dimensional dynamic neural
field over time. Upon initialization, the field activity goes to a resting level, which is
homogeneous across the whole field, with only little differences in activation due to random
noise. At time 200, two equally strong inputs are presented to the field at locations 0.25 and
0.75 in the behavioral dimension. The field reacts by first raising activation of neurons near
the candidate locations, thus being “uncertain”. At around time 300, the input at location
0.75 has won the competition due to minimal differences caused by random noise, and
dominates the activation in the form of a single strong peak of activation above threshold
(in this case zero-level).

locations are inhibited by the winning group of neurons. The dynamics of the neural
field continuously updates the activation of the field, depending both on the current
input as well as on the current state of the field itself, therefore the activation in the
field evolves over time. When one location in the field has a strong enough activation
level, it can spontaneously develop into a self-sustaining peak of activation, which will
suppress activation at other locations in the field (Amari, 1977; Erlhagen and Schöner,
2002), see Figure 2.10 for an example.

The dynamic field theory assumes that any movement is represented by a number of
parameters, such as the spacial direction of the movement, the peak velocity, the level
of force needed, and so on, which are referred to as “behavioral dimensions” (Erlhagen
and Schöner, 2002; Schöner et al., 1997). Independently of how exactly the movement
is executed and controlled, the specification of a particular movement can be seen as
the assignment of particular values to these parameters (Erlhagen and Schöner, 2002).
In the dynamic field theory, parameter values are represented as activations in dynamic
neural fields that are spanning the behavioral dimensions for a movement. For example,
to represent the target for a reaching movement, a dynamic neural field is used in which
the topographical organization corresponds to the Cartesian space of possible target
locations. The parameter spaces that are spanned by the behavioral dimensions are
continuous (Erlhagen and Schöner, 2002), as parameters describing actions normally
come from continuous domains (e.g. Cartesian space for target locations, a continuous

31

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

visual information

THU
MP!

acoustic information

dynamic neural field

Figure 2.11: Example of integration of information in a dynamic neural field. Two target
objects, a red and a blue ball, represent candidate locations for a grasping action. The blue
ball additionally produces a sound. Visual perception of the scene generates two activation
peaks as input for the neural field, auditory information only produces a single peak of
activation. Both inputs are presented to the dynamic neural field. The field dynamics
responds with a single strong peak of activation at the location of the blue ball, since the
superposition of the two inputs produces a stronger input at that location.

scale of force, and so on). Neural fields therefore can naturally be used as a represen-
tation, since their topographic organization describes a continuum of values. Although
the layout of actual cortical tissue is limited to two dimensions, an extension of neural
fields to higher-dimensional spaces is mathematically speaking straightforward1. Thus,
also parameters such as a location in three-dimensional space, or the joint position in
angular coordinates of a robot arm can be represented in high-dimensional neural fields.

The input to the dynamic neural field can come from different sources of informa-
tion. For example in the case of a field for reaching movement preparation, low-level
visual and auditory information could be used as an input for the field (seeing objects
lying somewhere, or hearing a characteristic sound of an object from some direction),
see Figure 2.11 for an example. Integration of several inputs to a dynamic neural field
is modeled as a superposition of the input signals. Other than coming from sensory
sources of information, input to a field can also represent for example task knowledge,
i.e. knowledge about locations where objects typically are (Schöner et al., 1997). Thus,
integration happens at the level of movement parametrization, where information from
different sources are combined to form candidate movement parametrizations.

When the activation level of a peak becomes strong enough to exceed a certain

1This does not mean that high-dimensional neural field representations cannot exist in the cortex.
The brain would only have to solve a mapping from a higher-dimensional layout onto a two-dimensional
tissue using neural wiring.

32

2.5 Dynamicism

threshold, then a movement is initiated (Erlhagen and Schöner, 2002). This way, the
field dynamics implements the decision-making of the system on the sensorimotor level
of representation. Erlhagen and Schöner propose to regard the threshold that deter-
mines when a movement is initiated as variable (Erlhagen and Schöner, 2002): Under
normal circumstances, the threshold is set relatively high, so that movements are only
initialized when a strong peak of activation has evolved in the field, thus representing
a clear decision for a parameter value. However, if the system is under some kind of
pressure to react (as for example when in a study a subject is instructed to perform a
movement upon hearing a signal tone), the threshold could be artificially lowered, so as
to trigger a readout of a parameter also when there is no clear winning location in the
field. Since the activation in the field evolves over time, this might result in a situation
in which a parameter value is read out shortly after a change to the inputs of the field
has occurred, and the field is still transitioning between states.

Thus, the dynamic neural field model of movement preparation has various dynam-
ical properties that determine the executed movement, depending both on the spatial
layout of locations in the input signals (due to the lateral interactions in the field), as
well as on timing. The interesting observation that makes the dynamic field theory
attractive, is that these dynamical properties correspond in several ways to the behav-
ior of subjects in psychophysical studies. For example, Erlhagen and Schöner used a
dynamic neural field model to reproduce the results of a study in which participants
were instructed to produce a certain amount of force with their index finger at a specific
point in time (after hearing a metronome click several times) (Erlhagen and Schöner,
2002). The amount of force they had to produce, which was either a low, medium or
high amount of force, was determined by one of three visual cues that was presented
to them shortly before the time when they had to perform the action. Thus, there was
a short interval of time in which participants could mentally prepare the movement.
Importantly, participants had to guess the movement if this interval was too short to
react. What was observed in the study was that, if the time interval was too short
(less than 125 ms), participants tended to produce an amount of force that was at the
center of the force scale, as a sort of “best guess”. This was evident as the responses
formed a wide distribution centered around the middle of the force scale. In contrast,
if participants had enough time to react (more than 250 ms), the distribution was nar-
row and was centered around the target level of force. The surprising finding of the
study was that the shift from the wide distribution around the center of the scale to
the narrow distribution around the target levels did not occur abruptly, so that the
one pattern would be found if the time was too short to react while the other would
be found if reacting was possible, but the shift occurred continuously with the cen-
ter of the distribution wandering off continuously from the center to the target value.
Thus, if participants had a short amount of time to process the visual cue (less than
250 ms but more than 150 ms), they tended to produce amounts of force that were
lying in between target values. These experimental results cannot be explained by a
rule-based cognitivist approach, but can be naturally accounted for by assuming the
involved processes to be dynamical systems. Erlhagen and Schöner propose that the

33

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

observed pattern of behavior is related to a property of dynamic neural fields, by which
the peak of activation gradually wanders off to a new location of high input, if it lies
close to the current location of the peak (for detail, see Erlhagen and Schöner, 2002).

The dynamic field theory has also been utilized to propose a different view than
the standard view on the processes behind cognitive development. Development is
usually seen as the continuous acquisition of new skills as being added to an existing
repertoire, where having learned one skill can enable the learning of others. Smith
and Thelen have proposed to instead think about development by regarding cognition
as a complex dynamic system, and development as change to its state space (Smith
and Thelen, 2003). They illustrate their idea through a dynamic field model of the
so-called “A-not-B error” (Thelen et al., 2001), a behavior pattern that is found in 8-
to 10-month-old infants (Piaget, 1997 [1953]): In an experimental setup, where there
are two lids placed in front of the infant, the experimenter presents a toy to the infant
and then hides it under one of the two lids (the one at “location A”). When the infant
is then allowed to reach for the lids, he or she will most likely reach for the one where
the toy was just hidden to reveal the toy. After this is repeated for several times, the
experimenter hides the toy under the other lid (at the “B location”). Even though the
infant saw the toy being hidden under the B-lid, he or she will likely still reach for
the A-lid where he or she had found the toy in the previous trials. Infants of more
than 12 months of age however will correctly lift the B-lid. This qualitative change in
behavior between the 10-th and 12-th month has traditionally been accounted for by
the development of an “object-permanence” concept, the understanding that objects
continue to exist when they are out of sight.

The model proposed by Thelen et al. gives an alternative account for the “error”
(Thelen et al., 2001). It is a dynamic neural field model similar to that of Erlhagen
and Schöner, but with an additional neural field that has a slower dynamics: Peaks of
activation in this field remain active for a longer period of time when input to them is
removed (the field has a slower decay). This “memory field” is reciprocally connected
to the motor field, it thus receives as input the activation in the motor field. This gives
the system a kind of memory of which decisions it has made across the last few trials.
The activation in the motor field however is volatile so that the time in between trial is
enough to let the activation in that field go to its resting level. In the simulation of the
A-not-B experiment, the memory field builds up a peak of activation at the A-location
across the initial A-trials. This serves as a kind of pre-activation, or “habituation”, of
the A-location for the system. Then, in the crucial B-trial, the hiding event produces a
transient strong input at the B-location, but as this input disappears, the fast dynamics
of the motor field “forgets” about the hiding event at the B-location and is dominated
by the input at the A-location coming from the memory field, which causes the system
to produce the A-not-B error (Smith and Thelen, 2003; Thelen et al., 2001). When
interpreting the neural field model as an actual model for the processes in the infant’s
brain, then the infant’s producing the error is not due to a missing object-persistency
concept, but timing is crucial for the error to occur: If the time interval between the
hiding event and the reaching movement of the infant is reduced, then the transient

34

2.5 Dynamicism

musclestouchaudition vision

memory fields

sensory fields motor fields

+

Figure 2.12: A rough illustration of how dynamic neural fields interact when combining
the models from the literature on dynamic field theory. Modality-specific dynamic neural
fields represent parameter spaces, on the sensory side for example of visually perceived
locations or colors, and on the motor side for the preparation of movements, for example
as target locations or force levels. Integration of information coming from multiple sources
happens as a superposition of input signals, here exemplarily depicted as the integration of
information from multiple modalities for movement preparation. Additionally, fields that
do not receive direct input from the senses exist, such as in the case of memory fields that
are reciprocally connected to other fields.

input of the hiding even should not yet have disappeared from the activation of the
fields. Thus, the model predicts that when the time interval is reduced, i.e. infants
are allowed more quickly to reach for the lids, then also the 8- to 10-month-old infants
should not produce the A-not-B error, which is indeed the case (Smith and Thelen,
2003). Thus, Smith and Thelen argue that the development that occurs between the
10-th and the 12-th month of age in infants should not be seen as the acquisition of a
single new mechanism, but that the change is to be found in the dynamics of a complex,
distributed dynamic system (Smith and Thelen, 2003).

All of the work on dynamic field theory that has been cited so far was related
to motor and perceptual tasks. It describes a detailed dynamic neural model of how
information is integrated and decisions are formed on the basis of low-level sensorimo-
tor representations in the neural fields. As such, the theory provides helpful insights
into what processes operating on sensorimotor representations might be involved in
perception, decision making, and working memory. It assumes representations in to-
pographically organized neural field, to which input is mapped from different sources.
The neural fields code information as continuous activation landscapes, where hypothe-
ses are constantly competing against each other. Hypotheses are formed from inputs
coming from the senses, as well as from connections between neural fields, for example
in the case of memory fields that build up memory traces of past motor responses.
Figure 2.12 is a schematic representation that should illustrate how the dynamic field
theory describes the interconnections between neural fields, as well as in- and outputs.

From what is known about the structure of the cortex, dynamic neural field repre-
sentations would most likely be found in the sensorimotor cortices, since topographically

35

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

organized representations have been identified in those regions (e.g. Amari, 1980). And
indeed, the fact that predictions made by the theory about how changes to stimuli
influence overt behavior and responses of subjects could be tested and confirmed in
follow-up studies, seems to support the model. This, and the fact that work on dy-
namic field theory concentrates around sensorimotor aspects of cognition, could lead to
the conclusion that the dynamic field theory can only explain data related to low-level
sensory and motor information processing. More recently however, Johnson et al. have
shown that the same principles (and parameters) of dynamic neural field models can
be applied across different tasks, not only in the motor domain (Johnson et al., 2008).
They provided simulation results of models for spatial visual working memory, as well
as for color and shape representations, which reproduced results from psychophysical
studies. Johnson et al. use these results to argue that the dynamic neural field may
be a universal mechanism across all levels of cognition, as a kind of building block for
cognitive architecture.

The dynamic field theory sees cognition as intrinsically integrated and as the result
of a complex, dynamic system in a close coupling with the environment. It is thus to
be contrasted with the approach to model and test sub-systems of cognition separately
before integrating them into a whole system. However, by building dynamic neural field
models of sub-systems that allow to make measurable predictions, it allows for “rigorous
hypothesis testing” (Johnson et al., 2008). On the one hand, this is a strength of the
dynamic field theory, but on the other hand it still is also its weakness: In its current
level of specification, the theory only covers small patches of cognition and leaves many
issues unaddressed. The models are hand-crafted to prove certain points, inputs are
specified beforehand and learning is not addressed1.

2.5.2 Computational Models

Cognitive Architectures Based on the Dynamic Field Theory

Appart from the computational models of the dynamic field theory that have already
been mentioned above, the methodological framework of the theory has also been ap-
plied to several robot studies, where it has in particular been used to implement plan-
ing, decision making, information integration and working memory capabilities (Bicho
et al., 2010; Erlhagen et al., 2006; Sandamirskaya and Schöner, 2010). All of these
implementations use a set of interconnected dynamic neural fields to implement the
main functionality of the model. The fields interface to sensory and motor modules,
which provide input to the fields from the sensors and readout parameters from the

1This statement only applies to computational models that are directly linked to the dynamic
field theory. Learning between (non-dynamic) neural fields in general (for example in the form of
Hebbian learning between self-organizing maps) has of course been studied in the literature (e.g. Li
et al., 2004; Morse et al., 2010; Westerman and Miranda, 2002), however it has not been applied to
cognitive architectures and computational models based on the dynamic field theory. Notably, Gläser
et al. demonstrated that also the lateral (inhibitory and excitatory) connections inside a dynamic neural
field can be learned in a data-driven way (Gläser et al., 2009; Gläser, 2012).

36

2.5 Dynamicism

fields for the execution of actions. The behavior of the robot is therefore governed by
the intrinsic activation dynamics of the coupled dynamic neural fields.

For example, Erlhagen et al. utilize three interconnected dynamic neural fields in
their model for joint action tasks (Erlhagen et al., 2006). Two simulated mobile robots
are situated in an arena with two objects and two goal locations, and the task of the
robots is to bring both objects to their respective goal locations. To be effective, the
robots have to coordinate their actions, such that both objects are handled simultane-
ously. The three fields represent the current locations of the two objects, a short-term
anticipation of the position of the other robot, and a movement target for the position
of the robot itself, respectively. Inputs are provided to the fields in the form of peaks
of activation, thus for example the field representing the locations of the objects has as
input an activation landscape with two peaks (similar to the field shown in Figure 2.10).
The activation dynamics of the field representing the movement target of the robot is
tuned to implement a winner-take-all mechanism to select among multiple candidate
targets. It receives excitatory input from the field representing the locations of the two
objects, and inhibitory input from the anticipated location of the other robot. Thus,
when the other robot approaches one object, the input to the field of movement targets
at the location of this object becomes weaker due to the inhibitory input, which leads
the activation dynamics of the field to select the other location.

Similarly, to implement collaborative behavior for human-robot interaction in a
joint assembly task, Bicho et al. utilize a model with several interconnected dynamic
neural fields to select among multiple primitive actions of the robot, such as pointing
to a part or picking up a part and handing it over to the human collaboration partner
(Bicho et al., 2010). The primitive actions are represented in a one-dimensional dynamic
neural field along an abstract behavioral dimension. Input is provided to the field at
eleven equidistant locations, representing the robot’s eleven available action primitives.
Each action primitive receives input from different sources, for example when the robot
parses a spoken command from the human interaction partner or when it sees him reach
for a certain part. In this way, rule-like functionality is implemented in the model
via the connections linking the different fields together (for example, if the human
reaches for a bolt, the robot’s primitive action to give him a nut receives input). Bicho
et al. argue that the direct link between sensory inputs (such as observed actions of
the collaboration partner) and action execution, combined with the dynamic decision
making in the neural fields, avoids the need to couple a high-level deliberative layer
with a low-level reactive layer (Bicho et al., 2010), as in hybrid control architectures
(see Section 2.2.2).

Sandamirskaya et al. propose an alternative implementation for rule-like function-
ality in a dynamic neural field model. They utilize an additional dynamic structure,
which they call an “elementary behavior”, consisting of three reciprocally coupled neu-
rons (Sandamirskaya et al., 2011). The activation of the neurons is governed by a
dynamics similar to the Amari dynamics used in dynamic neural fields. Each elemen-
tary behavior is tied to a primitive action of the robot, such as “close gripper”. The
neurons of the elementary behaviors explicitly represent a rule-like structure, with one

37

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

Global Workspace

Parallel Unconscious
Specialist Processes

Figure 2.13: Organization principle of brain processes as proposed by the global
workspace theory. Many specialist processes operate in parallel and compete for writ-
ing access to the global workspace. Winning specialist processes fill the global workspace
with their reply, which is then broadcast to all specialist processes. Drawing reproduced
from (Shanahan, 2006).

of the neurons representing a precondition for the triggering of the linked primitive
action, and another one representing the intended outcome of the action (e.g. “gripper
closed”). Thus, by providing their system with elementary behaviors for each primitive
action and coupling the respective neurons coding for preconditions and intended out-
comes, Sandamirskaya et al. endow their model with a kind of serial order for action
execution (Sandamirskaya et al., 2011).

The Global Workspace Architecture

Shanahan proposes a cognitive architecture and its implementation in a dynamical
system (Shanahan, 2006; Shanahan and Connor, 2008; Shanahan, 2008, 2012) based
on the “global workspace” theory of consciousness (Baars, 2002; Shanahan and Baars,
2005). It proposes that conscious experience is the result of the process of communica-
tion between a wide range of sub-conscious brain processes. The theory suggests that
information exchange between specialist processes is realized in the brain through a
dedicated memory, the global workspace, which can only hold one consistent entry at
a time. The specialist processes compete for privileged access to this limited capacity
storage. All processes are allowed to read from the global workspace, but only a win-
ning coalition of processes is allowed to fill the memory with new content. According
to the theory, the serial nature of concious thought arises from the massively parallel
operation of the brain through this system of information exchange: While many pro-
cesses are at operation in parallel, the global workspace can only hold a single thread
of information. Figure 2.13 is a schematic drawing of the organization principle behind
the global workspace architecture.

While similar concepts of a shared memory for the communication between pro-
cesses have already been proposed in the field of artificial intelligence, the global
workspace theory assumes a dynamic, sub-symbolic mechanism behind the memory.

38

2.5 Dynamicism

Shanahan argues that it is based on cortical circuits with recurrent connections, which
implement a dynamical system that defines an attractor landscape, and perceptual
categories become its attractors (Shanahan, 2006). When the global workspace has
reached a stable state in one of the attractors, the specialist processes read the infor-
mation and evaluate if it is relevant to them, in which case they try to gain access to
the global workspace to broadcast their reply by driving it into a new stable state.

In a proof-of-concept simulation experiment, Shanahan demonstrates the function-
ing of the architecture in a scenario where a robot has to decide for one of three
possible actions based on the current sensory input (Shanahan, 2006). A mobile robot
faces three differently colored objects, with the one in the middle being the only in its
field of view. The robot can either turn left to face the object on the left, turn right to
face the object on the right, or move forward to approach the object that it is currently
facing. Only one of the actions will produce a reward. Shanahan demonstrates that
the system, after having learned a forward model for each action, is able to simulate
the action outcomes via the global workspace and to select the rewarding action. In a
followup study, Shanahan demonstrated that a global workspace can be implemented
in a biologically plausible spiking neural network model (Shanahan, 2008). The model
is a simulation of the firing pattern of several cortical clusters, some of which represent
an abstraction of a forward model, and others corresponding to the global workspace.
The clusters belonging to the global workspace exhibit a dynamics of activation that
synchronizes their activation patterns. Each forward model sends its output to one of
the clusters of the global workspace, which can trigger an instability and drive the whole
set of connected global workspace clusters into a new stable state, which corresponds
to the output of the forward model.

The global workspace architecture envisions two kinds of modules to be central to
the organization of the cognitive architecture. On the one hand, the main functionality
of the system is based on a set of forward models of primitive actions, which can
predict the next stable state of sensory input that would result from executing the
associated primitive action. On the other hand, a distributed set of clusters of neurons
implements the global workspace, which acts as a shared memory and as the basis
of communication between the forward models and other processes. The architecture
is thus composed of two sensorimotor loops: One, which is closed externally through
the effectors and sensors of the robot and its interaction with the environment, and
one which is closed internally through which the system can simulate its actions and
evaluate their outcome prior to executing them (Shanahan, 2006). The selection of an
action is partly due to the importance that the individual forward models themselves
report for their selection, and partly due to a value-based selection mechanism. The
forward model that currently has the highest importance gains access to the global
workspace and simulates the outcome of its execution. The predicted sensory input
that is the result of this simulation is then evaluated by a value system, which either
promotes the importance of the action, in which case it becomes subject to actual
execution by the robot’s effectors, or demotes the importance of the action, in which
case another forward model will have the highest importance and is allowed to broadcast
its simulation of predicted sensory input.

39

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

2.5.3 Implications

Dynamicism sees cognition as the emergent result of the interaction of several complex
dynamical systems, including the agent’s (artificial) central nervous system, its body
and the environment. In its strongest form, dynamicism completely rejects the view
that cognition is based on an internal representation of some external state of affairs, be
it in the form of symbols, or be it in the form of distributed activation patterns (Thelen
and Smith, 1996; van Gelder, 1998). Instead, it is argued that the internal dynamics
is influenced by environmental forces, for example in the form of sensory input. Thus,
studies of dynamicist computational models primarily focus on how the behavior of
situated dynamical systems unfolds over time through the dynamic interaction between
the systems and their environment.

The presented cognitive architectures demonstrate how various cognitive functions
can be explained by the intrinsic dynamics of a system of multiple interconnected
dynamical systems, without relying on any form of high-level processing. Both the
global workspace model as well as the models based on the dynamic field theory show
the capability to decide for one of several possible courses of action. In the case of
the global workspace architecture, this is the selection of one out of several action
primitives, which are represented by forward models as distinct units of knowledge
with no lateral interaction. In the case of the dynamic field theory, the selection can
either be that of a specific value for a parameter of an action, such as the target of a
movement, or the selection of one of several primitive actions, which are arranged along
an abstract dimension. In either case, knowledge is stored in the dynamic field theory
architectures by the way that input is directed to the fields, for example by mapping
possible movement targets onto the action parametrization for approaching them, or
by associating discrete events with responses. In contrast to connectionist models,
existing cognitive architectures based on the dynamicist paradigm do not account for
the learning of the knowledge, but in the experiments it is assumed that the system
has already acquired it somehow1. In effect, knowledge is provided by the designer to
the system in these cases, in a more or less explicit form. This is either the mapping of
a sensory input onto a motor space, or a dynamical systems version of discrete rules:
If some precondition is satisfied, then reinforce an attractor point in the system’s state
space that represents the appropriate motor response (e.g. if facing a red object, turn
left; if the human interaction partner reaches for the bolt, hand over the nut; etc.)

This implementation of distinct rule-like structures can be seen as a limiting factor
of current cognitive architectures in the dynamicist paradigm. While the dynamicist
theories advance the provocative view that cognition is the emergent result of how
the internal state of a system is dynamically and flexibly influenced, bent and changed
under environmental forces, the current computational models cannot be said to provide
an adequate account to reflect this view. They boil down to a dynamical systems
implementation of one particular decision-making heuristic for choosing one solution
among a set of discrete candidates. The overall flexibility of the system is then again

1Which of course does not mean that learning in a dynamic neural field representation is not
possible (see e.g. Gläser, 2012, ch. 3).

40

2.6 Discussion

determined by how flexible the primitive action controllers and event classifiers have
been implemented by the designer. Those models that do not make use of discrete
action primitives, such as the model used by Erlhagen et al. for the collaborative robot
scenario, implement simple mappings from inputs onto the state space of the dynamical
system (in their case mapping positions of objects and of the robot collaboration partner
as attractors states onto a space of movement targets, both represented in Cartesian
space), producing similar results as behavior-based robotics.

What makes the dynamicist theories attractive is their ability to elegantly explain
subtle effects of timing and continuity in behavior, but this characteristic is insufficiently
presented in current computational cognitive architectures.

2.6 Discussion

This chapter gave an overview of current cognitive architectures in robotics. As the
definition of each architecture is based on specific assumptions about the nature of
cognition, the description was embedded into an introduction to the five currently
predominant paradigms in the field of computational models of cognition: Cognitivist
and hybrid architectures on the one hand, and emergentist architectures (behavior-
based robotics, connectionism, and dynamicism) on the other.

Architectures based on the cognitivist paradigm, and hybrid architectures along
with them, assume that cognition is a form of computation operating on a symbolic
representation of the world. High-level cognitive function is seen as a process separate
from low-level sensorimotor functions. This allows to treat cognition as an abstract
problem and to employ algorithmic solutions, which can produce impressive results as
long as the environment and the problem are sufficiently well modeled by the designer.
However, as already noted earlier, this approach leads to difficult problems regarding
flexibility, complexity and the question of how to determine what is relevant in a given
context, which limits the applicability of current cognitivist systems either to very
specific tasks, or to rather sterile laboratory environments (Christensen, 2004; Clark,
2002; MacDorman, 1999; Stoytchev, 2006; Weng et al., 2001).

In contrast, emergentist approaches pursue a bottom-up approach to modeling cog-
nition by proceeding from low-level sensorimotor processes. Behavior-based robotics
directly addresses the problem of cognitivist systems in coping with dynamically chang-
ing real-world situations by tightly coupling motor responses to sensory cues. The
problem of relevance is solved in this way, as each behavior of the robot is provided
with a dedicated detection device for low-level sensory input that determines whether
the behavior is relevant or not. However, the design of behavior-based robots has
proven to be difficult, which effectively limits the approach to robots with insect-like
behavior. Connectionism on the other hand emphasizes the importance of learning in
a cognitive system. Here, knowledge is acquired by the system by finding statistical
regularities in training examples, rather than being explicitly provided by the designer.
While this can in principle be regarded as a necessary and powerful system property,
also current connectionist architectures seem to be limited to small-scale scenarios, as

41

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

they too are affected by the problem of relevance detection (see Section 2.4.2). Finally,
dynamicism argues that the dynamic interaction between the system, its body and the
environment is key to cognition, rather than mapping external reality onto internal rep-
resentations. Dynamicist architectures demonstrate how cognitive tasks can be solved
by coupled dynamical systems, which renders them equally adept at handling dynamic
environments as the behavior-based architectures while promising to be better transfer-
able to more complex task settings. However, current dynamicist architectures rely on
hand designed, rule-like knowledge, which also limits their applicability to small-scale
scenarios.

A fundamental problem in the endeavor to model cognition is to find the right level
of abstraction for the model. Among the current approaches, connectionism assumes
the lowest level of abstraction as its models are based on what is known about the
electrophysiology and neurochemistry of the brain. Still, this is by no means the low-
est possible level of abstraction, as the standard mathematical model of a neuron is
already a very strong abstraction of the biological neuron, which is indeed far more
complex. Dynamicism is based on the study of low-level processes as well, studying the
cognitive system as a composition of coupled dynamical systems, but abstracts to a
large extent the details of neural implementation away (even though most dynamicist
models still use dynamic neural network models). Further up the scale of abstraction
comes behavior-based robotics, which does not necessarily aim at building a model of
the biological brain, but is rather an engineering approach that addresses concrete diffi-
culties in the modeling of intelligent robots. Finally, at the highest level of abstraction,
cognitivism studies cognition entirely as an abstract problem and supposes the brain
to be an arbitrary implementation of an abstract problem solving machine.

If there was a way to objectively measure and correlate task complexity, generality
and level of abstraction for cognitive architectures, we should expect to find two trends
for current cognitive architectures: A negative correlation between feasible task com-
plexity and generality, as well as a negative correlation between level of abstraction and
generality (see Figure 2.14). Cognitivist architectures, on the upper extreme of the level
of abstraction, can benefit from hand-crafted task knowledge provided by the human
designer. This gives them an advantage over the other paradigms when it comes to task
complexity, so that they currently are applicable to the most complex tasks as compared
to the other approaches. However, the resulting systems tend to be very specialized
to the scenario that they were prepared for and demonstrate poor task generality. On
the lower extreme, connectionist systems commit to generating all knowledge entirely
by learning from observations. Although this approach promises to be extremely task
general, powerful enough learning methods first need to be found. Current systems
only perform well if the training examples that are provided for learning come from
a limited domain, while learning in truly natural settings is not yet feasible. While
most neural network models use homogeneous network layouts apart from defining an
input layer, an output layer and a number of hidden layers, connectionist approaches to
cognitive architecture seem to agree that an additional level of structure is necessary to
address the complexity of the task (although it has also been argued that hierarchical

42

2.6 Discussion

task complexity

generality

level of abstraction

cognitivist
architectures

neural network
based architectures

dynamical systems
architectures

behavior-based
robotics

cognitive functions

cortical networks

cortical maps

neurons

Figure 2.14: Visualization of a hypothetical space measuring task complexity, generality
and level of abstraction for cognitive architectures. Current cognitive architectures are
restricted to the blue region, meaning that the more general an approach is, the less
complex the feasible task complexity is. Note that this is not claimed to be a theoretical
necessity, but is merely an observation of the current state of cognitive architectures across
the different paradigms.

structure can emerge implicitly in layered neural networks, Botvinick and Plaut, 2004;
Yamashita and Tani, 2008). The definition of this additional level of structure can
either be a complete layout of the whole system, as in the case of brain-based devices,
or in the form of a generic building block, as in the case of ERA. Either case adds
to the level of abstraction as composed to a general neural network architecture. The
former gives a higher immediate gain in tractable task complexity whereas the latter
should in principle provide a more general system. In between cognitivism and con-
nectionism in both trends would lie behavior-based robotics and dynamicism. While
dynamicist theory describes a less structured and more general cognitive system, com-
putational models in the paradigm use hand-defined knowledge, which renders them
more structured and task-specific (see Section 2.5.3).

A successful cognitive architecture should both be general and cope well in com-
plex tasks. Thus, independently of the paradigm chosen as motivation for research
in cognitive architecture, making progress would equate to improving either (or both)
task complexity or generality as compared to existing approaches, without regressing
in the respective other. With the goal to make such progress and to address some of
the difficulties of current cognitive architectures, in the next chapter it will be proposed
to use recent developments in Psychology as inspiration, where some accounts regard
cognition as inherently relying on sensorimotor processes in the brain and thus sub-
scribe to the emergentist view, but at the same time propose a particular mechanism
for the representation of knowledge in a more structured way than connectionism and

43

2. COGNITIVE ARCHITECTURE: OVERVIEW OF THEORETICAL
PARADIGMS AND COMPUTATIONAL MODELS

dynamicism assume. This mechanism is based on an active element of the cognitive
system, which is claimed to be in line with recent findings in neuroscience. Thus, this
view assumes an intermediate level of abstraction while remaining flexible enough to
support a more general applicability. Later on in this work, it will be demonstrated
that a system can acquire these active elements through its own sensorimotor experi-
ence, and a possible way to address the problem of relevance in the learning process
will be proposed.

44

3

A New Cognitive Architecture
Based on Embodied Simulation

The last chapter gave an introduction to the different currently predominant paradigms
to studying cognition in general, and cognitive architecture in robotics in particular. On
the one hand, cognitivism is based on the use of explicit symbolic representations and
posits a clear-cut separation between low-level sensorimotor processes and high-level
cognition. On the other hand, emergentist views postulate that it can be misleading to
study the problem of cognition on an abstract level, i.e. separately from its implemen-
tation and its embodiment. Instead, the study of low-level processes in natural systems
should be the starting point. Overt behavior is seen as the result of covert dynamical
processes. By exploring what is possible in models of these low-level processes and
seeing limitations as useful scaffolding constraints for the modeling, cognitive functions
are explained as the emergent result of the cooperation of simpler functional elements.

The different emergentist approaches commit to certain methodologies for the mod-
eling of system components: Behaviors, neural networks or dynamical systems. Inde-
pendent of this choice, it remains an open research question, how to design an emer-
gentist system on the architectural level (i.e. the connectivity between subsystems).
There are two different approaches: Either the subsystem inter-connectivity is speci-
fied by design, which however limits what the system can learn as it cannot discover
contingencies that are not covered by its fixed connections. Or a generic building block
is introduced, which can be regarded as the more general solution, as it opens the
system up to open-ended learning at least in principle. From the architectures that
were described in the last chapter, behavior-based robotics, brain-based devices and
the dynamic field theory models can be counted to the former class, while ERA and
the global workspace architecture can be counted to the latter class. However, as al-
ready mentioned in the discussion of these architectures, there are several limitations
to the way they implement building blocks: On the one hand, mechanisms in ERA are
intentionally underspecified, as it is meant to be a guideline for modeling instead of a
proper cognitive architecture on its own. This has the consequence that it cannot be
directly transferred to many scenarios, as for example problems related to motor con-

45

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

trol remain unaddressed, and scalability is most likely an issue. On the other hand, the
global workspace architecture relies on distinct forward models as its building blocks,
with no lateral interaction at all, and all communication between building blocks hap-
pens via the global workspace as a shared memory. This has the consequence that
the system implements a very strict winner-take-all competition, where only a single
building block is active at a time, for example to produce a motor command in response
to a sensory cue (although Shanahan mentions that a “winning coalition of processes”
(Shanahan, 2006, p. 438) could broadcast information to the global workspace instead
of only single winning models, however this feature is neither present in the implemen-
tation of the architecture, nor explained in more detail). This is disadvantageous, as
it limits the flexibility of the system to that of its individual motor primitives, a gen-
eral issue with regards to the integration of building blocks in a cognitive architecture,
which will be discussed in detail in Chapter 4.

In this chapter, the concept of “embodied simulation” will be introduced, with the
goal to establish that it is a suitable mechanism for a cognitive architecture, which
supports the modeling of a generic building block that can address some of the above
mentioned difficulties and grounds the model in a comprehensive body of theoreti-
cal, as well as empirical work on cognition. The concept of embodied simulation has
recently been proposed in the psychology and neuroscience literature (see Barsalou,
2008; Gallese, 2005), and has been used in explaining various cognitive functions, such
as memory, representation, categorization, integration of multimodal information, de-
cision making, concept formation, or language, in an emergentist framework. It is part
of arguments in favor of an embodied view of cognition, which represents the idea that
the body is not simply the acting organ of the cognitive system, but that cognition
is directly influenced in many fundamental and important ways by the body and its
situatedness in the environment (Barsalou, 1999; Beer, 2000; Clark, 1997; Pfeifer and
Scheier, 2001; Varela et al., 1991). Theories of embodied cognition seek to explain all
of cognition as closely tied to bodily states, and therefore strongly reject the cognitivist
view according to which sensorimotor processes and cognitive functions are separated
in the brain (cf. Section 2.2). There is agreement among these theories that descriptions
of cognitive functions as the manipulation of symbolic representations can at most be
understood as idealized views on actual brain processes. Instead it is highlighted that
many cognitive functions do not necessitate any form of abstract processing, but that
instead they can be explained on the basis of simpler sensorimotor processes. There-
fore, theories of embodied cognition either postulate that higher cognitive functions
inherently rely on making use of sensorimotor representations in the brain, or that
there is no such thing as higher cognitive function and all of cognition emerges from
interacting low-level processes.

The behavior-based robotics paradigm has played a pivotal role in the development
of the embodied cognition thesis, as here it was demonstrated that physically capable
robots could be constructed that did not rely on an abstract representation of the world
or were reasoning about their situation on an abstract level. Also, as the dynamicist
paradigm assumes that the environment perturbs the dynamical cognitive system and

46

3.1 Theoretical Background on Embodied Cognition

thus helps shape the process of cognition, dynamicism too can be said to be an em-
bodied view of cognition (and is therefore sometimes also referred to as “embodied
dynamicism”, cf. Thompson, 2007).

In pursuing the goal of this thesis to identify basic elements from which a cognitive
architecture for a robot might be built, this chapter will focus on the question: What are
the building blocks of cognition, and what are their nature? Important concepts that
will come up are “schemata” and “simulators”, for which it will be tried to develop
a clear enough understanding to support their modeling in a computational system.
Therefore, in the following, first some of the prime empirical evidences in favor of an
embodied view of cognition will be introduced in Section 3.1, followed by a description
of the “convergence-divergence model” in Section 3.1.1, which is often referred to in
the context of theories of embodied cognition as a neuroscientifically plausible model of
cortical organization to support embodied simulation. In Section 3.1.2, representative
accounts from the psychology and neuroscience literature for conceptual processing
on the basis of embodied simulation will be presented. Many of the ideas that are
used in these theories are borrowed from a concept that has a longstanding history in
psychology, which is the concept of schema. This is especially worth mentioning as
several existing computational models in the fields of artificial intelligence and robotics
are based on that concept. Therefore, in Section 3.1.3 a short introduction to the
historical development of the concept of schema will be given and a comparisons to the
theories of embodied cognition will be drawn. Section 3.1.4 summarizes the discussed
theories and provides a compact description of the core properties of what constitutes
a basic element of the cognitive system. Finally, Section 3.3 proposes to combine
theoretical views of embodied simulation and of the dynamic field theory in a way
that the two can be mutually supportive, and describes a new cognitive architecture
based on a building block that incorporates these ideas. Section 3.3.3 compiles the
theoretical considerations into a list of concrete system properties, which directly guides
the computational modeling described in the following chapters.

3.1 Theoretical Background on Embodied Cognition

Most of the arguments put forward in favor of an embodied view of cognition are based
on the discovery that sensorimotor areas in the brain are also activated in conceptual
tasks that do not demand sensory processing or a motor act. This is against any predic-
tion one would make when assuming a strict correspondence between cortical regions
and cognitive functions. Why would a mathematical task activate a brain region that
is responsible for controlling hand movement? However, exactly this kind of response
pattern is found in the brain (Zago et al., 2001), along with a multitude of other effects
where sensorimotor regions are active in conceptual tasks. One of the most striking
findings in this direction is that language processing, long having been seen as the
flagship cognitive ability, with its syntax and symbolic rules inherently conceptual, also
activates sensorimotor regions. For example, Pulvermüller and colleagues demonstrated
in brain imaging studies that in the processing of action words, such as “lick”, “pick”

47

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

and “kick”, activation can be found not only in regions in the auditory cortex and brain
regions that have long been associated with language processing, such as Broca’s area,
but also in regions in the motor cortex that are otherwise used in motor performance
of the mouth, hands and legs, respectively (Pulvermüller, 2005).

Other studies have shown that viewing and naming pictures of man-made tools
involved activation in the premotor cortex (Chao and Martin, 2000). These findings
point to the interpretation that the brain uses a very distributed neural representa-
tion to process entities or events, both when actually perceiving or acting, as well as
when conceptualizing in their absence (Gallese and Lakoff, 2005). Furthermore, this
distributed representation seems not to rely on cortical regions that are designated to
represent and manipulate in an abstract format, but it seems to inherently rely on sen-
sorimotor regions of the cortex, namely those regions that are involved in sensorimotor
experience of that entity or event (Barsalou, 1999). This view is further supported by
studies on mental imagery, where it was found that when subjects imagined performing
an action, it took them a comparable amount of time as when they actually performed
the action physically (Decety et al., 1989), and in brain imaging studies it could further
be confirmed that parts of the motor cortex were both active during mentally imagining
the execution of an action as when physically performing it (Decety et al., 1994).

Based on these empirical evidences, theories of embodied cognition formulate ac-
counts for cognitive functions as products of sensorimotor processes, rather than of
abstract manipulations of symbolic representations. Therefore they attack cognitivism
with Occam’s Razor (Gallese and Lakoff, 2005): Positing the existence of abstract sym-
bolic representations and mechanisms that manipulate them is not required to explain
cognitive functions. Instead, accounts can be formulated that only involve sensorimotor
processes. Thus, since the sensorimotor processes are necessary in any cognitive system
(also symbol manipulating cognitive agents would need sensorimotor processes for their
motor control), postulating mechanisms that manipulate abstract symbolic represen-
tations for cognitive functions that the sensorimotor processes already provide without
symbolic representations would be redundant. Therefore, while it might be difficult up
to impossible to completely refute theories that see cognition as the manipulation of
abstract symbolic representations, embodied views on cognition offer simpler and more
elegant explanations (Beer, 2003).

3.1.1 The Convergence-Divergence Model

Damasio’s convergence-divergence model (Damasio, 1989; Meyer and Damasio, 2009)
is one of the earliest contemporary theories to propose that sensorimotor processes in
the brain do the work of what would otherwise have been accounted to a module of
cognition. To establish how processes like memory and high-level perception can be
supported by the physiological structure provided by the cortex, Damasio emphasizes
that connections between regions of the cortex follow a direction, and that there are
not only connections going from “bottom” to “top”, i.e. from the primary sensory and
motor cortices to association areas, but just as importantly also the other way around.
He looked at evidences from several cases of disorders caused by localized damage to

48

3.1 Theoretical Background on Embodied Cognition

association areas in the cortex and symptoms that they caused. For example, a patient
was well able to describe the contents of a photograph, for example one taken at a
birthday party, in very much detail and indistinguishable from the performance that
one would expect from a healthy person. What the subject was not able to do however
was to recognize that the picture was actually one taken at his own birthday party.
Damasio concluded from this that what had been damaged in the patient was not the
ability to perceive, act and reason in the world on a generic level, but it was the recall
of specific entities or events that was hindered (Damasio, 1989).

This performance of the patients is difficult to explain with cognitivism’s informa-
tion processing metaphor of the brain’s organization, according to which the integration
of sensory information happens higher “upstream” in the cortical hierarchy, since these
areas were damaged. Damasio proposed a different view, positing that the rich percep-
tual experience of entities and events that we have in our everyday life does not require
that information has passed the complete sensory processing machinery of the brain.
He argues that the recording of activity in integrative cortical regions cannot be said
to correspond to the conscious experience of perceiving some entity or event (Damasio,
1989). The subjective experience of an integrated sensory and motor perception, for ex-
ample when touching, seeing and smelling an apple, does not rely on the transformation
of sensorimotor information into an “integrated” neural representation in an associa-
tion area. Instead, he proposes that a distributed activation at different locations in the
sensory and motor areas of the cortex gives rise to the experience. What integrates the
different modalities is the simultaneity of the activation, in a “time-locked co-activation
of geographically separate sites of neural activity within sensory and motor cortices”
(Damasio, 1989, p. 39). Because the visual perception of the apple occurs at the same
time as the haptic perception, we perceive the two as belonging together to the event
of us touching an apple.

Nonetheless, the association areas that are found across the cortex do extract in-
formation about correlations in the firing of neurons in “earlier” regions (meaning
topographically closer to the primary sensory and motor cortices) that they are con-
nected to. However, according to Damasio’s model, this does not serve the purpose of
creating a multi-modal, integrated representation of entities and events in the world in
the form of abstract symbols, but instead their function is to support recall of specific
instances. For example, an association area in the visual cortex could learn about the
usual color of an object that has the shape of an apple. However, information does not
flow uni-directionally towards integrative cortical areas to integrate sensory informa-
tion, but the reverse direction is just as essential. It is used during recall to reactivate,
or reconstruct, the activation in the early sensory and motor areas. The activation
in association areas therefore does not represent in place of the sensorimotor areas.
Activation of a group of neurons or even single cells in higher cortical areas does not
induce a memory or the experience of perceiving something by themselves, it has to
be accompanied by the activation of sensory and motor areas. In other words, there is
no such thing as the infamous “grandmother cell”, that all by itself represents all the
memory of the own grandmother, but a whole network of interconnected regions needs

49

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

to be in place to store the memories. Also, much of what we know about specific enti-
ties or events (our grandmother, or our own birthday party, etc.) relies on our generic
knowledge that is encoded in regions closer to the sensorimotor regions (what elderly
women look like, etc.), as demonstrated in the case of the subject who could still reason
on a generic level about the photograph of its own birthday party, despite the damage
to an association area. More distal regions are responsible for bringing together specific
activation patterns across the sensorimotor regions, to represent memories of specific
entities and events, but their activation always needs to be accompanied by activations
in the sensorimotor regions. In fact, their purpose is to reactivate sensorimotor regions
in a coherent way.

This view establishes a model of cortical organization that reaffirms the hierarchical
structure via association areas, but stresses the importance of top-down connections.
It further proposes a different function for association areas than in the information
processing metaphor. Damasio posits structures in association cortices, which he calls
“convergence-divergence zones (CDZ)”, that store records about how to combinatorially
arrange knowledge fragments in earlier cortices so as to represent an object or an event
comprehensively (Damasio, 1989; Meyer and Damasio, 2009). The CDZs exist across all
levels of cortical organization, first inside the sensory and motor cortices as modality-
specific CDZs, and on top of these, higher association areas house cross-modal CDZs
that allow the integration of more and more multi-modal information. See Figure 3.1
for a schematic drawing of the model.

3.1.2 Embodied Concepts and Embodied Simulation

The implemented models in the behavior-based robotics domain and of the dynamic
neural field theory might seem to suggest that in an emergentist’s view, there is no need
for concepts: Behavior can be generated using close couplings between sensors and actu-
ators, information can be integrated and decisions be made without the need to extract
abstract representations from the sensory input. However, Damasio’s convergence-
divergence model does hint at a way in which also concepts can be understood more
“embodied”, i.e. closely related to bodily states: Damasio proposed, that entities and
events are “re-presented” during memory recall by reactivating the same sensorimotor
regions that were active during actual perceptual stimulation. This hypothesized mech-
anism, the reactivation of patterns in sensorimotor regions from higher-level regions,
has been borrowed by several theories of embodied cognition as a central feature to
implement concept-like function. It is commonly referred to as “embodied simulation”
(or equivalently, “mental simulation”, “internal simulation” or just “simulation”), in
the sense that the input to sensorimotor regions of the cortex that produces activation
patterns during actual experience is simulated by top-down activation from higher-level
cortical regions to create a similar activation pattern in the absence of actual input.

50

3.1 Theoretical Background on Embodied Cognition

CDZn · · · CDZ2 CDZ1

primary

cortices

Somatosensory

Motor

Auditory

Visual

Figure 3.1: Schematic drawing of cortical organization according to the convergence-
divergence model. Information is directed from and to the senses and muscles via the
primary cortices, here depicted on the outermost hierarchical level. From there it is first
directed to modality-specific CDZs (here CDZ1 and CDZ2), and from there onwards to
cross-modal CDZs (here depicted generically as CDZn). Information flows both up the hi-
erarchy, for example during perception and learning, as well as down the hierarchy towards
the primary cortices, for example during recall. Drawing based on (Meyer and Damasio,
2009).

51

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

Perceptual Symbol Systems

An exemplary theory of cognition that utilizes such a mechanism is Barsalou’s theory
of Perceptual Symbol Systems (Barsalou, 1999). He argues that conceptual process-
ing, the work that traditionally has been ascribed to an “amodal” symbol system, i.e.
mechanisms based on abstract symbolic representations, is actually done by “perceptual
symbols” that reside in the sensorimotor regions. Perceptual symbols are temporary,
embodied representations in the form of activation patterns in the sensorimotor regions,
which are controlled by a complex network of neural structures, which he calls “sim-
ulators”. In Barsalou’s theory, simulators correspond (i.e., do the work of) concepts:
There is a car -simulator to represent and process cars, a cup-simulator for cups, and
so on. Barsalou uses Damasio’s framework of the convergence-divergence model as a
vehicle for his theory, arguing that simulators are cortical networks in the association
areas, i.e. in the convergence-divergence zones.

Simulators are formed though experience. For example, when one sees a car, the
visual input activates a set of neurons in the visual cortex, which account for the actual
sensation of seeing the car. The assumption is that the perceptual similarity of dif-
ferent instances of cars is reflected in the similarity of these activation patterns in the
sensory regions during perception. Thus, after having encountered many instances of
cars, each of which activated a similar set of neurons, the brain establishes in an associ-
ation area a structure, the simulator for the category car, that has remembered which
neurons are typically active during the perception of a car. The simulator can then
be used to reactivate those neurons in the absence of sensorial input, to simulate the
perception. The simulations are used as perceptual symbols in conceptual processing,
for representation, categorization and categorical inference.

To represent an entity or event in its absence, for example when one imagines
seeing a car, the simulator produces a pattern of activation in the sensorimotor regions,
matching a pattern of activation that an actually perceived car could have produced.
The simulator however does not only produce a single simulation, but can produce a
variety of simulations, accounting for the variety of perceptually different actual cars
(big and small cars, red and green cars, sports cars and utility vans, and so on).

Categorization, i.e. treating entities and events as belonging to one kind or another,
is a key feature of the conceptual system. In a perceptual symbol system, categorization
is done by the simulators: To establish if an object in the environment is a member
of a category, the simulator representing that category produces a simulation of the
perception, which is compared to the actual input. If the simulated and the actual
input are sufficiently similar, then the object is classified as belonging to that category
(“the thing I see must be a car, because it looks much like what I could imagine a car
would look like”). Thus, the activation in the sensory areas is not matched against a
symbolic “type” represented somewhere far down a processing hierarchy by a special
categorization module, but categorization happens directly inside the sensorial area by
using simulation.

Barsalou proposes that simulators are organized around a frame-structure. Frames,
a concept proposed in A.I. by Minsky, are structured representations of knowledge

52

3.1 Theoretical Background on Embodied Cognition

(Minsky, 1974). They define a concept as a set of “attributes” or “slots” (for example, a
car -frame has a slot for a door), which can be assigned values or “fillers” (the particular
door of that car) and constraints on the values (a car door must not be wooden).
Furthermore, frames are recursive, as slots can take other frames as fillers (the door
itself being a frame with a slot for a window, etc.). The original description of Minsky
assumed frames to be abstract and symbolic, thus disembodied by definition. However,
Barsalou argues that embodied, frame-like processing can be implemented by simulators
and perceptual symbols. He sees frames as structures that are learned from experience,
and the slots formed by selective attention. Without being specific about the details, he
proposes that frames hold the information about value constraints, so that the values
for the individual slots are mutually constraining, and competing against, each other.
For example, when producing a specific simulation of a car, the overall shape of the car
that is simulated might constrain the specific simulation of the tires (a sports car does
not have the wheels of a tractor).

As another important property of Barsalou’s interpretation of frames, he argues
that they represent spatial and content information separately, motivated by the two-
streams hypothesis (see Section 2.1). Thus, frames represent on the one hand volumetric
regions according to their spatial layout (for example, where in the object-centered
reference frame of a car the windshield is located), and on the other hand contents of
these sub-regions are represented as specializations. Through experience, perceptual
symbol systems learn spatial layouts not only of objects, but also in generic ways.
For example, after many encounters of objects being above other objects, a generic
frame with a spatial layout of two locations, one being above the other, is learned,
to represent the above-concept. It can then be used productively in the generation
of infinitely many simulations of objects that are in an above relation to each other.
And by further including the recursion property of frames, complex simulations can be
generated, for example of one object being above another object being to the left of
another.

Embodied Simulation and Motor Control

As simulation is the process of activating the same neural regions that are active during
actual experience, in action this means activating on the one hand neurons in the motor
regions of cortex, which code for the movement, and on the other hand neurons in
sensory regions, which code for the visual, auditory and somatosensory perception that
is tied to the execution of the movement. This process is closely related to internal
models, a concept that has been thoroughly studied in the literature (see below in
Section 4.1; D’Souza et al., 2001; Jordan and Rumelhart, 1992; Wolpert and Kawato,
1998). An internal model is used for the transformation between sensory and motor
representations, for example how a movement of the arm will affect the position (and
hence the perception) of the hand.

Since internal models perform a kind of simulation, the existence of internal models
could be seen as indirect evidence for the existence of simulators, and thus by extension
also for the embodied cognition hypothesis. Evidence for the existence of internal

53

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

models in the brain comes from psychophysical studies, where it can be found that the
brain is able to swiftly adapt to changes in the environment in the way that movements
are performed (for a review, see Kawato, 1999). For example, if an external force is
applied to the arm (something keeps pushing the arm to the right, for example), this
has a strong effect on the outcome of a movement. The brain can learn to compensate
the force within just a few trials, so that the movement is executed as if there was no
external force. If the force is then removed from one trial to the next, it results in
an “over-compensation”, which the brain reverses again within a few trials. If it was
assumed that the brain controls movements by directly using an error signal from sensor
readings (for example the visually perceived distance of the hand to a target point), this
behavior could not be accounted for. In contrast, if the brain uses an internal model
during control to produce error signals, the over-compensation can be interpreted by
assuming that the internal model adapts to new sensory information and temporarily
produces wrong signals (Kawato, 1999).

However, action concepts are used for more than “just” the control of movements
and the prediction of sensory feedback. Particularly, in social cognition they are in-
volved in the understanding of the behaviors and goals of others. Traditionally, this
ability is accounted to one’s having a “theory of mind”, i.e. acknowledging that others
have beliefs, knowledge and desires that are different from one’s own. For example,
from seeing you reach for a glass of water and bringing it to your mouth, I can infer
that you have the desire to drink and the belief that the glass is filled with something
to drink. The theory of mind is often also described as a uniquely human trait, which
distinguishes the human species from other primates and animals (for a discussion, see
Barrett et al., 2007). In the modular view of the organization of the brain, a “theory of
mind module” would be assumed in the cognitive processing stage, which is responsible
for the decoding of the actions of others, operating on an abstract representation of the
sensory observations. This would also encompass inferring which action was performed
by the other by mapping sensory information onto an abstract action representation,
i.e. an action concept. In contrast, an embodied cognition account for social cognition
proposes that the understanding of the observed behavior of others and their goals
depends on a more direct mapping of the perception of their action execution onto
one’s own action representations. In that sense, decoding actions of others in social
interaction, including speech, gestures or facial expressions, means activating one’s own
action representations, i.e. simulating the action. The idea is that the brain can employ
the forward models of its available actions, each of which generates predictions about
the unfolding of sensory information. One of the forward models will produce the best
approximation of the event sequence that the action of the observed other produces,
which allows the observer to interpret the observation as the action that is associated
with the best matching forward model (Wolpert et al., 2003). This way, a very direct
link between the sensory observation and the own action representation (through simu-
lation of the forward model) can be established, without the need for a theory of mind
module.

This view is supported by empirical evidences from experimental neuroscience,

54

3.1 Theoretical Background on Embodied Cognition

where the so-called “mirror neurons” were discovered in the cortex of the macaque
monkey. Mirror neurons are reported to fire both when a monkey executes a movement
as well as when it observes someone else executing the same or a similar movement,
and brain-imaging experiments with human subjects provide evidence for the existence
of a similar mechanism in the human brain (see Rizzolatti and Destro, 2008). In initial
experiments, mirror neurons were mostly found for grasping actions, for example for
the action of grasping a nut from a tray. These neurons were found to be very selective
in their firing, such that for example both the observed action and the action performed
by the monkey had to use a precision grip, and using a tool to grasp a nut would not
trigger any response (Gallese et al., 1996). The firing pattern of mirror neurons during
the observation of actions of others allows for the interpretation that the same action is
automatically re-enacted by the observer through embodied simulation (Gallese, 2003).
Apart from grasp-related mirror neurons, also “audiovisual mirror neurons” have been
found that are sensitive to the sound of an action (Kohler et al., 2002): These neurons
fire when the monkey cracks a peanut, observes someone else crack a peanut, and also
when it only hears a peanut being cracked. Thus, it seems that the observation of
an action performed by someone else triggers a complex simulation of the event, which
could allow the observer to understand the goals of the other (Gallese, 2003). Put more
generally, representations of action, of perception and concepts seem to be all based on
the same widespread, multi-modal networks of cortical regions that operate together
and in close coupling with the environment to support the control of action and the
processing of sensory information, up to “cognitive” tasks, such as the inference of the
goals of others.

3.1.3 The Concept of Schema

It should be noted that there is in many ways a substantial similarity between aspects
of embodied cognition as described in the more recent literature and the literature on
a more classic concept from the literature in psychology of how the brain organizes
knowledge, which is called the schema. This is also reflected by the terminologies used
in the literature. For example, Barsalou emphasizes that he sees perceptual symbols as
schematic in nature (Barsalou, 1999), and Gallese and Lakoff make a direct reference
by calling their embodied version of the “grasp” concept a grasp schema (Gallese and
Lakoff, 2005). Additionally, also on the level of the functions that are ascribed to the
mechanisms of embodied cognition and the schema, there is lots of similarity that is
worth mentioning.

The notation of “schema” is often associated with its use in the context of artificial
intelligence (see below in Section 3.2.1), as it was described by Minsky in his work
on the frame representation (Minsky, 1974). The terminology of “schema” really goes
back to the writings of Kant (Kant, 1781), although the theoretical roots of the concept
of schemata, as it is conceived of in today’s literature in the Cognitive Sciences, can be
found in the work of Bartlett (Bartlett, 1932). Bartlett extended on ideas that were
proposed earlier by Head and Holmes, who studied the cases of several patients with
lesions of the cortex (Head and Holmes, 1911).

55

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

Head and Holmes describe, among other things, the ability of the patients to recog-
nize changes to their body posture, both in voluntarily produced, as well as in passive
movements, and their ability to localize the position of a stimulus on the own body.
These abilities seem to be dissociated in the brain, as a patient with a deficit in the
one ability is not necessarily impaired in the other. For example, Head and Holmes
reported that one of their patients, when touched on some spot on the hand, was able
to indicate on a diagram or on another person’s hand the exact position of the spot that
had been touched, while he was unable to tell the location in space where his own hand
was lying. On the other hand, a different patient could tell that he had been touched,
but was unable to specify the location on his body where he had been touched.

These findings led Head and Holmes to argue that the human brain has a means
to arrange incoming stimuli into existing models of the own body, which they termed
schemata. A schema, in their description, is a plastic model that is constantly being
updated. All perceptual stimuli automatically are put into relation to the schema
representation and are measured as a relative change. They postulated the existence
of at least two such schemata, one that represents a model of the body posture, and
another one as a model of the surface of the body. According to Head and Holmes,
these schemata are constantly being updated with every movement that one does or
that is being elicited. Thus, the schema representing the body posture (i.e. the “body-
schema”) is the knowledge about the current posture of the own body, and with every
incoming stimulus this schema is updated to match the new information, before the
relative change comes into consciousness: Schemata “modify the impressions produced
by incoming sensory impulses in such a way that the final sensations of position, or of
locality, rise into consciousness charged with a relation to something that has happened
before.” (Head and Holmes, 1911, p. 189)

Head and Holmes account all ability to recognize postures and locality of stimulation
to the schemata. Also the recognition of locations beyond the limits of the own body,
as for example the tip of a tool, is in their account a function of the schema. The
plasticity of the schema allows to incorporate changes to the posture, even to such an
extent that objects (and tools) that we carry become part of the schema. Lesions of
the schemata render individuals unable to make use of the incoming stimuli.

Bartlett took up this idea of schemata and extended it to a “theory of remembering”
(Bartlett, 1932), contrasting it to the metaphor of the cortex as a “storehouse” of
“memory traces” that predominated the literature of the time, whereby memorizing was
the recording of events and reactions as static structures, and the act of remembering
was seen as the retrieval of suitable traces. According to Bartlett, the human memory
is not such a collection of static entries, but similar past experiences and reactions are
organized into a “unitary mass,” that is, a plastic representation has been formed that
incorporates all past reactions of a certain kind. He picks up the notion of schema
as a description for this idea, as the representation he describes performs a similar
function as what has been described for the body schema by Head and Holmes earlier.
The schemata are used by the organism to perceive a new situation in a way that it
is related to the past experiences of that organism. An example that Bartlett gives

56

3.1 Theoretical Background on Embodied Cognition

is that of performing a motor task: Swinging a tennis racket. Performing it anew
requires not simply to retrieve a textbook version of the swing but to adapt it to
the current situation, the available visual queues about the trajectory of the ball, the
balancing of the body, and so on. From today’s point of view this may seem rather
obvious, as any motor controller in a robotic system that has been designed to achieve a
certain motor task implements a dynamical system, inherently relying on sensory input.
However, Bartlett applies this functioning also to higher-level cognitive tasks, such as
remembering a story or a scene seen on a photograph. In his view, it is not a listing of
elements and their features that is remembered, but mainly an overall “impression” of
the situation (Bartlett speaks of an “attitude” towards the thing to be remembered).
When a situation is perceived, it is matched against the organism’s schemata, which
are then adapted to the new information, just as the body schema is adapted to the
movement of a limb, or the state of the motor controller is adapted to the sensory
input. Remembering the situation is then not the process of fitting together a list
of elements, but to recall the overall “impression” by fitting the schemata to bits of
information that can be restored. All details are then filled in from there. This seems
to be Bartlett’s main point, that the act of remembering is not one of retrieval but
one of reconstruction, based on the schema as “an active organised setting” (Bartlett,
1932, p. 201).

These are already strong parallels between the embodied cognition hypothesis and
the concept of schemata: Bartlett’s view of memory recall as a reconstructive process
falls very well in line with Damasio’s description of the basic functioning of the cortex,
according to which the process of recall is the retro-activation of sensorimotor regions.
If we take for example the task to remember the layout of a certain room, say an
office that we have seen earlier, according to Bartlett this will involve first recalling
an overall, very unspecific, impression of the room. As our brain works on recalling
the appearance of the room, more and more details will be filled in. Some of the
details will be based on actual details that we remember, because we attended them
(cf. Barsalou, 1999), but others will be induced from our generic knowledge about
the layout of offices. Thus, where we cannot recall the details, our schema knowledge
about offices fills in the rest. In the light of Damasio’s theory, we can interpret this
process in terms of the flow of activation in the cortical hierarchy. When we stand
in an office, sensory information first is extracted from the scene as we attend the
furniture, the objects lying around, the windows, and so on. In the course of processing
the sensory stimuli along the pathways of the cortex, modality-specific convergence-
divergence zones bundle information, for example about object shapes and texture
in the visual cortex. From there, in cross-modal convergence-divergence zones the
information from the different modalities is combined, so that ultimately a large network
of distributed activation patterns is responsible for the sensory experience of the room.
When considering Barsalou’s view of simulators, this process is largely determined by
our past experience, as we will for example classify the desk as such, because our brain
has established a desk -simulator that becomes active in a cross-modal convergence-
divergence zone, just as an overall office-simulator will become active as we acknowledge

57

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

that we are standing in an office.

Then, when we are asked to recall the layout of the room later on, our brain will
make use of the same network of distributed representations, by employing the office-
simulator, and along with it other simulators for the objects that we encountered. This
will give rise to a retro-activation of the sensorimotor regions of the cortex, which will
allow us to remember various aspects of the room. Just as in Bartlett’s account for
recall, also the embodied simulation account assumes that much of what is recalled
(i.e. simulated) will not match the exact details of the actual room, but will correspond
to a generic embodied simulation of the office simulator, that is ultimately, activation
patterns of neurons in the sensorimotor regions as they usually occur when we are in
an office and attend the objects in it.

Also for the body-schema there exist parallels to modern views in embodied cogni-
tion. Head and Holmes propose that it is an internal representation of the own body,
which is continuously updated to match new sensory information (Head and Holmes,
1911). On the one hand, this is the case during action, as one moves the own body and
processes the sensory feedback, for example about the visual position of the hands. On
the other hand, Head and Holmes argue that the body-schema is also involved in the
recognition of postures, thus ascribing the function of recognizing the perceptual feed-
back of own actions to the same underlying processes as the recognition of postures in
others, which, although arguably in a stronger sense, is also the fundamental principle
behind the mirror neuron hypothesis (cf. Section 3.1.2): The automatic re-enactment
of observed actions by making use of the same representations that are involved in one’s
own motor performance.

Some years after Bartlett, but before the introduction of the term “schema” to
the field of artificial intelligence by Minsky, Piaget coined the term in his theory of
cognitive development (Piaget, 1997 [1953]). Piaget describes schemata as the cognitive
basis for both physical and mental action. He considers intelligence in line with the
problem faced by biological systems needing to persist in their environment. In his
argumentation, cognitive development can be regarded analogous to how adaptation
appears on the level of biochemical organization. As he argues, biological organisms
necessarily need to adapt to their dynamically changing environment, as in the example
of a simple biological organism. What defines the organism are the physiochemical and
kinetic processes, that are active again and again during the life of the organism. For
example, the organism could ingest a substance from the environment, transforming it
into another substance, and thus fueling another process. Through the coupling with
the environment, the various processes of the organism orchestrate a cycle, where the
result of one process triggers another, of which the result triggers again the next, and
so on, until the first process again becomes active. The organism thus uses what the
environment has to offer by using its processes. Piaget says, it is with the environment
in a relationship of assimilation, which means that it unites the environmental elements
with its existing processes as they are, in such a way as to incorporate them into the
cycle. It uses its processes to deal with environmental inputs. As long as the cycle is
stable, the organism functions in its environment.

58

3.1 Theoretical Background on Embodied Cognition

As the environment changes, the organism necessarily needs to adapt to these
changes, otherwise its cycle is interrupted and it ceases to function. Assume for exam-
ple, one of the substances on which the organism relies changes in the environment. If
the corresponding process in the organism is not able to handle the changed substance
properly, that is, the environmental input cannot be assimilated, the process needs to
be adapted. Thus, upon successful adaptation, the responsible process is transformed
into a modified variant, which is capable to handle the new kind of input. Piaget
calls this accommodation. Concluding, Piaget says that “adaptation is an equilibrium
between assimilation and accommodation” (Piaget, 1997 [1953], p. 6).

The same principles of assimilation and accommodation apply also to intelligence,
according to Piaget. He sees intelligence merely as another form of adaptation to the
environment, and that its function is to “structure the universe just as the organism
structures its immediate environment” (Piaget, 1997 [1953], p. 4). On the level of sen-
sorimotor intelligence, the processes determining the organism are the schemata. Here,
adaptation means structuring the environment: Reducing the incoming information to
the known. When an infant has learned a sensorimotor program (i.e. a schema) to grasp
a ball, but finds a different object, say a toy cup, it can readily employ the available
schema to grasp the cup. It assimilates the object into the grasp schema, using the
schema to interpret the world. However, since grasping a cup is slightly different from
grasping a ball, although the learned schema may succeed in grasping the object, the
sensory experiences of performing the action differ from those when grasping a ball.
Thus, in order to adapt well to her environment, the infant will use the new impres-
sions to extend her knowledge of the world, by accommodating the schema to better
represent the new information.

Piaget’s ideas of the process of assimilation and accommodation underlying the
schema are often used as motivation for various computational models (see below in
Section 3.2.1). However, as for example Klahr notes, this part of Piaget’s theory is
not sufficiently constrained to allow modeling (Klahr, 1995), so that models that use
it as motivation are often only vaguely related to the concept of schema. Piaget’s
theory is also often criticized in the literature, as he describes cognitive development
as organized in distinct stages, with qualitative changes in the child’s behavior across
the different stages (Piaget, 1997 [1953]). However, this is a too simplified description
of the progress of cognitive development and does not account well for experimental
data (Mandler, 1992; Thelen and Smith, 1996). For example, Piaget argues that infants
demonstrate the A-not-B error (see Section 2.5.1) in an earlier developmental stage,
but as they enter the next stage, they will solve the task correctly. However, Thelen
and Smith have demonstrated that this monolithic change posited by Piaget is wrong,
as the “complexity and messiness of cognitive development” (Thelen and Smith, 1996,
pp. 21–22) becomes evident when tasks are altered. For example, as the timing of the
experiment is changed and waiting times for the infant are shortened, it becomes less
likely that the error is observed also with younger infants (cf. Section 2.5.1).

The properties of schemata of assimilation and accommodation can also be found
in Barsalou’s description of simulators (Barsalou, 1999). Assimilation is the process of

59

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

making use of existing mental structures to interpret the world: In Barsalou’s terms,
this corresponds to the categorization of stimuli by comparing them to perceptual sym-
bols. Accommodation is the process of incorporating the new information by slightly
changing the existing representation, schema or simulator.

While the above cited works on the concept of schema focus on explaining how the
schema as a knowledge structure can enable and support cognitive function, Mandler
takes the viewpoint of developmental psychology and aims at addressing the question of
how schema knowledge can be acquired during cognitive development (Mandler, 1992).
Mandler derives her view from work in cognitive linguistics, where the so-called “image
schemata” are seen as the conceptual basis also in adults (Johnson, 1987; Lakoff, 1987;
Lakoff and Johnson, 1980). Image schemata represent concepts that can directly be
observed in perceptual structures, such as the path on which an object travels, or the
containment of one object in another. According to Lakoff and Johnson, these are
primitive representations that combine into more complex and abstract concepts by
means of conceptual metaphors: To understand abstract meanings, image schemata
are employed to attach actual experiences to the concept, as for example evident in
sayings such as “life is a journey”, or “argument is war” and “attacking an argument”,
and so on (Lakoff and Johnson, 1980). Mandler argues that many image schemata,
such as animate motion and caused inanimate motion, are acquired very early on in
development and become an integral part of a wide range of conceptual knowledge.
As Mandler states, perceptual similarity provides one level for concept formation, but
importantly also image schemata are employed as the infant learns concepts such as
“agency”. In a process of “perceptual analysis”, perceptual stimuli are transformed
into the perceptual format of image schemata to support the formation of new con-
cepts, according to Mandler (Mandler, 1992). This can be compared to how Head and
Holmes describe perception to be automatically transformed or augmented by the cog-
nitive system, as stimuli are compared to existing schema representations as they are
processed.

Taken together, it can be said that “embodied” ideas of how the brain organizes
knowledge can already be found in the literature of the beginning of the last century.
The concept of schemata, as it was originally conceived of, has many similarities with
modern theories of embodied cognition. With the idea of schemata being the motivation
behind several knowledge representations in the field of artificial intelligence, a schema
is now sometimes also interpreted to be a very abstract, static knowledge representation
that has been hand-crafted for a computer program, and thus would fall in line with
the brain-is-a-computer metaphor. However, the original description of Bartlett points
quite in the opposite direction, and seeing a schema as a static knowledge structure
can be said to be a misinterpretation of his work (Pfeifer and Scheier, 1994).

3.1.4 Summary

In sum, the embodied cognition hypothesis draws a fundamentally different picture of
cognitive architecture than proposed by the cognitivist view. One of the main argu-
ments is that a substantial part of cognitive processing, not only that related directly to

60

3.1 Theoretical Background on Embodied Cognition

perception and control, is implemented as, or inherently supported by, processes in the
sensorimotor regions of cortex. A hierarchy is formed of convergence-divergence zones
(Damasio and Meyer, 2008; Damasio, 1989) or simulators (Barsalou, 1999, 2008; Sim-
mons and Barsalou, 2003), which represent multi-modal information in a distributed
manner and are used in different ways depending on the task: During learning, in-
formation about the simultaneous activation of neurons across regions are stored in
association regions (Damasio, 1989) and simulators are formed (Barsalou, 1999). For
recall and conceptualization, activation in early sensorimotor regions is reactivated to
simulate the perceptual experience (Barsalou, 1999; Damasio, 1989). Categorization is
the process of matching simulated and real perceptual activation patterns (Barsalou,
1999). Cross-modal integration happens early on inside sensorimotor regions via inter-
regional connections, on the level of activation in neural fields, where neural dynamics
can be accounted for decision making in movement preparation (Erlhagen and Schöner,
2002; Schöner et al., 1997; Thelen et al., 2001) as well as in tasks related to sensory
information (Johnson et al., 2008). It is hypothesized that the cortex is a complex dy-
namical system, composed of basic elements that implement function uniformly across
the whole system in a distributed way (McClelland et al., 2010), such as simulators
(Barsalou, 1999) or dynamic neural fields (Johnson et al., 2008). Sensory perceptions
of for example objects, as well as actions, are represented and controlled by distributed
representations across multiple clusters of neurons (Barsalou, 1999; Damasio, 1989;
Gallese, 2008; Gallese and Lakoff, 2005; Glenberg and Gallese, 2011) (hypothetically in
the form of topographically organized neural fields), each of which codes for a specific
aspect. For example, in visual perception, different clusters of neurons code for shape
features and color features of an object, and the clusters are combined into a cortical
network via convergence-divergence zones (Damasio, 1989). For action, clusters code
for parameters of the action, such as locations towards which the action is directed, or
amplitudes and forces (Gallese and Lakoff, 2005; Smith and Thelen, 2003; Thelen et al.,
2001). These clusters are then associated with sensory representations, so that internal
models are formed to support prediction and planning (Wolpert and Kawato, 1998), as
well as to form the basis for the understanding of the actions of others (Wolpert et al.,
2003), on the basis of embodied simulation (Gallese, 2003). Representations higher up
in the cortical hierarchy structure lower-level representations, so as to form for example
representations of goal directed actions (Gallese, 2008). The cortical regions on higher
hierarchical levels are then responsible to coordinate the activation across associated
lower level regions (Damasio, 1989). Furthermore, as the activation in some of the
regions determine the way in which an action is performed, for example by specifying
the target position of a reaching action in ego-centric space, they can be seen as pro-
viding a kind of argument structure to the action (Gallese, 2008; Gallese and Lakoff,
2005). Thus, the result of the activation in one area, for example corresponding to the
action of grasping, is modulated by the activation in another area, for example deter-
mining where to grasp. This is related to the frame-like organization, which Barsalou
hypothesizes for the assemblage of simulations (Barsalou, 1999).

Embodied cognition is in many important ways compatible with the concept of

61

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

schema. A central property, which both views have in common and put an emphasis
on, is the active nature of the stored knowledge. Given a noisy or incomplete sensory
cue, it is proposed that the cognitive system interprets this input in a best-fit manner
by matching it against its existing knowledge structures. In the vocabulary of Bartlett’s
schema theory, this is described as reconstructing information based on schema knowl-
edge (Bartlett, 1932), which is similar to Damasio’s view that information spreads via
convergence-divergence zones to reconstruct a multimodal stimulus based on learned
associations (Damasio, 1989). Likewise, Piaget proposes that sensory stimuli are assim-
ilated by the existing schemata (Piaget, 1997 [1953]), and Barsalou argues that stimuli
are categorized by comparing them with embodied simulations (Barsalou, 1999). Thus,
when a partial stimulus is matched with a particular simulator, missing information
can be substituted by a multimodal simulation of the matched simulator.

When the embodied cognition hypothesis and the concept of schema are used as mo-
tivation for the modeling of a robot cognitive architecture, several modeling constraints
can be formulated:

• The cognitive system is based on active elements, which are in concert respon-
sible for a wide range of cognitive functions. The hypothesized elements are
termed differently in the various theories outlined above (such as “schemata” or
“simulators”) and differ in the details of their description, but they share impor-
tant properties across the theories. In the following, the term “schema” will be
adopted for referring to this active element of the cognitive system, even though
some of the here outlined properties are more pronounced in theories that use
another designation.

• Schemata store knowledge about patterns of information, and the correlation of
patterns across modalities. As they come to represent sensorimotor patterns,
schemata become activated by the perception of these patterns. The interpreta-
tion that the cognitive system has of a situation corresponds to the collection of
its currently active schemata.

• Based on the information that they represent, schemata form self-organized rep-
resentations in a data-driven manner. These new levels of representation provide
the basis for a hierarchical structure of the cognitive system. As the information
that is represented by schemata on higher levels of the hierarchy covers wider and
wider parts of the sensorimotor input and output space of the system, schemata
represent increasingly multimodal and abstract knowledge upwards the hierarchy.

• An important property of the cognitive system is its ability to reconstruct sensori-
motor situations based on the knowledge stored by the schemata. The process of
reconstruction can involve single schemata, or collaborations of several schemata,
which mutually influence each other and the outcome of the reconstruction. The
format of the reconstruction is the same as that of low-level perceptual input.

• Schemata compete against each other in the processing of information. Impor-
tantly, schemata that have won this competition, and thus have become activated

62

3.2 Related Computational Models

by an input pattern, will adapt to this newly available information.

• Schemata enable the understanding of observed actions of others through an
automatic covert reenactment of the same action, as an embodied simulation of
the own action representation.

3.2 Related Computational Models

3.2.1 Models Based on the Concept of Schema

As the concept of schema has been interpreted in many different ways, computational
models that use it as motivation are also very different from each other. The earliest
models have been proposed in symbolic A.I. research, and propose the schema to be a
structured representation.

Symbolic Implementations of Schemata

In the 1970s, researchers in A.I. felt that there was a need for a larger scale represen-
tation that gave more structure to the knowledge of a computational agent, as systems
based on rather simple symbolic rules as atomic representations were facing several
difficulties. One was related to the computational complexity of search algorithms in
reasoning applications, as they had to handle large knowledge bases of symbolic rules
(see Section 2.2.3); another one was related to the problem of language understanding,
where the information that is explicitly given in a piece of text is often insufficient
to make proper judgements (Minsky, 1974; Schank, 1972). In both cases, so was the
intuition of researchers, a network of larger scale representations should provide the
agent with a kind of common-sense knowledge: In the former case to limit a search to
relevant bits of knowledge, in the latter case to extend a given bit of information by
the required implicit knowledge.

As Bartlett’s work describes the property of the faculty of memory to condense past
experiences into schematic representations that only capture the relevant information,
it became the motivation for several A.I. researchers to propose networks of structured
representations as a symbolic knowledge base for computational agents, most notable
being Minsky’s “frames” (Minsky, 1974) and Schank and Abelson’s “scripts” (Schank
and Abelson, 1977), both of which are similar in their implementation but aim at dif-
ferent goals. Minsky’s frames were meant as a means to reflect the structure of external
reality in a symbolic representation, in terms of the relationships between entities, and
how parts are made up out of sub-parts. Minsky describes as an example how cubes
are composed out of faces and edges, each of which are in a certain relationship with
the others, such as one face being parallel to another, or an edge connecting two per-
pendicular faces. Another example is that of a chair, having parts such as a certain
number of legs and a backrest, as well as some defined properties such as a given height
and weight. Minsky proposes that this sort of information about the relationship be-
tween pieces of knowledge should be stored in what he calls a frame, essentially being

63

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

a structured list of properties and their values. Each value could be assigned a default
value, in case no specific information is given (for example, the default number of legs
for a chair might be four). Schank and Abelson’s scripts on the other hand are meant
to serve the purpose of representing information about the sequential order of events
as they occur and what actions become relevant when. For example, the overall event
of going out to dine in a restaurant is made up of a sequence of situations and possible
actions that can be pursued: Upon entering a restaurant, a possible action is to find
a waiter to ask to be seated; after having eaten a main course, common actions are
asking for the bill or for the desert menu, and so on.

Later on, Drescher formulated a cognitivist interpretation of Piaget’s schema theory
(see Section 3.1.3) (Drescher, 1991), which is structurally closely related to Minsky’s
frames and Schank and Abelson’s scripts. It groups together symbolic descriptions
of a context, an action and a result into a data structure, which Drescher uses for
problem solving mechanisms, for example by “chaining” these schemata to describe a
sequence of action and how it will transform a situation (similar to how cognitivist
architectures implement planning, cf. Section 2.2.1): Departing from the description
of a given situation, the schema information can be used to compute the change made
by some action to this situation, producing the description of another situation, which
again can be manipulated by other schemata, and so on. Reaching a goal then means
to search through the library of schema representations to find a sequence of actions
that will transform the original situation into a goal situation.

However, as already noted further above, the symbolic implementations of the con-
cept of schema hardly capture the essential point of the concept, of it being a flexible
structure that adapts to sensory information and provides a “best-fit” interpretation
by coordinating the activation of dynamic sensorimotor representations.

Localist Networks with Global Constraint Satisfaction

Shortly after the symbolic interpretations of the concept of schema had been proposed,
and with the dawn of connectionism in the 1980s, Rumelhart proposed a more dynamic
model of schemata as a process of global constraint satisfaction in a localist neural
network representation (Rumelhart, 1984; Rumelhart et al., 1986). In this kind of
network, individual network nodes represent hypotheses about the presence of a certain
feature in the input, and connections between nodes represent constraints that the
hypotheses pose upon each other. For example, if one feature is an indicator for another
feature, then there should be an excitatory connection from the node representing the
former to the node representing the latter. The other way around, if one feature is
almost certainly not present if another feature has been detected, then an inhibitory
connection between the two responsible nodes would encode this constraint. Such a
network implements a dynamical system that, when presented with an input activation,
after several iterations converges to a stable state in which a set of nodes is active that
corresponds to a consistent set of hypotheses (Hinton and Sejnowski, 1986). A helpful
example for a constraint satisfaction network is presented in Figure 3.2.

In the interpretation of Rumelhart et al., “schemata are like models of the outside

64

3.2 Related Computational Models

(a)

a1

a4

a2

a3

a7

a6

a8

a5

b1

b4

b2

b3

b7

b6

b8

b5

(b)

Figure 3.2: (a) Necker cube, (b) a constraint satisfaction network that has the two
possible interpretations of the Necker cube as attractor points, where one attractor point
is the network state in which nodes ai are active and nodes bi are inactive, and the other
vice versa. Connections shown with arrow markers are excitatory, connections with dot
markers are inhibitory (not all connections shown). Drawing based on (Rumelhart et al.,
1986).

world”, and processing information with the use of a schema corresponds to discovering
a “consistent configuration of schemata [...] which, in concert, offer the best account for
the input. This configuration of schemata constitutes the interpretation of the input”
(Rumelhart et al., 1986, p. 18, their emphasis). This interpretation of the concept of
schema naturally fits into the language of constraint satisfaction networks. The model
of the world is composed out of the features represented by the network nodes and
constraints for valid configurations are stored in the connection weights. In contrast to
the symbolic schema implementations described above (see Section 3.2.1), according to
which the schema is an explicit representation of variables and their default values, the
formulation as a constraint satisfaction network offers a view in which the schema is not
explicitly present in the system, but is stored in a distributed code in the connection
weights. When an input is presented, the network relaxes to an interpretation of the
input, or in Piaget’s terms, assimilates the input.

As an example, Rumelhart et al. present a network that should encode schematic
knowledge about different types of rooms. It is a fully connected single-layer network
with 40 units, each of which represents a room feature in a localist fashion, such as
telephone, desk, refrigerator and bed (Rumelhart et al., 1986). The network weights
are set to reflect the pairwise probabilities of co-occurrences of the room features, com-
puted from descriptions that were collected for 80 different rooms (offices, living rooms,
kitchens, bathrooms and bedrooms). This resulted for example in a strong excitatory
connection between the telephone and desk nodes, since both items frequently co-occur
in offices, and a strong inhibitory connection between the refrigerator and bed nodes,
since the two rarely can be found in the same room. The network dynamics then drives
the activation from any initial state into one of several attractor states. For example,
by clamping the oven and ceiling nodes to a high activity and initially setting all other

65

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

nodes to zero-activity, the network will transition into a state in which also nodes such
as cupboard, toaster, refrigerator, sink and coffee-cup are activated.

Rumelhart et al. interpret the behavior of the network as schema-like, arguing that
the structure provided by a schema can be implicitly encoded in the connection weights
in a global constraint satisfaction network (Rumelhart et al., 1986). One example for
this is how attributes and values of a schema can be explained in terms of the network’s
properties1: While some of the units in the network share strong connections, and thus
almost always become co-activated as the network settles into a stable state, others
are more loosely connected and may or may not become activated. Again other sets
of units can be connected via inhibitory connections, such that either one or another
unit will be activated as the network settles, but they will never be activated together.
Rumelhart et al. argue that this kind of behavior can be interpreted as the filling of
attributes with values (Rumelhart et al., 1986): The strongly connected units form the
core of a schema, which will always be active as a coalition. The weakly connected
units represent attributes of the schema, which can either be present or not, and if
there are different values possible then the network dynamics will select one of them.

Another implementation of the concept of schema in a form of global constraint
satisfaction network is Cooper and Shallice’s “interactive activation model” of routine
action selection (Cooper and Shallice, 2000, 2006). Here, a hierarchy of nodes rep-
resents the actions of an agent and action goals at different levels of granularity, in
their example for the routine action of preparing instant coffee. At the bottom of the
hierarchy are nodes representing the primitive actions of the agent (pick up, tear, etc.),
followed by nodes representing the goals which can be attained by these actions (hold,
open, etc.). Nodes in higher hierarchical levels represent compositional actions and
goals (e.g. add sugar from packet, sugar into coffee), which can include several alterna-
tive possibilities (taking sugar from a packet, or taking it from a bowl). Activation in
the network flows down the hierarchy along pre-specified connections, from the overall
action goal down to the primitive actions. When there are alternative means to achieve
a sub-goal (such as using a packet of sugar or a bowl of sugar), there is lateral inhibition
between the corresponding nodes on the same level of the hierarchy, which forces the
activation dynamics of the network to select one among the alternatives (similar to how
the network of Rumelhart et al. can chose among one of several conflicting attractor
states, see above). Furthermore, environmental affordances influence the activation of
the network, such that actions receive activation when the current state of the envi-
ronment allows for their execution (for example, pick up receives activation when there
is something to be picked up and the agent’s hand is currently unoccupied). Cooper
and Shallice report on the one hand that their model is able to generate sequences
of actions that correctly produce the overall goal, and on the other hand argue that

1While the idea that schemata are structures with attributes and their values certainly comes from
symbolic accounts of the concept of schema (Brewer and Nakamura, 1984; Minsky, 1974; Rumelhart,
1984; Schank and Abelson, 1977), also more recent accounts, although explicitly denying schemata to
be of symbolic nature, assume there to be some form of variable-like property (Barsalou, 1999; Gallese
and Lakoff, 2005), for example in the form of variable firing patterns in clusters of neurons coding for
a schema.

66

3.2 Related Computational Models

it will also eventually produces errors (such as omitting a step) in a similar way as
found in human performance (Cooper and Shallice, 2000). As compared to the model
proposed by Rumelhart et al., which is focused on explaining how perception takes
place in a constraint satisfaction network as a static input results in a stable final state,
Cooper and Shallice’s model demonstrates that a similar network can also be applied
in sequential tasks, where it traverses several states.

In contrast to the symbolic implementations of schemata, these models allow to
interpret the concept of schema in a more dynamic way, which seems to be more com-
patible with the theories described in Sections 3.1.1 to 3.1.3. It should also be noted
that more recently, a growing number of connectionist models have been proposed that
subscribe to the same underlying mechanism of global competition between alterna-
tive hypotheses as models for various cognitive phenomena (see Maia and Cleeremans,
2005). However, the form of network models described in this section has the drawback
that it is based on the localist assumption, so that each network node represents a dis-
tinct concept. This only allows for binary combination of different representations (such
as a room with or without a bed depending on whether or not the bed node is active),
but not for a graded integration of concepts (such as a car which is like a truck but the
size of a compact car). While this might be a criticism on a rather theoretical level, the
same argument does also apply for a more practical limitation of localist models in the
realm of robotics: When it comes to the representation of action knowledge, the nodes
in a localist model correspond to basic action units, or primitive action controllers (as
in Cooper and Shallice’s interactive activation model for primitive actions, such as pick
up, tear, etc.). The only form of integration of several primitive actions that is possible
in such a model is the sequencing of actions. However, in a robotic system it would be
desirable to allow for a more flexible integration on the sub-action level, i.e. blending
sub-actions together. For example, a flexible robot should be able to reach for an object
with one hand while keeping another object steady with the other hand. Such flexible
integration is only possible if it is realized below the level of distinct action primitives,
an issue which will be further explored in Chapter 4.

Schema Models Related to Behavior-Based Robotics

Another approach to modeling schemata, which is also strongly related to the behavior-
based robotics movement, is based on Arbib’s schema theory (Arbib, 1998). Arbib’s
account for schemata is concerned with explaining the neural basis for behavior and
argues that schemata are modular neural structures that each encode the agent’s knowl-
edge about some meaningful aspect of the environment. These knowledge structures
are separated into two kinds of components: Perceptual schemata detect whether a
certain feature is present in the current sensory input, and motor schemata encode
behavioral responses to respond to these features. The motor schemata are connected
to the perceptual schemata via excitatory or inhibitory connections, thus implement-
ing behavioral rules (“if A is present, then activate behavior B”). In an example,
Arbib proposes a schema-based model of a frog, which uses two perceptual schemata,
detect-all-moving-objects and detect-large-moving-object, and two motor schemata, snap

67

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

and avoid. The snap behavior is excited by detect-all-moving-objects and inhibited by
detect-large-moving-object (“snap if there is a moving object that is not large”), while
the avoid behavior is excited by the detect-large-moving-objects (“avoid large moving
objects”). This corresponds to the behavioral responses of snapping and avoiding of
frogs as observed in studies (Arbib, 1998). Arbib argues that schemata not necessarily
need to be linked to unique neural structures in the brain. Instead, the schema can
be seen as a useful abstraction from neural implementation details, but more directly
linked to explaining behavior than symbolic representations are. Similarly to the latter,
Arbib argues that schemata can be instantiated, for example as several instances of the
detect-all-moving-objects schema to represent two or more moving objects at a time.

For a computational model of schemata this equates to building a modular system,
much in the sense of a behavior-based architecture (see Section 2.3), where individual
components implement on the one hand detection devices for relevant environmental
cues, and on the other hand the appropriate motor responses to react to the presence
of sensory cues. The internal mechanics of these components can be arbitrarily imple-
mented, but the details of how the components interact are fixed by design. In Arbib’s
schema model, perceptual schemata encode in their activation value how certain they
are about the presence of a sensory cue. Their activation level is directly transfered
to motor schemata, either in excitation or inhibition. If a motor schema’s activity
level exceeds a pre-defined threshold, the corresponding motor program is sent to the
actuators.

In later work, Oztop and Arbib have proposed a schema-based model of the mirror
neuron system in the premotor cortex of the macaque monkey (Oztop and Arbib,
2002). It includes perceptual schemata for the recognition of hand shapes (to distinguish
different types of grasps) and of hand motion, as well as of object features, object
location and of object affordances. The motor schemata encode the motor programs
for reaching and for grasping. Additionally, a dedicated mirror system schema learns
to associate motor programs for grasping with object affordances and observed hand
states. When the agent itself performs grasping actions, both the perceptual schemata
for detecting object affordances and recognizing the own hand state are active, as well
as the motor schema for grasping, allowing the mirror system schema to learn the
appropriate associations. It can then be activated in two circumstances, on the one
hand when the agent itself performs a grasp, but also when the associated perceptual
schemata are active but the grasp motor schema is not. This is the case when the agent
observes someone else perform a grasping action, given that the perceptual schema
detects both the own hand and another’s hands in the same way.

Similar to Arbib’s approach, Arkin’s AuRA architecture (see Section 2.3.1) imple-
ments a model of schemata that assumes that schemata are instantiated when needed:
When the robot encounters an obstacle, a new schema instance is created to generate
a repellant force at the position of said obstacle, and the instance is maintained as long
as the obstacle is in range (Arkin, 1998). In contrast to Arbib’s models however, there
is no separation between perceptual and motor schemata.

Another computational model that does use perceptual and motor schemata in Ar-

68

3.2 Related Computational Models

bib’s sense is Pezzulo and Calvi’s “Artificial Knowledge Interface for Reasoning Appli-
cations” (AKIRA, Pezzulo and Calvi, 2006a,b, 2007; Pezzulo et al., 2005). In contrast
to Arbib’s model, schemata in AKIRA additionally implement forward models and
their activity depends on how well each schema is able to predict the sensory data.
Pezzulo and Calvi describe a computational model of the behavior of a praying mantis
(Pezzulo and Calvi, 2006a). It uses perceptual schemata such as detect prey, detect
predator or detect obstacle, and motor schemata such as chase, escape and avoid obsta-
cle. Motor commands generated by multiple schema instances are integrated through
fuzzy command fusion, which on the one hand holds benefits as compared to vector-
based combination (Safiotti, 1997) as it is used for example in AuRA, but on the other
hand has difficulties in scaling up to higher-dimensional problems (Sala et al., 2005)
(motor commands in Pezzulo and Calvi’s simulations are one-dimensional, for turning
and advancing on a two-dimensional plane).

Furthermore, Gläser et al. proposed a neural-network-based computational model
of schemata, which they say implements “generic behaviors”, meaning that the acti-
vation of one behavior, across different initial situations, should always result in the
same final situation, which corresponds to the goal of that behavior (Gläser et al.,
2009). Gläser et al.’s implementation of schemata is intended to model four important
properties of the concept of schema: A forward model should allow the simulation of
the outcome of an action execution; an inverse model is used to enable goal-directed
action; a third internal model, which they call a “schemata recognizer”, provides the
basis for the recognition of observed actions by directly matching them with the own
action repertoire; and finally, a self-organized neural field provides a new level of repre-
sentation that could be used for the development of hierarchical systems. Each neuron
in this neural field, which they call a “schemata map”, represents a goal situation of
the according behavior. In the examples provided by Gläser et al., this corresponds to
bringing the hand and the gaze of a simulated robot to target locations, so that one
neuron would for example represent the goal to bring the hand to the upper left corner
and the gaze to the center of the workspace of the robot. The field is learned in a
topography-preserving way, to ensure that similar goals are represented by neighboring
neurons in the field, which allows the model to blend between prototypic solutions. The
representation of goal situations in the schemata map is used to modulate the other
networks in the model: The activation of a certain goal will result in the inverse model
generating motor commands for reaching that goal, and in the forward model producing
estimates of the sensory feedback in the following time steps on the trajectory towards
the goal. Furthermore, the schemata recognizer transforms sensory observations into
estimated goal situations of observed action, by activating the corresponding neurons
in the schemata map. Therefore, the same neurons in the schema map are active both
when the robot performs an action itself, as well as when it observes an action execu-
tion. Thus, appart from Oztop and Arbib’s model, also Gläser et al.’s model can be
said to implement mirror neuron functionality.

All of the just described models fall into the category of behavior-based robotic
systems, and as such are subject to the same concerns: It remains a difficult problem to

69

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

design the inter-module connectivity for systems that should behave not only reactively
and insect-like, but should exhibit longer-term planning capabilities (see Section 2.3).

Schemata in a Robot Control Framework

The computational models presented so far directly aim at modeling schemata. Another
model, which is primarily intended as a framework for designing robust robot control
programs rather than modeling schemata, has also been related to a liberal interpre-
tation of Piaget’s account for schemata by its authors (Hart and Grupen, 2011; Hart
et al., 2008b), that is, to the processes of accommodation and assimilation (see Sec-
tion 3.1.3). The model makes use of a basis of rigorously designed controllers (Coelho
and Grupen, 1997; Huber, 2000; Huber and Grupen, 1997), which guarantee stable
motor responses and provide an event-based discretization of continuous sensorimotor
streams. Each of the robot’s controllers (i.e. primitive actions) is defined to be at any
time in one of several distinct states, such as being inactive, currently running, or hav-
ing converged to a target. Through this mechanism a discretization is achieved, which
allows the application of combinatorial search algorithms and reinforcement learning
methodology to find rewarding sequences of actions (i.e. subsequently executed prim-
itive actions), based on a mechanism of intrinsic motivation (Hart and Grupen, 2011;
Hart et al., 2008a). In intentionally restricted training scenarios, in which a robot only
uses a subset of its available control programs to discover rewarding action sequences
(for example only employing head-related actions or only using one arm) and where the
environment is prepared for the learning session (for example by repeatedly placing a
single object at different locations in front of the robot), Hart and Grupen demonstrate
that a robot can discover policies for actions, such as searching and tracking salient
objects, or reaching for and touching an object with the gripper.

In a subsequent step, the discovered control policies are generalized to new situa-
tions by extending the robot’s exploration. This is accomplished by declaring different
types of input and output variables for the system (comparable to typing in functional
programming), and defining for each controller a list of input and output types that it
supports (Hart and Grupen, 2011; Hart et al., 2008b). For example, a control scheme
that is designed to bring an effector close to a target location can be instantiated in
the model with any output of the type configuration variable, independent of whether
the variable designates configurations of the left arm, right arm or both arms, and any
input of the type Cartesian position, independent of whether the position has been
found using stereo triangulation or using a laser range finder. The system uses this to
transform action policies that it has previously discovered into an abstract representa-
tion, in which the sequential order of primitive actions remains but the specific inputs
and outputs are replaced by their types. For example, such an abstract representation
of the action to reach and grasp would specify that a Cartesian position is necessary
as a target for the action and that the output of the control program is a configuration
variable, as well as provide the learned sequential structure for contingencies such as:
If the target position is not very close to the gripper, then reach instead of grasp. The
system then employs different instantiations of the abstract representation, for exam-

70

3.2 Related Computational Models

ple by sometimes using the left arm and sometimes the right arm, to discover similar
actions that also produce reward.

Hart and Grupen relate their system to Piagetian schemata in the following way.
As accommodation describes how an organism discovers new ways to adapt itself to
its environment, Hart and Grupen argue that the first stage in their system (using
reinforcement learning to find rewarding action sequences) corresponds to the process
of accommodation; and assimilation describes how existing knowledge structures are
fit to new situations, which Hart and Grupen relate to the second stage in their system
of instantiating and evaluating different actions from an abstract representation based
on types (Hart and Grupen, 2011; Hart et al., 2008b). Other than these two rather lose
relations however, Hart and Grupen’s model does not account for any other properties
of the concept of schema.

3.2.2 Models of Embodied Simulation

Computational models of embodied simulation usually take the “simulation hypothe-
sis” (Hesslow, 2002) as motivation, which states that sensorimotor structures can be
activated as in normal action but without causing any overt movement. In the process,
internal estimates of sensory feedback are generated, resembling sensory information
that would have occurred if the action had been physically carried out. This anticipated
feedback can be internally used to “close the loop” by again activating the sensorimotor
structures and producing further anticipations, thus simulating a sensorimotor trajec-
tory of events as they might be. This is a more specific form of embodied simulation
than that proposed by others, as described in Section 3.1.2.

The short-term anticipation of sensorimotor events through embodied simulation
has been demonstrated to be beneficial in several ways (Butz et al., 2007b), including
shorter reaction times in sensorimotor control tasks (Mehta and Schaal, 2002), improved
learning by comparing anticipated and actual results of actions (which will be the topic
of Chapter 5; see also Wolpert et al., 2011), and the ability to evaluate sequences of
actions in terms of their outcome before actually performing them (Shanahan, 2006).

In the study of anticipatory systems (for an overview of recent developments, see
Butz et al., 2003, 2007b), several models have been proposed that are based on this
idea. The overall idea, as it was outlined above, is well captured by Möller’s “perception
through anticipation” approach (Möller, 1999). Möller proposes that the process of
anticipation provides the functional basis for perception. As it allows to augment
sensory information with value information by anticipating possible valuable situations
that can be reached by performing some action, the problem of having to determine
relevance in sensory input (cf. Section 2.2.3) can be avoided (Möller, 1999). Instead
of detecting features in the sensory input to generate an internal representation of the
situation, and to use this representation for deciding on the next action, the anticipative
system transforms the current sensory situation into possible future situations that can
be reached by means of the agent’s actions. In a computational model of the approach,
Hoffmann and Möller use a multilayer perceptron to learn a forward model, which
allows a mobile robot to associate the sensory input, paired with a motor command for

71

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

an action, with the expected outcome of the action. By concatenating the same forward
model into a chain of several forward models (by using the output of one network as
the sensory input signal for the next network), the model can perform a simulation of
short action sequences and evaluate the anticipated outcome (Hoffmann and Möller,
2004). Hoffmann and Möller propose to use an optimization method to select the motor
commands for the action sequence. Their experiments show that the model is capable
of planning short action sequences to reach given goals, for example to plan a path
to move away from scattered objects. In a more recent adaptation to the experiment,
Schenck et al. replaced the optimization method with an inverse model that directly
maps sensory inputs onto motor commands for a desired behavior. Training samples
for the learning of the inverse model are generated by letting the system simulate the
outcome of different action sequences, starting from real situations. This process greatly
speeds up the training, as the internal simulation of sensorimotor trajectories is much
more feasible than actually performing each action sequence, which is necessary as the
training of the inverse model requires many samples (Schenck et al., 2012).

Appart from being used for short-term planning, anticipation through embodied
simulation can also be used to dynamically select suitable controllers among multiple
candidates. This has first been proposed by Wolpert and Kawato in the “Modular
Selection and Identification for Control (MOSAIC) model”, which is a model of how
motor control is realized in the brain (Haruno et al., 2001; Wolpert and Kawato, 1998;
Wolpert et al., 2003). It is intended as an account for how the brain copes with different
contexts in control strategies, for example in the case of lifting objects of different
weights, where more force has to be invested for heavier objects than for light objects.
Two ways of implementing the control system are possible: Either a single, very complex
controller should be able to cope with all possible contexts, or a modular approach is
chosen where multiple controllers for the same action but in different contexts are used
(Haruno et al., 2001). The MOSAIC model is of the latter kind, and it is argued
that the brain selects the controllers by employing both a feedforward as well as a
feedback strategy. In the feedforward selection of controllers, sensory information is
evaluated, for example by using visual cues to guess the weight of the object. More
importantly however, feedback information can be used to re-evaluate the selection, for
example when the object turns out to be heavier than expected. This decomposition
is achieved in MOSAIC by combining a forward model and an inverse model, as well
as a “responsibility predictor” into a building block of the model. All building blocks
receive the same inputs, which are contextual information from the sensors, a desired
state that should be achieved by controlling the motors (for example the height to
which the object should be lifted), an efferent copy of the last motor command, as well
as feedback information for the current state. The building blocks operate in parallel,
using their responsibility predictors to produce a-priori estimates of how well they will
perform in the current context, and producing motor commands for the desired state.
Most importantly however, as feedback information becomes available (after having
started to lift the object), each building block uses this information to provide more
accurate evaluations of their responsibilities, thus allowing the system to dynamically

72

3.3 A Cognitive Architecture Based on Embodied Simulation

change and improve its control strategy. The final motor command is generated by
forming a linear combination of the individual motor commands that are provided by
the building blocks, using the normalized responsibility signals as coefficients.

Similarly to MOSAIC, also the AKIRA model (see Section 3.2.1) uses the process
of anticipation through forward simulation to compute the relevances for the system’s
components in the current situation. The activation of each schema in the system
is not only computed based on a static evaluation strategy of the sensory input, as in
Arbib’s model (see Section 3.2.1), but also on how well the schema can anticipate future
sensory inputs (Butz et al., 2007b; Pezzulo and Calvi, 2007; Pezzulo et al., 2007). For
example in the model of the praying mantis, multiple perceptual schemata are used
for the detection of prey, which are specifically tuned for different types of prey (slow
moving and fast moving insects). The schema that best anticipates future locations of
the prey gains most activation and determines the system’s behavior.

Finally, also Shanahan’s global workspace architecture implements embodied sim-
ulation as the forward simulation of the agent’s actions (see Section 2.5.2; Shanahan,
2006). In contrast to the works described above, Shanahan’s model implements a dis-
crete time forward simulation, in which forward models predict the final outcome of
the execution of an action.

While all of the just described approaches offer important insights into one relevant
aspect of embodied simulation, that of internally rehearsing possible actions and thus
anticipating their effects on the world, there are many more aspects to embodied sim-
ulation as the concept is used by theories of embodied cognition (as described above in
Section 3.1.2, see also Svensson et al., 2009). Importantly, the core assumption behind
the anticipatory systems described above is that processing begins with the current
sensory situation (Möller, 1999), which is transformed in the process of simulation for
anticipation. This only allows the system to plan for brief episodes into the future,
over the time span of single actions or short action sequences, for example to anticipate
the result of moving a small distance and turning left or right. However, one of the
most important properties of the human conceptual system and key to its flexibility,
as described for example in the works of Bartlett, Damasio or Barsalou, is the ability
to reconstruct a distal sensorimotor situation from fragments of information, based on
the knowledge that the system has acquired.

3.3 A Cognitive Architecture Based on Embodied Simu-
lation

As one of the main contributions of this thesis, a new cognitive architecture will now be
formulated in this section. In Section 2.6, a hypothetical scale to correlate the generality
of a cognitive architecture with its level of abstraction and the task complexity that it
can feasibly cope with has been described. Independently of what paradigm is chosen
as a motivation behind a new cognitive architecture, progress can be defined as adding
to both generality and task complexity as compared to existing models, or at least to
make an improvement in one dimension without regressing in the other (i.e., moving

73

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

neural field

motivation
system

sesnory
system

motor
system

actuatorssensors

building
block

top-down
attention
biasing

environment

sensory
input

motor
commands

low-level
goals

population
coding

population
readout

schema system

Figure 3.3: Overview of the proposed cognitive architecture.

up and to the right in Figure 2.14, so to say).

In this work, a cognitive architecture will be proposed, as an attempt to make such
progress. It draws on the embodied cognition hypothesis as a motivation and is aimed
at extending and improving existing approaches to cognitive architecture in the con-
nectionist and dynamicist paradigms. For this, in the following it will be elaborated on
compatibilities between, and common grounds among, the different views on embodied
cognition. It will then be tried to identify general principles that can guide the design
of a computational model. In the following sections, an overview of the proposed archi-
tecture will be given, and its main properties and how they relate to the picture drawn
by the embodied cognition hypothesis will be described.

Figure 3.3 depicts an overview of the main components of the architecture and
their interaction. The core is a schema system, which houses a network of structurally
identical building blocks and implements the main functionality of the system, such as
learning, action selection, decision making, and planning. It receives input from, and
produces output for, the other systems in the architecture, which are the motor system,
the sensory system and the motivation system.

74

3.3 A Cognitive Architecture Based on Embodied Simulation

3.3.1 The Schema System

A pervasive feature of most theories of embodied cognition is the assumption that some
sort of building block is in place, which enables cognitive processing: Concepts that
have been proposed in the literature are schemata (Arbib, 1998; Bartlett, 1932; Gallese
and Lakoff, 2005; Piaget, 1997 [1953]), convergence-divergence zones (Damasio, 1989;
Meyer and Damasio, 2009), simulators (Barsalou, 1999, 2008) and dynamic neural fields
(Erlhagen and Schöner, 2002; Johnson et al., 2008; Smith and Thelen, 2003; Thelen
et al., 2001), among others (e.g. Fuster, 2009). The schema system as the architecture’s
central component is composed of a network of structurally identical building blocks,
which implement the functionality of the system, including learning, decision making
and planning.

The use of a generic building block in a cognitive architecture is appealing for several
reasons. From an engineering point of view, it limits the design effort for the creation
of a cognitive system to the specification of connections in between building blocks and
the system’s sensory inputs and motor outputs. Since the internal mechanics of the
building block (i.e. the mechanisms for learning and operation) are fixed by design,
it would not be necessary to develop individual specialist components. Furthermore,
in principle it should be possible to let the system self-organize the interconnections
between building blocks in a data-driven way, which would be a possibility for open-
ended learning.

In addition, also from an empirical point of view it is reasonable to assume that
cognition can be implemented as a network of functionally equivalent modules, as it
has been argued that the organization of the cortex is best described as composed out
of uniform “columns” (repeating structures that can be found across the cortex, where
the firing of neurons seems co-determined inside a column, but largely independent
across neighboring columns; Mountcastle, 1997). Furthermore, while the adult cortex
is found to consist of different areas that can be distinguished from one another (see
Section 2.1), this layout seems to epigenetically develop to a large extent (for example as
the result of afferent input) rather than be fixed by genetics, as early on in development
the structure of the cortex is much more uniform and areas cannot be distinguished
(O’Leary, 1989). This assumption is also supported by experimental findings, as it
has been shown in ferrets that an artificial redirection of retinal projections to brain
regions that normally develop into auditory areas results in the development of retino-
topic maps in these regions (Melchner et al., 2000). Thus, it is not predetermined for
a region what its function will be, but the same region of the neonatal cortex can de-
velop to either process auditory information or visual information, depending on what
afferent inputs it receives. This is strong evidence supporting that information process-
ing is implemented similarly at different locations in the cortex, and consequently that
specializations of cortical regions are the result of the history of information that the
regions have processed.

Also some of the existing cognitive architectures make use of a generic building
block: The ERA as a connectionist architecture proposes connected SOMs and a mech-
anism of spreading activation as the “ERA unit” (see Section 2.4.1), and the architec-

75

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

tures based on the dynamic field theory rely on the dynamic neural field as a building
block (see Section 2.5.2). However, as already noted in the discussions of these architec-
tures, both have their limitations: The mechanism of spreading activation used in the
ERA unit seems not suitable for many tasks, for example it remains unaddressed how
motor control can be reliably achieved, and in a larger scenario where more than just
a few associations need to be learned by the networks, an over-activation of network
units across the whole system can be expected due to the unconstrained nature of the
propagation rule that is used. The dynamic neural field offers as a building block im-
portant functionalities, such as local decision making between competing hypotheses,
but current computational models rely on hand-specified connections between fields,
and learning is not addressed.

Building blocks in the schema system of the here proposed architecture are mod-
eled after the idea that the concepts of simulators and dynamic neural fields may be
combined in a coherent manner, supported by the structural framework provided by
the convergence-divergence model, as it will now be described.

The simulator is an appealing concept as a candidate for a building block, as Barsa-
lou’s theory of perceptual symbol systems, which is based on the concept, provides an
account for many aspects of cognition, ranging from low-level attention and categoriza-
tion to language and other high-level capabilities (see Section 3.1.2; Barsalou, 1999).
However, as compared for example to the detailed description of dynamic neural fields,
it remains rather unspecific concerning the processes underlying the account, for ex-
ample how frames are produced, how they are learned or how complex simulations are
generated. Barsalou’s descriptions, as he admits himself, leave many questions open for
further consideration, but are rather meant to give a general idea about the processes
he imagines to be involved (Barsalou, 1999, pp. 582, 590). Barsalou also does not
specify, how a simulator selects specific simulations that are produced, given that it
can supposedly produce infinitely many different simulations.

The dynamic field theory on the other hand is formulated in great detail, but
remains rather specific about the processes that are modeled, which are mainly the
integration of sensorimotor information and decision making. If we assume that both
simulators and the processes underlying the dynamic field theory are in place, we
could argue that the same mechanisms that are responsible for the decision making
in motor tasks (cf. Section 2.5.1) could also be accounted for making the decision of
which specific simulation to produce. In this interpretation, simulators, located in
association regions (or convergence-divergence zones, cf. Section 3.1.1), would produce
input via top-down cortical connections to the dynamic neural fields in sensorimotor
regions, corresponding to pre-activations of neurons for possible simulations. The field
dynamics could then spontaneously select one specific simulation, possibly in the light of
multiple simultaneous top-down activations (i.e., other simulations) or current afferent
input (see Figure 3.4 for a schematic representation of this idea). For example, an
apple-simulator might be located in an association area where, among others, visual
shape, color and size properties are combined. The apple-simulator would be rather
specific about the shape property, but some variability in the size and color domains

76

3.3 A Cognitive Architecture Based on Embodied Simulation

CDZ

candidate
simulations

specific
simulations

sensory input

learning simulator

p
er

ce
p
ti

o
n

si
m

u
la

ti
o
n

Figure 3.4: Schematic representation of how the dynamic field theory and embodied
simulation may combine. Dynamic neural fields form the basis of representation and receive
sensory input during perception (solid arrows). When sensory input is present, information
is passed on to convergence-divergence zones (CDZs), where correlations in the input are
learned and simulators are formed. During simulation (dashed arrows), simulators produce
candidate simulations in the form of activation landscapes as input for the neural fields.
The activation dynamics in the neural fields spontaneously develops single peak activations
which correspond to the specific simulations. The decision dynamics can be influenced by
the concurrent activation of several simulators, or by sensory cues that produce bottom-up
influence.

would be possible. When a simulation is produced, different neurons in the dynamic
neural fields representing the shape, color and size properties would be activated via
the top-down connections of the simulator. A specific simulation of an apple would be
the result of the field dynamics selecting one of the alternatives, for example due to
priming or memory effects (cf. Section 2.5.1) or neural noise.

If we extend this idea by further assuming that simulators become arranged by
self-organization in topographical maps, we can imagine a generic connectivity pattern
between simulators and dynamic neural fields to exist throughout the cortical hierarchy.
An example for such self-organization is the structural organization of action represen-
tations in the primary motor cortex and the premotor cortex: Whereas the primary
motor cortex is involved in performing primitive actions, such as flexing and extending
the fingers, turning the wrist, flexing and extending the elbow, and so on (Gallese,
2008), the premotor cortex structures these primitives into more complex, coordinated,
goal-directed actions, for example bringing the hand to the mouth, or bringing the hand
to specific points in ego-centric space, independent of the initial situation (Graziano
et al., 2002). Thus, in the primary motor cortex, the somatotopic arrangement in
neural fields can lend its topography directly from the actual layout of the body. How-
ever, the topographical arrangement of the representation of goal-directed movements
in premotor cortex needs to form in a process of self-organization. Here, neurons for
example responsible for reaching with the hand towards locations in the workspace are
arranged so as to form ego-centric maps, where the distance between neurons resem-
bles the distance between target locations (Graziano et al., 2002). The relation between

77

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

movements in the joints and the positions of the hand that are obtained is non-linear
and not trivial, so the topography of this representation likely needs to be learned by
integrating sensory feedback on the hand location. Thus, if we assume that an internal
model, i.e. a simulator, is responsible for the control of these goal-directed movements
and the association of the motor representation with sensory representations, then this
internal model (or the internal models if more than one are involved) provides a new
topographically organized representation, which makes information available to higher
levels in the hierarchy in a more compact format. It reliably represents the action of
reaching for some location in ego-centric coordinates, without the specific details of
how to reach for that location on the level of which joints are involved, and how they
are moved. It is not unreasonable to assume that similar self-organizing representations
can also be found in other modalities. For example, it has been proposed by Haxby
et al. that an “object form” topography can be found upstream the visual “what” path-
way in the ventral temporal cortex, which presumably reflects how the more complex
attributes of visual appearance of objects and faces are related visually, structurally,
or semantically (Haxby et al., 2001).

Thus, topographically arranged representations can be found on higher levels of
the cortical hierarchy just as in the primary cortical regions, and topographic dis-
tances reflect more and more complex and multi-modal relationships the higher the
representation is in the hierarchy. What is important here is that also the high-level
representations can be represented in topographically arranged neural fields, where the
lateral connectivity could implement the integration of information and decision mak-
ing as proposed by the dynamic field theory. This allows to propose a view, in which
a cascade of building blocks composed of simulators and dynamic neural fields would
be at work, with higher-level simulators generating coarse simulations which are then
refined more and more as the simulation propagates down the hierarchy. For example,
a simulator on the “object form” level could generate coarse multi-modal candidate
simulations of a car, from which the associated dynamic neural fields select one candi-
date through dynamic competition (for example a compact car instead of a van). The
information about this selection is propagated downward to the next lower hierarchical
level, where simulators and dynamic fields appropriately fill in more details (for ex-
ample about the shape). In this way, the simulation is propagated downwards in the
hierarchy, and simulations on higher levels of the hierarchy dynamically constrain or
select the simulators on lower levels, a process which is repeated in a cascade until the
sensorimotor regions of the cortex are reached.

Conversely, during the processing of bottom-up information, simulators become ac-
tivated to a degree that reflects how well their simulations match the available data.
This is in line with Barsalou’s view that simulation is the process behind categorization,
as stimuli are categorized according to a measure of similarity with simulations (see
Section 3.1.2; Barsalou, 1999). It also resembles the activation mechanism behind the
MOSAIC model (see Section 3.2.2), which has been used by its authors to explain data
from psychophysical studies (Wolpert and Kawato, 1998; Wolpert et al., 1998). As the
simulators have become topographically organized in a neural field, dynamic compe-

78

3.3 A Cognitive Architecture Based on Embodied Simulation

CDZ

dynamic competition selects simulators

self-organized

topographic

neural field

candidate

simulations as

top-down input

candidate

simulations to

lower levels

information

from bottom-up

activation

propagation

of activation to

higher levels

Figure 3.5: The proposed view on the integration of simulators and dynamic neural fields
in a framework for embodied cognition. In a process of self-organization, simulators become
arranged in a topographically organized dynamic neural field. In the face of bottom-up
activation, simulators become activated in a way reflecting the degree to which their sim-
ulations match the current bottom-up information. Dynamic neural competition selects
the winning simulators and inhibits all others. The winning simulators are adapted to the
new information in a process of learning. Also, the activation of the winning simulators
is propagated to higher hierarchical levels. In the process of simulation, top-down con-
nections propagate activation as candidate simulations. The field dynamics selects from
the candidates the winning simulators, which then produce candidate simulations for lower
levels in the hierarchy.

79

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

tition selects among them the simulators that best describe the input, as it has the
highest input activation. In the process of continuous adaptation to new information,
the winning simulators are trained to incorporate the new information (or, in Piaget’s
terms, accommodate the input). Also, the activation of the winning simulators is fur-
ther propagated to higher hierarchical levels where the process repeats analogously.
Figure 3.5 is an adaptation of Figure 3.1 and summarizes the structure and flow of
information as proposed by this view.

The use of a generic building block in a system requires the definition of a com-
mon data format, which is used to exchange information between the building blocks
(Gepperth et al., 2008). As mentioned above, it is assumed here that topographically
organized neural maps represent information at all levels of the cortical hierarchy. In
the proposed architecture, and borrowed from the dynamic field theory, information
therefore is passed in between building blocks using population coding in multidimen-
sional neural maps: Each neuron in a neural map responds selectively for a certain
stimulus with a bell-shaped tuning curve (i.e. each neuron has a preferred stimulus
to which it responds strongest, and activation decreases the more the input deviates
from the preferred stimulus). Originally identified in visual cortex (Hubel and Wiesel,
1962), population coding neurons are known to be used everywhere in the cortex and
their processing has been demonstrated to be robust against noise (see Deneve et al.,
2001). In contrast to vector coding, which is typically used in the robotics literature,
population coding in neural fields allows for a simultaneous representation of multiple
values at the same time, and the representation of no value, which both will be a crucial
feature for the integration of building blocks, as it will be discussed below and in detail
in Chapter 4.

The proposed view of information processing in a network of generic building blocks
offers to understand the concept of schema in a similar, but refined way as compared
to Rumelhart et al.’s description (Rumelhart et al., 1986): As a dynamical system that
is attracted by a state in which as many constraints as possible are satisfied. How-
ever, while (Rumelhart et al., 1986)’s model is limited to a selection of binary features
(cf. Section 3.2.1), the here proposed view provides a tangible interpretation of how
a schema representation with slots for attributes and their values can be found in a
neurodynamic model: Neural fields throughout the cognitive system represent domains
of values, initially in modality-specific domains (such as color, line orientation, pitch,
amplitude of force, etc.), and later on in more abstract domains (such as an “object
form” topography, Haxby et al., 2001). Building blocks learn about the combinato-
rial arrangement of input values that occurred synchronously (Damasio, 1989). As
it will be described in Chapter 4, the building blocks can restore information about
what values in other domains correspond to given cues. As the building blocks of the
schema system connect to a set of topographic neural fields, they define the “slots” for
attributes in their representation: Each connected neural field can be “filled” with a
value by means of an embodied simulation, be it in a modality-specific representation
(such as color, amplitude, etc.), or be it in abstract cross-modal representations (such
as a particular “object-form”, which itself would trigger a further embodied simulation

80

3.3 A Cognitive Architecture Based on Embodied Simulation

in connected lower-level representations, as described above). As it will be demon-
strated later on in Section 4.2, multiple building blocks can collaborate in producing
a specific embodied simulation, by mutually constraining their respective decisions. In
this way, the retrieval of information based on schematic knowledge can be understood
as a distributed process of refinement of incomplete information, as the building blocks
collaboratively contribute to the decisions of which simulations to produce in the sen-
sorimotor representations of the system. As the dynamic neural field representations
become interconnected via the network of building blocks, their individual decisions
become co-dependent, and settle to a state in which the constraints that the system
has learned in its schema knowledge are satisfied as much as possible.

3.3.2 The Motor-, Sensory- and Motivation Systems

Information is passed between components of the architecture in the form of population
codes in neural fields, both inside the schema system in between building blocks, as well
as between the schema system and the other systems. A set of neural fields is defined
at the interface between the schema system and the other systems (see Figure 3.3). All
of these fields represent unimodal inputs and outputs in domain inherent metrics, as for
example retinal location, color, shape or pitch for inputs, or joint spaces for outputs.

The motor system implements low-level motor functions, such as control of the
effectors in joint space. The sensory system provides input to the schema system in the
form of neural fields that reflect topographies inherent to the sensory domains. Note
that values are represented in the neural fields in the form of activations landscapes, thus
a single value is represented as a single-peak activation, but also multiple values can be
represented simultaneously in a multi-peak activation. In some cases, the input to the
fields is naturally restricted to always be in the form of a single-peak activation, as for
example in the case of joint positions (the robot cannot have several arm configurations
for the same arm at the same time). In other cases however, the input can be in the
form of an activation landscape, as for example in the case of a field representing salient
image locations.

The motivation system produces goals for the agent, in the form of target values
that should be reached for specific inputs. In a more complex agent, the motivation
system could be assumed to monitor bodily states, such as energy levels or maybe
rewards and pain. However, as the focus of the work in this thesis lies on the definition
of the building blocks in the schema system and their underlying mechanics, it is simply
assumed that the motivation system selects a target for some input, which the agent
should try to achieve.

3.3.3 Mechanics of the Building Blocks

Given the above considerations, the following modeling constraints can be formulated
for the building blocks of the schema system:

• Information is passed between building blocks via topographically organized dy-
namic neural fields.

81

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

• Each building block receives as input the activation of several neural fields, based
on which it learns a model (or simulator), which codes for the information of
which combinations of activation patterns across the neural fields are valid.

• New topographies in neural fields on higher hierarchical levels are formed through
self-organization, providing representations of reduced dimensionality.

• Building blocks compete against each other in explaining sensory data; inputs
are compared with predictive simulations, and building blocks receive activation
according to the goodness of match for accommodating the new information.

• The models learned by the building blocks are employed by the system to produce
a plan of how to act to reach a goal.

The last point is especially relevant to explore for a robot cognitive architecture,
as it relates to the important question of how motor responses are generated based
on the system’s goals and afferent inputs. As mentioned above, it is assumed that a
motivation system provides a goal input, which has the form of target values for sensory
variables. In the following, examples will be given for how the structural constraints
of building blocks just described, together with the functionality provided by dynamic
neural fields, can let a robot accomplish its goals. While in-depth descriptions of the
internal mechanics of the building blocks will follow in the next chapters, especially
concerning how internal models are learned and how they are used for the control
of the robot’s movements, this section should provide an overview of how the overall
architecture is envisioned to work.

In using embodied simulation as a means to reach goals, the architecture’s mechanics
is following the empirically supported view that overt action is preceded by a mental
representation of a goal-state, that is, a successfully terminated action pattern (see
Gallese and Metzinger, 2003; Herbort and Butz, 2012): Given a goal (i.e. a target
value for some input), the schema system uses its stored associations to reconstruct
a simulation of a situation in which that goal is met. Actions are then chosen in the
attempt to achieve that situation. As opposed to the existing computational models of
embodied simulation described in Section 3.2.2, this does not equate to a short-term
anticipation of a future state along a trajectory of sensorimotor states, which is bound
to originate from the current state. Instead, it allows the agent to simulate arbitrary
situations where the robot’s goals are met, based on what it has learned about the
world, although the current context can be used to influence this process, so as to favor
more feasible solutions.

Example 1

As a first example, consider the case of a robot equipped with an arm and a manip-
ulator as shown in Figure 3.6. For it to be able to bring its manipulator to a target
position, as for example observed via a camera sensor mounted to the robot’s base, it
requires the ability to transform between positions in Cartesian coordinates, or camera

82

3.3 A Cognitive Architecture Based on Embodied Simulation

sensory system
detects effector

in camera
image

motor system
controls arm in

joint space

motivation
system

provides goal
location

neural field coding for
position of effector in

camera image

neural field coding for
arm configurations

proprio-
ception

schema system

building block
learning

kinematics
transformation

Figure 3.6: Example for a system with only a single building block in its schema system,
for the learning of the kinematics transformation. Black arrows show the flow of activation
originating from sensory information: As the robot moves its arm, the neural fields are
activated to represent the arm posture in joint space, and the position of the effector in
image coordinates, respectively. The building block learns to associate co-activated neurons
in the two fields. Yellow arrows show the flow of activation as the motivation system
provides a target location for the effector. It is transformed via the learned associations
into a posture, which is sent to the motor system through population readout.

coordinates, and positions in angular coordinates (known in robotics as the kinematics
transformation). This transformation is performed by a building block connecting the
two inputs and outputs: A neural field representing the angular position space of the
robot arm and a neural field representing the Cartesian positions of the manipulator.
The former is the interface to the motor system, which reads out values from activations
in the field and translates them into motor commands that are sent to a controller. The
latter is the interface to the sensory system, which in this case is assumed to detect the
position of the robot’s manipulator in a camera image and provide it to the schema
system as an activation peak in the neural field (e.g., a peak in the center of the neural
field corresponds to the effector being in the center of the camera image).

From experience (i.e. the moving around of the effector), the system learns the valid
associations between the activations in the two fields, thus acquiring the kinematic
transformation inside the building block. The system could then be given the goal
to bring its manipulator to a certain position, which would be represented by a goal
activation in the neural field for Cartesian coordinates (see Figure 3.6). Thus, to

83

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

sensory
system

motor system
controls arm

in joint
space

motivation
system

provides goal
location

arm configurations

schema system

building block
learning kin.
transforma-

tion

location of attended
stimulus

colorshapetouch

’round’ ’red’

building block
learning

color-shape
combinations

building block
associates

touch inputs
with objects

performs
basic visual
analysis and
attention and
detects touch

Figure 3.7: Overview of the system described in the second example. Here, activation
from the target value in the touch domain is first propagated to the building block that
has learned about color-shape combinations of objects, which in turn triggers a simulation
of a matching object in the shape and color fields. This activation is used by the sensory
system as top-down attentional cues (dashed yellow arrows). In turn, the location of the
object is activated, which is transformed into an arm configuration that lets the effector
touch the object.

reach this goal, the system needs to determine an arm configuration that will move the
effector such that the input coming from the sensory system matches the goal activation
in the neural field. Via the associations learned by the building block, the system
reconstructs a situation in which this is the case, producing candidate activations in
the arm configuration field. The field dynamics then selects one configuration, which
is sent to the motor system and effectuated by the arm.

Example 2

In the simple example above with only a single building block in the schema system,
the goal of the robot is achieved through a single association between an input and an
output. However, the same picture of how a goal is propagated from one neural field
via learned associations in the building blocks across to other neural fields, extends
to more complex examples. Assume a system as shown in Figure 3.7, that has the
capabilities for basic low-level visual analysis and attention mechanisms. It represents

84

3.3 A Cognitive Architecture Based on Embodied Simulation

image regions in a shape and a color domain, and can tune its bottom-up attention
process to favor specific colors or shapes. Visual analysis maps sensory inputs into
neural fields for the color domain and the shape domain, and a visual location field
reflects the location of the currently attended region in the camera image (for example,
if a red ball in the camera image is visually attended, then neurons corresponding to
red in the color field and round in the shape field are active, as well as the neurons
representing the image region in the location field). It also has a touch sensor in its
manipulator that can distinguish textures.

With three building blocks in its schema system (see Figure 3.7), the robot can
learn several things about its world and utilize this knowledge to achieve its goal in
the following way. As it visually inspects different objects, the building block connect-
ing the shape and color property fields can learn that several different activations of
shapes and colors appear in combination, which results in a higher-level neural field
representation for objects (i.e., color-shape combinations). As in the first example, a
building block associating the arm configuration field and the visual location field can
learn the kinematic transformation, but in this case it will also learn to associate the
visual appearance of its own effector. Finally, the third building block can learn that
when a certain object is attended and a reaching action for its location is effectuated,
this results in the perception of a specific input to the touch sensor, as the robot’s
effector touches the attended object. For the moment it is not important how the asso-
ciations are learned or how they are stored inside the building blocks (which will both
be covered in Chapter 4). It is only important that a kind of “pattern completion” is
possible: When a partial cue, that is, an activation in a subset of the connected neural
fields, is present, then the building block can retrieve possible values for the missing
inputs.

Now assume that the agent has (for whatever reason) the goal to have a sensation
of a specific touch. This goal cannot be simply associated to a specific bodily state
(such as a fixed arm posture as in the last example), as the agent first needs to come
up with the visual appearance of an object with the desired texture and then look
for such an object and reach for it. Thus, to achieve its goal, the agent needs to use
its knowledge to translate between a target value specified in one modality (a specific
touching sensation) into an appropriate value in another modality (the control variable
for arm configurations, to bring the manipulator to the location of an object, once it
has been found), involving several learned associations. The behavior of the system in
this case, as it is envisioned in the proposed architecture, can be described as follows.
As the goal in the touch input is associated with certain objects via one of the building
blocks, the goal activation spreads to the neural field of object representations where
the corresponding neurons become active, which results in a simulation of the object in
the color and shape fields. This extends the original goal, that of perceiving a certain
touch input, to the visual perception of an associated object. The representation of
this goal in the color and shape feature maps can be used by the attention system
to tune the attention process, such that a matching object would become subject to
visual attention, if one is in the field of view. This in turn provides information on the

85

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

location of the attended object in the location map. At the same time, as the action
of bringing the effector to a target location is also associated with the original goal,
the location of the attended stimulus becomes transformed via the kinematics building
block into a simulation of candidate arm postures to reach for the object.

In sum, the system would come up with a simulation of a situation in which it
is touching with its effector an object, which it had associated with the target tactile
stimulus. If such an object was in the robot’s field of view, this would trigger a transfor-
mation of the generic simulation of seeing and touching the object into the simulation
of the specific goal situation for the current context, in which the robot had moved its
effector to the position of the visible object. As the activation across the neural fields
settled, the motor system would readout the arm posture information from the neural
field, and the robot would drive its arm to that posture, where its effector would come
into contact with the object and its goal would be reached.

3.3.4 Network Layout in the Schema System

It is important to note that the network layout in the schema system should not be
constrained to be a strict hierarchy, in the sense that it would need to be a tree-
like structure. Instead, building blocks can arbitrarily connect neural fields across the
whole schema system. Thus, in the language of graph theory, a node can have multiple
parents. Hierarchical levels can only be defined in terms of the distance to the interface
neural maps.

An example where one neural map is connected to several building blocks is a
system that associates different sensory inputs to the same motor output. For example,
the position of the effector could be associated to the angular configuration of the
whole arm, while individual sensors could report the “goodness” of the positions of
individual joints, so as to let the system be able to avoid joint limits. In this layout,
output maps for the individual arm joints would be connected each to one building
block for this joint position sensor, as well as to the building block for the kinematics
transformation (see Figure 3.8). This system could have multiple goals at the same
time, for example those of bringing the effector to a target position on the one hand,
and keeping joints away from limits on the other hand (or even having a joint in its
limit, which would be an unreasonable, yet possible goal). Both goals would be mapped
via the building blocks onto the same motor output fields. Although in some cases the
two goals might coincide in one particular arm configuration, this is unlikely for most
cases. Thus, there are conflicting candidate outputs originating from different goals.
Since it is avoided in the proposed architecture to rely on supervisory components
to determine an optimal solution based on hand-designed heuristics, as for example
in hybrid cognitivist architectures (see Section 2.2.2), a locally operating competition
needs to be implemented to select an action to be executed. In Chapter 4, a mechanism
will be demonstrated that can be accounted for this distributed selection behavior.

Another problematic situation, which is the result of the very generic layout of the
network of building blocks in the schema system, is related to the problem of relevance
detection, which was mentioned earlier (see Sections 2.2.3 and 2.4.2): Several building

86

3.4 Discussion

schema system

shoulder
joint angle

shoulder
joint

position
goodness

elbow joint
angle

elbow joint
position
goodness

wrist joint
angle

wrist joint
position
goodness

position of
effector

Figure 3.8: An example setup of a schema system, in which multiple building blocks
connect to the same fields for motor variables. In such a case, multiple goals can result in
conflicting candidate postures. A coherent solution needs to be found through a distributed
process of local decision making, since the use of a supervisory component that implements
task-specific selection heuristics is avoided.

blocks can use the activation pattern in the same neural field as input, but only a subset
of the activation patterns actually corresponds to relevant inputs for the individual
building blocks. For example, it is often assumed in the literature that a robot can
autonomously learn the kinematics mapping by repeatedly moving its arm into different
postures while observing the resultant position of the effector. As briefly outlined in
the above examples, and covered in detail in Chapter 4, a building block in the schema
system can obtain the kinematics transformation by using such a set of observations as
training data. However, the building block will only be able to successfully learn the
mapping with a reasonable performance, if it only trains on examples from situations
in which the robot actually looks at its own effector, and not at some random object in
the visual background scene (cf. Section 2.4.2). In the literature it is usually implicitly
assumed that the training examples only stem from valid situations. Chapter 5 will
elaborate on this problem further and will provide a solution, which allows the building
blocks to implement a local competition for input signals, such that inputs are correctly
distributed among the building blocks and allows them to successfully learn internal
models, without relying on such an implicit assumption.

3.4 Discussion

This chapter was divided into two main parts. In the first part, the embodied cogni-
tion hypothesis and related theories were introduced, which provide a promising new
paradigm for cognition in the current cognitive sciences literature and is intended as an
alternative to the cognitivist view. In many ways, this new school of theories compares
to more traditional theories that are based on the concept of schema, as highlighted in
the discussion of these theories. Several computational models of the concepts exist, as

87

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

then described.

In the second part, motivated by the body of embodied cognition theories thus
far outlined, a new cognitive architecture based on embodied simulation as a central
mechanism has been proposed. It uses a schema system as its central component,
which is composed of a network of generic building blocks and implements the main
functionality of the architecture. It is based on an attempt to coherently combine views
from several theories of embodied cognition and schemata, and proposes an alternating
cascade of internal models (or simulators) and dynamic neural fields.

Although so far the description of the architecture was on an abstract level, leaving
details about the implementation open for the descriptions to follow in the next chap-
ters, so much can already be said in relating the architecture to the existing approaches
that were described in Chapter 2: As it is motivated by theories of embodied cogni-
tion, it shares most similarities with cognitive architectures from the connectionist and
dynamicist paradigms. Similarly as in ERA (see Section 2.4.1; Morse et al., 2010), it is
argued that a generic building block should be used in an emergentist cognitive architec-
ture instead of fixing the layout on the architectural level of the system by design. The
use of a building block introduces a level of abstraction for the modeling which is above
that of the simple processing units in standard connectionist models, thus allowing to
tackle more complex problems, but retains the same separation of mechanisms from
assumptions about the content of the information to be processed: It models generic
mechanisms that are the same across the whole system, independently of for example
which modality the information comes from that is being processed. The sole cause
determining what an individual building block comes to represent is the set of neural
fields that it connects to and the history of information that it has processed. As op-
posed to ERA, the here proposed architecture introduces the important mechanism of
local competitive decision making in dynamic neural fields, through which information
is passed between building blocks. This way, the spreading of activation in the system,
as it uses the learned internal models to determine actions to pursue, is limited to the
simulation of a coherent sensorimotor situation and an over-activation across the whole
system is prevented. Importantly, the architecture addresses issues that arise as a con-
sequence of using a generic building block in a cognitive architecture, which have not
been solved in other cognitive architectures so far. These include the issues mentioned
above of combining the outputs of multiple internal models to form motor commands
that solve multiple tasks simultaneously, and of the unsupervised learning of different
sensorimotor mappings from information coming from a single sensory modality. These
issues will be discussed in detail, and solutions presented, in the following chapters.

Embodied simulation is a central process in the proposed architecture, as the sim-
ulation of sensorimotor situations, in which the system’s goals are met, precedes the
execution of overt motor actions, as a form of attractor sensorimotor state that the
system strives to reach. As described in Sections 3.1.2 and 3.1.3, in the Psychology lit-
erature it is argued that representations supporting embodied simulation are organized
around a frame-structure (Barsalou, 1999; Gallese and Lakoff, 2005; Rumelhart, 1984),
which in some way defines a set of attributes and the range of possible values for these.

88

3.4 Discussion

In the proposed architecture, a similar view on frames is assumed as the computational
models of schemata that are based on a process of global constraint satisfaction: These
models propose to encode the knowledge of the system in a set of associations in a
network of localist representations, and the processing of the system to be based on a
mechanism of relaxation to a state in which as many of the associations are satisfied as
possible (see Section 3.2.1). Similarly, processing in the proposed architecture uses the
learned associations in the building blocks to propagate a goal, which is specified in one
modality, across to representations in other modalities. The decision of which specific
sensorimotor situation will be simulated is based on a distributed process across multi-
ple dynamic neural fields, and is contingent on the involved associations. This can be
said to be a form of constraint satisfaction, but not relying on a localist representation.

Finally, it is also noteworthy that basing a cognitive architecture on the concept
of embodied simulation makes it compatible with theories of how the understanding
of observed actions of others is implemented in the brain (cf. Sections 3.1.2, 3.1.3–
3.1.4). According to the embodied simulation accounts to action understanding, an
observation of someone else’s action automatically triggers an embodied simulation of
the action using sensorimotor representations (Gallese, 2003). This is in contrast to
a more cognitivist view, according to which social interaction involves the decoding
of streams of sensory information and mapping them onto an abstract representation
of beliefs, desires and intentions of the observed person. Instead, sensorimotor repre-
sentations that have been learned for the control of the own actions are activated not
only for the own performance of an action, but also when seing someone else perform
the same or a similar action. As briefly stated in the examples in Section 3.3.3 (and
explained in more detail in the following chapters), building blocks in the schema sys-
tem of the proposed architecture learn to associate the robot’s actions with the sensory
feedback corresponding to the outcome of the action. During the robot’s goal-directed
action planning and execution, this knowledge is used to find possible actions that will
produce a desired state, by first expanding an initial goal activation with associated
sensorimotor states, until a decisive simulation of a sensorimotor situation is achieve,
including an activation of the motor program for producing the situation. In com-
plying with the embodied simulation account for social interaction, essentially similar
functions of the same representations should underly the understanding of another’s
actions: When watching someone else’s actions, sensory observations that have previ-
ously been associated with the own action performance can be mapped by the learned
sensorimotor representations in the building blocks onto the motor states corresponding
to the actions of the other. Thus, while during the own goal-directed action execution
a goal activation (triggered by the motivation system) corresponding to a desired sen-
sorimotor situation is mapped onto an activation of motor representations to produce
this situation, during observation of other’s actions the same mapping would produce
an embodied simulation of the action execution using the own action representations.
This property of a the schema-based representation used in the proposed architecture
is potentially beneficial for addressing the question of how to let a robot learn from a
tutor’s demonstration in social interaction. This issue however needs further attention,
which is out of the scope of this thesis.

89

3. A NEW COGNITIVE ARCHITECTURE BASED ON EMBODIED
SIMULATION

90

4

Integration of Internal Models by
Making Use of Redundancies

Internal models1 are discussed in the robotics literature as essential tools, for example
for movement control, such as kinematics and dynamics models of the robot’s own body
(Nguyen-Tuong and Peters, 2011). In mathematical terms, they describe mappings
between the robot’s motor space and a sensory feedback space. In the context of
cognitive architecture, as well as in theories of embodied cognition, the term describes a
more general concept, as it describes for example the mechanisms underlying the process
of embodied simulation (cf. Section 3.1.2). In that sense, internal models describe
knowledge structures that capture the relation between a set of representations, not
only for sensor-to-motor transformations as in the more specific usage in the robotics
literature, but for any set of representations in the cognitive system.

In the last chapter it was proposed that a cognitive architecture should be composed
of generic building blocks. These building blocks should learn about patterns that occur
in their inputs and outputs, and thus implement internal models. The operation of the
system is envisioned to be the result of the collaboration of its building blocks, each
performing dynamic local computations, but in concert producing a coherent system
response. This principle of organization of a cognitive system yields a fundamental
question that any cognitive architecture based on the use of building blocks needs
to address: How are the outputs of multiple internal models integrated, for example
when several internal models produce candidate values for the same motor output? A
simple example scenario where this question needs to be addressed was already outlined
at the end of the last chapter (see Section 3.3.4): A robot that learns to associate
its postural configurations with several different sensory feedback signals, such as the
Cartesian position of the end-effector on the one hand, and a proprioceptive feedback
about the goodness of joint positions on the other hand. The robot could be given
multiple ambiguous tasks, for example to bring the end-effector to a certain position

1In the robotics literature, more commonly simply the term “model” is used. In this work however,
the more specific term “internal model” is used to avoid confusion with other terms in the cross-
disciplinary literature, such as “model of cognition”, etc.

91

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

in Cartesian coordinates, and to avoid certain joint positions for the individual joints.
As several internal models would each represent a mapping of a target sensory input
space onto the same motor output space, each of them produces different output values.
The system thus needs to somehow select one of the candidate values to actually send
to the motor controllers, preferably one that satisfies multiple of the robot’s tasks
simultaneously. Furthermore, as this work is aimed at investigating ways to generically
integrate building blocks in a cognitive architecture, the solution should be free from
any task-specific considerations.

This chapter will first give an overview of existing methods for the integration of
internal models in Section 4.1, after which a new method will be proposed in Sec-
tion 4.2, which makes use of the existence of redundant solutions in many tasks. The
method is not tied to a specific choice for the representation of internal models, but a
concrete implementation using a specific neural network architecture will be described
in Section 4.3, and tested using a simulation of the humanoid robot iCub, as will be
described in Section 4.4.

Parts of this chapter (in particular Sections 4.2.2, 4.3.1, 4.3.4 and 4.4) are based on
(Hemion et al., 2012).

4.1 Integration of Internal Models in Robotics

As stated above, internal models describe a mapping between an input domain and an
output domain, where for example in the case of a kinematics model, the input domain
would correspond to the angular position space of the robot and the output domain
would correspond to Cartesian space. Depending on the application, the exact defini-
tion of this mapping can vary. The following is a brief summary of the most common
types of internal models from the robotics literature. Figure 4.1 also summarizes the
different definitions as graph representations.

• Behaviors (cf. Section 2.3) are used to implement sensory-driven motor reactions
of the robot by mapping a sensory input onto a motor response (Brooks, 1986;
Pfeifer and Scheier, 1994), see Figure 4.1(a). Behaviors are either hand-specified
by the designer of the robot, or can be learned using optimization techniques, such
as evolutionary algorithms (Nolfi and Floreano, 2000), or reinforcement learning
methods (Sutton and Barto, 1998). In the case of behaviors, the input domain
of the internal model is the space of possible observations for a certain sensory
input, for example the space of possible measurements from a laser range finder,
and the output domain is the space of commands for a certain motor controller of
the robot, for example for controlling the turning speed of the two main wheels
of a mobile robot.

• Kinematics models describe the causal relation between body configurations
and positions of the robot’s parts in space. The input domain of a kinematics
model is the space of angular configurations of the robot, and the output domain
is either the Cartesian space of positions, or the combined space of positions

92

4.1 Integration of Internal Models in Robotics

o u

(a) Behaviors, mapping sensory
observations o onto actions u.

θ x

(b) Kinematics forward model,
mapping joint configurations θ
onto positions in space x.

x θ

(c) Kinematics inverse model,
mapping target positions in
space x onto joint configurations
θ.

u

s

s′

(d) Dynamics forward model
(observable case), mapping cur-
rent state s and action u onto a
predicted future state s′.

s′

s

u

(e) Dynamics inverse model (ob-
servable case), mapping current
state s and desired future state
s′ onto action u.

Figure 4.1: Overview of the most common forms of internal models in the robotics
literature

and orientations. Kinematics models are further divided into forward models
and inverse models. Forward models map angular configurations onto resulting
positions in space, see Figure 4.1(b), while inverse models are used to obtain a
joint configuration that will bring the robot’s parts to target positions in space, see
Figure 4.1(c). Since each angular configuration of the robot corresponds to exactly
one position for each part in space, the forward model is a well-defined function
and can be learned using function approximation methods, such as feedforward
neural networks, whereas the inverse model can be multivalued and thus requires
further attention when being learned using standard machine learning techniques
(D’Souza et al., 2001; Jordan and Rumelhart, 1992).

• Dynamics models are similar to kinematics models, but describe the relation
of forward and inverse models in the case of dynamical systems (Nguyen-Tuong
and Peters, 2011). Here, the mapping describes the relation between the robot’s
actions and the resulting state of the system. In contrast to kinematics models,
the outcome of an action not only depends on the action itself but also on the
current state of the system. Thus, the output domain of dynamics models corre-
sponds to the space of possible system states, and the input domain additionally
covers the space of the robot’s actions. In the case of dynamics models, forward
models predict a future state of the system (usually the immediate next state
in a time series of discrete measurements) when a given action is effected, see
Figure 4.1(d), and inverse models determine an action to reach a transition from
the current state to a desired future state, see Figure 4.1(e). In many cases in
robotics, especially in the control of the own body, it can be assumed that the
state of the system can be directly measured via the robot’s sensors, whereas in
the more general case it has to be assumed that the actual state variable is not

93

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

readily available to the robot’s sensors, but must be deduced from other sensory
observations. Furthermore, Figure 4.1 only shows a simpler case in which the
internal model only incorporates the most recent known system state, whereas it
is also possible to include several past system states as input, for example the five
most recent measurements of the state variable.

In a system with multiple internal models, it is possible that internal models share
the same input and output domains (i.e. read data from the same inputs and/or provide
data for the same outputs), which makes it necessary to introduce a mechanism for the
assignment of data from and to inputs and outputs, to avoid the occurrence of conflicts
and impasses. Having multiple internal models share one input, i.e. read and process
the same input data, is unproblematic on the output side as long as the outputs of
the internal models are different. For example, in a robot equipped with two arms,
motor commands could be generated via two internal models for both arms separately
by using input from a single camera sensor (but note that here the related problem
arises of how multiple internal models can decide which input signals are relevant to
them, a topic which will be discussed in Chapter 5). However, when multiple internal
models share an output, somehow the data produced by the different internal models
needs to be combined and a decision needs to be made. This is related to the problem
of allowing a robot to pursue multiple tasks simultaneously, for example when trying to
bring the hand of the robot to a target position while also trying to maintain a certain
orientation of the hand, or trying to avoid driving joints into their limit positions. As
another example, a humanoid robot could be given different target positions for both
hands. Bringing the hands to these positions could involve rotating the torso, but
rotating it to bring the right hand closer to its target position could move the left hand
further away from its respective target position. In all of these cases, different sensory
inputs and targets (such as the current position and orientation of the hands, and their
respective targets) are transformed via different internal models into commands for the
same control spaces (the joint space of one arm, or two joint spaces that both include
the torso rotation joints). Also for problems not related to kinematics control the same
issue exists, for example in the case of two movement behaviors generating commands
for the same motors, such as one behavior for following a track and another behavior
for avoiding obstacles.

Existing approaches to the integration of internal models can be classified into three
main categories: Those integrating internal models (i) through serialization, effectively
allowing only a single internal model privileged access to a resource; (ii) by forming a
linear combination of the values output by multiple internal models; or (iii) by assigning
priorities to candidate values and selecting among those values with the highest priority.
In the following, approaches from the literature will be described and their respective
advantages and limitations will be discussed.

94

4.1 Integration of Internal Models in Robotics

4.1.1 Approaches Based on Serialization

The strategy to serialize access to resources, such as motors of the robot, is usually em-
ployed by cognitivist approaches. Architectures based on the sense-plan-act approach
compute sequences of actions on the basis of an abstract world model, which are then
executed by the motors one after another. Similarly, also hybrid architectures (see
Section 2.2.2) and other state-of-the-art robot setups often rely on this strategy, as
they employ deliberative reasoning methods to ensure that no conflicts between con-
currently operating low-level modules occur, or are fixed by design to avoid conflicts,
such as several behaviors trying to access the same motor resource. For example, in
the work of Gienger et al. (Gienger et al., 2010), the task for a humanoid robot to
pick up an object is translated into the execution of an action sequence of the kind
“walk to position x in front of the table,” “find the object,” “determine a good way to
grasp and perform it,” etc. Most of these basic actions are implemented as whole-body
controllers, meaning that each internal model takes over exclusive control of the entire
body of the robot or at least entire parts of the body, such as limbs. These controllers
transform a desired displacement in a task space into a displacement in the space of
a control variable (comparable to dynamics models, see Figure 4.1), for example by
transforming the direction of movement that would bring the robot’s hand closer to a
target position into a direction of change in the robot’s joint space. To some extent
it is possible to include further criteria into this control process, for example to avoid
joint limits (e.g. Gienger et al., 2005). These additional criteria are then optimized in
the so-called “null-space” of the movement, meaning that they are only effectuated as
long as they do not interfere with the main task of the controller of moving the hand
to its target position. Some actions can also be performed in parallel by employing two
or more controllers simultaneously, for example visual search only requires using the
head motors while the head movement is rather negligible for the behavior of walking
to some position. However, both the definition of what is the main task and what are
additional optimization criteria, as well as the knowledge of which controllers can oper-
ate in parallel, have to be carefully implemented by the designer based on task-specific
considerations and are put into the system a-priori.

Also some behavior-based architectures (see Section 2.3), for example Brooks sub-
sumption architecture (see Section 2.3.1; Brooks, 1986), effectively serialize the output
of internal models: While all behaviors are active in parallel, behaviors from higher
layers of the architecture overwrite the output of behaviors on lower levels of the ar-
chitecture and thus entirely take over the control of the effector.

4.1.2 Approaches Based on Linear Combination

In contrast to using serialization to integrate internal models, using a linear combination
of outputs allows the system to “blend” between solutions. Here, the values produced by
individual internal models for the same output modality are summarized using some
form of weighting scheme, which should ensure that those internal models that are
most relevant to the current situation should predominate the overall system behavior

95

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

by having the strongest coefficient. This form of integration is used for example in
approaches that use vector field implementations for behaviors, such as AuRA (see
Section 2.3.1; Arkin, 1989). Here, a geometric weighting scheme is used, as the responses
of behaviors are tied to distances between the robot and points in the environment,
such as the robot’s distance to its goal location, or its distance to an obstacle.

Using a linear combination to integrate internal models allows for a cooperation be-
tween the internal models, which is not possible when integrating through serialization.
The system can blend between solutions instead of always having a single component
determine the whole behavior of the robot. However, the vector field methodology is
very specialized for the problem of robot navigation and has inherent difficulties, such
as running into local minima (cf. Section 2.3.1). Also, the method does not allow for a
selection of one of several alternative courses of action to satisfy multiple tasks.

4.1.3 Approaches Based on Prioritization

This third class of approaches to integrate internal models is based on the idea to have
on the one hand the internal models provide different candidate values for the out-
put, and on the other hand have an accompanying process that evaluates the different
candidates in terms of how well they are suited for the current tasks of the robot.

Wolpert and Kawato’s MOSAIC model (see Section 3.2.2; Wolpert and Kawato,
1998; Wolpert et al., 2003) for example employs a set of paired forward and inverse
models, all representing the same action of for example lifting an object, but with
different parametrization of the action. The responses of individual inverse models are
assigned priorities based on how well the respective forward models predict the sensory
input data, and the final response of the system is computed as a weighted sum of the
individual responses, by using the priorities as coefficients. This allows for the control
of a system of which the state has a hidden component, such as the weight of the object
that should be lifted. Through the dynamic adaptation of the coefficients, the hidden
component of the control system is thus implicitly estimated. MOSAIC however only
proposes a method for integrating several instantiations of the same internal model, each
with a different parametrization, but not for generically integrating different internal
models, and does not allow for a selection of one of different candidate actions to solve
multiple tasks.

The global workspace architecture (see Section 2.5.2; Shanahan, 2006) uses embod-
ied simulation of forward models and proposes that a dedicated value system evaluates
the outcome of different actions before the robot physically executes them. However,
as the system selects an action based on whether the associated value exceeds a certain
threshold, and thus only employs one winning internal model for executing an action
at a time, also the global workspace architecture effectively implements a serialized
integration of internal models.

Rosenblatt’s “distributed architecture for mobile navigation” (DAMN; Rosenblatt,
1997) is intended as a framework for the integration of navigation behaviors, such as goal
seeking and obstacle avoidance, which should avoid both relying on a binary selection of
behaviors, as in Brooks subsumption architecture (see Section 2.3.1; Brooks, 1986), as

96

4.2 Making Use of Redundancies for the Integration of Internal Models

well as running into the problems associated with the vector field approach. In DAMN,
the output space of the behavior is discretized, and the outcome of each behavior is
evaluated for the discrete alternatives. For example, the space of turning actions is
discretized into the five actions of moving “hard left”, “soft left”, “straight ahead”,
“soft right” or “hard right”. Each behavior then votes for the alternative actions, for
example an obstacle avoidance behavior would estimate if either of the alternatives
would result in a collision and as a result would vote for or against the corresponding
discrete actions, and a path following behavior would vote for those alternatives that
would remain on the path. The action that has received most votes is executed by the
robot. Rosenblatt’s approach is only feasible for few action alternatives, as predictions
need to be made for all alternatives by all behaviors, which can quickly lead to an
explosion in computational cost.

A similar approach is based on fuzzy command fusion (e.g. Pezzulo et al., 2005;
Saffiotti, 1997; Yen and Pfluger, 1995) by representing behaviors as fuzzy rules, such
as “IF obstacle at -45◦ THEN turn 5 ”, which are translated into fuzzy sets (such as
triangular shapes around the specified values). This allows to combine the responses
of the different behaviors using fuzzy logic, thus assigning a higher value to commands
that satisfy multiple behaviors, and to apply different defuzzyfication strategies, which
allows for some more design freedom to control the overall system response as compared
to Rosenblatt’s approach (Yen and Pfluger, 1995). However, as already mentioned in
the discussion of the AKIRA model, fuzzy command fusion has problems with scaling
up to higher dimensions and only rather simple sets can be feasibly expressed using the
language of fuzzy logic (see Section 3.2.1; Sala et al., 2005).

4.2 Making Use of Redundancies for the Integration of
Internal Models

We are interested in finding a way to generically integrate internal models as the build-
ing blocks of a cognitive architecture. This gives us the following two important con-
straints: The method should be free from any domain- or task-specific considerations,
and it should allow the robot to learn internal models through sensorimotor experience.
This section will propose a method for the integration of internal models, which makes
use of the existence of redundant solutions in many sensorimotor transformations. It
is intended to allow the system to find and favor solutions, which fulfill multiple tasks
simultaneously. As such, the method is in some ways similar to the approaches for inte-
grating internal models based on prioritization (see Section 4.1.3), as it assigns higher
priorities to solutions that satisfy multiple tasks, and dynamically chooses among the
solutions with highest priority. This section introduces the method itself, which is not
tied to the use of any particular learning technique. An example implementation of the
method using a neural network model will be described in Section 4.3.

Most approaches for the learning and representation of internal models focus on
accuracy, on the generalization capability of the learning method from as few training
examples as possible, and on its suitability for online-learning. While all of these aspects

97

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

are very important, usually the learning of only one single internal model is studied in a
special experimental setup in isolation (e.g. Ijspeert et al., 2003; Kormushev et al., 2010;
Montesano et al., 2008; Mülling et al., 2011). Humans constantly perform many tasks
in parallel. We can sip from a cup of coffee while walking, we can read in a magazine
while stirring in a casserole, we can talk to another person while we are driving a car,
etc. This is possible because our bodies are highly redundant, which means that we
have many ways to solve a single task. When putting the index finger of one hand on
a spot on a table, we can still move our elbow around quite freely without having to
lift the index finger. Thus, there are several solutions of arm configurations allowing to
fulfill the task of keeping a finger on a certain spot on the table. With the other hand
we could now still reach most points on the table for an additional task of picking up
an object, even if it meant to bend over or step to the side a bit. This redundancy, or
flexibility in fulfilling a task, enables us to perform several tasks simultaneously.

Many robots also have redundant kinematic setups, for example humanoid robots
mimic the structure of the human body. These robots in principle have the same, or
at least some of the flexibility that we have in performing skills. As mentioned above
(see Section 4.1.1), in control theory the subspace of the joint-space which allows for
reaching a task goal is termed the null-space of a task (Liégeois, 1977). Knowledge
and control of the null-space offers advantages (Gienger et al., 2005): When controllers
are designed by the system developer, null-space control allows for example to avoid
self-collisions while reaching. However, the necessary information has to be carefully
considered by the human developer beforehand when implementing the controllers.

In contrast, in the machine learning literature redundancy is often discussed as
a problem, the non-convexity problem (Jordan and Rumelhart, 1992). The problem
states that averaging between multiple solutions for one task does not necessarily yield
a valid solution (see also Section 4.3 below). Averaging between solutions is done in
learning approaches that use function approximation when training from data points
that originate from a multivalued function. Thus, these methods try to learn a many-
to-one mapping yielding incorrect solutions where actually a many-to-many mapping
should be learned. An illustrative example is that of a simple robotic arm with a fixed
base and two rotational joints. The robot can bring the end of its arm to most points in
its workspace in two ways, which are the “elbow-up” and the “elbow-down” solutions.
Learning methods that average between solutions will average these two solutions,
ending up with associating a fully extended arm posture to most target points, which
is incorrect.

To overcome this problem, “redundancy resolution schemes” are applied to the
training set, which sort out training samples to guarantee that effectively only training
samples from a single-valued function remain (Rolf et al., 2010). One consequence is of
course, that the resulting learned mapping only stores a single solution for each target.
Thus, there is a great loss of information and the robot cannot know how to move
around in the null-space.

Instead of removing information to adjust the learning problem to standard machine
learning approaches, here it is instead investigated how multivalued functions can be

98

4.2 Making Use of Redundancies for the Integration of Internal Models

1.8

1.35

0.9

0.45

0

-1.8

-1.35

-0.9

-0.45

θ2

θ1

(a)

1.8

-1.35
1.35

0
.9

0.45

0

-0.45

-0
.90

0

0
.4

5

-0
.4

5

-1.8

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

θ1

θ2

(b)

Figure 4.2: Example of a sensorimotor task with redundant solutions. (a) A planar
robot with two rotational joints and a fixed shoulder is given the task to bring its hand
to a certain vertical position, disregarding the horizontal position. That is, each colored
line corresponds to equally valid solutions to the same task specification: All arm configu-
rations shown in light gray represent examples for valid solutions for the task of bringing
the hand to the vertical position y = −0.9. (b) The two-dimensional joint space of the
robot, spanning the interval [−π, π] in both dimensions. Colored lines represent the sets
of solutions to different task specifications, corresponding to the lines shown in (a). Thus,
each point on one of the lines corresponds to a solution to the respective task specification.

learned and the valuable information about redundancies preserved. Furthermore, it
will be shown how multiple internal models that are learned separately from each other
can be integrated to find solutions that comply with several tasks at once, by making
use of the learned knowledge about redundancy in tasks.

4.2.1 Redundancy in Sensorimotor Tasks

In mathematical terms, redundancy can be interpreted in terms of a many-to-many
mapping: For a given task specification, such as a target position for the hand in an
inverse kinematics model, there can be many possible values for the output variable
(postural configurations in this case) that are a solution for the task. Thus, the mapping
is not restricted to be a function (i.e., a many-to-one mapping). As a simple example1,
consider the case of a planar robot with two rotational joints and the task to control the
vertical position of its end-effector, disregarding its horizontal position. For each target
vertical position (apart from the upper and lower extremes), the robot has infinitely
many configurations to solve its task, see Figure 4.2.

Formally, the forward kinematics of the robot is given by the function (i.e., many-

1example adapted from (Rolf et al., 2010)

99

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

0

0.791.572.36

3.14

-2.36 -1.57 -0.79

(a)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.79

1.57

2.36

3.14

-2.36

-1.57

-0.79

0

0.79

1.57

2.36

3.14

-2.36

-1.57

-0.79

θ1

θ2

(b)

Figure 4.3: A second task with redundant solutions for the robot shown in Figure 4.2.
(a) The robot should obtain a certain orientation of its hand, that is, all configurations
shown correspond to solutions to the task of obtaining the orientation α = −0.25π. (b)
The robot’s joint space, showing sets of redundant solutions corresponding to directions
indicated by the lines in (a).

to-one mapping)

f : Θ ⊂ R2 −→ Y ⊂ R, (4.1)

where the input domain Θ is the set of possible (two-dimensional) joint configurations
of the robot and is mapped onto the output domain Y , which is the interval of vertical
positions that the robot can reach. In contrast, the inverse kinematics of the robot is
given by a many-to-many mapping

g : Y −→ P (Θ) , (4.2)

where P (Θ) denotes the power set of Θ, such that

∀ θi,θj ∈ g(y), y ∈ Y : f(θi) = f(θj), (4.3)

meaning that g(y) is the subset of Θ of angular configurations θ that will bring the
robot to the same vertical positon y. In Figure 4.2(b), each colored line represents
the set of solutions g(y) for one particular y ∈ Y , that is, any point along one line is
mapped by the forward kinematics function f(·) onto the same value y. Thus, to reach
its task to bring its end-effector to a certain vertical position, the robot can choose
any one solution that lies on the corresponding line, representing the set of redundant
solutions for that task.

As a second task that the simple robot in Figure 4.2 might have, assume that it
should control the orientation of its end-effector. That is, we introduce another inverse

100

4.2 Making Use of Redundancies for the Integration of Internal Models

schema system

y α θ

motivation
system

sensory
system

motor system

g h

Figure 4.4: Layout of a system with two internal models, both transforming sensory
information and target values into arm configurations θ. When the robot is given task
specifications for both y and α, the system needs to select a single solutions from multiple
candidate solutions.

mapping, which captures the relation between end-effector orientations α ∈ [−π, π] of
the robot arm and angular configurations θ,

h : [−π, π] −→ P (Θ) . (4.4)

The robot has infinitely many configurations for all target end-effector orientations,
which also makes this second inverse mapping a many-to-many mapping, see Figure 4.3.

Now assume a system with the layout shown in Figure 4.4, that has acquired two
internal models, corresponding to the two inverse mappings g and h, respectively. It
could be given two tasks, on the one hand to bring its hand to a certain vertical
position y, and on the other hand to obtain a certain orientation α of the hand. If
the two internal models of the system would both independently produce a single
solution, θg and θh respectively, these two solutions would most likely differ from each
other. None of the methods for the integration of internal models that were described
above in Section 4.1 would be suited to produce a solution that satisfies both tasks
simultaneously: Using a serialized integration, the robot could only perform one task
after the other by switching between the two arm configurations θg and θh; using some
form of linear combination θ∗ = a · θg + b · θh would not yield a valid solution to either
task, as the two internal models describe entirely different sensorimotor mappings, see
Figure 4.5. Only if both internal models can restore the knowledge about redundancies
in the task can the system decide on a solution that solves both tasks simultaneously.
The approaches for the integration of internal models using fuzzy command integration

101

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

-0.79

-0.9

(a)

-0.79

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-0
.9

?
θg

θh

(b)

Figure 4.5: (a) The two arm configurations that solve the two tasks of bringing the hand
to the vertical position y = −0.9 and obtaining a hand orientation of α = −0.25π simulta-
neously. (b) The robot’s joint space, showing the sets of redundant solutions corresponding
to the respective tasks. If the system employed its two internal models independently from
each other, thus producing two uninformed candidate solutions θg and θh, shown as a
blue and a red cross respectively, neither of them would satisfy both tasks. Also a linear
combination of the two would not yield a solution for both tasks, but in most cases would
produce an arm configuration that would satisfy neither task instead. Only the two con-
figurations that lie in the intersections of both sets, shown as black crosses, are solutions
to both tasks.

(see Section 4.1.3) pursue a similar idea, as in their cases each internal model produces
a fuzzy set as response, instead of a single vector. However, it is not easily possible
to represent non-trivial sets of solutions, such as the set of solutions g(−0.9) shown in
blue in Figure 4.5(b), using fuzzy Sets.

Therefore, it is here proposed to integrate internal models in a generic way by
relying on a learning method that can maintain the information about redundancy
in the training data, and a form of representation that allows to retrieve not only
single solutions, but arbitrary sets of solutions upon a query. We then want to apply a
prioritization scheme for the integration of internal models, which favors those solutions
that lie in the intersection of as many solution sets as possible. In Figure 4.5(b), exactly
two solutions exist that lie in the intersection of both solution sets for the two tasks.
These solutions correspond to the arm configurations that can be seen in Figure 4.5(a).
Furthermore, in most sensorimotor tasks, gradual changes in the target value also
correspond to gradual changes in the associated variables. Thus, when for example the
target position or orientation for the robot’s hand is changed gradually, also the set of
solutions moves continuously, not abruptly. Therefore, the selection of new solutions
as the task changes over time should be dependent on the current solution, and the
system should not abruptly select entirely different solutions, which would result in an

102

4.2 Making Use of Redundancies for the Integration of Internal Models

unstable behavior of the robot. Finally, one of the tasks could have a higher priority for
the robot than others. For example, actually brining the hand to the target position
might be crucial, while obtaining a certain orientation of the hand might be optional.
Thus, the former task should be given a higher priority than the latter.

4.2.2 Dynamic Selection of Solutions Using Dynamic Neural Fields

In Chapter 3, it was already proposed that dynamic neural fields should form the
interface for information exchange between building blocks in a cognitive architecture.
As we will now see, this choice is not only motivated by theoretical considerations, as
discussed in Section 3.3.3, but also has a pragmatic reason: The differential equation
that governs the activation dynamics of a dynamic neural field can be tuned in such a
way that the properties of a decision making mechanism for the integration of internal
models, as outlined in the last section, can be implemented using a dynamic neural
field model. This section will demonstrate that internal models can be integrated by
using dynamic neural fields, and that a single solution can be selected that is in the
intersection of multiple sets of solutions, which were retrieved from the internal models.
Furthermore, it will be shown that the selection is stable in the light of changes to the
task.

In a dynamic neural field model, it is assumed that neurons are topographically
arranged and are laterally connected to their respective neighborhood in two ways:
Connections are excitatory for short distances and inhibitory for longer distances be-
tween neurons (comparable to a “mexican hat” function). The field dynamics is based
on a dynamic update rule, which was first studied by Amari (Amari, 1977) and is
therefore also referred to as the “Amari dynamics”. Amari investigated the properties
of such fields with respect to dynamic pattern formation and stability. One simple, but
in the context of this work important case is the formation of a single peak solution
in the neural field, such that the inhibitory connections prevent the formation of any
other activation peaks. The peak remains stable as long as it is provided with input,
is robust against noise as the Amari dynamics implements a low-pass filtering of the
input signal, and can also follow the input signal when the location of strong input is
shifted gradually. Thus, the Amari dynamics nicely complies with the requirements for
the decision making process that was stated above.

The dynamic neural field model that is used in this work follows that of Erlhagen
and Schöner as a discrete time implementation (Erlhagen and Schöner, 2002), which
was also adapted by Toussaint (Toussaint, 2006). The differential equation governing
the activation ui of the neurons in the neural field is

τ u̇i = −ui + h+ Si +
m∑
j=1

wijϕ(uj), (4.5)

where τ is the time constant of the dynamics, h is a parameter for global self-inhibition
and specifies the resting level, Si is the input to the i-th unit in the neural field, wij is
a distance weighting that effectively implements the excitation and inhibition property,

103

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

and ϕ is a non-linearity. Here, a “ramp” function is used,

ϕ(u) =


0 u ≤ 0
u 0 < u < 1
1 u ≥ 1

, (4.6)

which at the same time also serves as the output function for the field. For the dis-
tance weighting wij a Gaussian function shifted by a constant wI is used, to achieve
inhibition across the whole neural field instead of an inhibition that is restricted to a
local neighborhood,

wij = wE · exp

(
−d(i, j)2

2σ2
E

)
− wI . (4.7)

Here, d(i, j) is the Euclidean distance between the units i and j in the neural field, σE
determines the excitatory range and wE determines the strength of the excitation.

To use the field dynamics as a decision making mechanism for the integration of
internal models, the outputs of the internal models must be translated into an input
activation pattern Si for the field neurons. For this, population coding (Deneve et al.,
2001) is used, such that each field unit responds selectively for a certain region of the
input space with a bell-shaped tuning curve, that is, the field units are represented by
radial basis functions with centers mi. Given an input vector x, the population code
is computed as

Si = G(x−mi), (4.8)

where G(·) is a Gaussian function according to

G(d) = exp

(
−ν · d

Td

2σ2

)
. (4.9)

The receptive fields of the units have to cover the input space, such that all possible
values of x can be represented. For this it is possible to self-organize the topology of the
neural field and the distribution of receptive field centers mi in a data-driven manner
(Gläser et al., 2008). However, for reasons of simplicity, a predefined topology and a
static distribution of receptive field centers is used in this work. The connection pattern
of the field units corresponds to a multidimensional regular grid, and the centers mi of
the receptive fields are evenly distributed to cover the domain of the input vector x.

Using population coding, it is not only possible to represent a single value of the
input vector x, but also to represent multiple values, or no value at all (i.e., an absence
of input). Thus, sets of solutions for a task, such as the ones shown in Figure 4.5(b),
can be simultaneously represented as an activation landscape for the input Si to the
dynamic neural field, by combining population codes for all values of x in the set
of solutions X . A simple way to combine population codes is by using the maximal
response for each unit, as

Si = max
x∈X
{ G(x−mi) } . (4.10)

104

4.2 Making Use of Redundancies for the Integration of Internal Models

dynamic neural field
representation of

output space

superposition of
population codes

population codes of
redundant solutions

internal models
transforming target
values into sets of

solutions

y1

yn

g1

gn

g1(y1)

gn(yn)

...

...

...

...

...

a1

an

Σ

Figure 4.6: Overview of the proposed method for the integration of internal models. It
is assumed that internal models can produce sets of solutions for tasks, instead of single
solutions, which are transformed into population codes. These are then combined as a
superposition, which is provided as input to a dynamic neural field. The field dynamics
selects a single value for the output variable.

To combine the outputs of multiple internal models, S1
i , . . . , S

n
i , each corresponding

to a set of solutions Xk, a superposition is used,

Ŝi =

n∑
k=1

ak · Ski , (4.11)

where the factors ak are normalized so that their sum is below or equal to 1. This is
done, because the activation dynamics of dynamic neural fields is very dependent on
the choice of parameters (see Equation 4.5), especially in terms of how the network
responds to different amplitudes in the input activation. By restricting inputs Ŝi to
values from the interval [0, 1], it is more feasible to tune the parameters (note that
by using a Gaussian function as the activation function, as defined in Equation 4.9,
it is ensured that also the individual population codes Si only have values from that
interval). Figure 4.6 gives a schematic overview of the proposed method.

Figure 4.7 shows the response of a dynamic neural field, when receiving as input a
population code for solutions to the two tasks used in the above example of a planar
robot (cf. Figure 4.5). It can be seen that the field behavior complies well with the
definition of properties of a decision making mechanism for the integration of internal
models as stated in Section 4.2.1, in the following way. If there is no input at all,
then the field activation goes to a resting level below the lower threshold of the output
function, thus there will also be no output from the dynamic neural field. If there is
input to the field, coming from internal models, the summation in Equation 4.11 serves
as the prioritization scheme for the decision making mechanism: When solutions from
different internal models lie close together in the output space, i.e. both lie close to the
center of the receptive field of one field unit, this unit receives a stronger input than units

105

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

-3 -2 -1 0 1 2 3
-3

-2
-1

0
1

2
3

-1.5

-1

-0.5

0

0.5

1

1.5

θ1

θ2

(a)

-3 -2 -1 0 1 2 3
-3

-2
-1

0
1

2
3

-1.5

-1

-0.5

0

0.5

1

1.5

θ1

θ2

(b)

-3 -2 -1 0 1 2 3
-3

-2
-1

0
1

2
3

-1.5

-1

-0.5

0

0.5

1

1.5

θ1

θ2

(c)

-3 -2 -1 0 1 2 3
-3

-2
-1

0
1

2
3

-1.5

-1

-0.5

0

0.5

1

1.5

θ1

θ2

(d)

Figure 4.7: Example for how a dynamic neural field can be used as a decision making
mechanism for the integration of internal models. Field inputs are shown as activation
landscapes in light green, and the resulting activation of the dynamic neural field is shown
in blue. Peaks of activation above threshold (zero-level), corresponding to the output of
the dynamic neural field, are shown in red. (a) If no input is present, the field activation
goes to a resting level below threshold. (b)–(d) The two tasks of bringing the hand of the
robot to a target position and obtaining a target orientation of the hand are transformed by
internal models into sets of solutions, here to be seen as a circular shape for the former and
the two diagonal lines for the latter task, cf. Figure 4.5(b). Both inputs are combined into
a single activation landscape through a summation with equal coefficients, as explained
in the text. The field responds with a single peak of activation above threshold, lying at
one of the intersections of the two sets. When the task of obtaining a target orientation
is moved gradually, the solution set also moves gradually in the output space. As the
peak of activation moves towards maximal input amplitude in its local neighborhood, it
dynamically follows the moving input.

106

4.2 Making Use of Redundancies for the Integration of Internal Models

with solutions of only one internal model inside their receptive fields. The activation
of the dynamic neural field consequently develops into an activation landscape where
only a single peak at an intersection of the solution sets lies above threshold. If the
target value for one internal model now gradually changes, in this case the target
orientation for the hand, the peak of activation dynamically follows the input, i.e. the
set of solutions. These properties derive from known properties of the neural field
dynamics (Amari, 1977), as peaks of activation only develop in the field where there is
input present, and peaks move in the direction of increasing input amplitude, searching
for the maximum, as long as it is within the range of excitation.

Assigning priorities to tasks can easily be achieved in the model by controlling the
factors ak in Equation 4.11. If there exists a point where all solution manifolds intersect,
this point will have the highest activation value in the neural field. If however there is
no such point, the manifold with the higher priority will have a higher activation value
in the superposition and will thus be selected by the field dynamics.

4.2.3 Distributed Decision Making in Co-ordinated Dynamic Neural
Fields

Above it was described, how multiple responses of internal models can be integrated
by making use of the existence of redundant solutions, and using dynamic neural fields.
The proposed method allows to simultaneously solve multiple tasks that depend on the
same outputs (e.g., require the use of the robot’s arm). However, a complete cognitive
system not only has to select a solution in a single output domain, but needs to make
many decisions in parallel, some of which might be interdependent. For example, when
an agent should find and pick up a fruit, it needs to first decide on a particular kind
of fruit, maybe in the light of additional criteria, then find an instance of the fruit and
transform its location into motor commands to reach for it. In Section 3.3.3, it was
already outlined, how a distributed decision making process should take place in the
cognitive architecture that was proposed in the last chapter. Now, it will be described,
with the aid of a simulation experiment, how a distributed decision making process can
be implemented by co-ordinating the activation in multiple dynamic neural fields.

For this, consider again the planar robot with two degrees of freedom (see Fig-
ure 4.2). In the above descriptions for the integration of internal model responses it
was assumed, that the joint space of the robot is represented by a single dynamic neural
field, of which the output corresponds to the decision of the system. Several internal
models generate sets of redundant solutions in this joint space, which are combined in
the input to the dynamic neural field. However, in a system with multiple dynamic
neural fields, each operating independently, but coupled with each other via the learned
internal models, it can become necessary that the decisions of the individual fields are
co-ordinated, in the sense that the overall behavior of the system is only coherent if
the decisions of the different fields are mutually constrained. As an example, consider
a system that represents the joint spaces for the two joints of the robot individually,
each as a one-dimensional dynamic neural field (cf. Figure 3.8). Such a separation
makes sense, as different internal models can generate solutions for different sub-sets

107

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

. .
.

..
.

y g g(y)
. . .

...

(θ1, θ2)

θ1

θ2

ak

aj

×

×

a
i

al

Σ

Σ

Figure 4.8: An extension of the method for integrating internal models, allowing a dis-
tributed decision making process by co-ordinating multiple dynamic neural fields. See text
for description.

of degrees of freedom. For example, another internal model would generate solutions
for only one degree of freedom, when the task is to lock a single joint into a certain
angular position. As a more complex example, imagine one internal model for bal-
ancing a humanoid robot, which makes use of the whole body, while another internal
model transforms egocentric object coordinates into commands for reaching with the
arm, thus only making use of the degrees of freedom related to the arm. In such cases,
the decisions made by the individual dynamic neural fields, each for a different degree
of freedom (or sub-set of degrees of freedom), need to be co-ordinated, as otherwise the
overall system behavior would not solve the tasks that depend on multiple degrees of
freedom.

To achieve such a co-ordination of multiple dynamic neural fields, an extension is
introduced to the integration method proposed above, as shown in Figure 4.8. The two
degrees of freedom of the robot’s arm are represented separately by two one-dimensional
dynamic neural fields, which by themselves each take as input a combination of model
responses for integration (as previously described, cf. Figure 4.6). Additionally however,
for internal models that rely on combinations of multiple output spaces, as here for
example an internal model generating solutions in the two-dimensional space of joint
configurations of the arm, mutual feedback connections are introduced that link the
dynamic neural fields (sown in Figure 4.8 in red). Via these feedback connections,
the outputs (i.e., the decisions) of the dynamic neural fields are transformed into an
additional input to each of the respective other involved dynamic neural fields (this
transformation is indicated as crosses in Figure 4.8). This way, the information about
the current decisions of the other fields is available at the input of each individual
dynamic neural field, which makes a co-ordinated decision making process possible.

More precisely, the solutions given in the output of the internal model, which are rep-

108

4.2 Making Use of Redundancies for the Integration of Internal Models

resented in the combined higher-dimensional space (in the example the two-dimensional
joint space), are projected into the component dimensions, and the projections are used
as input to the individual dynamic neural fields. The feedback (i.e., the output of the
dynamic neural fields) that is given in response is transformed by first discarding from
the output of the internal model all solutions but those that agree with the current
decision of the dynamic neural field, and then projecting only the remaining solutions
into the component dimensions. For the example of the two-dimensional robot arm
this would mean that the output of the dynamic neural field representing the first joint
would be translated into all those solutions for the second joint, which agree with the
current decision of the first joint (and vice versa for the other feedback connection).

Figure 4.9 shows simulation results of the system for the example of the planar
robot arm. Two one-dimensional dynamic neural fields are used to represent the two
joint angles of the robot, θ1 and θ2, respectively. The robot is given the task to bring its
end-effector to a certain vertical position, which is translated by an internal model into
sets of redundant solutions, represented using population coding in a two-dimensional
(non-dynamic) neural field. Additionally, a second internal model is introduced for the
task to keep the first joint in a target angular position. Thus, both dynamic neural
fields receive as inputs on the one hand the output of the first internal model, projected
into the respective dimensions that the fields represent. On the other hand they receive
the mutual feedback inputs, as described above. Furthermore, the dynamic neural field
representing the first joint receives the additional input from the second internal model.

The target vertical position for the end-effector is continuously shifted from the
lower-most, upwards to the higher-most. The target angular position for the first joint
initially remains constant. Figure 4.9 shows the evolution of the activation of both
one-dimensional dynamic neural fields over time. The solutions for the target vertical
position correspond to plateaus of equal activation in the inputs to the two fields. The
current decision of the respective other field, translated via the feedback connections,
arrives at the inputs as “bumps” in these plateaus. The target angular position for the
first joint is present as an additional peak in the input to the corresponding dynamic
neural field. After a few time steps, both one-dimensional fields have co-ordinated their
decisions, such that the arm reaches its target vertical position of the end-effector, how-
ever not having the first joint in the target angular position at first, since the two tasks
cannot be solved simultaneously. Thus, the peak corresponding to the target angular
position remains below threshold. Figure 4.9(a) shows for the time step marked with
(a) the set of solutions to the task in the two-dimensional joint space of the robot
(i.e., the output of the first internal model), along with the result of the distributed
decision-making process as a peak at the location in the two-dimensional space, which
corresponds to the two individual decisions. This peak coincides with the set of solu-
tions, meaning that a valid system behavior is achieved for solving the first task. As
the target vertical position is moved upwards, the set of solutions changes, and the de-
cisions of the two fields continuously track the solutions, until at the time marked with
(b), the target vertical position is at a level that allows the robot to also achieve the
second task of bringing the first joint into its target angular position. Consequently, the

109

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

u

-3.1416

0

3.1416

θ1

-2

0

2

-2

0

2

u

-3.1416

0

3.1416

θ2

(a)

(b) (c)

(d)

(e) (f)

(a)

(b) (c)

(d)

(e) (f)(a)

(b)

(c)

(d)

(f)

(e)

Figure 4.9: Simulation results showing the system behavior for distributed decision mak-
ing in two co-ordinated dynamic neural fields. See text for description.

110

4.2 Making Use of Redundancies for the Integration of Internal Models

dynamic neural field corresponding to the first joint transitions to this single solution
that solves both tasks, as it is now the strongest input to the field. This transition
briefly produces an overall decision of the system that is incompatible with the first
task, as the second dynamic neural field is still in a state of co-ordination corresponding
to the previous decision of the first field, which can be seen in Figure 4.9(b) as a new
peak begins to form at a location that is not part of the set of solutions. However,
shortly after this transition in the first field, the second field again co-ordinates with
the new decision in the first field and a new valid solution is picked, as can be seen in
Figure 4.9(c), and this new solution is tracked by both fields, see Figure 4.9(d). At the
time marked with (e), a new target angular position for the first joint is given, which
again triggers a transition in the first dynamic neural field, see Figure 4.9(e), again
shortly after followed by a co-ordination with the second field, see Figure 4.9(f).

4.2.4 Summary

In this section it was proposed to integrate internal models by making use of redundant
solutions in sensorimotor tasks. For this, it is assumed that internal models store and
represent knowledge in such a way that information about redundancy remains intact
and can be retrieved upon query. That is, given a target value for an input variable,
the internal model generates a set of solutions in the output domain, instead of only
a single solution. For a robot with multiple tasks, some of which might depend on
the same output variables (such as multiple tasks that can be solved using the same
effector), solutions should be selected that satisfy as many tasks as possible. Here it is
proposed to use dynamic neural field representations of the output domains, and to use
a superposition of population codes of the sets of solutions as input for the dynamic
neural field.

Furthermore, it was shown that multiple dynamic neural fields, each representing
different output domains, can be co-ordinated to achieve in concert a coherent system
response. This allows for the integration of internal models with partly overlapping
output domains, as it was shown with the example of a robot arm and separate dynamic
neural fields for the individual joints. Splitting the decision making process into multiple
dynamic neural fields, as opposed to using a single high-dimensional dynamic neural
field, not only allows for a more flexible integration of internal models, but also is
beneficial in terms of computational complexity: The number of operations necessary
for the computation of the next state of a dynamic neural field grows exponentially
with the number of input dimensions. Thus, the use of a high-dimensional dynamic
neural field can be computationally demanding, whereas using multiple low-dimensional
dynamic neural fields only linearly increases the computational cost.

Note that in the description above it is assumed that the internal model response
is first transformed into a population code in a (non-dynamic) neural field representing
the combined higher dimensional space. This obviously still entails having to hold a
large amount of activation values in memory, growing exponentially with the number
of dimensions covered by the neural field representation. However, also this can be cir-
cumvented if the query of the internal model supports not only to specify a target value

111

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

for the input, but also to include constraints for components of the output variabel. In
this case, the representation of the result of a single query in a high-dimensional neural
field can be replaced by multiple queries, of which the results are each represented by
lower-dimensional neural fields. Later on in Section 4.3.3, this will be explained in
more detail on the basis of an example implementation of the proposed method for
integrating sensorimotor mappings.

The presented method depends on the assumption that internal models can store
and represent redundant solutions, i.e. can learn many-to-many mappings instead of
many-to-one mappings. In the following, a neural network model will be presented
as one possible way to learn and store many-to-many mappings, before the method is
experimentally evaluated in Section 4.4 using a simulation of a humanoid robot.

4.3 Using Networks of Sigma-Pi Units for the Learning
and Query of Redundant Mappings, and for Robot
Control

In the last section, a method for the integration of internal models was proposed that
exploits the existence of redundant solutions. It therefore requires a representation of
internal models that is able to restore not only a single solution to a task, but sets of
redundant solutions. In this section, a method will be proposed to learn many-to-many
mappings from training data, retaining information about redundancies.

A standard approach to the learning of internal models is to use function approx-
imation methods, such as the multilayer-perceptron (Jordan and Rumelhart, 1992).
However, since a function approximation method maps each input value onto exactly
one output value, these methods cannot store information about redundancies. When
using function approximation, trying to learn an internal model from a training set that
consists of redundant samples will produce invalid results without further attention, see
Figure 4.10 for an example. To overcome this difficulty, usually the learning procedure
is adapted in such a way that redundant samples are sorted out, either prior to or dur-
ing the training (Rolf et al., 2010). Thus it is guaranteed that effectively only training
samples from a single-valued function remain. However, dismissing redundant samples
from the training set results in a great loss of information, and the robot cannot learn
about redundant solutions to a task.

Some learning methods exist that can also deal with multivalued functions. One
approach is to train not a single, but many estimators, each of which learns the relation-
ship between input and output values only for a local region (D’Souza et al., 2001; Lopes
and Damas, 2007). This approach relies on the assumption that complex non-linear
mappings can be approximated as nearly-linear, when only looking at a small subspace.
Thus, many simple linear estimators are trained from non-redundant (because locally
restricted) training samples. In a different approach, Reinhart and Steil have proposed
to associatively combine input and output variables into a single vector, and to train
a reservoir network using the resulting higher-dimensional training samples. Reinhart

112

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ1

θ
2

(a)

-3
-2

-1
0

1
2

3

-2

0

2

-1.5

-1

-0.5

0

0.5

1

1.5

θ2

θ1

y

(b)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ1

θ
2

(c)

-3
-2

-1
0

1
2

3

-2

0

2

-1.5

-1

-0.5

0

0.5

1

1.5

θ2

θ1

y

(d)

Figure 4.10: An example demonstrating the so-called “non-convexity problem” (Jordan
and Rumelhart, 1992) for the case of learning the inverse kinematics mapping g for the
planar robot, as defined in Section 4.2.1. When only drawing minimally redundant exam-
ples while sampling the motor space of the robot, a multilayer perceptron (MLP) is able
to acquire the desired mapping. A valid training set consists only of training samples that
cover each manifold of redundant solutions in a single point, as for example the 150 sam-
ples shown in (a). Using these samples to train an MLP with five hidden units in 10.000
training epochs results in the internal model shown in (b) that produces valid outputs for
all targets, which can be seen as all outputs of the MLP (black line) lie on the actual
manifold (shown in grey). In contrast, training the network from randomly drawn training
samples, even when using as many as 5.000 training samples as shown in (c), results in
an invalid mapping. The learning method regards multiple samples with the same value
for the output variable as noise in the input variable, and averages between samples. This
results in a mapping that produces invalid outputs for almost every input, as shown in (d).

113

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

and Steil have shown that after training, when presenting the network with an input in
which the output components of the combined vector are clamped to target values, the
network is attracted to a state in which the input components of the vector correspond
to valid associations (Reinhart and Steil, 2011). Both approaches provide as output
only a single vector as a solution. However, as described in the previous section, we
require here a method that can restore entire sets of redundant solutions.

A straightforward way to learn and represent redundant mappings is to learn as-
sociative connections between population codes of input and output variables, which
allows to associate a single value in one map with multiple values (or no value) in other
maps. Since the method for the integration of internal models that has been proposed
in Section 4.2 relies on the use of dynamic neural fields, which also require input to be
in the form of population codes, using associative learning between population codes
for the internal models would constitute a very intuitive implementation of the method.

While most connectionist models today use vectorized inputs, early attempts have
been made by Rumelhart and McClelland to model the synaptic basis of associative
learning in cerebral cortex using networks of “Sigma-Pi units” (Mel and Koch, 1989;
Rumelhart and McClelland, 1986), which store information about co-activations of in-
put units in the connection weights, allowing to restore multiple values as activation
landscapes in response to a query. More recently, the use of sigma-pi units has been
picked up by Weber and Wermter, who used a SOM-like learning algorithm to learn in-
variance in input signals in an unsupervised fashion (Weber and Wermter, 2007). They
used their model to learn a self-organized representation of a head-centric coordinate
system, based on pairs of inputs consisting of the angular configuration of the neck
and the retinal position of a stimulus. After training, Weber and Wermter’s sigma-pi
SOM can reproduce for any point in head-centric coordinates co-activations of sets of
solutions in the neural fields for angular configurations and retinal positions.

A neural network architecture that is essentially similar to networks of sigma-pi
units has been used by Butz et al. in their computational model of arm movement
control, the “sensorimotor, unsupervised, redundancy-resolving control architecture”
(SURE REACH; Butz et al., 2007a; Herbort et al., 2010), for restoring redundant so-
lutions to kinematics tasks. Using a simulation of a planar arm with three rotational
joints, Butz et al. show that their model can be used to restore all redundant arm con-
figurations for a target hand location that the robot has encountered during training,
by using an associative memory between population coding neurons, which represent
on the one hand the space of arm configurations, i.e. joint positions, and on the other
hand the position of the hand in Cartesian coordinates. When querying the network
for a target hand location by activating the according population coding neurons for
Cartesian coordinates, the network in response activates the associated neurons coding
for arm configurations, resulting in an activation landscape representing the known
solutions (similar to the input activation for the dynamic neural field shown in Fig-
ure 4.7). Butz et al. use dynamic programming to transform this activation landscape
into an activation of the whole space of arm configurations, such that a gradient of
activation points from any arm configuration to the nearest configuration that brings

114

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

the hand to the target location. Furthermore, Butz et al. use an inhibition of the ac-
tivation of units representing arm configurations to constrain the selection of the final
arm posture, for example by inhibiting all units but those that correspond to configu-
rations in which one joint has a certain angle. Also, the positions of obstacles can be
transformed from Cartesian coordinates into the arm’s joint coordinates via the kine-
matic transformation stored in the network weights, which allows to use Butz et al.’s
network for planning a collision-free trajectory of the hand by inhibiting all neurons
that correspond to postures in which the hand would be colliding with an obstacle
(Butz et al., 2007a).

An obvious drawback of using networks of sigma-pi units in conjunction with pop-
ulation coding in regular neural fields is that the number of possible synaptic con-
nections in the network increases exponentially with the number of input dimensions.
There are various ways possible to address this issue, for example by introducing self-
organization in the neural fields, or by using more complex receptive fields with adaptive
parametrization. However, any such steps would shift the focus of research, away from
the question of how to integrate internal models, towards developing more efficient
learning tools. This would also add to the complexity of simulation results by intro-
ducing parameters that are inherent to the learning method, making an interpretation
more difficult, while qualitatively not changing the properties of the integration method.
Therefore, to remain true to the research topic of developing a cognitive architecture
based on dynamic building blocks, as proposed in Chapter 3, the following sections will
describe and evaluate an implementation of the method for integration introduced in
Section 4.2, using networks of sigma-pi units. To make the implementation capable of
coping with a level of complexity that is more interesting, another strategy is followed
to reduce computational cost, without changing the network architecture. It is based
on the observation that while the number of possible synaptic connections will grow
exponentially with the number of input dimensions, so does the number of zero-weights.
Thus, the number of necessary synaptic connections is much lower. Therefore, the net-
work naturally lends itself to an implementation using a sparse representation, in which
only existing (i.e. non-zero) synaptic connections are simulated. A similar strategy can
also be found in the brain: Neurons in the young infant’s brain initially are massively
interconnected, before a large amount of connections and neurons become pruned as
they are not used in experiencing the environment, and only the necessary connectivity
is kept (Edelman, 1987). Using a sparse implementation of networks of sigma-pi units
allows to use the model in more complex settings, such as controlling the arm of the
iCub humanoid robot, which has been used for the simulation experiments as will be
described in Section 4.4.

4.3.1 Networks of Sigma-Pi Units

Figure 4.11 shows a schematic view of a network of sigma-pi units. For every input
variable xi there is a set of ti input units with receptive fields covering the domains
of the inputs, which receive their activations ui,j , j ∈ {1, . . . , ti} through population
coding, as in Equation 4.8. Synaptic connections with associated sigma-pi weights

115

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

w1,1

u1,1

u1,7

u1,j
u2,1

u2,7

u2,k

w1,7

w7,7

W

u1,j

x1 x2

Figure 4.11: Schematic view of a network of sigma-pi units, for simplicity in the case
of two one-dimensional inputs. Two sets of input neurons have their receptive fields in
the domains of the inputs x1 and x2, and receive activations u1,j and u2,k, respectively.
Possible synaptic connections with associated sigma-pi weights wj,k are shown as a grid of
crosses. Each unit in each set of input neurons can be connected to every other unit in
the remaining sets of input units. Note that there are no lateral connections, and crosses
in the grid only represent possible connections for which the network can store sigma-pi
weights.

combine exactly one neuron from every set of input units. Thus, if Si = {1, . . . , ti} is
the set of indexes for input neurons corresponding to the i-th input, then each element
s in the Cartesian product S of the sets Si,

S = S1 × · · · × Sn (4.12)

= {s = (s1, . . . , sn) | si ∈ Si}, (4.13)

corresponds to a possible synaptic connection ws between units u1,s1 , . . . , un,sn .

Networks of sigma-pi units belong to the class of “higher order” neural networks,
as the simple additive units of linear feed-forward neural networks are extended by
multiplicative connections. Thus, whereas in first-order neural networks the net input
to a unit is given by

neti =
∑
j

wijuj , (4.14)

for the sigma-pi units the activation function includes the multiplication of inputs,

neti,j =
∑

s∈S, si=j
wsu1,s1 . . . un,sn (4.15)

=
∑

s∈S, si=j
ws

n∏
m=1

um,sm . (4.16)

116

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

The introduction of these multiplicative connections allows units to gate one another
(Rumelhart and McClelland, 1986): If one unit has zero activation, then the activation
of other units in the multiplicative connection have no effect.

In the implementation used in this work, the sum and product operators were
replaced by the max and min operators, respectively, to avoid the need for normalization
of network responses. Thus, the modified net input to a unit is given by

neti,j = max
s∈S, si=j

(
ws ·

n
min
m=1

(um,sm)

)
. (4.17)

We want the network weights ws, s ∈ S, to reflect the amount to which the input
units determined by s tend to be co-active during training. Thus, if the neurons are
always activated together, then the weight should adopt a high value, and if one or more
units are never active along with the others during training, then the weight should be
zero (i.e. there is no connection). If whenever one of the neurons was active, only half
of the time also all the other neurons determined by s were also co-activated, then the
connection weight should have a value around 0.5.

To achieve this, we can use a simple Hebbian learning rule. Given a training set
of tuples of input vectors (x1, . . . , xn), the input neurons are activated according to
Equation 4.8. The resulting activations ui,j are used to compute the network activation
for all s ∈ S (cf. Equation 4.16), which is then used to update the network weights as

δws = λ ·
n∏

m=1

um,sm (4.18)

with learning rate λ. Again, for the implementation used in this work, the product
operator was replaced with the min operator, giving

δws = λ ·
n

min
m=1

um,sm . (4.19)

Furthermore, one-shot learning from training samples can be realized by omitting λ in
the update rule (i.e., setting λ = 1), and updating the weights according to

wts = max(wt−1
s , δwts), (4.20)

where wt−1
s is the weight before, and wts is the weight after processing the t-th training

sample.
After training, we want to query the network by specifying a task description in

terms of target values for one or several input variables, and want to retrieve possible
values for the remaining variables in the form of population codes representing sets
of redundant solutions. We specify which variables to constrain by defining a set
Q ⊆ {1, . . . , n}, corresponding to the indexes of respective input domains. Given the
notation of S in Equation 4.13 and the net input in Equation 4.16, we can formulate
the network query as

ũi,j =
∑

s∈S, si=j
ws
∏
m∈Q

um,sm , (4.21)

117

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

0

2

4

2

0

-2

0

1

0

2

4

2

0

-2

0

1

-2 0 2
0

1

0 2 4
0

1

Figure 4.12: Graphical interpretation for the network query using the example of a
network that has learned the function y = x2 in the interval x ∈ [−2, 2]. To retrieve
all solutions for x2 = 1, the population of input neurons in the y domain are activated
for y = 1, see bottom right plot. This activation is fed into the network and after the
multiplication with the synaptic weights corresponds to an activation along the synaptic
connections that can be seen in the top left plot. The net input to each unit in the
readout is computed by accumulating this activity from all points on the grid to which it
is connected.

where ui,j is the input activation that was specifies for the query for all units in the sets
of input units given by Q, and ũi,j is the activation value that was retrieved from the
network in response to the query. The activation of a unit is a sum over the activation
of all elements s of the Cartesian product S in which that unit is itself a member, i.e.
si = j. For all of these elements we compute the product of the activations of the units
that were specified in the query, weighted by the connection weight ws. Again, in the
implementation used for this work a modified version was used, which is

ũi,j = max
s∈S si=j

(
ws · min

m∈Q
(um,sm)

)
. (4.22)

There is an intuitive graphical interpretation for this query, see Figure 4.12. In the
simple case where there are only two sets of input neurons, the network weights can be
arranged in a planar grid, such that each knot in the grid represents the multiplication
of two neurons (cf. also Figure 4.11). Thus, all knots in the grid together represent
the Cartesian product of the sets of input neurons. If in a query we specify activations
of input neurons in one domain and compute the product of the activations with the
associated weights, we get an activation along the synaptic connections, such that we
have one value for each of the knots in the grid. In the next step, we accumulate for
each unit all the values along the line of knots that are connected to that unit, which
gives us the retrieved activation value of the unit as the response of the query. The
same picture can easily be extended to the higher dimensional case, in which there are
more than two inputs or where the inputs have more than a single dimension. Here, the

118

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

θ2

l
θ3

θ4

θ1

Figure 4.13: Schematic drawing of the kinematic chain used for the analyzes described
in the text. The chain is composed of n segments, with n ∈ 2, 3, 4, ending with either the
blue, green or red segment, respectively. All segments are of equal length l, with a total
length of the chain of 1.

network weights are arranged in a hyper-cube instead of a grid, and the line of knots
corresponds to a slice through the hyper-cube.

4.3.2 Evaluation of the Sparsity in Networks of Sigma-Pi Units when
Learning Kinematics Models

To investigate the number of synaptic connections that receive non-zero weights in the
training, a simulation of a simple kinematic chain was used, see Figure 4.13. A number
of equally long segments is connected via rotational joints. The length of the segments
is set to l = 1

n , where n is the number of degrees of freedom (i.e. segments) in the
kinematic chain. Each joint is allowed to move freely into any angle from 0◦ to 360◦,
without considering any form of self-collision.

The space of joint configurations θ = (θ1, . . . , θn), n ∈ {2, 3, 4}, was represented by
a field of population coding neurons, with receptive field centers distributed uniformly
in the n-dimensional interval of values for θ with θi ∈ [−π, π]. The Cartesian space of
positions for the end-point of the kinematic chain was represented by a two-dimensional
neural field, also with receptive field centers uniformly distributed to cover the domain
of x = (x1, x2), x1, x2 ∈ [−1, 1], which covers the region of locations that the end-point
of the kinematic chain can reach. The number of neurons used in each dimension was
varied, taking values t ∈ {2, 3, 4, 5, 10, 20}. Thus, in the case of for example n = 3 and
t = 5, the neural field coding for joint configurations consisted of tn = 125 neurons,
and the neural field coding for end-point positions consisted of t2 = 25 neurons. The
number of possible synaptic connections in the corresponding network of sigma-pi was
tn+2 = 125 · 25 = 3125. For n = 4 and t = 20, the total number of possible synaptic
connections is 64.000.000.

To keep the number of connections low, the Gaussian kernel for the population
coding (see Equation 4.9) was replaced by a transformation of the input vector into
barycentric coordinates of the surrounding hypercube of receptive field centers. This
was done to ensure that an input would not activate an unnecessarily large number of

119

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

0 202 4 101 3 5

n = 2
n = 3
n = 4

100

101

102

103

104

105

106

107

108

t

(a) Total number of possible synaptic connec-
tions (solid lines) and actual number of non-zero
weights after training (shown both as dashed lines,
and as colored regions below solid lines).

0 2 4 10 201 3 5

n = 2
n = 3
n = 4

10−2

10−1

100

t

(b) Ratio between the number of non-zero weights
after training and the total number of possible
synaptic connections.

Figure 4.14: Comparison between the total number of possible synaptic connections in
a network of sigma-pi units, and the number of non-zero weights after training. Blue,
green and red graphs correspond to the end-point of the second, third and fourth segment,
respectively (cf. Figure 4.13). Solid lines in (a) show the total number of possible synaptic
connections, dotted lines show the number of non-zero weights after training. Colored
regions under the solid lines also correspond to the percentage of non-zero weights, to
visualize the relationship between zero and non-zero weights in the trained networks.

neurons due to a too large kernel size, but instead would activate either 2n neurons, or
only one, if the input coincided exactly with a receptive field center. The mathematical
details for the transformation into barycentric coordinates are given in Appendix A.

To train the connection weights of the sigma-pi units, the n-dimensional space of
configurations θ was sampled, input units activated and connection weights updated
according to Equation 4.20. The posture space was sampled for 30 values along each
dimension, thus yielding training sets of 30n samples (900, 27.000 and 810.000 samples
for 2, 3 and 4 joints, respectively).

Figure 4.14(a) shows for all combinations of n and t the total number of possible
synaptic connections, and the proportions of zero and non-zero weights after training.
It can be seen that while the number of non-zero weights does increase exponentially
with the number of input dimensions, it only takes up a fractional amount of the
total number of possible connections, when 10 or more neurons are used to cover each
dimension. This can also be seen in Figure 4.14(b), which shows the ratio between the
total number of possible connections and the number of non-zero weights.

To see how many neurons are required in every dimension to represent the kinematic
function to a sufficient degree of precision, each network was queried for the forward
kinematics. Since the forward kinematics is a proper function, mapping each posture
θ onto exactly one end-point position x, it was not necessary to select among sets of

120

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

0 2 4 10 20
10−3

10−2

10−1

100

1 3 5

n = 2
n = 3
n = 4

t

Figure 4.15: Mean squared errors obtained with different network sizes and numbers of
segments in the kinematic chain. See text for explanation.

solutions. Thus, the responses of the trained networks were directly used to readout
estimations of end-point positions for different postures. The posture space was again
sampled with 30 values in each dimension. The estimated end-point position for each
posture was compared with the true end-point position, and the mean squared error
was computed for all samples as

MSEn,t =
1

30n

30n∑
k=1

‖x̃k,t − xk‖2 , (4.23)

where xk is the true end-point position for the k-th sample configuration, and x̃k,t is its
estimate, which was readout from the query of the corresponding network. Figure 4.15
shows the obtained values for the mean squared error for the different combinations of n
and t. It can be seen that the mean squared error behaves similarly for different values
of n, starting off high and decreasing exponentially with the number of neurons used
in each dimension. With 5 or less neurons, the error remains rather high (above 0.1,
which corresponds to 10% of the total length of the kinematic chain). With 10 neurons
in each dimension, the error lies between 0.01 and 0.03 for all values of n, which can
be deemed acceptable. Note that these results would correspond to open-loop control,
while more precise results can be obtained through online adjustment of the posture
using sensory feedback, which will be discussed later in Section 4.3.4.

Table 4.1 summarizes the results of the analyzes for all combinations of t and n.
Networks of sigma-pi units represent a straightforward way to implement internal

model learning with the possibility to restore redundant solutions. Inputs are trans-
formed into population codes and associations learned between co-activated input neu-
rons. This allows to train networks for any form of internal model (cf. Section 4.1), by
simply representing all inputs and outputs of the internal model as population codes.
However, networks of sigma-pi units suffer from the exponential growth of the number
of possible connections with the number of input dimensions. Using a sparse imple-

121

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

Total number of possible
synaptic connections

Number of non-zero synaptic weights (ratio be-
tween non-zero weights and number of possible
connections)

t n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

2 16 32 64 16 (1) 32 (1) 64 (1)
3 81 243 729 77 (0.951) 243 (1) 729 (1)
4 256 1.024 4.096 222 (0.867) 958 (0.936) 4.022 (0.982)
5 625 3.125 15.625 390 (0.624) 2.316 (0.741) 12.282 (0.786)

10 10.000 100.000 1.000.000 1.752 (0.175) 20.404 (0.204) 232.656 (0.233)
20 160.000 3.200.000 64.000.000 5.616 (0.035) 131.908 (0.041) 2.976.312 (0.047)

Table 4.1: Summary of results for the analyzes of the relationship between the total
number of possible synaptic connections and the number of non-zero weights after training
in a network of sigma-pi units.

mentation makes the simulation of larger networks more feasible, since the percentage
of non-zero weights in a trained network decreases exponentially with the number of
neurons used to cover each dimension, as was demonstrated in the last section.

Still, also the number of non-zero weights increases exponentially with the number
of input dimensions. To make the network computationally more efficient, changes to
the network properties would have to be made, for example by allowing for variable
receptive fields, to cover larger regions in high-dimensional spaces where the mapping to
be learned is uniform in character, e.g. close to linear. This would render the network
more similar to learning methods that are based on the use of many locally-linear
models (as described in the beginning of Section 4.3), and would allow to substantially
reduce the number of necessary units.

Internal models are represented in networks of sigma-pi units by locally generalizing
radial basis functions (Mel and Koch, 1989), meaning that generalization from train-
ing samples only happens within the radius of the receptive fields of input neurons.
Therefore, the number of training samples that are necessary to train the network has
to increase with the number of input neurons used, since otherwise (if the resolution
of input neurons is higher than the resolution of training samples) the mapping would
not be represented for spaces in between training samples. In the example application
of learning a kinematic transformation, which was used for the analyzes above, a good
trade-off between performance and cost would be to use around t = 10 neurons for each
input dimension, which gives a rather low mean squared error, while not requiring to
draw intractably many training samples for an accurate mapping to be learned.

4.3.3 Using Multiple Queries for Distributed Decision Making

In Section 4.2.4 it was discussed that the presented method for co-ordinating multi-
ple dynamic neural fields is computationally more efficient than using a single high-
dimensional dynamic neural field, which for the computation of an update would have
a cost in time and space growing exponentially with the number of input dimensions.
In contrast, the cost of using multiple one-dimensional dynamic neural fields only grows
linearly with the number of input dimensions, both in time and space. For the gen-

122

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

eral case where ne pre-assumptions about the internal model are made other than the
requirement that it can restore information about redundancies, a high-dimensional
(non-dynamic) neural field is needed to represent the retrieved set of solutions from a
query (cf. Figure 4.8). However it was also noted, that also this burdon can be lifted
if the query of the internal model allows to incorporate output feedback in the form of
the decisions of individual low-dimensional dynamic neural fields. This should allow to
retrieve low-dimensional outputs from multiple queries of the internal model, instead
of retrieving a high-dimensional output which is then projected into its component di-
mensions. This section will now demonstrate that networks of sigma-pi units belong
to a class of internal models that allow exactly this kind of query, which incorporates
the output feedback from the low-dimensional dynamic neural fields. Thus, overall the
cost of the presented method for integrating internal models becomes linear in relation
to the number of input dimensions, both in time and space.

The network query, as defined by Equations 4.21 and 4.22, is based on selecting a
subset of dimensions from the input- and output-domains and providing target acti-
vations for the respective neurons. As such, it is not restricted to specifying targets
only in dedicated “input” dimensions, but arbitrary combinations of dimensions can be
chosen for a given query. To incorporate the output feedback of the lower-dimensional
dynamic neural fields equivalently to how the feedback was used in the method pre-
sented in Section 4.2.3, transforming the decision of each dynamic neural field into
corresponding candidate decisions for the respective other dynamic neural fields, the
network query is slightly adapted as

ũi,j =
∑

s∈S, si=j

ws ·(a0 +
∑
m∈O

amu
DNF
m,sm

)
·
∏
m∈Q

um,sm

 , (4.24)

or analogously using the max and min operators,

ũi,j = max
s∈S, si=j

[
ws ·

(
a0 +

∑
m∈O

amu
DNF
m,sm

)
· min
m∈Q

um,sm

]
. (4.25)

Here, additionally to the set Q ⊆ {1, . . . , n} corresponding to the indexes of the respec-
tive input domains as in Equations 4.21 and 4.22, the set O ⊆ {1, . . . , n}, O ∩ Q = ∅
specifies input domains for which the decisions of low-dimensional dynamic neural fields
should be incorporated in the query. Values uDNF are the output activations of the
corresponding dynamic neural fields. Weights ai are used for individual inputs (cf.
Figure 4.8), where a0 is the weight associated to the query formulated for the input do-
main, and each am corresponds to the output of one dynamic neural field. Figure 4.16
demonstrates the result of using this adapted query in a toy example.

As already mentioned above, directly incorporating the decisions of low-dimensional
dynamic neural fields into the query allows to retrieve the input for individual dynamic
neural fields (cf. Section 4.2.3) without the need to first store an activation landscape in
a high-dimensional (non-dynamic) neural field, which would then have to be projected
into the respective component dimensions. Thus, instead of using a single query with

123

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

-1
-0.5

0
0.5

1

1

0.5

0

-0.5

-1
0

0.5

1

1.5

2

yx

z

0 0.5 1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

ΣΠ

z

x y

Figure 4.16: Example of using the adapted query, incorporating the decision of a low-
dimensional dynamic neural field. A network of sigma-pi units (indicated as “ΣΠ”) has
learned the mapping shown in the upper right. A target value for the z-domain is specified,
shown as the plot in the upper left. Using this input to query the network for solutions
in the x-y-plane would result in a ring of activation in a two-dimensional (non-dynamic)
neural field. This ring would then be projected into its two component dimensions, giving
plateaus of equal activation, which would consecutively be amended to incorporate the
feedback from individual dynamic neural fields (see Section 4.2.3). However, using the
adapted query presented in this section, it is possible to directly incorporate the output
of a dynamic neural field representing the x-domain, here shown as the plot in the lower
left. The result of the adapted query is an activation landscape for the y-domain, shown
in the lower right, where a plateau of equal activation corresponds to values for y that
are candidate solutions to achieve the target value for z, and two “bumps” in the plateau
correspond to the solutions that would co-ordinate the dynamic neural field representing
the y-domain with the decision of the other dynamic neural field. Thus, the same result
of retrieving solutions for individual output domain is possible without the use of a high-
dimensional neural field as an intermediate step. Weights were chosen as a0 = 0.5 for the
input query, and a1 = 0.25 for the output of the dynamic neural field.

124

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

y = cos(1.5 · x · π)

Figure 4.17: Plot of the function that is used in the description of the method for
controlling sensorimotor systems using networks of sigma-pi units.

a computational cost in space growing exponentially with the number of input dimen-
sions, the adapted version allows to query the network once for each required output,
thus yielding a linear increase in complexity both in time and space.

4.3.4 Using Networks of Sigma-Pi Units for Accurate Robot Control

So far it was described in the last sections, how internal models can be integrated by
using population codes for redundant solutions in conjunction with dynamic neural
fields, and how internal models can be learned and redundant solutions restored using
networks of sigma-pi units. Section 4.3.2 showed the accuracy of querying a trained
network for an estimation of the forward kinematics, which corresponds to open-loop
control. Employing sensory feedback and closed-loop control allows to solve tasks with
higher precision, by transforming errors between target and actual values of input
variables into changes for output variables. In networks of sigma-pi units this can
be approximated as explained in the following (a toy example will be used for the
description, for reasons of simplicity; an application to kinematic control of the arm of
a humanoid robot, the iCub, will be described further down in Section 4.4).

Sigma-pi units do not explicitly code for directions in the connection weights, thus it
is not possible to directly compute a mapping from desired changes to an input variable
onto changes of an output variable. However, it is possible to use the population codes
of the target value and of the current input to compute a difference in activation, and
to transform this via the sigma-pi weights into an attractor landscape in the output
space, which can be used to iteratively compensate for an initial control error.

As an example for the description, consider a network that should learn the function
shown in Figure 4.17,

y = f(x) = cos(1.5 · x · π), (4.26)

and should be used to retrieve a value for x, given a target value for y. To represent
values, population codes in one-dimensional neural fields are used for both variables
with activations ux,i and uy,i, respectively, according to Equation 4.8. To achieve a
precise control of x to reach the target y∗, now two network queries are performed and

125

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

the responses combined, the first network query being as described above to select one
among several redundant solutions but not being sufficiently accurate, the second query
allowing for a local adjustment.

Thus, for the first query, the target value y∗ is population coded as uy(y
∗) and is

used for a network query, as described in Section 4.3.1, to generate the input ũx for
the dynamic neural field. The output of the dynamic neural field, ûx, is a localized
activation pattern of the units in the domain of x, such that when computing a target
for x from this output as a linear combination of centers mx,i, using activation levels
as coefficients,

x̃ =

tx∑
i=1

ûx,i ·mx,i (4.27)

will produce a result that lies close to, but is not necessarily equal to the target value
y∗, due to imprecision in the learned internal model.

To compensate for this error, a second network query is performed using the differ-
ence of activations of population codes for the target value y∗ and the current value y,

uerry = uy(y
∗)− uy(y), (4.28)

which will generate an activation landscape ũerrx . If the current x is not close to a
value where f(x) = y∗, this activation landscape corresponds to a positive activation
of all redundant solutions, as in the network query described in Section 4.3.1, but
with a negative activation for all values of x where the current value for y is achieved.
However, when x is close to a solution (i.e. y almost equals y∗), the positive and the
negative activations are overlapping, such that those parts of the positive activation
that correspond more to the current value of y become inhibited, and only the parts of
the positive activation that lie in the direction of y∗ remain strong. By only using these
activation values in the local neighborhood of the current x for a population readout,
a local optimization can be achieved which allows to accurately reach the target y∗.
Thus, we compute a second target for x as

x̃err =

tx∑
i=1

H(ux,i(x)) ·R(ũerrx,i) ·mx,i, (4.29)

where R(·) is the ramp function

R(u) =

{
0 u < 0
u u ≥ 0

, (4.30)

and H(·) is the Heaviside step function

H(u) =

{
0 u < ε
1 u ≥ ε , (4.31)

which is used to ensure that only coefficients are used where the population code of
the current value for x has activation values above a small threshold ε. Thus, only the

126

4.3 Using Networks of Sigma-Pi Units for the Learning and Query of
Redundant Mappings, and for Robot Control

coefficients in the local neighborhood of the current value of x are used to compute a
correction.

The two responses x̃ and x̃err should be combined in such a way, that the system
uses the former to get close to the selected solution, and switches to the latter as soon
as it is close to the solution, to perform a local error correction. This is modeled by
computing the amount of overlap between activations in the output of the dynamic
neural field and the population code for the current value of x. An overlap between the
two activations indicates that x is close to the solution, and that it is safe to perform
local error compensation. The overlap is computed using a sigmoid function as

sigx(ηx) =
1

1 + exp (−b · (ηx − µ))
, (4.32)

where ηx is computed as

ηx = 1−
∑

iH(ûx,i) · ux,i∑
i ux,i

, (4.33)

such that sigx(ηx) assumes values close to 1 as long as there is no overlap between
activations, and values close to 0 when the activation of the population code for x
is largely overlapping with the output activation of the dynamic neural field. The
parametrization of the sigmoid function was chosen as b = 50 and µ = 0.9, to get a
steep slope near 1, so that the system quickly switches to a local error correction as
soon as it is near to the selected solution.

The two outputs of the queries are combined using a simple linear combination that
switches between the two outputs,

x∗ = sigx(ηx) · x̃ + (1− sigx(ηx)) · x̃err. (4.34)

A change to the value of x that will reduce the current error can be computed as

dx = v · x− x∗

‖x− x∗‖
, (4.35)

where the amplitude of change v is chosen to depend on the current discrepancy between
y and y∗, again modeled as the amount of overlap, ηy, between activations (analogous
to Equation 4.33), as

v = γ ·max(sigy(ηy), sigx(ηx)), (4.36)

where sigy is parametrized using b = 5 and µ = 0 and is shifted and scaled to assume
values between −1 and 1, and γ is a constant scalar. Making v depend both on the
overlap in the x- and y-domain assures that the amplitude of change is large as long as y
deviates from y∗, but does not become slow if a solution is crossed that is different from
the one chosen by the dynamic neural field. Applying the method to other scenarios
and higher-dimensional cases is straightforward and possible without adaptation.

127

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

time

0 200 400 600 800 1000 1200
-1

0

1

y

(a)

time

0 200 400 600 800 1000 1200
-1

0

1

x

(b)

time

0 200 400 600 800 1000 1200
0

0.5

1

sigx(ηx)

(c)

Figure 4.18: System behavior for the control of a simple simulated sensorimotor system.
See text for description.

Evaluation

To evaluate the proposed method for local error compensation, two neural fields were
used for population coding x and y, using tx = ty = 15 neurons in both fields. The
output x was controlled using Equation 4.36, with γ = 0.005. A network of sigma-pi
units was trained to learn the mapping f , as defined in Equation 4.26 and plotted in
Figure 4.17, using 100 samples that were equally distributed in the interval x = [−1, 1].
The dynamic neural field was parametrized with wE = 4.5, τ = 5, h = −0.027 and
wI = 1, with a distance between neighboring neurons i and j in the neural field was
d(i, j) = 1 (cf. Equation 4.5). A new target y∗ was given to the system every 200 time
steps.

In Figure 4.18, the evolution of x and y is shown when applying the described
method for error correction, as opposed to directly using the output of the dynamic
neural field for the control of x. It can be seen that the system behavior for y, shown
in Figure 4.18(a) as a blue line, reliably reaches the target values y∗ that are provided,

128

4.4 Simulation Experiment with the iCub Humanoid Robot

shown in the plot as a green line. In contrast, if the output of the dynamic neural
field was directly used, the plateaus of the red line would be reached, which in most
cases do not coincide with the target values (a value for x was readout from the output
activation, and y = f(x) was directly computed, without using a control scheme, which
is why the red line approaches its stable states more quickly that the blue line). The
corresponding values of x are shown in Figure 4.18(b). Additionally, sigx(ηx) is plotted
in Figure 4.18(c), to show at which times the system uses the dynamic neural field
output to get close to a selected solution, and at which times it performs local error
correction. It can be seen that, if the dynamic neural field picks a new solution which
is close to the last one, the system can directly apply local error correction to reach
the new solution. Only if a new solution is not in the local excitatory neighborhood of
the peak activation in the dynamic neural field, and a new peak develops at a different
location in the field instead of the old peak wandering off to the new solution, then the
system response first approaches the new solution before the local error correction is
initiated.

Figure 4.19 shows both the result of the first network query, together with the
activation of the dynamic neural field (Figure 4.19(a)), and the result of the second
network query (Figure 4.19(b)) over time. The effect of local error correction can be
seen as the peaks in Figure 4.19(b) slightly wander off from their initial positions, to
compensate for errors, before diminishing when the error approaches zero, whereas the
peaks in the activation of the dynamic neural field (Figure 4.19(a)) remain at their
stable positions.

4.4 Simulation Experiment with the iCub Humanoid Robot

To demonstrate the applicability of the proposed methods for the integration of inter-
nal models (see Section 4.2.2) in a robotic setup, the method was implemented using
networks of sigma-pi units as a learning technique (see Sections 4.3.1) together with the
method for accurate robot control using networks of sigma-pi units (see Section 4.3.4).
For the evaluation, a simulation of the iCub humanoid robot (Tikhanoff et al., 2008)
was used.

The kinematics of the robot’s right arm (i.e. shoulder and elbow joints) should be
learned by the network, corresponding to a four-dimensional space of angular positions
θ. This space was sampled along a regular grid by placing in each dimension 10 equally
distributed grid points, resulting in T = 10000 configurations. The robot’s arm was
moved into the joint configurations and pairs of vectors

(
θt,xt

)
was recorded as training

samples.

To represent the Cartesian input vect , thusresultingin or of end-effector coordinates,
a three-dimensional neural field of 42× 36× 41 neurons was used. The receptive fields
centers were initialized on a regular grid of positions that were equally distributed and
covered the whole workspace of the robot. Similarly, a four-dimensional neural field
of 10× 10× 10× 10 neurons with receptive fields arranged on a grid that covered the
domain of the arm angular position vector was used.

129

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

-2
-1
0
1
2

u

200

400

600

800

1000

1200
time

-1

-0.5

0

0.5

1

x

(a)

-2
-1
0
1
2

u

200

400

600

800

1000

1200
time

-1

-0.5

0

0.5

1

x

(b)

Figure 4.19: Results of querying the trained network of sigma-pi units, (a) as input to a
dynamic neural field to select a solution, and 4.19(b) to compensate for control errors. See
text for description.

A network of sigma-pi units was used to learn associations between joint config-
uration vectors and Cartesian end-effector coordinates, as described in Section 4.3.1.
A dynamic neural field representing the domain of arm configurations was initialized
with the set of parameters τ = 15, h = −0.1, wE = 1.26, wI = 0.004 and σ = 0.6, where
the distance between two neighboring neurons i and j in the dynamic neural field was
d(i, j) = 1 (cf. Equation 4.5).

To test the integration of the kinematics model with another internal model, a
second network of sigma-pi units was introduced that should learn the mapping

f(θ) = θ2, (4.37)

which simply maps every posture θ onto the angular position of the second shoulder
joint. Thus when querying the learned mapping for candidate postures that use a given

130

4.4 Simulation Experiment with the iCub Humanoid Robot

angular position for the second shoulder joint, the network response will be an activation
representing the axis-parallel hyper plane for all postures along θ2. A one-dimensional
input map of 10 neurons with receptive fields covering the possible angular positions for
the joint was used. Figure 4.20 shows example postures that were generated by giving
the system the task to reach for a position in front of the robot, while keeping the second
shoulder joint in different target angular positions. The system was able to generate
solutions that satisfied both of the goals that it was given, i.e. it successfully moved the
end-effector to the target point while staying in the specified angular position with the
second shoulder joint. When the target angular position of the second shoulder joint
was set such that the robot could not reach the target point with its hand with the
given constraint, the system had to pick a solution for either the first or the second
task. In this case, the second task was selected and the system drove the robot’s second
shoulder joint into the target angular position, while moving the end-effector away from
the target position, as seen in Figure 4.20(d).

(a) (b)

(c) (d)

Figure 4.20: Several postures that were retrieved by the system for the task of bringing
the robot’s end-effector to one point while constraining one of the shoulder joints. The
position of iCub’s end-effector is at the center of its palm, which is kept at the target point
in the queries shown in (a)–(c) In each new query, the constrained postural value for the
shoulder joint is increased, until in the final query that is shown in (d) iCub cannot reach
the target point with the constrained posture, because it has reached its joint limits.

131

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

4.5 Discussion

This chapter was concerned with the question of how to integrate internal models, to
allow for a flexible selection of solutions that can satisfy multiple task specifications
simultaneously. This research question was motivated by the goal to find a way to
generically integrate building blocks in a cognitive architecture, without relying on using
task- or domain-specific knowledge by design. More specifically, it was investigated
how the outputs of multiple internal models can be combined for the generation of
the system’s behavior, in a way that solutions are favored to satisfy multiple tasks
of the robot in parallel. This is in contrast with existing methods for the integration
of internal models that serialize outputs of internal models to avoid conflicts or use
linear combinations to average outputs, and instead follows the idea to assign priorities
to candidate outputs, giving those outputs that satisfy the most tasks the highest
priority. While other approaches from the literature pursue a similar idea, they are
limited to low-dimensional problems (only one-dimensional output spaces have been
used). The method presented in this chapter was demonstrated to also work with
higher-dimensional problems, as for example in the control of the arm of the humanoid
robot iCub.

The presented method is based on the use of dynamic neural fields as a winner-
take-all selection mechanism, using population codes of redundant solutions as inputs.
It was demonstrated that multiple low-dimensional dynamic neural fields can be co-
ordinated for a distributed decision making process, which allows on the one hand
for a more flexible integration of internal models, and on the other hand provides
better scalability to higher-dimensional problems as compared to using a single, high-
dimensional dynamic neural field. As population codes of candidate solutions are used
as inputs to the dynamic neural fields, the method relies on a representation of internal
models that is capable of learning and restoring redundant solutions. Here, one possible
implementation was presented using networks of sigma-pi units, which is probably the
most straight forward way of implementing the proposed method. An obvious drawback
of this modeling choice is the fact that networks of sigma-pi units do not scale well with
the number of input dimensions. Nevertheless, using a sparse implementation in which
only connections with non-zero weights are simulated, it is possible to use the model
also in non-trivial cases, as it was demonstrated that a trained model can be used
to integrate two internal models for the control of iCub’s arm, to select solutions for
solving two tasks simultaneously.

With the proposed implementation it was demonstrated that a robot can learn
internal models from sensorimotor experience, preserving information about redundan-
cies. Both the proposed method for integrating internal models, as well as the specific
implementation using networks of sigma-pi units are free from task- or domain-specific
assumptions, and can thus be seen as a general model for the learning and integration
of internal models. The model is neurally plausible and compatible with neurophysio-
logical data (cf. Section 2.5.1; Mel and Koch, 1989).

A neural network architecture similar to networks of sigma-pi units has also been

132

4.5 Discussion

used by Butz et al. in their model of arm movement control (Butz et al., 2007a).
However, the usage of the network in this work differs from Butz et al.’s work, in several
ways. First of all, Butz et al. use the network with the intention to model human arm
movement control, correctly arguing that the representation of redundancies allows
for a more flexible control, whereas here it is used as a means to learn and represent
redundant solutions to sensorimotor tasks, for providing a concrete implementation of
the proposed method for the integration of internal models. Second, Butz et al.’s model
relies on transforming the retrieved activation landscapes of redundant solutions into
a gradient of activation in the complete space of arm configurations, which requires to
hold values for all neurons in memory at the same time. This is contradictory to the
idea of using a sparse implementation for improving computational performance. Butz
et al. rely on this step, because they model arm motor control as a dynamical system
and use the angular configuration of the arm as control variable, which requires a series
of motor commands along a planned trajectory to reach a target configuration, whereas
in this work target arm configurations are directly used as the output for a controller.
To enable the model to plan sequences of actions while keeping computational cost
low would probably require to represent the input and output spaces at different levels
of granularity, using coarser representations for planning while using a finer level for
actual control. Furthermore, using a self-organizing representation for input and output
spaces (e.g. Gläser et al., 2008) would also reduce the number of necessary connections.
Finally, the usage of the network of sigma-pi units is extended in this work by a method
to accurately compensate for initial control errors, which are due to imprecision in the
learned internal models. Herbort et al. have proposed to use an additional control
structure alongside the network of sigma-pi units, which shifts an internal copy of the
target location for the hand in the opposite direction of the difference to compensate
the error, and using the displaced internal copy of the target location as input to the
network (Herbort et al., 2010). The model presented in this work does not rely on
an additional control structure and provides a solution for local error correction that
seems less ad-hoc. The here presented method for local error compensation could be
seen as a model for the role of the cerebellum in fine control of limb movements: It
is known that patients with cerebellar lesions suffer from dysmetria, causing them to
overshoot or undershoot goal-directed movements (Pschyrembel and Dornblüth, 1975).
In the presented model, this corresponds to the behavior of the system when not using
the local error compensation (cf. Figure 4.18).

One positive aspect of using networks of sigma-pi units for learning is their ability
of one-shot learning, allowing to store single observations with a simple update step.
In contrast, condensed representations using fewer units allow for a decreased compu-
tational cost for storage and for querying the network. However, the training effort for
such representations is usually dramatically increased, as learning a consolidated repre-
sentation requires presenting inputs many times, to iteratively adapt the representation
to the statistics of the input values. As proposed for example by Gläser, both rapid
one-shot learning and slow statistical learning might be part of a single intertwined
learning process in the brain, where observations first enter a short-term memory in

133

4. INTEGRATION OF INTERNAL MODELS BY MAKING USE OF
REDUNDANCIES

which a model for the input is learned via one-shot learning, which is then used to
internally generate many training samples for a slow statistical learning method of a
more efficient representation in long-term memory (Gläser, 2012, pp. 63–64).

However, it should be noted that the proposed method for the integration of internal
models is independent of the choice of method used for the learning and representation
of internal models, as long as it is capable of restoring sets of redundant solutions. Using
networks of sigma-pi units on the one hand easily complies with the use of dynamic
neural fields, which use population coded inputs, and on the other hand provide a
neurally plausible model, even if it is computationally not very efficient on current
standard computer hardware. For a computationally more efficient implementation,
learning methods with locally linear models (D’Souza et al., 2001; Lopes and Damas,
2007) or Gaussian mixture models (Rasmussen, 2000) could be used.

134

5

Self-Organized Learning of
Multiple Internal Models

In the preceding chapters, a cognitive architecture based on the use of internal models
as generic building blocks was introduced, and methods were described for the learning
of the building blocks and for their integration, enabling the system to solve multiple
tasks simultaneously. However, there was an implicit assumption made for the learning
of internal models: That training samples can be generated for each internal model
through sensorimotor experience, by observing the consequences of actions. This cannot
always be immediately assumed, as in a cognitive architecture a limited number of
inputs necessarily needs to be shared among multiple internal models. This means, that
the sensory feedback used for training the individual internal models arrives temporally
interleaved at the inputs, without a predefined structure determining a priori, which
feedback signals should be used to train which internal models.

As an example, consider a robot with an arm and a movable camera head. For it
to be able to control its effectors, it should acquire at least an internal model for visuo-
motor control of the hand (i.e., how to reach for visually perceived target positions), as
well as an internal model for its gaze control (i.e., how to direct its gaze to the positions
of target visual stimuli, or to track moving objects). In the examples used in the last
chapter, it was suggested that learning should be guided by sensorimotor exploration,
by executing actions and observing the outcomes in the sensory feedback. However,
how can the system know if an observed change in the environment has been caused by
a movement of the arm, by a movement of the head, or both? Without a mechanism
for assigning sensory feedback signals to individual internal models during training,
successful learning is not possible in a natural setup. Imposing artificial constraints
on the exploration process could be used to circumvent this problem in some cases,
for example by only moving either the arm or the head, while keeping the respective
other still. This would remove ambiguity for the assignment of changes in the sensory
feedback to actions, but would be a very task-dependent and ad-hoc approach.

Since this work is aimed at developing a cognitive architecture based on the use of
generic building blocks, instead of relying on a decomposition into specially tailored

135

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

modules, a solution would be desirable that is free from task- or domain-specific con-
siderations and does not impose artificial constraints on the process of sensorimotor
exploration. This chapter will therefore introduce a learning method that allows the
learning of multiple internal models from a shared input to be self-organized. The
relationship between actions and outcomes (i.e., which action was the cause for the
observed outcome) is governed by a latent variable in the learning process. To estimate
this latent variable, the proposed method follows the idea to put involved internal
models in competition with each other, and assigns training samples (i.e., observed
action-outcome pairs) among the internal models based on how well they can predict
the outcome.

Using such a competition to implicitly estimate a latent variable has also been
done by Wolpert and Kawato in the MOSAIC model (see Section 3.2.2), which learns
multiple instances of the same action, each adapted to a different context (Wolpert and
Kawato, 1998). During learning, each internal model in the MOSAIC model receives
as input an afferent copy of the next motor command to be issued, as well as the
current sensory feedback signal, and produces an estimation of the next sensory input.
These estimates are compared with the actually observed sensory feedback after sending
the command to the motors. Using the new input for gated error-driven learning, by
adapting internal models to an amount relative to how good they predicted the sensory
feedback, Wolpert and Kawato show that each instance of the internal model specializes
to one particular context. For example, if the action to be learned is that of lifting an
object, multiple instances could each specialize for a certain weight of the object to
produce an appropriate amount of force during the execution of the action.

This chapter extends the approach of using a competitive learning mechanism for
the estimation of a latent variable into the domain of multiple different internal models:
While the MOSAIC model demonstrates that multiple specialized instances of the same
action can be trained, by implicitly estimating a parameter of the action (such as the
amount of force needed to lift an object with unknown wight), here it will be shown,
that a learning method similar to the one employed in MOSAIC can be used to solve
the problem of assigning outcomes to actions. This allows to train multiple different
internal models using data from a single input, at which the sensory feedback for
individual internal models arrives interleaved. The method will first be explained in
Section 5.1 using a toy example. As an example application, in Section 5.3 the learning
of two mappings related to the “body-schema” for a robot will be used and the method
evaluated in simulation experiments with the humanoid robot iCub.

Parts of this chapter (in particular Sections 5.1 and 5.3) are based on (Hemion
et al., 2011).

5.1 Bootstrapping the Learning of Internal Models by Ex-
ploiting Preliminary Model Predictions

Figure 5.1 shows a system in which two internal models each associate an input, x1 or
x2 respectively, with a common feedback signal y. To learn the two internal models,

136

5.1 Bootstrapping the Learning of Internal Models by Exploiting
Preliminary Model Predictions

schema system

x1 x2y

f1 f2

motivation
system

sensory
system

motor system

Figure 5.1: Example of a system in which multiple internal models, here f1 and f2, use
a common sensory feedback signal, in this case y.

the system has to processes combinations of values for the three variables x1, x2 and y.
However, as stated above, we assume that the system does not know a-priori whether
it should associate a given y with x1 or with x2. Instead, it is assumed that values
for y corresponding to either the one or the other internal model arrive temporally
interleaved at the input.

For example, in the case of the robot that should learn its gaze control and its
visuo-motor control, angular configurations of the head and the arm (the outputs of
the system) have to be associated with head-centric positions (the common input).
When gathering information by performing head and arm movements and monitoring
the subsequent change in the head-centric position of an attended stimulus, the system
does not know whether this new information should be used to train the internal model
for gaze control, or the internal model for visuo-motor control. The former would be
the case, if the robot had been attending an object in the background scene: Shifting
its gaze direction transforms the head-centric position of background objects, while the
robot’s arm movement does not have any influence. If however the system had been
attending its own hand, both the head movement and the arm movement would have
influenced the observed change. Thus, at times when the system attends a background
object, input data is related to (and should be used for training the internal model for)
gaze control, whereas at times when the system attends its own hand, input data is
related to visuo-motor control. Instances of the former and the latter case are tem-
porally interleaved: As the system switches attention from one stimulus to another,
subsequently arriving input data will correspond to either of the two cases, depending
on whether the now attended stimulus is the own hand or not.

To self-organize the assignment of input data to individual internal models, we will
exploit the fact that each internal model can only predict certain instances of incoming
data well: Those that can be explained on the basis of the inputs that the internal
model uses. For example, the internal model for gaze control is uninformed about arm
movement commands and thus cannot predict how the hand will move in the visual field.

137

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

-5

0

5 -5

0

5
-2

0

2

4

y

x1

x2

Figure 5.2: Visualization of the example used in the text, of two arbitrary mappings
f1 and f2, shown in green and blue respectively. Samples drawn for a training set based
on a latent variable from either of the two mappings are shown as black dots. Projecting
the samples into the two-dimensional sub-spaces (x1, y) and (x2, y) results in the samples
shown as green and blue dots, respectively, with a one-to-one correspondence between
black, blue and green dots.

Only the internal model for visuo-motor control has the necessary information available
for predicting these instances of input data. Each internal model should therefore be
better at predicting certain classes of input data than the respective other internal
models. Even if predictions will initially be rather inaccurate, we should expect them
to be better than chance. Thus, if we assign samples from a training set respectively to
the internal model that best predicted them, we expect internal models to receive more
valid than invalid training samples, and thus improve their ability to predict subsequent
training samples. Additionally, training samples that one internal model is predicting
well are removed from the inputs to other internal models through the competition,
which amounts to a reduction of noise. Thus, when iterating the competitive training
process, we would expect each internal model to converge to the mapping that should
be learned, and thus the assignment of training samples to self-organize.

Consider a simple example in three dimensions (see Figure 5.2), where the system
should estimate two arbitrary mappings,

f1 : R→ R,
f2 : R→ R. (5.1)

We generate a training set by consecutively drawing two random inputs xt1, x
t
2 ∈ R,

from some distribution (e.g. a uniform distribution over the interval [−5, 5] in this
example). We then compute yt for each sample, based on a latent random variable

138

5.1 Bootstrapping the Learning of Internal Models by Exploiting
Preliminary Model Predictions

either as yt = f1(xt1) or as yt = f2(xt2) and combine the values as training samples for
the internal models, as

S1 = { (xt1, y
t) | t = 1, . . . , T } and

S2 = { (xt2, y
t) | t = 1, . . . , T }, (5.2)

respectively. By omitting one of the input dimensions and thus projecting the training
samples into two-dimensional sub-spaces, those training samples that were generated
as yt = f1(xt1) retain the necessary information for learning in the training set S1

while amounting to random noise in the training set S2, and vice versa for training
samples that were generated as yt = f2(xt2). Thus, based on the latent variable that
was used for deciding whether f1 or f2 should be used to generate yt, the training
samples corresponding to the two individual mappings are interleaved in the training
sets S1 and S2.

Using a competition between internal models allows to self-organize the assignment
of the training samples in the following way. Estimates for the two mappings are trained
as

ỹt1 = φ1(w1, x
t
1) and

ỹt2 = φ2(w2, x
t
2),

(5.3)

with some learning technique φi and corresponding model parameters wi, for example
using a feedforward neural network with associated connection weights. Initial sets of
training samples, S0

1 and S0
2 , are used to produce the first estimates. Then the following

steps are iterated. New training sets Sk1 and Sk2 are generated as described above, and
the two estimates are used to compute predictions ỹt1 and ỹt2 for all samples in the
training sets. These predictions are compared with the actually observed outcomes yt

and squared errors are computed as

SEt,ki = ‖yt − φi(wki , xti)‖2, ∀ (xti, y
t) ∈ Ski , (5.4)

where wki are the model parameters after iteration k − 1. Then a binary weighting
scheme is used for updating the estimates, to only use those training samples for which
the estimate has produced the lowest squared error, according to

It,ki =

{
1 if ∀ j, i 6= j : SEt,ki ≤ SEt,kj ,

0 otherwise.
(5.5)

Figures 5.3 shows a visualization of a simulation of the method, using multilayer
perceptrons as learning method, with 5 units in a single hidden layer. The two plots in
Figure 5.3(a) show an example training set, where green circles correspond to one kind
of observation and blue crosses correspond to another kind of observation. Note that
there is a one-to-one correspondence of points in the two plots, as both plots correspond
to projections from a three-dimensional data set into two two-dimensional subspaces. It
can be seen that the green circles are random noise (with some non-trivial distribution
in the vertical dimension) in the left plot, whereas the blue crosses are random noise in
the right plot. Figure 5.3(b) shows the initialization of the estimates from the initial

139

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(a) Example data set

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(b) Initialization

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(c) Iteration 1

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(d) Iteration 2

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(e) Iteration 3

Figure 5.3: Simulation results for the example of learning estimates for two arbitrary
functions, using the competitive learning method proposed in this chapter. See text for
description.

140

5.2 Handling Noise

training sets S0
1 and S0

2 as a solid blue line, with dashed lines indicating the mean
squared errors of the estimates. Figures 5.3(c)–(e) show the results of the first three
iterations of the described method. Using the estimates from the respective preceding
iteration, training samples are weighted according to Equation 5.5. Training samples
that received a weight of 1 and 0 are shown in blue and red, respectively, along with the
result of updating the estimates using the weighted training samples. As it can be seen
in Figure 5.3(c), already the initial estimate allows the weighting scheme to significantly
reduce the amount of noise in the training sets. And after only three iterations, both
estimates are very precise and only few training samples are wrongly assigned.

5.2 Handling Noise

In the above example it was assumed, that all observations originated from either of
two functions, both of which could be learned by internal models. In the case of an
actual robot based on the proposed cognitive architecture, this would amount to the
assumption that the robot traines internal models for all observations that it encounters.
For example, in the case of the robot that should learn its visuomotor control and gaze
control, the two internal models would only be able to learn to predict all observations
if the robot is situated in a static environment, where nothing but its own arm is
moving: Shifting the own gaze while tracking a moving stimulus obviously produces
different results than when tracking a static stimulus. Thus, for the system to be able
to distinguish moving stimuli from static ones, it would have to train further internal
models, which would have to learn to predict the different kinds of movement of stimuli.
This is by no means an unreasonable assumption, as very young infants are already
capable of distinguishing different forms of animate motion, which has lead researchers
to suggest that concepts such as animacy, inanimacy and agency are among the earliest
and most fundamental concepts that are acquired by infants during development (cf.
Section 3.1.3; Mandler, 1992). Furthermore, the ability to predict the environment well
results in a minimization of surprise, which has been proposed to be a driving force for
learning in adaptive agents, as agents that do not minimize their surprise will sooner or
later encounter potentially harmful surprising events (Friston et al., 2006; Kiebel et al.,
2008).

Nevertheless, it is interesting to see how the method performs if observations are
noisy, i.e. in the presence of observations that the system cannot learn to predict on the
basis of its available information. To test this, the previous example was extended by
drawing an additional set of samples xt3 ∈ R, which however were not provided as input
to the system. Observations yt were computed either as f1(xt1), f2(xt2) or f3(xt3), based
on a latent variable. However, since the system was only provided with inputs xt1 and
xt2, but not with xt3, it could not learn to predict the values of yt that were computed
as f3(xt3), which instead added additional noise to the training input for both internal
models.

For the system to handle noise, each internal model compares its predictions with
actual observations and rejects all samples that deviate too much. Appart from this,

141

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

the previously described competition between internal models remains the same. To
make the rejection adaptive to the current level of performance of each internal model, a
threshold for rejection is used for each internal model that is proportional to the current
mean squared error of the internal model. Thus, based on all samples that have been
assigned to an internal model for training, the mean squared error is computed as

MSEki =
1∑T

t=1 I
t,k
i

T∑
t=1

It,ki · ‖y
t − φi(wki , xti)‖2, (xti, y

t) ∈ Ski , (5.6)

and a threshold for rejection is updated for the next iteration as

ρk+1
i = λ ·MSEki , (5.7)

where λ ∈ R>0 is a parameter of the method. The weighting scheme is adapted to take
the threshold for rejection into account as

It,ki =

{
1 if SEt,ki ≤ ρki and ∀ j, i 6= j : SEt,ki ≤ SEt,kj ,

0 otherwise.
(5.8)

As before, for the initialization of the model parameters for both internal models, all
samples from initial training sets S0

1 and S0
2 are used, without any form of assignment.

To test the method, two multilayer perceptrons were used as learning technique,
each with 10 units in a single hidden layer. Before each iteration, 250 samples were
generated using each f1(xt1), f2(xt2) and f3(xt3), resulting in a total of T = 750 training
samples in each training set Sk1 and Sk2 . Figure 5.4 shows an example run of the method,
using λ = 7. In Figure 5.4(a), the result of initializing the multilayer perceptrons
using the initial training sets S0

1 and S0
2 is shown. Blue dots correspond to correctly

assigned samples, and red dots correspond to wrongly assigned samples (on the one
hand false negatives, i.e. samples that were rejected but should have been accepted, and
on the other hand false positives, i.e. samples that were accepted but should have been
rejected). The mean squared error of both internal models is indicated by dashed lines
as a belt around the estimates. Figures 5.4(b)–(e) show the situation after iterations
1, 5, 10 and 25, respectively. It can be seen that the method is able to learn both
mappings despite the additional noise, although convergence to the final solution is
slower than when there is no additional noise (cf. Figure 5.3). Furthermore, while
the learned estimates of both internal models are already very precise after iteration
10 (see Figure 5.4(b)), still some samples are wrongly assigned. However, the wrongly
assigned samples correspond to “noisy” samples (i.e. samples that were generated using
an input that is not known for the internal model) that happen to be similar to the
function to be learned. For example, some of these samples will have been generated as
yt = f3(xt3), but by chance this happens to be close to the value of f1(xt1). Thus, even
though these samples are de facto wrongly assigned samples, they only add a negligible
amount of noise to the assigned training samples.

To evaluate the influence of the parameter λ on the learning performance, the
training was systematically repeated for different values, using λ ∈ {1, . . . , 13}. For each

142

5.2 Handling Noise

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(a) Initialization

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(b) Iteration 1

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(c) Iteration 5

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(d) Iteration 10

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

(e) Iteration 25

Figure 5.4: Simulation results for the example of learning estimates for two arbitrary
functions, using the competitive learning method proposed in this chapter. See text for
description.

143

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

value, 15 independent training trials were performed, each for 25 iterations. Figure 5.5
shows the mean learning performance of the internal model learning f1, exemplarily
for the values 1, 7, 10 and 13. Figures 5.5(a), (c), (e) and (g) show the development
of the mean squared error, with standard deviation indicated as a colored belt around
the mean value. For comparison, 50 feedforward networks (with the same network
architecture as the ones used for the internal models) were trained using only correct
training samples, and their mean performance was computed to obtain a reference
performance level, which is shown as a dotted red line in the plots. Figures 5.5(b), (d),
(f) and (h) show the number of noise samples (i.e. ones that were computed as yt =
f3(xt3)) that were wrongly accepted by the internal model in blue, and the total number
of wrong decisions for the internal model (both false negatives and false positives) in red,
again showing the mean as solid line and the standard deviation as a colored belt. As
stated above, samples that do not belong to the respective target function are randomly
distributed in the input space, with some non-trivial distribution in the y-dimension.
However, there is a certain probability that samples will fall onto, or lie close to, the
target function. These samples are by chance similar to the target function, and thus
cannot be distinguished from correct samples by the system. The expected numbers of
samples for which this happens1 are shown as dotted lines, on the one hand for samples
originating from f3 in blue, and on the other hand for samples originating from either
f2 or f3 in red. Thus, for an optimally performing system, the solid blue line should
coincide with the dotted blue line, meaning that the mean number of wrongly accepted
noise samples equals the expected number of noise samples that are close to the target
function, and the solid red line should coincide with the dotted red line, meaning that
the mean total number of false positives and false negatives equals the expected total
number of samples that do not correspond to the target function but happen to lie
close to it.

Several things can be observed: First of all, the best performance is achieved with
the choice of λ = 7, where after around 15 iterations the mean model performance
(in terms of the mean squared error) has reached the reference performance level and
training samples are optimally assigned. Choosing a too small value of λ results in a
situation in which the models reduce the threshold for rejection too much, eventually
producing a positive feedback loop of overfitting: As the mean squared error of the
models gets lower during training, fewer training samples are accepted in the following
iterations, causing an overfitting of the models due to the low amount of training sam-
ples, which in turn further reduces the amount of accepted training samples. Figure 5.6
shows an example, where the choice of λ = 1 has caused such a situation. This is mir-
rored in Figures 5.5(a)–(b), where on the one hand it can be seen that the internal
model does not converge to a good performance, and on the other hand only few noise

1The expected number of samples that are close to the target value was numerically estimated by
keeping track of the number of times that this happend across all training trials. During the generation
of training samples, normally distributed noise with variance σ2

ε was added to the yt. Thus, optimally
performing internal models should produce a mean squared error of MSE = σ2

ε . Therefore, in each trial
the number of times that ‖f1(xt1) − f2(xt2)‖2 < λ · σ2

ε and ‖f1(xt1) − f3(xt3)‖2 < λ · σ2
ε were counted,

providing an estimate of the expected number of samples for which this is the case.

144

5.2 Handling Noise

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

M
S

E

iteration

(a) λ = 1

0 5 10 15 20 25
0

100

200

300

iteration

(b) λ = 1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

M
S

E

iteration

(c) λ = 7

0 5 10 15 20 25
0

100

200

300

iteration

(d) λ = 7

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

M
S

E

iteration

(e) λ = 10

0 5 10 15 20 25
0

100

200

300

iteration

(f) λ = 10

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

M
S

E

iteration

(g) λ = 13

0 5 10 15 20 25
0

100

200

300

iteration

(h) λ = 13

Figure 5.5: (a), (c), (e), (g) Mean model performance; (b), (d), (f), (h) mean number
of wrongly accepted noise samples (blue) and mean number of false negatives and false
positives (red). See text for description.

145

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

Figure 5.6: Example where the choice of a too low value for the parameter λ = 1 has led
to an overfitting of the internal models. The internal model on the left is close to the target
function in some regions of the input space, which allows it to maintain a relatively low
mean squared error. However in other regions it has drifted away from the target function,
thus producing many false negatives, which keeps the internal model from finding the target
function. The internal model on the right hand has found a sub-optimal solution, rejecting
too many samples, also causing an overfitting.

-5 0 5

-2

0

2

4

-5 0 5

-2

0

2

4

Figure 5.7: Example where the choice of a too large value for the parameter λ = 13 keeps
the internal models from obtaining optimality. Many false positives retain large amounts of
noise in the training sets for the internal model, causing them to demonstrate sub-optimal
learning performance.

samples are accepted, but at the same time the number of false negatives is very high.
In contrast, choosing a too large value of λ causes the model to continue to produce
large amounts of false positives. As it can be seen in Figures 5.5(g)–(h) for the case
of λ = 13, the performance of the model does improve over the number of iterations,
but never reaches optimality, and the number of accepted noise samples remains large.
Figure 5.7 shows an example result of a training for this choice of parametrization.

In conclusion it can be said, that with the right choice for the parameter λ (in this
case λ = 7) the proposed method can successfully self-organize the learning process
also in the presence of large amounts of noise. Overall it would be possible to improve
the performance of the model, if the global threshold for rejection that each internal
model uses was replaced by locally varying thresholds. This could be achieved by
estimating the model performance not by a single value (here the mean squared error
in conjunction with the model parameter λ), but estimating it for subregions of the
input space separately. This would allow to prevent situations in which an internal
model that in average produces good estimates for large amounts of the input space is
not able to approach the target functions in other regions where it produces many false
negatives instead.

146

5.3 Example Application of Acquiring a Body-Schema

5.3 Example Application of Acquiring a Body-Schema

In the last Section, a toy example was used to give a proof of concept for the proposed
method. In the following, an application in robotics will be used to evaluate the method
on a larger scale. Already at the beginning of the chapter, an example was described
for a robot that should learn two internal models, one for its gaze control and one for
its visuo-motor control. In the robotics literature, the acquisition and representation
of this kind of knowledge is called a “body-schema” (Hoffmann et al., 2010), inspired
by Psychology (cf. Section 3.1.3). Most existing approaches to learning a body schema
as a mapping between motor commands and sensory feedback use a setup with a robot
arm and a camera, fixed or movable, observing a scene in which the robot’s own arm is
also located. The body-schema is learned by fitting a model onto training data using
standard machine learning techniques (e.g. Gaskett and Cheng, 2003; Metta et al., 1999;
Rolf, 2012). These works make an implicit assumption about the training scenario:
That the robot is already able to detect the position of its hand, for example by giving
it an easily detectable color, which otherwise does not occur in the background scene
(Gaskett and Cheng, 2003; Metta et al., 1999), or by fixing markers to the robot’s hand
(Rolf, 2012). This way it is of course ensured that only training data for the desired
mapping is collected, and it is not considered how the model acquisition could be done
in a more generic setup, where the robot should for example learn more than just a
single internal model or there is no such intervention by the designer possible.

To loosen this limitation, several methods have been proposed to let the robot
“self-detect” its end-effector in the camera input, other than using an easily detectable
color or other kind of marker. Mostly these methods use some combination of move-
ment detection and temporal contingency estimation between the sending of motor
commands and the detection of movements. The methods can be prepended to the
learning system to provide the necessary input, i.e. the position of the end-effector.
For example, Stoytchev demonstrated how the characteristic delay between sending a
motor command and observing change in the image can be estimated using temporal
contingencies (Stoytchev, 2011). Fitzpatrick and Arsenio proposed to use a mechanism
of correlating changes in arm postures with changes in pixel values, while performing
rhythmic movements to locate the visual region of the end-effector in the camera im-
age (Fitzpatrick and Arsenio, 2004). Kemp and Edsinger used mutual information to
estimate the amount to which the robot’s actions had control over image patches of
different appearances and showed that their robot could learn the appearance of its
end-effector and that it was controllable (Kemp and Edsinger, 2006). Gold and Scas-
sellati trained a graphical model to use probabilistic reasoning over time to classify
image regions as belonging to the robot or being animate or inanimate “other” (Gold
and Scassellati, 2009).

In contrast to these approaches, which again introduce very task-specific demands
to the overall learning method, this section will demonstrate that the proposed method
for self-organized assignment of training samples to competing internal models can
successfully learn internal models related to the body-schema of a robot, without the

147

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

schema system

ψ θx

θ1,2

θ3

θ4

ψ1,2
gaze control visuo-motor control

of the hand

motivation
system

sensory system motor system

Figure 5.8: Overview of the system used in the simulation experiments.

need for prior knowledge about the appearance of the own hand, or the use of any
other form of detection method. For this evaluation, a simulation of the humanoid
robot iCub was used (Tikhanoff et al., 2008).

The system that was used for the evaluation consisted of two internal models, see
Figure 5.8. The position of the head of the robot was controlled in the horizontal
(turning) and the vertical (raising and lowering) direction, with angular positions ψ ∈
R2. The configuration of the right arm of the robot was controlled using the three
shoulder joints and the elbow joint, with angular positions θ ∈ R4.

Visual input to the system is provided as the location of one object in head-centric
Cartesian coordinates, x ∈ R3. Thus, it is assumed that the vision problem is solved by
the sensory system insofar as it is abstracted from raw camera input to the coordinate
of an attended visual stimulus, which can either be in the background or on the hand of
the robot, and that the stimulus is visually tracked while the robot moves its head and
arm. However, the system does not know whether the attended stimulus corresponds
to its own hand or not, which introduces the latent variable to the training process. To
emulate the behavior of an attention mechanism, the system was set to attend either
its own hand or randomly placed distractor objects with a given probability.

To learn its gaze control, the system should acquire the mapping

x(tc) = fgaze(ψ(t), ψ(tc), x(t)), (5.9)

describing how moving the head from posture ψ(t) to posture ψ(tc) transforms the
head-centric position x(t) of a stimulus into a new position x(tc). Here, t denotes the
point in time when new target postures for head and arm are issued to the controllers,
and tc ≥ t denotes the point in time when the controllers have converged.

148

5.3 Example Application of Acquiring a Body-Schema

0 1 2 3 4 5 6 7 8 9

200

800

n
u
m

b
er

o
f

sa
m

p
le

s

iteration

Figure 5.9: Number of training samples assigned to gaze model (red), visuo-motor model
(blue), and total number of wrongly assigned samples (black). Mean values are shown as
solid lines with standard deviations indicated by shaded regions.

Similarly, to learn its visuo-motor control, the system should acquire the mapping

x(t) = fvm(ψ(t), θ(t)), (5.10)

describing the relationship between head and arm configurations and corresponding
positions of the hand in head-centric coordinates.

Training samples for the two internal models were generated by letting the robot si-
multaneously drive both its head and arm into random postures, and recording angular
positions before and after the movement. Furthermore, before each new movement was
initiated, a distractor object was placed at a random position in the workspace of the
robot (the distractor object was always static, thus there were no moving background
stimuli). The system was led to attend the attractor object with an 80% chance and its
own hand with a 20% chance, and the position of the attended stimulus in head-centric
coordinates was recorded before and after the movement. Thus, the training sets for
the two internal models were

Sgaze =
{ (

ψ(ti), ψ(tic), x(ti), x(tic)
)
| i = 1, . . . , N

}
and

Svm =
{ (

ψ(ti), θ(ti), x(ti)
)
| i = 1, . . . , N

}
,

(5.11)

with a total of N training samples for each iteration of the learning method.
To test the proposed mechanism using standard machine learning methods, two

multilayer perceptrons were used for learning, each with 30 neurons in a single hidden
layer. The proposed learning method was iterated 9 times, and 1000 samples for training
sets Sgaze and Svm were generated for each iteration. After the assignment of training
samples in each iteration, the weights of each multilayer perceptron was updated by
training the networks for 50 epochs. The whole procedure was done in 15 separate
trials to acquire some statistical information about the learning performance.

Figure 5.9 shows the number of training samples that were assigned to the two
internal models, along with the total number of wrongly assigned training samples.
For the initialization of the internal models, all 1000 training samples are assigned to

149

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

M
S
E

iteration

(a) Gaze control

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

M
S
E

iteration

(b) Visuo-motor control

Figure 5.10: Development of the mean squared error of internal models in the case of
(a) gaze control, and (b) visuo-motor control. Solid black lines show the mean value of the
mean squared error across all 15 training trials, with the standard deviation indicated by
shaded regions around the lines. For comparison, learning performance when continuing
to use all training samples for both networks is shown in red, and learning performance
when using supervised learning is shown in blue.

both internal models. This is mirrored in Figure 5.9 as all training samples are being
counted as wrongly assigned (training samples that correspond to situations where the
robot looked at its own hand were also wrongly assigned to the internal model for
gaze control, and samples corresponding to situations where the robot looked at the
background were also wrongly assigned to the internal model for visuo-motor control).
Over the next few iterations of the method, the process stably approaches a correct
assignment of training samples with only very few miss-assignments (a mean of 2.8
wrongly assigned samples in the ninth iteration, with a standard deviation of 2.61,
corresponding to a recognition rate of 99.72%).

Figure 5.10 shows the development of the performance of both internal models when
using the proposed training method, on the one hand compared with using all training
samples for the training of both internal models (as a lower bound for the system
performance), and on the other hand compared with supervised learning, where the

150

5.4 Discussion

system is told which training samples belong to either class (as an upper bound for the
system performance). It can be seen that, after starting with an initially high error,
both internal models quickly reach the performance level of the internal models trained
with supervised learning. Also, the standard deviation of the model performances is
quite low, which shows that the proposed method stably converges to a correct solution.
The remaining residual errors, which are observed for both the internal models trained
with the proposed method, as well as the internal models trained with supervised
learning, are due to the choice of model parameters: A total number of 1000 training
samples, with 800 for the gaze model and 200 for the visuo-motor control model, can be
deemed rather low for the number of input dimensions for both internal models, and
requires the multi-layer perceptrons to generalize between samples. Increasing both
the number of training samples as well as the number of hidden units would allow
the networks to perform better. However, this error is an artifact of the choice of
learning method and parametrization, and is not linked to the proposed method for
self-organizing the assignment of training samples.

5.4 Discussion

This chapter investigated the problem of generically integrating building blocks in a
cognitive architecture from the learning side. Specifically, an issue was highlighted that
arises as the consequence of having multiple internal models share the same sensory
input channels: If there are different kinds of sensory feedback signals arriving at the
same input, and one internal model should be trained for each kind of feedback, there
has to be some way of dividing these inputs into separate streams of information for
the individual internal models. As a concrete example, the problem of learning two
internal models related to the body schema of a robot was used: One for gaze control,
and one for visuo-motor control, both of which use as sensory feedback the Cartesian
position of a stimulus, corresponding either to an object or to the robot’s own hand,
respectively. For the learning to be successful, each of these two kinds of inputs needs to
be assigned to one or the other internal model. In the literature, this problem is either
solved through designer intervention (using easily detectable cues and hard-coding a cue
detection for the selection of inputs), or by implementing dedicated detection methods
and prepending them to the learning process. However, both of these kinds of solutions
make task-specific assumptions, whereas for the integration of building blocks in a
cognitive architecture a method needs to be task- and domain-general.

As a solution, a method was proposed that puts involved internal models in compe-
tition with each other. Inputs are assigned to those internal models that are most adept
to these inputs, in terms of how well they predict the inputs. It was shown, both in a
toy example by way of illustration, as well as in a learning scenario using a simulation
of the iCub robot, that this method is capable of self-organizing the learning process
without any form of designer intervention or supervision, and to correctly assign inputs
to corresponding internal models.

To allow for a better evaluation of the performance of the method, standard machine

151

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

learning methods were used for the learning of internal models. However, it should be
noted that similarly to the method for integrating internal model responses presented
in the last chapter, also this method does not commit to a specific learning method.
Instead, it only requires the learning method to support some metric for measuring
the similarity between predicted and actual inputs. In the simulation experiments
that were presented, multilayer perceptrons were used as learning method, and the
Cartesian distance in the space of input vectors as the metric for comparing prediction
errors, but also using population codes for the representation of inputs (as required by
the definition of the cognitive architecture proposed in Chapter 3) instead of vector-
based representations is possible: Instead of using a Cartesian metric, the amount
of overlap between activations in population codes can be compared, with a perfect
overlap corresponding to an accurate prediction. This way, the method can also be
implemented when using for example networks of sigma-pi units as a learning method.

The competition between internal models was described in this chapter as a binary
weighting of training samples. To put it into a closer relation with the formulation
of the cognitive architecture that is proposed in this thesis, the following extension to
the method can be described. In Section 3.3.1 it was stated that simulators become
arranged in self-organized topographies in dynamic neural fields, to form representa-
tions on higher levels of the hierarchy in the schema system. We could imagine the
two internal models used in the simulation in this chapter to become part of such a
self-organized representation of movement types of visual stimuli: On the one hand for
static objects, and on the other hand for the movement of the own body. Additionally,
further internal models, for example ones learning to predict moving objects, could
also be integrated into this self-organized representation. The competition mechanism
proposed in this chapter can then be described in the language of theories of embod-
ied cognition and of the concept of schema, where it is argued that active elements
of the conceptual system (simulators or schemata) absorb, and become activated by,
perceptual events, so that the combination of activated elements represents the agent’s
interpretation of the situation (cf. Sections 3.1.2–3.1.3). For example, Barsalou argues
that simulators produce embodied simulations, which are compared with observations,
and simulators that produced the best matching simulations become activated (Barsa-
lou, 1999). This process is congruous with the method used in this chapter, as here
internal models produce estimations of observations (forward simulations for actions in
the case of learning a body schema), and are selected if there is a good enough match.
If we assume the internal models to be arranged in a dynamic neural field (as described
in Section 3.3.1), the competition that is needed for the method described in this chap-
ter can be understood as a result of internal models receiving activation during the
processing of perceptual information: Each internal model accumulates activation as it
produces estimations for the perceptual input, to a degree corresponding to how good
the estimations match the observations. As the internal models are in a topographic
relation with each other in the dynamic neural field, ones that are strongly activated
during this process will inhibit others (cf. Section 4.2.2). By further assuming that
activated internal models are adapted using the available information, i.e. they accom-

152

5.4 Discussion

modate to the input (cf. Section 3.1.3; Piaget, 1997 [1953]), the method described in this
chapter can be naturally explained as a function of the hypothesized active elements of
the conceptual system. Furthermore, using dynamic neural fields for the competition
between internal models should render the method robust against noise, as the Amari
dynamics implements a low-pass filtering of the input signal (cf. Section 4.2.2; Amari,
1977). This can be especially beneficial if the internal models process sequential input,
for example trajectories of different types of dynamic object movements: As a moving
stimulus is tracked, the system might try to decide whether it is an animate movement
(i.e. self-propelled), or if it is a caused movement (e.g. a rolling ball). Two internal
models would learn to predict these different kinds of movements of stimuli, and their
predictions would be matched with the observed trajectory. From one time step to the
next, the decision of which internal model predicts the trajectory better would prob-
ably be rather unstable. However, accumulated over time and low-pass filtered in the
dynamic neural field, the decision would become stable, allowing the winning internal
model to gather the new information for learning.

153

5. SELF-ORGANIZED LEARNING OF MULTIPLE INTERNAL
MODELS

154

6

Conclusion

6.1 Summary

It is not enough to develop many seperate computational models that each explain indi-
vidual cognitive phenomena. After all, we would only end up with a pile of disconnected
models, but without a clue on how to build a cognitive robot. With this intuition in
mind, this thesis was concerned with the research question of how to build a cognitive
architecture for a robot under the paradigm of embodied cognition. Motivated by a
survey of the interdisciplinary literature in Chapters 2 and 3, and as mentioned in the
introduction, the overarching goal of this thesis (G0, see Section 1.1) was to identify
basic elements from which a cognitive architecture for a robot might be built. The
approach that was taken was to consult prominent comprehensive theories of cognition
from the literature and to compare the hypothesized basic mechanisms, from which
cognition should emerge, according to these theories. As a result, important properties
that can be used to guide the modeling of a cognitive archtecture have been identified
(see Section 3.1.4). Most importantly, across theories it is argued for the existence of an
active element, of which the cognitive system is composed, both on the structural level,
as well as in terms of how knowledge is organized in the system. Therefore, with the
working hypothesis that cognitive function can be implemented in a distributed way
by basing a cognitive system on the use of such active elements, in Chapter 3 a new
cognitive architecture was introduced with a schema system as its central component.
The schema system houses a network of generic building blocks, that each perform
only local computations based on their respective inputs, but in concert are responsible
for the overall behavior of the system. To guide the modeling and in complying with
research goal G1 of the thesis to establish a theoretically sound basis for the modeling
that is backed by empirical data, in Section 3.3.1 a view was proposed that combines
several theories of embodied cognition and schemata. It was argued that a highly in-
terconnected cascade of internal models and dynamic neural fields is at work, with the
former being responsible for learning and the generation of candidate simulations, and
the latter for decision making and integration. The view is congruous with Damasio’s
convergence-divergence model (Damasio, 1989) in terms of network structure and in-

155

6. CONCLUSION

formational flow, and is therefore also empirically backed by neuroscientific evidence.
Furthermore, as it is based on the use of dynamic neural fields for decision making,
it is also compatible with empirical findings from the dynamic field theory (Erlhagen
and Schöner, 2002; Smith and Thelen, 2003; Thelen et al., 2001). Finally, by subscrib-
ing to a view of cognition as put forward by the concept of schema (Bartlett, 1932;
Gallese and Lakoff, 2005; Piaget, 1997 [1953]) and by theories of embodied simulation
(Barsalou, 1999; Gallese, 2003), a comprehensive view of how cognition emerges from
the interplay of the active elements can be described. Thus, the proposed view is both
concrete enough for computational modeling, as well as provides a coherent perception
of how the modeling can be guided towards a more complete cognitive system.

Chapter 4 was concerned with several important questions related to the proposed
cognitive architecture: How the building blocks support the acquisition of internal
models from sensorimotor experience, how they can be used for accurate motor control
in a closed-loop sensorimotor system, and most importantly how the outputs of multiple
building blocks can be combined to produce a coherent system response. To solve this
last question, a method was proposed that exploits the fact that redundant solutions
exist in many sensorimotor problems, and lets the system select solutions that satisfy
multiple tasks simultaneously. To be able to do so, the method requires the use of a
learning technique that is able to retain information about redundancies and can restore
this information upon a query, which most standard machine learning techniques are
not capable of. As an example implementation of the method, networks of sigma-pi
units were used as a learning technique, as an associative memory between population
coding neural fields. To make the implementation applicable also in higher-dimensional
domains despite the problems of scalability related to networks of sigma-pi units, a
sparse implementation was used, and the network functionality was extended to support
local error corrections in closed-loop control to compensate for inaccuracies in the
information encoded in the sigma-pi weights. Furthermore, it was demonstrated that
multiple low-dimensional dynamic neural fields can be used to substitute for a high-
dimensional dynamic neural field, which is beneficial in terms of computational cost.

Chapter 5 introduced a method that solves the important problem of how to dis-
tinguish inputs that originate from different situational contexts, without any prior
knowledge in the system. The example application of learning a body schema was
used, where it was demonstrated that the system was able to separate inputs from the
contexts “looking at own hand” and “looking at background scene”, without relying
on prior knowledge of for example the appearance of the own hand, or any other kind
of pre-specified detection strategy. Instead, the learning can be bootstrapped by using
preliminary model predictions, generated from the internal models themselves, while
they are trained. For the development of a cognitive architecture based on generic
building blocks, the method allows information to be directed to building blocks in a
self-organized manner, without the need to introduce any supervisory mechanism on
the architectural level. Both the methods for integrating outputs of building blocks and
for separating input signals treat information independently from its content, and are
therefore domain- and task-independent, contributing to research goal G2 of the thesis

156

6.2 Discussion in Relation to Machine Learning and the Field of Cognitive
Architecture

to develop a generic building block and its mechanisms, supporting the autonomous
acquisition of knowledge from sensorimotor experience.

6.2 Discussion in Relation to Machine Learning and the
Field of Cognitive Architecture

For the design of a cognitive architecture that should support the autonomous acqui-
sition of knowledge from sensorimotor experience it obviously should be taken into
account, under what conditions current machine learning methodology can operate
successfully. For example, the camera input to a system could be handled by first
selecting one salient image region and further applying filtering techniques to extract
information from this region on color distribution, line orientations, principal compo-
nents, and so on. This can be argued to be biologically plausible, since it is known
that the brain processes input from the eyes in a similar way (cf. Section 2.1). On the
other hand, such a representation is also necessary for a system to be operable with
currently available machine learning methodology. Representations in vector formats
are predominantly expected by current machine learning methods.

However, while it seems immediately clear that available methodology should con-
strain the design of a cognitive architecture, it is important to also consider the inverse.
Learning methods are normally evaluated in the literature in terms of their accuracy,
their generalization capability from as few training examples as possible, their suitabil-
ity for online-learning, and so on, thus in how well they perform as a learning system
by themselves. This is insufficient when aspiring to build cognitive robots: For this
goal, the learning methodology that is employed needs to be capable of working well
in a complex system, where many learning sub-systems are combined. Thus, aside
from trying to develop learning methods that are powerful by themselves, research in
machine learning should also consider the question of how the goal to build cognitive
robots constrains the design of new learning methods. One example for such a con-
straint was described in Sections 4.1–4.2, where it was argued that a learning method
should be capable to handle and restore information about redundancies for a flexible
integration. Note that considering how to combine multiple learning systems can also
be beneficial beyond the immediate goal to build an integrated system: For example,
it is well known that a combination of several simple classifiers outperforms a single
complex classifier in many classification tasks (see Polikar, 2009).

6.2.1 Comparison with Other Cognitive Architectures

It is not easily possible to evaluate one cognitive architecture against another, because
they differ in too many ways and their respective capabilities are scattered across the
vast spectrum of cognition. No current architecture demonstrates prowess in more
than just a few aspects of cognition. Therefore, in Section 2.6 a hypothetical scale
was introduced to approximately capture the current state of cognitive architectures
in a way that allows to compare them, on the one hand in terms of the generality

157

6. CONCLUSION

of the underlying methodology, and on the other hand in terms of the tractable task
complexity. Current cognitive architectures can be said to roughly follow a trend of
negative correlation along the two dimensions. Progress in the field of cognitive ar-
chitecture, as proposed earlier, can be defined as advancing in either one dimension,
without regressing in the respective other.

The cognitive architecture that was proposed in this thesis shares most similarity
with current connectionist and dynamicist architectures, thus it makes most sense to
compare it with the existing cognitive architectures from these paradigms. Firstly,
it is related to architectures based on the dynamic field theory, given the modeling
choice of using dynamic neural fields for the integration and exchange of information
between building blocks. These architectures however do not address the question of
how learning is implemented, but instead focus on the integration and decision making
capabilities of the system. In contrast, the cognitive architecture that was proposed
in this thesis puts an explicit focus on how internal models in building blocks can be
learned from sensorimotor experience and therefore allows the system to autonomously
learn new sensorimotor transformations. Furthermore, while the architectures based
on the dynamic field theory introduce decision making to select one among several
possible actions (in most cases discrete action units) to solve a single task, the here
proposed architecture extends this capability by allowing the system to solve multiple
tasks simultaneously, as described in Chapter 4. Secondly, the proposed architecture is
related to Morse et al.’s ERA (Morse et al., 2010) in several ways. Both the here pro-
posed architecture and ERA argue for the use of generic building blocks in a cognitive
system. For passing information between building blocks, both architectures make use
of population coding neural fields. ERA uses self-organizing maps to cover the domain
of input signals, which allows for a more efficient encoding as compared to the static
neural fields that were used in the example implementations for simulations in Chap-
ters 4 and 5. However, extending the here proposed architecture with the functionality
of self-organizing maps would be straightforward. Furthermore, ERA uses Hebbian
learning between self-organizing maps, which is essentially similar to using networks of
sigma-pi units. In contrast, the architecture that was proposed in this thesis does not
subscribe to one particular learning technique, but instead defines constraints on how
information is integrated and passed in between building blocks. The use of dynamic
neural fields at the interface between building blocks, and the way that information is
combined allows the system to select favorable solutions to tasks. In contrast, if only
Hebbian learning and a simple propagation of activation is used for the integration of
building blocks, and an output is selected for example by selecting the neuron with
strongest activation in each neural field, the system would be highly prone to undesired
effects due to noise and optimal solutions would rarely be picked (cf. Figure 4.5). More-
over, the propagation of activation as it is used in the here proposed architecture limits
activation across the system to one coherent sensorimotor situation, as in embodied
simulation (see Section 3.3.3), whereas in ERA activation propagates unconstrained
along learned connections, which can be expected to cause problems in more complex
scenarios due to an over-activation of units across the whole system.

158

6.3 Discussion in Relation to Embodied Cognition and the Concept of
Schema

Additionally, the method presented in Chapter 5 for separating input data to train
multiple internal models from a shared input is relevant for any learning system, not
only in the context of cognitive architectures. It allows to train multiple internal models
also when their training samples are not separated in advance, for example because they
use different inputs. This or similar assumptions have been made in existing cognitive
architectures (cf. Section 2.4.2), as well as in many other learning systems, such that in
their limited evaluation scenarios the problem of relevance detection was circumvented
by only presenting the learning method with valid samples. The method that was
presented in this thesis allows the system to autonomously learn from experience also
in more natural scenarios.

In sum, the proposed cognitive architecture together with the mechanisms presented
in Chapters 4 and 5 extends the capabilities of existing cognitive architectures by
addressing problems related to the integration of internal models and to learning. It
solves problems that any cognitive architecture that is based on the use of building
blocks faces (cf. Section 3.3.4). Furthermore, the proposed methods are not intrinsically
tied to the use in a cognitive architecture, but can be employed in general for the
integration of sensorimotor models on the one hand, and for the separation of input
signals on the other.

6.3 Discussion in Relation to Embodied Cognition and
the Concept of Schema

The presented cognitive architecture was motivated by theories of embodied cognition
and by the concept of schema, as described in Chapter 3. As such, it should also be seen
as a computational model of these concepts, even though the simulation experiments
described in Chapters 4 and 5 were primarily intended to demonstrate the functionality
of the system on a more technical level, and are not in a direct relation to psychophysical
studies. However, in the light of the theories of embodied cognition and of the concept
of schema that were described in Chapter 3, a few conclusions can be drawn related
to the nature and function of the concepts. For this, it first needs to be made clear
in what ways the computational models presented in this thesis can be related to the
concepts of embodied cognition and schema.

A common hypothesis that is central to many theories related to embodied simula-
tion and the concept of schema is that cognition is an emergent property in a system
that is composed of basic active elements (see Sections 2.5.1, 3.1.1–3.1.4). This as-
sumption is obviously mirrored in the proposed cognitive architecture as it is based
on the use of generic building blocks, which each only perform local computations but
in concert produce the overall system behavior. In the aforementioned theories, the
active element is hypothesized to have several important functionalities. Most impor-
tantly, it allows to produce simulations of perceptual events in sensorimotor regions of
the brain, a central mechanism through which many cognitive functions are realized
(Barsalou, 1999; Gallese, 2003). Whereas existing computational models of embodied
simulation are restricted to a context-dependent forward simulation of sensorimotor

159

6. CONCLUSION

states (see Section 3.2.2), the presented cognitive architecture represents a model of
embodied simulation that is in a closer relationship with the way that the concept is
used in the above mentioned theories. Many cognitive functions are hypothesized to
be based on embodied simulations of distal sensorimotor situations. As one example,
it is argued that language understanding in the brain is realized through an embodied
simulation of the content of a perceived utterance (Glenberg and Gallese, 2011): Per-
son A understands person B’s utterance “the girl gives the horse an apple” by covertly
reenacting a sensorimotor situation in which person A is watching a girl give an apple
to a horse. It would be unreasonable to assume that this process is based on a forward
simulation of a sensorimotor trajectory that originates from the current sensorimotor
situation (such as imagining a girl and a horse walk into the office in which person
A is currently sitting). Instead, related to how memory retrieval is thought to work
based on schema knowledge (Bartlett, 1932), available cues (such as the words in the
utterance) are used to reconstruct a situation that matches the information, augmented
by schematic knowledge about other aspects that can be expected to match the infor-
mation (for example being at a place where one could expect to find a horse, such as
a horse stable). The process of reconstructing a distal sensorimotor situation can be
thought to be achieved analogously to how information from multiple internal models
is combined in the computational model presented in Chapter 4: Knowledge structures
(internal models, simulators or schemata) that are related to the available information
become activated and produce candidate simulations for sensorimotor regions, where
the information becomes integrated in dynamic neural fields. For example, if it is as-
sumed that the cognitive system has acquired an internal model of the appearance of
what is referred to as “horse”, it would generate unspecific activations in neural fields
across modalities. Similarly as how a kinematics transformation can encompass redun-
dant solutions (cf. Section 4.2.1), also the transformation between the linguistic label
“horse” and a visual perception encompasses abundant amounts of redundancy: Horses
can have diverse coat colors, can be tall or short, can have markings or not, can be
viewed from the front and from the side, and so on. Thus, as in the mechanism for
finding solutions to sensorimotor tasks described in Chapter 4, an embodied simula-
tion of the visual perception of a horse could likewise be based on first activating large
amounts of neurons in sensorimotor regions via top-down connections from associative
cortical regions, corresponding to activating “sets of solutions”, and then selecting a
specific simulation through a competition in dynamic neural fields (cf. Section 3.3.1).
Furthermore, if more information is available, for example that the horse is brown,
the simulation is further restricted analogously to how multiple goals in sensorimo-
tor tasks were used in this work to constrain the selection of the arm posture for a
robot. Based on the resulting embodied simulation of a distal sensorimotor situation,
the complete utterance of “the girl gives the horse an apple” could then be understood
by using forward models to simulate a sensorimotor trajectory originating from the
initially constructed simulation (cf. Glenberg and Gallese, 2011).

Thus, the cognitive architecture presented in this thesis subscribes to a view accord-
ing to which information is combined in self-organized representations, which are again

160

6.3 Discussion in Relation to Embodied Cognition and the Concept of
Schema

subject to being combined with other representations, as part of a complex network
in which more and more abstract representations are formed (first in modality-specific
associative regions, and later in regions fusing cross-modal information). Importantly,
this network of active elements of the cognitive system is not thought to be in the
form of a strict tree-like hierarchy, in which each region would be only connected to a
single higher-level region, but instead multiple regions can be connected to the same
higher-level region, and there can also be lateral connections among connected lower-
level regions. To some extent this is reflected in the simulation experiments described
in Section 4.2.3, where multiple dynamic neural fields are co-ordinated to integrate
information across representations, allowing to combine constraints that involve differ-
ent groups of neural fields (in the simulation example corresponding on the one hand
to kinematic constraints, which involve all degrees of freedom of the arm, and on the
other hand constraints for individual joints). This hints at how a schema- or frame-
like representation with slots for attributes and their values, which is hypothesized
to be the basis for knowledge organization in the human conceptual system (cf. Sec-
tions 3.1.2–3.1.3; Barsalou, 1999; Gallese and Lakoff, 2005; Rumelhart, 1984), are to
be found in the proposed architecture: Neural fields throughout the cognitive system
represent domains of values, initially in modality-specific domains (such as color, line
orientation, pitch, amplitude of force, etc.), and later on in more abstract domains
(such as an “object form” topography, see Section 3.3.1; Haxby et al., 2001). Internal
models learn about the combinatorial arrangement of input values that occurred syn-
chronously (see Sections 3.3.1, 4.3; Damasio, 1989). Given some cues or target values in
one or several domains, internal models can restore this information about what values
in other domains correspond to the given cues, in the form of activation landscapes in
the corresponding population coding neural fields (see Sections 4.2.2, 4.3.1). Together,
this structure implements the combination of slots for attributes, in the form of con-
nected neural fields, and values with their constraints, via internal models mapping
values in between neural fields. With the mechanism for co-ordinating the activation
of interconnected dynamic neural fields presented in Section 4.2.3, this suggests to un-
derstand the retrieval of information based on schematic knowledge in a similar way
as proposed by Rumelhart et al. in their global constraint satisfaction network model
(see Section 3.2.1; Rumelhart et al., 1986): Mutual constraints between values in input
domains let the system settle to a state in which as many constraints as possible are
met. While Rumelhart et al.’s model is based on a localist representation, variables
can here assume continuous values as activation peaks in the neural fields. As shown in
simulation in Section 4.2.3, each dynamic neural field separately selects a value based
on the available input constraints. As one field settles on a decision, the input to other
connected dynamic neural fields is amended and thus their respective decisions are in-
fluenced. Over time, the system settles to a state in which the decisions of the dynamic
neural fields are co-ordinated, thus “filling” the “slots” with a matching set of values.

Finally, in respect to parallels between the proposed cognitive architecture and
the concept of schema, it should also be noted that the mechanism for separating
inputs described in Chapter 5 can also be described using Piaget’s terminology of

161

6. CONCLUSION

“assimilation” and “accommodation” of schemata (Piaget, 1997 [1953]): Piaget argues
that schemata are used to reduce incoming information to the known (see Section 3.1.3).
The cognitive system tries to match, i.e. assimilate, the current situation with its schema
knowledge. Whenever a schema assimilates stimuli, it takes in this new information and
accommodates to it, for the cognitive system to stay adept to its environment. These
assumptions are also paralleled in Barsalou’s theory of perceptual symbol systems,
where he argues that simulators are used for categorization by producing embodied
simulations, which are compared with perceived stimuli (Barsalou, 1999). An analogous
process is used in the computational model presented in this thesis (see Section 5.1):
As internal models produce estimates for inputs in a form of embodied simulation,
they stand in competition against each other and are selected if they can account
sufficiently well for the available data. This process can be described as the internal
models “assimilating” input data, or inputs being categorized as Barsalou describes.
Each new data point is then used for training the respective winning internal model,
thus it is “accommodated” to the new information.

6.4 Outlook

With the methods presented in Chapters 4–5, basic functionality of the generic building
block of the architecture has been demonstrated, as it was described in Sections 3.3.1–
3.3.3. However, not all properties could be demonstrated by an implementation in
simulation experiments, which is out of the scope of this thesis. One important prop-
erty that was not covered by the presented implementations is that of self-organized
forming of topographical representations on higher hierarchical levels in the schema
system. Extending the functionality of the building blocks with this property would
allow to use representations of reduced dimensionality and to form a hierarchical net-
work structure. As one possible way to implement this property, an approach from the
literature could be adapted: Weber and Wermter have demonstrated that networks of
sigma-pi units can be trained with a SOM-like learning rule, which allows the network
to discover topographies by unsupervised learning (Weber and Wermter, 2007). Their
“Sigma-Pi SOM” is similar to the network of sigma-pi units described in this work, but
uses an additional neural field as an output layer. After training, the topographical
arrangement of neurons in this output field should reflect a topography inherent to the
input data. As an example, Weber and Wermter use the learning of a head-centric
coordinate representation: Since the same visual stimulus is located at different po-
sitions in the image depending on the current angular configuration of the neck, the
network needs to discover what pairs of input values (of angular positions and positions
in the camera image) correspond to the same head-centric location. The system can
discover this information by visually tracking an object and recording its position in
the image before and after a head movement. The input before the movement is used
to select a winning neuron in the output layer, which is then trained along with its local
neighborhood using the input after the movement. After iterating this process many
times, the topography of the output neurons corresponds to a head-centric coordinate

162

6.4 Outlook

representation.

It should however be noted that one can expect to encounter known problems of
the SOM learning rule, such as folding. Also, a Sigma-Pi SOM has positive weights for
most synaptic connections early on during training, before the majority of connections
dies out as the network settles, which however limits the network to low-dimensional
problems due to the number of synaptic connections increasing exponentially with
the number of input dimensions in networks of sigma-pi units. Similar as already
discussed in Section 4.5, this limitation could be lifted if a learning method was used
that represents the input space more efficiently. Whereas sigma-pi units have fixed
receptive fields, other learning methods allow to adapt the receptive fields of units as
needed, for example to let one unit represent larger regions of the input space where
the input data distribution is more or less uniform (e.g. D’Souza et al., 2001; Lopes
and Damas, 2007; Rasmussen, 2000).

Networks of sigma-pi units, including (Weber and Wermter, 2007)’s model, have
the nice property that they directly support the retrieval of redundant solutions. For
example, in the case of the head-centric coordinate representation that is learned by
(Weber and Wermter, 2007)’s network, clamping one neuron in the output field to a
high activity in turn produces activations in the input fields that correspond to all
pairs of inputs (head configurations and positions in the input image) that correspond
to the head-centric coordinate encoded by the clamped output neuron. This kind of
behavior is exactly that described in Section 3.3.1 for the hierarchical production of
an embodied simulation: Neural fields on higher hierarchical levels topographically
organize “simulators”, which upon activation produce candidate simulations for lower-
level fields. In the case of the head-centric coordinate representation, neurons on the
higher-level neural field correspond to simulators for different locations. Analogously,
one could imagine the output field to encode for example an object form topology.
Activating a region in this field would result in candidate simulations in lower-level
representations corresponding to the encoded object form.

The implementation of the building block described in Chapter 4 is able to retrieve
solutions to tasks as embodied simulation of sensorimotor situations in which the goal
is achieved. This is sufficient in cases where a single action can produce the simulated
situation. For example, in the case of kinematic tasks, a suitable body posture is
retrieved and can be directly effectuated by the motors. However, for the more general
case it needs to be considered that several actions can be necessary to achieve a goal. For
example, a mobile robot might need to plan several movements for reaching a goal from
its current location. Preliminary simulation results suggest that this can be achieved by
using a method of propagating activation along the sigma-pi connections, to produce a
gradient of activation that points towards the selected solution. It is then sufficient to
produce outputs along the gradient, originating from the current sensorimotor situation.
A similar method has been used by Butz et al., but instead of using a propagation along
the synaptic connections, a gradient of activation is generated in the input space, in the
case of Butz et al.’s model corresponding to arm configurations (Butz et al., 2007a).
This has the consequence that resulting trajectories are always linear in the space of arm

163

6. CONCLUSION

configurations, whereas when using the space of synaptic connections for generating the
gradient of activation, arbitrary trajectories could be generated, for example to achieve
a linear movement with the hand in Cartesian space. Toussaint has also proposed to
use a gradient of activation to plan trajectories (Toussaint, 2006). Toussaint’s model
first builds up a topographic representation of the input space using a type of growing
neural gas algorithm, and then uses the learned topographical representation for the
generation of a gradient of activation for planning trajectories. This has the additional
advantageous property that the learned representation covers the input space more
efficiently than the fixed layout of networks of sigma-pi units does.

As already discussed in Section 4.5, a representation of the input space using fewer
units is desirable, but achieving it always comes with the cost of increased learning
effort. The network of sigma-pi units that was described in this thesis is capable of
one-shot learning, and thus can rapidly be trained from input samples. In contrast,
learning a consolidated representation requires presenting inputs many times, to itera-
tively adapt the representation to the statistics of input values. A possibility to benefit
both from one-shot learning as well as from a more efficient representation would be
to combine both learning methods: As for example suggested by Gläser, rapid one-
shot learning could first be used to store samples during online operation in short-term
memory, and subsequently a more efficient representation could be trained by using the
short-term memory model to produce many training samples for the slow learning of a
consolidated representation (Gläser, 2012, pp. 63–64).

A complete implementation of the proposed cognitive architecture, including the
extensions to the implementation of the building block that were just outlined, could
be used in more complex scenarios, and would allow to study interesting properties
of the cognitive system, as well as to test hypotheses from other disciplines about
the function of embodied simulation. A first scenario that would be easily tractable
is the example described in Section 3.3.3 of an agent that can reason about object
properties by means of embodied simulation. And since the representational format in
the cognitive architecture is compatible with theories of embodied simulation and the
concept of schema, it also provides the necessary means to study social interaction and
the understanding of the actions of others through embodied simulation, as outlined in
Section 3.1.4. On the long run, it will be inevitable to study complete cognitive systems
such as the cognitive architecture described in this thesis, instead of only studying small
learning systems separately, to answer the question of how to build truly autonomous
cognitive robots.

164

References

J.S. Albus, H.G. McCain, and R. Lumia. NASA/NBS standard reference model for
telerobot control system architecture (NASREM). Technical report, National Insti-
tute of Standards and Technology, Gaithersburg, MD, 1989. 18

Shun-ichi Amari. Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics, 27(2):77–87, 1977. 30, 31, 103, 107, 153

Shun-Ichi Amari. Topographic organization of nerve fields. Bulletin of Mathematical
Biology, 42(3):339–364, 1980. 36

J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An
integrated theory of the mind. Psychological Review, 111(4):1036–1060, 2004. 15, 16

J.R. Anderson and C.J. Lebiere. The atomic components of thought. Lawrence Erlbaum,
1998. 15

Michael A. Arbib. Schema theory. In The handbook of brain theory and neural networks,
pages 993–998. MIT Press, 1998. 67, 68, 69, 73, 75

Ronald Arkin. Behavior-based robotics. MIT Press, Cambridge Mass., 1998. 68

Ronald C. Arkin. Motor schema-based mobile robot navigation. The International
Journal of Robotics Research, 8(4):92–112, August 1989. 22, 96

Minoru Asada, Karl F. MacDorman, Hiroshi Ishiguro, and Yasuo Kuniyoshi. Cogni-
tive developmental robotics as a new paradigm for the design of humanoid robots.
Robotics and Autonomous Systems, 37(2–3):185–193, November 2001. 3, 7

Bernard J. Baars. The conscious access hypothesis: origins and recent evidence. Trends
in Cognitive Sciences, 6(1):47–52, January 2002. 38

Louise Barrett, Peter Henzi, and Drew Rendall. Social brains, simple minds: does
social complexity really require cognitive complexity? Philosophical Transactions of
the Royal Society B: Biological Sciences, 362(1480):561–575, April 2007. 54

L. W. Barsalou. Perceptual symbol systems. Behavioral and Brain Sciences, 22(04):
577–660, 1999. 21, 46, 48, 52, 53, 55, 57, 59, 60, 61, 62, 66, 73, 75, 76, 78, 88, 152,
156, 159, 161, 162

165

REFERENCES

Lawrence W. Barsalou. Grounded cognition. Annual Review of Psychology, 59(1):
617–645, January 2008. 21, 46, 61, 75

Lawrence W Barsalou, Cynthia Breazeal, and Linda B Smith. Cognition as coordinated
non-cognition. Cognitive Processing, 8(2):79–91, June 2007. 29

F. C. Bartlett. Remembering. Oxford University Press, Oxford, England, 1932. 55, 56,
57, 58, 60, 62, 63, 73, 75, 156, 160

Randall D. Beer. A dynamical systems perspective on agent-environment interaction.
Artificial Intelligence, 72(1–2):173–215, January 1995. 29

Randall D. Beer. Dynamical approaches to cognitive science. Trends in Cognitive
Sciences, 4(3):91–99, March 2000. 21, 29, 46

Randall D. Beer. The dynamics of active categorical perception in an evolved model
agent. Adaptive Behavior, 11(4):209 –243, December 2003. 29, 48

Estela Bicho, Lúıs Louro, and Wolfram Erlhagen. Integrating verbal and nonverbal
communication in a dynamic neural field architecture for Human–Robot interaction.
Frontiers in Neurorobotics, 4(5), 2010. 36, 37

Jeffrey J. Biesiadecki, P. Chris Leger, and Mark W. Maimone. Tradeoffs between
directed and autonomous driving on the mars exploration rovers. The International
Journal of Robotics Research, 26(1):91–104, January 2007. 7

C.M. Bishop. Pattern recognition and machine learning, volume 4. Springer, New York,
2006. 25

R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller,
and Mark G. Slack. Experiences with an architecture for intelligent, reactive agents.
Journal of Experimental & Theoretical Artificial Intelligence, 9(2-3):237–256, 1997.
18, 19

Botvinick and David C Plaut. Doing without schema hierarchies: A recurrent con-
nectionist approach to normal and impaired routine sequential action. Psychological
review, 111:395—429, 2004. 25, 43

W. F. Brewer and G. V. Nakamura. The nature and functions of schemas. Handbook
of social cognition, 1:119–160, 1984. 66

Korbinian Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren
Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag,
Leipzig, Germany, 1909. 10

R. Brooks. A robust layered control system for a mobile robot. IEEE journal of robotics
and automation, 2(1):14–23, 1986. 21, 22, 92, 95, 96

166

REFERENCES

R. A. Brooks. How to build complete creatures rather than isolated cognitive simulators.
In Architectures for intelligence: the twenty-second Carnegie Mellon Symposium on
Cognition, page 225–239, 1991a. 21

Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1–3):
139–159, January 1991b. 20

Martin V. Butz, Olivier Sigaud, and Pierre Gérard. Anticipatory behavior: Exploiting
knowledge about the future to improve current behavior. In Martin V. Butz, Olivier
Sigaud, and Pierre Gérard, editors, Anticipatory Behavior in Adaptive Learning Sys-
tems, number 2684 in Lecture Notes in Computer Science, pages 1–10. Springer
Berlin Heidelberg, January 2003. 71

Martin V. Butz, Oliver Herbort, and Joachim Hoffmann. Exploiting redundancy for
flexible behavior: Unsupervised learning in a modular sensorimotor control architec-
ture. Psychological Review, 114(4):1015–1046, 2007a. 114, 115, 133, 163

Martin V. Butz, Olivier Sigaud, Giovanni Pezzulo, and Gianluca Baldassarre. An-
ticipations, brains, individual and social behavior: An introduction to anticipatory
systems. In Martin V. Butz, Olivier Sigaud, Giovanni Pezzulo, and Gianluca Baldas-
sarre, editors, Anticipatory Behavior in Adaptive Learning Systems, number 4520 in
Lecture Notes in Computer Science, pages 1–18. Springer Berlin Heidelberg, January
2007b. 71, 73

Linda L. Chao and Alex Martin. Representation of manipulable man-made objects in
the dorsal stream. NeuroImage, 12(4):478–484, October 2000. 48

Wayne Christensen. Self-directedness: A process approach to cognition. Axiomathes,
14(1):157–175, 2004. 19, 20, 41

A. Clark. Local associations and global reason: Fodor’s frame problem and second-order
search. Cognitive Science Quarterly, 2(1), 2002. 20, 41

Andy Clark. The dynamical challenge. Cognitive Science, 21(4):461–481, October 1997.
29, 46

Andy Clark. Mindware : an introduction to the philosophy of cognitive science. Oxford
University Press, New York, 2001. 12, 21, 25

Jefferson A. Coelho and Roderic A. Grupen. A control basis for learning multifingered
grasps. Journal of Robotic Systems, 14(7):545–557, 1997. 70

Stephen Coombes. Neural fields. Scholarpedia, 1(6):1373, 2006. 30

R. Cooper and T. Shallice. Contention scheduling and the control of routine activities.
Cognitive Neuropsychology, 17(4):297–338, 2000. 25, 66, 67

R. P Cooper and T. Shallice. Hierarchical schemas and goals in the control of sequential
behavior. Psychological review, 113(4):887–916, 2006. 66

167

REFERENCES

Antonio Damasio and Kaspar Meyer. Behind the looking-glass. Nature, 454(7201):
167–168, July 2008. 61

Antonio R. Damasio. Time-locked multiregional retroactivation: A systems-level pro-
posal for the neural substrates of recall and recognition. Cognition, 33(1-2):25–62,
November 1989. 48, 49, 50, 52, 57, 61, 62, 73, 75, 80, 155, 161

J. Decety, D. Perani, M. Jeannerod, V. Bettinardi, B. Tadary, R. Woods, J. C. Mazz-
iotta, and F. Fazio. Mapping motor representations with positron emission tomog-
raphy. Nature, 371(6498):600–602, 1994. 48

Jean Decety, Marc Jeannerod, and Claude Prablanc. The timing of mentally repre-
sented actions. Behavioural Brain Research, 34(1–2):35–42, August 1989. 48

S. Deneve, P. E. Latham, and A. Pouget. Efficient computation and cue integration
with noisy population codes. Nature Neuroscience, 4(8):826–831, August 2001. 80,
104

Gary Drescher. Made-up minds : a constructivist approach to artificial intelligence.
MIT Press, Cambridge Mass., 1991. 64

Hubert L. Dreyfus. What computers can’t do: a critique of artificial reason. Harper &
Row, 1972. 20

Hubert L. Dreyfus. Why heideggerian AI failed and how fixing it would require making
it more heideggerian. Philosophical Psychology, 20(2):247–268, 2007. 20, 21

N. F. Dronkers, O. Plaisant, M. T. Iba-Zizen, and E. A. Cabanis. Paul broca’s historic
cases: high resolution MR imaging of the brains of leborgne and lelong. Brain, 130
(5):1432–1441, May 2007. 12

A. D’Souza, S. Vijayakumar, and S. Schaal. Learning inverse kinematics. In 2001
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. Pro-
ceedings, volume 1, pages 298–303 vol.1. IEEE, 2001. 25, 53, 93, 112, 134, 163

Gerald M. Edelman. Neural Darwinism: the theory of neuronal group selection. Basic
Books, New York, 1987. 115

Chris Eliasmith. The third contender: A critical examination of the dynamicist theory
of cognition. Philosophical Psychology, 9(4):441–463, 1996. 29

Jeffrey L. Elman. Distributed representations, simple recurrent networks, and gram-
matical structure. Machine Learning, 7(2):195–225, 1991. 25

W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll, H. van Schie, and
H. Bekkering. Goal-directed imitation for robots: A bio-inspired approach to action
understanding and skill learning. Robotics and Autonomous Systems, 54(5):353–360,
May 2006. 36, 37, 41

168

REFERENCES

Wolfram Erlhagen and Estela Bicho. Dynamic field theory (DFT): applications in
cognitive science and robotics. White paper for the euCognition network, University
of Minho, Portugal, 2009. 29

Wolfram Erlhagen and Gregor Schöner. Dynamic field theory of movement preparation.
Psychological Review, 109(3):545–572, 2002. 30, 31, 33, 34, 61, 75, 103, 156

Paul Fitzpatrick and Artur Arsenio. Feel the beat: using cross-modal rhythm to in-
tegrate perception of objects, others, and self. In Proceedings of the Fourth In-
ternational Workshop on Epigenetic Robotics, Genoa, Italy, 2004. Lund University
Cognitive Studies. 147

Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived robot genes.
Robotics and Autonomous Systems, 56(1):29–45, January 2008. 18

Jason G. Fleischer and Jeffrey L. Krichmar. Sensory integration and remapping in a
model of the medial temporal lobe during maze navigation by a brain-based device.
Journal of Integrative Neuroscience, 06(03):403–431, September 2007. 25

Jerry A. Fodor. Modularity of Mind. MIT Press, Cambridge, Mass., 1983. 11, 15

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cog-
nitive Sciences, 3(4):128–135, April 1999. 26

Karl Friston, James Kilner, and Lee Harrison. A free energy principle for the brain.
Journal of Physiology-Paris, 100(1–3):70–87, July 2006. 141

Jannik Fritsch and Sebastian Wrede. An integration framework for developing in-
teractive robots. In Davide Brugali, editor, Software Engineering for Experimental
Robotics, volume 30 of Springer Tracts in Advanced Robotics, pages 291–305. Springer
Berlin / Heidelberg, 2007. 18

Joaqúın M. Fuster. Cortex and memory: Emergence of a new paradigm. Journal of
Cognitive Neuroscience, 21(11):2047–2072, November 2009. 75

Vittorio Gallese. The manifold nature of interpersonal relations: the quest for a common
mechanism. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, 358(1431):517–528, March 2003. 55, 61, 89, 156, 159

Vittorio Gallese. Embodied simulation: From neurons to phenomenal experience. Phe-
nomenology and the Cognitive Sciences, 4(1):23–48, March 2005. 46

Vittorio Gallese. Mirror neurons and the social nature of language: The neural ex-
ploitation hypothesis. Social Neuroscience, 3:317–333, September 2008. 61, 77

Vittorio Gallese and George Lakoff. The brain’s concepts: the role of the sensory-motor
system in conceptual knowledge. Cognitive Neuropsychology, 22(3):455, 2005. 48, 55,
61, 66, 75, 88, 156, 161

169

REFERENCES

Vittorio Gallese and Thomas Metzinger. Motor ontology: the representational reality
of goals, actions and selves. Philosophical Psychology, 16(3):365–388, 2003. 82

Vittorio Gallese, Luciano Fadiga, Leonardo Fogassi, and Giacomo Rizzolatti. Action
recognition in the premotor cortex. Brain, 119(2):593 –609, April 1996. 55

Bjorn Peter Gardenfors. Conceptual Spaces: The Geometry of Thought. MIT Press,
2004. 27

C. Gaskett and G. Cheng. Online learning of a motor map for humanoid robot reach-
ing. In Proc. 2nd Int. Conf. Computational Intelligence, Robotics and Autonomous
Systems, 2003. 147

A. Gepperth, J. Fritsch, and C. Goerick. Cross-module learning as a first step towards a
cognitive system concept. In Proceedings of the International Conference on Cognitive
Systems, Karlsruhe, Germany, 2008. 80

JJ Gibson. The concept of affordances. Perceiving, acting, and knowing, page 67–82,
1977. 20

M. Gienger, H. Janssen, and C. Goerick. Task-oriented whole body motion for hu-
manoid robots. In 2005 5th IEEE-RAS International Conference on Humanoid
Robots, pages 238–244. IEEE, December 2005. 95, 98

Michael Gienger, Marc Toussaint, and Christian Goerick. Whole-body motion planning
– building blocks for intelligent systems. In Kensuke Harada, Eiichi Yoshida, and
Kazuhito Yokoi, editors, Motion Planning for Humanoid Robots. Springer, 2010. 95

Arthur M. Glenberg and Vittorio Gallese. Action-based language: A theory of language
acquisition, comprehension, and production. Cortex, 2011. 61, 160

C. Gläser, F. Joublin, and C. Goerick. Learning and use of sensorimotor schemata
maps. In IEEE 8th International Conference on Development and Learning, pages
1–8, 2009. 36, 69

Claudius Gläser. Making sense of words through the eyes of a child : a computational
framework for the acquisition of world meanings. PhD thesis, Bielefeld University,
2012. 36, 40, 133, 134, 164

Claudius Gläser, Frank Joublin, and Christian Goerick. Enhancing topology preser-
vation during neural field development via wiring length minimization. In Véra
Kůrková, Roman Neruda, and Jan Koutńık, editors, Artificial Neural Networks, vol-
ume 5163, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. 104, 133

Kevin Gold and Brian Scassellati. Using probabilistic reasoning over time to self-
recognize. Robotics and Autonomous Systems, 57(4):384–392, April 2009. 147

P S Goldman-Rakic. Topography of cognition: Parallel distributed networks in primate
association cortex. Annual Review of Neuroscience, 11(1):137–156, 1988. 11

170

REFERENCES

Melvyn A. Goodale and A.David Milner. Separate visual pathways for perception and
action. Trends in Neurosciences, 15(1):20–25, January 1992. 10

Henry Gray. Anatomy of the human body. Lea & Febiger, Philadelphia, 1918. 9

Michael S.A Graziano, Charlotte S.R Taylor, and Tirin Moore. Complex movements
evoked by microstimulation of precentral cortex. Neuron, 34(5):841–851, May 2002.
77

Thomas L. Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B. Tenen-
baum. Probabilistic models of cognition: exploring representations and inductive
biases. Trends in Cognitive Sciences, 14(8):357–364, August 2010. 13

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42
(1–3):335–346, June 1990. 12

S. Hart and R. Grupen. Learning generalizable control programs. Autonomous Mental
Development, IEEE Transactions on, PP(99):1, 2011. 70, 71

S. Hart, S. Sen, and R. Grupen. Intrinsically motivated hierarchical manipulation. In
IEEE International Conference on Robotics and Automation 2008, pages 3814–3819,
2008a. 70

S. Hart, S. Sen, and R. Grupen. Generalization and transfer in robot control. In
Proceedings of the 8th International Conference on Epigenetic Robotics, 2008b. 70,
71

Masahiko Haruno, Daniel M. Wolpert, and Mitsuo Kawato. MOSAIC model for senso-
rimotor learning and control. Neural Computation, 13(10):2201–2220, October 2001.
72

J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini.
Distributed and overlapping representations of faces and objects in ventral temporal
cortex. Science, 293(5539):2425–2430, September 2001. 78, 80, 161

Henry Head and Gordon Holmes. Sensory disturbances from cerebral lesions. Brain,
34(2-3):102–254, 1911. 55, 56, 58, 60

Nikolas J. Hemion, Frank Joublin, and Katharina J. Rohlfing. A competitive mechanism
for self-organized learning of sensorimotor mappings. In Proceedings of the IEEE
International Conference on Development and Learning (ICDL), Frankfurt am Main,
August 2011. IEEE. 136

Nikolas J. Hemion, Frank Joublin, and Katharina J. Rohlfing. Integration of sensori-
motor mappings by making use of redundancies. In Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI), Brisbane, Australia, June 2012.
IEEE. 92

171

REFERENCES

Oliver Herbort and Martin V. Butz. Too good to be true? ideomotor theory from a
computational perspective. Frontiers in Cognition, 3:494, 2012. 82

Oliver Herbort, Martin Butz, and Gerulf Pedersen. The SURE REACH model for
motor learning and control of a redundant arm: From modeling human behavior
to applications in robotics. In Olivier Sigaud and Jan Peters, editors, From Motor
Learning to Interaction Learning in Robots, volume 264 of Studies in Computational
Intelligence, pages 85–106. Springer Berlin / Heidelberg, 2010. 25, 114, 133

Germund Hesslow. Conscious thought as simulation of behaviour and perception.
Trends in Cognitive Sciences, 6(6):242–247, June 2002. 71

Gregory Hickok and David Poeppel. The cortical organization of speech processing.
Nature Reviews Neuroscience, 8(5):393–402, May 2007. 11

Geoffrey E. Hinton and Terrence J. Sejnowski. Learning and relearning in boltzmann
machines. In David E. Rumelhart and James L. McClelland, editors, Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foun-
dations, pages 282–317. MIT Press, Cambridge, MA, USA, 1986. 64

H. Hoffmann and R. Möller. Action selection and mental transformation based on a
chain of forward models. In From animals to animats 8: Proceedings of the Interna-
tional Conference on Simulation of Adaptive Behavior, page 213, 2004. 71, 72

M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella, and R. Pfeifer. Body
schema in robotics: A review. Autonomous Mental Development, IEEE Transactions
on, 2(4):304–324, 2010. 147

Andrew Howes and Richard M. Young. The role of cognitive architecture in model-
ing the user: Soar’s learning mechanism. Hum.-Comput. Interact., 12(4):311–343,
December 1997. 7

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154.2,
January 1962. 80

Manfred Huber. A hybrid architecture for adaptive robot control. PhD thesis, University
of Massachusetts Amherst, 2000. 70

Manfred Huber and Roderic A. Grupen. Learning to coordinate controllers - reinforce-
ment learning on a control basis. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, Nagoya, Japan, 1997. 70

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes
for learning motor primitives. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems, volume 15, page 1523–1530.
MIT Press, Cambridge, MA, 2003. 98

172

REFERENCES

Jeffrey S. Johnson, John P. Spencer, and Gregor Schöner. Moving to higher ground: The
dynamic field theory and the dynamics of visual cognition. New Ideas in Psychology,
26(2):227–251, August 2008. 30, 36, 61, 75

Mark Johnson. The Body in the Mind. The University of Chicago Press, Chicago, 1987.
60

Michael I Jordan and David E Rumelhart. Forward models: Supervised learning with
a distal teacher. Cognitive Science, 16(3):307–354, July 1992. 25, 53, 93, 98, 112,
113

Immanuel Kant. Critik der reinen Vernunft. Hartknoch, Riga, 1781. 55

Mitsuo Kawato. Internal models for motor control and trajectory planning. Current
Opinion in Neurobiology, 9(6):718–727, December 1999. 54

Charles C. Kemp and Aaron Edsinger. What can i control? a framework for robot
self-discovery. In Proceedings of the Sixth International Conference on Epigenetic
Robotics, Paris, France, 2006. 147

Stefan J. Kiebel, Jean Daunizeau, and Karl J. Friston. A hierarchy of time-scales and
the brain. PLoS Comput Biol, 4(11), November 2008. 141

D. Klahr. Computational models of cognitive change: the state of the art. Developing
cognitive competence: New approaches to process modeling, pages 355–373, 1995. 59

E. Kohler, C. Keysers, M.A. Umiltà, L. Fogassi, V. Gallese, and G. Rizzolatti. Hearing
sounds, understanding actions: Action representation in mirror neurons. Science,
297(5582):846–848, August 2002. 55

Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43(1):59–69, 1982. 27

Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for
mobile robot navigation. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1398 –1404 vol.2, April 1991. 23

P. Kormushev, S. Calinon, R. Saegusa, and G. Metta. Learning the skill of archery by
a humanoid robot iCub. In 10th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 417–423, 2010. 98

David Kortenkamp and Reid Simmons. Robotic systems architectures and program-
ming. In Bruno Siciliano and Oussama Khatib, editors, Springer Handbook of
Robotics, pages 187–206. Springer Berlin Heidelberg, 2008. 18, 23

Jeffrey L. Krichmar and Gerald M. Edelman. Machine psychology: Autonomous be-
havior, perceptual categorization and conditioning in a brain-based device. Cerebral
Cortex, 12(8):818–830, August 2002. 25, 26

173

REFERENCES

Jeffrey L. Krichmar and Gerald M. Edelman. Brain-based devices for the study of
nervous systems and the development of intelligent machines. Artificial Life, 11
(1-2):63–77, January 2005. 25

John E. Laird. Extending the soar cognitive architecture. In Proceeding of the 2008
conference on Artificial General Intelligence, pages 224–235. IOS Press, 2008. 15

John E. Laird. The Soar Cognitive Architecture. MIT Press, April 2012. 15

John E. Laird and Paul S. Rosenbloom. The evolution of the soar cognitive architecture.
In David Steier, Tom M. Mitchell, and Allen Newell, editors, Mind matters: A tribute
to Allen Newell, pages 1—50. Lawrence Erlbaum Associates, Mahwah, NJ, 1996. 14

John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: an architecture for
general intelligence. Artificial Intelligence, 33(1):1–64, September 1987. 7, 14

George Lakoff. Women, Fire, and Dangerous Things. The University of Chicago Press,
Chicago, 1987. 60

George Lakoff and Mark Johnson. Metaphors We Live By. The University of Chicago
Press, Chicago, 1980. 60

Pat Langley, John E. Laird, and Seth Rogers. Cognitive architectures: Research issues
and challenges. Cognitive Systems Research, 10(2):141–160, June 2009. 14

Jill Fain Lehman, John Laird, and Paul Rosenbloom. A gentle introduction to soar, an
architecture for human cognition. Invitation to Cognitive Science, 4, 1996. 7, 14

Ping Li, Igor Farkas, and Brian MacWhinney. Early lexical development in a self-
organizing neural network. Neural Networks, 17(8–9):1345–1362, October 2004. 36

Alain Liégeois. Automatic supervisory control of the configuration and behavior of
multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics, 7
(12):868–871, December 1977. 98

M. Lopes and B. Damas. A learning framework for generic sensory-motor maps. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, pages 1533–1538, San Diego, USA, 2007. IEEE. 112, 134, 163

Karl F. MacDorman. Grounding symbols through sensorimotor integration. Journal
of the Robotics Society of Japan, 17:20–24, 1999. 20, 41

T. V Maia and A. Cleeremans. Consciousness: Converging insights from connectionist
modeling and neuroscience. Trends in Cognitive Sciences, 9(8):397–404, 2005. 67

Jean M. Mandler. How to build a baby: II. conceptual primitives. Psychological Review,
99(4):587–604, 1992. 59, 60, 141

174

REFERENCES

D. Marr and T. Poggio. From understanding computation to understanding neural
circuitry. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, May 1976. 13

J. L. McClelland and D. E Rumelhart. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Vol. 2: Psychological and Biological Models. MIT
Press, 1986. 24

James L. McClelland and Timothy T. Rogers. The parallel distributed processing
approach to semantic cognition. Nature Reviews Neuroscience, 4(4):310–322, April
2003. 25

James L. McClelland, Matthew M. Botvinick, David C. Noelle, David C. Plaut, Timo-
thy T. Rogers, Mark S. Seidenberg, and Linda B. Smith. Letting structure emerge:
connectionist and dynamical systems approaches to cognition. Trends in Cognitive
Sciences, 14(8):348–356, August 2010. 21, 29, 61

Jeffrey L. McKinstry, Gerald M. Edelman, and Jeffrey L. Krichmar. A cerebellar
model for predictive motor control tested in a brain-based device. Proceedings of the
National Academy of Sciences of the United States of America, 103(9):3387–3392,
February 2006. 25

David A. Medler. A brief history of connectionism. Neural Computing Surveys, 1(2):
18—72, 1998. 24

Biren Mehta and Stefan Schaal. Forward models in visuomotor control. Journal of
Neurophysiology, 88(2):942–953, August 2002. 71

Bartlett W. Mel and Christof Koch. Sigma-pi learning: On radial basis functions and
cortical associative learning. Advances in Neural Information Processing Systems, 2:
474–481, 1989. 114, 122, 132

Laurie von Melchner, Sarah L. Pallas, and Mriganka Sur. Visual behaviour mediated
by retinal projections directed to the auditory pathway. Nature, 404(6780):871–876,
April 2000. 4, 75

M. M. Mesulam. From sensation to cognition. Brain, 121(6):1013–1052, June 1998. 10

G. Metta, G. Sandini, and J. Konczak. A developmental approach to visually-guided
reaching in artificial systems. Neural Networks, 12(10):1413–1427, December 1999.
28, 147

Kaspar Meyer and Antonio Damasio. Convergence and divergence in a neural archi-
tecture for recognition and memory. Trends in Neurosciences, 32(7):376–382, July
2009. 48, 50, 51, 75

George A Miller. The cognitive revolution: a historical perspective. Trends in Cognitive
Sciences, 7(3):141–144, March 2003. 3

175

REFERENCES

Marvin Minsky. A framework for representing knowledge. In P. H. Winston, editor,
The Psychology of Computer Vision, pages 211–277. McGraw-Hill, 1974. 20, 52, 53,
55, 58, 63, 64, 66

Mortimer Mishkin and Leslie G. Ungerleider. Contribution of striate inputs to the
visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain
Research, 6(1):57–77, September 1982. 10

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learning object affor-
dances: From sensory–motor coordination to imitation. Robotics, IEEE Transactions
on, 24(1):15–26, 2008. 98

Hans Moravec. Mind Children: The Future of Robot and Human Intelligence. Harvard
University Press, 1988. 2

A.F. Morse, J. de Greeff, T. Belpeame, and A. Cangelosi. Epigenetic robotics archi-
tecture (ERA). Autonomous Mental Development, IEEE Transactions on, 2(4):325
–339, December 2010. 26, 27, 28, 36, 88, 158

V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120(4):701–722,
April 1997. 4, 75

R. Möller. Perception through Anticipation—A behaviour-based approach to visual
perception. Understanding Representation in the Cognitive Sciences: Does Repre-
sentation Need Reality?, page 169, 1999. 71, 73

Katharina Mülling, Jens Kober, and Jan Peters. A biomimetic approach to robot table
tennis. Adaptive Behavior, 19(5):359 –376, October 2011. 98

Allen Newell and Herbert A. Simon. Computer science as empirical inquiry: symbols
and search. Commun. ACM, 19(3):113–126, March 1976. 12

Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey. Cog-
nitive Processing, 12(4):319–340, 2011. 91, 93

Nils J. Nilsson. A mobile automaton: An application of artificial intelligence techniques.
In Proceedings of the International Joint Conference on Artificial Intelligene, pages
509—520, Washington, D.C., 1969. 1, 17

Stefano Nolfi and Dario Floreano. Evolutionary robotics : the biology, intelligence, and
technology of self-organizing machines. MIT Press, Cambridge, Mass., 2000. 92

A. Nuxoll and J. E Laird. A cognitive model of episodic memory integrated with a
general cognitive architecture. In International Conference on Cognitive Modeling,
page 220–225, 2004. 14

Dennis D. M. O’Leary. Do cortical areas emerge from a protocortex? Trends in
Neurosciences, 12(10):400–406, 1989. 4, 75

176

REFERENCES

Anders Orebäck and Henrik I. Christensen. Evaluation of architectures for mobile
robotics. Autonomous Robots, 14(1):33–49, 2003. 18

Erhan Oztop and Michael A. Arbib. Schema design and implementation of the grasp-
related mirror neuron system. Biological Cybernetics, 87(2):116–140, 2002. 68, 69

G. Pezzulo and G. Calvi. Toward a perceptual symbol system. In Proceedings of the
Sixth International Conference on Epigenetic Robotics, volume 118, 2006a. 69

G. Pezzulo and G. Calvi. A schema based model of the praying mantis. In From
Animals to Animats 9, volume 4095 of Lecture Notes in Computer Science, pages
211–223. Springer, Berlin, Heidelberg, 2006b. 69

Giovanni Pezzulo and Gianguglielmo Calvi. Schema-based design and the AKIRA
schema language: An overview. In Anticipatory Behavior in Adaptive Learning Sys-
tems, number 4520 in Lecture Notes in Computer Science, pages 128–152. Springer
Berlin Heidelberg, 2007. 69, 73

Giovanni Pezzulo, Dimitri Ognibene, Gianguglielmo Calvi, and Daniela Lalia. Fuzzy-
based schema mechanisms in AKIRA. In Proceedings of the International Conference
on Computational Intelligence for Modelling, Control and Automation and Interna-
tional Conference on Intelligent Agents, Web Technologies and Internet Commerce
Vol-2 (CIMCA-IAWTIC’06) - Volume 02, pages 146–152. IEEE Computer Society,
2005. 69, 97

Giovanni Pezzulo, Gianluca Baldassarre, Martin V. Butz, Cristiano Castelfranchi, and
Joachim Hoffmann. From actions to goals and vice-versa: Theoretical analysis and
models of the ideomotor principle and TOTE. In Martin V. Butz, Olivier Sigaud,
Giovanni Pezzulo, and Gianluca Baldassarre, editors, Anticipatory Behavior in Adap-
tive Learning Systems, number 4520 in Lecture Notes in Computer Science, pages
73–93. Springer Berlin Heidelberg, January 2007. 73

R. Pfeifer and C. Scheier. From perception to action: the right direction? In From
Perception to Action Conference, 1994., Proceedings, pages 1 – 11, September 1994.
20, 21, 60, 92

Rolf Pfeifer and Christian Scheier. Understanding Intelligence. MIT Press, 2001. 46

Jean Piaget. The origin of intelligence in the child. Routledge, London; New York,
reprint of the 1953 edition, 1997 [1953]. 34, 58, 59, 62, 64, 65, 70, 71, 75, 80, 153,
156, 161, 162

Robi Polikar. Ensemble learning. Scholarpedia, 4(1):2776, 2009. 157

Willibald Pschyrembel and Otto Dornblüth. Klinisches Wörterbuch mit klinischen
Syndromen. de Gruyter, Berlin ; New York, 252., durchges. u. verb. aufl edition,
1975. 133

177

REFERENCES

Friedemann Pulvermüller. Brain mechanisms linking language and action. Nat Rev
Neurosci, 6(7):576–582, July 2005. 47, 48

Zenon W. Pylyshyn. Computation and Cognition. MIT Press, February 1986. 12

Carl Edward Rasmussen. The infinite gaussian mixture model. In Advances in Neural
Information Processing Systems, volume 12, pages 554–560, Denver, Colorado, USA,
2000. MIT Press. 134, 163

Rene Felix Reinhart and Jochen Jakob Steil. Neural learning and dynamical selec-
tion of redundant solutions for inverse kinematic control. In 2011 11th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), pages 564–569. IEEE,
October 2011. 112, 114

R.F. Reinhart and J.J. Steil. Reaching movement generation with a recurrent neural
network based on learning inverse kinematics for the humanoid robot iCub. In 9th
IEEE-RAS International Conference on Humanoid Robots, 2009. Humanoids 2009,
pages 323 –330, December 2009. 25

Giacomo Rizzolatti and Maddalena Destro. Mirror neurons. Scholarpedia, 3(1):2055,
2008. 55

M. Rolf, J.J. Steil, and M. Gienger. Goal babbling permits direct learning of inverse
kinematics. Autonomous Mental Development, IEEE Transactions on, 2(3):216–229,
2010. 98, 99, 112

Matthias Rolf. Goal Babbling for an Efficient Bootstrapping of Inverse Models in High
Dimensions. Doctoral thesis, Faculty of Technology, Bielefeld University, Bielefeld,
Germany, 2012. 147

Frank Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain
mechanisms. Spartan Books, 1962. 24

Julio K. Rosenblatt. DAMN: a distributed architecture for mobile navigation. Journal
of Experimental & Theoretical Artificial Intelligence, 9(2-3):339–360, 1997. 96, 97

D. E. Rumelhart. Schemata and the cognitive system. In Handbook of social cognition,
volume 1, pages 161–188. Lawrence Erlbaum Associates, 1984. 64, 66, 88, 161

D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Vol. 1: Foundations. MIT Press, 1986. 24, 114,
117

D. E. Rumelhart and P. M. Todd. Learning and connectionist representations. Attention
and performance XIV: Synergies in experimental psychology, artificial intelligence,
and cognitive neuroscience, pages 3–30, 1993. 24, 25

178

REFERENCES

D. E. Rumelhart, P. Smolensky, J. L. McClelland, and G. E. Hinton. Schemata and
sequential thought processes in PDP models. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 2: Psychological and Biological
Models, page 7–57. MIT Press, Cambridge, MA, USA, 1986. 64, 65, 66, 67, 80, 161

A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft Computing,
1(4):180–197, December 1997. 97

A. Safiotti. Fuzzy logic in autonomous robotics: behavior coordination. In Proceedings
of the Sixth IEEE International Conference on Fuzzy Systems, volume 1, pages 573–
578, 1997. 69

Antonio Sala, Thierry Marie Guerra, and Robert Babuška. Perspectives of fuzzy sys-
tems and control. Fuzzy Sets and Systems, 156(3):432–444, December 2005. 69,
97

Y. Sandamirskaya, M. Richter, and G. Schoner. A neural-dynamic architecture for be-
havioral organization of an embodied agent. In 2011 IEEE International Conference
on Development and Learning (ICDL), volume 2, pages 1 –7, August 2011. 37, 38

Yulia Sandamirskaya and Gregor Schöner. An embodied account of serial order: How
instabilities drive sequence generation. Neural Networks, 23(10):1164–1179, Decem-
ber 2010. 36

J. W. Scannell, C. Blakemore, and M. P. Young. Analysis of connectivity in the cat
cerebral cortex. The Journal of Neuroscience, 15(2):1463–1483, February 1995. 10

Roger C. Schank. Conceptual dependency: A theory of natural language understanding.
Cognitive Psychology, 3(4):552–631, October 1972. 63

Roger C. Schank and Robert P. Abelson. Scripts, Plans, Goals, and Understanding: An
Inquiry Into Human Knowledge Structures. Artificial Intelligence Series. Lawrence
Erlbaum Associates, Hillsdale, NJ, July 1977. 63, 64, 66

W. Schenck, H. Hasenbein, and R. Möller. Detecting affordances by mental imagery.
In Alessandro Di Nuovo, Vivian M. De La Cruz, and Davide Marocco, editors, Pro-
ceedings of the Workshop on Artificial Mental Imagery in Cognitive Systems and
Robotics, pages 15–18, Odense, Denmark, 2012. University of Plymouth Press. 72

Gerald E. Schneider. Two visual systems. Science, 163(3870):895–902, February 1969.
10

Gregor Schöner, Klaus Kopecz, Wolfram Erlhagen, Pietro Morasso, and Vittorio San-
guineti. The dynamic neural field theory of motor programming: Arm and eye
movements. In Self-organization, Computational Maps, and Motor Control, volume
Volume 119, pages 271–310. North-Holland, 1997. 30, 31, 32, 61

179

REFERENCES

John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(03):
417–424, 1980. 12

M. Shanahan. A cognitive architecture that combines internal simulation with a global
workspace. Consciousness and Cognition, 15(2):433–449, 2006. 38, 39, 46, 71, 73, 96

M. Shanahan and D. Connor. Modeling the neural basis of cognitive integration and
consciousness. Artificial Life, 11:553, 2008. 38

Murray Shanahan. A spiking neuron model of cortical broadcast and competition.
Consciousness and Cognition, 17(1):288–303, March 2008. 38, 39

Murray Shanahan. The brain’s connective core and its role in animal cognition. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 367(1603):2704–
2714, October 2012. 38

Murray Shanahan and Bernard Baars. Applying global workspace theory to the frame
problem. Cognition, 98(2):157–176, December 2005. 38

W. Kyle Simmons and Lawrence W. Barsalou. The similarity-in-topography principle:
Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20:451–486,
May 2003. 61

Herbert A Simon. The functional equivalence of problem solving skills. Cognitive
Psychology, 7(2):268–288, April 1975. 14

Linda B. Smith and L. Samuelson. Objects in space and mind: From reaching to
words. In Kelly S. Mix, Linda B. Smith, and Michael Gasser, editors, The Spatial
Foundations of Language and Cognition. Oxford University Press, Oxford, England,
2010. 27

Linda B. Smith and Esther Thelen. Development as a dynamic system. Trends in
Cognitive Sciences, 7(8):343–348, August 2003. 30, 34, 35, 61, 75, 156

Olaf Sporns and Jonathan Zwi. The small world of the cerebral cortex. Neuroinfor-
matics, 2(2):145–162, 2004. 10

A. Stoytchev. Five basic principles of developmental robotics. In NIPS 2006 Workshop
on Grounding Perception, Knowledge and Cognition in Sensori-Motor Experience,
2006. 21, 41

Alexander Stoytchev. Self-detection in robots: A method based on detecting temporal
contingencies. Robotica, 29(Special Issue 01):1–21, 2011. 147

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998. 92

180

REFERENCES

Henrik Svensson, Anthony F. Morse, and Tom Ziemke. Neural pathways of embodied
simulation. In Giovanni Pezzulo, Martin V. Butz, Olivier Sigaud, and Gianluca Bal-
dassarre, editors, Anticipatory Behavior in Adaptive Learning Systems, number 5499
in Lecture Notes in Computer Science, pages 95–114. Springer Berlin Heidelberg,
January 2009. 73

Esther Thelen and Linda B. Smith. Dynamic Systems Approach to the Develop. MIT
Press, January 1996. 29, 40, 59

Esther Thelen, Gregor Schöner, Christian Scheier, and Linda B. Smith. The dynamics
of embodiment: A field theory of infant perseverative reaching. Behavioral and Brain
Sciences, 24(1):1–34, 2001. 30, 34, 61, 75, 156

Evan Thompson. Mind in Life: Biology, Phenomenology, and the Sciences of Mind.
Harvard University Press, 2007. 47

S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Hahnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: a second-generation
museum tour-guide robot. In Proceedings of the IEEE International Conference on
Robotics and Automation, volume 3, pages 1999–2005, 1999. 7

V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and F. Nori. An open-
source simulator for cognitive robotics research: the prototype of the iCub humanoid
robot simulator. In Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems, PerMIS ’08, page 57–61, New York, NY, USA, 2008. ACM. 129,
148

Marc Toussaint. A sensorimotor map: Modulating lateral interactions for anticipation
and planning. Neural Computation, 18(5):1132–1155, May 2006. 103, 164

Tim van Gelder. The dynamical hypothesis in cognitive science. Behavioral and Brain
Sciences, 21(05):615–628, 1998. 29, 40

Francisco J. Varela, Evan T. Thompson, and Eleanor Rosch. The Embodied Mind:
Cognitive Science and Human Experience. MIT Press, 1991. 46

D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive systems: Im-
plications for the autonomous development of mental capabilities in computational
agents. IEEE Transactions on Evolutionary Computation, 11(2):151–180, 2007. 21

Sven Wachsmuth, Frederic Siepmann, Denis Schulze, and Agnes Swadzba. ToBI -
team of bielefeld: The human-robot interaction system for RoboCup@Home 2010.
Technical report, CITEC, Bielefeld University, June 2010. 7

Cornelius Weber and Stefan Wermter. A self-organizing map of sigma-pi units. Neu-
rocomputing, 70(13-15):2552–2560, August 2007. 114, 162, 163

181

REFERENCES

Juyang Weng, James McClelland, Alex Pentland, Olaf Sporns, Ida Stockman, Mriganka
Sur, and Esther Thelen. Autonomous mental development by robots and animals.
Science, 291(5504):599–600, January 2001. 3, 21, 41

Gert Westerman and Eduardo Reck Miranda. Modelling the development of mirror
neurons for auditory-motor integration. Journal of New Music Research, 31(4):367–
375, 2002. 36

D. M. Wolpert and M. Kawato. Multiple paired forward and inverse models for motor
control. Neural Networks, 11(7-8):1317–1329, October 1998. 53, 61, 72, 78, 96, 136

Daniel M Wolpert, R.Chris Miall, and Mitsuo Kawato. Internal models in the cerebel-
lum. Trends in Cognitive Sciences, 2(9):338–347, September 1998. 78

Daniel M. Wolpert, Kenji Doya, and Mitsuo Kawato. A unifying computational frame-
work for motor control and social interaction. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 358(1431):593–602, March 2003. 54,
61, 72, 96

Daniel M. Wolpert, Jörn Diedrichsen, and J. Randall Flanagan. Principles of sensori-
motor learning. Nature Reviews Neuroscience, 12(12):739–751, October 2011. 71

J. Wyatt and N. Hawes. Multiple workspaces as an architecture for cognition. In
Proceedings of AAAI 2008 Fall Symposium on Biologically Inspired Cognitive Archi-
tectures, November 2008. 18

Yuichi Yamashita and Jun Tani. Emergence of functional hierarchy in a multiple
timescale neural network model: A humanoid robot experiment. PLoS Computa-
tional Biology, 4(11), November 2008. 43

J. Yen and N. Pfluger. A fuzzy logic based extension to payton and rosenblatt’s com-
mand fusion method for mobile robot navigation. IEEE Transactions on Systems,
Man and Cybernetics, 25(6):971–978, 1995. 97

Laure Zago, Mauro Pesenti, Emmanuel Mellet, Fabrice Crivello, Bernard Mazoyer,
and Nathalie Tzourio-Mazoyer. Neural correlates of simple and complex mental
calculation. NeuroImage, 13(2):314–327, February 2001. 47

182

Appendix A

Additional Mathematical
Formulations

Transformation of Input Vectors into Barocentric Coordi-
nates of a Hypercube of Receptive Field Centers

Given an input vector x = (xi, . . . , xn), determine the 2n receptive field centers mj

surrounding x. Let mfloor
i and mceil

i be the i-th coordinates of centers mj , such that

xi ≥ mfloor
i and xi ≤ mceil

i . We transform x into normalized coordinates inside the
surrounding hypercube by defining

pi =
xi −mfloor

i

mceil
i −mfloor

i

. (A.1)

Let cj = (cj1, . . . , c
j
n) be the normalized coordinates of hypercube vertices. We then

compute the activations uj of the neural field units corresponding to the hypercube
vertices as

uj =
n∏
i=1

cjipi + (1− cji)(1− pi). (A.2)

Given activations uj and corresponding receptiv field centers mj , the input x can be
restored as

x =

2n∑
j=1

uj ·mj . (A.3)

183

	1 Introduction
	1.1 Research Goals and Contributions of this Thesis
	1.2 Outline

	2 Cognitive Architecture: Overview of Theoretical Paradigms and Computational Models
	2.1 Structure of the Cortex: A Brief Introduction
	2.2 Cognitivism
	2.2.1 Computational Models
	2.2.2 Hybrid Architectures
	2.2.3 Implications

	2.3 Behavior-based Robotics
	2.3.1 Computational Models
	2.3.2 Implications

	2.4 Connectionism
	2.4.1 Computational Models
	2.4.2 Implications

	2.5 Dynamicism
	2.5.1 Dynamic Field Theory
	2.5.2 Computational Models
	2.5.3 Implications

	2.6 Discussion

	3 A New Cognitive Architecture Based on Embodied Simulation
	3.1 Theoretical Background on Embodied Cognition
	3.1.1 The Convergence-Divergence Model
	3.1.2 Embodied Concepts and Embodied Simulation
	3.1.3 The Concept of Schema
	3.1.4 Summary

	3.2 Related Computational Models
	3.2.1 Models Based on the Concept of Schema
	3.2.2 Models of Embodied Simulation

	3.3 A Cognitive Architecture Based on Embodied Simulation
	3.3.1 The Schema System
	3.3.2 The Motor-, Sensory- and Motivation Systems
	3.3.3 Mechanics of the Building Blocks
	3.3.4 Network Layout in the Schema System

	3.4 Discussion

	4 Integration of Internal Models by Making Use of Redundancies
	4.1 Integration of Internal Models in Robotics
	4.1.1 Approaches Based on Serialization
	4.1.2 Approaches Based on Linear Combination
	4.1.3 Approaches Based on Prioritization

	4.2 Making Use of Redundancies for the Integration of Internal Models
	4.2.1 Redundancy in Sensorimotor Tasks
	4.2.2 Dynamic Selection of Solutions Using Dynamic Neural Fields
	4.2.3 Distribibuted Decision Making in Co-ordinated DNFs
	4.2.4 Summary

	4.3 Using Networks of Sigma-Pi Units for the Learning and Query of Redundant Mappings, and for Robot Control
	4.3.1 Networks of Sigma-Pi Units
	4.3.2 Evaluation of the Sparsity in Networks of Sigma-Pi Units when Learning Kinematics Models
	4.3.3 Using Multiple Queries for Distributed Decision Making
	4.3.4 Using Networks of Sigma-Pi Units for Accurate Robot Control

	4.4 Simulation Experiment with the iCub Humanoid Robot
	4.5 Discussion

	5 Self-Organized Learning of Multiple Internal Models
	5.1 Bootstrapping the Learning of Internal Models by Exploiting Preliminary Model Predictions
	5.2 Handling Noise
	5.3 Example Application of Acquiring a Body-Schema
	5.4 Discussion

	6 Conclusion
	6.1 Summary
	6.2 Discussion in Relation to Machine Learning and the Field of Cognitive Architecture
	6.2.1 Comparison with Other Cognitive Architectures

	6.3 Discussion in Relation to Embodied Cognition and the Concept of Schema
	6.4 Outlook

	References
	A Additional Mathematical Formulations

