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Abstract

A number of challenges arise when transferring the concept of life-long learning to technical
systems. This thesis addresses the challenges of learning with continuous data streams,
learning with weak supervision, learning with non-stationary data and learning with multi-
view data. We introduce the Growing Conceptual Maps Framework as a solution to these
challenges, allowing the incremental online learning of a classification model without the
requirement of storing training data explicitly. The framework is based on topological fea-
ture maps, i.e. Growing Neural Gas, and therefore allows a straight forward visualization
of the trained model.

With the rapidly increasing amount of data in many domains, such as news feeds, social
media, or sensory networks etc., nowadays, assistive systems are required to process a
theoretically infinite stream of data in order to help us in our daily tasks. While existing
approaches coming from data mining mostly do not scale up to such large and complex
tasks, new paradigms are required which allow the model to grow task-dependently and
adapt to a changing environment, in order to learn in a life-long fashion.

In this thesis we thus stepwise extend Growing Neural Gas with appropriate novel online
labeling and prediction strategies, as well as novel neuron insertion strategies, accord-
ing to meet these challenges. We evaluate the introduced approaches on benchmarking,
artificial and real stream datasets, showing the benefit of our architecture and proving
that the Growing Conceptual Maps Framework renders itself ideal for life-long learning by
outperforming similar existing approach, and delivering comparable results to other well
established classifiers such as a Support Vector Machine. As an application for our frame-
work, we furthermore develop an online human activity classifier based on two Growing
Conceptual Maps that can compete with state-of-the-art (offline) human activity classi-
fiers.

As a final contribution, we introduce a straight forward visualization schema for Growing
Conceptual Maps that allows the user to track emerging categories and their relation
according to the underlying map, and furthermore demonstrate its usability of identifying
trends and events in stream data.
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ntroduction

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”
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[Benjamin Franklin)

Imagine a future in which service robots assist us in
most of our daily tasks. In order to be helpful, such
robots are required to be equipped with motor skills
as well as communicative abilities in order to act and
react with us in our environments. Especially in do-
mains such as healthcare, for example, in which they
closely interact with humans, a high degree of relia-
bility in the robots skills is crucial. Therefore, such
robots need to be pre-trained in an appropriate way,
so they can solve such tasks flawlessly.

However, it is impossible to pre-train them for every
possible situation. Instead, it would be desirable that
those robots are capable of adapting to new environ-
ments and new situations. The robot is confronted
with a continuous data stream of information that it
observes in the environment. While we as humans to
some degree can provide a supervision by teaching the

robot something about the relevant objects and mechanics of the unknown environment,
the robot is mostly required to continuously learn without a dedicated supervision in a life-
long learning process. Furthermore, in contrast to the fixed dataset used for pre-training
of the robot, learned concepts constantly evolve and may change over time, which makes
the learning task even more challenging.

'http://letsmakerobots.com/node/35773 [All URL links have been accessed at 09/30/2013]
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Chapter 1. Introduction

While the described service robots can not be expected to become reality in the very near
future, the underlying principles of life-long learning already are highly relevant today.
Nowadays, the processing of data streams is crucial in many domains, such as web search
engines [BDHO3], cognitive robotics [SJ06], surveillance systems [BRCT07], driver assistant
systems [WLVTO06|, ambient intelligence [NBKLO06|, etc. Furthermore, we live in an age
of information where the amount of data coming from domains such as news feeds, social
media, or sensory networks, etc., rapidly increases every day [GMO05]. While approaches
coming from data mining have been well established in recent years, most of them do not
scale up to larger and more complex tasks, as they are designed to learn a function for
a single isolated task without a broader context. In the following, the characteristics of
life-long learning and the resulting challenges when transferring those to a technical system
will be discussed in more detail.

1.1. Characteristics of life-long learning

As humans we are capable of learning throughout our entire life. While this ability is so
natural to us, it is difficult to find a precise definition of what life-long learning means. Is
it just the sum of single isolated learning experiences in our life time? How can we adapt
to new tasks relying on our existing knowledge? Do the learned concepts relate to each
other? In the area of educational philosophy, different perspectives to this topic have been
discussed in the literature. In the following, some relevant aspects of those articles about
life-long learning will be discussed:

« “Constant reorganization or reconstructing of experience” [DBB85|: For
most of the concepts we learn during our life time we permanently see new examples
every day, which help us to refine those concepts. Every time we see a “banana”, for
example, causes us to update our concept of “the banana” It helps us to sharpen
concepts or even expand a concept, e.g. in case it is a “green banana” while we have
only seen “yellow bananas” so far. The ability to update our concept knowledge
on-the-fly is crucial, as it allows us to process this huge amount of information we
perceive during our life time. This reorganization sometimes even causes us to merge
or remove existing concepts. We reorganize our conceptualization of the world as
long as we learn and thus as long as we live.

o Growth and development [DBB85, Wai87, Bag00]: It has been shown in psy-
chological experiments that we as humans are able to acquire complex concepts, i.e.
language concepts, based on a single training example [ABM92]. This is a good ex-
ample demonstrating our ability to generalizing from existing knowledge to a novel
concept. Especially infants experience new concepts daily and expand on their knowl-
edge about the relevant properties of those concepts. It takes time until the infant
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can identify a “ball” and distinguish it from a “book” or a “chair”. Furthermore, we
are capable of transferring already learned properties from one to another concept.
Having learned that the “banana” is “yellow” thus helps us to identify the color of a
“lemon”, for example.

e Non-linearity: It is important to point out that we mostly do not learn concepts in
a linear way, meaning concept after concept. Instead, our conceptualizations grow
non-linearly in the sense that several concepts and their properties are learned at
the same time. To distinguish between a “banana” and a “cherry” also improves our
conceptualization of their properties “yellow” and “red”, and the other way around.
This stands in contrast to most existing machine learning paradigms, as they are
trained and furthermore process data in a linear way. An exception in that sense
is given by recurrent neural networks [Jor86, Elm90] and algorithms coming from
reservoir computing [Jae02]. They provide a non-linear signal flow by feeding a
transformed input signal back into the network. However, those recurrent and reser-
voir computing-based algorithms are not equipped with mechanisms allowing them
to learn in an incremental fashion and build upon existing knowledge. Nevertheless,
non-linear architectures are desirable as a realistic life-long learning environment
depends on non-linear dynamics.

1.2. Technical challenges

Following the intuition and characteristics of life-long learning, a number of challenges
appear when transferring the concept of life-long learning to a technical system. In recent
years, there has been a lot of work in the field of incremental learning and online learning,
which are especially important in the context of large datasets. Those two areas build
a foundation for a technical approach to life-long learning as they partially fulfill the
characteristics that have been described in the previous section (Section 1.1). Incremental
learning, on the one hand, deals with the incorporation of new knowledge into an existing
model. Therefore, mechanisms are provided which adapt the existing model accordingly.
Usually, the adaptation is done in a batch mode, which means that additional storage for
training examples needs to be provided. However, algorithms coming from incremental
learning are designed to theoretically process an infinite number of data points.

On the other hand, in online learning the model is updated stepwise and does not need to
explicitly store training examples, as they are only seen once. However, most algorithms
coming from online learning are not designed to handle an infinite data stream and thus
do not allow the model to grow according to its task of classifying such data.
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In order to follow the intuition of life-long learning as described before, the following
challenges arise:

(i)

(i)

(iii)

Learning with a continuous data stream: In contrast to standard learning and
data mining tasks, data streams demand the additional requirements of one-pass data
processing, online updates of the learning model, and in many applications even a fast
response/prediction on demand.

Learning with weak supervision: In many applications only a limited amount of
supervision and expert knowledge is available, which requires the learning algorithm
to make use of labeled, indirectly labeled and unlabeled data in the classification task.
Furthermore, such system should be able to generalize from categories for which labels
are given at a later point in time.

Learning with non-stationary data: In contrast to closed-world classification
scenarios for which the task is to classify a fixed number of static categories, data
streams require the learning model to quickly adapt to changing data distributions that
involve concept-drift, detecting new evolving categories on-the-fly, while requlating its
model size in order to still provide a fast prediction.

Learning with multi-view data: In many data stream applications, data is com-
ing from multiple domains and is provided in different forms and formats. Each
of those domains renders a unique view on the data and involves a unique set of
subcategories. In order to structure and classify such data, it is required to learn
the relevant subcategories/properties for each category in each view. Thereby, it is
desirable to provide a compact and uniform representation in order to maintain the
abilities of a fast prediction and memory efficient architecture.

We explain these challenges in more detail in what follows:

(i) Learning with a continuous data stream

Traditionally in machine learning, supervised learning is performed in order to solve a
classification task. Thereby, it is assumed that the task is to learn a function f: X — Y
by assigning a finite set of given categories Y to data points from some space X. Data
labeled with these categories is used to learn a model for this function that minimizes
the empirical risk of making an erroneous assignment. Algorithms based on statistical
methods, Artificial Neural Networks (ANN) or Support Vector Machines (SVM) are very
effective in that task. However, there are several requirements which uniquely apply to
data streams:

One-pass data processing: Standard learning architectures usually require the
explicit storage of the complete training data, as data is typically processed in multi-
ple passes. In the process of life-long learning, a theoretically infinite amount of data
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and concepts are learned. Therefore, it is impossible to store the data, which leads
to the requirement of having to process data in one-pass. This has been relevant
in the context of many applications in which we find massive streams of data that
cannot be stored on standard hardware anymore (see Gaber et al. [GMO05]).

¢ Online updates: When processing such stream data in one-pass, updates of the
model need to be performed online in order to improve the model gradually. Online
clustering algorithms (see Barbakh et al. [BF08]) thus become especially relevant in
the context of stream data mining, as data cannot be processed in batch mode or
in several passes and the model needs to be updated on-the-fly instead. It even has
been shown that online learning can render the training more efficient by using the
model to generate new training examples which are closer to the desired solution,
thus allowing a more efficient exploration of the parameter search space (see Rolf et

al. [RG11)).

o Fast response/prediction: Furthermore, there are scenarios (e.g. Interactive
Learning) and tracking applications in which not only batch learning is simply un-
suitable (see Steil et al. [Ste07] and Mandic et al. [MGO8]), but also a fast respon-
se/prediction of the model is crucial. Throughout an incremental learning process the
model grows and the prediction time increases. Thus, mechanisms are required which
reduce and optimize the structure of the model in order to provide fast predictions,
while maintaining its classification performance.

(ii) Learning with weak supervision

With the tremendous growth of data in many areas, it is impossible to keep up with labelled
information for all of these data. In many cases expert knowledge is necessary to provide
a correct and detailed description of the data. While in machine learning one usually
distinguishes between supervised and unsupervised learning approaches, techniques from
Semi-supervised Learning (SSL) (see Chapelle et al. [Cha06]) have blurred the distinction
between these two learning paradigms and have become especially interesting as more and
more data becomes available of which, however, only a small fraction can be manually
labeled due to the high cost incurred. On the one hand, semi-supervised learning has been
shown to improve the performance of supervised classification approaches by factoring in
unlabeled data (see Nigam et al. [Nig00]). On the other hand, semi-supervised learning
has also been shown to improve clustering by factoring in labeled data that can be used
as constraints to guide the search for an optimal clustering of the data (see Wagstaff et
al. [WKCCRSO01]). However, there are several requirements which uniquely apply to weak
supervision in data streams:
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o Classification with labeled and unlabeled data: Most of semi-supervised clas-
sification algorithms introduce an additional training phase to incorporate unlabeled
data and thus process data in batch mode. Thereby, the initially trained model is
used to label unlabeled data and retrain afterwards. This is unsuitable when it comes
to stream data, as the processing needs to be performed in one-pass. Thus, labeled
and unlabeled data should be used to update the classifier model in order to still
provide a system learning in an incremental online fashion.

« Generalization from unsupervised categories: When learning with labeled and
unlabeled data, often evolving structures in the model receive a delayed label after
having seen many unlabeled examples of the same category before. A learning model
is required to propagate those sparsely received labels over the whole model and thus
generalize over the underlying categories appropriately.

(iii) Learning with non-stationary data

One of the key challenges in life-long learning is the plasticity-stability dilemma, which
refers to the ability of acquiring new knowledge (plasticity) while retaining old memory
(stability). This can be quite challenging as we live in a rapidly changing world in which
information changes quickly. Streams of data nowadays emerge in a number of application
domains. The data originating in those applications is often “non-stationary” in the sense
that new concepts emerge while others disappear. In those cases, it is often desirable to
predict new categories/trends in the data and, therefore, let the trained model follow the
data distribution. In those scenarios the following requirements are crucial:

o Fast adaptation towards changing data distributions: Yet, machine learning
approaches are usually designed for “stationary data” in which the concept distri-
bution is fixed, due to the fact that they rely on prior knowledge about the number
of concepts which cannot be assumed to be fixed and given in a life-long learning
scenario. In order to process and predict concepts within non-stationary settings,
the model needs to quickly adapt to the new data distribution.

e Detection of new concepts on-the-fly: Typically, in most machine learning tasks
only a fixed number of categories are to be learned. However, this mostly does not
apply to non-stationary data where new categories may appear while other categories
disappear. The learning model is required to adapt to such new evolving categories
appropriately.

« Regulation of resource requirements: As a theoretically infinite number of data
points and categories are required to be processed, it is crucial to regulate the re-
sources of the model in order to still be efficient when processing and predicting new
(unseen) data points.
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(iv) Learning with multi-view data

Another important aspect of many data stream applications, such as warehouses in e-
business [HCD™05], is that the data is provided in several forms and formats. In many
cases the desired categories manifest in several different formats, coming from different
domains. The data naturally groups into multiple views according to those domains.
When classifying the underlying categories, it is often required to consult several views
in order to find the relevant properties that set the categories apart. If the task is to
classify different kinds of fruits, for example, and the views of “color”, “shape” and “taste”
are given, then it would be insufficient to distinguish between a “banana” and a “lemon”
only by their color. Instead, also their properties in the domain of “shape” or “taste” are
crucial to discriminate the two categories. However, in order to tackle these challenges,

the following requirements need to be fulfilled:

« Learning of relevant properties: In order to provide a sufficient description of
such multi-view categories, it is required to learn properties in each of the relevant
views. While usually such a classification task decomposes into a per-view classifi-
cation, the compositional nature of the underlying categories requires to learn their
properties/subcategories at the same time. Such properties thus emerge parallel in
the classification model while being processed and therefore grow non-linearly.

e Compact and uniform representation: In order to provide a system that is
capable of scaling up to a life-long learning task, it is desirable to represent informa-
tion coming from several views in an uniform and compact way, 7.e. in one model.
The advantage of such a model lies in the fact that it allows to maintain the ability
of a fast predictions, while providing a memory efficient classification model that
represents categories coming from multiple views.

1.3. A basic model for life-long learning

In order to tackle the challenges of life-long learning, a basic learning architecture is re-
quired to build upon. This architecture needs to fulfill the properties of life-long learning
and therefore be an incremental online learning algorithm. Growing Neural Gas (GNG),
as introduced by Fritzke [Fri95], is an algorithm which partially fulfills these requirements.
It belongs to the family of topological feature maps, such as Self-organizing Maps (SOM)
[Koh82|, Neural Gas (NG) [Mar91] and Learning Vector Quantization (LV(Q)) [Koh95].
These feature maps are artificial neural networks and rely on the Hebbian learning rule,
which renders them ideally for online learning tasks. Thereby, categories are prototypically
represented by a number of neurons that allow a straightforward visualization and thus
facilitates the interpretation of the model by humans. It is also the reason why topological
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feature maps are also used in visualization tasks (see WebSOM [KT00]), besides clustering
and classification. However, for most of these algorithms the network size is fixed and needs
to be determined in advance. In contrast, GNG provides a growing structure and thereby
includes mechanisms for inserting, merging and removing neurons and is thus idealy suited
for incremental online learning. In particular, GNG’s life-long learning properties can be
listed as follows:

The Network grows according to the data distribution.

A data manifold is represented by a neuron distribution.

Model updates are performed online.

Synaptic links determine the relation between neurons.

Neurons and links are inserted and removed according to their relevance.

A storage of the training data is not necessary.

However, GNG is a clustering algorithm and thus cannot solve a classification task, as
category labels are simply ignored. Therefore, this thesis focuses on the stepwise extension
of GNG to meet the discussed requirements of life-long learning. In particular, the following
extensions are required to apply GNG to a life-long classification task:

1.

Online classification: GNG provides an online clustering architecture that allows
the grouping of similar structures found in continuous data streams. However, in
order to apply GNG to most life-long learning applications, it is required to also
incorporate category label information and thus extend GNG to an online classifier.

. Semi-supervised Learning: With the prior extension of GNG to an online classi-

fier, unlabeled examples only contribute to the clustering process. In order to fully
utilize all available data for the classification task, the labels for those examples need
to be predicted.

Non-stationary data: Although GNG is capable of adapting to any data manifold,
it is not designed to follow a rapidly changing data distribution. New mechanisms
are required to let the network grow and adapt according to the changing data dis-
tribution and thereby solving the “plasticity-stability-dilemma” in the best possible
way.

Multi-view data: A GNG-based classifier can represent many categories in a com-
pact form. Representing multi-view data coming from multiple domains would usu-
ally require the use of one GNG per view and would increase the complexity of the
architecture dramatically. In order to still provide a compact model in form of a
single GNG network, strategies are required to incorporate the label information
coming from those multiple views.
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1.4. Contributions

In this thesis Growing Conceptual Maps Framework as framework for life-long learning is
introduced (see Figure 1.1), providing solutions for the discussed challenges in the previous
sections. In order to do so, the Growing Conceptual Maps framework is based on Growing
Neural Gas and extends it accordingly to meet the requirements described earlier in this
section. In particular, the following contributions are provided:
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Figure 1.1.: Growing Conceptual Maps Framework.

e Learning with a continuous data stream: An algorithm is introduced that
extends Growing Neural Gas to an online classifier (i.e., Online Growing Neural Gas
(OGNG)) by an additional step that uses an appropriate labeling function to assign
or re-compute the labels of neurons, as well as an appropriate prediction function
that allows to assign labels to unseen data. It will be shown that these labeling and
prediction functions do not deteriorate the classification performance when compared
to corresponding offline methods.

o Learning with weak supervision: Online Semi-supervised Growing Neural Gas
(OSSGNG))is introduced as extension of Online Growing Neural Gas. OSSGNG pre-

dicts labels for unlabeled examples and incorporates these data points into the model
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on-the-fly. It will be shown that OSSGNG outperforms existing semi-supervised ex-
tensions of GNG, as well as OGNG on semi-supervised benchmark datasets. We will
furthermore show that OSSGNG is competitive towards standard SSL classifiers.

» Learning with non-stationary data: Dynamic Online Growing Neural Gas (DYNG)
is introduced as extension of OGNG. DYNG utilizes category label information and
introduces two novel neuron insertion strategies in order to grow with its task as long
as its classification performance increases. It will be shown that DYNG better solves
the plasticity-stability dilemma compared to an online classifier based on an existing
GNG extension (i.e. Growing Neural Gas with Utility [Fri97]), in that it provides a
better performance while retaining a relatively small network. Furthermore, we will
show that DYNG outperforms OGNG and a linear multi-class SVM, when using a
comparable amount of memory.

» Learning with multi-view data: Multi-view Online Growing Neural Gas (VONG)
is introduced as multi-view extension of OGNG that is capable of learning with data
coming from multiple domains and, furthermore, uniformly stores these data in a
single compact network. We will show that VONG outperforms a naive multi-label
extension of OGNG (OGNGT), while being capable of predicting category labels for
each view independently.

These extensions of GNG are not limited to GNG, but could also be applied to similar
architectures fulfilling the mentioned GNG properties.

1.5. Components of the Growing Conceptual Maps
Framework (Overview)

In this section, a listed overview of each component of the Growing Conceptual Maps
framework is given, including its challenges, its contributions, the involved datasets and
evaluations, and a list of publications in which it already has been published.

10



1.5. Components of GCM (Overview)

N s {
N v “Q_am we 96,/)‘
.(\% %
N S 2
& %8,
& %%
s 3.7
§ S

Growing Conceptual
Maps Framework

Learning with continuous data streams Learning with weak supervision

Challenges Challenges
e one-pass data processing e processing labeled and unlabeled data for classification
¢ online model updates e generalization from unsupervised categories

« fast response/prediction . . . .
Online Semi-supervised Growing Neural Gas

(OSSGNG)
Online Growing Neural Gas (OGNG)
¢ extends OGNG to semi-supervised classifier
o extends GNG to incremental online classifier
« utilizes unlabeled data for its classification model
o additional labeling and prediction strategies

Datasets
Datasets

o SPIRALI (artifical datasets)
« SPIRALI1, ART (artifical datasets)

o g241c, g241d, Digitl (artifical SSL benchmark sets)
¢ SEG, ORL (benchmark sets)

o USPS, COIL, BCI (real SSL benchmark sets)
¢ ReutersRCV1v2, TwitterLL (real stream datasets)

Evaluation
Evaluation

¢ OSSGNG vs. OGNG vs. SVM
o Online vs. offline labeling strategies

¢ OSSGNG vs. standard SSL algorithms
¢« OGNG vs. (offline) GNG classifier vs. SVM

¢ Late labeling of categories
e OGNG vs. OGNG?opP

Publications
Publications
e Online Semi-supervised Growing Neural Gas [BC11b,
e Online labeling strategies for Growing Neural Gas BC12]
[BCl11a, BC12]

e Human Activity Classification with OGNG [PBC13]
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Growing Conceptual
Maps Framework
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Learning with non-stationary data Learning with multi-view data
Challenges Challenges
o fast adaptation towards changing data distributions e learning with multiple views
e detection of new categories on-the-fly e grouping of categories by views
o regulation of resource requirements e compact uniform classification model
Dynamic OGNG (DYNG) Multi-view OGNG (VONG)
e extends OGNG to an online classifier for non- o extends OGNG to multi-view classifier

stationary data and concept drift
o masking of relevant dimensions per view
e two additional neuron insertion strategies
o additional multi-view labeling/prediction strategy
e performance tracking for categories in the network

Datasets
Datasets
e SPIRAL2 (artifical multi-view dataset)
o SPIRALL (artifical dataset)
¢ OBJ (artificial object description dataset)
o ReutersRCV1v2, TwitterLL (real stream datasets)

Evaluation
Evaluation
« VONG vs. OGNGt
¢ DYNG vs. OGNG vs. SVM vs. INN
¢« VONG vs. VONG-M
« DYNG vs. DYNG~#mP

Publications

¢ DYNG: Dynamic Online Growing Neural Gas for
Stream Data [BC13]
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1.6. Outline

This thesis is structured as follows: In Chapter 2, detailed information about Growing
Neural Gas and its existing variations and extensions is given. Furthermore, an overview
over existing work towards learning with data streams, semi-supervised learning, learning
with non-stationary data and learning with multi-view data is given.

In Chapter 3, Online Growing Neural Gas (OGNG) is introduced as first extension of
GNG. With OGNG a number of online labeling and prediction strategies are introduced
and compared to existing offline labeling strategies. On four datasets, we will show that
the online labeling strategies do not deteriorate the classification performance compared to
offline labeling strategies, with the benefit of no additional required storage. Furthermore,
we will show that OGNG even significantly outperforms a linear multi-class SVM on two
of the datasets used for evaluation.

In Chapter 4, Online Semi-supervised Growing Neural Gas (OSSGNG) is introduced as
semi-supervised extension of OGNG. OSSGNG is capable of using labelled and unlabeled
data for classification by extending OGNG with an additional label prediction step. On an
artificial dataset and six standard semi-supervised learning datasets we will show that OS-
SGNG outperforms existing semi-supervised GNG-based approaches, i.e. Semi-supervised
Growing Neural Gas (SSGNG) (see Section 4.3.1) and furthermore delivers comparable
results compared to state-of-the-art semi-supervised learning approaches.

In Chapter 5, Dynamic Online Growing Neural Gas (DYNG) as extension of OGNG is
introduced. The advantage of DYNG lies in its ability to quickly adapt to non-stationary
data that also involves a changing concept distribution. Experiments with non-stationary
stream datasets show that DYNG outperforms OGNG, especially in highly non-stationary
phases when a large number of new categories is introduced. Furthermore, our evaluation
will show that DYNG better solves the plasticity-stability dilemma compared to OGNG-
U, an online classifier based on GNG-U, by providing a better classification performance
while retaining a compact model.

In Chapter 6, Multi-view Online Growing Neural Gas (VONG) as extension of OGNG is
introduced. VONG is capable of solving a multi-view classification problem by introducing
a novel multi-view labeling and multi-view prediction strategy and thereby maintaining a
compact and uniform representation. On two artificial multi-view datasets, it will be shown
that VONG clearly outperforms a naive OGNG-based multi-view classifier (OGNG™'. We
will furthermore show that, for the labeling as well as for the prediction strategy, VONG’s
classification performance benefits from a weighted masking of the relevant dimensions per
view.

In Chapter 7, the Growing Conceptual Maps framework is applied to three datasets from
the domain of text document stream data classification and human activity classification.

13



Chapter 1. Introduction

In particular, we will evaluate the classification performance of DYNG on the document
stream data and show that DYNG even outperforms a linear multi-class SVM under com-
parable memory usage. Furthermore, a new GCM-based online human activity classifier
will be introduced and evaluated on a standard human activity dataset. We will exper-
imentally show that the classification performance of this novel approach is comparable
to those of an existing state-of-the-art (offline) human activity classifier. In addition, a
visualization schema for GCM-based networks will be introduced and we will demonstrate
its utility be applying it to the networks used in the applications of this chapter.

In Chapter 8, we summarize our results and conclude. In an outlook we will furthermore
discuss possible GCM extensions, as well as possible new application areas for the GCM
framework.

14



Chapter

Related Work

In this chapter we will give an overview of the research fields that are highly related to
artificial cognitive systems which focus on methodologies for life-long learning. Thereby,
we will highlight established solutions in each of these areas and also explain how our
work builds upon those existing approaches and how it sets itself apart. The purpose
of this chapter is to give the reader a broad overview of existing relevant research, while
algorithms that are closely related to each part of our framework will be discussed in
each chapter. Furthermore, a detailed description of the approaches we compare with, i.e.
Semi-supervised Growing Neural Gas (SSGNG) (see Section 4.3.1) and Growing Neural
Gas with utility (GNG-U) (see Section 5.2.1) will be available in their related chapters.

In this chapter, at first, topological feature maps will be explained, as our framework builds
upon this family of algorithms due to their applicability in life-long learning scenarios. In
particular, we will discuss Growing Neural Gas (GNG) [Fri95], its growing design and its
extensions that have been proposed over recent years. We then discuss the challenges of
learning with continuous data streams, including the most known solutions in the area
of stream data clustering and stream data classification. After that, we will move onto
the area of semi-supervised learning methods and describe their three main classes of al-
gorithms, namely Generative models, Low-Density Separation and Graph-based Methods.
Thereby, also data assumptions will be discussed which are necessary for semi-supervised
learning in order to be effective. Then we discuss approaches that focus on the process-
ing of data which involves non-stationarity and concept-drift, in the sense that the data
as well as the category distribution changes over time. Finally, we discuss the problem
of multi-view data, a scenario in which the challenge is to classify data originating from
different domains.

15
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2.1. Topological feature maps

Approaches based on topological feature maps, e.g. Self-Organizing Maps (SOMs) [Koh82],
Learning Vector Quantization (LVQ) [Koh95], Neural Gas (NG) [Mar91], or Growing Neu-
ral Gas (GNG) [Fri95], have been successfully applied to clustering problems by repre-
senting a high-dimensional input space in a low-dimensional feature map. An important
property of this family of algorithms is that they can be visualized straightforwardly by
projecting the map into a two-dimensional space or, as shown in Chapter 7, by a simple
interpretation of its topology. Growing Neural Gas, for example, when used with unla-
beled data, will learn “natural categories” and thus the inherent topology of the data in
an incremental fashion. GNG features the advantages of unsupervised approaches that
can learn categories for which no labeled data is given. Approaches such as GNG are
ideal in life-long learning settings where neither the categories can be assumed to be fixed
a priori, nor labels can be assumed to be available for all categories. Topological maps
also have been successfully applied to a number of visualization tasks in several domains
[Hyo96, KT00, FV08, HF08] as the neurons, which represent prototypes, are easy to under-
stand and interpret. Like SOM and NG, GNG is a Competitive Learning approach based
on the winner-takes-it-all (WTA) principle. Therefore, in every iteration step the algo-
rithm determines the neuron which is closest to the presented input stimulus and adapts
it accordingly. In Figure 2.1, a two-dimensional visualization of GNG is shown as an ex-
ample of such topological feature maps. The image shows the evolution and adaptation of
a GNG network towards an input distribution, which is indicated by the blue ring. The
network starts with two connected neurons and gradually increases its number of neurons
after seen 0-4000 stimuli.

2.1.1. Growing Neural Gas (GNG)

Growing Neural Gas is an incremental self-organizing approach which is capable of repre-
senting a high-dimensional input space in a low dimensional feature map. Although the
main idea behind SOM, NG and GNG is similar, there are some important differences
which set GNG apart. First of all, Growing Neural Gas combines the ideas of Growing
Cell Structures (GCS) [Fri94] and Competitive Hebbian Learning (CHL) [Mar93]. It shares
the growing character of GCS in the sense that, starting from a small network, neurons
are successively inserted into the network and can also be removed if they are identified
as being superfluous. This is an advantage compared to SOM and NG, as there is no
need of fixing the network size in advance. Inspired by CHL, GNG also integrates tem-
poral synaptic links between neurons, which are introduced between a winner neuron and
a second winner neuron. These links are temporal in the sense that they are subject to

’http://wuw.demogng.de/JavaPaper/nodel9.html
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Figure 2.1.: Two-dimensional representation of a GNG learning sequence.2

aging during the iteration steps of the algorithm and are removed when they get “too old”.
The main difference compared to SOM and NG is the fact that the adaptation strength
of the network is constant over time and fixed by the two parameters e, and e,, i.e. the
adaptation strength for the winner neuron and its neighbors, respectively. Furthermore,
only the best-matching neuron and its topological neighbors are adapted, such that there
is no global optimization of the network.

In the following, we will briefly describe the single steps of the GNG algorithm as proposed
by Fritzke [Fri95]. The algorithm is depicted in Algorithm 1.

1. In the first step, the algorithm starts with two neurons, randomly placed in the
feature space.

2. The first stimulus € R™ of the input space (first training example) is presented to
the network.

3. The two neurons n; and ny which minimize the Euclidean distance to x are identified
as first and second winner, respectively.

4. The age of all edges that connect ny to other neurons is increased by 1.

5. The local error variable Aerror(ny) of ny is updated. This error variable will be used
later in order to identify the position for a newly inserted neuron.

17
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Algorithm 1 Growing Neural Gas (GNG)

Uk WO N =

NeNo N

10:
11:

. Start with two units n; and n; at random positions in the input space.

: Present an input vector x € R™ from the input set or according to input distribution.
. Find the nearest unit n1 and the second nearest unit ns.

. Increment the age of all edges emanating from nj.

: Update the local error variable by adding the squared distance between wy,, and z.

Aerror(ni) = |wn, — 2|2

: Move n1 and all its topological neighbors (i.e. all the nodes connected to n1 by an edge) towards x by fractions of e

and e, of the distance:
Awn, = ep(z —wn,)

Awp = en(x — wn)

for all direct neighbors of nj.

: If n1 and no are connected by an edge, set the age of the edge to 0 (refresh). If there is no such edge, create one.
. Remove edges with their age larger than amaz. If this results in nodes having no emanating edges, remove them as well.
. If the number of input vectors presented or generated so far is an integer or multiple of a parameter A, insert a new node

n, as follows:

Determine unit ng with the largest error.

Among the neighbors of ng, find node ny with the largest error.
Insert a new node n, halfway between n, and n; as follows:

Wn, g + an
wp, = ———=
2

Create edges between n, and ng, and n, and ny. Remove the edge between ng and ng.

Decrease the error variable of ng and ny by multiplying them with a constant «. Set the error n, with the new error
variable of ng.

Decrease all error variables of all nodes n; by a factor 3.

If the stopping criterion is not met, go back to step (2).

6. In this step, n; and its topological neighbors are adapted towards x by fractions e,
and e, respectively.

7. According to this step, a new connection between n; and ny is created and the age
of the edge is set to 0.

8. All edges with an age greater than a,,,, as well as all neurons without any connecting
edge are removed.

9. In this step, depending on the iteration and the parameter A, a new node n, is
inserted into the network. It will be inserted half-way between the neuron n, with
the highest local error and its topological neighbor n; having the largest error among
all neighbors of n,. In addition, the connection between n, and ny is removed and
both neurons are connected to n,.

10. The error variables of all nodes are decreased by a factor .

11. In the last step, the algorithm stops if the stopping criterion is met, i.e., the maximal
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2.1.2. Extensions of GNG

In recent years, a number of variations of Growing Neural Gas have been published, im-
proving its ability to deal with noisy data (Robust Growing Neural Gas (RGNG) [QS04])
and by a hierarchy on top of GNG (TreeGNG [DADO05]). Growing Neural Gas has also
been extended towards specific types of data, i.e. non-stationary data (Growing Neural
Gas with Utility (GNG-U) [Fri97]), labelled data (Supervised Growing Neural Gas (SGNG)
[JAOT7]) and weakly labelled data (Semi-supervised Growing Neural Gas (SSGNG) [Zak08],
Incremental Growing Neural Gas (IGNG) [PE05]). Although these extensions address rel-
evant aspects, they are unsuitable for life-long learning scenarios as they do not meet its
requirements. In the following, we will describe each of these GNG extensions briefly:

Robust Growing Neural Gas (RONG)

This algorithm extends the standard GNG with a number of a strategies to improve its
robustness towards noisy data. As first extension, the GNG update rule is modified in
order to be less sensitive towards noisy data. As part of the modified update rule an
iteration-dependent maximal adaptation strength is introduced to limit the force of outliers
in the adaption phase of GNG. We use a similar method in Section 3.4.1 to limit the
adaptation range for the labeling of neurons. A second modification is introduced to
increase the robustness of GNG by its adaptive learning rates and repulsion scheme. In
RONG, the learning rates of neurons decrease incrementally to force the convergence of
older neurons in the network. Therefore, an individual adaptation rate for each neuron is
introduced, which depends on their “age” in the network as well as on the overall number
of neurons and a predefined threshold. The adaptive learning rate tends to result in the
stagnation of neurons close to each other, which means that those neurons adapt towards
and stabilize at the same position in feature space. In order to work against this side effect,
an additional repulsing scheme is used to decrease the adaptation amount for the winners’
neighboring neurons to an extent proportional to their closeness to this winner. Finally,
RONG introduces an optimization step that determines the optimal number of neurons
by minimizing the description length of the network. A more detailed explanation can be
found in Quin and Suganthan [QS04].

Although RONG has been proven to improve the classification performance of GNG; it
renders itself unsuitable for life-long learning due to the requirements of each of those
additions. In the first two additions, a fixed maximal network size is required which
cannot be assumed in a life-long learning process, as the network should grow and evolve
alongside with the continuous data it processes. Also the optimization of the network size
is difficult to be presumed, as the data is only partially available. In general, it is legitimate
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to claim that the GNG extensions and modifications of RONG are specifically designed
for fixed datasets and even work counter against a continuous learning scenario.

TreeGNG

Doherty et al. [DADO05] introduce a tree structure, which follows the development of GNG
and represents a history of the evolving subclusters inside of its network. The main idea
of TreeGNG is to provide a tree, similar to a Hierarchical Agglomerative Clustering (HAC)
[ZMRA13| approach that represents the underlying hierarchy of the input data and is
generated on-the-fly, as it builds upon GNG. In contrast to HAC, TreeGNG is build top-
down in the sense that it starts with a single root node and then successively introduces new
tree nodes and branches while following GNGs’ topology. The tree is updated regularly
after a certain number of iterations and relies on a growth and pruning mechanism to
follow GNGs’ evolution. The growth mechanism is triggered when a subcluster of GNG is
divided into two, due the removal of the last connecting link between both subclusters and
their neurons, respectively. A second mechanism, the pruning mechanism, is applied to
the tree in case of a newly established link between neurons of subclusters which have not
been connected before. The shape of the tree, as produced by the TreeGNG algorithm,
depends on the specified tree update frequency and the maximal allowed age of an edge of

GNG.

However, as TreeGNG only reflects the clustering history of GNG without incorporating
external information about category labels, it cannot be assured that the tree really re-
flects the underlying semantic hierarchy of the data. It is thus only of limited use in a
classification task.

Growing Neural Gas with Utility (GNG-U)

Growing Neural Gas with Utility (GNG-U) is designed to process and follow non-stationary
data. Non-stationary data is a phenomena which often appears in the context of data
streams and basically involves the (often unpredictable) change of the data distribution.
It thus is highly relevant for life-long learning. GNG-U introduces a utility factor for each
neuron that indicates how important each neuron is for its subcluster in the network. The
utility factor is updated for a winner neuron n; by accumulating the difference between its
local error and the local error of the second winner neuron ny. The utility thus implicitly
reflects in how far the local error of the second winner ny would increase after removing
the first winner neuron n;. However, a newly inserted neuron starts with a utility factor
of u = 1. In contrast to GNG, GNG-U only removes neurons if their utility falls under a
predefined fraction of the worst local error at the given stage of the network development.
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In Section 5.2.1 of Chapter 5, we will explain GNG-U in more detail. In Chapter 5, we will
introduce Dynamic Online Growing Neural Gas (DYNG) and experimentally show that
DYNG better solves the plasticity-stability dilemma (see Section 2.4) as it quickly adapts
to a changing distribution, providing a better classification performance while retaining a
compact model.

Supervised Growing Neural (SGNG)

Jirayusakul and Auwatanamongkol introduced a GNG extensions called Supervised Grow-
ing Neural Gas (SGNG), which incorporates label information to guide the clustering. The
main difference between GNG and SGNG lies in SGNG’s novel update rule that adopts
the LVQ2 technique [Koh90], as well as integrating the already discussed adaptive learn-
ing rates and repulsing schema from RONG. Following this technique, SGNG adapts the
winner neuron towards the stimulus, in case of matching labels of neuron and stimulus,
and adapts them away from the stimulus otherwise. Initially, the SGNG network basically
starts with a number of neurons equal to the number of categories in the training set, with
each neuron being uniquely labeled with one of the category labels. SGNG then gradually
inserts neurons, similar to GNG, until a threshold is met which determines the maximal
allowed number of neurons. The authors of SGNG also propose an optimization of the
clustering which depends on the validity index. This index sets compactness and impurity
of the clustering in relation to the cluster separation to achieve an optimal balance between
them.

Besides the inclusion of RONG extensions, which we already discussed as being unsuitable
for life-long learning, SGNG has a strong assumption concerning the relation between data
distribution and category distribution. It assumes the cluster assumption (see Section 2.3)
to fulfilled. This assumption, which will be described in more detail later in this chapter,
requires the data manifold and category manifold to match, so that basically a single
cluster represents a single category. This is not necessarily the case, especially when real
datasets are involved. In such scenarios, categories can possibly be non-convex and thus be
represented by several not neighboring clusters in the feature space, for which SGNG would
most probably perform poorly in a classification task. In Chapter 3, we will experimentally
show that letting the category labels guide the clustering can significantly deteriorate the
classification performance of a GNG-based classifier. Another disadvantage is the fact that
SGNG assumes all category labels to be known in advance, which is mostly not the case
in a life-long learning scenario in which categories my change over time.

21



Chapter 2. Related Work

Semi-supervised Growing Neural Gas (SSGNG)

The incorporation of labeled and unlabeled data in a semi-supervised fashion has been
introduced by Zaki et al. with Semi-supervised Growing Neural Gas (SSGNG) [Zak08].
SSGNG is inspired by the FEzpectation-Maximization (EM) approach [Har58] and thus
iteratively processes the data in two separate phases. The algorithm first performs a
clustering, which essentially is identical to the GNG clustering, only using the labeled
examples of the training set and then labels all neurons a posteriori. In a second step,
it then predicts the labels of all unlabeled training examples and retrains the classifier
based on the new dataset. The algorithm iterates over these two steps until the labels
for the initially unlabeled training set stabilize, 7.e. remain unchanged. A more complete
description of SSGNG and its algorithm is given in Chapter 4.

The main disadvantage of SSGNG is the fact that a retraining of the model requires the
training data to be stored. This contradicts the online nature of GNG and, furthermore, is
unsuitable in a life-long learning task in which a theoretically infinite number of training
data is required to be processed. In Chapter 4, we will introduce Online Semi-supervised
Growing Neural Gas (OSSGNG) and furthermore compare SSGNG to OSSGNG, showing
that OSSGNG outperforms SSGNG on the used datasets, while providing the benefit of
utilizing labeled and unlabeled data on-the-fly without the need of storing any training
data.

2.2. Learning with continuous data streams

In recent years, advances in hardware technology allow us to continuously collect a huge
amount of data. No matter if we browse through the internet, use our mobile phones
or build up our digital photo and music library, the data that is required to be stored
increases daily. However, these data is only of use to us if it is organized in a way that
allows us to quickly retrieve the relevant information task-dependently. While the field of
data-mining has been well established, algorithms coming from this field mostly do not
scale up to solve the challenges of clustering and classifying stream data. In this section,
the challenges of stream data processing or stream mining are discussed. We will give an
overview of the relevant methodologies that have been developed in the context of stream
data.

2.2.1. Challenges & Methodologies

The models and algorithms of stream data processing can be roughly divided into stream
data clustering and stream data classification. However, there are several algorithms com-
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ing from both areas that focus on optimizing the arising challenges. In this section we will
thus at first discuss the challenges of stream data classification that arise in the context of
continuous data streams, and then give an overview of the popular solutions in that area.
For each of these approaches we will discuss in how far they have addressed the introduced
challenges.

Challenges of stream data classification

1. One-pass processing constraint: The continuous growth of data in many applica-
tions leads to an extensive storage of these data on large volumes. Due to the size of
these volumes, it is impossible to allow the data mining to process data points multiple
times, instead, a one-pass processing architecture is required. The one-pass processing
constraint is already challenging for most machine learning approaches, as an optimal
classification model in most cases cannot be provided by an analytical solution of the
prediction function f : X — Y. Instead, usually optimization algorithms such as
gradient descent are required to adapt the model stepwise to a more optimal solution
through multiple passes of the data. However, there are algorithms, such as GNG, that
are capable of processing data in one-pass and thus are ideal to build upon in a stream
data scenario. In Chapter 3, we will introduce Online Growing Neural Gas (OGNG) as
a solution to this problem.

2. Evolving data: While in standard learning scenarios a fixed dataset can be assumed,
stream data often is non-stationary in the sense that it changes its distribution over
time and therefore its evolution is difficult to be predicted. The phenomena of non-
stationary data mostly appears as result of the temporal locality of the data, which
means that only small parts of the data are available at a time. Furthermore, also the
underlying categories cannot be assumed of be fixed in those scenarios. Such concept-
drift requires the classification model to quickly adapt to the new emerging categories
and their data distribution. We will discuss the different methodologies about this topic
in Section 2.4. Furthermore, in Chapter 5, we will introduce Dynamic Online Growing
Neural Gas (DYNG) to approach concept-drift and evolving data distributions in non-
stationary data.

3. Limited time: When processing stream data, only a small fraction of the theoretically
infinite corpus is available at a certain point in time. This not only requires the clas-
sification model to process each data point in one-pass, as already explained, but also
needs the whole adaptation of the model and its prediction to be fast. In particular,
adaptation and prediction should meet the speed in which new data points arrive, in
order to handle the data stream in the long term. In Chapter 3-6, we will show that
the extensions of our framework are linear in the number of data items (neurons).
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4. Limited memory: Processing a theoretically infinite data stream also requires to effi-
ciently and exclusively store necessary information, and furthermore avoid the explicit
storage of data points from the data stream. However, it is also desirable to refine
and optimize the classification model in a way that complex categories are modeled
in more detail, compared to more simple categories. As a side effect, a more compact
model also helps to speed up its adaptation and prediction time. In Chapter 3, we will
introduce online labeling and prediction strategies and experimentally show that in our
architecture the least memory demanding strategy does not significantly deteriorate the
classification performance of the model. Furthermore, in Chapter 5, we develop a neu-
ron insertion strategy that lets the classification model grow as long as its performance
increases.

5. Noisy data: Due to the nature of stream data, it is impossible to provide a super-
vision through expert knowledge about the involved categories for every data point in
the stream. Mostly, in those scenarios only a weak supervision is suitable and given by
a heuristic approach rather than a human expert, which potentially is noisy. In those
cases, partial supervision is given in many different forms, such as inter-categorial con-
straints, semi-supervision with a relatively small amount of available category labels,
delayed labeling, or even a constant supervision for only a few of the involved categories.
In Chapter 4, we will introduce the semi-supervised approach Online Semi-supervised
Growing Neural Gas (OSSGNG) that utilizes both labeled and unlabeled data for its
classification model, and furthermore quickly adapts to categories for which the labels
are given in delay. In Section 2.3 of this chapter, we will discuss approaches that focus
on these topics in more detail.

6. Visualization: In many applications the aspect of detecting trends in data streams and
visualizing their development is even more important than the classification task itself.
In order to do so, the classification model is required to be very uniformly structured
so that it can quickly be visualized on demand. In Chapter 7, we will demonstrate that
one of the main advantages of our framework is that its underlying Conceptual Map
can be visualized straightforwardly, and is useful in order to track a data stream and
to show the relation of the involved categories in a simple two-dimensional map.

In what follows, we will give a brief overview of algorithms and architectures that have
been proposed in the field and partially solve the listed challenges of data stream clustering
and data stream classification. We will also discuss in how far the algorithms address the
challenges of stream data classification.
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Stream data clustering

Clustering is a widely studied field in data mining. However, adapting arbitrary clustering
algorithms to meet the stream data clustering challenges is difficult, as the one-pass data
processing restriction contradicts their learning architecture. Stream clustering decom-
poses in two classes of algorithms: flat stream clustering and hierarchical stream clustering.
In each of those classes, algorithms have been developed trying to tackle the challenges
of life-long learning. In the following, the principles of these two classes as well as their
advantages and limitations will be discussed.

o Flat stream clustering: Approaches such as STREAM [GMMOO00] build upon
the principle of k-means. For a given set of data points and a given number of k
centroids, it partitions the data into k clusters. As the complete data set is not
available when processing stream data, STREAM is capable of solving the k-means
clustering problem incrementally, following the principle of divide-and-conquer in
order to partition the data into n small data subsets. The size of those subsets
depends on the available memory and can be extended at any time. STREAM then
uses the n x k clusters as input for the next clustering iteration as shown in Figure
2.2 (left). The advantages of STREAM lie in its ability of processing an infinite
stream of data in one-pass while generating a compact model that consists of k
prototypes which represent the current clusters distribution of the data. STREAM
thus contributes to the Challenge 1, Challenge 3 and Challenge 4 according to our
list of challenges. However, its still limited due to its requirement of a predefined k
which cannot be given in a life-long learning setting.

o Hierarchical stream clustering: Hierarchical stream clustering approaches, such
as BIRCH [ZRL96], provide a non-flat representation of the underlying data. The
advantage of such a structure lies in its independence of a predefined fixed number of
clusters. BIRCH provides an architecture that it is based on Cluster Features (CF)
[ZRLI6] which consist of tuples CF; = (N;, LS?,SS7?), with N; being the number,
LS? being the linear sum and S'S7 being the square sum of all processed data points
at iteration 7. Cluster features are usually organized in a height-balanced CF' tree
as illustrated in Figure 2.2 (right), and depend on a branching parameter B and
a threshold 7. Thereby, T defines the maximal radius allowed for each CF-based
subcluster. The most interesting aspect of CF, besides its compact representation,
is its additive property. Assuming C'F} = (Ny, LST,SST) and Cy = (Ny, LS3,555)
being initial leaf nodes. According to the additive property, a cluster C'F3, which
includes C'Fy and C'F;, is then defined as CF3 = (N7 + No, LST + LS}, SST + 555).
The BIRCH algorithm makes use of cluster features and starts its procedure with
building a CF tree using the available memory, in a first step. It then scans the
leaf nodes and removes outliers, in order to provide a more memory efficient model,
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in a second step. In a third step, an existing clustering approach (often HAC) is
applied to the CF nodes in order to not be effected by the order of which the data
is presented. Other closely related approaches such as DenStream [CEQZ06] and
SDStream [RM09] make use of an extended version of CF called Micro-Cluster (MC),
which also include the sum of timestamps LS! and the sum of squared timestamps
SS* into its vector to MC; = {N;, LS¥, SS¥, LS!, 5S4}, These additions allow the
creation and recall of temporal snapshots in which the actual data distribution gets
stored, relying on the additive and subtractive property.

However, all of those algorithms share the advantage of cluster features/micro-
clusters, in particular, its compact representation and its additive/subtractive prop-
erty that allows to merge, extend and recall clusters by simple addition or subtraction
of the CF/MC. The algorithms thereby avoid the need of multiple scans of the ac-
tual data and thus scan the data in an online phase and process CF/MC in an offline
phase. BIRCH and the CF/MC related approaches thus focus on Challenge 1, Chal-
lenge 3, and Challenge 4. Due to its additional clustering in the third step, BIRCH
also contributes to Challenge 5 as it increases the insensitivity of BIRCH towards
noisy data.

Small-space Cluster-feature tree

k-clusters

0(k) | 0(k) 0(k)

Figure 2.2.: Principles of stream clustering algorithms (left: STREAM, right: CF tree).

Stream data classification

The problem of classification is probably the most widely studied topic in data mining and
stream data mining. Also in this field the adaptation of standard classification algorithms
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is difficult, especially due to the one-pass restriction. However, there are some extensions of
existing classification approaches, as well as extensions of clustering approaches, which have
been successfully applied to stream data classification problems. Some of those algorithms
will be discussed in what follows. Another important challenge for stream classification
can be found in non-stationary data streams. As mentioned before, we will discuss this
topic in Section 2.4 of this chapter. In this section, we distinguish between three common
groups of data stream classification algorithms as follows:

o Approaches based on existing classification models: To some extend existing
classification approaches have been modified in order to serve as a classification model
for stream data. Very fast decision trees (VFDT) [YFSW12| are a good example of
such approaches, as they incrementally build a decision tree by adding and splitting
tree nodes depending on a small amount of the incoming stream data. The algorithm
builds upon the principle of a Hoeffding tree (HT) and thus grows by holding the
so called Hoeffding bound, which stands for the information gain of each attribute.
The most interesting aspect of the algorithm is the fact that it performs a training
and prediction process simultaneously. While traversing through the tree in order
to determine the most similar leaf node, it splits nodes depending on accumulated
statistics. The main disadvantage of this approach lies in the fact that the Hoeffding
bound is required to be estimated from a given dataset which thus needs to be stored.
According to our list of challenges, VFDT solves Challenge 3 and Challenge 4, but
cannot fulfill Challenge 1 according to the determination of the Hoeffding bound.

« Approaches based on stream clustering: Also stream clustering algorithms have
been extended to classification tasks. One commonly used stream classification ap-
proach is called On-demand-classification [AHWYO04]. This architecture is based on
the concept of micro-clusters, which have been explained previously in this section.
Besides their additive property that helps to quickly merge clusters, they also ensure
a subtractive property. This property allows to quickly retrieve micro-clusters from a
requested time window /snapshot. Then the nearest neighbor determines the predic-
tive cluster. This means that in a classification task one process constantly clusters
the available data into a tree of micro-clusters, while a second process can make a
prediction for unseen data points using the subtractive property. While on-demand-
classification is very fast, its performance is highly dependent on the horizon of the
micro-cluster tree. In case of non-convex categories, a high granularity of the cate-
gory representation for those categories is required. The horizon of the micro-cluster
tree then highly effects the classification performance.

« Novel Approaches: Another widely used algorithm is LWClass [CKMS03], which
is based on the Algorithm Output Granularity. The interesting fact about this algo-
rithm is that it uses the complete available memory in order to build a matrix that
summarizes the original data. Each row holds a category, a contribution weight and
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Ay As e A, Category Weight
Value(Ay) | Value(Az) | ... | Value(A,) @ Category label = X = #items contributing

Table 2.1.: Schema of a LW(Class Matrix.

the averaged attributes of the input data, as shown in Table 2.1. A predefined thresh-
old is responsible for the clustering, as all data points are assigned to the category
to which their Euclidean distance is below the threshold. Thereby, the contribution
weight is increased or decreased depending on a matching or mismatching label. Un-
seen data points are then predicted by the weighted majority label of the k£ nearest
neighbors. Thereby, the contribution weight marks the relevance of the specific row
and thus influences its vote. The main disadvantage of this architecture lies in the
predefined clustering threshold and the parameter k. While in principle the adaptive
weights in each row of the matrix are similar to the weights for each neuron, the
clustering requires a quantization threshold which is difficult to be provided in an
evolving stream data setting. Also the determination of a fixed k for the prediction
seems impossible in a changing environment.

2.2.2. Domain-specific solutions

In recent years, there have been approaches in statistics, machine learning and data mining,
which focus on the online classification of data streams. Especially, in the e-business sector
they help organizations to perform market analysis, monitoring, predict future trends/be-
haviors and make pro-active knowledge driven decisions. Tools such as the Social Media
Matrix [KKK12] and the CLOUDwerker [KKK12]| have been developed in order to coor-
dinate and support social media activities of business companies. Conventional Online
Analytical Processing (OLAP) [CD97] and data mining models have been extended in
order to be capable to process large data streams, with the goal of capturing trends and
patterns in the data and furthermore visualizing them. However, a lot of expert knowledge
is necessary in order to use those systems, besides the fact that they need to be adjusted
for every task individually. A system would be desirable that fulfills the requirements of
stream data classification and does not depend on such expert knowledge.
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2.3. Learning with weak supervision

In recent years, there has been substantial work in the area of semi-supervised learning,
both in the context of classification and clustering tasks. Those approaches have been suc-
cessfully applied to a number of applications such as text classification, pattern recognition
and medical diagnosis [Joa, Zak08 CBV11]. In the following, we will give an overview
of the different classes of algorithms coming from semi-supervised learning, as well as de-
scribing the data assumptions that are necessary in order for semi-supervised learning to
be successfully. In the end of this section, we will furthermore discuss the general scope of
weak supervision and late labeling as one special case of it.

2.3.1. Categories of SSL Methods

One can distinguish between three main classes of semi-supervised learning approaches:
Generative Models, Low-Density Separation and Graph-based Methods. In what follows,
we will describe those classes and, in particular, describe popular approaches belonging to
them.

o Generative models: Generative models involve the estimation of the conditional
density p(z|y), with p(z) being the density of the input space and p(y) being the
density of the category label space. Typically, the EM algorithm is applied to
estimate the parameters of the Gaussian distribution for each category. Existing
semi-supervised extensions of GNG [Zak08§], in fact, build on the EM principle and
thus process labeled and unlabeled data in two separate steps. Approaches such as
SSGNG and Co-Training proposed by Blum et al. [Blu98] belong to this class of
semi-supervised learning approaches. In contrast, our approach relies on a single
(online) step that predicts labels for new examples and incorporates them into the
existing model on-the-fly.

o Low-Density Separation: Approaches based on a Low-Density Separation such
as Transductive SVM (TSVM) [Joa] make use of the unlabeled data to iteratively
maximize the margin using labeled and unlabeled data points. Therefore, the TSVM
is initially trained with only labeled examples and increases the amount of unlabeled
data points iteratively.

« Graph-based Methods: The third class of semi-supervised learning algorithms are
Graph-based Methods (see Belkin et al. [Bel04]). These approaches organize labeled
and unlabeled data points as nodes in a graph. The edges in the graph represent the
similarity between the single nodes and are thus labeled with the distance between
them. Missing distances are typically approximated by the minimal aggregated path
over all paths connecting those two nodes.
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2.3.2. Data assumptions

In this subsection we will describe the data assumptions according to Chapelle et al.
[Cha06], which are required to be fulfilled for semi-supervised learning to be effective.
These assumptions are in particular the semi-supervised smoothness assumption, the cluster
assumption and the manifold assumption.

Semi-supervised smoothness assumption

o Semi-supervised Learning assumption: If two points z1, x5 in a high-density region
are close, then so should be the corresponding outputs 1, yo.

This assumption addresses the relation of the data points x1, z2 in feature space and their
classes y1, y» in the category space. It implies that category space and feature space form
a similar manifold.

Cluster assumption

o Cluster assumption: If points are in the same cluster, they are likely to be of the
same class.

Similar to the semi-supervised learning assumption, this assumption demands the similar-
ity of the two manifolds. However, this assumption even goes further as it demands the
decision boundary to lie in a low-density region. It should be mentioned that this does not
imply that each category is only represented by one cluster.

Manifold assumption

o Manifold assumption: The (high-dimensional) data lie (roughly) on a low-dimensional
manifold.

The last assumption demands the data to not be effected by the “curse of dimensionality”
[Bel56]. In this case, the curse of dimensionality refers to a phenomena that data orig-
inating from a high-dimensional feature space cannot to be reasonable represented in a
low-dimensional manifold. As a consequence, the increase of dimensions causes a (often
exponential) growth of the number of representatives in the model.
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2.3.3. Weak supervision and late labeling

Learning with weak supervision has recently become a topic of interest in the machine
learning community. A lot of frameworks are emerging since, including Semi-supervised
Learning [Zak08, ZSH13|, Constrained-based Clustering [BBDOO0], Multi-instance and Multi-
label Learning [ZHM'08], Transfer Learning [JTC11] and Multi-task Learning [EPOT7], just
to name a few. As the discussion of all of those frameworks is out of scope for this thesis,
we focus on semi-supervised learning and late label learning as two scenarios within the
area of weak supervision.

In many applications, such as stream data classification, only a small amount of supervision
in form of category labels is available. The learning algorithm therefore is required to
mostly learn without such labels during its learning process. In those cases, it is desirable
that the learning algorithm can utilize the already learned patterns of the category, instead
of relearning an already learned category from scratch after encountering the first label of
it which is given in delay. We consider late label learning as a scenario in which categories
are presented to the learner without an explicit label for the involved category. Those
labels are given at a later point in time during the learning process. The challenge is to
make use of those delayed given labels while assigning them to the correct category, and
furthermore utilizing the already learned structures of the category in order to quickly
generalize over them.

2.4. Learning with non-stationary data

In this section, we will focus on the topic of non-stationary data and concept-drift. Al-
though this topic is very important for the domain of stream data and life-long learning in
general, it is not addressed by many stream data classification algorithms. Especially the
algorithms described in the previous section (Section 2.3) are not capable of following a
changing data and category distribution. At first we will describe the challenges and then
discuss some of the most relevant approaches in this field. Furthermore, we will discuss
approaches which have been inspired by biological learning models and solve the prob-
lem of non-stationary data by providing a two-level memory-layer, including a short-term
memory (STM) and a long-term memory (LTM).

2.4.1. Challenges & Methodologies

In what follows, we highlight some challenges which partially have been addressed in the
previous section, but this time with an emphasis on the aspect of concept-drift.
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Challenges of non-stationary data

1. Concept-drift: Many existing classifiers are not capable of handling the phenomenon
of concept-drift, in which basically the relevant set of relevant categories changes over
time. A changing category-distribution typically is connected to a change in the un-
derlying data distribution as well. While some algorithms are potentially capable of
adapting to non-stationary data, many algorithms such as STREAM assume the num-
ber of categories to be fix and given, which usually is not possible in such data.

2. Efficency: The creation and update of a classification model for non-stationary data
can be complex and complicated due to the concept-drift. The classification model
needs to remain simple in the sense that it can quickly be adapted and evaluated while
following non-stationary data, in order to keep up with the data stream in a life-long
learning process.

3. Plasticity and stability: When quickly adapting to non-stationary data and concept-
drift, the classification model is required to retain its stability towards generalization
over the already learned data and to avoid overfitting. A balance between the learning
flexibility of the model and its robustness is required.

In Chapter 5, we will introduce Dynamic Online Growing Neural Gas (DYNG) as a solu-
tion to these problems, as DYNG is capable of processing non-stationary data for which
the concepts drift. We will furthermore show that DYNG provides a better solution to
the plasticity-stability dilemma than existing GNG-based approaches for non-stationary
data.

Classification of non-stationary data

The first classifier framework we will have a look at is Ensemble-Based Classification
[WFYHO03]. Ensemble-based approaches have become quiet popular in machine learning,
as they can be applied to a wide variety of applications. The main idea of the framework is
to combine a number of classifiers C'lassy, Classs, ...Class,, in a weighted linear combina-
tion EClass(x;) = wiClassy(x;) +waClasss(x;) + ... +w,Class,(x;), so that each classifier
Class; contributes to the overall output when evaluating the input z;. As proposed by
Wang et al. [WFYHO03]|, each of the weights is dynamically adapted according to the in-
dividual performance of the single classifier. They thus change over time and lead to a
higher robustness of the classifier. Although the approaches partially address Challenge
1 and Challenge 3, they are limited in the sense that their efficiency is highly dependent
on the used classifiers. Furthermore, the selection of classifiers and their number is highly
task-dependent. It is desirable to provide a more uniform and generic structure which
bypasses the requirement of a domain-specific selection of classifiers.
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The second approach which we will discuss was proposed by Last and is called Online
Information Network (OLIN) [Las02]. This online classifier consists of a tree-based Info-
Fuzzy Network (IFN) classification model, and relies, in contrast to standard decision trees,
on the conditional mutual information of the given data and their corresponding categories.
However, the main idea of OLIN is to rebuild the classification model depending on a
classification error rate. This error rate increases or decreases the window size of OLIN,
depending on its stability. In other words this means that OLIN always uses the most
recent data to rebuild its classification model. As soon as it gets more stable, the error
rate decreases and the window size increases, for which the model is rebuilt less frequently.
OLIN addresses Challenge 1, but there are several issues with Challenge 2 and Challenge 3.
First of all, depending on the frequency for which a concept-drift occurs, OLIN will remain
unstable. This sensitivity towards non-stationary data makes it less robust and it is valid
to claim that OLIN is imbalanced in terms of the plasticity-stability dilemma. Another
disadvantage of OLIN is the fact that the complete model is rebuilt frequently. This
requires the explicit storage of data according to the window size, which if not regulated
leads to inefficiency in memory and processing time. In Chapter 5, we will show that our
approach DYNG gradually grows without the requirement of recreating the classifier, and
furthermore does not require the explicit storage of input data.

2.4.2. Layering of memory

In this section, we will address another closely related concept of dealing with the plasticity-
stability dilemma, which mostly can be found in the area of Cognitive Robotics [BDFS10,
RP02, KWKO05|. The algorithms coming from that research field share the two-layered
memory architecture that consists of a short-term memory (STM) and a long-term memory
(LTM). Both of the memory structures are sequentially connected in the sense that the
STM quickly adapts to new evolving categories and data then manifests in the LTM over
time.

These approaches usually share the fact that the STM provides a rapid mapping between
the sensory input and a categorial concept. This mechanism is also known as fast mapping
in cognitive science. The LTM then builds upon the mappings coming from the STM in
order to manifest categories in the model over time. In the work of Bellas et al. [BDFS10],
an autonomous agent incrementally builds up three different memories, i.e. World Model
Memory, Internal Model Memory, Strategy Memory in order to interact in a changing
environment. The agent performs actions in the environment and perceives a feedback
coming from the environment. Those action-perception pairs are stored in the STM and
then further processed in the LTM, which basically is formed by the three memory types.
Roy and Pentland [RP02], approach the topic of Symbol Grounding [Har90] in their work
when building a system that anchors word meanings to audio-visual events relying on a
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STM and LTM. Thereby, the STM stores the pairings of spoken utterances and audio-
visual events. The LTM then builds upon those prototypical hypotheses and generates
a dictionary of lexical items and corresponding audio-visual events, based on the mutual
information of the pairings of the STM. Kirstein et al. [KWKO5] introduce a hierarchical
approach to learn objects from visual features. The hierarchical approach is based on
shape and color features and extracts and stores template vectors out of the images in the
STM, of which show the object in multiple views. The LTM then adapts object prototypes
based on the vectors of the STM by using an Incremental Learning Vector Quantization
approach [XFHZ09.

In Chapter 5, we will discuss the implicit two-layered memory architecture of DYNG.
DYNG also features a STM and a LTM, with the difference that those memory structures
are not explicit and manifest in the different neuron insertion and removal strategies.
DYNG thus keeps its uniform architecture that is beneficial in life-long learning settings,
as already discussed.

2.5. Learning with multi-view data

With the rapid growth of multimedia data, multi-view learning algorithms become more
interesting. In traditional multi-view learning, the feature vector of a domain is composed
by disjoint feature subsets (views) that are sufficient to learn a target category. Thereby, it
is assumed that the views are conditionally independent, which basically means that given
the label of any example its description in each view is independent of each other. As each
view is assumed to be sufficient to learn the target category, the multi-view challenge can
also bee seen as a semi-supervised learning task in which the labels are only partially given.
Probably the most famous algorithm in that area is Co-Training as introduced by Blum
& Mitchel [BM98]. Co-Training is a semi-supervised two-view classification which trains a
classifier per view using labeled and unlabeled data, by combining the classifiers category
hypothesis in order to improve each individual classification performance. Therefore, a
(weak) classifier is initially trained with the labeled data in each view and then applied
to the unlabeled data. The most confident predictions of a view are then added as newly
labeled examples to the other view to iteratively improve each classifier. A prediction
is then performed by a combined category voting coming from both classifiers. Another
closely related approach is Co-EM proposed by Nigam & Ghani [NG00]. While it follows
the same principles, in each view an EM algorithm is applied as classifier. The main
difference of Co-EM compared to Co-Training is the fact the Co-EM does not commit to
a label for unlabeled data points, but instead relies on probabilistic labels. In order to
maintain the assumption of conditional view independence, Christoudias et al. [CUDI12]
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introduce a multi-view learning framework which detects view disagreements and filters
the corresponding data points before applying a standard multi-view learning algorithm.

However, we extend the traditional multi-view learning challenge in that we allow each
view to be part of a different domain, including multiple labels for each data instance. As
a result, the conditional independence of each view cannot be assumed anymore. Instead,
in our scenario each view can be seen as unique property describing the data instance.
This also changes the learning task, as we do not predict a single label but a set of labels
for each instance instead. In Chapter 6, we will introduce Multi-view Online Growing
Neural Gas (VONG) as an online classifier which is capable of learning with multi-view
data and predicts a label for an unseen data point per view. We will show that VONG
outperforms similar multi-view approaches on a dataset for which the views are completely
uncorrelated, as well as for a dataset in which they are partially correlated.

2.6. Summary

In this section, we have given an overview of the different challenges of life-long learning, as
well as over topological feature maps. In particular, we discussed the Growing Neural Gas
algorithm as part of the topological feature maps family, and also discussed its growing
Hebbian learning-based architecture. We described existing extensions of GNG which aim
on increasing its robustness, as well as extending it to be capable of processing labeled data,
weakly labeled data and non-stationary data. Furthermore, we discussed the challenges of
learning with continuous streams and provided an overview of the most commonly used
stream clustering and stream classification algorithms. We also discussed some domain-
specific solutions that have been established in e-business in recent years. We explained
the different classes of semi-supervised learning algorithms and described data assumptions
that are usually required for those algorithms to be effective. As a meta challenge to semi-
supervised learning, we discussed weak supervision and introduced the special case of late
label learning. We furthermore gave an overview of challenges and algorithms coming
from the area of non-stationary data and involving concept-drift. Thereby, we explained
the plasticity-stability dilemma and described biologically inspired algorithms that provide
a short-term and long-term memory. In the last part of this section, we discussed the multi-
view learning challenge and furthermore extended this problem.
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Chapter

Classification of continuous data streams
based on OGNG

In this chapter, we introduce the Online Growing Neural Gas (OGNG) algorithm, in or-
der to extend Growing Neural Gas (GNG) [Fri95] to a classifier that is capable of learning
from continuous data streams. GNG has been successfully applied to unsupervised learning
problems. However, GNG-inspired approaches can also be applied to classification prob-
lems, provided they are extended with an appropriate labeling function. Most approaches
along these lines have so far relied on strategies which label neurons a posteriori, after
the training has been completed. As a consequence, such approaches require the training
data to be stored until the labeling phase, which runs directly counter to the online nature
of GNG. Thus, in order to restore the online property of classification approaches based
on GNG, we present an approach in which the labeling is performed online. This online
labeling strategy better matches the online nature of GNG where only neurons — but no
explicit training examples — are stored.

To our knowledge, there has been no systematic investigation and comparison of different
offline strategies so far, a gap we intended to fill. The question of how GNG can be extended
to an online classification algorithm has also not been addressed previously. In most cases,
offline strategies have been considered that perform the labeling after the training phase
has ended and the network has stabilized to some extent as in the WEBSOM [KT00, LK99]
and LabelSOM [Rau99] approaches. In both of these approaches, the label assignment is
essentially determined by the distance of the labelled training datapoint to the neurons of
the already trained network. Such offline labeling strategies contradict the online nature of
GNG, whose interesting properties are that the network grows over time and only neurons,
but no explicit examples, need to be stored in the network. As the main contribution, it
will be shown that online labeling strategies do not deteriorate the performance compared
to offline labeling strategies.
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Chapter 3. Classification of continuous data streams based on OGNG

3.1. Challenges

In a classification task a model M is trained to provide a solution for the function f :
X — C, with X being the feature input space and the corresponding category space C.
Thereby, M estimates the conditional density p(X|C') with p(X) being the density of the
feature space and p(C) being the density of the category space. The function f can be
seen as prediction function for a stimulus x; € X for which no corresponding category
label ¢; € C' of the category space is given. In stream data classification tasks, however,
X and C are only given by the subsets X! C X and C* C C at a certain point in time
t during the learning progress. This causes the learning algorithm to incorporate X! and
C! for t = 1...n, with n not being fixed. In the following we will focus on the challenges
that arise out of this stream data classification scenario:
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e One-pass data processing: Many incremental learning algorithms incorporate new

data in a batch learning mode, in which every z; € X! is processed in multiple passes.
This requires the explicit storage of one or more X' (and their corresponding C*) and
is unsuitable for stream data classification. Instead, data should be processed in one
pass in order to scale up to complex stream data classification tasks. While GNG is
capable of processing data points z; € X' in one-pass, mechanisms are required to
process the corresponding category information.

Online updates: The immediate processing of X! in one-pass causes the model
to adapt stepwise as well. The adaptation of the GNG network is based on the
hebbian learning rule and performed multiple times (for winner neurons n;, ny and
the topological neighborhood of n;) in every iteration step. In order to update
the classification model based on GNG, category labels coming from C! should be
assigned to the neurons stepwise, according to the models current estimate of p(X|C').

Fast response/prediction: Online updates of the classification model allow the
classifier to predict unseen data points or i.e. x; € X' for which no corresponding
¢; € C' are given at any point in time. However, in order to provide a fast prediction,
the model needs to be simple in the sense that it can be evaluated quickly and deliver
a ¢; for an unseen x;. GNG provides an architecture in which the winner neuron n; to
an input stimulus z; can be determined in O(n) with n being the number of neurons
included in the GNG network. In order to make use of this model architecture in
classification terms, prediction strategies are required that can deliver a category
label in O(n) as well.



3.2. Contributions

Growing Conceptual
Maps Framework

Figure 3.1.: Online Growing Neural Gas (0GNG) as component of the GCM framework.
L] (]
3.2. Contributions

In this chapter, we present and evaluate several strategies allowing to perform the labeling
on-the-fly, thus extending GNG to an online classification algorithm. We compare these
strategies to several offline strategies that have been proposed in the literature and examine
in particular whether an online labeling strategy can compete in terms of performance, i.e.
classification accuracy, with an a posteriori labeling strategy. In fact, we show on four
datasets (two artificial and two standard datasets) that an online labeling strategy does
not perform significantly worse compared to an offline labeling strategy. We instead show
that for one of the artificial datasets, i.e. SPIRALI1, we achieve better results than a linear
multi-class SVM.

In particular, we offer the following contributions:

« Offline labeling strategies: We systematically evaluate different offline labeling
strategies for GNG in a classification task.

e Online labeling and prediction strategies: We extend GNG by an on-the-fly
labeling and prediction step that allows us to extend GNG to an online classification
algorithm.
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o Comparison of online and offline labeling: We present and systematically ana-
lyze a number of online labeling strategies and compare them to the offline labeling
strategies, showing that they do not deteriorate the performance of a classification
approach based on GNG.

« OGNG and SVM comparison: In order to compare our approach to a standard
classifier, we compare OGNG with a linear multi-class SVM and show that OGNG
delivers a comparable performance and even outperforms the SVM on two dataset.

« Category guided topology: We will compare OGNG to a OGNG variation (OGNG'?)
which adapts its network topology according to the underlying category distribution,
in order to show in how far the connection of neuron distribution and category dis-
tribution effects its classification performance.

This chapter includes parts which have already been presented and published at the In-
ternational Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
[BC11a] in 2011, as well as in the International Journal of Neural Systems [BC12] in 2012.

3.3. Classification with GNG

In order to apply self-organizing approaches to classification problems, two extensions are
necessary: i) a function which assigns labels to neurons and ii) a function that performs the
prediction on unseen datapoints. So far, mainly offline labeling strategies which require
the explicit storage of labelled training data have been considered for the first case [Hyo96,
Rau99, LK99, LK06, LGO08]. They perform the assignment of labels to neurons a posteriori,
after the training phase has been ended. The difference between an offline GNG-based
architecture compared to an online GNG-based architecture is depicted in Figure 3.2. In
the upper image, we see the offline architecture and that the data is required to be stored
in a data buffer. The GNG network is then trained with this data buffer in multiple passes
afterwards. In case of the online GNG-based architecture, no additional memory storage
is required as each datapoint is processed immediately in one-pass, as shown in the lower
image.

Another important requirement for a GNG classifier in general is the ability to assign
labels to unseen data points and thereby predict the class of the new datapoint according
to the learned network model. While this step does not differ in the online and offline
classifier version, it is important to stress that only the online architecture is capable of
predicting new data on-the-fly. This is crucial in many life-long learning applications, as
it allows the classifier to make a prediction even during the processing of new data at
any time. The offline architecture, instead, requires the model to finish its training phase
before prediction.
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GNG classifier

Offline schema Online schema

Figure 3.2.: Simplified offline vs. online GNG-based architecture.

In the following, standard offline labeling strategies for GNG are defined, which can be
found in the literature. Additionally, we define prediction strategies that have been inspired
by cluster analyses.

3.3.1. Offline labeling strategies

In order to apply GNG to a classification task, most approaches in the literature extend
the algorithm by two functions. A neuron labeling function [ : N — C where C' is the set
of category labels, and a prediction function f : X — C where X is the input space. We
analyze the following offline neuron labeling functions as proposed by Lau et al. [LKO06].
They are offline in the sense that they assume that the pairs (z,[,) with * € X5 € X
and [, € C seen in the training phase are explicitly stored. The offline labeling strategies
are depicted in Figure 3.3.

Minimal-distance method (min-dist)

In this first offline strategy, the label of the presented stimulus is simply assigned to
the closest neuron in the network. It is the most commonly used labeling strategy for
topological feature maps in general. According to this strategy, neuron n; adopts the label
[, of the closest datapoint x € X qin:

Lnin—dist(ni) =l = l(arg min |n; — x|2)
xeXtra,in
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Figure 3.3.: Offline GNG-based labeling strategies.

Average-distance method (avg-dist)

The second strategy differs compared to min-dist in that the label of a neuron is determined
by taking all data points of one category into account, instead of just the closest. Therefore,
it would not be possible to transfer this strategy into an online version, as the complete
training data is required. According to this strategy, we assign to neuron n; the label of
the category c that minimizes the average distance to all data points labelled with category
c:

X (c)] in; — a2
Loy fdist(ni) = arg min =
’ e Z X (c)]

where X (¢) = {x € Xyrain | [(x) = ¢} is the set of all examples labelled with c.

Majority method (majority)

For the last offline labeling strategy, the neurons of the neural network divide the input
space into a Voronoi tessellation. Thereby, each neuron represents the center of a Voronoi
cell, as shown in Figure 3.3. According to this strategy, we label neuron n; with that
category ¢ having the highest overlap (in terms of data points labelled with ¢) with the
data points in the Voronoi cell for n;. We denote the set of data points in the Voronoi cell
for n; as v(n;) = {& € Xipain | Vnj,7 # i : |nj — x> > |n; — x*} within the topological
map, i.e.

lmajority(ni) = argmax |D(C) N U(nl>|
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Figure 3.4.: Cluster analysis inspired GNG-based prediction strategies.

3.3.2. Prediction strategies for GNG

In addition to the neuron labeling strategy, we need to define prediction functions that
assign labels to unseen examples. These prediction strategies are inspired by linkage
strategies typically used in cluster analysis (see [Joh67, And73, Sne73]) and depicted in
Figure 3.4.

Single-linkage

In this prediction strategy a new datapoint z,, is labelled with that category c of the
neuron 7 that minimizes the distance to this new example:

préedsingte(Tnew) = argmin(arg min |n — Tnew|?)
c neN(c)

where N(c) = {n € N |l(n) = c} is the set of all neurons labelled with category c
according to one of the above mentioned neuron labeling function.

Average-linkage

In this strategy, example x,., adopts the label of category ¢ to which neurons having the
minimal average distance to the example:

[N (c)] ’nk — ’2
predaverage (J:new) = arg mcll’l( Z TC;TU)
k=1
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Complete-linkage

In this prediction strategy a new datapoint z,., is labelled with category ¢ of the neuron
n that minimizes the maximal distance to this new example:

Préedeomplete(Tnew) = arg min(arg max |n — Tnew|?)
c neN(c)

3.3.3. Limitations of batch learning

There are several disadvantages to these strategies. For example, offline labeling strategies
assume that there is a definite end of the training phase after which the labeling can be
performed. This is of course not the case in life-long learning scenarios in which training
and prediction are interleaved. Using offline labeling strategies, we are not able to perform
predictions for unseen examples in every iteration step, which is the crucial characteristic
of online classification approaches. In the area of cognitive systems engineering, the online
nature of learning processes is crucial in order to learn complex behaviors incrementally
and continuously [SJ06]. Another disadvantage of offline labeling strategies is the fact that
they directly run counter to the online nature of GNG, as training examples are stored
explicitly.

3.4. Online Growing Neural Gas (OGNG)

In contrast to offline classification with GNG, as presented in the previous Section 3.3,
we present Online Growing Neural Gas (OGNG) as online solution and implementation of
the mentioned online architecture from Figure 3.2. OGNG performs a clustering on the
input data and additionally assigns category labels to neurons, as shown in Figure 3.5.
The resulting classification network is then capable of predicting category labels for new
data points on demand.

3.4.1. Online labeling strategies for GNG

In order to extend GNG to an online classification algorithm, we extend the basic GNG by
a step in which the label of the presented stimulus is assigned to the winner neuron during
the learning process. We denote the winner neuron for datapoint x by w(x). All prediction
strategies are local in the sense that they do not consider any neighboring neurons besides
the winner neuron w(x). As the labeling is performed on-the-fly, the label assigned to a
neuron can change over time, so that the labeling function is dependent on the number of
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Stream of data OGNG stream data processing Category prediction
— . ) 0 (ny, ©)
Data tupel Predicts new data points
(x;, ) Data clustering and label assignment (x;, @)

Figure 3.5.: Online Growing Neural Gas (0GNG) processing pipeline.

freqt(D,nj)=12

OGNG Net OGNG Net OGNG Net

relabel freq limit

Figure 3.6.: Online GNG-based labeling strategies.

examples the network has seen and has the following form: [ : N xT — C. We will simply
write [;(n;) to denote the label assigned to neuron n; after having seen ¢ data points. The
online labeling strategies are depicted in Figure 3.6.

Relabeling method (relabel)

According to this very simple strategy, the winner neuron w(z) adopts the label of z:

Letaper (1) = Loy where n; = w(x)

Frequency-based method (freq)

We assume that each neuron stores information about how often a datapoint of a certain
category has been assigned to n; after ¢ examples have been presented to the network as
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Chapter 3. Classification of continuous data streams based on OGNG

freg(c,n;). A neuron is labelled by the category which maximizes this frequency, i.e.

l}req(ni) = arg max freqc,n;)

Limited-distance method (limit)

According to this strategy, the winner neuron n; = w(z) adopts the category label [, of the
datapoint z if the distance between them is lower than the adaptive distance 6;(n;) of the
neuron n;. In case of a smaller distance, 6;(n;) will be updated with the new distance.

lfi:nlit(ni), else

lfimit (n;) =

As these labeling strategies do not guarantee that every neuron in the network is actually
labelled, we need to extend the prediction strategy to handle unlabelled neurons. For the
presented prediction strategies we simply ignore unlabelled neurons during the prediction
state.

3.4.2. OGNG Algorithm

In the following we will describe the single steps of the OGNG algorithm. The complete
algorithm is shown in Algorithm 3.4.2.

1. In the first step, the algorithm starts with two neurons, randomly placed in the
feature space.

2. The first stimulus € R™ of the input space (first training example) is presented to
the network.

3. The two neurons n, and ny which minimize the Euclidean distance to x are identified
as first and second winner.

4. A label is assigned to n;. This labeling depends on the labeling strategies
discussed in Section 3.4.1

5. The age of all edges that connect n; to other neurons is increased by 1.

6. In this step, the local error variable error(ny) of n; is updated. This error variable
will be used later in order to determine the location for a newly inserted node.

L6
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7. In this step, ny and its topological neighbors are adapted towards x by fractions e,
and e, respectively.

8. A new connection between n; and ns is created and the age of the edge is set to 0.

9. All edges with an age greater than a,,,, as well as all neurons without any connecting
edge are removed.

10. Depending on the iteration and the parameter A, a new node n, is inserted into the
network. It will be inserted half-way between the neuron n, with the highest local
error and its topological neighbor n having the largest error among all neighbors of
ng. In addition, the connection between n, and n; is removed and both neurons are
connected to n,.

11. In this step, the error variables of all neurons are decreased by a factor 5.

12. The algorithm stops if the stopping criterion is met, i.e., the maximal network size
or some other performance measure has been reached.

Algorithm 2 Online Growing Neural Gas (OGNG)

SR e

. Start with two units n; and n; at random positions in the input space.
. Present an input vector x € R™ from the input set or according to input distribution.

Find the nearest unit n1 and the second nearest unit no.
Assign the label of z to n; according to the present labeling strategy.
Increment the age of all edges emanating from n;.

. Update the local error variable by adding the squared distance between wy,; and x.

Aerror(ni) = |wn, — |2

: Move ni and all its topological neighbors (i.e. all the neurons connected to n1 by an edge) towards = by fractions of e

and e, of the distance:
Awp, = ep(T — wny )

Awy = en(z — wp)

for all direct neighbors of ny.

: If n; and ng are connected by an edge, set the age of the edge to 0 (refresh). If there is no such edge, create one.
: Remove edges with their age larger than amaz. If this results in neurons having no emanating edges, remove them as

well.

10: If the number of input vectors presented or generated so far is an integer or multiple of a parameter )\, insert a new node

ny as follows:

Determine unit ng with the largest error.

Among the neighbors of ng, find node ny with the largest error.
Insert a new node n, halfway between nq and n 7 as follows:

Wng + wnf
Wn, = —

Create edges between n, and ng, and n, and ny. Remove the edge between ng and ny.
Decrease the error variable of ng and ny by multiplying them with a constant a. Set the error n, with the new error
variable of ng.

11: Decrease all error variables of all neurons n; by a factor 3.
12: If the stopping criterion is not met, go back to Step (2).
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Chapter 3. Classification of continuous data streams based on OGNG

Complexity in time and space

Before we discuss the complexity of OGNG, it is required to discuss GNG as OGNG in-
herits its complexity in space in time. Furthermore, it is reasonable to consider alternative
data structures for GNG in order to access data elements (neurons) more quickly. Ac-
cording to the GNG algorithm (see Algorithm 1), most operations such as the comparison
of the feature vector of a stimulus and a neuron can be applied in linear time, under the
assumption of a static feature vector. In case of a dynamically growing feature vector
(see Online Human Activity Classifier in Section 7.2) it is difficult to estimate the time
complexity which then highly depends on the factor of growth. However, a naive GNG
implementation in which neurons are stored in a linked list would require the algorithm to
consult the complete list of neurons when determining winner, second winner and neigh-
boring neurons and would result in a time complexity of O(n), with n being the number
of neurons. In contrast, a more efficient representation is given by treeGNG which we
already discussed in Section 2.1.2. Utilizing the data structure of treeGNG architecture,
which is based on a b-tree, would allow GNG to have a time complexity in average and
worst case of O(logan). As far as the complexity in space is concerned, GNG only requires
the storage of all neurons and thus provides a space complexity of O(n).

OGNG adopts this complexity in space and time as its algorithm follows the same prin-
ciples. OGNG introduces an additional neuron labeling step which for all online labeling
strategies (relabel, freq, limit) lies in O(1), as in all three cases the assignment is based
on the state of the neuron itself, in particular, its category label, its frequency (in case
of freq) and its §; value (in case of limit). For the online prediction strategies the closest
neuron to the unlabeled data point is required to be determined and thus leads to a time
complexity of O(logan). As an overall result, OGNG has a time complexity in average and
worst case of O(logan), as well as s space complexity in average and worst case of O(n).

3.4.3. A uniform two-level architecture

In the following we want to stress an important aspect of OGNG - its two-levels. It
should be mentioned that these levels are not explicitly implemented, but OGNG uniformly
combines both levels. This subsection should thus be seen as an interpretation of the
underlying principles of OGNG and not of a algorithmic architecture. However, as depicted
in Figure 3.7, OGNG implicitly consists of a feature level and a category level. The feature
level, and thus the topological structure of the OGNG network, only depends on the
distribution of the input data in feature space. The category level instead, is the result
of combining the category labels with neurons of the feature level. It is thus the result
of our labeling strategies. In a classification task, prediction strategies are applied on the
category level, as it holds both category and location information.
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Category Level

Category labels

Feature Level

Stimulus

Clustering in feature space

Figure 3.7.: The implicit two-level architecture of 0GNG.

This architecture reveals one of the main advantages of OGNG compared to existing GNG
extensions that incorporate category label information, i.e. SGNG. The independence of
the feature level allows OGNG to process labeled and unlabeled data points, in contrast to
approaches such as SGNG. In fact, when trained with unlabeled data in a clustering task,
OGNG will provide an identical clustering compared to GNG. This is an advantage, as in
many applications labels are only sparsely available and sometimes are given in delay. In
Section 3.6 we will also compare OGNG to OGNG!? a modified version of OGNG in which
the category level influences the topological structure of the OGNG network. Thereby, the
classification performance of both will be compared to show in how far the performance is
effected.

In Chapter 4, we will further investigate the incorporation of unlabeled data points for the
classification task and will also evaluate scenarios of late labeling, in which the category
label is given after the category clusters already have manifested in the feature level. We
will show that the semi-supervised approach quickly adapts to delayed given category
labels and that if furthermore benefits from a priori learned structures of such late label
categories.
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3.5. Datasets

In this section we describe the datasets used for our evaluation with OGNG. There are
two artificial datasets (SPIRALIL, ART) and two real datasets (ORL, SEG). While ORL
and SEG are standard machine learning benchmark sets, we use the dataset SPIRAL1
(and SPIRAL2) throughout this thesis in order to provide a small controlled environment
which we can adapt to the individual challenges we address with the GCM framework. In
this chapter we only evaluate OGNG on non-stream dataset to highlight and compare the
different labeling and prediction strategies in a small controlled environment. In Chapter
7 we will show the advantage of OGNG and DYNG (see Chapter 5) in a stream data

scenario.
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Figure 3.8.: Visualization of the SPIRAL1 dataset.

For this dataset we generated a two dimensional spiral as depicted in Figure 3.8. Spirals
are standard benchmark data distributions for clustering tasks and can be found in many
evaluations of clustering algorithms. SPIRAL1 is an Archimedean spiral r(¢) = a¢ with ¢
and r(¢) being the polar coordinates and a = 1 being constant. The spiral was generated
with an angle between [0 : 720] degree, uniformly divided into |C| = 10 categories (72
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degree for each category) and then normalized and translated to provide values between
[0 : 1]. For each category ¢ € C' and each angle ¢ we randomly sampled data points within
the range (z — k,y — k) — (x + k,y + k) and k = 0.047. This also causes the categories to
overlap with k = 0.047.
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Figure 3.9.: Visualization of the ART dataset.

The second artificial dataset is a two dimensional Gaussian mixture distribution with 6

categories as depicted in Figure 3.9. The centers of each Gaussian distribution are located
at A =1[0,6],B =[-2,2],C =1[2,2],D = [0,—6],E = [-2,-2],F = [2,—2]. The data

1

points of each category are Gaussian distributed N (u, 0?) = mexp{—(g_g ‘;)2} with a

standard derivation of ¢ = 1. The figure shows that each category overlap with its direct
topological neighbors as in the SPIRAL1 dataset.

51



Chapter 3. Classification of continuous data streams based on OGNG

3

Figure 3.10.: Example images of The ORL Database of Faces.

The ORL Database of Faces (ORL)

The first real dataset is The ORL Database of Faces [Sam94] base which contains 400
frontal images of humans performing different gestures. The dataset consists of 40 cate-
gories that consist of 40 distinctive subjects performing 10 facial expressions each, including
facial gestures such as opened and closed eyes, and smiling and not smiling. The images
were taken at different times with varying lightning and varying facial conditions (glass-
es/no glasses) conditions. The size of each image is 92 x 122 with 256 grey scale levels
per pixel. In order to reduce the high dimensional feature space with 92 x 122 = 11224
dimensions, we downscaled each image from 92 x 112 to 46 x 56 and thereby reduced the
number of dimensions to 2576. After that we applied a Principal Component Analysis
(PCA) [Pea01] and again reduced the number of dimensions from 2576 to 60, correspond-
ing to 86.65% of the total variance. Examples of the ORL database are shown in Figure
3.10.

Image Segmentation dataset (SEG)

The last real dataset is the Image Segmentation Dataset [Bla98]. It is a standard machine
learning dataset from the UCI Machine Learning Repository, including 2310 instances

Shttp://www.cl.cam.ac.uk/research/dtg/attarchive/facesataglance.html
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3.6. Evaluation

of 7 categories with 19 attributes. The features have been extracted from 7 outdoor
images, showing the textures ‘brickface’, ‘sky’, ‘foliage’, ‘cement’, ‘window’, ‘path’ and
‘grass’. Each instance corresponds to a 3 x 3 pixel region with one of the 7 images. For
those pixel regions 19 attributes have been derived, including various RGB-based mean
values (raw color channel) as well as saturation, hue, intensity means and horizontal and
vertical contrast of adjacent pixels. The images were hand-segmented in order to prohibit
additional noise.

3.6. Evaluation

In this section we evaluate all introduced labeling methods and prediction strategies to
analyze and compare the different possible online and offline GNG-classifiers. Furthermore,
we will compare the best offline and online version of the GNG-classifier to a linear multi-
class SVM, in order to show how its classification performance scales up against a long
time established classifier. We also compare OGNG to an alternative version of OGNG
(OGNG™?), in which the category labels influence the networks’ topology.

3.6.1. Parameters & OGNG'”

In order to compare the different labeling strategies to each other, we chose a fixed set of
parameters for GNG and used this set in all of our experiments. This set was empirically
determined on a trial-and-error basis through preliminary experiments. The GNG parame-
ters are set as follows: insertion parameter A = 300; maximum age @, = 100; adaptation
parameter for winner e, = 0.1; adaptation parameter for neighborhood e,, = 0.0006; error
variable decrease a = 0.5; error variable decrease § = 0.0005 and allowed a maximum
number of neurons n,,,, = 120. Throughout all of our experiments in this thesis with
the different components of GCM, we found the GNG parameters to be very robust and
therefore only adjusted A, a4, and n,,4,, while leaving the rest of the parameters fix.

For the SVM we chose a multi-class SVM with a linear kernel. As the SVM is a binary
classifier, a multi-class classification problem involves the use of an SVM ensemble in order
to set the classes apart of each other. We trained the SVM in a one-vs-all manner, which
means that one SVM per class is created and trained with data of that category as positive
example and data from any other category as negative example. The multi-class SVM then
predicts the class having the highest confidence. It should be mentioned that we relied on
the common SVM library 1ibSVM [CL11] and did not implement the SVM ourselves.

In order to experimentally evaluate in how far a connection of the two layers, as de-
scribed in Section 3.4.3, influences the classification performance of OGNG, we developed

53



Chapter 3. Classification of continuous data streams based on OGNG

OGNG?. The algorithm is a variation of OGNG in which we included an additional Step
10b (compare to Algorithm 2). In Step 10, as shown in Algorithm 3, we simply connect
neurons n;,n; € N which share the same label and disconnect those which are labeled
differently.

Algorithm 3 OGNG'” (additional Step 10b)
1: for all n;,n; € N with n; # n; do

2. if I*(n;) = "(n;) then

3 connect n;, n; with an edge (if they are not connected yet).

4:  else

5: remove the edge that connects n; and n; (in case they have been connected before).
6: end if

7. end for

3.6.2. Experiments & Results

For the experiments with OGNG we evaluated the different labeling and prediction strate-
gies on all of our datasets (SPIRAL1, ART, ORL, SEG). We additionally evaluated the
SVM and OGNG? on SPIRALL.

For SPIRAL1 we performed a 10-fold cross validation and evaluated the accuracy of each
algorithm. For ART, ORL, SEG we randomly sampled 10 training/test sets out of our data
and averaged the accuracy performance, instead. For these datasets we only included 4
labeled examples in the training set. The reason for this is that the classification problems
under consideration are so simple that by using more examples any strategy yields nearly
perfect results, thus rendering a comparison meaningless.

Our results are shown in Table 3.1 and Table 3.2. Table 3.1 shows classification accuracy
results for various configurations of labeling methods (min-dist, avg-dist, majority, relabel,
freq, limit) and prediction strategies (single-linkage, average-linkage, complete-linkage).
For each dataset two tables are shown, representing the offline versions (upper table), and
the online version (lower table) of the GNG-based classifier. Thereby, each row of the table
represents the classification results of one of the prediction strategies, while each column
stands for a different (online/offline) labeling strategy. The cells in each table show the
classification accuracy averaged over the 10-folds. Additionally we also provided average
results for every labeling strategy (at the end of each column) and every prediction strategy
(at the end of each row). The highlighted cells reflect the best averaged result. The second
table (Table 3.2) depicts the results of our comparison between OGNG, OGNG™ and
SVM. For these experiments OGNG and OGNG! make use of the relabel online labeling
method and the single-linkage prediction strategy.
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SPIRAL1 ART
OFFLINE | Min-dist Avg-dist Majority | Average OFFLINE | Min-dist Avg-dist Majority | Average
Single 92.6 91.9 94.3 92.9 Single 89.5 89.4 89.5 89.5
Average 87.0 82.1 85.3 84.8 Average 91.9 91.9 92.9 92.2
Complete 68.4 61.5 65.4 65.1 Complete 90.5 91.2 90.4 90.7
Average 82.6 78.5 81.7 Average 90.6 90.8 90.9
ONLINE Relabel Freq Limit Average ONLINE Relabel Freq Limit Average
Single 92.8 92.9 91.6 92.4 Single 89.5 89.5 89.5 89.5
Average 85.5 85.7 86.6 85.9 Average 92.9 92.9 92.9 92.9
Complete 68.5 67.7 68.3 68.2 Complete 90.4 90.4 90.4 90.4
Average 82.3 82.1 82.2 Average 90.9 90.9 90.9
ORL SEG
OFFLINE | Min-dist Avg-dist Majority | Awerage OFFLINE | Min-dist Avg-dist Majority | Awverage
Single 83.3 82.9 87.0 84.4 Single 72.9 64.4 73.6 70.3
Average 77.5 77.5 77.9 77.6 Average 62.0 59.7 67.6 63.1
Complete 62.5 62.0 63.3 62.6 Complete 56.2 49.5 56.0 53.9
Average T4.4 74.1 76.0 Average 63.7 57.9 65.8
ONLINE Relabel Freq Limit Average ONLINE Relabel Freq Limit Average
Single 86.7 86.7 87.0 86.8 Single 73.6 73.6 73.6 73.6
Average 80.9 82.9 82.9 82.2 Average 67.6 67.6 67.6 67.6
Complete 63.3 62.9 63.3 63.2 Complete 56.0 56.0 56.0 56.0
Average 77.0 77.5 77.7 Average 65.7 65.7 65.7

Table 3.1.: Classification accuracy results offline vs. online GNG-based classifier.

Results

The results license the following observations:

o Comparison of offline labeling strategies: According to Table 3.1, there is no
labeling method which significantly outperforms the others. Comparing the accuracy
results averaged over all prediction strategies, the majority method is the most effec-
tive labeling method for the datasets (ART, ORL, SEG) as it provides the highest
accuracy with 90.9%, 76.0%, 65.8%, followed by the min-dist method with 90.6%,
74.4%, 63.7% and the avg-dist method with 90.8%, 74.1%, 57.9%. For the SPIRAL1
dataset min-dist achieves slightly but not significantly better results than majority
with 82.6% compared to an averaged accuracy of 81.7%. Concerning the prediction
strategies, the single-linkage prediction strategy shows best results averaged over all
methods for the datasets (SPIRAL1, ORL, SEG) with 92.9%, 84.4%, 70.3%, fol-
lowed by the average-linkage prediction strategy with an accuracy of 84.8%, 62.6%,
63.1%. The complete-linkage yields the worst results with an averaged accuracy of
65.1%, 62.6%, 53.9%. In case of the ART dataset, average-linkage yields the best
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results with 92.2% compared to 90.7% for complete-linkage and 89.5% for single-
linkage. However, we applied a one-tailed t-test and could not prove those results to
be significantly different.

Comparison of online labeling strategies: According to Table 3.1, all three
online labeling strategies are also almost equal in their classification performance.
The limit method performs slightly better than the other two methods on the datasets
(ART, ORL, SEG) and achieves an accuracy of 90.9%, 77.7%, 65.7%, followed by
the freq method with an accuracy of 90.9%, 77.5%, 65.7% and the relabel method
with an accuracy of 90.9%, 77.0%, 65.7%. Again, SPIRALI forms an exception as
for this dataset relabel performs slightly better with an accuracy of 82.3% compared
to 82.2% of limit. As for the prediction strategies, here it is also the case that the
single-linkage prediction is the best choice for the datasets (SPIRAL1, ORL, SEG)
with an accuracy of 92.4%, 86.8%, 73.6%, followed by the average-linkage prediction
with an accuracy of 85.9%, 82.2%, 67.6% and the complete-linkage prediction with
an accuracy of 68.2%), 63.2%, 56.0%. For the ART dataset, average-linkage performs
best with 92.9%, followed by complete-linkage with 90.7% and single-linkage with
89.5%.

Comparison of online and offline labeling strategies: Comparing the aver-
aged accuracy of all labeling methods of Table 3.1, the results show that there is no
significant difference between them in terms of performance. In fact, we performed
t-tests comparing the best online methods (limit/relabel) with the best offline meth-
ods (majority/min-dist) , using single-linkage, and could not prove any significant
difference in their achieved performance. We thus consider those results as being
comparable. The online labeling methods even provide a slightly higher accuracy on

the datasets ART, ORL and SEG.

Comparison of OGNG and SVM: As depicted in Table 3.2, OGNG delivers an
averaged accuracy which is comparable to the performance achieved by the SVM
classifier. For the datasets (SPIRAL1, ART), OGNG provides a better performance
with 92.8%, 89.5% compared to 88.6%, 88.8% of the SVM. For the other datasets
(ORL, SEG) the SVM renders itself as best choice with an averaged accuracy of
90.4%, 74.5% compared to OGNG with an accuracy of 86.7%, 73.6%. We applied a
t-test on the results of both classifiers (OGNG and SVM) for all folds of all datasets
and could prove that OGNG significantly outperforms the SVM on SPIRAL1 while
the SVM significantly outperforms OGNG on ORL, with a p-value < 0.05. For the
other two datasets (ART, SEG) there is no significant difference in terms of performs
at a p-level of p > 0.05.

Comparison of OGNG and OGNG!: In Table 3.2 we can see that OGNG
clearly outperforms OGNG'” on all datasets (SPIRAL1, ART, ORL, SEG) with an
accuracy of 92.8%, 89.5%, 86.7%, 73.6% compared to 89.8%, 81.0%, 80.9%, 62.6%.



3.6. Evaluation

We also applied t-test for the results of OGNG and OGNG!? and could prove that
OGNG significantly outperforms OGNG™” on the datasets (ART, ORL, SEG). It
should be mentioned that we experienced a higher computation time for OGNG!?
compared to OGNG.

o Impact of memory: Strategies relying on some sort of memory (e.g. storing the
frequency of seen labels as in the freq method), do not perform significantly better
than a simple context-free (or memory-less) method (relabel method) performing
decisions on the basis of new data points only. This shows that the implementation
of a label memory does not enhance the classifiers performance.

OGNG OGNG™? SVM

SPIRAL1 92.8 89.8 88.6
ART 89.5 81.0 88.8
ORL 86.7 80.9 90.4
SEG 73.6 62.6 74.5

Average 85.7 78.6 85.6

Table 3.2.: Classification accuracy results 0GNG, 0GNG°P, SVM.

3.6.3. Discussion

The results of our experiments show that using online labeling strategies does not signif-
icantly deteriorate the performance of a classifier based on GNG in comparison to using
offline labeling strategies. An open question is in fact in how far the labels of the neurons
actually differ from each other when using online vs. offline labeling strategies. If the labels
overlap to a high degree, this would explain why the accuracy of both approaches is com-
parable. In order to shed light on this issue, we compared the labels assigned to neurons
using the online labeling strategies with those assigned by offline labeling strategies at the
end of the training phase, quantifying the percentage of neurons for which both methods
agree on the label. We carried out this analysis using the single-linkage prediction strategy
(averaged over the three datasets ART, ORL, SEG) as it was the best performing strategy
in most of our experiments described above. The results are summarized in Table 3.3.
We can see that in general there is a very high agreement in the label assigned between
the different labeling strategies, i.e. the labels are the same for over 85% of the neurons
independent of the methods compared. This shows that the online and the offline labeling
strategies ultimately assign almost the same labels to the neurons and thus explains the
closeness of the results in terms of classification performance.
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Percentage Relabel Freq Limit
of label agreement | method method method
Min-dist method | 91.7%  87.6%  89.9%
Avg-dist method | 86.4%  85.8%  85.2%
Majority method | 98.3%  97.2%  98.9%

Table 3.3.: Percentage of label agreement for different online and offline labeling strategies.

Our experiments show that OGNG is competitive to standard approaches such as the SVM.
The results of SPIRAL1 and ART show that OGNG is even capable of providing a better
data representation compared to the linear multi-class SVM. For these two datasets the
results are plausible, as in both cases categories overlap to some degree and thus cause the
categories to become non-convex. In such a scenario, OGNG benefits from its generative
character compared to the discriminative architecture of the SVM. While OGNG represents
the data and generalizes from a relatively small number of neurons, the support vectors
of the SVM model the boundaries of each category and thus try to solve a harder task for
these datasets.

Another conclusion we can draw from our experiments is that connecting the category
level to the feature level (see Section 3.4.3) causes the performance of the classifier to
fall off in quality. This indicates that a compromising manifold structure which iteratively
integrates information coming from the category space and the feature space is not possible
in our architecture. Furthermore, it seems that the feature level, which is build upon the
manifold of the data in feature space, is more complex in the sense that it can represent
both manifolds (feature space and category space), while trying to match it to the data
manifold in category space only produces worse results.

The experiments also reveal the fact that in this architecture the use of additional memory
to store a label history for every neuron is not necessary. According to the relabel method,
the labeling method with the smallest label memory, neurons potentially change their labels
several times before the model converges. This happens to be as the network and thereby
each neuron is in flux during its growth and adaptation, until it’s grown enough to represent
the processed data on a reasonable level. However, our results lead to the assumption that
the network stabilizes very quickly and therefore the neurons are changing their labels less
frequently than expected. In order to investigate this further we visualize the development
of OGNG in Figure 3.11 while processing the data of SPIRAL1 at a network size of 20, 50,
100 and 120 neurons. The figure shows that OGNG almost uniformly spreads across the
data distribution at every stage of the processing. From the images and our experimental
results we can conclude that neurons stabilize their location at an very early learning stage
and thus do not change their labels often. We will furthermore observe this property of
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Figure 3.11.: Development of O0GNG during the processing of SPIRAL1 with 25, 50, 100, 120 neurons.

a uniform category representation of OGNG in Chapter 7, in which we use OGNG in a
human activity setting.

3.7. Summary

In this chapter we have presented, analyzed and compared different online labeling strate-
gies in order to extend the growing neural gas (GNG) algorithm to an online classification
approach. While GNG is essentially an unsupervised algorithm, previous approaches have
presented extensions of GNG for classification tasks. Such extensions typically rely on
a suitable labeling function that assigns labels to neurons as well as a prediction func-
tion that assigns labels to unseen examples. In line with this, we have experimentally
compared different offline and online labeling strategies inspired by previous research. In
this sense, an important question we have addressed in this chapter is whether GNG can
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be extended to a classification algorithm without affecting its online nature or degrading
performance considerably. Our research has shown that this is indeed possible. Online
labeling functions where the label of a neuron can change over time and is computed when
a new example is assigned to the neuron in question do not perform worse than offline
labeling strategies. We also described the implicit two-level architecture of OGNG, in-
cluding the feature level, which is responsible for the clustering of the input data, and the
category level that builds upon the feature level and thereby exploiting the available label
information.

We have furthermore shown that the online classifier OGNG can compete with standard
classifiers, i.e. a linear multi-class SVM, and that OGNG even achieves a better classi-
fication performance for some of our datasets. We have also experimentally shown that
the integration of category information into the clustering process of the underlying GNG
(OGNG'™P), and thereby changing the topology of the network, deteriorates the accuracy
of the classifier model. A final conclusion we drawn from our experiments with OGNG is
that the integration of an additional memory to hold the label history for every neuron is
unnecessary, as OGNG converges quickly and almost uniformly to the data distribution.

In the next chapter, we will build upon OGNG and introduce a semi-supervised classifier
that is capable of utilizing labeled and unlabeled data in a classification task.
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Chapter

Learning with weak supervision based on
OSSGNG

In this chapter we introduce Online Semi-supervised Growing Neural Gas (OSSGNG), an
extension of OGNG which is capable of learning under weak supervision. In standard
supervised learning it is assumed that manually assigned category labels are given for all
examples of the training dataset during the whole training. In weak supervised learning,
instead, training datasets are automatically and heuristically generated and thus can not
assumed to be complete and available at any time. OSSGNG, therefore, is capable of uti-
lizing labeled and unlabeled examples for its classification, expending its known categories
over the trained model in a semi-supervised learning fashion. Furthermore, OSSGNG can
quickly redefine its classification model based on labels that are given at a delayed point
in time after some examples of the corresponding class have been already seen. We re-
fer to the process of labels given after their corresponding data points already have been
processed as late label learning.

Semi-supervised learning exploits both labelled and unlabeled data and has been success-
fully applied to many clustering and classification tasks. FExisting semi-supervised ap-
proaches for GNG process the labelled and unlabeled training data in two separate phases
in order to perform a classification. In particular, Semi-supervised Growing Neural Gas
(SSGNG) [Zak08] builds upon the Expectation Maximization (EM) principle and thus
only trains with the labelled examples at first, before labeling the unlabeled data after-
wards and ultimately retrain the classification model. Such approaches can be considered
as being offline in the sense that each neuron of the network gets labelled and relabeled
(in the second phase) after the GNG training ended and therefore it is necessary to store
the complete training data. We present an approach that is able to utilize labelled and
unlabeled examples of the training data and processes them on-the-fly, using online label-
ing and prediction strategies. OSSGNG thus and in contrast to existing semi-supervised
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Growing Conceptual
Maps Framework

Figure &.1.: Online Semi-supervised Growing Neural Gas (0SSGNG) as component of the GCM framework.

learning approaches based on GNG circumvents explicit storage of any training examples,
processing all data online. As main contribution we show that our online approach does
perform as good as previous semi-supervised learning extensions of growing neural gas.

Another closely related approach, i.e. Semi-supervised Self-Organizing Incremental Neural
Network (S-SOINN) proposed by Shen et al. [SF10], also provide a growing structure and
are capable of processing labeled and unlabeled data. S-SOINN successively inserts neurons
into the network during the learning process, while separating the network into subclusters,
depending on the neuron density in the network, and merging those sub clusters into bigger
clusters. In contrast, our approach relies on simpler yet effective machinery that does not
require any additional heuristics.

In this thesis we have not compared our approach to S-SOINN as its architecture is more
complicated than SSGNG while its does not significantly outperform SSGNG.

4.1. Challenges

When using techniques coming from semi-supervised learning in a classification task, the
set of training data usually divides into X U Xy = X. Thereby, X represents the part of
the data for which category labels ¢; € C for each x; € X, are given. Typically, a model M
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is then trained with X, only in the first phase. All labels of X are then estimated given
the current state of M. In a second phase M is retrained with X and X/, the subset
X for which the classifier is most confident. Sometimes, as for SSGNG, this training is
performed iteratively in which | X;| constantly decreases. However, in a life-long learning
scenario this training mode is unsuitable due to the fact that X cannot be assumed to be
given at any point in time, for which a retraining of the model is not possible. Training
in this batch-mode fashion requires the explicit storage of X. When transferring semi-
supervised learning to a life-long learning scenario, X and C are only partially given as
X' € X and C' C C at a certain point in time ¢. Therefore, the following challenges
emerge out of this setting:

o Classification with labeled and unlabeled data: The described offline semi-
supervised learning methods require the storage of X! in order to retrain the clas-
sification model, as M possibly predicts the labels for X}, at a later point in time
t + k while already processing new labelled data. However, this asynchronous inter-
leaved process would require even more storage. To provide an efficient synchronous
processing of labelled and unlabeled data, it is required to predict the label ¢; € C
for a data point z} € X}, at iteration .

e Generalization from unsupervised categories: In a life-learning process which
utilizes weak supervision, the category labels CE’ € C" for the data a2} € X' are usually
automatically determined by some external algorithm that is based on heuristics
rather than human expert knowledge. This means that it cannot be guaranteed that
the labels c§- are available at iteration ¢. Furthermore, it is possible that the category
labels c} are given at iteration t+k with £k = 1,2, ...00. In these cases it is desirable to
let the model quickly adopt the delayed labels for categories that have been learned
in an unsupervised way and for which the corresponding label is provided at a later
time point.

4.2. Contributions

In this chapter a semi-supervised extension of OGNG is presented that relies on an online
labeling functions to label unlabeled examples and incorporate them into the model on-the-
fly. As an important result, we show that OSSGNG outperforms previous semi-supervised
extensions of GNG, i.e. SSGNG (see Section 4.3.1), which rely on offline labeling strategies.
We also show that OSSGNG compares favorably to other state-of-the-art semi-supervised
learning approaches on standard benchmarking datasets. Furthermore, it will be shown
that OSSGNG is capable of utilizing delayed labels and benefits from previously learned
unlabeled categories.
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In particular, we offer the following contributions:

e OSSGNG as extension of OGNG: We extend the OGNG algorithm by an on-the-
fly labeling step in order to assign labels to unlabeled data on-the-fly while processing
them.

o Comparison of OSSGNG and SSGNG: We compare OSSGNG with SSGNG
[Zak08] as baseline on a classification task and show that the online character of
OSSGNG does not deteriorate the classification performance compared to SSGNG,
but even outperforms SSGNG in 75% of our experiments.

e Comparison of OSSGNG and OGNG: We compare OSSGNG to OGNG on
several datasets to show the effect of the novel labeling strategy for unlabeled data
points.

o Comparison of OSSGNG and Standard SSL approaches: We show that OS-
SGNG is competitive with respect to other established semi-supervised classification
approaches and demonstrate its performance on SSL benchmark datasets.

o Late labeling with OSSGNG: We also investigate the capability of OSSGNG
to deal with late labeling and therefore let OSSGNG learn categories unsupervised
at first and then tracking its classification performance for those categories while
assigning their labels at a later point in time.

Parts of this chapter have already been published in the proceedings of the Workshop on
New Challenges in Neural Computation (NC2) [BC11b] in 2011 and in the International
Journal of Neural Systems [BC12] in 2012.

4.3. Offline semi-supervised learning with GNG

In this section Semi-supervised Growing Neural Gas (SSGNG) will be described in detail
as introduced by Zaki et al. [Zak08]. SSGNG is a semi-supervised GNG-based classifier
that utilizes labeled and unlabeled data in a classification task. It operates offline in the
sense that it iteratively assigns labels to unlabeled data through multiple passes. However,
SSGNG renders itself ideal for a comparison with our approach as that it implicitly follows
the two-level architecture as described in Section 3.4.3 of Chapter 3 and thus performs
the GNG-based clustering independently of the label information. SSGNG will serve us
as baseline in order to compare our approach against and to underline the advantages of
OSSGNG.
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4.3.1. Semi-supervised Growing Neural Gas (SSGNG)

In the approach of Zaki et al., two steps are iterated until the labeling of the network
stabilizes. Both steps are similar to those of the Ezpectation-Mazimization (EM) approach
[Har58]. In a first step, the network is trained using labeled examples only. Then, labels
are assigned to neurons using an offline labeling approach. This step can be seen as
mazimization-step (M-step), in which the network maximizes the likelihood p(X|Cy) with
('L being the category labels of X . In the ezpectation-step (E-step), unlabeled examples
are classified into the network and labeled appropriately. Following the principle of the
EM algorithm, these two steps are then iterated until the labeling converges.

4.3.2. SSGNG Algorithm

In the following, we will describe each step of the SSGNG algorithm in detail:

1. The algorithm starts with a given set of labeled and unlabeled training examples
X1, Xy C X, as well as an initially empty set of newly labeled data X,. The set
X1 holds all examples from Xy that have been labeled during the last iteration step
of the training process.

2. In the next step, the GNG network trains only with X . In this step, the clustering
is only performed on the basis of the feature vectors of X, without taking the label
information into account.

3. Labels are assigned to each neuron of the network after the GNG training has finished.
As Zaki et al. do not explicitly describe their labeling strategy.

4. In this step, a data point x; € Xy is presented to the SSGNG network and a winner
neuron n is determined by the minimal distance to x;.

5. The data point x; adopts the label of n, gets removed from Xy and is added to the
dataset of newly labeled data X, .

6. Depending on the amount of unlabeled data points left in Xy, a next iteration step
is performed. The algorithm then goes back to Step 4 in order to present the next
unlabeled data point. Otherwise, Step 7 is applied.

7. In this step, the SSGNG network retrains with X, + X.

8. The algorithm stops if the labels of Xy stabilize during the iterations in the sense
that the labels do not change anymore.
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It should be mentioned that in our implementation the SSGNG quickly stabilized in all
of our experiments, which is understandable after a closer inspection of the algorithm. As
initially mentioned, SSGNG (and OGNG) does not utilize label information to guide the
clustering of the underlying GNG. This means that after labeling all unlabeled data (steps
4-6) and retraining SSGNG in Step 7, the clustering will remain stable and thus the labels
will also stabilize after the next iterations. We see a design problem here as neurons are
labeled after the GNG-based clustering. This means that it is not necessary to retrain the
SSGNG after the second iteration in which it is trained with the complete available data
XL and XL/, with |XL/| = |XU|

Algorithm 4 Semi-supervised Growing Neural Gas (SSGNG)

1: Given X and Xy, let X1 = {0} represent an initial empty set of newly labeled data.

2: Present X, to the GNG algorithm and train the network only with X7 .

3: Label all the neurons of the GNG network according to X.

4: Present an input z; from Xy iteratively and compute the Euclidean distance between z; and every
neuron n of the GNG network:

Distance = ||lwp, — $j||2

5: Label z; according to the class label of the winner node. Remove z; from the current unlabeled

dataset, Xy, and add z; into the newly labeled dataset X, .

If all unlabeled data has been labeled, go to 7, otherwise go back to 4.

7: Present X and X, together to the GNG classifier and retrain the classifier with X 4+ X, and
evaluate the new classification performance.

8: Check the labels of X/; if they become stable during successive iterations, stop. Otherwise go back
to Step 4.

2

4.3.3. Limitations of SSGNG

The main disadvantage of the SSGNG is the fact that labels are assigned to each neuron
a posteriori after the end of the training phase. Thus, the approach is not able to process
a continuous stream of labeled and unlabeled training examples. Furthermore, labeled
and unlabeled examples are processed in different phases and therefore need to be stored
until the SSGNG training ends. Another disadvantage of SSGNG is that a minimal set of
labeled examples for each class is crucial for the training. This even excludes SSGNG from
being applicable to late labeling scenarios, as SSGNG requires all categories to be known
at its initialization. Our online version of Semi-supervised Growing Neural Gas, presented
in the next section, circumvents these problems.
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Labeled and Unlabeled 0SSGNG semi-supervised data processing Category prediction
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Figure 4.2.: Online Semi-supervised Growing Neural Gas (0SSGNG) processing pipeline.

4.4, Online Semi-supervised Growing Neural Gas
(0SSGNG)

In this section we introduce OSSGNG as semi-supervised extension of OGNG. At first, we
will explain the new additions that set OSSGNG and OGNG apart, before we then focus
on the details of the algorithm. We will further discuss the dynamics of the OSSGNG and
how it relates to the two-level architecture as described in Section 3.4.3. This also includes
the concept of late label learning and how OSSGNG can adapt to it.

OSSGNG is a semi-supervised classifier that, in contrast to SSGNG, utilizes labeled and
unlabeled training examples uniformly for its classification model in every iteration step.
This means that OSSGNG is able to solve a semi-supervised classification task after each
iteration step. As shown in Figure 4.2 from left to right, labeled and unlabeled data
points are the input for our OSSGNG algorithm and its processing results in a OSSGNG
classification model which then is capable of predicting previously unseen data points. The
main advantage of OSSGNG lies in its ability to train in an online fashion without the
need of storing training examples explicitly.

L.4.1. 0SSGNG as extension of OGNG

OGNG is an incremental online classifier that is capable of classifying a continuous stream
of data without the need to explicitly store any training data. Its implicit two-level ar-
chitecture allows OGNG to process labeled and unlabeled data, as the data is clustered
depending on its similarity in feature space, without any guidance of category labels.
However, OGNG only makes use of unlabeled data to redefine the feature level, without
integrating this information into the category level (see Section 3.4.3). Therefore, the clas-
sification model based on OGNG does not benefit from unlabeled data in a classification
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task. In contrast, OSSGNG predicts the labels of unlabeled examples in order to optimize
the model and thus change its classification behavior.

The differences of OSSGNG and OGNG are minor but effective, as we can show in our
evaluation in Section 4.6 when comparing both OSSGNG and OGNG. OSSGNG intro-
duces an additional prediction step (Step 4 of Algorithm 5) in which labels for unlabeled
data are predicted. After applying the step it behaves equally to OGNG. As labeling
strategy in Step 5 (see Algorithm 5) the relabel method (see Section 3.4.1) for the experi-
ments described in this chapter, which has proven to be simple and effective providing the
smallest label memory. As prediction strategy (also in Step 4) we chose single-linkage (see
Section 3.3.1) as it performed best in previous OGNG experiments. In general it is possi-
ble to implement OSSGNG with any of the OGNG related online labeling and prediction
strategies.

L.4.2. 0SSGNG Algorithm

In the following we will describe the single steps of the OGNG algorithm. The complete
algorithm is shown in Algorithm 5. We highlighted the novel step which sets OSSGNG
and OGNG apart.

1. The classification model is initialized with two connected neurons that are randomly
placed in feature space.

2. The first stimulus € R™ of the input space (first training example) is presented to
the network.

3. The two closest neurons n; and ny are determined as winner and second winner.

4. A label for z is predicted in case there is no label available for this specific
data point.

5. According to the used labeling strategy, a label is assigned to n;.
6. The age of all edges that connect n; to other neurons is increased by 1.

7. The local error variable error(n;) of n; is updated. This error variable will be used
later in order to determine the location for a newly inserted node.

8. In this step, n; and its topological neighbors are adapted towards x by fractions e,
and e, respectively.

9. The neurons n; and ny get connected and the age of its edge is set to 0.

10. All edges with an age greater than a,,,, as well as all neurons without any connecting
edge are removed.
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11. If the iteration counter is a multiple of the parameter A\, a new node n,. is inserted into
the network. It will be inserted half-way between the neuron n, with the highest local
error and its topological neighbor ny having the largest error among all neighbors of
nq. In addition, the connection between n, and n; is removed and both neurons are
connected to n,.

12. The error variables of all neurons are decreased by a factor 3.

13. The algorithm stops if the stopping criterion is met, i.e., the maximal network size
or some other performance measure has been reached.

Algorithm 5 Online Semi-supervised Growing Neural Gas (OSSGNG)

: Start with two units n; and n; at random positions in the input space.

. Present an input vector z € R™ from the input set or according to input distribution.

Find the nearest unit n1 and the second nearest unit no.

If the label of z is missing, assign a label to = according to the selected prediction strategy.
Assign the label of z to n1 according to the present labeling strategy.

Increment the age of all edges emanating from n;.

. Update the local error variable by adding the squared distance between wyp,; and x.

N TR

Aerror(ny) = |wn, — |2

8: Move n1 and all its topological neighbors (i.e. all the neurons connected to n1 by an edge) towards x by fractions of e
and e, of the distance:
Awn, = ep(z — wn,)

Awp = en(z — wn)

for all direct neighbors of nj.

9: If ny and na are connected by an edge, set the age of the edge to 0 (refresh). If there is no such edge, create one.

10: Remove edges with their age larger than amqs. If this results in neurons having no emanating edges, remove them as
well.

11: If the number of input vectors presented or generated so far is an integer or multiple of a parameter )\, insert a new node
n, as follows:
Determine unit nq with the largest error.
Among the neighbors of ng, find node ny with the largest error.
Insert a new node n, halfway between ny and n; as follows:

Wng +wnf
W, = ———=
2

Create edges between n, and ng, and n, and ng. Remove the edge between ng and ng.
Decrease the error variable of n, and ny by multiplying them with a constant «. Set the error n, with the new error
variable of ng.

12: Decrease all error variables of all neurons n; by a factor S.

13: If the stopping criterion is not met, go back to Step (2).

Complexity in time and space

OSSGNG inherits OGNGs’ complexity in time and space as it is based on the same ar-
chitecture. As an addition, OSSGNG utilizes unlabeled data points for its model updates

69



Chapter 4. Learning with weak supervision based on 0SSGNG

and thus, depending on the average number of unlabeled data points, increases the com-
putational complexity slightly. However, due to the time complexity of the with OGNG
introduced online prediction strategies lies in average and worst case in O(logan), OSS-
GNG yields for an overall time complexity in average and worst case of O(logan) and a
space complexity in average and worst case of O(n).

4.4.3. Dynamics of the 0SSGNG labeling

OSSGNG builds upon OGNG and thus shares the same implicit two-level architecture,
including a feature level which represents the data in feature space and a category level
which bridges the feature level and the category label space that is defined when processing
labeled data. However, in contrast to OGNG, OSSGNG labels unlabeled data and thus
extends the amount of data that effects the category level, as the data point and its
(assigned) label is further processed. The quality of the (new) data therefore relies on the
quality of the prediction of the classification model at prediction time. This is a problem
not particular limited to OSSGNG, but of semi-supervised learning in general which require
certain data assumptions (see Section 2.3) to be fulfilled in order to be useful. Also drifting
concepts are a huge problem for semi-supervised approaches. In Chapter 5 we introduce an
extension of GNG that particularly addresses this challenge. However, in order to deeply

understand the dynamics of OSSGNG, we will have a closer look at what we call labeling
dynamics of the OSSGNG labeling.

I”Ij |nj=A nj |nj=é ,,,,,,,,,,, _!%::A

e () : oalxieA)

= ) )
n; n;
1p,=7
0GNG Net OGNG Net OGNG Net

determines closest predicts unlabeled labels n; according
labeled neuron n; data point x; to OGNG

Figure &.3.: lllustration of the labeling dynamics of 0SSGNG.

Figure 4.3 illustrates these labeling dynamics of OSSGNG. The figure shows three steps
of the labeling process, which characterizes OSSGNG. In the first image (left), a new
unlabeled data point z; is presented to the OSSGNG network. In this image the nearest
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Figure &4.4.: 2D Visualization of 0SSGNG during the processing of SPIRAL1 with 0%, 25%, 50%, 100% late labels.

neighbor n; does not provide a label, while the second nearest neighbor n, is labeled with
category A. According to the new prediction strategy of OSSGNG z; adopts the label of
the closest neighbor in the network that provides a label. Therefore, x; is labeled with
category A according to ns, as depicted in the second image (middle). However, the most
interesting part of the labeling dynamics are shown in the third image (right). After a label
prediction for an unlabeled data point, OSSGNG follows the behavior of OGNG and thus
labels the winner neuron n; according to the label of the presented stimulus x;, which is
in our case the category label A. This demonstrates how OSSGNG propagates categories
in the network and furthermore how it generalizes and expands the known categories.

OSSGNG is mainly designed to process labeled and unlabeled data in a semi-supervised
classification scenario, but is also capable of adapting to scenarios in which a weak su-
pervision is given in form of late label learning. As described earlier in this chapter, late
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label learning involves category labels cg- that correspond to the data points z! € X* to
be given at ¢t + k with £ > 0. While OSSGNG expands and propagates its known cat-
egories over the network, due to its labeling dynamics of labeling it still quickly adapts
to newly given labels according to the OGNG labeling strategy. In order to demonstrate
this behavior, we visually and experimentally investigate the adaptation of OSSGNG to-
wards late labeling scenarios. In Figure 4.4 the OSSGNG network is visualized in four
images after being trained with the SPIRAL1 dataset (see Section 3.6) and various label
configurations. For the visualization in the first image (top-left), OSSGNG was trained
with all data points of SPIRALIL, while only labels for category 6, category 8 and category
10 have been provided. For the other images we simply provided the missing labels for
all categories and let the category level of OSSGNG adapt to those labels, by providing
25% of the late labels (top-right), 50% of the late labels (bottom-left), and 100% of the
late labels (bottom-right). After having seen 25% of the late labels, OSSGNG already has
acquired all categories with a number of neurons. Although the category boundaries are
blurred to some degree, especially at the category boundary on top of the spiral, the overall
distribution of the 10 categories is already clearly visible. After having seen 50% of the late
labels, the category boundaries got more precise while only a few wrongly labeled neurons
are left inside the category distributions. After seen all of the late labels, all categories
are well established in the OSSGNG network and no obviously wrongly labeled neurons
are left. The visualization shows that OSSGNG quickly adapts the category topology (its
category level) and thus is capable of adapting to a late label learning scenario. In Section
4.6, we will experimentally show that the prior knowledge about category structures can
be beneficial in a late labeling classification task.

L.5. Datasets

We evaluate OSSGNG on overall six datasets, including three artificial sets (g241c, g241d,
Digitl), and three real sets (USPS, COIL, BCI). These datasets have been proposed by
Chapelle et al. [Cha06] as benchmarking for semi-supervised classification and are widely
used in this field. The artificial datasets were specifically generated in order to fulfill
the data assumptions we described in Section 2.3. We use SSGNG as baseline for our
approach and evaluate the classification accuracy on test for the six datasets described
below in more detail. Except for the BCI dataset, all SSL benchmarking datasets include
1500 data points of 241 dimensional feature vectors. In order to visualize the data, Figure
4.6 shows a two-dimensional representation of each dataset plotting the first two principal
components after applying a Principal Component Analysis (PCA) [Pea01].

We describe these datasets in what follows:
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g241c & g241d

The first artificial dataset (g241c) is a Gaussian mixture distribution that was generated
by two unit-variance isotropic Gaussians with their centers having a distance of 2.5 from
each other in a random direction. Additionally, all dimensions are standardized in the
sense that they are shifted and rescaled to zero-mean and unit variance. The dataset is
designed to fulfill the cluster assumption, but not the manifold assumption. This means
that data points of the same clusters are likely to belong to the same category. In Figure
4.6 (top-left), a two-dimensional representation of both categories is shown according to
the two most varying dimensions. Both Gaussian distributions are clearly visible in the
image.

The second artificial dataset (g241d) is a similar Gaussian mixture distribution such as
g241c. However, the two classes A, B were split into A;,As and Bp,Bs, as depicted in
Figure 4.6 (top-right). The distance between the subclasses (A1, By) and (As, B2) was set
to 2.5 in random direction, while the interclass distance between (A, As) and (By, By) is
6. The dataset was designed in such a way that these subclasses are not convex, thus not
fulfilling the cluster assumption anymore.

Digit1

In the last artificial dataset, images of the digit "1’ were generated. These 16 x 16 images are
the result of transformations of the digit along five degrees of freedom: two for translations
([-0.13,0.13] each), one for rotation ([—90°,90°]), one for line thickness ([0.02,0.05]), and
one for the small line at the bottom ([0,0.1]). The class labels were set according to the
tilt angle, with the boundary corresponding to an upright digit. Additional noise was
added in order to make the task a slightly more difficult. In this case, the dataset is
generated to fulfill the manifold assumption, but does not provide a cluster structure. Its
two-dimensional projection is shown in Figure 4.6 (mid-left).

USPS

This first real dataset is derived from the well known USPS handwriting dataset, which
includes 16 x 16 images of 10 handwritten digits. The digits ‘2" and ‘5’ were assigned to the
first category, while the rest of the ten digits (‘1°, ‘3, ‘4’, ‘6°, ‘7, ‘8", ‘9’, *10”) were assigned
to the second category. Thus, the dataset is imbalanced with the ratio of 1:4. The original
dataset is also modified by additional introduced noise and masked dimensions in order to
set this dataset apart. A projection of the dataset onto the two most variant dimensions
is shown in Figure 4.6 (mid-right).
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COIL

The second real dataset is derived from the Columbia object image library (COIL-100)
INNM96] and includes color images of 100 different objects taken from varying angles
(in steps of 5 degrees) at a resolution of 128 x 128. The dataset was again modified in
several ways to provide a unique semi-supervised learning benchmark set. Every image
was downsampled to 16 x 16 images by averaging over 8 x 8 pixel blocks. Thereby, only the
information of the red RGB channel was considered. The authors of the dataset randomly
selected 24 out of the 100 objects and partitioned them into six categories with four objects
each. Finally, they applied an algorithm to introduce noise and masking dimensions. The
dataset is visualized in Figure 4.6 (bottom-left).

BCl

In the last real dataset, EEG (electroencephalography) measurements were recorded from
39 electrodes. As published by by Lal et al. [LSHT04], the experiments consist of recordings
from 400 trials with subjects imagining a left hand movement (category -1) and a right
hand movement (category +1). An autoregression model of the order 3 was applied to the
resulting 39 time series in order to construct a 117 (39 x 3)-dimensional feature vector. A
two-dimensional projection of BCI is depicted in Figure 4.6 (bottom-right).

L4.6. Evaluation

In this section we evaluate OSSGNG as semi-supervised extension of OGNG of Chapter
3 in our experiments. We experimentally compare its classification performance to an
existing semi-supervised learning approach, i.e. Semi-supervised Growing Neural Gas
(SSGNG)?, on standard semi-supervised classification benchmark datasets. We will show
that OSSGNG outperforms SSGNG in most of the datasets. Furthermore, OSSGNG will
be compared to standard semi-supervised classifiers described in the literature. Thereby,
we also compare our results to a 1-Nearest Neighbor (1-NN), OGNG and linear multi-class
Support Vector Machine (SVM) classifier, which are trained with labeled examples only.
This allows us to quantify the benefit of semi-supervised learning for those datasets. We
also investigate if OSSGNG benefits from prior clustered unlabeled data in a late labeling
scenario.

4We use the min-dist method from Section 3.3.1 as labeling strategy for SSGNG.
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L.6.1. Parameters

As we want both GNG variations, SSGNG and OSSGNG, to be comparable, we chose a
fixed set of parameters. In contrast to the set we use in the rest of our experiments, we
chose to use a set throughout our experiments that was proposed by Zaki et al.[Zak08|
for SSGNG to provide a fair comparison here. However, we found out that the parameter
set of OGNG and its extensions is insensitive towards parameter changes for most of the
parameters. In our experiments in this chapter the parameters are thus set as follows:
insertion parameter A = 300; maximum age a,,., = 100; adaptation parameter for winner
ey = 0.2; adaptation parameter for neighborhood e, = 0.006; error variable decrease
a = 0.5; error variable decrease § = 0.995. The algorithm stops when a network size of
200 neurons is reached. Our experiments are carried out using a 12-fold cross validation
with 100 labeled examples per fold, respectively. This setup corresponds to the setup
used in Chapelle et al. [CO05] where a number of state-of-the-art SSL algorithms were
benchmarked.

4.6.2. Experiments & Results

We evaluate the accuracy of all compared algorithms on test, as shown in Table 4.1 and
Table 4.2. Each row in the table represents the accuracy on test averaged over the 12 folds.
The best accuracy is highlighted in each row. We also compare to a 1-NN classifier and
a linear multi-class SVM in order to provide an overall baseline for all SSL approaches.
Both classifiers were only trained with the labeled data points of our data sets.

For the late labeling scenario, we compare OSSGNG to a modified version OSSGNG-M,
in oder to demonstrate the benefit of a priori clustering of categories which are labeled in
delay. For these experiments we let OSSGNG process the complete COIL dataset while
only presenting the labels for Category 6, Category 8 and category 10. We then stepwise
provide the labels for the missing categories and measure the classification performance
of OSSGNG for those late labeled categories. OSSGNG-M in contrast to OSSGNG also
adapts to the late labels without processing the unlabeled data a priori, still providing the
same network size. The accuracy curve of OSSGNG and OSSGNG-M in these experiments
is depicted in Figure 4.5.

Results

The results license the following observations:
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o Comparison of OSSGNG and SSGNG: According to Table 4.1, OSSGNG clearly

outperforms SSGNG on five out of six datasets (g241c, g241d, COIL) with 52.98%,
62.66%, 81.45% for OSSGNG and 49.64%, 44.03%, 75.49% for SSGNG. Both have
a comparable performance on the datasets (Digitl, USPS) with 96.77%, 93.07% for
OSSGNG and 96.20%, 92.58% for SSGNG. For the BCI dataset SSGNG performs
best with 80.51% compared to 79.47% for OSSGNG. On average, OSSGNG has also
a higher accuracy with 77.73% compared to SSGNG with 73.08%. According to these
results, it is valid to claim that OSSGNG outperforms SSGNG, while circumventing
the need to explicitly store training examples and perform several passes over the
data until reaching convergence.

Comparison of OSSGNG and OGNG: The results in Table 4.1 show that ex-
tending OGNG with a semi-supervised component (OSSGNG) improves its classi-
fication performance for the datasets (g241c, g241d, COIL, BCI) by 6.55%, 7.68%,
4.34%, 2.14%. There are only two datasets (Digit1, USPS) for which OSSGNG yields
worse results compared to OGNG and its performance decreases by 1.04%, 1.28%,
albeit these differences are clearly minor. Interestingly, these are also the datasets
for which a semi-supervised SVM classifier (TSVM) performs worse with 93.49%,
90.23% than a standard SVM with 94.47%, 90.25% (see Table 4.2). This shows that
SSL is not effective for these particular datasets.

Comparison of OSSGNG and standard semi-supervised learning algo-
rithms: We additionally compared our results to the results of standard semi-
supervised classification algorithms published by Chapelle et al. [COO05], namely
Transductive SVM (TSVM) [Joa] (using a linear kernel), Cluster-Kernel [Nob03],
Data-dependancy regularization [CA06] and Low-Density Separation (LDS) [COO05].
We did not reimplement these algorithms, but compared our results to the published
results using the same data under same conditions. The results are summarized
in Table 4.2. On two datasets (g241c, g241d), OSSGNG performs definitely worse
compared to the other semi-supervised learning approaches with 52.98%, 62.66%.
On the other four datasets (Digitl, USPS, COIL, BCI), the performance of OSS-
GNG is better than the ones of INN, SVM, TSVM and Cluster-Kernel with 96.77%,
93.07%, 81.45%, 79.47%, while the Cluster-Kernel algorithm performs best on aver-
age. Therefore, the results are comparable to those of other state-of-the-art semi-
supervised learning approaches. On one dataset, i.e. BCI, it is even the case that
OSSGNG outperforms all other approaches by far 79.47%. These results clearly li-
cense the conclusion that OSSGNG can compete with other semi-supervised learning
approaches.

OSSGNG vs. OSSGNG-M: According to Figure 4.5, OSSGNG clearly benefits
from its a priori clustering of unlabeled data and, furthermore, quickly adapts to
the new labels. OSSGNG achieves an accuracy of 88% after seen all labeled and
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late labeled examples compared to 68.27% of OSSGNG-M. It is noticeable that the
accuracy curve of OSSGNG is smoother than those of OSSGNG-M, which is most

probable an indication for a more uniformly representation of the underlying cate-
gories by OSSGNG.

OGNG SSGNG OSSGNG
(labeled data)

g241c 46.43 49.64 52.98
2241d 54.98 44.03 62.66
Digit1 97.81 96.20 96.77
USPS 94.35 92.58 93.07
COIL 77.11 75.49 81.45
BCI 77.33 80.51 79.47
Average 74.67 78.08 77.73

Table 4.1.: Averaged classification accuracy of 0GNG, SSGNG and 0SSGNG performed on datasets several datasets.

4.6.3. Discussion

Our experiments show the benefit of the semi-supervised OGNG (OSSGNG). It clearly
outperforms SSGNG and improves the classification performance of OGNG in four out of
six datasets. The two datasets (Digitl, USPS) in which the semi-supervised approaches
(OSSGNG, TSVM) yield worse results compared to their original algorithms (OGNG,
SVM) seem to be very easy to classify as every compared algorithm achieves an accuracy
over 90%. The results of the 1-NN approach also license this observation as it performs
much better on those datasets than on the others. It seems that in these cases semi-
supervised learning can not improve the classification performance further.

For four out of six datasets, OSSGNG and OGNG achieve better results compared to a
standard SVM (with a linear kernel) while also being comparable to other standard SSL
algorithms. It is striking that OSSGNG outperforms all other approaches by far on the
BCI dataset. This dataset is characterized by the availability of only few data points (400
in total) as well as by low-dimensional feature vectors (117 dimensions). OSSGNG thus
seems to generalize better on low numbers of examples.

OGNG and OSSGNG show worst results on the datasets g241c and g241d. In order
to shed light on this observation, we performed a PCA to reduce the dimensionality of
the data to the number of principal components that capture 90% of the variance. The
results are shown in Table 4.3. The analysis shows that those two datasets have a much
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1-NN  SVM OGNG | TSVM Cluster-Kernel Data-Dep. Reg. LDS  OSSGNG
(labeled data only)

g241c 59.72  76.89  46.43 81.54 86.51 79.69 81.96 52.98
g241d | 62.51 7536  54.98 77.58 95.05 67.18 76.26 62.66
Digitl | 93.88 94.47 97.81 93.49 96.21 97.56 96.54 96.77
USsPS 92.36  90.25  94.35 90.23 90.68 94.90 95.04 93.07
COIL 76.73 77.07 7711 74.20 78.01 88.54 86.28 81.45
BCI 55.17  65.69  77.33 66.75 64.83 52.53 56.03 79.47
Average | 78.40 79.96  T4.67 80.63 85.23 80.07 82.02 77.73

Table 4.2.: Averaged classification accuracy of 1-NN, SVM, OGNG, 0SSGNG and standard SSL approaches on benchmarking
datasets.

higher complexity (with 192 and 193 components) compared to the rest, which seems
be the reason for the weak results of both OGNG and OSSGNG. Their performance is
even worse than the one of 1-NN, which hints at the fact that some parts of the data are
underrepresented in the OGNG/OSSGNG. This could be due to too few neurons or due
to a very sparsely labeled network. In fact, the OSSGNG algorithm does not guarantee
that all neurons are actually labeled. This is understandable as both datasets do not fulfill
the manifold assumption, thus suffering from the curse of dimensionality in the sense that
the high number of dimensions requires a number of examples that is exponential in the
number of examples in order to classify them. In case of Digitl, the manifold assumption
is fulfilled, which means that the high dimensionality lies on a low dimensional manifold.
This explains the better performance of OGNG and OSSGNG on this dataset, in spite of
its high-dimensionality.

g241c g241d Digitl USPS COIL BCI
193 192 147 63 42 15

Table 4.3.: Number of principal components that capture 90% of the data variance.

L.7. Summary

In this chapter we have presented an extension of OGNG to an online semi-supervised
classifier which in addition to OGNG predicts labels for unlabeled data in order to utilize
both labeled and unlabeled data for its classification model on-the-fly. We have shown
that OSSGNG renders itself ideal for tasks in which only weak or partial supervision in
the form of labels is available, semi-supervised classification and late labeling in particular.
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Figure 4.5.: Accuracy for late-labeled categories of 0SSGNG and 0SSGNG-M.

We experimentally compared OSSGNG to an existing semi-supervised learning approach
based on GNG (SSGNG) which is offline in the sense that it requires to store the complete
training data in order to iteratively predict unlabeled data and retrain its model afterwards.
We evaluated both algorithms on benchmarking semi-supervised classification datasets and
could show that OSSGNG outperforms SSGNG in 75% of our experiments while processing
each data point in one pass.

We have also shown that OSSGNG improves the accuracy performance of OGNG on
the datasets with up to 7.68%. On two dataset OSSGNG provides a lower performance
compared to OGNG with an accuracy decrease of up to 1.28%. Those two datasets seem to

be difficult for semi-supervised classification approaches, as also the transductive version
of the SVM (TSVM) performs worse than the standard SVM.

Furthermore, we have shown that OSSGNG compares favorably to other standard semi-
supervised classification approaches. The results of OSSGNG are better than the results
of half of the four compared standard SSL approaches for four out of six datasets. On the
other two datasets OSSGNG and OGNG perform worse, which most probably relates to
the high complexity of those datasets.

We also investigated the adaptation ability of OSSGNG towards late labeling scenarios,
in which category labels are given after the corresponding data points have already been
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presented to the network. We visualized the fast adaption of OSSGNG in such scenarios
and furthermore experimentally showed the benefit of an unsupervised category formation
step prior to use the labels available later in time to learn these acquired categories.

In the next chapter we will introduce the second extension of OGNG, Dynamic Online
Growing Neural Gas (DYNG), which is capable of quickly adapting to non-stationary
stream data while solving the plasticity-stability dilemma better than existing GNG-based
approaches.
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Figure 4.6.:

2D Visualizations of the SSL benchmark datasets.
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Chapter

Learning with non-stationary data based on
DYNG

In this chapter we introduce Dynamic Online Growing Neural Gas (DYNG ), a novel online
stream data classification approach based on Online Growing Neural Gas (OGNG). DYNG
exploits labelled data during processing to adapt the network structure as well as the speed
of growth of the network to the requirements of the classification task. It thus speeds up
learning for new categories/labels and dampens growth of the subnetwork representing
the category once the classification performance converges. We show that this strategy
is beneficial in life-long learning settings involving non-stationary data, giving DYNG an
increased performance in highly non-stationary phases compared to OGNG. We will also
compare DYNG with a novel classifier Online Growing Neural Gas with Utility (OGNG-
U) based on existing GNG extensions for non-stationary data, i.e. Growing Neural Gas
with Utility (GNG-U) (see Section 2.1.2), and furthermore show that DYNG outperforms
OGNG-U in our experiments and thus provides a better solution to the plasticity-stability
dilemma compared to OGNG-U.

Streams of data nowadays emerge in a number of application domains, in particular in
those concerned with processing data originating from social media applications, sensor
networks, news feeds, etc. [GMO05]. In many scenarios, one wishes to classify the data
items in these streams into a number of evolving categories. In order to scale to mas-
sive amounts of data, approaches to classify stream data should be able to work with
non-stationary data, 7.e. with changing data and category distributions and be able to
detect new categories on-the-fly. In recent years, there have been a number of GNG-based
algorithms that incorporate label information, such as Incremental GNG (IGNG) (see
Section 2.1.2), Enhanced Self-organized Incremental Neural Network (ESOINN) [FOHO7]
and Semi-supervised Growing Neural Gas (SSGNG) (see Section 4.3.1). However, none
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Chapter 5. Learning with non-stationary data based on DYNG

Growing Conceptual
Maps Framework

Figure 5.1.: Dynamic Online Growing Neural Gas (DYNG) as component of the GCM framework.

of these approaches are equipped with mechanisms to adapt to a changing data and cate-
gory distribution as for those algorithms label information does not influence the behavior
of the network, i.e. its growth. GNG-U, instead, is designed to follow a changing data
distribution, but still needs to be extended to a classifier in order to be useful in a classifi-
cation task. In this chapter, we thus present DYNG as a novel approach that utilizes label
information in order to quickly adapt to non-stationary data in a classification task.

5.1. Challenges

In a classification task involving non-stationary data, a model M is trained to provide a
solution for the function f*: X* — C* with X" being the feature input space and C* being
the corresponding category space at a certain time t. A property that uniquely applies to
non-stationary data is given by the fact that the following equations can be fulfilled:

Ji,j €Nyi# 5 X\ X £ (5.1)

3k, 1 €Nk #1: CTF\ O A£( (5.2)

In non-stationary classification scenarios, neither data distribution, nor category distribu-
tion can be assumed as fixed and given at any point in time, which leads to the so called
plasticity-stability dilemma. The challenge is to find a balance between learning flexibility
and generalization. As discussed in Section 2.4, there are a number of approaches which
make use of a two-layered memory structure, i.e. a short-term memory (STM) and a
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long-term memory (LTM). However, it would be desirable to have a more uniformly clas-
sification model which implicitly incorporates similar STM and LTM mechanisms in order
to be more efficient in memory usage and processing/prediction time.

For the rest of this section we will describe the challenges that arise within a classification
scenario involving non-stationary data:

o Fast adaptation towards changing data distributions: The model M is re-
quired to quickly adapt to a changing data and category distribution. However, this
can quickly lead to an overfitting situation in which the ability to generalize over
the learned data decreases and thus the classification performance of M drops. It
is important to find a reasonable balance between the learning flexibility and the
robustness against overfitting.

« Detection of new categories on-the-fly: A concept drift involves the removal of
categories ¢; with ¢; € C*"t A ¢; & C*, as well as the introduction of new categories
¢ with e € C* A & CtF and k = 1,2, ...,n. The model M is required to grow with
the newly emerging categories and quickly adapt to them.

» Regulation of resource requirements: With a increasing amount of non-stationary
data in a life-long learning scenario, M should grow accordingly following the evolv-
ing categories. However, it is necessary to retain an efficiency in processing time and
memory usage, which thus requires mechanisms of regulation and optimization that
balances growth on the one hand and classification performance on the other hand.

5.2. Contributions

In this chapter we are concerned with exploring how to improve the classification perfor-
mance of OGNG by exploiting label information. In particular we would like OGNG to
behave in the following fashion: i) it directly inserts a new neuron for an unseen label, ii) it
grows dynamically as the task requires by inserting neurons as long as the error for a class
decreases, dampening this growth once the classification error converges. Toward meeting
these desiderata, in this chapter, we present an extension of Online Growing Neural Gas
that we call Dynamic Online Growing Neural Gas (DYNG). DYNG uses label information
of the presented stimulus and tracks the classification error for each class to insert neurons
as long as the classification performance for this class grows. We evaluate DYNG on the
task of classifying a textual stream of data on two datasets, showing that it outperforms
OGNG and that it even outperforms a SVM classifier when both use a comparable amount
of memory.

In particular, we offer the following contributions:
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« DYNG as extension of OGNG: We extend OGNG by introducing two novel
neuron insertion strategies in order to follow non-stationary data and a changing
category distribution and thereby let the network grow according to its classification
task.

o Comparison of DYNG and OGNG-U: We will extend an existing GNG-based
approach for non-stationary data i.e. Growing Neural Gas with Utility (GNG-U)
to the online classifier Online Growing Neural Gas with Utility (OGNG-U) based
on labeling and prediction strategies of OGNG. We will experimentally show that
DYNG clearly outperforms OGNG-U and OGNG in our experiments.

o Comparison of DYNG and SVM: We will compare our approach to a linear
multi-class SVM and show that, although DYNG does not significantly outperform
the SVM, it provides a more reliable prediction performance and is thus preferable
in non-stationary data settings.

It should be mentioned that DYNG has already been published in the proceedings of the
European Symposium on Artificial Neural Networks [BC13] in 2013.

5.2.1. Growing Neural Gas with Utility (GNG-U)

In this section we will describe Growing Neural Gas with Utility (GNG-U) as proposed
by Fritzke [Fri97]. GNG-U is a clustering algorithm, such as GNG, with a focus on non-
stationary data. The original GNG determines the utility of a neuron by its activity in a
subcluster which is formed by a connected group of neurons inside the GNG network. If
the subcluster is active, which means that one of the neurons of the sub cluster is winner
to the presented stimulus, then the edges of all neighboring neurons age and get removed if
they get older than the threshold @, (see Section 2.1.2). In contrast, GNG-U introduces
a utility attribute for each neuron that reflects the utility of a neuron depending on the
density of its neighboring neurons, without taking the GNG links and their topology into
account. GNG-U substitutes the already explained neuron removal strategy of GNG and
removes neurons for which the utility decreases below a predefined fraction of the worst
local error in the network. In the following, we will describe the GNG-U algorithm in
detail.

5.2.2. GNG-U Algorithm

In the following, we will describe the GNG-U algorithm in detail. The algorithm is depicted
in Algorithm 6. Steps which are novel compared to GNG are highlighted.
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Algorithm 6 Growing Neural Gas with Utility (GNG-U)

Tl W=

. Start with two units n; and n; at random positions in the input space.

: Present an input vector z € R™ from the input set or according to input distribution.
. Find the nearest unit n1 and the second nearest unit ns.

. Increment the age of all edges emanating from n;.

: Update the local error variable by adding the squared distance between wyp, and x.

Aerror(ni) = |wn, — |2

: Update the utility variable by adding the distance between Aerror(ni) and Aerror(nz).

Autility(n1) = Aerror(ng) — Aerror(ny)

: Move n1 and all its topological neighbors (i.e. all the neurons connected to n1 by an edge) towards = by fractions of e

and e, of the distance:
Awn, = ep(z — wp, ), Awp = en(z — wp)

for all direct neighbors of nj.

: If n; and n2 are connected by an edge, set the age of the edge to 0 (refresh). If there is no such edge, create one.
: Remove edges with their age larger than a,,4>. Find the neuron n; having the smallest utility and the

neuron n,, having the worst local error. Remove n;, if the following equation is true:

error(nm)

utility(ny)

10: If the number of input vectors presented or generated so far is an integer or multiple of a parameter )\, insert a new node

n, according to OGNG (see Section 3.4.2).

11: Decrease all error variables and utility variables of all neurons n; by a factor 3.
12: If the stopping criterion is not met, go back to Step (2).

1. At first, the network is initialized with two randomly placed neurons.
2. Present the first stimulus x € R™ of the feature input space to the GNG-U network.

3. In this step, we find the winner and second winner n; and ny which are closest to x,
according to the Fuclidean distance.

4. The age of all edges that connect n; to other neurons is increased by 1.

5. In this step, the local error variable error(n) is updated. This variable later helps
to identify candidates for which a new neuron is inserted in between.

6. According to this step, the utility variable utility(n;) of the winner neuron
is updated by adding the distance between Aerror(n;) and Aerror(ns).

7. An adaptation of n; and its topological neighbors towards x by fractions e, and e,
respectively, is performed.

8. A new connection between n; and ns is created and the age of the edge is set to 0.
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9. All edges with an age greater than a,,,, are removed. Additionally, the
neuron n,, having the lowest utility gets removed in case the utility is
smaller than the fraction %k of the worst error in the network.

10. In this step, depending on the iteration and the parameter A, a new node n, is
inserted into the network. It will be inserted half-way between the neuron n, with
the highest local error and its topological neighbor n; having the largest error among
all neighbors of n,. In addition, the connection between n, and ny is removed and
both neurons are connected to n,.

11. The error and utility variables of all neurons are decreased by a factor .

12. In the last step, the algorithm stops if the stopping criterion is met, i.e., the maximal
network size or some other performance measure has been reached.

5.2.3. Limitations of GNG-U

One of the disadvantages of GNG-U is its high sensitivity towards rapidly changing data
distributions. Preliminary experiments have shown that the network completely moves to a
new position in feature space in case the data distribution change involves a relatively high
Euclidean distance between the old and new position of the presented data. This sensitivity
is understandable, as such a high distance in Euclidean space leads to a high local error.
As GNG-U removes neurons if their utility falls below a fraction of the worst local error,
which is high in such scenario, the complete network will get deleted and built anew at the
new position in feature space. Depending on the frequency of such dramatical change, the
network would remain unstable unless the parameter £ is set to a high value accordingly.
Basically, k is responsible for the balance between plasticity and stability and this also is a
problem, as it is required to carefully be set for each specific application domain due to the
destructive nature of GNG-U. In contrast, our approach DYNG provides a non-destructive
approach which does not influence the removal strategy of GNG and makes DYNG more
insensitive towards extreme changes in the data distribution.

It should also be mentioned that GNG-U is not a classification algorithm and thus is
required to be extended accordingly. In Section 5.5, we will briefly describe the extension
of GNG-U to Online Growing Neural Gas with Utility (OGNG-U) by making use of the

online labeling and prediction strategies introduced in Chapter 3.
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Figure 5.2.: Dynamic Online Growing Neural Gas (DYNG) processing pipeline.

5.3. Dynamic Online Growing Neural Gas (DYNG)

In this section we introduce Dynamic Online Growing Neural Gas (DYNG) as extension of
OGNG with an emphasis on the processing of non-stationary data. At first, we will explain
the additions that set DYNG and OGNG apart. Then we will explain the DYNG algorithm
in detail, before we then discuss its implicit two-layered memory structure consisting of a
short-term memory (STM) and a long-term memory (LTM).

DYNG is a classification algorithm that exploits label information in order to react to
concept drifts by introducing two novel neuron insertion strategies. As shown in Figure
5.2 from left to right, the DYNG algorithm processes input given as data category pairings
and results in a classification model which is capable of predicting unseen data points
on-the-fly. Its main advantage lies in its two novel neuron insertion strategies that allow
DYNG to follow non-stationary data and to quickly react to concept drifting categories.

5.3.1. DYNG as extension of OGNG

OGNG is an online classifier which is capable of processing and predicting data on-the-fly,
without the need to store any training example explicitly. Although OGNG is capable
of processing a continuous stream of data, it lacks the ability to react to changing dis-
tributions, as its neuron insertion strategy does not incorporate the label information of
the data. In contrast, DYNG utilizes the label information in order to quickly react to
changing data and category distributions.

DYNG introduces two novel neuron insertion strategies which depend on the category
label information and allow DYNG to outperform OGNG when processing non-stationary
data, as shown in Section 5.5. In particular, the two new neuron insertion strategies can
be described as follows:
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o Fast-mapping insertion strategy: The first insertion strategy is responsible for a
fast adaptation towards novel categories. As soon as a new stimulus z; with a novel
category c; is presented to the network, a new neuron n,,,, is inserted at the position
of z; with I*(2yew) := ¢;.

« Distance-based insertion strategy: The second novel neuron insertion strategy
inserts new neurons for each category after every iteration, as long as its classifica-
tion performance increases. The purpose of this strategy is to quickly establish a
reasonable representation of each category and in particular of new categories. The
strategy works as follows: In case of a mismatch between the label of n; and the
label of stimulus x;, DYNG determines the nearest neuron ny, with (ng) = I*(x;)
and inserts a new neuron if the distance |wy, — z;|* > |wn, — ©|*T + |wn, — i]%,
i.e. if ny is too far away from z; compared to ny. In the other case ny; is adapted
towards x;. Thereby, |wp, — 2:|*T + |w,, — 2;]* can be seen as a vigilance parameter
as known from Adaptive Resonance Theory (ART) [Gro87] and thus controls the size
of the additional network memory provided by DYNG. The distance-based insertion
strategy is illustrated in Figure 5.3.

The Fast-mapping insertion strategy is applied in every iteration if required, while the
distance-based insertion strategy is only applied if the classification performance of cate-
gory I*(z;) = ¢; improved at iteration ¢ compared to iteration ¢t — A. In order to track this
performance, similar to the local error, we introduce a function classError : C' x T — R
with C' being the set of known categories and 7" being an iteration number. We denote by
classErrort(c;) the classification error of category c;, which is defined as follows:

t Aerrors (ws(zs)) . _1s
1-— . if ¢; = 5 (ws(x4
classError'(c;) = E maxnen (error(n)) (ws(w.))

s=1 |0 else

In each iteration, we only apply this function to a category in case of mismatch between
I"(ws(ng)) and I*(x,). For every update, a value between [0 : 1] is added to the classification
error of ¢;, depending on the distance between winner neuron ws(x) and stimulus z5. The
intuition is that a misclassification of xs with wy(zs) and x4 being close, is worse than
a misclassification with both being far away from each other. Although classErrort(c;)
potentially holds a complete classification error history for each known category c¢; until
iteration ¢, we only store the last value and compare it to the most recent one after A
iterations have passed. This decreases the memory usage for each category to O(1).

5.3.2. DYNG Algorithm

In what follows, we will describe every step of the DYNG algorithm. The complete algo-
rithm is depicted in Algorithm 7.
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Figure 5.3.: lllustration of the Distance-based insertion strategy of DYNG.

In the first step, the network is initialized with two randomly placed neurons n;, n;.

In the second step, the iteration loop starts which runs as long as stream input is
available, which theoretically could be infinity.

In Step 3, the next stimulus z; is presented to the network at iteration ¢.

According to Step 4, the winner n; and second winner neuron nsy are determined
according to the Euclidean distance between neurons and stimulus.

Steps 5-8 describe the fast-mapping insertion strategy. In these steps, a new neuron
Nnew 1S inserted into the network at the position of z; in feature space. It adopts
the label I*(x;) of the stimulus z; and gets connected to the previously determined
winner neuron nj.

In step 9, the error variable of n is updated according to OGNG (see Section 3.4.2)
and the emanating edges of n; increment their age by one.

In steps 10-12, the classification error variable of category I*(n1) = ¢; is updated with

AclassErrort(c;) =1 — maXAZZg:T(Z;B(n))-

In Step 13, the winner neuron n; is labeled according to the used online labeling
strategy. In our case we used the relabel method (see Section 3.4) throughout our
experiments, which simply adopts the label of the stimulus.

In Step 14, ny and its topological neighbors are adapted towards the stimulus by the
fraction of ¢, and e, respectively.

Steps 15-23 form the distance-based insertion strategy, in which basically three
conditions need to fulfilled in order to insert a new neuron at the position of the
stimulus. The first two of them are the requirements that [*(n;) # ['(z;) and
impl(I*(x;)) = “true”, which means that the labels of neuron n; and stimulus z;
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differ from each other, as well as that the classification error of category ¢; = ()
improved over the last ¢ — A iterations. If both criteria are fulfilled, the algorithm
determines the closest neuron ny, to x that shares its label with *(ny) = {*(z). The
last condition decides if the distance between ny, and the stimulus is still close enough
to adapt ny, or to insert a new neuron instead. In case that a new neuron is inserted,
it will get connected to ny.

o In Step 24, all edges and neurons are removed according to the criteria of OGNG.

o According to steps 25-34, the classification error of all known categories at iteration
t is compared to those of iteration t — A. If the classification error decreased then
the boolean function imp : C' — {true, false} is set to the value “true” in order
to indicate that the classification performance for the particular category improved.

Otherwise it is set to “false”. Additionally we insert a new neuron according to the
OGNG algorithm.

o In Step 35, the error variables as well as the classification errors for all neurons and
all categories, respectively, are decreased by the factor 8. After that we continue the
loop cycle with the next stimulus and Step 2.

Complexity in time and space

The additions we introduce do not increase the overall complexity of DYNG compared
to OGNG. As in the case of OGNG, we need to run through all neurons in order to
determine the nearest neighbor, to adapt the neurons’ positions, its local errors, as well as
increase link ages. Assuming the whole network is stored as a b-tree using the in Section
2.1.2 introduced TreeGNG schema, then each search, insertion or removal operation has a
complexity of O(logan) with n being the number of neurons. As for OGNG, the complexity
of the labeling and the prediction is in O(1) and in O(logsn), respectively, when the relabel
method and the single-linkage prediction strategy is used. Our new additions , the fast-
mapping strategy and the distance-based strategy have a complexity of O(1) and O(logsn),
respectively. However, steps 26-32 have a complexity of O(logok), with k being the number
of known categories. Under the assumption that only categories remain stored that are
present in the network, we have a worst case complexity of O(logan). So overall, DYNG
has a average and worst case time complexity of O(logan).

The memory usage of DYNG is again similar to OGNG, as we only need to store the
position of each neuron, its connection, its local error and its label. DYNG additionally
stores the all the known categories and their current and last (of iteration t—\) classification
error, which in worst case is in space complexity of O(n).
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Algorithm 7 Dynamic Online Growing Neural Gas (DYNG)

1: Start with two units n; and nj; at random positions in the input space.
2: while Stream.hasNext do

31 x; := Stream.next(t) with z; € R™.

4: Find the nearest unit n1 and the second nearest unit ns.

5:  if I*(z;) is unknown then

6: Add a neuron npew with wn,,.,, = ;i and ! (npew) = I (z;).

7: Create an edge between npeq and ny.

8: end if

9: Update the local error variable of n; and increment the age of all edges emanating from nj according to OGNG (see
Section 2).

10:  if i*(n1) # 1*(z;) then

11: Update the class error: AclassErrort(ci) =1— #%, with 1*(n1) = c1.

12: end if

13: 1*(n1) := 1*(z;) {OGNG relabel-method}

14: Move nj and all its topological neighbors according to OGNG and connect n; and na.

15:  if it(n1) # IH(z;) Aimp(It(x;)) = "true” then

16: Find nearest unit ny, with It(n;) = I8 (z;).

17: if |wny, — 4|2 > |wny, — 2i]?7 + |wn, — 24|? then

18: Add a neuron npeyw with wp,,,,, = ;i and ! (npew) = 1 (x;).

19: Create an edge between nnew and ngp.

20: else

21: Move ny, towards x; by the fraction of ey: Awn,, = ep(Ti — wnyy)

22: end if

23: end if

24: Remove edges and neurons according to OGNG.
25: if ¢ mod A =0 then

26: for all classes ¢; € C do

27: if classErrort=>(c;) > classErrort(c;) then

28: imp(c;) = “true”

29: else

30: imp(c;) = “false”

31: end if

32: end for

33: Insert a new neuron and update the network link structure according to OGNG.
34: end if

35: Decrease all local error variables of all neurons n; and all class error variables of all classes ¢; by a factor .
36:  t++.

37: end while

So overall, DYNG has a average and worst case time complexity of O(logan) and a com-
plexity in space of O(n) .

5.3.3. Memory Structures

In the following we want to highlight the two-layered memory structure. Similar to the two-
level architecture, we explained in Section 3.4.3, DYNG provides a two-layered memory
structure which is only to some degree explicitly implemented. One of the layers is explicitly
implemented, while the other one is subject of our interpretation. Nevertheless, it is
important to deepen the discussion of the memory architecture of DYNG in order to
understand how DYNG works. As illustrated in Figure 5.4 and already mentioned before,

93



Chapter 5. Learning with non-stationary data based on DYNG

Long-Term Memory

e — P

meuron msertlon\ / Dlstance ba:e\
. and removel of GNG neuron insertion
A 4 \\\\ of DYNG ////

S~ R L
(xi, )
Stimulus and
Category labels

Short-Term Memory

Fast-mapping
neuron insertion

of DYNG
XII cnew

Stimulus and
novel Category labels

Figure 5.4.: Two-layered memory structure schema of DYNG.

DYNG includes a short-term memory (STM) and a long-term memory (LTM). The STM is
explicitly implemented by the fast-mapping insertion strategy, as it causes novel categories
to directly manifest in the DYNG network. However, those categories may or may not
evolve in the network, depending on how frequently they appear in the data. Due to the
implicit LTM based on the distance-based insertion strategy and the GNG-based neuron
insertion and removal strategies, novel categories will expand or disappear.

The structure shows that DYNG, similar to other existing approaches, balances the plasticity-
stability dilemma by providing a STM and LTM, which can be considered as one of the
main advantages of DYNG compared to other GNG-based approaches, such as GNG-U.
The STM allows the model to directly adapt to new unknown categories, while the LTM
allows those categories to rapidly grow inside the network.
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5.4, Dataset

5.4. Dataset

In this section we describe the dataset we used in our experiments with DYNG. It should
be mentioned that we evaluate DYNG on a small artificial dataset in this chapter, in order
to show its performance compared to OGNG-U, OGNG and an linear multi-class SVM in
a small controlled environment. In Chapter 7, we will further demonstrate the advantage
of DYNG when applied to realistic stream datasets.

However, for our evaluation in this chapter we use the SPIRAL1 dataset, which we already
introduced in Section 3.5 and used with OGNG. In contrast to the separation of the dataset
according to the 10-fold cross validation, here we use a set up which is closer to a realistic
stream dataset. In particular, there is no separation between different training sets as
we only interrupt the processing in order to perform a prediction for unseen data as a
test to quantify the classification accuracy of the network. The test set, which we use for
the prediction, is formed by taking 50% of all examples for each category and excluding
them from the set of data used for training. We refer to the current state of the data sets
(train/test) as snapshots. Two of such snapshots are shown in Figure 5.5. The figure shows
the available data for training (left side) and test (right side) at snapshot 4 and snapshot
8.

In the next section we will further describe how the data evolves over time and which data
is available in each snapshot.

5.5. Evaluation

In this section we evaluate DYNG as extension of OGNG in a stream data scenario involv-
ing non-stationary data and concept drift. We will compare DYNG to Online Growing
Neural Gas with Utility (OGNG-U), an online classification algorithm which is based on
GNG-U while adopting online labeling and prediction strategies of OGNG. We use OGNG-
U and OGNG as baselines for our experiments and will experimentally show that DYNG
significantly outperforms OGNG-U and OGNG, without substituting the underlying neu-
ron insertion and removal strategies of GNG as by OGNG-U. We also compare DYNG to
the standard OGNG algorithm in order to show the improvement of our additions towards
non-stationary data, as well as to a linear multi-class SVM.

5.5.1. Parameters & OGNG-U

In order to compare DYNG to our baselines, we chose a fixed set of GNG parameters. The
set has been empirically determined by trial-and-error through preliminary experiments.
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Figure 5.5.: Training and test set of SPIRAL2 at Snapshot & (upper) and Snapshot 8 (lower).

For our experiments we have set the GNG parameters for DYNG, OGNG-U and OGNG
as follows: insertion parameter A = 30; maximum age a,,., = 100; adaptation parameter
for winner e, = 0.1; adaptation parameter for neighborhood e, = 0.0006; error variable
decrease o = 0.5; error variable decrease 8 = 0.0005 and allowed a maximum number of
neurons 7N, = 120. For OGNG-U we additionally set the GNG-U parameter k£ = 3.0,
as we achieved best results with it. The factor allows GNG-U to have a higher memory,
compared to k = 1.0, as the worst utility may be three times smaller than the worst local
error of the network. For DYNG we set 7 = 0.3 as we achieved best results in all of our
experiments, including the real stream data experiments of Chapter 7. For the SVM we
chose a multi-class SVM with a linear kernel and trained it in a one-vs-all fashion and
relied on the commonly used SVM library 1ibSVM [CL11].

As GNG-U is a clustering algorithm that is not capable of processing category label in-
formation, we extended GNG-U to the online classifier Online Growing Neural Gas with
Utility (OGNG-U). OGNG-U simple adopts the online labeling method relabel and the
prediction strategy single-linkage of OGNG as introduced in Section 3.4.1 and Section
3.3.1. OGNG-U furthermore demonstrates the general applicability of the mechanisms
introduced in this thesis beyond GNG to other sorts of topological feature maps. The
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novel strategies, in particular the ones introduced by DYNG, do not modify or substitute
the underlying clustering schema, as they simple extend it.

5.5.2. Experiments & Results

For our experiments with DYNG we evaluated the classification performance of DYNG,
OGNG-U, OGNG and the SVM on the SPIRAL1 dataset. Thereby, we separated the
dataset so that 50% of all examples of each category will be shown through every snap-
shot. In particular, we only show one category at a time for each snapshot, while having
10 snapshots overall. This means that in Snapshot 2, for example, we exclusively show
the examples for Category 2 while in Snapshot 3 we exclusively present the stimulus of
Category 3, etc.. The test set, instead, gradually grows, as with every snapshot a new cat-
egory is added to it. Therefore, a prediction is basically performed on all categories seen
so far. An illustration of Snapshot 4 and Snapshot 8 is given by Figure 5.5. In contrast to
previous experiments, the stopping criterium for OGNG (and OGNG-U) is that all data
has been processed.

For the SVM we needed to adapt the scenario slightly, as the SVM is an offline classifier
which is required to explicitly store the training examples and retrain in order to incor-
porate newly gained knowledge. In order to make a fair comparison, we allowed the SVM
a storage of n = 112 training examples, with n being equal to the number of neurons of
DYNG. While the data evolves during the different snapshots, the SVM is required to
equally represent the relevant categories with the given amount of memory and thus is
required to insert and remove examples from its training set. Those removal operations
are based on the first in - first out (FIFO) principle.

Our results are shown in Table 5.1 and Figure 5.6. Table 5.1 shows the averaged classifi-
cation accuracy including standard deviation of all compared algorithms in the first row.
Additionally the table lists the number of vectors, which includes neurons and also training
examples and support vectors for the SVM in the second row. This should indicate the
memory demand of each algorithm throughout this evaluation. In Figure 5.6, we depicted
the development of the accuracy curve for DYNG, OGNG-U and OGNG over the process-
ing of the data set. Thereby, the x-axis stands for the number of snapshots and the y-axis
reveals the corresponding accuracy.

Results

The results license the following observations:
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DYNG OGNG-U OGNG SVM
Accuracy | 75.1 £ 2.9% 58.9 £ 6.0% 588 +3.6% 73.8 £ 16.5%
#Vectors 112 100 102 224

Table 5.1.: Averaged classification performance of DYNG, OGNG-U, OGNG and SVM on SPIRAL2 and number of stored

vectors.
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e Comparison of DYNG and OGNG-U: According to the first row of Table 5.1,

DYNG significantly outperforms OGNG-U with an average accuracy of 75.1 +2.9%
compared to 58.9 £ 6.0%. DYNG also provides a lower standard deviation which
additionally is observable in Figure 5.6. The figure shows that especially in the
beginning phase of the processing at Snapshot 2, DYNG outperforms OGNG-U by
an increased performance of 27%. It also confirms the lower standard deviation of
DYNG in that its accuracy is more stable compared to OGNG-U over the processing.

Comparison of DYNG and OGNG: The first row of Table 5.1 also shows that
DYNG significantly outperforms OGNG with an average accuracy of 75.1 + 2.9%
compared to 58.8 £ 3.6%. Compared to OGNG, DYNG increases the performance
by 27% and also shows a slightly better stability in performance with a standard
deviation of 2.9% compared to OGNG with 3.6%.

Comparison of OGNG-U and OGNG: The results in the first row of Table
5.1 show that OGNG-U provides a slightly better averaged accuracy compared to
OGNG with a classification performance of 58.9 4+ 6.0% compared to 58.8 + 3.6%.
The standard deviation of OGNG-U is twice as much compared to OGNG with 6.0%
compared to 3.6%. This difference becomes clear when inspecting both accuracy
curves as depicted in Figure 5.6. The figure shows that OGNG-U starts with an
accuracy that is 8.7% below the one of OGNG at Snapshot 2 and gradually increases
until it outperforms OGNG with a difference of 3.4% at Snapshot 7, up to 3.6% at
Snapshot 10.

Comparison of DYNG and SVM: As shown in the first row of Table 5.1, DYNG
performs slightly better compared to the SVM with a classification accuracy of 75.1+
2.9% compared to 73.8 £16.5%. We applied a t-test and could not prove the results
to be significantly different. An interesting observation, however, is that the standard
deviation is almost 6 times as high as the standard deviation of DYNG, with 16.5%
compared to 2.9% of DYNG.

Memory usage: In the second row of Table 5.1 the used number of vectors are
shown. In case of DYNG, OGNG-U and OGNG this reflects the number of neurons
that the network has stored. In case of the SVM the number consists of the stored
training examples and used support vectors. The SVM has the highest memory usage
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Figure 5.6.: Performance development of DYNG, 0GNG-U and OGNG on the SPIRAL2 dataset.

with 224 vectors, followed by DYNG with 112 vectors, OGNG with 102 vectors and
OGNG-U with 100 stored vectors.

5.5.3. Discussion

The results of our experiments show the advantage of DYNG in a stream data scenario
which involves non-stationary data as well as concept drift. DYNG significantly outper-
forms all other compared GNG-based approaches. Furthermore, it even performs slightly
better than the SVM, although we do not consider the difference as being significant.
However, the GNG-based classifiers allow a more reliable prediction with an almost up to
6 times less standard deviation. This reliability is very important for stream data and life-
long learning applications, as a prediction is performed on demand and it is thus crucial
for the usability of such a classification model. DYNG shows the best performance and
highest reliability and thus renders itself as most ideal for stream data scenarios compared
to OGNG-U, OGNG and the SVM. The high degree of instability of the SVM is under-
standable as the amount of training examples for each retraining of the classifier seems to
be insufficient and causes some of the categories to be underrepresented while others are
reasonable represented by the given set of support vectors.

Comparing the memory usage of all algorithms, the SVM demands the highest amount
of memory. However, within the GNG-based classifiers, DYNG requires a 12% increased
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memory amount compared to OGNG-U, which is due to its non-destructive nature. In rela-
tion to the performance improvement of DYNG with a 16.2% increased accuracy compared
to OGNG-U, the slightly higher memory usage should be considered as reasonable.

5.6. Summary

In this chapter we have presented DYNG as extension of OGNG with emphasis on non-
stationary data and concept drift. DYNG introduces two novel neuron insertion strategies
which allow the model to quickly grow and adapt to new evolving categories and, further-
more, damping this growth when the classification performance for a category converges.
We have also introduced OGNG-U as online classifier based on GNG-U and used it as base-
line for our experiments. We discussed the short-term and long-term memory of DYNG
and how the different neuron insertion strategies and neuron removal strategies realize
the two memory structures. We have evaluated DYNG, OGNG-U, OGNG and a linear
multi-class SVM in a stream data scenario which involves non-stationary data and concept
drift. Thereby, we shown that DYNG significantly outperforms the GNG-based classifiers,
especially in the beginning phase of the processing. Furthermore, DYNG achieves slightly
better results than the SVM while providing a six times more reliable prediction accuracy.
We also compared the memory usage of all algorithms and found the SVM as being most
memory demanding. Out of the GNG-based algorithms, DYNG requires the most mem-
ory due to its non-destructive nature. The increase of memory usage, however, can be
considered as reasonable when taking into account its increased performance.

In the next chapter, we will introduce the last extension of OGNG within the GCM Frame-
work that is capable of processing data coming from multiple domains in a single classifi-
cation network.
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Chapter

Learning with multi-view data based on VONG

In this chapter, we introduce Multi-view Online Growing Neural Gas (VONG) as an ex-
tension of OGNG. VONG is an online classifier that is capable of processing data coming
from multiple domains. As each of these domains renders a unique view on the data,
VONG predicts category labels pre view. Therefore, it introduces a new multi-view la-
beling and multi-view prediction strategy that involve the selection of relevant feature
space dimensions, masking them for each view independently. We additionally introduce
a naive multi-label classification approach, i.e. OGNG™, that is also based on OGNG and
serves us as baseline in our evaluation. We will compare both algorithms on two artificial
multi-view datasets and show that VONG significantly outperforms OGNG™ on both of
the sets. Furthermore, we will investigate the impact of the new multi-view strategies on
the classification performance independently, and therefore compare VONG to VONG-M.
VONG-M is a version of VONG which only implements its multi-view prediction strategy,
but adopts the naive multi-labeling of OGNG™.

While standard multi-view online classification approaches follow the assumption that
views are generated by the same domain, we extend the multi-view classification challenge
in that we assume the data to be composed out of multiple domains, and therefore each view
being generated by a different domain. Thereby, we define a domain as a subset of feature
space dimensions and a set of unique subcategory /property labels. As a consequence to our
extended challenge, each data instance is assigned to multiple domains and thus requires
multiple subcategory labels to be specified. This causes most of the existing multi-view
classification approaches to be unusable for our task. Usually, an ensemble of classifiers
would be used in such scenario, which is not an architecture of choice in life-long learning
due to its increased complexity and memory requirement. However, in this chapter we will
demonstrate that it is possible to solve our multi-view classification task by providing a
single homogenous model that is capable of predicting a category label for an unseen data
points in each view-independently.
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Growing Conceptual
Maps Framework

Figure 6.1.: Multi-view Online Growing Neural Gas (VONG) as component of the GCM framework.

6.1. Challenges

In our multi-view classification scenario, the model M is required to learn the mapping
between a data point x; € X and a set of subcategory labels ¢; € C”, which are given
as tuple (:cl,c;) Thereby, feature vectors from X as well as sets of subcategory labels
from C” are formed as product of feature subspaces X = [[,_, X4, and subcategory labels
C" =[1i-, C4, coming from the different domains dj, € D, with k =1,2,..., 0.

A “red book”, for example, has a certain color, shape and material. Given these domains of
“color”, “shape” and “material”, the data instance of a “red book” (x;, c;) can be described
by its composed feature vector x; and its set of subcategory labels c;. = {“red”, “square”,
“paper”}. Thereby, we assume the domains and, in particular, their feature subspaces and
sets of subcategory labels to be disjoint. For our example, this means that there are no
feature subspace dimensions as well as no subcategory labels that are relevant to more

than one of the three domains.

A wview can then be seen as projection

7r:X><C"><D—>1_[Xd,C XHCdk,With

k=1 k=1

Vi, d € D k#1: Xy =0ACy =0.
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The projection function 7 thereby masks feature space dimensions and excludes category
labels that are irrelevant to dy. In what follows, we denote this masking projection function

by ma, (w4, ¢j).
Given this setting, the following challenges arise:

o Learning with multiple views: Usually a classifier is trained to solve a classifica-
tion task by learning the prediction function f : X — C. However, in our multi-view
classification scenario the model M is required to learn an extended prediction func-
tion fowe © X x D — C, which depends on a domain d;, € D. Furthermore, the
conditional independence of domains requires M to perform multiple classification
tasks at once, without them contributing to each other as, for example, in the Co-
Training paradigm (see Section 2.3).

* Grouping of categories by views: When learning a prediction function f,.
per view, the feature space needs to be masked accordingly. This means that M
should incorporate several masking functions 7y, for the different domains, in order
to project the input x; to the feature subspace of d;, and to assign subcategory labels
of Cg4, to the model M.

o Compact uniform classification model: Providing a uniform model in a multi-
view classification task is challenging, as the data is heterogenous caused by its
compositional nature and its feature subspaces and subcategories coming from mul-
tiple domains. Representing such data in a homogenous model requires a step of
encoding and decoding in the sense that the diverse data is uniformly represented in
M (encode) and still being recallable by its domain affiliation (decode).

6.2. Contributions

In this chapter, a multi-view extension of OGNG is presented that relies on online multi-
view labeling and multi-view prediction strategies. We will make use of our novel approach
in an online classification task that involves data coming from several domains. Thereby,
we evaluate VONG on two artificial multi-view datasets that including different degrees of
domain correlations. We will furthermore introduce OGNG™ as naive multi-label extension
of OGNG, and utilize this algorithm as baseline for VONG, while showing that VONG
clearly outperforms OGNG™ on both datasets. In order to investigate the impact of the
masking on the classification performance of VONG, we also compare VONG against
VONG-M, a version of VONG which excludes the masking in when labeling neurons.

In particular, we offer the following contributions:
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e VONG as multi-view extension of OGNG: We extend OGNG by a novel on-
the-fly multi-view labeling and prediction strategy which allow VONG to learn with
data coming from multiple domains and store this information in a single network.

« OGNG™ as naive multi-label extension of OGNG: We extend OGNG with a
naive multi-labeling strategy that builds upon the labeling strategies of OGNG, in
order to provide an intuitive baseline that we can compare with.

o Comparing VONG with OGNG™: We compare the performance of VONG and
OGNG™ in a classification task and show that VONG clearly outperforms OGNG*
on both of our artificial multi-view datasets.

e Comparing VONG with VONG-M: We compare VONG to VONG-M and demon-
strate the benefit of the masking for each view, which is performed during the as-
signment of labels to neurons in the VONG network.

6.3. OGNG™': A naive multi-label approach based on
OGNG

In this section we introduce OGNG™ as naive multi-label extension of OGNG. OGNG™
will serve us as baseline for VONG as it provides an intuitive approach on adapting OGNG
to a multi-view data classification problem. OGNG™' adopts the architecture of OGNG
as online classifier and simply modifies its online labeling and online prediction strategies,
which is based on the relabel method (see Section 3.4.1) and the single-linkage prediction
strategy (see Section 3.3.2). In contrast to the relabel method of OGNG, OGNG™ adopts
the complete subcategory label set as given by the stimulus. Therefore, m labels are
assigned to each single neuron in the network, with m = |D| being the number of all
domains relevant to this task. For the single-linkage prediction strategy, OGNG™ simply
returns all subcategory labels of the neuron which provides the closest Euclidean distance
to the stimulus.

6.3.1. OGNG™ Algorithm

In the following, the complete OGNG™ algorithm will be described step by step, as depicted
in Algorithm 8. The highlighted steps mark the changes of OGNG™ compared to the
original OGNG.

1. In the first step, the algorithm starts with two neurons, randomly placed in the
feature space.
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10.

11.
12.

6.3. OGNG™: A naive multi-label approach based on OGNG

The first stimulus = € R" of the input space (first training example) and
its corresponding set of labels is presented to the network.

. The two neurons n; and ns which minimize the Euclidean distance to x are identified

as first and second winner.

The set of labels is assigned to n;. The relabel method is used here (see
Section 3.4.1)

. The age of all edges that connect n; to other neurons is increased by 1.

. In this step, the local error variable error(n;) of ny is updated. This error variable

will be used later in order to determine the location for a newly inserted node.

In this step, n; and its topological neighbors are adapted towards z by fractions e,
and e, respectively.

. A new connection between n, and ns is created and the age of the edge is set to 0.

. All edges with an age greater than a,,., as well as all neurons without any connecting

edge are removed.

Depending on the iteration and the parameter A, a new node n, is inserted into the
network. It will be inserted half-way between the neuron n, with the highest local
error and its topological neighbor n having the largest error among all neighbors of
nq. In addition, the connection between n, and n; is removed and both neurons are
connected to n,.

In this step, the error variables of all neurons are decreased by a factor S.

The algorithm stops if the stopping criterion is met, i.e., the maximal network size
or some other performance measure has been reached.

6.3.2. Limitations of OGNG™

There are several limitations connected to OGNG™. The first problem is the fact that
OGNG™ is not capable of predicting the subcategory of a specific view, as it simply returns
all subcategory labels. This also means that OGNG™ does not include mechanisms of
encoding and decoding the data coming from multiple domains, as the information about
domain affiliations get lost during the data processing step. In contrast, in the next section
we will discuss that VONG is capable of storing the domain affiliation in the network
implicitly by utilizing its masked labeling and prediction strategies.

Another disadvantage of OGNGT is closely connected to this lack of storing domain af-
filiations. When assigning the set of subcategory labels to neurons, the winner neuron is
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Algorithm 8 Ounline Growing Neural Gast (OGNG™)

1: Start with two units n; and n; at random positions in the input space.

2: Present an input vector z € R" and its corresponding set of categories from the input set according to
the input distribution.

3: Find the nearest unit n; and the second nearest unit ng.

4: Assign the complete label set of = to n; according to the present labeling strategy.

5: Increment the age of all edges emanating from n.

6: Update the local error variable by adding the squared distance between wy,, and z.

Aerror(ny) = |wn, — |2

7: Move ni and all its topological neighbors (i.e. all the neurons connected to n1 by an edge) towards x by fractions of e
and e, of the distance:
Awn, = ep(z — wn,)

Awn = en (CC - wn)

for all direct neighbors of n;.

8: If n1 and ma are connected by an edge, set the age of the edge to 0 (refresh). If there is no such edge, create one.

9: Remove edges with their age larger than amaz. If this results in neurons having no emanating edges, remove them as
well.

10: If the number of input vectors presented or generated so far is an integer or multiple of a parameter ), insert a new node
n, as follows:
Determine unit ng with the largest error.
Among the neighbors of ng, find node ny with the largest error.
Insert a new node n, halfway between n, and n; as follows:

Wn, g +wnf
Wn, = ——————

! 2

Create edges between n, and ng, and n, and ng. Remove the edge between ng and ng.
Decrease the error variable of ng and ny by multiplying them with a constant «. Set the error n, with the new error
variable of ng.

11: Decrease all error variables of all neurons n; by a factor 3.

12: If the stopping criterion is not met, go back to Step (2).

determined by having the closest Euclidean distance to the stimulus with consideration of
the complete unweighted feature vector. This means that a view having the highest num-
ber of dimensions in the feature vector potentially biases the complete decision towards its
subcategory. As a result, the classification performance for such views should be higher
than those only contributing a small number of dimensions. VONG masks the dimensions
of the feature vector for its labeling and prediction strategy in the sense that it simply
ignores dimensions that are irrelevant to the view in question.

6.4. Multi-view Online Growing Neural Gas (VONG)

In this section, we introduce Multi-view Online Growing Neural Gas (VONG) as multi-
view extension of OGNG. At first, we will describe the modifications of VONG that set
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Figure 6.2.: Multi-view Online Growing Neural Gas (VONG) processing pipeline.

both VONG and OGNG apart. We will then explain the VONG algorithm in detail and
also discuss its multiplexing architecture.

VONG is an online classifier that utilizes labeled data coming from multiple domains and
encodes this information in a uniform classification model on-the-fly. It furthermore is
capable of decoding the stored information in the sense that it implements the prediction
function f,,.+; and thus predicts subcategory labels to a given stimulus and a given domain.
As shown in Figure 6.2 from left to right, a composed feature vector as well as a set of
subcategory labels from multiple domains are the input for our VONG algorithm. The
data then gets processed and stored inside the uniform VONG network, which then can
predict subcategory labels for the single views on demand. Its main advantage lies in its
uniform structure, which allows the model, as in all other extensions of OGNG, to grow
with a stream data classification task while remaining a reasonable compact form.

6.4.1. VONG as multi-view extension of OGNG

OGNG is an online classification algorithm which is capable of processing stream data on-
the-fly. However, it is not designed to work with multi-view data and, even more important,
it is not designed to predict multiple category labels for a single given input stimulus. In
order to extend OGNG accordingly, VONG modifies the labeling and prediction strategies
of OGNG to assign and predict subcategory labels to a given stimulus and a given domain.
Thereby, the algorithm requires the domain affiliation, and thus view affiliation, of the
feature space dimensions to be known, and furthermore utilizes this information in order
to mask the feature vector per view, to ignore irrelevant dimensions. In what follows we
will describe these extensions in more detail:

o Masking of the feature vector: The process of masking dimensions of the fea-
ture vector is crucial to VONG as it allows, in combination with the labeling and
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Figure 6.3.: lllustration of the masked multi-view labeling strategy according to VONG.

prediction strategies, to encode and decode the heterogenous data which originates
from multiple domains. Thereby, it is assumed that the domain/view affiliation of
feature space dimensions to be known. As illustrated in Figure 6.3 and Figure 6.4,
the process of masking feature space dimensions causes the VONG network to change
its shape per view, so that a subcategory label prediction can be performed in the
feature subspace of Xy, .

o Multi-view labeling strategy: This labeling strategy is based on the feature space
masking and is depicted in Figure 6.3. As shown in the figure, for each view that is
been generated by a domain, we perform a single labeling according to the relabel
method of OGNG. We thus simply find the closest neuron of the network by only
considering the relevant dimensions according to the view in question, and assign the
subcategory label to this winner neuron.

o Multi-view prediction strategy: In case of the prediction strategy, we also rely on
the masking of dimensions and only consider the relevant dimensions of the feature
vector for the view in question, to determine the closest neuron in the network.
Thereby, the prediction is based on single-linkage, as introduced in Section 3.3.2 and
illustrated in Figure 6.4.

It should be mentioned that there is a strong assumption been made in order to apply
VONG in the way described. The affiliation of feature dimensions and subcategory labels
to a specific view/domain must be known in advance. VONG requires this information
in order to apply its masking when labeling data. In the prediction step, no additional
information is required, as the masking vector is explicitly stored for each view. However,
this assumption is realistic in the sense that in many real applications, such as in data
warehouses, the origin of the data is usually known. The assumption does thus not prevent
VONG from being applicable in real multi-view based stream data scenarios.
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Figure 6.4.: lllustration of the masked multi-view prediction strategy according to VONG.

6.4.2. VONG Algorithm

In the following, the complete VONG algorithm will be described step by step, as depicted
in Algorithm 9. The highlighted steps mark the changes of VONG compared to the original
OGNG.

1.

In the first step, the algorithm starts with two neurons, randomly placed in the
feature space.

. The first stimulus z € R" of the input space (first training example) and

its corresponding set of subcategory labels is presented to the network.

. The two neurons n,; and n, which minimize the Euclidean distance to x are identified

as first and second winner.

For each view, find the closest neuron ngd’“) according to the masked Eu-

clidean distance, and assign ngd’“) with the label of the corresponding view

label of x.
The age of all edges that connect n; to other neurons is increased by 1.

In this step, the local error variable error(ny) of n; is updated. This error variable
will be used later in order to determine the location for a newly inserted node.

In this step, n; and its topological neighbors are adapted towards x by fractions e,
and e, respectively.

. A new connection between n; and ns is created and the age of the edge is set to 0.

All edges with an age greater than a,,,, as well as all neurons without any connecting
edge are removed.
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10. Depending on the iteration and the parameter A, a new node n, is inserted into the
network. It will be inserted half-way between the neuron n, with the highest local
error and its topological neighbor n; having the largest error among all neighbors of
nq. In addition, the connection between n, and ny is removed and both neurons are
connected to n,.

11. In this step, the error variables of all neurons are decreased by a factor 5.

12. The algorithm stops if the stopping criterion is met, i.e., the maximal network size
or some other performance measure has been reached.

Algorithm 9 Multi-view Online Growing Neural Gas (VONG)

1: Start with two units n; and n; at random positions in the input space.
Present an input vector z € R" and its corresponding set of categories from the input set according to
the input distribution.

2

3: Find the nearest unit n; and the second nearest unit ns.

4 (di)
1

)

.o

For each view, find the closest neuron n
label of = to ngd’“).

: Increment the age of all edges emanating from nj.

. Update the local error variable by adding the squared distance between wy; and x.

according to the masked Euclidean distance and assign the

Oy Ut

Aerror(ni) = |wn, — 2|2

7: Move n; and all its topological neighbors (i.e. all the neurons connected to n1 by an edge) towards x by fractions of e,
and e, of the distance:

Awnp, = ep(x — wn;y)
Awp = en(x — wn)

for all direct neighbors of nj.

8: If ny and no are connected by an edge, set the age of the edge to 0 (refresh). If there is no such edge, create one.

9: Remove edges with their age larger than amaz. If this results in neurons having no emanating edges, remove them as
well.

10: If the number of input vectors presented or generated so far is an integer or multiple of a parameter )\, insert a new node
n, as follows:
Determine unit ng with the largest error.
Among the neighbors of ng, find node ny with the largest error.
Insert a new node n, halfway between ng and ny as follows:

Wn g +an
Wn, = —

Create edges between n, and ng, and n, and ny. Remove the edge between ng and ny.
Decrease the error variable of ng and ny by multiplying them with a constant a. Set the error n, with the new error
variable of ng.

11: Decrease all error variables of all neurons n; by a factor 8.

12: If the stopping criterion is not met, go back to Step (2).
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Complexity in time and space

Equally to the other GNG extensions of the GCM framework, VONG does not increase
the complexity in time and space compared to OGNG. GNG itself as described in Section
2.1.1, has on average and worst case a time complexity of O(logsn) and a complexity in
space of O(n), due to its storage in a TreeGNG. VONG modifies the labeling in a way
that it is required to determine the nearest neighbor in each view, and therefore requires
to compare the stimulus to each of the neurons k times, with k£ = |D| being the number
of views. This leads to an overall time complexity to be in O(k logan).

Concerning the complexity in space, VONG requires to store all neurons, equally to OGNG
and GNG. In order to store the weights of the feature vectors according to the masking
process, k additional vectors are required to be stored, with k£ = |D| being the number of
views. For each view, a single weight vector is required and as we can assume the number
of views to be less than the number of neurons required, the additional space complexity
lies in O(n). Thus, the overall complexity in space of VONG lies in O(n).

6.4.3. Multiplexing of views

In this section, we want to discuss the multiplexing architecture of VONG and address
how the encoding and decoding process manifests in the multi-view labeling and multi-
view prediction strategy. In Figure 6.5 the architecture of VONG is illustrated. According
to the figure, VONG also consists of a two-level architecture as introduced with OGNG (see
Section 3.4.3). Equally to OGNG, these levels are not explicitly implemented but implicitly
arise out of the mechanics of VONG. The two-levels distinguish between a feature level
(lower part of the image) and a category level (upper part of the image). As for OGNG,
the shape of the network is exclusively determined by the complete feature space of the
input vectors in the feature level. At this level, no feature space masking is performed
when adapting to the stimulus, which means that VONG delivers an equal feature level
map compared to OGNG and GNG. However, the feature space masking is performed
in the category level for each view, and therefore allows VONG to store and recall the
subcategory label information in the network while retaining its view/domain affiliation.
Similar to a multiplexer and demultiplexer, the masked labeling process can be seen as
encoding of the data (multiplexer), while the masked prediction decodes the information
stored in the network per view (demultiplexer).

However, an interesting and important fact is that the data is not explicitly encoded in
the network, as it does not distinguish between subcategory labels from one or another
view. Instead, the encoding and decoding is only carried out by the masked labeling and
prediction strategies. The feature level therefore can be seen as a representative model
of the actual data, while the masked labeling and masked prediction of the category level
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Figure 6.5.: The implicit multiplexer architecture of VONG.

generate individual views on the model. This implicit data encoding in a single network is
an advantage of VONG, as it allows VONG to retain its uniform classification model, and
thus completely inherits the advantages of OGNG.

6.5. Datasets

In this section, we describe the datasets used in our evaluation of VONG. We introduce
two artificial multi-view datasets, in order to show specific effects in a small controlled
environment. However, as VONG inherits all attributes of OGNG, it is possible to use
VONG in a stream data scenario in which the task is to classify data coming from multiple
domains.

SPIRAL2

For this dataset we generate three two-dimensional domains, inspired by standard cluster-
ing benchmarking sets. In Figure 6.6, each domain of the dataset is illustrated. As shown
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in the figure, each domain consists of five subcategories, i.e. Category 1-5 (domain D),
Category I-V (domain Ds) and Category A-E (domain Ds). The first domain D; (top), is
generated similarly to SPIRAL1 as introduced in Chapter 3. It is an Archimedean spiral
r(¢) = a¢ with ¢ and r(¢) being the polar coordinates and a = 1. The spiral was gen-
erated with an angle between [0:720] and equally divided into five categories (144 degree
per category) holding overall 500 data points. The data was normalized and translated so
that its values range between [0:1]. As for SPIRAL1, we randomly sampled data points for
each category and each angle ranging form (z —k,y — k) — (v + k, y + k) with k& = 0.047.

For the second domain D, (bottom left), we generated five circles according to the standard
parametric equation x = )y, + rcos(a) and y = yp + rsin(a), with (zp7,ya) being the
center of the circles and r being the radius. The categories are generated from Category
[-V with a radius of r = {0.2,0.4,0.6,0.8,1.0}. We also normalized and translated the
data to provide a value range of [0:1], and randomly sampled data points for each category
and each angle ranging form (z — k,y — k) — (x + k,y + k) with k£ = 0.012.

For the third domain D3 (bottom right), we generated five half opened circles for the Cat-
egories A-E at the positions (0.1,0.7), (0.3,0.3), (0.5,0.7), (0.7,0.3), (0.9,0.7). The angle
of the half opened circle ranges from [0:200] with alternating sign, which means that for
Category A it ranges from [0:200], for Category B it ranges from [0:-200], etc. The choice
of an angle of 200 degrees is aimed at delivering a slight overlap along the x-axis.

It is also important to mention that the domains D; and D3 are conditional depend, which
means that a bijective mapping function between the categories of both domains exist.

0BJ-SCT

This data set is based on colored 300 x 300 pixel images showing various simple geometric
objects. Those objects are colored and include one of five textures. In Figure 6.8, five
example images are depicted. The dataset consists of 5225 instances coming from three
domains, i.e. shape, color, texture. As for the shapes, we chose the five simple geometric
shapes “circle”, “ellipse”, “rectangle”, “square” and “triangle” as shown in the figure. For
the colors, we chose 11 colors of the Munsell Color Schema, considering the color perception
of a US native speaker according to data provided in the World Color Survey Database
(WCS) [CKRO5]. The textures are based on the Image Segmentation Dataset [Bla98] of
the UCI machine library, which we already used in our OGNG experiments in Chapter 3.

In particular, the textures are “brickface”; “sky”, “foliage”, “cement”, “window”, “path”
and “grass”.

For the shape features, we measured the distance from the center of the image to the
outer contour of the object for the angles o = {0°,45° 90°,135° 180°, 225°,270°, 315°}.
This scan procedure and the eight scans s; — sg are illustrated in Figure 6.7 (left). For
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Figure 6.6.: All three views on the dataset SPIRAL2, including five categories per domain.

the color features, we simply averaged the color of the image in the RBG space, only
considering pixel information inside of the outer contour of the object. For the texture
features, we performed a Local Fourier Transformation (LFT) according to Zhou et al.
[ZFS01]. Therefore, as illustrated in Figure 6.7 (right), we consider a 3 x 3 pixel patch
as a periodic signal that is assumed to be descriptive for the texture. We then divide the
image into four patches and applied the proposed LFT algorithm on each of them. For
each patch, we then average over quantized bins that are based on the LFT coefficients.
As a result, we extract 16 values including the average and the standard deviation for
the extracted bins for each patch. We compose those patches to a 64 dimensional feature
vector. A more detailed description of the algorithm can be found in Zhou et al. [ZFS01].

We specifically chose the two datasets, in order to compare a heterogenous set of domains to
a homogenous set of domains. SPIRAL2 is more homogenous in the sense that it provides
an equal number of five categories and two dimensions for each domain. OBJ-SCT, in
contrast, includes eight dimensions and five categories for the shape domain, 11 categories
with three dimensions for the color domain and seven categories with 64 dimensions for
the texture domain. Another difference between both datasets is the fact that D; and Ds
of SPIRAL?2 are correlated, while all other dimensions of both datasets are uncorrelated.
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Figure 6.7.: Shape features extracted by a contour scan (left) and the continuous texture signal based on a 3x3 pixel

neighborhood (right).

6.6. Evaluation

In this section, we evaluate VONG as multi-view extension of OGNG. We experimentally
compare VONG to OGNG™ as naive multi-label classification approach based on OGNG,
which serves us as baseline in our experiments. We will show that VONG outperforms
OGNGT™ on both of our datasets. Furthermore, we will show the benefit of the masked
multi-view labeling strategy of VONG, as we additionally compare VONG to VONG-M,
a version of VONG which does not mask dimensions when assigning labels to neurons.

6.6.1. Parameters & VONG-M

For the evaluation, we chose a fixed set of GNG parameters to use throughout all of our
experiments with VONG. The set was determined through preliminary experiments on the
basis of trial-and-error and can be listed as follows: insertion parameter A = 30; maximum
age amq: = 100; adaptation parameter for winner e, = 0.1; adaptation parameter for
neighborhood e,, = 0.0006; error variable decrease o = 0.5; error variable decrease [ =
0.0005 and allowed a maximum number of neurons n,,,, = 1000. Compared to other
experiments with GNG-based classifiers in this thesis, the maximum number of neurons is
about 10 times higher than in the other experiments. The reason for this lies in the fact
that OBJ-SCT includes a 10 times higher amount of data points compared to SPIRALT,
for example. We used those values for both datasets to maintain a comparability.

In order to investigate the impact of the masked multi-view labeling strategy of VONG,
we developed VONG-M as version of VONG which implements the multi-view prediction
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Figure 6.8.: Five samples of the OBJ-SCT dataset.

strategy of VONG and also adopts the naive multi-labeling of OGNG™. VONG-M is thus
still capable of predicting subcategory labels per view.

6.6.2. Experiments & Results

For our experiments with VONG, we performed a 10-fold cross validation and evaluated
the precision of the algorithms for our two datasets SPIRAL2 and OBJ-SCT. We also
considered the FI-score as evaluation measure, but since the algorithms always deliver the
correct number subcategories per view, with a recall = 1.0, we chose precision to be the
only evaluation metric used in our experiments. Precision is defined as prec = T}.i—PFP,

with T'P being true positives and F'P being false positives.

VONG VONG-M OGNGT*
SPIRAL2 | 99.3% 87.4% 86.0%
OBJ-SCT | 80.9% 74.7% 65.0%

Average | 90.1% 81.1% 75.5%

Table 6.1.: Micro-averaged precision of VONG, VONG-M, 0GNG ™.

The results of our experiments are shown in Table 6.1, with the best individual result
highlighted in each row. The table shows the average micro-averaged precision of VONG,
VONG-M and OGNGT on the datasets SPIRAL2 and OBJ-SCT, as well as an average
performance for the algorithms averaged over the datasets in the last row. For the micro-
averaged precision, we average the precision per fold and then average over all folds.
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Results

The results license the following observations:

o Comparison of VONG and OGNG™: According to Table 6.1, VONG signifi-
cantly outperforms OGNG™ on both datasets. For SPIRAL2, VONG scores with an
average precision of 99.3% compared to 86.0% of OGNG™. For OBJ-SCT, VONG
yields an average precision of 80.9% compared to 65.0%.

e Comparison of VONG and VONG-M: According to Table 6.1, VONG also
outperforms VONG-M for SPIRAL2 as well as for OBJ-SCT. For SPIRAL2, VONG
provides a performance of 99.3% compared to 87.4% of VONG-M. For OBJ-SCT,
VONG scores 80.9% compared to 74.7% of VONG-M.

o Comparison of VONG-M and OGNG™": According to Table 6.1, VONG-M
outperforms OGNG™ for OBJ-SCT with 74.7% compared to 65.0% for OGNG™.
For the first dataset SPIRAL2, VONG-M delivers a slightly better performance with
87.4% compared to 86.0% for OGNG™, which we do not consider as being significant.

We performed a t-test and could show, with a p-value of p < 0.05, that the performance
of VONG is significantly better than those of VONG-M and OGNG™ on both datasets .

6.6.3. Discussion

Our results show the advantage of the multi-view labeling strategy and the multi-view
prediction strategy, as implemented in VONG. We can answer the question that it is
indeed possible to construct a multi-view classifier that consists of a single uniform model.
While the difference in performance of VONG and OGNG™ is 13.3% for SPIRALZ, it is
slightly higher for the OBJ-SCT dataset with a difference 15.9%. We assume this to be
the effect of the more heterogenous character of OBJ-SCT compared to SPIRAL2, while
being generated by more diverse domains. Comparing the results of VONG and VONG-M,
we can see that VONG improves the performance of VONG-M with 11.9% for SPIRAL2,
and with 6.2% for OBJ-SCT. In this case, the impact of the heterogeneity of OBJ-SCT is
noticeable higher.

The results also show the benefit of the multi-view masking procedure when comparing
VONG and VONG-M to OGNG™, due to the fact that OGNG™ neither performs a mask-
ing of feature space dimensions when labeling neurons, nor when prediction unseen data
points. In fact, comparing VONG and VONG-M reflects the benefit of the multi-view la-
beling strategy, while a comparison of VONG-M and OGNG™ quantifies the performance
boost caused by the multi-view prediction strategy. Comparing the average results, we
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can quantify the benefit of the multi-view labeling strategy with an increase in its perfor-
mance of on average 9% and the benefit of the multi-view prediction strategy with with
an increase in its performance of on average 5.6%. The higher impact of the multi-view
labeling strategy on the performance of the classifier is understandable, as it is responsi-
ble for encoding process in which information coming from multiple domains are actually
stored in the network. In contrast, the multi-view prediction strategy basically performs
a decoding of the information stored in the network, which therefore only makes sense
if the information is stored properly. Having mentioned that, it is interesting to see the
effect of the prediction strategy as implemented by VONG and VONG-M. The multi-view
prediction strategy has an undeniable positive effect on the performance of the classifier,
although VONG-M and OGNG™ basically learn an equal model. This fact underlines the
plausibility of the VONG architecture and its masked multi-view labeling and multi-view
prediction strategy even more.

6.7. Summary

In this chapter, we have introduced VONG as multi-view extension of OGNG, which is
capable of learning with data coming from multiple domains and storing this information
in a single uniform network. VONG modifies the labeling and prediction strategy of
OGNG by incorporating a masking of feature space dimensions per view, in order to
label and predict for each view independently. We have also introduced OGNG™ as naive
multi-label extension of OGNG, which simply adopts the complete set of subcategory
labels as presented by the stimulus, and predicts a complete set of subcategory labels as
given by the closest neuron in the network. OGNG™ thereby extends the label capacity
of each neuron, as for OGNG™ neurons hold multiple labels (one per view) at once. We
discussed the implicit multiplexing architecture of VONG including the process of encoding
and decoding information implemented by the masked multi-view labeling and multi-view
prediction strategies.

We have evaluated VONG and OGNG™ on two artificial multi-view datasets and have
shown that VONG significantly outperforms OGNG™ on both of the datasets, and thereby
proving the benefit of the proposed architecture. We furthermore compared VONG to
VONG-M, a version of VONG that only implements the multi-view prediction of VONG,
and adopts the naive multi-labeling strategy of OGNG™. We could separately show and
furthermore quantify the performance boost given by the multi-view prediction strategy
and the multi-view labeling strategy. We concluded that it is possible to provide a uni-
form classification model which is capable of learning with multi-view data and that the
of VONG implemented multi-view labeling and multi-view prediction strategies are rea-
sonable.
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6.7. Summary

In the next chapter, we will demonstrate the applicability of the GCM framework, i.e.
OGNG and DYNG, in real stream data scenarios as a proof-of-concept. We will also
introduce a straightforward approach to visualize GCM-based Conceptual Maps, which
allow a real-time tracking of the included categories and a certain degree of interpretation
possibilities of the data.
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Chapter

Applications for Growing Conceptual Maps

In this chapter, we will demonstrate and highlight three important aspects of the Growing
Conceptual Maps Framework (GCM): i) its capability as stream data classifier ii) its flex-
ibility when integrated into a complex and domain-specific classification framework, and
iii) its simple architecture which can be visualized straightforwardly. We will demonstrate
those abilities by applying GCM onto two types of applications. Those applications are in
particular the classification of textual stream data as arising in social media applications,
and Human Activity Classification, with both applications involving real datasets. We
will furthermore introduce a straightforward visualization schema in order to visualize the
Conceptual Maps as generated by the GCM framework in a two-dimensional space. In
many applications visualizations are important as they allow us as humans to track the
internal state of the classification model, and furthermore indicate the relation between
the different categories of the stream.

At first, we will apply our algorithms, DYNG in particular, to the classification of textual
documents in a stream, using two corpora for evaluation: the Reuters RCV1 v2 corpus
and the Twitter Corpus (TwitterLL). The datasets differ from each other in that Reuters
RCV1 v2 contains 10 times more data points compared to TwitterLL, while it includes 14
times less categories. Our goal is to demonstrate the advantage of DYNG compared to
OGNG, and also to compare the two approaches against standard classification approaches
such as k-Nearest Neighbor (kNN) and a linear multi-class SVM. Thereby, we provide a
proof-of-concept for the general applicability of OGNG and DYNG to various classification
problems. Then we will introduce a novel online human activity classifier based on two
OGNG (see Chapter 3) networks. We will compare this two-layered classifier to a state-
of-the-art offline human activity classifier framework, as proposed by Laptev [Lap05], and
show that our online classifier performs comparably without the requirement of storing
any data points explicitly.
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In the last section of the chapter, we will introduce a simple two-dimensional visualization
of a GCM network and thereby highlight the strength of the uniform model as provided
by GCM. The visualization is derived from the GCM network by interpreting its topology
and allows to track emerging categories as well as their relation in the GCM network
on-the-fly.

7.1. Classification of textual data in social media streams

In recent years, the structuring and classification of mass media has become more and more
important, as the available data rapidly increases on a daily basis. Especially, information
coming from social media platforms, such as Flickr®, Facebook® or Twitter” is important
to the society. Although concepts such as hashtags in Twitter allow the user to label the
posted tweets, the data remains unstructured in the sense that only a small percentage of
such labels are given. Similarly, for news feeds coming, for example, from Reuters Group
news agency® only a weak supervision in form of labels that describe the general topic of
the document can be given.

In this section, we thus evaluate DYNG as part of the GCM framework on two stream
data classification text corpora. On the two datasets TwitterLL and Reuters RCV1 v2, we
will demonstrate the advantage of DYNG as classifier, as the data can be assumed to be
non-stationary to a certain degree. We will show that DYNG outperforms OGNG, espe-
cially in the beginning phase of the processing when many new categories are introduced.
Furthermore, we will show that DYNG outperforms a NN classifier with £ = 1 and even
a linear multi-class SVM, when allowing a similar memory capacity for all algorithms.

It should be mentioned that parts of this section have already been presented at the
European Symposium on Artificial Neural Networks in 2013 [BC13].

7.1.1. The TwitterLL corpus

Since its inception in 2006, Twitter became one of the most important social media and
micro-blogging services counting over 200 million active users in the year 2012, who posted
on average 340 million tweets per day®. We created a Twitter corpus (TwitterLL) based
on Twitter messages (tweets) by making use of the Twitter-API. We crawled 82.095 tweets

SFlickr, https://www.flickr.com

6Facebook, https://www.facebook.com

"Twitter, https://wuw.twitter.com

8Reuters Group news agency, http://www.reuters.com

9Twitter turns six, Twitter Blog, https://blog.twitter.com/2012/twitter-turns-six
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7.1. Classification of textual data in social media streams

assigned to 14.040 different hashtags in the time period between May 3rd 2012, and June
5th 2012. Therefore, we included only tweets that are tagged with the hashtag “Berlin”
or that provided a Place-ID of Berlin, as provided by the Twitter-API. Our dataset thus
includes 82.095 documents assigned to 14.040 category labels, as depicted in Table 7.1.
The table compares the number of data points, the number of categories, the number of
feature space dimensions, as well as the average number of data points per category for
both stream datasets (TwitterLL and Reuters RCV1 v2).

#Data points (DP) | #Categories (C) | #Feature space dim. | Avg. #DP per C
TwitterLL 82.095 14.040 2.623 5
Reuters RCV1 v2 804.414 103 832 7809

Table 7.1.: Statistics of the stream datasets TwitterLL and Reuters RCV1 v2.

As for the pre-processing, we generated a feature vector for each tweet based on the dot
product of term frequency (TF) and inverse document frequency (IDF), which is defined
as follows: N
tfadf(t,d) =tf(t,d) x lo‘qdf(t)

Thereby, tf(t,d) represents the frequency of the appearance of a term ¢ in a document
d, and df(t) denotes the number of documents that contain ¢, with N being the total
number of documents in the corpus. The number of documents N usually is unknown in
a stream data setting, which would require to choose a different set of textual features.
However, for our experiments we assumed N to be known, in order to extract the TF-
IDF features. The feature vector for each document was then created by the TF-IDF
value for each term in the corpus, and initially included 456.837 dimensions. In order to
reduce the dimensionality of the vector, we removed terms that occur in less than 20% of
the documents, and therefore could reduce the dimension of the TF-IDF feature vector
from 456.837 to 2.623 dimensions. For every tweet we took the most common hashtag as
category label.

7.1.2. The Reuters RCV1 v2 corpus

Reuters is the largest international text and television news agency worldwide, with thou-
sands of stories that are produced in multiple languages daily. The Reuters RCV1 corpus
[LYRLO4] is a manually annotated text corpus derived from their online database. It in-
cludes exclusively english stories that have been produced by Reuters journalists between
August 20th 1996 and August 19th 1997. For research purposes, the text documents are
available and provided in a XML format. Its categories are grouped into Topics, Indus-
tries and Regions. For our experiments we only considered the Topics as category labels.
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Those labels mainly consist of topics around economics, government and markets. In our
experiments, we particularly use the Reuters RCV1 v2 corpus, which is a revisited version
of the original Reuters RCV1 corpus. Reuters RCV1 v2 consists of 804.414 documents
assigned to 103 different categories, as depicted in Table 7.1.

We use the TF-IDF feature vectors that have been provided by the authors of the dataset!®.
The feature vector initially included 47.236 dimensions, which we reduced to 832 by re-
moving the terms appearing in less than 20% of the documents. For the category labels
we chose the most popular topic for each document.

7.1.3. Experiments & Parameters

We evaluate DYNG in comparison to OGNG, and in comparison to the offline classifiers
INN and SVM as baselines. DYNG and OGNG process a continuous stream of data
while considering each data point only once. Every 1000th example, we let the algorithms
perform a prediction for the next 1000 data points, for which we remove the category
labels during the prediction. This allows us to test the accuracy on unseen data points
that are next in the stream. While DYNG and OGNG are online learning algorithms,
not requiring the explicit storage of data, a standard SVM learns in batch mode using
a fix set of training examples. Also the 1NN classifier is basically “trained” by simply
remembering all examples. In order to provide a comparable learning scenario, we let both
offline classifiers store up to 5000 training examples of the stream in a FIFO principle,
and then retrain after every 1000th examples in order to perform a prediction on the next
1000 examples. Preliminary experiments have shown that for 5000 training examples the
number of stored vectors by the SVM (support vectors and training data) is comparable
to the number of prototypes produced by DYNG.

For DYNG and OGNG, we empirically determine parameter settings on a trial-and-error
basis. For the Reuters corpus, the DYNG/OGNG parameters are set as follows: insertion
parameter A = 300; maximum age a,,,, = 100; adaptation parameter for winner e, = 0.1;
adaptation parameter for neighborhood e, = 0.0006; error variable decrease o = 0.5;
error variable decrease f = 0.0005 and 7 = 0.3 (DYNG). We used the same settings for
TwitterLL, except for A = 30. For both DYNG and OGNG we select the relabel-method
(see Section 3.4.1) as labeling strategy and single-linkage as prediction strategy. The SVM
is trained in a one-vs-all mode and uses a linear kernel. The results of our experiments
are shown in Figure 7.1. The two figures show the classification accuracy for four learning
approaches (DYNG, OGNG, SVM, INN) compared to a majority baseline over the number
of data points seen for TwitterLL and Reuters RCV1 v2.

Onttp://jmlr.org/papers/volume5/lewis04a/1yr12004_rcviv2_README.htm
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7.1. Classification of textual data in social media streams
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Figure 7.1.: Classification results of DYNG, OGNG, SVM and 1NN.

7.1.4. Results & Discussion

The results show that DYNG clearly outperforms OGNG on both datasets, especially
in the heavily non-stationary beginning phase where many new classes are encountered.
In this first phase DYNG improves the accuracy of OGNG by up to 20.28% (5.37% on
average) on the Reuters data set and up to 21.4% (20.95% on average) for the Twitter
data set. It is striking that for the Reuters data set DYNG starts (Iteration 0-25) with an
accuracy similar to INN and outperforms the SVM starting from iteration 450 on with an
improved accuracy of up to 5.53% (3.79% on average). Thereby, DYNG stores on average
around 6368 vectors (neurons) compared to 5000 vectors (training examples) of INN and
9599 vectors (support vectors and training examples) of the SVM. This shows the benefit
of a continuous learning process.

On the Twitter dataset, the DYNG, SVM and 1NN show similar results. DYNG outper-
forms the SVM starting from iteration 50 on with an improved accuracy of 4.04% (2.97%
on average). Thereby, DYNG stores on average 9703 vectors compared to 9235 vectors
of the SVM. The weak performance of OGNG shows the benefit of the neuron insertion
strategies of DYNG, as OGNG is not designed to adapt to the huge amount of classes as
quickly as DYNG.

It should be mentioned that we also included the HullerSVM [BB05] in preliminary exper-
iments that have not been report. HullerSVM is basically an incremental online version
of a Support Vector Machine. Therefore, HullerSVM dynamically identifies and stores
training examples as support vectors. However, in order to extend HullerSVM to a multi-
class classification problem, and to store support vectors for each category following the
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principles of HullerSVM, has caused the memory requirement of HullerSVM to increase
dramatically in such a way that it has not been applicable to our stream datasets.

7.2. Human activity classification

The recognition and classification of human activity is important in many application do-
mains including smart homes [CCEF09], surveillance systems [VV05], ambient intelligence
[PSTO7], etc. In particular, we address the task of classifying human activity into a given
set of activity types on the basis of video data, sequences of 2D images in particular. State-
of-the-art approaches extract features from space-time volumes, e.g. Space-Time Interest
Points (STIP) as introduced by Ivan Laptev [Lap05]. Their advantage lies, in contrast
to model-driven motion features [BGC12], in their compact and robust representation of
human actions, as they reduce the input space by identifying local feature points. Training
a human action classifier model based on STIPs typically includes the clustering (with e.g.
k-Means) of video features to yield bag-of-visual-words clusters that can be used to derive
a histogram-based representation of a video clip by indicating the number of STIPs being
assigned to each cluster. Then a classifier (e.g. SVM) is trained to learn to classify image
sequences into a set of given human activity types.

There are several drawbacks in this classical approach. First of all, the approach requires
an architecture that comprises heterogeneous algorithms, e.g. a feature extractor, a clus-
tering algorithm and a classification algorithm. An architecture that is more uniform and
compact relying on one algorithm would be simpler, easier to implement and thus prefer-
able. Further, the approach is not online, requiring to store a number of examples in
memory or on disk in order to recompute the cluster and retrain the classifier at regular
intervals. To circumvent these limitations, we present a new architecture which is based
on Online Growing Neural Gas (OGNG), which has been presented earlier (see Chapter
3). In this section we present a two-layer architecture which consists of two maps that we
call feature-map and class-map, respectively. In the first layer (feature-map), STIPs are
dynamically clustered according to their similarity in the feature space, yielding a grow-
ing set of “visual words” that can also change over time. A Human Activity Signature
(HAS) for each space-time volume is then formed by an histogram indicating the activity
of each prototype / neuron in the feature-map. In the second layer (class-map), space-time
volumes are clustered by their HAS and labelled according to the corresponding activity.

Several parts of this section already have been published and presented at the Workshop
on New Challenges in Neural Computation [PBC13] in 2013.

We compare our architecture to the classical architecture proposed by Laptev [Lap05] based
on a k-means based feature discretization as well as an SVM-based classification, showing
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Figure 7.2.: Processing pipelines of the human activity classifiers.

that our approach yields comparable results to the latter approach, while proposing a
uniform architecture based on two OGNG maps and circumventing the need to store
examples to process them offline. Our approach is thus suitable in a life-long learning
setting in which there is a never-ending data stream that needs to be processed on-the-fly
as in the applications mentioned above.

7.2.1. Human Activity Classification with OGNG

In this section we describe our two-layer online approach to human activity classification
that exploits topological maps - Growing Neural Gas maps in particular - at both lay-
ers. We call our approach Online Human Action Classifier (OHAC). A typical processing
pipeline in human activity recognition is comprised of the following three steps:

1. Extraction of video features: Extraction of distinctive features from a sequence
of video frames.

2. Representation of video features: Calculating video signatures from the ex-
tracted features that capture the similarity between different video sequences.

3. Classification of video signatures: Training a classifier to learn to recognize a
set of previously observed classes of human actions.

Our algorithm covers the steps 2 and 3 of the typical processing pipeline. For the first step,
the extraction of video features, we use HOG+HOF features calculated around sparsely
detected spatio-temporal interest points (STIPS) as proposed by Laptev in [Lap05]. The
detection of the points and the extraction of the feature descriptors is completely online in
the sense that no global information is required. STIPs are detected as local maxima of a
Harris-Corner-Function extended into the spatio-temporal domain. The spatio-temporal
Harris Corner function responds to points in space-time where the motion of local image
structures is non-constant. Aside from sensor noise and other disruptions, the motion
of local image structures is primarily the result of forces acting on the corresponding
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physical objects. Hence the local neighborhood of the detected points can be expected to
provide meaningful information about motion primitives in that point of space-time. The
combination of STIPs and HOG+HOF feature descriptors has already shown promising
results in several synthetic [Lap05] and real world datasets [Lap05, LMSRO0S].

Static Human Action Classifier according to Laptev

As baseline we use an offline approach proposed by Laptev [Lap05]. This approach uses
k-means for clustering and an SVM for classification. The video sequence is represented as
a bag of visual words histogram. The visual vocabulary is build by clustering the feature
vectors in the training set into a predetermined number of clusters.

Algorithm 10 Static Human Action Classifier according to Laptev

: Cluster the training set into a predetermined number of clusters using kMeans.
Initialize Histogram H with one entry for each prototype vector.

Present an input vector x € S from the extracted features of the video sequence.

Find the nearest prototype p, to the presented input.

Increment the corresponding histogram entry p, by one.

repeat step 3 until all features are processed.

Normalize H using L; norm

Train the SVM with the normalized histogram and the label [ of the current sequence.

In step 1, the visual vocabulary is build in advance by clustering all feature vectors in the
training set into a predetermined number of clusters'! using kMeans. Each cluster stands
with its prototype vector for one distinct visual word in the visual vocabulary. Steps 3-6
iterate over the feature vectors in the current training sequence. Fach feature vector is
assigned to its nearest prototype vector and incorporated into the histogram. The resulting
histogram represents the given video sequence as a bag of visual words. To compensate for
different counts of features in different sequences, the histogram is normalized using the L,
norm. In step 8 the SVM is trained with the normalized histogram and the corresponding
label of the current sequence.

Online Human Activity Classifier (OHAC)

The Online Human Activity Classifier (OHAC) consists of two independent OGNG net-
works. The first network is what we call the feature-map. It utilizes the OGNG algorithm
for clustering incoming data in feature space. The second network is called the class-
map as it uses the label information from a training sequence to assign class labels to the
nodes in the network according to the relabel strategy presented in Section 3.4.1. Video

H'We use k = 4000 for the number of clusters following Laptev in [LMSROS]
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sequences are represented as Human Activity Signatures (HAS), which are represented
by an histogram indicating the activity of each neuron in the feature-map while iterating
through the respective video sequence.

Algorithm 11 Online Human Activity Classifier (OHAC)

1: Initialize the feature- and class-maps.
2: Initialize the HAS histogram H with two (number of initial nodes in the feature-map) entries h; =
0, he = 0.
Present an input vector = € S from the extracted features of the video sequence.
Find the nearest unit n, from the feature-map.
if node n, is new then
insert new entry into the histogram at position x
end if
Increment the corresponding histogram entry h, by one.
repeat step 3 until all features are processed.
: Normalize H using Lo norm.
: Update the OGNG class-map with the normalized HAS histogram H and label [ of the video sequence.

— =

Algorithm 11 is initialized by first initializing the OGNG network and creating an empty
bag of visual words histogram (steps 1-2). The histogram starts with two entries, one for
each of the two initial neurons in the OGNG network. In steps 3-5 the next input vector x
is presented to the feature-map and the node n, that is closest to the presented stimulus
is located. If the located node n, is newly inserted into the feature-map, a new histogram
entry is created at position z. In step 8 the histogram entry at position x is incremented.
When all input vectors in the sequence are processed, the histogram is normalized by
the Lo-norm. The normalization compensates for different numbers of extracted feature
vectors in different video sequences. The normalized histogram is then used to update the
class-map OGNG network with the label [ of the video sequence. To predict the label of
a previously unseen video sequence S, all input vectors z € S are incorporated into the
histogram H by the number of the feature-map node n, nearest to them (steps 3-5). The
histogram is then normalized and the label [ is predicted by the class-map according to
thesingle linkage strategy (see Section 3.3.2).

7.2.2. KTH human motion dataset

As a dataset for the evaluation we use the KTH human action dataset [SLCO04]. This video
database consists of six categories of human actions (walking, jogging, running, boxing,
hand waving sand hand clapping). All actions are performed several times by 25 subjects
in four different scenarios (outdoors, outdoors with scale variations, outdoors with different
clothes and indoors). In particular, our dataset includes 600 video files showing 25 subjects
performing six actions in four scenarios.
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Figure 7.3.: Examples of the KTH—Dataset.12

7.2.3. Experiments & Results

We evaluated the accuracy of OHAC and our baseline on the KTH human action dataset.
We generated 15 training and test sets by separating the 600 video clips into 300 training
examples and 300 test examples for each set. We furthermore took care that each of the six
categories was equally distributed in the training and test set. We averaged our accuracy
results over the 15 runs and also determined a best and worst result of the 15 runs.

The OGNG parameters are set as follows: insertion parameter A\ = 50; maximum age
(maz = 120; adaptation parameter for winner e, = 0.3; adaptation parameter for neigh-
borhood e,, = 0.0018; error variable decrease v = 0.5; error variable decrease 5 = 0.0005.
We also allowed a maximum of 4000 neurons for the feature-map and 200 for the class-
map.

Our results are depicted in Table 7.2. The matrices show the confusion matrix of our base-
line (left) and OHAC (right). Thereby, each row represents the human action categories to
be classified, while each column holds the percentage of examples that have been classified
into the category written on top of the matrices. Overall, OHAC achieves an averaged
accuracy of 93%, while our baseline yields an accuracy of 95%. We performed a t-test and
could not prove that the results of both approaches are statistically significant. We thus
consider the classification performance of the algorithms to be comparable. The confu-
sion matrix shows that both algorithms are having issues to distinguish between jogging,

2http://www.nada.kth.se/cvap/actions/actions.gif
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Table 7.2.: Confusion matrix of our Baseline (left) and OHAC (right) on the KTH human action database, averaged over 15

runs.

running, which is intuitively understandable as we as humans also would consider those
two activities to be closer to each other compared to the other four. Furthermore, it is
interesting that OHAC confuses the categories “handclapping” and “running” slightly less
with 93.2% and 72.2% compared to 89.8% and 66.8% of our baseline. It should also be
mentioned that the confusion of OHAC is spread more uniform compared to the baseline
approach, which can be explained by the generative nature of OHAC, due to its OGNG
layers, compared to the discriminative character of our baseline and i.e. of the underlying
SVM classifier.

7.2.4,. Discussion

In this section we have presented a novel human activity classifier model based on Online
Growing Neural Gas (OGNG). The model provides a compact architecture and consists
of two layers, allowing the storage of human actions in a more memory efficient structure.
While the first layer (feature-map) dynamically clusters STIPs and serves as base for the
creation of histogram-based signatures of a human action, the second layer (class-map)
builds a classification model that builds upon those human action signatures. The advan-
tage of this novel architecture lies in its ability to perform a human action classification task
online as the model stepwise adapts to new data and grows incrementally. The uniform
character of the algorithm is desirable, as that its simplicity allows an easy implementation
and integration into existing systems. In most cases, heterogeneous offline human action
recognition approaches have been proposed [Lap05, YS05], that generate action signatures
by clustering STIPs with static clustering algorithms (such as k-Means) and classifying
them with an offline classifier that needs to be retrained as new data arrives. We have
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experimentally shown on the KTH dataset that our approach reaches comparable per-
formance to a classical offline SVM-based classification approach while performing online
and avoiding the need to store training examples explicitly, thus being suitable in lifelong
stream data settings.

7.3. Visualization of Conceptual Maps

In this section, we will introduce a visualization schema for Growing Conceptual Maps
which basically interprets the GCM network and generates a two-dimensional map uti-
lizing those derived information. In what follows, we will explain how to generate a
two-dimensional visualization of a Conceptual Map as derived from the GCM network.
We will also describe how alternative visualizations of GCM-related networks, i.e. the
class-map of OHAC, can be generated. In addition, a visualization of the three datasets

of this chapter, as well as a visualization of the class-map of OHAC are shown in figures
A.1-A.6 of Appendix A.

7.3.1. A visualization schema for Growing Conceptual Maps

Although a direct visualization of a GCM network is possible, in many domains it can be
problematic to project the high-dimensional feature space into a low-dimensional feature
space. Preliminary visualizations of the TwitterLL dataset, for example, have shown that
a projection from the 2.623 dimensional feature space into a two-dimensional space using
a Principal Component Analysis (PCA) [Pea01] does not result in a map which can easily
be understood, in the sense that the categories are not separable in such low-dimensional
space. Instead, we decided to interpret the characteristics of the map and to visualize the
interpretation of the Conceptual Map. In fact, we provide a visualization of the Concep-
tual Map only including the stored categories, instead of the neurons itself. However, in
order to be truthful to the topology of the our network and its included connected and
relating categories, we also derived topological information from the GCM network and
incorporated it into the Conceptual Map visualization. In particular, the visualization is
based on the following elements:

e Nodes: Nodes m are introduced in our visualization map V according to the cur-
rently manifested categories in the GCM network M.

o Size of a node: The size of a node m; reflects the logarithmic number of neurons
in M, which are labeled with the category label of m;.
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« Links: Links linkg(c;, ¢;) are introduced between categories ¢; and ¢;, in case there
are neurons n;, n; in M, with I*(n;) = ¢ and I*(n;) = ¢;, and n; and n; being
connected by an edge.

+ Size of a link: Similar to the size of a neuron, the size of a link link(c;, ¢;) between
the categories ¢; and ¢; in V is determined by the logarithmic number of links which
exist in M between neurons labeled with ¢; and ¢;, respectively.

o Dynamics of the map: Inspired by Provot [Pro95|, the dynamics of the network
follow the principle of a simple mass-spring model, in which attracting and repel-
lent forces exist between every pair of nodes (repellent forces) and between every
connected pair of nodes (attracting forces).

e Coloring schema: In order to improve the readability of V further, we also let
colors reflect the relation between categories. A unique color is initially assigned
to a newly inserted category node. We use the RBG color schema and set the
color of a link linky(c;, c;) between two categories ¢; and ¢; to a resulting mixture
color between both of their colors, weighted by their presence in the network. In

particular, the color is set as follows: color(link(c;, ¢;)) = ac,color(c;) + a.;color(c;),
#Neurons labeled with cg
max(#Neurons per category

logarithmic number of links between neurons of both categories ¢; and ¢; in the
GCM network.

with a,, = 7 The growth of a link furthermore reflects the

As a consequence, this means that connected categories in ) relate to each other in M.
However, if categories are not connected in V we have no information about their relation.
Even if categories define a neighborhood in V, they cannot be assumed to be neighbors in

M.

7.3.2. A generic visualizations concept

The visualization schema that we proposed in this section is not limited to a visualization
of categories of a GCM network. In fact, we also applied this schema to the class-map of
OHAC while processing the KTH motion dataset. The visual class-map only distinguishes
from a visual Conceptual Map in that each node of the map represents a neuron of the
class-map, instead of its category only. The visual class-map can be seen as a more
detailed visual Conceptual Map, as each representative (each neuron) for each category is
visualized.

In general, it is valid to claim that this visualization schema can be applied to any topologi-
cal feature map, and even to any other prototype-based clustering approach which includes
category label information.
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7.3.3. Examples of visualized Conceptual Maps

We visualized V during the processing of TwitterLL, Reuters RCV1 v2 and KTH through
M, and generated a video clip for each map in order to tracking the stream datasets and
motion dataset, respectively, in an online fashion. Some snapshots of these video clips are
shown in Appendix A. In particular, in Figure A.2-A.5 there are four images of TwitterLL
and four images of Reuters RCV1 v2, showing snapshots that have been taken at different
points in time. In Figure A.1, we also visualized an image of the KTH dataset, showing the
six human activity categories. It should be mentioned that these visualization do not show
all categories of M, instead they only show the most popular categories at the moment in
time when the snapshot was taken. In the following, we will briefly highlight some of our
observations according to these images.

Visualization of TwitterLL

Most popular categories in the TwitterLL visualization:
o Berlin - “berlin”: The city of Berlin.

o re:publica 2012 - “rpl2”: A german conference on the topics of Web 2.0 and social
media.

o Piraten Partei - “piraten”: A german political party who are known for their online
presence.

o FEchoverleihung 2012 - “echo2012”: A german music gala.
o Furopean Poker Tour Season 2012 - “ept2012”

o FEarth hour 2012 - “earthhour”: An international event organized by the World Wide
Fund Nature (WWF) which took place on March 31th 2012.

o SoundCloud - “soundcloud”: An online music distribution platform based in Berlin.
o Facebook - “fb”: One of the most popular online social networking service.

The most obvious observation is that the category “berlin” builds the center of the Concep-
tual Map, which is not surprising as the dataset was crawled according to tweets including
this hashtag. Also the category “piraten” is a stable and noticeable category. Besides
categories of general nature, such as “news”, “tb”, “soundcloud”, “jobs”, or “travel”, there
are categories that relate to events which happened during that specific time period. Those
categories are “rpl12”, “echo2012” and “ept2012”. It is interesting that for the ladder two
categories there are connections between “echo” and “soundcloud”, and between “ept2012”
and “poker”. The visualization even shows categories which have been of interest for a very
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short time. The category “earthhour” only appears in V video clip for a very short period
in time and is depicted in Figure A.3 (top), after M having processed 85% of the data.

Visualization of Reuters RCV1 v2

In contrast to TwitterLL, the categories of Reuters RCV1 v2 seem more stable as shown
in the visual Conceptual Map in Figure A.4 and Figure A.5. This is also indicated by
the size of the categories depicted in Figure A.5 (bottom), when comparing to the visual
Conceptual Map of TwitterLL. The included categories are mostly coming from the finance
market field, which is understandable as this is one of the main areas of the Reuters news

s

agency. The most prominent categories are: “accounts”, “investment research”, “full-year

%

results”, “sales and markets” and “stock exchanges”.

Visualization of KTH

The KTH motion dataset is visualized in Figure A.1. In contrast to the other two visu-
alizations, only one image is provided as the dataset only consists of six categories, and
we additionally visualized the class-map in order to inspect the conceptualizations of M
in more detail. However, the visual Conceptual Map is most interesting as it shows the
six human activities that have been classified by M. The first observation which can
be drawn is that we can identify two groups of categories, actions performed with hands
(“boxing”, “handclapping”, “handwaving”), and actions performed with feet (“jogging”,
“walking”, “running”). A second observations manifests in the fact that the connections
between actions performed with feet are much closer than those performed with hands. As
this is also reflected by the links between the nodes of both groups, the actions performed
with feet can be assumed to are more similar (according to our feature space), than the
actions performed with hands.

Visualization of the KTH OHAC class-map

Figure A.6 shows the class-map of OHAC after M having processed 100% of the KTH
motion data. The advantage of this visualization, compared to the previous visualization of
the KTH motion dataset, lies in its granularity. The class-map visualization also indicates
impurities of the clusters within M. During the processing we observed the two emerging
groups of hand actions and foot actions. However, Figure A.6 also reveals that there is a

Y

high degree of confusion between the categories “jogging”, “walking”, and “running”.
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7.3.4. Discussion

The visualizations show that the visual Conceptual Map V allows us to track the evolution
of the GCM-based classifier on-the-fly, seeing new categories emerging while others disap-
pear. In the TwitterLL visualization, we could observe categories which exclusively have
been relevant in that period of time. Besides a number of more generic categories, the
visual Conceptual Map informed us about current trends in Twitter and furthermore also
indicated how they relate to each other. For the Reuters RCV1 v2 dataset, we perceived a
more generic and static category distribution, which is plausible due to the smaller number
of categories involved with 103 categories compared to 14.040 categories for TwitterLL.

For the KTH motion dataset, we could observe two groups of action categories, hand-based
actions and feet-based actions. This shows that M successfully represents the similarities
between the action categories, as we also observed these relations in our experiments in
Section 7.2. Furthermore we can confirm the high degree of confusion between actions
performed by foot according to Table 7.2.

7.4, Summary

In this chapter, we applied DYNG and OGNG on two real stream datasets as proof-of-
concept. We could show that DYNG outperforms OGNG on both datasets, especially in
the beginning phase of the processing, in which many new categories are introduced to the
classification model. We could also show that DYNG outperforms a 1NN classifier and a
linear multi-class SVM, after a certain number of iterations and when allowing a compara-
ble amount of memory. We could thus demonstrate the advantage of DYNG and OGNG
in a real stream data scenario. As a second contribution, we introduced a novel online
human activity classifier based on two OGNG networks, in order to dynamically generate
feature vectors and to classify those according to the presented action. We compared our
online approach to a state-of-the-art (offline) human activity classifier and have shown that
our online version does not significantly deteriorate the classification performance with the
benefit of no additional memory to be required.
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Chapter

Conclusion

In this thesis, we introduced Growing Conceptual Maps as a novel classification frame-
work, which is based on topological feature maps. The framework provides solutions for
the life-long learning challenges involving stream data classification, weak supervision,
non-stationary data and multi-view data. The framework has been implemented on the
basis of Growing Neural Gas, which has been successively extended towards meeting these
challenges. We furthermore applied the GCM framework onto two real stream datasets as
proof-of-concept, and introduced a novel online human classifier based on the framework.
As a last contribution we introduced two straight forward visualization of the GCM net-
work, in order to allow a two-dimensional representation of the in the network included
categories and their relations.

We introduced Online Growing Neural Gas (OGNG) as extension of GNG, which is capable
of classifying data on the fly while processing data in one-pass, performing online updates
of the model and allowing a fast prediction of unseen data. OGNG circumvents the need of
storing any data explicitly and provides a uniform architecture that includes a time com-
plexity in average and worst case of O(logan) and a space complexity in average and worst
case of O(n). In order to extend GNG to an online classifier, we introduced novel online
labeling strategies (relabel, freq, limit) and compared those to standard offline labeling
strategies (min-dist, avg-dist, majority), and furthermore experimentally showed that the
online labeling strategies do not deteriorate the classification performance of OGNG, with
the benefit of processing data online. Also the implicit two level architecture of OGNG in-
cluding its feature and category level have been discussed, allowing OGNG to still provide
a clustering when trained without labels. We also could show that OGNG can compete
with a linear multi-class SVM, while outperforming the SVM on two of our datasets. Fur-
thermore, as a last contribution in terms of OGNG, we have experimentally proven that
letting the clustering be guided by the category distribution significantly deteriorates the
classification performance.
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We introduced Online Semi-supervised Growing Neural Gas (OSSGNG) as semi-supervised
extension of OGNG that allows the utilization of weakly labeled data in a classification
task. Although its modifications are minor compared to OGNG, it significantly outper-
forms OGNG when applied to appropriate semi-supervised data. In particular, OSSGNG
introduces an additional prediction strategy for unlabeled data that predicts labels for
those data points and then utilize this data for the classification task. We could show that
OSSGNG outperforms existing semi-supervised GNG extensions, i.e. SSGNG, which train
in a batch mode inspired by the Expectation-Maximization Algorithm. Furthermore, our
results show that OSSGNG is competitive towards standard semi-supervised classification
algorithms, while retaining the advantages of OGNG of which lie in the complexity of
OGNG. Our experiments have shown the benefit of the labeling dynamics of OSSGNG
that allow the model to quickly adapt to categories, for which labels are given in delay.
Thereby, we demonstrated that OSSGNG can benefit from already learned unsupervised
categories, while improving its classification performance rapidly.

As a third contribution to the GCM framework, we introduced Dynamic Online Growing
Neural Gas (DYNG) as extension of OGNG with an emphasis on non-stationary data and
concept-drift. Existing non-stationary extensions of GNG, i.e. Growing Neural Gas with
Utility, are not equipped with mechanisms to classify data, and furthermore operate in
a destructive way by substituting the neuron removal strategy of GNG. DYNG, instead,
introduces two novel neuron insertion strategies that allow the algorithm to quickly adapt
to newly emerging categories, until its classification performance converges. Therefore,
DYNG tracks the classification performance of each known category independently and
inserts neurons, in order to quickly provide a reasonable representation of each category.
The implicit short-term memory and long-term memory of DYNG has been discussed,
which manifests in its neuron insertion and removal strategies. In our evaluation, we
compared DYNG to an online classifier version of GNG-U (OGNG-U), showing that DYNG
clearly outperforms OGNG-U and OGNG, and thus solves the plasticity-stability problem
in a better way. We also compared DYNG to a linear multi-class SVM showing that
it achieves a comparable classification accuracy, while providing a higher performance
stability. Our experiments have also shown that the memory usage of DYNG is slightly
higher compared to those of OGNG, which can be considered as being minor due to DYNG
sharing the time and space complexity of OGNG.

With Multi-view Online Growing Neural Gas (VONG), we introduced a multi-view ex-
tension of Online Growing Neural Gas that modifies the OGNG labeling and prediction
strategy in order to process and store data coming from multiple domains in a single net-
work. These domains generate views on the given data for which the feature vector is
composed by dimensions that are uniquely relevant to each of domains. VONG has proven
to be capable of processing such data under the assumption of those relevant dimensions
are given in the processing phase. The novel multi-view labeling and multi-view prediction
strategy, as implemented by VONG, preform a feature space masking per view, in order
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to assign and predict labels in each of the views’ feature subspaces. As those masking
is only applied to VONGs’ category level, it still provides a clustering equal to OGNG.
We evaluated VONG on two artificial multi-view datasets showing that VONG outper-
forms a naive multi-label classification approach based on OGNG. We also investigated
and quantified the impact of both multi-view strategies (labeling and prediction) on the
overall performance. Our results show that the multi-view labeling as well as the multi-
view prediction strategy significantly influence the classification accuracy, which proves
our proposed architecture of VONG to be reasonable. Although VONG and OGNG share
the same complexity in space, VONG increases the time complexity by the factor k, with
k being the number of views. However, due to its equal space and time complexity in each
view, compared to OGNG, it still should be considered as being applicable to real-time
applications.

As last contribution in this thesis, we applied the GCM framework to three real time appli-
cations coming form the domain of textual stream data and human activity classification.
For the stream data classification scenario, we applied DYNG and OGNG on two corpora
(TwitterLL and Reuters RCV1 v2) and could prove their capabilities as stream data clas-
sifiers, by showing that both achieve reasonable results while DYNG outperforms OGNG
in phases in which a lot of new categories emerge. We could also show that DYNG even
outperforms a 1NN classifier and a linear multi-class SVM when allowing a comparable
amount of memory for all compared algorithms. In the human activity classification sce-
nario, we have built an online human activity classifier based on two OGNG networks that
allow a dynamic online feature vector generation, as well as an online classification of the
presented human actions. We compared the Online Human Activity Classifier (OHAC)
with a state-of-the-art (offline) human activity classifier and have shown that OHAC does
not deteriorate the classification performance significantly, while providing an on-the-fly
classification. We also introduced a visualization schema for topological feature maps and
could show that the visualization of Conceptual Maps allow the underlying GCM network
to be interpreted to some degree, while providing information about relevant categories
and their relation.

Outlook

There are possibilities to improve the Growing Conceptual Maps Framework, as well as
finding a larger variety of applications to which GCM renders itself ideally applicable. A
shortcoming of the GCM framework lies in the assumption of VONG that the mapping
between domains and their relevant dimensions is given. However, learning a dimension
weighting is a research field on its own and out of the scope of this thesis. Approaches from
the area of relevance learning, such as Generalized Relevance Learning Vector Quantiza-

tion (GRLVQ) [HV02] and Incremental GRLV(Q [KLROS] address this challenge and have

139



Chapter 8. Conclusion

proven to be successful. In fact, in preliminary experiments we tried to solve this problem
for the OBJ-SCT without success. We applied several approaches including a brute-force
method, an Evolutionary Algorithm, as well as techniques coming from relevance learning
in order to identify the relevant dimensions for each domain. Although in most real sce-
narios those dimensions can be assumed to be known, as the feature vector is composed
by known feature subspaces coming from those domains, it would extend the flexibility of
VONG and allow it to be applied in more multi-view data applications.

In terms of applications, it would be interesting to apply VONG in a multi-modal classi-
fication setting in which each domain is derived from a different modality, such as audio,
video, text and natural language. Thereby, VONG could contribute to solving the symbol
grounding problem in that its visual Conceptual Map could indicate existing relations be-
tween such multi-modal concepts. Inspired by OHAC, it also would be interesting to apply
the GCM framework in application, in which its properties of clustering and classification
could equally contribute to a more complex framework.
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Appendix A

Conceptual Map Visualizations

Figure A.1.: Visualization of the KTH-based Conceptual Map after having processed the dataset.
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Appendix A. Conceptual Map Visualizations
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Figure A.2.: Visualization of the TwitterLL-based Conceptual Map after having processed 2% (top) and 20% (bottom) of
the data.
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Figure A.3.: Visualization of the TwitterLL-based Conceptual Map after having processed 85% (top) and 100% (bottom)
of the data.
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Figure A.4.: Visualization of the ReutersRCV1v2-based Conceptual Map after having processed 5% (top) and 50% (bottom)
of the data.
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