
Towards Automated Execution and Evaluation of
Simulated Prototype HRI Experiments

Florian Lier
Cognitive Interaction
Technology Center of

Excellence
Bielefeld University
Bielefeld, Germany

flier@techfak.uni-
bielefeld.de

Ingo Lütkebohle
Machine Learning and

Robotics Lab
University of Stuttgart
Stuttgart, Germany

ingo.luetkebohle@ipvs.uni-
stuttgart.de

Sven Wachsmuth
Cognitive Interaction
Technology Center of

Excellence
Bielefeld University
Bielefeld, Germany

swachsmu@techfak.uni-
bielefeld.de

ABSTRACT
[PRE PRINT VERSION] Autonomous robots are highly rel-
evant targets for interaction studies, but can exhibit behav-
ioral variability that confounds experimental validity. Cur-
rently, testing on real systems is the only means to prevent
this, but remains very labour-intensive and often happens
too late. To improve this situation, we are working towards
early testing by means of partial simulation, with automated
assessment, and based upon continuous software integration
to prevent regressions. We will introduce the concept and
describe a proof-of-concept that demonstrates fast feedback
and coherent experiment results across repeated trials.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Designs, Program Verification

Keywords
Human-Robot Interaction, Simulation, Testing, Continuous
Integration, System Evaluation

1. INTRODUCTION
Most robots are expected to eventually possess a degree of

autonomy that improves their capability of achieving tasks
and therefore, performing interaction on autonomous sys-
tems – with all their associated technical issues – is of high
relevance. It is a well-established fact that valid experiments
need a well-defined experimental protocol[3, 1]. However,
today’s state of the art autonomous systems may exhibit
surprisingly high variability in the face of relatively small
changes in the environment and user behavior, which could
confound data interpretation. To control this, detailed test-
ing of experiment designs and their corresponding software
realizations is required but difficult to maintain, especially

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author. Copyright is held by the author/owner(s)
HRI’14, Mar 03-06 2014, Bielefeld, Germany
ACM 978-1-4503-2658-2/14/03
http://dx.doi.org/10.1145/2559636.2559841.

for experimenters who are not part of the engineering team.
To enable experimenters as well as system developers to co-
operatively design, test and integrate their experiments as
easily and often as possible, and thus to improve the design
and evaluation process, we propose a) to establish exper-
iment prototyping. This uses simulation environments in-
cluding a virtual human component b) to extend the concept
of an experiment protocol to the orchestration of software
components, and c) to execute and assess the results of a
prototype experiment in an automated, easy-to-use fashion.
In the remainder of this late breaking report we will intro-
duce a software tool chain which implements our proposi-
tions and a purposefully limited scenario in order to present
preliminary results.

2. SOFTWARE TOOL CHAIN
Our tool chain comprises three components: an interac-

tive simulation environment (Section 3), a framework to au-
tomatically bootstrap a prototype system, verify correct ex-
ecution of components, asses results gathered from experi-
ments (Section 4) and a Continuous Integration [2] server
to centralize experiment evaluation. This tool chain pro-
vides the following benefits: simulation environments offer
easy and cheap access to data which is usually acquired in
labour-intensive “real life” experiments. Moreover, experi-
menters and engineers can mutually design and discuss pro-
totype experiments “on-the-fly”. By providing an easy-to-
use, automated and well-defined mechanism to execute and
evaluate a prototype system, we minimize the complexity of
this task, and make the experiment environment almost in-
stantly available. Experimenters are also able integrate their
evaluation methods into the tool chain directly by, e.g., pro-
viding MATLAB, R, or Python scripts, which are automat-
ically executed during the experiment evaluation. Lastly,
experimenters can easily script the “behavior” of the simula-
tion, by changing a few lines of code without programming
experience to explore diverse scenarios and conditions.

3. A SIMULATED HRI SCENARIO
In this purposefully limited scenario, a virtual PR2 robot

continuously reports the spacial location of a human avatar
in a domestic apartment environment. Both, the robot and
the human, are moving about in the scene and eventually
meet in front of a table (Figure 1). In order to realize this
simulation, we utilized the Modular OpenRobots Simulation



Engine (MORSE) [4]. In this setup, we control the PR2 and
the human avatar via ROS [6] middleware. Therefore, we
are able to interactively set and publish waypoints in the
scene for both agents at runtime. The PR2 is equipped
with an abstract sensor (a semantic camera) which reports
the human’s active coordinates — if the avatar enters the
robot’s field of view. In this scenario, we have explicitly
chosen to simplify the extraction of the human’s location by
using the semantic camera to obtain a ground truth in the
first iteration. However, a virtual human component that is
interactively controllable, is a general benefit which enables
us to develop more complex scenarios in further iterations.

Se
nd

 M
ot

io
n 

C
om

m
an

ds

Simulation Environment

Pu
bl

is
h 

Ro
bo

t S
en

so
r D

at
a

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Human

Robot

Robot

Figure 1: Prototype HRI Simulation

4. SOFTWARE PROTOCOL
Similar to strict adherence of an experiment protocol, the

software used in an experiment to produce and assess data,
must also follow “protocol” to obtain coherent results. Espe-
cially in distributed systems it is crucial to start all software
components in the correct sequence, i.e., data producer be-
fore consumer, to avoid malfunctions and inconsistent data.
Often, software execution/testing is carried out manually
and is thus prone to errors. Additionally, experimenters
who are “just” interested in the resulting data, must gain
additional knowledge about the technical details of a sys-
tem to conduct their experiments. To address these is-
sues we have developed a finite-state-machine-based testing
framework (FSMT) [5] that supports explicit specification of
the software ecosystem used, for instance in an experiment.
FSMT provides definition of environment variables, compo-
nent parameter specifications, hierarchical state-based exe-
cution of software components, and status (health) checks.
Moreover, FSMT specifications consist of three mandatory
states: environment definition, run state and an assessment
state. In the run state, the actual experiment is conducted
meaning all components of a system are running and data
is recorded. In the assessment state, the recorded data is
evaluated by assessment components. Experimenters may
provide scripts to assess the data gathered in each run, i.e.,
plot specified data points. Finally, by implementing this
formalization of an experiment protocol with regard to soft-
ware, we are able to automatically start a software system,
verify correct execution and eventually produce consistent
results. This approach makes it an ideal candidate for Con-
tinuous Integration, but also enables experimenters to run
an experiment on their local machine by executing a FSMT
specification.

5. RESULTS AND CONCLUSION
To obtain the results depicted in Figure 2, we automati-

cally executed a FSMT specification consisting of ten com-

ponents, including the simulation as described in (Section
3), on our CI server. In the run state, the simulation is
bootstrapped and waypoints are sent to the robot and the
human. Simultaneously, the location reported by the robot
is recorded to a log file. After twenty seconds the simu-
lation and the motion generation component are stopped.
In the assessment state, two components are started: one
to clean up and transform the logs in CSV files and a sec-
ond one to generate plots of the coordinates of the virtual
human. To demonstrate the ease of changing the simula-
tion behavior and assessment we conducted three different
runs. In the first run we assessed the “x” component of the
location, in the second run the “y” component and in the
third run we changed one waypoint of the human avatar.
Each modification required the change of just 1 line of code.
The execution duration of each test lasted 42 seconds. With
this setup in place, we are now able to conduct a simulated
experiment practically every minute, which will also reflect
the impact of changes in the software stack on the desired
results. Moreover, experimenters are able to easily add ad-
ditional evaluation components to this setup. We are aware
of the fact, that this setup is basic, but from our point of
view, it is a first step towards automated, consistent and
cooperative testing of simulated HRI experiments.

Figure 2: Position of the Human Avatar

6. REFERENCES
[1] K. Dautenhahn. Methodology and themes of

human-robot interaction: a growing research field.
International Journal of Advanced Robotic Systems,
2007.

[2] P. M. Duvall, S. Matyas, and A. Glover. Continuous
integration: improving software quality and reducing
risk. Pearson Education, 2007.

[3] C. D. Kidd and C. Breazeal. Human-robot interaction
experiments: Lessons learned. In Proceeding of AISB,
volume 5, pages 141–142, 2005.

[4] S. Lemaignan, G. Echeverria, M. Karg, J. Mainprice,
A. Kirsch, and R. Alami. Human-robot interaction in
the morse simulator. In Proceedings of the seventh
annual ACM/IEEE international conference on
Human-Robot Interaction, pages 181–182. ACM, 2012.

[5] F. Lier, N. Köster, I. Lütkebohle, and S. Wachsmuth.
State machine based simulation testing, 2013.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an
open-source robot operating system. In ICRA workshop
on open source software, volume 3, 2009.


