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Abstract—Developing neuromorphic computing paradigms
that mimic nervous system function is an emerging field of
research with high potential for technical applications. In the
present study we take inspiration from the cricket auditory
system and propose a biologically plausible neural network
architecture that can explain how acoustic pattern recognition
is achieved in the cricket central brain. Our circuit model
combines two key features of neural processing dynamics: Spike
Frequency Adaptation (SFA) and synaptic short term plasticity.
We developed and extensively tested the model function in
software simulations. Furthermore, the feasibility of an analogue
VLSI implementation is demonstrated using a multi-neuron
chip comprising Integrate-and-Fire (IF) neurons and adaptive
synapses.

I. INTRODUCTION

Insects provide highly interesting model systems for neuro-
morphic computation. They have sophisticated sensory systems
that sub-serve accurate perceptual capabilities, and they show
a large repertoire of complex behaviours. Yet, insects have
small brains with limited neuronal resources. This allows
constructing biologically realistic computational models of
sensory computation, learning and memory formation, decision
making, and behavioural control at the level of spiking neural
networks.

Recognition and evaluation of acoustic patterns is a key
element of mating behaviour in many animals. Phonotaxis is
particularly well studied in crickets [1]. In Grillus bimacula-
tus males produce calling songs of a characteristic envelope
pattern. Females evaluate these songs to recognize conspecifc
males and to rate the fitness of a potential mating partner
[2]. The stereotyped song pattern can easily be mimicked by
artificial songs (Fig. 1 A) [3]. Behavioural experiments that
quantify the phonotactic behaviour of females under variation
of the artificial song parameters have shown that the most
important aspect is encoded in the temporal sequence of pulses
and pauses on a short time scale. High phonotactic scores are
typically achieved for Pulse Periods (PPs) of ∼ 40ms [4], [5].
In the auditory system of Grillus bimaculatus, a single neuron
(Ascending Neuron 1 (AN1)) relays the relevant peripheral
receptor neuron input to the central brain where auditory
pattern recognition is achieved by a small-sized network of
∼ 30−50 Central Brain Neurons (BNCs). While the properties
of auditory receptor neurons and of the AN1 are well studied
[6], [7], little is known about the mechanisms underlying

auditory pattern recognition and behavioural decision making
in the central brain. However, intracellular electrophysiological
recordings from BNC activity [7], [8] showed that individual
neurons exhibit a response behaviour that can be characterized
by low-pass, high-pass, and band-pass characteristics with an
optimal pass band that match the behaviourally optimal PP
around ∼ 40ms.

Here, we suggest a biologically motivated spiking neural
network model that provides a plausible mechanistic expla-
nation of how the central brain circuit recognizes and eval-
uates the auditory pattern of a conspecific calling song. We
demonstrate that our model qualitatively and quantitatively
reproduces the electrophysiological measurements from BNCs
during stimulation with artificial calling songs, both in soft
simulation and on the neuromorphic hardware.

II. MODEL

A. Model architecture

Our circuit model is outlined in Fig. 1 C and captures the
basic blueprint of the acoustic system in Grillus bimaculatus.
The model consists of four stages:

Auditory input: The Auditory input stage is not explic-
itly modelled. The envelopes of the 4.5 kHz courtship songs
are fed into the AN1 model as current patterns parametrized
by their pulse width, pause duration, chirp length and chirp
pause length (see figure1 A). In the present study only the
short time-scale is considered, following the paradigm in [9].

AN1: The AN1 is modelled as a leaky IF neuron with
SFA. The firing rate and adaptation characteristics have been
matched to neurophysiological data [6].

BNC1: Brain neurons receive input from AN1. The
synapses implement a short term plasticity model for depres-
sion and potentiation.

BNC2: BNC2 receives input only from the BNC1 units.
It combines the high-pass and low-pass responses and acts as
a band-pass filter.

B. Software simulation

All simulations have been performed with leaky IF neurons
with SFA [10] using the Brian simulator [11]. The envelopes
of the song patterns were introduced into the model as current
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Fig. 1. Acoustic stimulus patterns and neural network model. A Temporal
pattern of the calling song in Grillus bimaculatus. The carrier frequency of
4.5 kHz is modulated by an envelope to produce the typical pattern, which
is parametrized by the duration of pulses and pauses within chirps as well as
the chirp and chirp pause duration. B Illustration of the stimulation paradigm
used in [7] and [8]. Stimuli have a fixed duration of 250 ms and consist of
pulses and pauses only, neglecting the natural chirp structure. The pulse duty
cycle, i.e. the ratio of pulse duration and pause duration, is fixed while the PP
is varied. C Neural network architecture. Model input to the AN1 follows the
acoustic pulse pattern. The AN1 projects to BNC1 units, which act as low-
pass or high-pass filters of the pulse pattern. A third stage (BNC2) integrates
BNC1 input and is tuned to reproduce the bandpass features. D Experimental
filter curves for BNC neurons extracted from [9]. The relative response (RR)
is plotted against the PP (PP ) of different stimulation patterns.

inputs into the AN1 unit. The pulse response of AN1 was
matched to physiological data provided by Prof. Matthias Hen-
nig’s lab at the Humboldt University of Berlin. The firing rate
and effective time-constant of adaptation were fitted following
the method described in [12]. A small amount of variability
was introduced by adding some filtered noise as an additional
current input.

The BNC1 units receive input from AN1 through synapses
which exhibit short-term plasticity. The model introduced by
Tsodyks [13] was used to implement short-term facilitation
and depression in these synaptic connections. Parameters for
suitable filter properties were found via random sampling
of the parameter space, allowing only pure facilitation or
depression. Filter curves were obtained by summing spike
counts over the stimulation window of 250 ms for different
PP and then normalizing to the maximum response, matching
the procedure in [7].

BNC2 receives input from the BNC1 units. A genetic
optimization algorithm was employed to find parameters which
match the band-pass filter characteristics described by Schild-
berger [9].

C. Hardware implementation

A neuromorphic multi-neuron spiking chip and an Address
Event Representation (AER) mapper [14] have been used for
the hardware implementation of the network. The multi-neuron
chip was fabricated using a standard AMS 0.35 µm CMOS
process and comprises a two-dimensional array of 32-by-64
leaky IF neurons [15]. Each neuron in the chip is connected
to 3 synaptic circuits (2 excitatory, 1 inhibitory) each. The
excitatory and inhibitory synapse circuits are based on the
Differential-Pair Integrator (DPI) circuit proposed in [16].
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Fig. 2. Firing rates (λ) of the two AN1 models stimulated with a step input.
The gray region indicates the stimulation interval. Shadings represent standard
deviations over 100 repeated trials for the simulation and over 100 units for
the hardware model. A Parameters chosen for the AN1 model. B-D Illustration
of different adaptation behaviours the simulation and hardware can produce.

These synapses produce Excitatory Post-Synaptic Currents
(EPSCs) and Inhibitory Post-Synaptic Currents (IPSCs) with
realistic temporal dynamics on the arrival of a pre-synaptic
input spike. The AER mapper allows the implementation of
a wide range of neural network topologies including multi-
layer networks and fully recurrent networks. The network
topology is defined by programming a look-up table that the
AER mapper reads to route spikes from source neurons to
destination synapses.

We implemented SFA through an inhibitory synapse which
feeds back to the pre-synaptic neuron. The inhibitory synapse
produces an input negative current proportional to the output
firing rate of the neuron [16]. To characterize the response
variability in our hardware we stimulated a population of
100 leaky IF neurons with a 560 Hz input train of spikes
lasting 300 ms. We chose one neuron from this population as
AN1 neuron feeding to the BNC1 neurons. The choice was
made to match the simulation data in terms of peak firing rate
and adaptation characteristics (time constant and steady state
response).

The synaptic circuits receiving input spikes from the AN1
and connected to the BNC1 units were tuned to exhibit Short
Term Potentiation (STP). This behavior is easy to achieve
in the DPI synapse [16] but was surprising unexplored in
neuromorphic systems so far. A weak synaptic weight and long
time constant allows a slow build up of the postsynaptic current
producing the STP effect. The BNC1 population consists of
100 leaky IF neurons, implemented with the same analog
circuit used for the AN1 and using the same bias settings.
The AN1 was stimulated with a train of spikes corresponding
to the Schildbergers stimulation paradigm (see Fig. 1B).

III. RESULTS

A range of SFA characteristics can be obtained with both
the software simulation and hardware (see Fig. 2). Stronger
adaptation decreases the count variance across units on the
hardware (figure 2 D vs B). The response properties of the
AN1 model used to stimulate the Brain Neurons (BNs) are
depicted in Fig. 2A.
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Fig. 3. Raster plot of a BNC1 low-pass filter implemented with STP for
100 units on the hardware and 100 trials in the simulation showing patterns
with different PPs. The shaded regions indicate stimulation intervals. Due to
the STP synapses, the units require a certain time of continuous stimulation
to start spiking. Short pulse durations therefore evoke few spikes while longer
pulses lead to bursting.
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Fig. 4. Filter characteristics of BNC units for simulation and hardware.
Superimposed are the filters from [9]. A BNC1-like low-pass filters using STP.
On the hardware currently only STP is implemented. B BNC1-like high-pass
filter using STD. C BNC2-like band-pass filter using STP.

Figure 3 illustrates the principle of pattern filtering using
STP. In the rest state, synaptic weights are weak. It takes some
time from the onset of a pulse to sufficiently increase the
weights for the BN to produce a spike. As a consequence,
the unit spikes very little for short pulses and produces burst-
like patterns for longer stimuli. The unit is effectively a pulse-
length filter. This results in low-pass filtering as observed in
[7], [17]. Equivalently, high-pass filters can be implemented
using Short Term Depression (STD). Here, pulses cause the
synaptic weights to be depressed and the unit only fires at the
onset of pulses. Since the number of pulses in the stimulation
interval decreases with PP in Schildberger’s paradigm this
effectively translates to high-pass filtering.

The high-pass and low-pass filters matching the ranges
reported in [9] and [17] can be obtained using short-term
synaptic plasticity with both hardware and software models. In
this paper, we have shown only STP with hardware. The filter
curves for the simulation have been calculated by averaging
over 20 repeated stimulations with each stimulus pattern. For
the hardware, the curve represents an average of 100 BNC1s
with identical parameters.

IV. DISCUSSION

The neural network model presented here is based on
anatomical and physiological evidence. The SFA in the AN1
is experimentally well documented and the major function
of adaptation in this neuron is the generation of intensity
invariance [6]. Moreover, SFA has been shown to reduce
the response variability in sensory neurons, contributing to a
reliable sound encoding [18].

The key functional aspect for the neural pattern recognition
algorithm implemented here is short term plasticity which has
been suggested in previous model studies [19], [20]. Other
studies related to cricket phonotaxis have mainly focused on
neurally inspired implementations of sensorimotor transfor-
mations for robotic applications [21], [22]. To date there is
no experimental evidence for the existence of STD or STP
synapses in the central cricket brain. However, short term
plasticity has been found in insects, notably in the olfactory
system of the fruit fly [23], [24].

For future studies it will be relevant to adapt the neural net-
work model to natural sound patterns (as in Fig. 1A) in order
to predict phonotactic scores available from large behavioural
data sets [4]. Further, STD-filters will be implemented on the
hardware. In addition, we plan to take into account neural
processing of directional information, which is behaviourally
relevant for localizing an attractive sound source.
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