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Introduction and Motivation
Quantum chromodynamics, QCD, is the theory of the strong interaction. To our current
knowlegde, the strong interaction is one of the fundamental forces in nature. It comple-
ments gravity and the electromagnetic and weak force, where the latter two are joined
in the unified theory of electro-weak interaction.
Gell-Manns eight-fold way[1] started out in 1961 as a phenomenological model to

structure the large amount of new hadrons found in early high energy physics experi-
ments. Over the next decade, Quantum Chromodynamics evolved from it, introducing
the concept of quarks as the basic constituents of the hadrons, and later the color degrees
of freedom.
Quantum Chromodynamics is a non-abelian SU(3) gauge theory, the elemtary par-

ticles are called quarks and the gauge bosons that mediate their interaction are called
gluons, which both carry color charge.
At low temperatures and densities, quarks are not found as free particles, but only

in bound, colorless states, called hadrons. When separating two quarks, the force be-
tween them rises until the creation of a new quark-antiquark pair becomes energetically
favoured. This property is called confinement and is – in nature – only observed for the
strong interactions. Confinement is presumably tightly linked to the non-abelian struc-
ture of QCD, which allows for self-interaction between the gluons. However, a rigorous
proof of confinement is outstanding and considered a Millenium Problem[2].
In the high energy limit, perturbative calculations are applicable. Here the β-function,

which links the running coupling αs(E) of QCD to the energy scale E the theory is probed
at, can be calculated and is found to be negative[3]. Thus, the coupling decreases with
rising energy and the theory moves towards the free limit. This effect is called asymptotic
freedom and in a way complements confinement.

Phases of QCD
QCD shows a rich phase structure, one of the well-known sketches of the QCD phase
diagram being given in fig. 1. The phase of quarks and gluons found at high temperatures
is called the quark-gluon plasma, the phase of bound states is referred to as the hadronic
phase. The details of the phase diagram are a broad subject of current research, with
experimental studies and various theoretical techniques employed. For example, the
nature of the phase transition or crossover is a matter of ongoing scientific study and
discourse.
Experimentally, the transition from bound states to a deconfined quark gluon plasma

(QGP) is achieved in heavy ion collisions. At present, two heavy ion colliders are in op-
eration: The RHIC collider at BNL, with the experiments PHENIX and STAR attached,
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Quark Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars
Density

Expansion of
the early Universe

Heavy ion collisions

Figure 1: Sketch of the QCD phase diagram in temperature and chemical potential, cited
from [4].

and the LHC collider at CERN. While the LHC is arguably most famous for its role in
the Higgs search, which is predominantly conducted with proton - proton collisions, it is
also used as a heavy ion collider with lead - lead collisions. The ALICE experiment at
the LHC is specifically designed for the detection of heavy ion collisions. The dilepton
measurements performed by these experiments are a main motivation for the thermal
dilepton rate study presented in chapter 5, where an overview of the experimental status
can be found.
For theoretical predictions from first principles, QCD calculations can be carried out

in two ways: In the limit of high energy, analytical calculations are possible, as the small
coupling allows for perturbative approaches. However, these approaches become invalid
in the region of stronger couplings, when moving towards the confined phase. Here,
lattice QCD is currently the only technique that allows to perform ab-initio calculations
at zero and finite temperature.

QCD on the lattice
In 1974, Kenneth G. Wilson introduced a space-time lattice as a regulator to find this
non-perturbative approach to QCD[5]: Discretizing space-time to a lattice with a fixed,
finite spacing between points regulates the UV-behaviour of the theory. Today lattice
QCD arguably is the most successful non-perturbative approach to QCD.
The discretization introduced also quite naturally maps to a numerical implementa-

tion, by not only setting a fixed spacing between lattice points, but also setting a finite
lattice extent. This effectively puts the system in a finite box, and directly yields a
problem very accessible to numerical methods.

12



Care has to be taken when extracting physical observables from such a discretized
theory in a finite volume: As a rough comparison, the systems studied in lattice QCD
resemble a finite crystal structure, while nature offers a continuum of infinite size. The
systematic errors introduced by this discretization thus have to be well understood and
compensated for.
Lattice QCD calculation can be carried out at temperatures in the confined as well

as in the deconfined phase, which makes them a very suited tool to study the QCD
phase transition. As a caveat, the fermion sign problem limits these studies to vanishing
chemical potential: For finite chemical potential, the Boltzmann-weight in the path
integral becomes complex, the integrand starts to oscillate, and thus the Monte-Carlo
techniques employed to solve the integral break down.
Finite temperature lattice QCD calculations focus on studying temperature-dependent

effects in QCD and thus provide a powerful theoretical framework to study the phase
transition. A comprehensive review of the current understanding and results obtained
in the field can be found in [6].

Outline of the work at hand

This work focuses on two lattice QCD studies that have been conducted over the last
years: The thermodynamic and continuum limit of meson screening masses, and the
determination of thermal dilepton rates from lattice QCD. The studies differ in their
objectives, but share a lot of common means:
Both are carried out in the deconfined phase of QCD. Both use the quenched approx-

imation, which greatly reduces the numerical effort, so large lattices are possible. This
allows for small lattice spacings while maintaining large enough physical volumes. Most
importantly, both rely on meson correlation functions as the main observable, which are
extrapolated to the continuum limit, compensating lattice cut-off effects.
Another focus point in the course of this work is lattice QCD software development,

which provides the tools and means to carry out the calculations.
A short motivation for each part follows here, while a more thorough introduction is

provided in each corresponding chapter.

Meson screening masses

The discretized version of the QCD action is not unique, and different actions with the
correct continuum limit can be employed in the calculation. For the fermionic part of
the action, this freedom of choice is widely used to find different compensations for the
well-known fermion doubler problem.
Observables calculated on finite lattices are subject to discretization effects, stemming

both from the finite lattice spacing and the finite lattice volume. Employing two popular
fermion actions – the Wilson action with clover improvement and the standard staggered
action – to calculate observables, it is known that the results obtained on finite lattices
differ between both actions.

13
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As the discretization effects between both actions may also differ, they might cause this
deviation in the results. In this case, the differences must vanish when compensating for
discretization effects by taking the thermodynamic (infinite lattice size) and continuum
(zero lattice spacing) limit.
The study at hand sets out to answer this question. Full continuum results are ob-

tained, allowing for the above mentioned comparison of both actions. Meson screen-
ing masses have been selected as a suitable observable for a systematic study of the
discretization effects of clover-improved Wilson and standard staggered fermion, with
thermodynamic and continuum limits carried out at two temperatures in the deconfined
phase of QCD.
Meson screening also serves as an important observable for the study of the QCD

phase transition, so the insight gained into the behavior of discretization effects is valu-
able for future studies, as it helps in finding more effective ways to obtain continuum
extrapolations.

Thermal dilepton rates

Thermal dileptons are produced in the QGP that is created in heavy ion collisions at
RHIC and LHC. They serve as an important experimentally measured quantity to study
the plasma. Most theoretical predictions for the rates of thermally produced dileptons
and photons rely on input from truncated effective model calculations. In this work,
a lattice QCD approach is used to carry out calculations close to the phase transition,
where these effective models break down.
The study contributes to a long ongoing research effort. It uses an ansatz to extract the

spectral function from lattice QCD observables that was developed as well as thoroughly
tested and documented in a directly preceding work [7]. This work extents the above
mentioned results by providing calculations at two more temperatures in the deconfined
phase near the phase transition. A more detailed introduction, linking this research
to current theoretical and experimental results, can be found at the beginning of the
corresponding chapter 5 on thermal dilepton rates.
Preliminary results of this study have been presented in [8, 9].

Software development

Lattice QCD simulations are numerical calculations that – historically and currently
– require supercomputing resources and tailored software implementations. For some
time the high and specific demand in computing power even drove the development of
computing hardware that is specifically tailored to the demands of QCD simulations.
The adjoint software development is a very technical, but nonetheless important com-

ponent in lattice QCD research. In the course of this work, a parallel lattice QCD
software suite was developed, gradually replacing legacy codes with a structured, shared
new code base. Of course, software development is a means to an end: It does not
provide new scientific insight in itself, but enables or speeds up the research that has to

14



be performed. It is the equivalent of the machinery and tools an experimental physicist
might have to design to be able to obtain measurements.
The software is currently in productive use for ongoing research projects and under

constant, active development.

Structure of the thesis
The layout of the thesis at hand is intended to represent the structure motivated above.
A brief, general introduction to lattice QCD, motivating the concepts that are needed
in this work, is given first. Another chapter lays out the scale setting calculations that
were performed and which are a prerequisite for especially the dilepton study.
Three chapters follow, where each chapter focuses on one of the three main research

matters laid out above. Each chapter features a short introduction, a discussion of the
specific results and concluding remarks on its matter. This makes each chapter mostly
self-contained, allowing them to be read independently of one another.
A conclusion that complements this introduction, providing a global summary of re-

sults and a general outlook, is given at the end.
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1 Lattice QCD
The calculation of meson correlation functions in finite temperature quenched lattice
QCD is the basis for all results presented in this work. In the following, an overview of
the relevant theoretical foundation, quoting its fundamental equations and pointing to
the numerical methods involved, is given. Introductions to lattice QCD are available in
various textbooks[10, 11, 12]. This short overview especially follows the lecture notes of
Gattringer/Lang [10], in employing the same notation for most quantities.
As a starting point, the path integral and QCD observables are discussed. Afterwards,

the lattice discretization of fermion and gluon actions is laid out, introducing the two
widely used fermion actions that are employed for this work. Finally, definitions of meson
correlation functions on the lattice and their numerical implementation are given.

1.1 Path integrals and observables in QCD
The goal of lattice QCD calculations is to compute the thermal expectation value 〈O〉
of a physical observable O. The most central is the QCD action SQCD. Notations
and conventions chosen here and in the following are heavily tailored towards a lattice
discretization of the theory: SQCD is given in euclidean metric, by working in euclidean
space-time via t → −iτ . All subsequent equations are also assumed to be in euclidean
time if not stated otherwise. The action is splits into the gluonic part SG and the
fermionic part SF of the interaction and reads

SQCD = SF + SG

SF =
∫ 1/T

0
dτ

∫
V
d3~x

Nf∑
f=1

ψ̄(f)(x)D(x)ψ(f)(x)

SG = − 1
2g2

∫ 1/T

0
dτ

∫
V
d3~xTr[Fµν(x)Fµν(x)]. (1.1)

The integral over space-time has been separated into its spatial component
∫
V and

the time direction
∫ 1/T

0 . The time direction plays a distinct role in finite temperature
calculations, as the temporal extent 1/T in the integration sets the temperature of the
system.
The quarks as massive fermions are given as Dirac 4-spinors

ψ(f)(x)α,c , ψ̄(f)(x)α,c (1.2)

and the gluonic fields Aµ(x) define the field strength tensor

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i [Aµ(x), Aν(x)] (1.3)

17



1 Lattice QCD

The x labels a space-time position, with x = (~x, t), and the Dirac index is denoted by
Greek letters as α,β. The fermion fields carry an additional flavour index (f), while the
gluonic fields carry a Lorentz index µ indicating their space-time direction.
In this commutator notation of the field strength tensor, Aµ(x) are 3 × 3 matrices

generated by
Aµ(x) = λa

2 A
a
µ(x), (1.4)

where λa are the Gell-Mann matrices and Aaµ(x) for a = 1 . . . 8 are real-valued fields, the
color components. The non-vanishing commutator [Aµ(x), Aν(x)] in eq. (1.3) gives rise
to the gluon self-interaction, a prominent feature of the non-abelian nature of QCD.
The gauge coupling g is given as a global prefactor to the gauge action in eq. (1.1),

by this convention and subsequent scaling of Aµ(x), it does not explicitly enter into, for
example, the Dirac operator.
The full Dirac operator, denoted D(x) and including the covariant derivative, the

γ-matrix contraction and the mass term, reads

D(x) =
∑
µ

(γµ(∂µ + iAµ(x)) +m) (1.5)

Within the strong interaction of QCD, there is no coupling between the flavours, they
only enter through different masses m(f) and as a sum

∑Nf in the action. Thus the
flavour index is dropped for most of the following equations.
With Aµ(x) entering into D(x), the fermion action depends on the fermion fields ψ(x)

as well as the gluonic fields However, the gluonic part SG of the action does not depend
on the fermion fields. This becomes important for purely gluonic observables in so-called
pure gauge calculations.
With the action in place, the partition function of QCD can be given by

Z(T, V ) =
∫ ∏

µ

DAµDψ̄Dψ exp(−SQCD) (1.6)

and the thermal expectation value of an observable O can be calculated as

〈O〉 =
∫ ∏

µDAµDψ̄DψO exp(−SQCD)
Z(T, V ) . (1.7)

With these preparations, discretized lattice versions of the actions in eq. (1.1) and the
Monte-Carlo approach to solve eqs. (1.6) and (1.7) can be introduced in the following.
Space-time is discretised to a lattice with finite spacing a, where positions are denoted

by vectors of integer numbers n

n = (nx, ny, nz, nt) (1.8)

so a position in physical units is found by

x = (nx · a, ny · a, nz · a, nt · a). (1.9)
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1.2 Lattice gauge action

For finite size lattices, the spatial extent of the lattice is given by Nσ, the temporal
extent is given by Nτ , so

nx, ny, nz ∈ [0, Nσ − 1] nt ∈ [0, Nτ − 1]. (1.10)

For isotropic lattices, the spacing a does not differ for the spatial and temporal direction.
The temporal extent Nτ · a fixes the temperature of the system to T = 1

Nτ ·a .

1.2 Lattice gauge action
It is useful to discuss a discretized lattice version of the gluonic part SG in the action
SQCD first, since it only depends on the gauge fields Aµ(x) and not on the fermion fields.
The gauge fields Aµ(x) are represented on the lattice as links Uµ(x), connecting a

lattice site n to n + µ̂. Here µ̂ is the unit vector in direction µ, used to move between
next-neighbour lattice sites. The links are defined as

Uµ(n) = P exp
(
ia

∫ (n+µ̂)·a

n·a
dxAµ(x)

)
(1.11)

where P denotes the path ordering of the integral. The links Uµ(n) are SU(3)-matrices,
elements of the non-abelian SU(3) group, while Aµ(x) are generators of these SU3-
matrices. To reverse a link, so it connects n + µ̂ to n, it is transposed and conjugated,
so

U−µ(n+ µ̂) = U †µ(n) = P exp
(
ia

∫ n·a

(n+µ̂)·a
dxAµ(x)

)
(1.12)

Uµ(n)

Uν(n+ µ̂)

U†
µ(n+ ν̂)

U†
ν (n)

Figure 1.1: Visualisation of
the plaquette used in
eq. (1.14).

Now an action SG for the gauge fields, mapped to the
lattice and thus constructed from the discrete set of link
matrices Uµ(n), has to be found.
In general, given a closed path P on the lattice, the

trace over the product of link variables along such a
path,

LP [U ] = Tr

 ∏
n,µ∈P

Uµ(n)

 , (1.13)

is a gauge-invariant object. Combinations of closed link
loops can be used to construct gauge actions and also
serve as important physical observables.
The most simple object is a closed loop of four links in

two directions µ, ν with µ 6= ν. It is called the plaque-
tte �µν , has an intuitive graphical representation (see
fig. 1.1) and is given as

�µν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)
= Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) (1.14)
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The plaquette is used in the construction of the first and arguably the simplest for-
mulation of a lattice gauge action, the Wilson gauge action. It is used to discretize the
field strength tensor from eq. (1.3), see also eq. (1.31) below, and with β = 6/g2 as the
inverse coupling, the lattice action SG[U ] reads

SG[U ] = β

3
∑
n∈Λ

∑
µ<ν

Re Tr [1−�µν(n)]

= a4

2g2
∑
n∈Λ

∑
µ,ν

Tr
[
Fµν(n)2

]
+ O(a6). (1.15)

1.3 Lattice Fermion actions
With a lattice formulation of the gauge action in place, now lattice discretizations of
the fermion action SF are discussed. In contrast to the gauge action, where –for this
work– no modification or improvement of the Wilson gauge action is used, the choice of
a fermion action is more involved:
Directly rewriting SF in eq. (1.1), employing a symmetric first-order derivative for

Dµ(x) from eq. (1.5) and transforming Aµ to link variables Uµ(n) via eq. (1.11) yields
the so-called naive discretization of the fermion action

Snaive
F [ψ, ψ̄, U ] = a4∑

n

ψ̄(n)

 4∑
µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2 +mψ(n)


(1.16)

Note that in the free, non-interacting case the link variables become unit matrices and
eq. (1.16) becomes

Sfree
F [ψ, ψ̄] = a4∑

n

ψ̄(n)

 4∑
µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2 +mψ(n)

 (1.17)

1.3.1 The fermion doubler problem
The main drawback of the naive fermion action is the well-known fermion doubler prob-
lem. In the notion of the lattice as a crystal structure, the doublers arise at the edges
of the Brillouin zone. The naively discretized version of the Dirac operator in eq. (1.5),
corresponding to the naive fermion action above, reads

D(n|m) =
∑
µ

(γµ)
Uµ(n)δn+µ̂ − U−µ(n)δn−µ̂

2a +mδm,n (1.18)

and, in the free case, found by setting Uµ to unity matrices, becomes

D(n|m)free =
∑
µ

(γµ)δn+µ̂ − δn−µ̂
2a +mδm,n (1.19)
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1.3 Lattice Fermion actions

1
a

−π
a

π
a

Lattice
Continuum

Figure 1.2: Sketch of the fermion doubler problem, massless lattice eq. (1.22) and con-
tinuum eq. (1.23) quark propagator contribution.

The lattice Fourier transformation of the free Dirac operator is given by

D̃(p|q) = 1
|Λ|

∑
n,m∈Λ

e−ip·naD(n|m)eiq·ma = δ(p− q)D̃(p) (1.20)

where
D̃(p) = m1 + i

a

∑
µ

γµ sin(pµa). (1.21)

The inverse, the so-called quark propagator, can be given in the free case as

D̃(p)−1 =
m1− ia−1∑

µ γµ sin(pµa)
m2 + a−2∑

µ sin(pµa)2 . (1.22)

For the massless case m = 0 the operator becomes

D̃(p)−1|m=0 =
−ia−1∑

µ γµ sin(pµa)
a−2∑

µ sin(pµa)2 (1.23)

This propagator has a pole for p = (0, 0, 0, 0) that corresponds to the fermion particle
state in the continuum. On a lattice with finite spacing however, eq. (1.22) gives rise
to additional poles at p = (π/a, 0, 0, 0), (0, π/a, 0, 0), . . . , introducing 15 additional,
unphysical particle states, called fermion doublers.

1.3.2 Dealing with fermion doublers
The fermion doubler problem arises in the naive discretization of the fermion action.
Since the action can be varied as long as the correct continuum limit a→ 0 is maintained,
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different modifications of the action can be used to tackle the doubler problem. However
no complete solution is possible: The so-called No-Go theorem [13] proves that, under
a set of assumptions that generally holds for lattice QCD formulations, an action either
has to give rise to some kind of fermion doublers or it has to explicitly break the chiral
symmetry {D, γ5} = 0.
The two widely used actions employed in this thesis also have different effects on the

doublers: The Wilson fermion action avoids doublers completely, thus breaking chiral
symmetry. The staggered action reduces the doublers from 16 to 4, keeping a residual
U(1) chiral symmetry.

1.3.3 The Wilson action and clover improvement
The Wilson fermion action is a quite direct approach to the doubler problem. An
additional term, the so-called Wilson term, is introduced into the action to remove all
unphysical poles in (1.22). The term resembles a mass, thus it breaks chiral symmetry
explicitly. The term enters into the free Dirac operator in momentum space

D̃free
Wilson(p) = m1 + i

a

∑
µ

γµ sin(pµa) + 1
1
a

∑
µ

(1− cos(pµa))︸ ︷︷ ︸
Wilson term

(1.24)

The operator is transformed back and interactions are reintroduced, so

DWilson(n|m) =
(
m+ 4

a

)
δn,m −

1
2a
∑
±µ

(1− γµ)Uµ(n) δn+µ̂,m (1.25)

which defines the Wilson fermion action as

SWilson
F [ψ, ψ̄, U ] = a4 ∑

n,m

ψ̄(n)DWilson(n|m)ψ(m)

= a4∑
n

ψ̄(n)
[
(m+ 4

a
ψ(n))

− 1
2a
∑
µ

[(1− γµ)Uµ(n)ψ(n+ µ̂) + (1 + γµ)U−µ(n)ψ(n− µ̂)]
]

(1.26)

Setting ψ′ =
√
m+ 4/aψ and introducing the hopping parameter κ = 1/(2m ·a+ 8) the

action is rewritten to the final form

SWilson
F [ψ′, ψ̄′, U ] = a4∑

n

[
ψ̄′(n)ψ′(n) (1.27)

− κ
∑
µ

ψ̄′(n)[(1− γµ)Uµ(n)ψ′(n+ µ̂) + (1 + γµ)U−µ(n)ψ′(n− µ̂)]
]

(1.28)

Aside from breaking chiral symmetry the Wilson action has another drawback: Dis-
cretization errors introduced by the finite lattice spacing a scale with leading order O(a2)
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Uµ(n)

Uν(n+ µ̂)

U†
µ(n+ ν̂)

U†
ν (n)

U†
µ(n− µ̂)

U†
ν (n− µ̂− ν̂)

Uµ(n− µ̂− ν̂)

Uν(n− ν̂)

Figure 1.3: The clover-term in one µν-plane, made up from four plaquettes.

for the naive fermion action. The additional Wilson term introduces errors of O(a) into
the action, so the leading order discretization effects become linear instead of quadratic
in the lattice spacing.
While breaking chiral symmetry is inevitable, the discretization errors can be com-

pensated for. For this purpose, the action in eq. (1.28) is complemented by a term
compensating the O(a) effects

SWilson,clover = SWilson + cSWa
5 ∑
n∈Λ

∑
µ<ν

ψ̄(n) 1
2σµνFµν(n)ψ(n). (1.29)

Here a discretized lattice version of the field strength tensor is needed, which is found
by introducing a sum of plaquettes, see eq. (1.14), as

Qµν(n) = �µ,ν(n) +�−µ,ν(n) +�µ,−ν(n) +�−µ,−ν(n) (1.30)

and
Fµν = −i

8a2 (Qµν(n)−Qνµ(n)) (1.31)

Since a graphical representation of the term Qµν(n), see fig. 1.3, resembles a four-
leaf clover, the term is referred to as clover-term and the full action is usually denoted
clover-improved Wilson action.
The index in cSW refers to Sheikholeslami-Wohlert[14] and the coefficient can be tuned:

c = 1 yields leading order O(ag2) discretization effects, c obtained from perturbative
approaches will yield O(agn), where n depends on the order of perturbation theory,
and non-perturbative calculations can give O(a2). In this work, cSW is set by the fully
non-perturbative results for quenched QCD [15], parameterized in terms of the coupling
as
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cSW = 1− 0.656 g2 − 0.152 g4 − 0.054 g6

1− 0.922 g2 with 0 ≤ g ≤ 1. (1.32)

1.3.4 The staggered action

Staggered fermions, or Kogut-Susskind fermions, are another widely used approach to
the doubling problem. The 16-fold degeneracy of the naive action is reduced to four
quarks, allowing a remnant of the chiral symmetry to be maintained.
This is achieved by decoupling next-neighbour interactions, introducing a lattice struc-

ture mixing spinor and space-time indices. The naive action (1.16) is transformed to a
new set of field variables ψ′

ψ(n) = γnx1 γ
ny
2 γnz3 γnt4 ψ(n)′ ψ̄(n) = ψ̄(n)′γnx1 γ

ny
2 γnz3 γnt4 (1.33)

where each γ-matrix is raised to an integer power given by the position n. Rewriting
the action in terms of ψ′ and ψ̄′, it becomes

Sstagg.
F [ψ, ψ̄, U ] = a4 ∑

n,m

ψ̄(n)Dstagg.(n|m)ψ(m)

= a4 ∑
n∈Λ

ψ̄(n)′1
(
mψ(n)′

+
∑
µ

ηµ(n)
Uµ(n)ψ(n+ µ̂)′ − U †µ(n− µ̂)ψ(n− µ̂)′

2a

)
(1.34)

where the staggered sign functions, which set the staggered phases, are given by

η1(n) = 1, η2(n) = (−1)nx , η3(n) = (−1)nx+ny , η4(n) = (−1)nx+ny+nz (1.35)

Since the action is diagonal in Dirac-space, only one of the now identical four components
of ψ′(n) is kept and denoted, by convention, χ(n). For completeness and later reference,
the staggered action then reads

SF [χ, χ̄, U ] = a4 ∑
n∈Λ

χ̄(n)
(
mχ(n)

+
∑
ν

ηµ(n)
Uµχ(n+ µ̂)− U †µ(n− µ̂)χ(n− µ̂)

2a

)
(1.36)

To demonstrate that chiral symmetry is partially preserved by the staggered fermion
action, it is useful to take a look at the bilinear ψ̄(n) γ5 ψ(n) that represents the pseudo-
scalar. For the staggered action, it transforms to η5(n) χ̄(n)1χ(n) where η5(n) =
(−1)nx+ny+nz+nt gives the corresponding phase. Here

χ(n)→ eiαη5(n)χ(n) χ̄(n)→ χ̄(n)eiαη5(n)
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1.4 The partition function and the quenched approximation

can be found as the remnant U(1) symmetry. The staggered actions shows leading order
discretization effects O(a2). Thus with the non-perturbative clover-improvement for the
Wilson action discussed above, both actions used in this work share the same leading
order of discretization effects.

1.4 The partition function and the quenched approximation

A lattice version of the partition function can be obtained by using the lattice gauge and
a lattice fermion action in eq. (1.6), which yields a partition function Z(U, ψ̄, ψ) that
formally depends on the fermion fields. However, as the fermion actions are bilinear, the
fields can be integrated out.
As Grassmann valued fields, the fermionic part of the partition function is then given

by ∫
Dψ̄Dψ exp

(∑
n,m

ψ̄(n)D(n|m)ψ(m)
)

= det[D] (1.37)

which in turn allows to write the partition function as

ZQCD(U) =
∫
DU det[D(U)] exp(−SG(U)). (1.38)

Seen as a matrix, D is sparsely populated. Its structure is defined by the derivatives
in the fermion action and the matrix coefficients are given by the gauge field Uµ(n). Nu-
merically evaluating det[D] directly is prohibitively expensive. The so-called quenched
approximation is used to avoid calculating det[D], by setting det[D] = 1. It is found by
introducing a hopping parameter κ, rewriting D as D′(n|m) = 1 − κD(n,m), see e.g.
eqs. (1.26) and (1.28), and taking the limit κ→ 0.
The physical effect of this simplification is that the quark mass, linked to the hopping

parameter as m ∼ 1
κ·a , is send to infinity. Thus, the Dirac sea quarks become infinitely

heavy. In principle, the errors introduced by the quenched approximation are uncon-
trolled systematic errors. For the relevant observables in this work, the meson correlation
functions with light quark masses, it has however been shown that the systematic errors
of the quenched approximation are below 5% to 10% [16].
The partition function in the quenched approximation reads

Zquenched
QCD (U) =

∫
DU exp(−SG(U)). (1.39)

so now only the gauge action SG has to be taken into account for Zquenched
QCD . To evaluate

a high dimensional integral as in eq. (1.39), a Monte-Carlo approach is the only viable
option: In general, a set of random gauge configuration Uµ(n) would be generated and
their weight exp(−SG(U)) summed up. However, using fully random, evenly distributed
configurations would be highly inefficient, as most of them would have a very low weight
exp(−SG(U)).
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1.4.1 The heat bath algorithm

A Markov-chain process is used to make this process efficient. It starts from an initial
configuration, e.g. a random set of links (zero temperature) or a set of unit matrices
(infinite temperature). In each step of the process, a new set of links, a new configuration
is generated. The process ensures that the distribution of these configurations follows the
probability weight given by exp(−SG(U)). As a Markov-chain process, two additional
important properties are ensured: Firstly, each configuration Uµ(n) with exp(−SG(U)) >
0 will eventually be reached by the process, even if it takes an unfeasible high number
of iterations for configurations with exp(−SG(U)) ' 0. Secondly, the process only
needs a fixed, finite number of previous configurations to work, usually only the last
configuration. It should be kept in mind that a Markov-chain process inevitably produces
correlated configurations.
For this work, the heatbath algorithm[17, 18] is used to generate gauge configurations,

with an additional improvement through intermediate overrelaxation[19, 20] steps. The
heatbath itself changes the action SG(U) of a configuration, implementing the impor-
tance sampling. The overrelaxation steps leave SG(U) invariant, but gauge transforms
the links so they move to a different position in configuration space. Overrelaxation
greatly reduces the correlation between configurations. All configurations used in this
work are separated by 500 heatbath updates, with 4 overrelaxation steps per heatbath
update.

1.4.2 Work flow of gauge configuration generation

To set up the generation of new gauge configurations, a few parameters have to be set:
The coupling β fixes the lattice spacing a, together with the temporal extent Nτ the
temperature of the system is set as 1/T = a ·Nτ . In chapter 3, it is laid out how these
parameters can be related to a physical scale. The lattice volume Nσ is also set, and
fixes the spatial volume of the lattice as V (3)

phys. = (Nσ · a)3. Depending on the specific
Markov-chain algorithm, further parameters can or have to be tuned. For the heat
bath, the number of heat bath updates separating two configurations has to be set. If
overrelaxation is used, also the number of overrelaxation steps per heat bath update has
to be fixed. The configurations used in this work have been generated with 400 to 500
heat bath updates per configuration, 4 overrelaxation steps per heat bath update. For
temperatures in the deconfined phase, this choice is found to be high enough to suppress
autocorrelations, tested for e.g. the vector current correlator in [7].
When the heat bath algorithm is initially started, it also needs a way to initialize

the first gauge configuration, where links are either set randomly (corresponding to a
low temperature) or set to unit matrices (corresponding to infinite temperature). As a
side note, this initialization is opposite to the one needed when simulating spin system,
where an ordered configuration ensures a cold start. As Markov chain methods are often
introduced by their application in spin system like the Ising model, this often leads to
some confusion. When writing codes or documenting results, it is advisable to always
state if a configuration is random or ordered, instead of only referring to the temperature
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limit.
Starting from a freshly initialized gauge configuration, a certain amount of configu-

ration updates is needed to thermalize the system. These configurations do not enter
into the importance sampling, but are discarded. For configurations in the deconfined
phase as used in this work, it is found that 5000 heat bath updates ensure a thermalized
configuration.
Without modifying the process, the generation of gauge configurations is a serial1

process: To start the calculation of configuration m, configuration m − 1 has to be
finished first. When using large lattices, it can be necessary to speed up the process
by using multiple streams. At some configuration m, two processes a and b are started
with m as their base configuration, but different states of their pseudo random number
generators. Thus, successive configurations (m + i)a and (m + i)b will differ, and after
a number of heat bath updates needed to decorrelate, two independent streams a and b
allow to double the output of configurations.
In terms of the computational effort to generate a new configuration, the heat bath

algorithm and similar processes scale deterministically linear with the lattice volume
N3
σ · Nτ , since for each update the same constant number of numerical operation per

lattice site is needed.

1.5 Meson correlators

An important aspect of lattice QCD in general, and the use of lattice QCD in this
work in particular, is the study of the meson spectrum by calculating meson correlation
functions on the lattice.
A meson operator O(x) is defined in terms of the quark fields ψ(x) as

OΓ(x) = ψ̄(x)α Γαβ ψ(x)β (1.40)

where the matrix Γ sets the quantum numbers of the operator and thereby fixes the par-
ticle the operator relates to. Possible choices for Γ and their realization in the staggered
action are discussed below. Using OΓ(x), a meson correlator,

GΓ(x) =
〈
OΓ(x)O†Γ(0)

〉
=
〈(
ψ̄(x)α Γαβ ψ(x)β

) (
ψ̄(0)ξ Γ†ξζ ψ(0)ζ

)〉
(1.41)

is obtained as a four-point function in terms of the quark fields ψ(x). Choosing 0 as one
fixed point of the correlator is by convention, since translational invariance of the lattice
allows any choice here.

1 Here ’serial’ does not refer to the capabilities of a specific software implementation (which of course
can and often will be parallelized), but to the process itself.
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The correlation function is evaluated by integrating out the fermion fields

GΓ(x) = 1
Z

∫
DUDψ̄Dψ

(
ψ̄(x)αΓαβψ(0)β

) (
ψ̄(x)ξ Γ†ξζ ψ(0)ζ

)
exp(−SQCD)

= 1
Z

∫
DU det[D] exp (−SG[U ])

×

Tr
[
D−1(x|0)ΓD−1(0|x)Γ†

]
︸ ︷︷ ︸

connected

−Tr
[
Γ†D−1(0|0)

]
Tr
[
ΓD−1(n|n)

]
︸ ︷︷ ︸

disconnected

 (1.42)

where in the quenched approximation again det[D] = 1.
In eq. (1.42), the correlator splits into quark line connected and disconnected contribu-

tions. Evaluating the disconnected on the lattice is possible, but numerically it is quite
costly.
For the meson screening mass analysis carried out in chapter 4, only flavor non-singlets

are considered, where the disconnected part is zero. For the dilepton rate study, the
quark line disconnected contributions to the vector current are neglected.
Solving eq. (1.42) yields the meson correlator for every point x. Usually the meson

correlation function along the temporal or one of the spatial axis (z by convention) is of
interest, where the three other dimensions are integrated up as

Gtemporal
Γ (τ) =

∫
V3
d3xGΓ(~x)

Gscreening
Γ (z) =

∫
τ

∫
x,y
dτdxdy GΓ(x, y, τ). (1.43)

The correlation function along the z-axis is often denoted the screening correlator, as
it describes the screening of the meson by the surrounding medium.

1.5.1 Inverting the fermion matrix
With the definition of the meson correlator in eq. (1.42), it can be obtained from a
lattice QCD calculation: The integral over the gauge configuration space

∫
DU , the

weight factor exp−SQCD and the normalization by the partition function is taken care
of by the importance sampling in the Markov chain process generating the configurations.
As laid out above, in the quenched approximation these configuration do not depend on
the fermion action and the weight is given by exp(−SG).
Given an ensemble of N configurations, on each configuration i the observable Oi has

to be calculated, and the sum 1
N

∑N
i=1Oi is an approximation of the thermal average

< O > in eq. (1.7). Therefore, to obtain meson correlators,

Tr
[
D−1(n|0)ΓD−1(0|n)Γ†

]
(1.44)

has to be evaluated for an ensemble of gauge configuration. This step is called the
fermion matrix inversion, as D−1 has to be found for every gauge configuration.
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The fermion matrix D is sparsely populated and large, so an actual inversion of the
full matrix to find D−1(n|m) is not feasible for even modest lattice sizes. However, to
calculate eq. (1.44), only the inverse D−1(n|0), with respect to a source at m = 0 is
needed, which can be found by solving the corresponding system of linear equations.
Taking into account the translational invariance, where m = 0 is only chosen by con-
vention and any other source position does not change the thermal average, finding the
solution of D−1(n|0) is mostly equivalent to inverting the full matrix.
Different numerical techniques are available to solve a system of linear equations,

where for lattice QCD problems Krylov subspace solvers are widely established. A good
overview is found in [21]. For this work, where calculations in the deconfined phase of
QCD are carried out, the conjugate gradient algorithm is used.
To sample the path integral, the fermion matrices of an ensemble of gauge configura-

tions have to be inverted, where a typical ensemble used in this work contains 100 to 400
configurations. In contrast to generating gauge configurations, there are no dependen-
cies involved: Every configuration is inverted individually, so the speed of the process is
only limited by the available computing resources.
The computational effort is harder to estimate and less deterministic: The solvers

repeatedly have to apply D(n|m) to ψ(n). The computational effort2 to apply D(n|m)
once scales linear with the lattice volume N3

σ ·Nτ . However, the convergence behaviour of
the solver is less predictable: With larger lattice volumes, usually a more exact solution
is needed, so a lower residual has to be reached by the solver, increasing the number of
needed D(n|m)-applications. Also, the over all convergence of a smaller system is often
faster than on a large system. Both effects lead to a computational effort scaling worse
than linear with the lattice volume.
The quark mass also has a profound effect on the convergence behaviour of the solver.

It is related to the condition number of the matrix, where lower quark masses lead to
higher condition numbers and thus to larger numbers of iterations needed to reach a
given precision in the solver.

1.5.2 Meson correlators on the lattice
On the lattice, the integrals in eq. (1.43) turn into summations over lattice coordinates.
The correlator can be projected onto finite momenta, which on the lattice are given by
~p = 2π~k/(Nσ · a) with integer values ki. The momentum-projected correlator reads

Gtemporal
Γ (nt, p) =

∑
nx,ny ,nz

exp

i ∑
i=x,y,z

2πkini/Nσ

 GΓ(~n, nt)

Gscreening
Γ (nz, p) =

∑
nx,ny ,nt

exp

i ∑
i=x,y,t

2πkini/Ni

 GΓ(nx, ny, nz, nt). (1.45)

with Nx,y,z = Nσ, Nt = Nτ .
2The computational effort is given by the number of operations (additions, multiplications, . . . ) needed
for a certain computation.
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State Channel JPC Γ Particle

Scalar S 0++
1 a0

Pseudoscalar PS 0−+ γ5 π
Vector V 1 . . . V 4 1−− γ1 . . . γ4 ρ1 . . . ρ4

Axialvector AV 1 . . . AV 4 1++ γ1γ5 . . . γ4γ5 a1 . . . a4

Table 1.1: Quantum numbers for correlation functions in the form eq. (1.41), especially
used for the Wilson fermion action. Abbreviations of the vector channel as V and
the axial-vector as AV imply a summation of V 1 . . . V 4 or AV 1 . . . AV 4.

Phasefactor Γ JPC Particles Channel
ζ non-osc. osc. non-osc. osc. non-osc. osc.

(−)nx+ny+nt γ3γ5 1 0−+ 0++ π2 a0 M1
(−)0 = 1 γ5 γ3 0−+ 0+− π − M2

(−)ny+nt γ1γ3 γ1γ5 1−− 1++ ρ2,T a1,T M3
(−)nx+nt γ2γ3 γ2γ5 1−− 1++ ρ2,T a1,T M4
(−)nx+ny γ4γ3 γ4γ5 1−− 1++ ρ2,L a1,L M5

(−)nx γ1 γ2γ4 1−− 1+− ρ1,T b1,T M6
(−)ny γ2 γ1γ4 1−− 1+− ρ1,T b1,T M7
(−)nt γ4 γ1γ2 1−− 1+− ρ1,L b1,L M8

Table 1.2: Quantum numbers associated with different staggered phase factors, for the
oscillating and non-oscillating parity partner in the meson correlator channel of the
staggered action, for screening correlators evaluated along nz as used to calculate
meson screening masses.

As a last component, the quantum numbers for the meson correlators have to be given.
They correspond to the particle state and set by the matrix Γ in GΓ.
Here the two fermion actions differ. For the Wilson action, this is easy, as Γ only has

to be set to e.g. 1, γ5, γ1, . . . . The corresponding particle states with quantum numbers
and abbreviations used in this work can be found in table 1.1.
For the staggered action, the situation is more involved: The quantum number given

by Γ = 1, γ5, γ1, . . . can be translated to staggered phases ξ(n) ∈ −1, 1, entering into the
correlator summation in place of γ-matrices in eq. (1.42). However, as a consequence of
the rotation to obtain an action that is diagonal in Dirac space, the states mix. Along the
t- or z-axis of the correlator, two particle states are found, where one state enters with
an oscillating phase −1nt (for temporal correlators) or −1nz (for screening correlators),
while the other does not oscillate.
Overall staggered phase factors ζ for the meson correlation function and the resulting

particle states for both the oscillating and the non-oscillating contribution are given in
table 1.2, together with abbreviations used in this work.
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1.6 Spectral functions
The spectral function ρ(ω) describes the spectral composition of a correlation function.
Physical properties such as transport coefficient of the medium and the presence of
bound or unbound states of particles can directly be linked to spectral functions. Also,
correlation functions in real time and in imaginary time can be obtained from ρ(ω).
Thus the spectral function can be seen as the fundamental description of the underlying
system, making it worthwhile to extract it from lattice data.
The vector meson spectral function plays an important role for the determination of

thermal dilepton rates and the associated transport property, i.e. the electrical conduc-
tivity, on the lattice. A portion of this work deals with extending a study of thermal
dilepton rates from lattice QCD. The ansatz used for the spectral function was devel-
oped in the course of the preceding work[7], where it has been motivated and presented
in detail. The ansatz and a summary outlining its motivation can be found in the cor-
responding chapter on dilepton rates. The presentation in [7] also features a thorough
description of spectral functions on the lattice and in QCD in general. Thus, the pre-
sentation is not repeated here, but only the key features and equations linking spectral
functions to the lattice correlation functions are given.
The spectral functions determines the euclidean correlation function by

G(τ) =
∫ ∞

0

dω

2π ρ(ω)K(τ, ω) (1.46)

with an integration kernel
K = cosh(ω (τ − 1/2T ))

sinh(ω/2T ) . (1.47)

In two limits, for large frequencies ω → ∞ and for low or zero temperature, T → 0,
the kernel becomes K lim. = exp[−ωτ ], so

G(τ) =
∫ ∞

0

dω

2π ρ(ω) exp(−ωτ) = F [ρ](τ)) (1.48)

where F denotes a Laplace transformation. Ideally, the inverse transformation F−1

could be carried out, giving direct access to the spectral function as

ρ(ω) = F−1[G](ω). (1.49)

Unfortunately, finding F−1 for a lattice correlation function is an ill-posed problem,
subject to ongoing research[22].
Two ways to circumvent having to invert F are discussed later in this work: Bayesian

approaches try to find a most probable solution, by –roughly speaking– iteratively adapt-
ing a set of spectral function data points until the transformation through eq. (1.46) best
matches a given correlation function. An ansatz-based approach sets a parametrized
fixed functional form for ρ(ω), then a fit through eq. (1.46) to a given correlation func-
tion is used to fix the parameters. A more detailed description of both approaches is
given in the chapter 5, where they are applied to study thermal dilepton rates.
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1.7 Summary
To sum up, the following steps are taken to obtain meson correlation functions from a
quenched lattice QCD calculation:

• Parameters as the desired lattice size Nσ, Nτ , the lattice spacing a, the temper-
ature and the coupling β are fixed. Of course not all parameters can be chosen
independently, so for a systematic study a concept (e.g. the simulation at a fixed
physical volume Nσ ·a and a set of spacings and temperatures ) should be laid out
first. Details on the relation between the coupling that is the input parameter to
the Markov chain process and the physical scale a are found in chapter 3.

• As the first computationally expensive step, gauge configurations to sample the
path integral in eq. (1.7) are generated. In the quenched approximation, these
configurations only depend on the gauge action, so only the weight exp(−SG(U))
is relevant in the Markov chain process. Thus, the configurations can later be used
with any fermion action. Configurations are usually generated once and stored for
later analysis.

• In the next step, the fermion matrix D(n|m) is inverted to D−1(n|0), by solving
a variation of Dψ = χ, where χ is a point source. The structure of the fermion
matrix is defined by the fermion action, see eqs. (1.28) and (1.36) and the coeffi-
cients are given by the gauge fields generated in the previous step. The inversion
step has to be repeated for a number of gauge configuration to sample the path
integral. Krylov subspace solvers are generally used for this step, in this work a
preconditioned conjugate gradient solver is employed.

• By inverting the fermion matrix, the quark propagator is obtained. It is contracted
to meson correlation functions through the summation laid out in eq. (1.42). The
inversion of the fermion matrix and the calculation of meson correlation functions
from quark propagators is usually joined in one step. The computationally expen-
sive part is the matrix inversion, but quark propagators, especially for the Wilson
action, are huge objects to store. It is therefore sensible to calculate all meson
channels of interest directly after the matrix has been inverted and the quark
propagator is still hold in memory, discarding it afterwards.

After these steps, thermal averages of meson correlation functions, often plainly re-
ferred to as correlators, have been obtained. Two different analyses, both based on the
meson correlation functions, have been carried out in this work.
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2 Parallel Lattice Code
Lattice QCD studies heavily rely on numerical calculations and advanced, large-scale
computing. Over the last decades, the numerical algorithms, their implementation in
lattice QCD software packages and the computing hardware to run these calculations
got more complex and more sophisticated. An exhaustive overview over the current
development in this field is far beyond the scope of this work. Thus, the summary given
here focuses on the specific software development linked to this work, hopefully serving
as a high level form of documentation for future users and programmers.
In the course of this work, a collection of lattice QCD software solutions has been

developed. A common framework was designed and its parts were merged to one package,
as of now plainly called the (Bielefeld) Parallel Lattice Code.
An overview of the current state of this software project is given. The focus lies on the

documentation of general design goals and motivations that went into the project. As
the software is currently in constant development by different users and for very different
research goals, any state on the current capabilities can only be a snapshot. Probably –
and hopefully – this portion of the documentation is outdated rather sooner than later.

2.1 Starting point and general decisions
Development started in 2010. At this point, legacy code based on Fortran-70 and MPI
provided implementations of the heatbath algorithm (see section 1.4.1) and different
Krylov solvers (see section 1.5.1) for parallel CPU systems. Development for this software
was started in the mid-90s and constant updates (e.g. the addition of MPI file-IO)
still provide a stable codebase. However, additions to the code became more and more
difficult, and finally a decision was made to rewrite a CPU-centric lattice QCD framework
from scratch.
The following list of goals for and requirements on the development process represent

the current state in 2013. Some of the points were discussed and decided on before
development started. Others were added and modified as the development process made
them necessary or useful.

• Usability: The code base should be small enough, readable and well documented.
New users, often students with varying programming experience, should be able
to read, understand and extent the existing code quickly.

• Abstraction: High level functions do not depend on the implementation details on
lower levels. For example, a routine contracting quark propagators to correlators
should neither depend on the memory layout of the spinors nor on details of the
communication subsystem like the number of cores the program is run on.
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• Testing: Tests on lower levels, like the correctness of single matrix multiplication,
but especially on high levels are implemented. This allows to quickly check for
obvious bugs after modifications and when running in new environments (new
clusters, compilers, etc.)

• Versioning: The code, together with additional components like compile scripts and
test results, is kept in a sourcecode management systems. This vastly simplifies
collaborations and concurrent development.

• Performance: The code should scale reasonable well on CPU-based cluster systems.
While a general software suite cannot reach the speeds of highly optimized QCD
software packages, it should not impose performance penalties that are easy to
avoid.

• Interfaces: It should be easy to interface the code with different storage formats
(e.g. for gauge fields) and to interface with external libraries like QUDA[23] and
USQCD/SciDAC[24].

• Universality: Unnecessary rewrites can be avoided by providing stable interfaces.
For example, Krylov-solvers are to be written in a generic way so they are easy to
adapt to different fermion matrix multiplication routings corresponding to different
actions.

Below, the implementation of these goals is discussed in more detail for a representative
subset of design decisions.

2.2 C++ as programming language and git for versioning
The software framework is written entirely in C++. For parallel runs, a communication
framework (currently MPI) is needed. Otherwise, the code does not rely on external
libraries. C++ was chosen as a programming language for a variety of reasons:

• The language is in wide use for numerical simulations, so it is supported by the
optimized compilers and frameworks available on compute clusters. This excludes
some otherwise promising languages as, for example, D1.

• Scripting languages like Python and Lua and (very) high level languages based on
virtual machines like Java, impose higher performance penalties in the low level
numeric routines. While lattice QCD frameworks in these languages exist2 and
are arguably easy to use, they rely on low level libraries in other languages to
effectively manage the numeric workload.

1 D is a successor to the C programming language. In contrast to C++, it trades some backwards
compatibility for a cleaner redesign. While in active development, it is not nearly as widely used as
C++. Documentation can be found on the official website dlang.org.

2For example, QLua is a framework in the Lua scripting language, providing an interface to SciDacs
base libraries[24].
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2.3 Modular and layered design

• As a massively parallel software system, MPI[25] has to be supported as a common
denominator for interfacing with communication subsystems. With its closeness
to C, C++ makes it easy to interface with MPI routines.

• In contrast to plain C, C++ integrated object-oriented features like classes, tem-
plates and operator overloading. This helps to keep the source code more readable
(a+=b instead of sumSpinor(a,b)) and helps to avoid certain classes of errors, espe-
cially memory leaks and segmentations faults.

It should be noted that current versions of Fortran fulfill all of the above requirements
as well, so the reason to choose C++ over Fortran is not so much a technical than a
practical: Fortran was designed as a domain-specific language for numerical calculations,
where it is still in wide use. C and C++ started out as general purpose languages with
a focus on programming "near" to hardware (operating systems, high performance), and
their concepts and syntax had a large influence on other programming languages. As
a results, students working with software for some month –for example as part of a
masters thesis– are more likely to have prior experience with C++ then with Fortran.
Also, experience with and knowledge in C++ has broader applications outside of the
field of numerics.

Git was chosen as a source control / versioning system for the development. The
distributed layout of Git makes it very suitable for the usual code development style in
an academic environment. It is in use for large projects, most prominently the Linux
kernel, so it is well established. One often quoted drawback is the rather steep learning
curve: Especially when merging two code development branches a somewhat deeper
understanding of the process is often necessary to resolve merging conflicts. When
starting new projects today, Fossil provides an alternative to Git that addresses some
of its usability issues. In fig. 2.1 a snapshot (from the graphical interface gitk) gives an
impression of the quite active development process in 2013.

2.3 Modular and layered design
The Parallel Lattice Code is structured into multiple components, that can roughly
be divided into mayor building blocks providing certain functionalities: Fundamental
data types that are entries of single links and lattice sites, lattice-wide container objects
for these data types, base classes implementing memory layout and an interface to the
communication subsystem, and high level implementation of fermion actions, Krylov
solvers and so forth on top of this base. In the following, a short overview with code
fragments illustrating the use of these components is given.

2.3.1 Fundamental data types on single sites and links

A set of classes provides per-site or per-link objects. For example, PsiEntry is made up
of 4× 3 complex numbers and holds the Wilson spinor at one site. The SU3 class holds
an SU3-Matrix and thus implements a link. All these classes define operators to allow
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Figure 2.1: An illustrative snapshot of the git history (visualized by the gitk software)
in a timeline view, showing the code development in all branches chronologically.
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multiplications, additions and so forth between them. They can also be templated, so
they allow for different floating point precisions. A fragment of code multiplying a spinor
entry p1 with an SU3-Matrix link1, storing the result in p2:
PsiEntry <double > p1 ,p2;
SU3 <double > link1;

p2 = link1 * p1;

While this code fragment compiles, all entries and results would be zero, as p1, p2 and
link1 are initialized to zero by default when created.

2.3.2 Lattice-wide containers

Lattice-wide objects like Spinor and Gaugefield provide containers to the fundamental
data types. They provide a set of functions, some of these depending on their per-site /
per-link base data type:
Each lattice-wide object manages the allocation of its memory when created and free

the memory in its deconstructor. This greatly helps to avoid memory leaks.
The operator overloading of the base datatype is passed through to the lattice-wide

level. Thus, a lattice-wide spinor can be multiplied by a scalar or added to another
spinor without explicitly programming a loop over its elements.
// ’lat ’ is a reference to the index management class Lattice
Spinor <double > sp1(lat), sp2(lat );

// initialize the spinors to 1 on every site
sp. setOnes ();

// multiply ’sp1 ’ by 4.2
sp1 *= 4.2;

// add ’sp2 ’ to ’sp1 ’
sp1 += sp2;

Currently, this concept has certain limits: While c=a; c+=b; is available for lattice-wide
objects, a simple c=a+b; is not. This is due to the operator overloading mechanism in
C++: a+b gets executed first and the result would have to be stored in a temporary,
lattice-wide object before being assigned to c. With spinors easily taking up multiple
gigabytes of memory, this is not practical. A solution to this is possible, but rather
complex to implement3.
Typical contractions like scalar products and norms are implemented, together with

lattice-wide initializations (to zero, unity, random numbers, . . . ). Specific functions, like
unitarization and calculation of plaquettes for the gauge fields, are also available.

3 A way to solve this problem is create a stack of operators that is only executed when the result
is assigned: In this way, a+b does not create a full temporary spinor, but only an object storing
the information that spinors a and b have to be added. When the =-operator is called (or += etc.),
the accumulated operators on the stack are executed for each site of the lattice. This concept is
implemented in QDP++, part of the SciDac suite.
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The containers provide access functions. Their functionality might not be as clear as
for the other, quite self-explaining operators: The pointers and allocated arrays for the
fundamental data types are private to the container class, thus they cannot directly be
accessed from the outside of the class. This greatly helps to avoid segmentation faults
that occur through indexing errors. To access an element stored in the container, access
functions are provided, where get retrieves an element and set sets it.
The position for retrieving and setting elements is not provided as an integer. Instead,

an object called LSite is passed to every function that requires a position on the lattice.
The advantage of this concept is that it decouples the memory layout from computations
of coordinates in the code. The user can use different index schemes (e.g. cartesian
coordinates x, y, z, t, a lexical index, etc.) independent of the underlying memory layout.
For example:
// Retrieve a link in direction mu=1 at position 2,3,4,5
// Retrieve a link in direction mu=0 at lexical index 42
// ’lat ’ is a reference to the index management class Lattice

Gaugefield <double > gauge(lat );
SU3 <double > result ;

LSite pos = lat.site (2 ,3 ,4 ,5);

result = gauge. getLink ( pos , 1 );
result = gauge. getLink ( lat. siteFromLexical ( 42 ) , 0 );

2.3.3 Memory layout management through the lattice class
The handling of memory layout is a basic component in the Parallel Lattice Code. As
memory is accessed in a linear way, a four-dimensional position on the lattice has to be
mapped to a one-dimensional index or offset. The easiest way is to use a lexical index,
where the index i is given by

iLex. = nt ·N3
σ + nz ·N2

σ + ny ·Nσ + nx. (2.1)

with the convention nx, ny, nx ∈ [0, Nσ − 1] and nt ∈ [0, Nτ − 1] as already given in
eq. (1.10). Influenced by the numerical algorithms, especially the Krylov solvers, often
a layout that splits into an even and an odd part is preferred, where

iE/O = (nt ·N3
σ/2 + nz ·N2

σ/2 + ny ·Nσ/2 + nx/2)
+ (x+ y + z + t) mod 2 · (Nτ ·N3

σ/2) (2.2)

Additionally, so-called halos have to be provided when working with parallel code:
Each node holds a part of the global lattice, and since the communication system needs
to transfer larger chunks of data to work efficiently, each node keeps copies of the lattice
borders of its neighbours that are synchronised if needed.
Two obvious solutions to store these copies exist:
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Figure 2.2: Memory mapping of the cartesian indexer. The local lattice (n ∈ [0, N − 1])
and the halos containing next neighbours (n = −1, N) are part of one memory block.

1. The halos can be part of the local lattice, enlarging it in every direction. By
substituting n′x,y,z,t = nx,y,z,t + 1 and N ′σ,τ = Nσ,τ + 2 in eqs. (2.1) and (2.2) a new
memory position is acquired, where e.g. nz = −1 and ny = Nσ can be used to
access lattice points of neighbouring nodes. With the substitutions, the resulting
index i′ will be within 0 and N ′,3σ ·N ′τ . This variant is referred to as the cartesian
index in the code. A diagram how the lattice is mapped to memory can be found
in fig. 2.2. In this index scheme, a loop over the local lattice volume cannot be
performed by a simple incrementing memory offset, since it would also access the
storage positions for the copies of sites on neighbouring nodes. The LSiteIter

objects explained below offer an easy solution, independent of the memory layout.

2. An alternative is to not change the mapping of the local lattice coordinates, but
to store all halos after the local lattice. The local lattice (from 0 to N3

σ · Nτ )
is followed by two 3-dimensional plane ny, nz, nt where nx = −1 and nx = Nσ,
followed by two 3-dimensional planes nx, nz, nt where ny = −1 and ny = Nσ

and so forth. After the 8 3-dimensional planes that make up the surfaces of a
4-dimensional hypercube, 2-dimensional planes with e.g. nx = ny = −1 follow.
Since the local lattice is not interrupted by stored copies of sites on neighbouring
nodes, thus linear in memory, this layout is referred to as the linear index in the
code. The index calculation (nx, ny, nz, nt) → i for sites on neighbouring nodes
becomes involved in this scheme, but a commented implementation exists in the
lattice_linearOffsets.h and a graphical representation can be found in fig. 2.3.

Both the cartesian and the linear indexer have been implemented, where for both either
an even/odd splitted or a lexical layout can be chosen for the local lattice. Other layouts
can easily implemented by providing a function to calculate the index as in eqs. (2.1)
and (2.2). The Lattice-class, also referred to as the indexer, is used as a central interface,
allowing to convert between coordinates nx, ny, nz, nt and a memory offset i.
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Figure 2.3: Memory mapping of the linear indexer. The local lattice (n ∈ [0, N − 1],
denoted Vol4) is mapped to one linear memory block (hence the name). It is followed
by the 8 three-dimensional (Vol3) planes containing the next neighbours. After these,
two-dimensional planes (Vol2) where e.g. nx = −1 and ny = N are stored.

2.3.4 Positions on and iterations over the lattice

Positions returned by the Lattice-class are not mere integer numbers for the offset i, but
objects of type LSite. An LSite-instance can be passed to any function that requires a
lattice position as input, especially the get and set-functions of containers. This abstrac-
tion layer offers two main advantages: It discourages index computations in higher level
code, so they stay centralized in the Lattice class. It also allows to change the storage
format for different implementations and to store additional information.
Currently an LSite objects offers two memory offset: A call to fpos(), denoting a full

lattice, returns an offset that allows to store a layer of sites of neighbouring nodes. A
call to ipos(), denoting the inner lattice, returns an index for objects where only local
sites are needed. The clover term provides a typical example where this method saves
memory, since in a typical Wilson action no neighbouring clover matrices are needed in
the fermion matrix multiplication. The Lattice class provides functions to query how
many sites have to be stored for both fpos and ipos.
The Lattice-class provides two more important interfaces:

• Neighbours to a site are computed by calls to site_up or site_dn with an LSite for
the position and a direction µ = 0, 1, 2, 3. The functions return a new LSite that
obeys boundary conditions. For parallel code, they also check4 if the new position
is still within the limits of the halos.

• Loops over the lattice can be executed by LSiteIter objects, an extension to LSite.
They can run over the whole lattice, only the even or odd numbered sites, or even

4For performance reasons, the index checks performed can and should be turned off in production code.
A central compile switch is provided for this purpose.
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Lattice lat( ... ); // init of the lattice class
Gaugefield <double > gauge(lat ); // init of a gauge field
SU3 <double > tmp;

LSiteIter i; // an iteratable LSite
LSite j; // an LSite storing a position

// An iteration over the whole lattice
for ( i=lat. iterAll (); i.cont () ; i.iter () ) {

// i inherits LSite , so it can be used in any function
// that works with an LSite
tmp = gauge. getLink (i ,3);

}

// An iteration over the even sublattice
for ( i = lat. iterEO (false ); i.cont () ; i.iter () ) {

// get the position of the upper neighbour in dir mu=1
j = lat. site_up (i ,1);
// use that position to retrieve a link
tmp = gauge. getLink (j ,3);

}

Figure 2.4: A code fragment demonstrating the use of lattice iterators and calculation
of neighbouring sites through the Lattice class.

a 3-dimensional subcube with e.g. nt = 4 fixed. These iterators only guarantee
that each site within their scope is set exactly one time, the order is not fixed so
it can be changed for optimization. They are especially important when using the
cartesian indexer, as they allow to run a loop over (parts of) the lattice without
resorting to index calculations through e.g. the siteFromLexical-function in the
Lattice class.

In fig. 2.4 a commented code fragment demonstrating the use of these features is given.

2.3.5 Communication abstraction and parallelism

Lattice QCD calculations often run in a parallel environment. The lattice is distributed
among a set of machines, where each machine or –more precisely– process only holds a
portion of the global lattice, the so-called local lattice. The size of local lattices does
not differ between the processes, but while global lattice are usually cubic5 (N3

σ), the
local lattice do not have to be and often are not. Communication between the nodes is
necessary at the boundaries, where a site n + µ̂ is stored in the memory of a different
process than the site n.
In its current state, the Parallel Lattice Code offers two modes to run: In scalar mode,

it runs as a single process. In parallel mode, it uses a communication subsystem to run
5In its current state, the Parallel Lattice Code generally does not assume a cubic lattice N3

σ . However,
non-cubic lattices have not yet been used or tested.
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in parallel on multiple nodes. A compile switch is used to switch between modes at
compile time.
Scalar mode has two applications: It can be used for development and testing, e.g. on a

laptop or desktop machine, where it does not require the user to install a communication
framework like MPI. It can also be used to interface with GPU-assisted computations,
where only a single controlling CPU process and no dependence on additional external
libraries are desired.
Parallel mode is used to run across multiple instances of the code, usually running on

multiple cores and multiple nodes.
The class CommunicationBase provides a simple interface to send/receive data between

neighbouring nodes and to perform global tasks like sums and averages over values.
It currently interfaces with the Message Passing Interface library to interchange data,
but it could easily be extended to support other communication frameworks. Through
this abstractions, no changes in other parts or higher levels of the code are necessary.
CommunicationBase and Lattice interact closely: In parallel mode, communication buffers
for sites on neighbouring notes are provided by Lattice and filled by functions called
through CommunicationBase. In scalar mode, Lattice satisfied the correct boundary condi-
tions, while most operations in CommunicationBase return instantly.

2.3.6 High level functions

The classes for lattice-wide objects as Spinor and Gaugefield together with the memory
layout management provided by the Lattice class make up the base structures for the
code. Additional elements currently include the CommunicationBase, which is explained in
more detail above, and a set of classes for parameter management.
Parameters as lattice size, node layout and β-value are set in human-readable file

format. The ParameterManagement-class reads this file, checks the values for consistency
and provides an interface to retrieve them. Inheritance of this class is used to provide
parameters only used for specific calculations, e.g. the stopping residual for the conjugate
gradient algorithm. In fig. 2.5 a schematic drawing of the dependency and layout between
the base classes can be found. This scheme is simplified, so it does not directly map to
class names for all parts used in the code.
Two typical lattice QCD tasks have been implemented together with the base archi-

tecture to test the code and provide a foundation to start further development from:
A Wilson/clover fermion matrix inverter using an conjugate gradient inverter and a
heatbath / overrelaxation code to generate quenched gauge configurations.
The schematic diagram of the inverter is given in fig. 2.6. Besides using the base

functions, classes providing the dslash operations, applying the clover matrix and running
the conjugate gradient inverter have been added. Additional, some structure to store
the inverter results and to contract the quark propagators to (meson) correlators was
needed and implemented. Of course inverter, fermion action and correlator computation
are independent and can be swapped out for different implementations.
An overview of the heatbath / overrelaxation code can be found in fig. 2.7. This

code is not as complex as the inverter, as it only needs the gauge field as a lattice-wide
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Program Main Routine
Initializes parameters and classes,

controls programm flow

+InitializeCommunication()
+InitializeParameters()
+InitializeIndexer()
+RunComputation()
+OutputResults()

Parameters
Holds all relevant simulation

parameters. Reads them from config
files, checks them, etc.

-LatticeSize: Dimensions
-betaValue: double

+getLatticeSize(): Dimension
+getBeta(): double
+readFromFile(Filename:string)

Lattice
Implements all coordinates/index
related operations, thus sets the

memory layout

-Parameters: Ref. to Parameters
-CommBase: Ref. to CommunicationBase

+site(LexicalIndex:Integer): LSite
+site(x,y,z,t:Integer): LSite
+siteUp(Pos:LSite,Dir:mu): LSite
+siteDn(Pos:LSite,Dir:mu): LSite

CommunicationBase
Manages parallel communication,

interfaces e.g. to MPI

-Parameter: Ref. to Parameters
-betaValue: double

+updateNeightbours(*data:CommDataType)
+globalSum(<Number>): <Number>
+globalAverage(<Number>): <Number>

Initialization and base system System MPI Library

Figure 2.5: A schematic diagram of the Parallel Lattice Code initialization phase and
main components. The lattice class controls the per-node memory layout, the Com-
munication class abstracts the communication layer and interfaces to MPI. This
scheme is simplified, so not all class and method names map one to one to the actual
implementation.

object. It however motivated the implementation of another important component, a
parallel pseudo random number generator. This generator keeps a separate state for
each lattice site. It can be initialized from one global seed and makes the generation
of random numbers independent of the parallelization: Using the same initial seed or
reading the same initial state from disk, the random numbers retrieved at a specific site
do not depend on the number of nodes or if the code is run in parallel at all. This greatly
simplified searching for errors in code depending on random numbers.

2.4 Automated unit tests

An important part of software development is testing. In a complex project, structured
testing of code components greatly reduces the amount of time needed to locate an error
and to fix it. In its current state, the Parallel Lattice Code offers two sets of tests:
A package of tests checks the memory layout and communication subsystem. It fills a
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Program Main Routine
Initializes parameters and classes,

controls programm flow

+InitializeCommunication()
+InitializeParameters()
+InitializeIndexer()
+RunComputation()
+OutputResults()

Spinor
Lattice-wide (Wilson) Spinor

+*PsiEntry: Storage for Spinor

+get(Pos:LSite): SpinorEntry
+set(Pos:LSite): SpinorEntry
+Operator+(Spinor)
+Norm(): Number

Gaugefield
Lattice-wide Gaugefield

-*SU3: Storage for SU3 field

+get(Pos:LSite,Dir:mu): SU3
+set(Pos:LSite,Dir:mu): SU3
+Unitarize()

SU3
A single SU3 Matrix

+Operator+(): SU3
+Operator*(): SU3

PsiEntry
Per-site Spinor Entry

+Operator+(): PsiEntry
+Operator*(): SU3
+Operator*(): ClMatrix

WilsonCloverAction
Apply Wilson/clover

matrix

+ApplyClover()
+Dslash(): Even->Odd
+ApplyInverseClover()
+Dslash(): Odd->Even

CG-Inverter
Run a plain

ConjugateGradient

Clover
Clover-field impl.

+*CloverMatrix: Storage

+calcFromGaugefield()
+get(Pos:LSite): ClMatrix

CloverMatrix
A single

per-site clover
Matrix

+getMatrix(): ClMatrix
+getInverse(): ClMatrix

CorrelatorComputation
Quark propagator contraction to Meson

correlators

SpinorStorage
Keeps inverted
(half)spinors

Wilson/clover Inverter

Figure 2.6: A schematic diagram of a Wilson/clover fermion matrix inverter implemented
in the Parallel Lattice Code. See fig. 2.5 for the initialization phase.
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Gaugefield
Lattice-wide Gaugefield

-*SU3: Storage for SU3 field

+get(Pos:LSite,Dir:mu): SU3
+set(Pos:LSite,Dir:mu): SU3
+Unitarize()
+CalculatePlaquette(Pos:LSite)

Program Main Routine
Initializes parameters and classes,

controls programm flow

+InitializeCommunication()
+InitializeParameters()
+InitializeIndexer()
+RunComputation()
+OutputResults()

SU3
A single SU3 Matrix

+Operator+(): SU3
+Operator*(): SU3

Gaugefield-FileIO
Implements IO-Formats and

MPI-IO-Support

+readFromDisk(File:name)
+writeToDisk(File:name)

Heatbath
Implements Heatbath and

Overrelaxation

+Heatbath(Plaq:SU3): SU3
+Overrelaxate(): SU3

ParallelPRNG
Implements a lattice-wide, per-site

random number generator

+Initialize(Seed:Number)
+SaveState(File:name)
+LoadState(File:name)
+Rand(Pos:LSite): Number

LSiteIter
Provides an Iteration

routine over the
complete Lattice (or

subsets)

-Position: LSite

+MoveToNext()
+SitesLeft(): Bool
+ReturnPosition(): LSite

Heatbath / Pure gauge code

Figure 2.7: A schematic diagram of a quenched gauge configuration generation program
implemented in the Parallel Lattice Code. See fig. 2.5 for the initialization phase.
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lattice-wide structure with coordinates, repeatedly uses the site_up- and site_dn functions
to retrieve neighbours and checks if these results are correct. It also checks if an update
written on neighbouring notes correctly propagates through the communication system.
On a high level, automated tests of whole computation steps are provided: For ex-

ample, the inverter test reads a small lattice configuration, computes a fixed number of
5 conjugate gradient steps and compares the resulting quark propagator as well as the
meson correlators with files stored on disk. In between, also the clover matrices and the
dslash operation are tested against stored results. Error messages allow to check which
part of the calculation causes errors. The code for quenched gauge field generation tests
its components in a similar manner.
The high level tests also have been automated: A simple set of scripts compiles and

runs the testers with different settings and logs the output. This checks if all algorithm
run correctly in scalar / parallel mode and with different indexers. If new algorithms
are added, it is highly advisable to add corresponding test routines.

2.5 Current state

As of writing this work, the code is in active use and development by different users
and in different projects, so this status summary can only provide a snapshot of the
development state.
Following the initial design phase, the first part that was fully tested and working

was a Wilson/clover fermion matrix inverter using a even/odd preconditioned conjugate
gradient solver. The legacy Fortran code provided the same functionality and was used
for extensive testing, down to per-site comparison of results. Its output has also been
used to provide the known-good results now checked by the automated testing routines.
Complementing the inverter, a heatbath / overrelaxation code was added and tested.

This part motivated the implementation of the parallel pseudo random number genera-
tor. It also completed the code base, as now generation as well as analysis of quenched
gauge configuration is implemented. The implementation is based on a scalar C code
that has been in constant use and thus thoroughly tested.
With this code base in place, different new projects have been realized: The calculating

of Wilson loops and a multi-shift inverter have been implemented. An algorithm to
calculate diffusion coefficients has been ported, where first results have already been
presented[26].
The code has also been extended to allow overlap calculations, where in this process

interface classes to the QUDA software package[23] have been implemented. First result
from these calculations are also available[27].

2.6 Outlook, planned features

The Parallel Lattice Code currently is in active development. A set of extensions and
new features that would benefit projects based on the code have already been considered:
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2.6 Outlook, planned features

The core dslash routines, implementing the fermion action, undergo constant perfor-
mance tuning.
An interface to the QUDA software suite is currently in productive use and might be

extended to allow a more general interface to QUDA. Also, core routines as a Wilson
dslash and linear algebra for spinors exists in NVIDIAs CUDA language, allowing to
use GPU systems without relying on external libraries.
An interface to the SciDAC software suite would open up the possibility to use highly

and machine-specificly optimized codes provided with these packages. The necessary
adjustments would be more extensive than only writing an interface class, as the QDP-
libraries needed for SciDAC do not allow a low-level, per-site access to lattice-wide
objects. Thus, modifying the code to interface with SciDAC is a larger task.
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3 Scale setting

Scale setting and renormalization are important prerequisites in lattice QCD calcula-
tions. In contrast to other fields where complex computer simulations are employed (for
example finite element analyses in engineering), scales in lattice QCD are not merely an
input parameter to the model. They have to be extracted from suitable observables and
often have to be tuned and (re)checked.
When generating quenched gauge configurations, see section 1.4.1, only three param-

eters set the physical1 properties of the ensemble: The spatial (Nσ) and temporal (Nτ )
extent of the lattice and, most importantly, the coupling as β = 6/g2. These parameters
are dimensionless in nature and have to be linked to physical scales of temperature and
lattice spacing.
When calculating the standard point-to-point meson correlators that are the basis for

most analysis performed for this thesis, only one further parameter setting the quark
mass has to be fixed. For standard staggered fermions, a bare quark mass enters into
eq. (1.34) which has to be renormalized and quoted in a certain scheme, e.g. mMS .
For clover-improved Wilson fermions, the quark mass cannot directly be set, but the κ
parameter that enters into the action in eq. (1.28) has to be tuned, usually by measuring
a suitable physical observable that relates to the quark mass. Again this mass has to be
renormalized and converted to a scheme like mMS .
Finally, correlation functions of local currents –like GV (τT )– have to be renormalized

by a matching constant ZV (g2) after determining them on the lattice.

3.1 Determining lattice spacing
The most important step in fixing scales on the lattice is to assess how the scale, repre-
sented by the lattice spacing a, relates to the coupling g.
For this work, the Sommer-scale is employed[28]. The dimensionfull observable r0

relates to the force between static quarks at intermediate distance, the dimensionless
ratio a/r0 can be measured with high precision in pure lattice gauge theory.
The ratio a/r0 can be parameterized for a range of couplings β = 6/g2, and via r0 the

lattice spacing a is fixed for these couplings.
A rational approximation

ln (r0/a) = ln (1/R(β)) 1 + c1/β + c2/β2

1 + c3/β + c4/β2 (3.1)

1Other parameters, namely the number of configurations per ensemble, the number of updates between
configurations and overrelaxation steps per update influence mostly autocorrelation, but not physical
properties.
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is chosen to relate a/r0 to the coupling β. In quenched lattice QCD, r0 = 0.5 fm is
often quoted from the original analysis [28]. This is consistent with r0 = 0.49(2) fm,
which is used in this work and found in [29], where a summery of different currently
available analyses is carried out.
In eq. (3.1), R(β) is the universal two-loop scaling function of SU(3) gauge theory. It

enters to address the running coupling effecting a in a/r0 and is given by

R(β) =
(6b0
β

)− b1
2b20 exp

(
− β

12b0

)
,

b0 ≡ 11
(4π)2 , b1 ≡

102
(4π)4 . (3.2)

In the weak interaction limit β → ∞ of eq. (3.1), the factor entering through the
rational approximation becomes 1, so

ln (r0/a) = ln (1/R(β)) = 4π
33 · β (3.3)

is obtained. Thus, with a · Λ = R(β), it would follow that r0 · Λ = 1. This motivates
to test an over all multiplicative factor to this relation, i.e. r0/a = c0/R(β). The initial
guess of c0 = 1 is not disfavoured by the fit, but the current precision of the data set
does not allow to clearly constrain c0.
Quenched lattice calculations for the results presented in this thesis are carried out at

rather large extents Nσ, Nτ , with small lattice spacings a. The corresponding couplings
employed in this work range from β ≈ 6.3 up to β ≈ 7.8.
Currently, the scale for couplings β > 6.9 is known by extrapolation through eq. (3.1).

A study extending the measurement of r0/a towards higher values of β is in progress
[26], but proves difficult: With smaller lattice spacings, high statistic and maybe more
suitable observables are needed to obtain a clear signal.
As a part of this new analysis, new and precise data-points r0/a were generated for

couplings β < 7, serving as a crosscheck against and extend the results from [30, 31].
These points were used to fit eq. (3.1), fixing c1, . . . , c4 to

c1 = −7.36084, c2 = 10.6168, c3 = −2.64823, c4 = −11.2686 (3.4)

A plot of the resulting function can be found in fig. 3.1, a summary of derived param-
eters for all couplings relevant in this thesis is given in table 3.1. While the new data
points slightly change and improve the fit, the result are over all compatible with [29].

3.2 Critical temperature and temperature scale
The critical temperature Tc is a second important parameter in lattice QCD calculation.
It is not a priori known, but has to be found by analysing a suitable order parameter for
the phase transition. The analysis yields critical couplings βc for values of Nτ as βc(Nτ ).
From these, a dimensionfull value T quenched

c = 1
a(βc)·Nτ can be obtained.
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Figure 3.1: Ratio ln(r0/a) with data points from [30, 31], current results [26] and rational
interpolation as given by eq. (3.1) with values c1, . . . , c4 in eq. (3.4).

It is customary to quote the temperature T of quenched calculations as a ratio T/Tc,
as the critical temperatures differ significantly between quenched and unquenched lattice
QCD. Thus, quoting a temperature ratio is in almost all cases more meaningful than
giving an absolute value T = 1

a·Nτ obtained from the lattice length scale.
The following procedure is carried out to set the temperature scale:

• On a set of lattices with fixed temporal extent Nτ and varying volumes Nσ =
2 . . . 4 ·Nτ the Polyakov loop susceptibility is measured as an order parameter. By
scanning a range of couplings β, the critical coupling βc(Nτ ) is determined.

• With βc(Nτ ) known for a set of Nτ , a fit to obtain a continuum extrapolation
fixing Tc · r0 can performed. Here, a quadratic dependence in the lattice spacing is
assumed due to the O(a2) discretization errors in pure gauge theory. The lattice
spacing for each βc(Nτ ) is obtained by eq. (3.1).
Currently new datasets for Nτ = 8, 12, 14, 16 have been analysed, were Tc · r0 =
0.7497(1) is found as the continuum result of the extrapolation and −0.221(7) is
the slope of the extrapolation [26]. With these results, Tc · r0 can be given as a
function of a/r0, which corresponds to the lattice spacing since r0 is fixed. A plot
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is found in fig. 3.2, the relation is

[T0 · r0] (a/r0) = 0.7497(1)− 0.221(7) · (a/r0)2 (3.5)

Using r0 = 0.49(2) fm, this yields a critical temperature T quenched
c = 301(12) MeV

in the continuum limit (a/r0) = 0. This value of Tc is slightly higher than Tc =
270(3) MeV, which was obtained from the string tension

√
σ = 428 MeV and the

relation Tc/
√
σ = 0.630(5) measured in [32].

• With a
r0

(β) known from eq. (3.1) and [Tcr0] (a/r0) known from the extrapolation
eq. (3.5), the temperature T in relation to Tc of a given lattice ensemble (β,Nτ )
can be determined. In general, (any) two temperatures T and Tc relate

T

Tc
= (r0/a)(β)

(r0/a)(βc)
· Nτ,c

Nτ
. (3.6)

Three slightly different methods to determine T/Tc can be set up. In table 3.1
results of all three are summarized for the lattice parameters (β,Nτ ) relevant in
this work.

– T/Tc can be calculated with the continuum extrapolated value for Tc · r0 as

T

T cont.
c

= (r0/a)(β)
0.7497(1) ·

1
Nτ

. (3.7)

– Alternatively, [Tcr0](a/r0) can be obtained at the same lattice spacing a/r0,
thereby the same couplings β = βc, so effects by the finite lattice spacing
enter into both T and Tc. This yields

T

T lat.
c

= (r0/a)(β)
0.7497(1)− 0.221(7) ([r0/a](βc))−2 ·

1
Nτ

. (3.8)

– Finally, a standard way to determine T/Tc is to find the critical coupling βc
at the given Nτ , so Nτ = Nτ,c, then using the ratios of lattice spacings to
determine the temperature. If for a given Nτ a data point βc(Nτ ) is available,
the temperature is

T

TNτc

= (r0/a)(β)
(r0/a)(βNτc )

. (3.9)

It should be noted that all three methods currently yield compatible results, so
while it is easy to compensate for finite spacing effects, it does not seem necessary.
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β r0
a a[fm] a−1[GeV] Nτ

T
T cont.
c

T
T lat.
c

T

TNτc

6.338 8.99 0.05452 3.61946 8 1.499 1.504 1.511
6.503 11.22 0.04365 4.52025 10 1.497 1.501 -
6.640 13.38 0.03663 5.38738 12 1.487 1.489 1.493
6.768 15.67 0.03126 6.31236 14 1.493 1.495 1.497

6.872 17.77 0.02757 7.15751 8 2.963 2.966 2.987
16 1.482 1.483 1.482

7.192 25.84 0.01896 10.40482

12 2.872 2.873 2.883
24 1.436 1.437 –
28 1.231 1.231 –
32 1.077 1.077 –

7.458 34.92 0.01403 14.06233 16 2.911 2.912 2.913
32 1.456 1.456 –

7.544 38.44 0.01275 15.48087
36 1.424 1.425 –
42 1.221 1.221 –
48 1.068 1.068 –

7.792 50.59 0.00969 20.37309
48 1.406 1.406 –
56 1.205 1.205 –
64 1.054 1.054 –

Table 3.1: Summary of lattice spacings and temperatures calculated for all lattice en-
sembles β,Nτ relevant and used in this work. Lattice spacings a and inverse spacings
a−1 are given by eqs. (3.1) and (3.4) with r0 = 0.49fm (and 1 fm = 1/197.33 MeV),
T

T cont.
c

from eq. (3.7), and T
T lat.
c

from eq. (3.7). T

TNτc
from eq. (3.9) is only calculated

for Nτ = 8, 12, 14, 16 where data points βc(Nτ ) are available.
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Figure 3.2: Plot of Tc · r0 versus a representation of the squared lattice spacing through
(a/r0)2, with data points and the continuum extrapolation fit.

3.3 Setting the quark mass

After the parameters controlling temperature and volume have been fixed when gener-
ating the gauge configurations, the quark mass has to be set when inverting the fermion
matrix.
Quark masses are set or measured in bare lattice units. To compare and connect them

to other QCD calculations, a suitable renormalization scheme has to be employed. It is
customary to quote quark masses in the modified minimal subtraction scheme, denoted
MS, with the reference scale set to µ = 2 GeV. All quark masses used throughout this
work are tuned to be in the light range, aiming at 5 to 20 MeV in MS(µ = 2 GeV).
The procedure to determine the quark mass differs between the Wilson and the stag-

gered action, so two summaries, one for each action, are given below. These are kept
quite brief, because the methods are well established. They have been presented self-
contained and in detail in previous works, matching citations are given.
The main goal here is to update the quark masses for all datasets relevant in this

work, taking into account the new scales set above. All relevant parameters have been
recalculated for all couplings, so minor differences emerge between the values given here
and cited in previous works. Results are given in table 3.2 for the Wilson and in table 3.3
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3.3 Setting the quark mass

β κ κc u0 g2
MS

(µ = 1/a) mAWI mRGI mMS

6.338 0.13572 0.13576 0.625696 2.088210 8.10 14.87 10.63
6.503 0.13550 0.13561 0.638617 1.948050 9.52 17.69 12.64
6.640 0.13536 0.13540 0.648507 1.847770 5.75 10.73 7.67
6.872 0.13495 0.13500 0.663786 1.703310 8.87 16.53 11.82

7.192 0.13440 0.13437 0.682457 1.541790 7.48 13.63 9.74
7.457 0.13390 0.13398 0.696209 1.431960 23.32 40.86 29.21

7.544 0.13382 0.13384 0.700439 1.399580 10.48 18.07 12.91
0.13383 0.700439 1.399580 5.99 10.33 7.38

7.793 0.13340 0.133467 0.711851 1.315240 41.32 66.95 47.85
0.13345 0.711851 1.315240 9.69 15.69 11.21

Table 3.2: Summary of Wilson quark masses determined for all combinations β and κ
relevant to this work. All masses are given in units of MeV, where mAWI is the AWI
mass from eq. (3.11), mRGI the RGI mass through eq. (3.14) and mMS the mass in
the MS-scheme at µ = 2 GeV.

for the staggered action.

3.3.1 Quark masses for clover-improved Wilson fermions

The clover-improvement of Wilson fermions has a profound effect on the quark mass
determinations. In contrast to staggered fermions or Wilson fermions without improve-
ment, the quark mass no longer is a direct input parameter. Instead, the hopping
parameter κ in eq. (1.28) controls the quark mass mass and has to be tuned by extract-
ing the mass through a suitable observable. A detailed presentation of the steps involved
in this determination can be found in [7, 34], which should be used as a starting point
if the process has to be reimplemented.
As a first step, a suitable observable to extract the quark mass is selected. For tem-

peratures above the phase transition, as in this work, chiral symmetry is restored. The
pion mass, a typical observable to tune quark masses, thus cannot be used. Instead, the
axial Ward identity (AWI) [35]

ZA ∂µA
I
µ = 2mq ZPS PS, (3.10)

is employed, which can be rewritten in terms of 2-point functions as

ZA 〈∂µAIµ(τ)PS(0) 〉
ZPS〈PS(τ)PS(0)〉 = 2mAWI. (3.11)

Here A denotes the axial vector current, and PS denotes the pseudo-scalar density.
The direction µ is set to the time-like direction µ = 4 in the analysis, as here the
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axial-vector current has the largest overlap with the pion state.
The index I in AIµ denotes an improved current, that is defined as

AIµ = Aµ + acA∇µPS (3.12)

with the operator ∇µ given as a combination of lattice forward 4f and backward
4b derivatives, ∇ = 1

2(4b +4f ). ZA and ZPS are the renormalization constants of the
corresponding currents, for which the currently known two-loop order results[36] are used
in the analysis. The improvement coefficient cA has been calculated non-perturbatively
and parametrized [15] as

cA = −0.00756 1− 0.748 g2
0

1− 0.977 g2
0
g2

0 for 0 ≤ g0 ≤ 1. (3.13)

Here the index 0 has been added to g2
0 = 6/β, to clearly distinguish g2

0 as the bare
coupling.
In calculations to obtain sets of meson correlation functions, evaluating eq. (3.11)

does not generate any considerable overhead, since almost all computing time is spend
obtaining the quark propagators. However, in most cases a value for κ that corresponds
to the desired quark mass has to be found first. For this tuning, eq. (3.11) is evaluated
on a subset with lower statistics (10 to 20 configurations usually suffice) and, if available,
on a set of lattices with lower Nσ (to reduce computing costs). From these data points, a
matching κ is estimated and is rechecked while the final set of configurations is inverted.
From the AWI mass in eq. (3.11), the quark mass in the MS scheme is computed in

a two-step process: The bare mass is converted to the Renormalization Group Invariant
quark mass mRGI which —as the name suggests— is independent of the renormalization
scheme and scale. The non-perturbatively improved RGI quark mass relates to the AWI
mass mAWI as

mRGI = Zm [1 + (bA − bPS) amq]mAWI (3.14)

with Zm given in [37] as

Zm(g2
0) = 1.752 + 0.321 (6/g2

0 − 6)− 0.220 (6/g2
0 − 6)2 (3.15)

and the bare quark mass a ·mq = 1
2κ −

1
2κc . The improvement coefficients of the axial

current and pseudoscalar density have been non-perturbatively computed in [38, 39] to

(bA − bPS)(g2
0) = −0.00093 g2

0
1 + 23.3060 g2

0 − 27.3712 g4
0

1− 0.9833 g2
0

(3.16)

As a second step, the RGI-mass, now at the scale µ0 = 1/a, is converted to mMS(µ =
2 GeV) by doing a scale evolution through perturbative renormalization group functions,
known with four-loop accuracy and readily implemented in a package (RunDec.m) for
the Mathematica software suite [40].
For this work, the complete analysis process has been automated, so quark masses are

calculated as a by-product of the main analysis with only minor additional effort. In
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3.4 Non-perturbative renormalization for the vector current

table 3.2 a summary of the results for all relevant couplings β and hopping parameters
κ is given.

3.3.2 Quark masses for staggered fermions
The quark mass in the staggered fermion action enters directly into eq. (1.36) as a bare
mass m̂q. Again two steps are performed to arrive at a mass in the MS-scheme:
A matching procedure between the lattice and continuum operators, allowing to con-

vert between the bare mass m̂q and a continuum mass mq(µ = 1/a) is deduced in [41]

mq(µ = 1/a) =
[
1−

g2
MS

(1/a)
(4π)2 · 39.1414

]
· m̂q (3.17)

As for the Wilson quark masses, the running coupling is promoted from µ0 = 1/a
to MS(µ = 2 GeV) via the perturbative renormalization group functions, today known
with four-loop accuracy and implemented in the RunDec.m package[40].
First, necessary values for g2

MS
(1/a) are calculated from the plaquette measurements.

�µν is given in eq. (1.14), allowing to obtain

u0 =
〈

1
Nc

∑
n

ReTr�µν(n)
〉1/4

(3.18)

entering in the calculation of g2
MS

(1/a) given in [42]. Then, gV in the intermediate
V -scheme is obtained by solving

− ln(u4
0) = CF g

2
V (µ∗)

[
1− g2

V (µ∗)
4π

(11Nc

12π ln(6.7117
µ∗

)2
)]

+ O(g6
V (µ∗)) (3.19)

as given in [43], where also the matching scale µ∗ is given as µ∗ = 3.4018/a. CF = 4/3
is the value of the quadratic Casimir operator. Afterwards, g2

V is rescaled to the MS-
scheme gMS . Values for u0 and g2

MS
can be found in table 3.2, g2

MS
(2 GeV) = 2.4288 is

used for the reference scale.
A summary of the staggered quark masses used at different couplings and their values

in MS(µ = 2 GeV) is given in table 3.3. Since the staggered action is only employed for
the calculations of meson screening masses, no mass values for the two high couplings
β = 7.554 and 7.793, that are only relevant for the thermal dilepton rate calculations
have been selected.

3.4 Non-perturbative renormalization for the vector current
Local currents, as in eq. (1.41), have to be renormalized after being obtained from lattice
QCD calculations. For all analyses in this work, the usage of renormalization constants
has been minimized: Meson screening masses are by nature slopes of correlation functions
and therefore the constants cancel.
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3 Scale setting

β m̂q · a m̂q mq eq. (3.17) mMS(µ = 2 GeV)

6.338 3.864 · 103 13.98 6.74 6.67
6.503 2.200 · 103 9.94 5.14 5.20
6.640 1.707 · 103 9.20 4.99 5.15
6.768 2.000 · 103 12.62 7.10 7.53
6.872 1.028 · 103 7.36 4.25 4.52
7.192 4.530 · 104 4.71 2.91 3.18
7.457 2.500 · 104 3.52 2.27 2.53

Table 3.3: Staggered bare quark masses m̂q and their value mMS in the MS-scheme at
µ = 2 GeV, obtained through eq. (3.17) and RunDec[40], given in MeV.

Anticipating the presentation in the corresponding chapter, for the thermal dilepton
rate calculations ratios of vector correlations functions GV (τT )/G00 and Gii(τT )/G00
are selected. Here the same renormalization enters into the numerator and the denom-
inator, so they cancel in the ratio. G00 is constant in Euclidean time and thus can be
obtained with high precision. However, a continuum extrapolated value G00[a→ 0] has
to be found to reverse the ratio in the continuum. Apart from the Wilson quark mass
determination in section 3.3.1, this extrapolation is the sole use for the vector channel
renormalization constant ZV throughout this work.
ZV has been calculated non-perturbatively in [44] for a wide range of β-values and is

parametrised as

ZV (g2
0) = 1− 0.7663 g2

0 + 0.0488 g4
0

1− 0.6369 g2
0

. (3.20)
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4 Meson screening masses

Meson screening masses are common observables for finite temperature QCD calcula-
tions. Along with this study of their thermodynamic and continuum limit in quenched
lattice QCD, a range of work is available: Hard thermal loop calculations [45], approaches
by dimensional reduction [46] and studies with dynamical (staggered) lattice simulations
[47, 48].
The Wilson fermion action with non-perturbative clover improvement as well as the

staggered action show discretization effects of the same order O(a2). These cause a
deviation of observables (like meson masses) from their continuum limit a → 0, which
are introduced by the finite lattice spacing a. The actions only have in common that
the dependence is over all quadratic, thus there is no reason for the discretization errors
to share the same prefactors. Also, the effects of the finite lattice volume may differ
between Wilson and staggered fermions, so the thermodynamic limit V →∞ has to be
taken. In fact, it is found that results on finite lattices differ between both actions when
calculations are carried out at finite temperature. This motivated a systematic study
of quenched meson screening masses in the thermodynamic and the continuum limit for
both actions in the deconfined phase.

4.1 Extracting meson masses on finite size lattices

The meson correlator projected to zero momentum eq. (1.42) includes all energy eigen-
states as

G(nt) =
∑
k

〈0|Ô|k〉〈k|Ô†|0〉e−ntmk = A0e
−ntm0 +A1e

−ntm1 + . . . (4.1)

The steepness of the exponential fall-off is given by the masses mn of the different
states. The ground state mass m0 dominates the correlator for large separations nt,
while higher mass states mix into the correlator for shorter separations nt.
The masses given by the form G(nt) =

∑
k Ake

−ntmk are the so-called pole masses,
where the euclidean correlator is evaluated along the time axis. However, the same
expression can be evaluated along one of the spatial axes (axis z by convention), with

G(nz) =
∑
k

A
(z)
k e−nzm

(z)
k . (4.2)

The resulting masses m(z)
k are called screening masses, as they are a measure of the

inverse of the screening length in the surrounding medium.
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4 Meson screening masses

The meson screening masses are particularly suitable observables for this study: They
are easy to obtain from the correlator with high precision, especially with current com-
puting power, where the relevant spatial extent of quenched lattice calculations in the
deconfined phase can easily be varied up to Nσ > 100. Since on a finite lattice with
periodic boundary conditions the meson propagation is symmetric in nz and Nσ − nz,
the correlator shows a cosh-form along nz (the index z in m(z) is from now on dropped
and all following masses are understood to be screening masses):

G(nz) = 2A0e
−Nσm0/2 cosh((Nσ/2− nz) ·m0) + . . . (4.3)

From this form as a general starting point, different methods can be chosen to extract
the meson mass from a correlator that has been calculated on the lattice.

4.1.1 Effective meson masses

The effective mass is given by directly calculating the steepness of the correlator as a
numerical derivative, so it is defined at each distance nt,z in its most basic form as

meff.(nt,z) = log

 G(nt,z)
G(nt,z + 1)︸ ︷︷ ︸

numerical derivative

 (4.4)

For separations that are large enough to be dominated by the ground state E0, a plot
of the effective mass, see fig. 4.1. shows a plateau. For smaller separation higher states
enter into the correlator and the effective mass rises. For large separations, the cosh-form
of the correlator on the lattice causes the mass to fall off1.
Unfortunately, on smaller lattices both regions tend to overlap, so finding a stable

plateau might not be possible. A solution often implemented is to evaluate the mass at
a fixed point, set as a certain ratio of the lattice extent Nσ, for example at 1

4Nσ as used
in this study: On larger aspect ratios, masses evaluated at 1

4Nσ will be on the onset of
the plateau. On smaller aspect ratios, 1

4Nσ is closer to the source and more of the higher
contributions m1,m2, . . . in the correlator are picked up into the effective mass.
These contributions are a form of finite volume effects, though a distinction should

be kept in mind: The effect is generated by deliberately picking up relatively more
contribution m1,m2, . . . on small lattices than on bigger ones, so they can be removed
by extrapolation in the next analysis step. The ground state m0 itself could additionally
be influenced by the finiteness of the lattice, but such an effect could not be found by
this analysis.
The effective mass is a handy quantity for Wilson fermions, since it can be directly read

off from the correlator. It can also be calculated for staggered fermions, though it has
1 This effect could in principle be compensated by a form of eq. (4.4) including the cosh-term, removing
the fall-off but replacing it with large errors at these distances. This would be equivalent to fitting
eq. (4.5) to a dataset of two points nz, nz + 1. Moving nz towards Nσ/2, the masses would no longer
fall off, but the fits would become unstable due to the rising errors.
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4.1 Extracting meson masses on finite size lattices
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Figure 4.1: Effective pseudoscalar meson screening mass for Wilson (left) and staggered
(right) fermions at 1.5 Tc with Nτ = 16 and different Nσ. The arrows mark Nσ/4 for
the corresponding lattices, the dotted line marks the free theory mass 2πT . On the
larger lattices Nσ ≥ 64, a clear plateau of the ground state mass is found as soon as
nz > Nσ/4. On the smaller lattice, no such clear plateau can be seen and the choice
to evaluate the effective mass at Nσ/4 is by convention.

a drawback for that action: Since an oscillating and a non-oscillating contribution enter
into (all but one) staggered correlator channels, the effective mass picks up contributions
from both particle states (see fig. 4.2). If the energies of both contribution differ enough
between the oscillating and non-oscillating channel, they cause one contribution to fall
off much steeper with nt,z than the other. In this case, the effective mass can still be read
off precisely enough. However, for channels in which the energies for the oscillating and
non-oscillating contribution are similar, the fluctuations of the effective mass between
even and odd points are too high. Here a more complex ansatz than eq. (4.4) is needed.

4.1.2 Masses extracted through a fit
A more convenient method to extract meson masses, especially from staggered corre-
lators, is to fit eq. (4.3) to a correlator measured on the lattice. As mentioned, for
large enough distances nz the ground state dominates the correlator, so the first term in
eq. (4.3)

G(nz) = 2A0e
−Nσm0/2︸ ︷︷ ︸

Amplitude

cosh((Nσ/2− nz) ·m0) = A′0 cosh((Nσ/2− nz) ·m0) (4.5)

with the two free parameters A′0 and E0 can be used in the fit.
Care has to be taken in selecting an appropriate fit window n′z . . . Nσ−n′z. A window

that is too small will result in a bad signal, especially on lattices with small aspect ratios.
A window that is too large will pick up much more than the ground state and result in
masses that are too high.
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4 Meson screening masses
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Figure 4.2: Effective screening mass on a 643×16 lattice at 1.5 Tc. The arrow marks the
position Nσ/4 as the onset of the ground state mass plateau. The Wilson scalar and
vector channel are shown on the left. The staggered channel M1 (shown on the right)
is clearly dominated by the scalar contribution, while an additional pseudoscalar
contribution could enter as a parity partner. The staggered channel MV is dominated
by the vector contribution but clearly picking up contributions from the axial-vector
parity partner. The abbreviations refer to the staggered channels as given in table 1.2,
MV denotes a summation of the channels MV = M6 +M7 that are dominated by
the vector contribution.
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4.1 Extracting meson masses on finite size lattices

Varying the fit window can be used to find a plateau for screening masses on lattices
with a large extent, e.g. Nσ = 64, 96, . . . , in the same way as for effective masses. The
mass will level off and indicate that the fit has stabilized at one state as soon as a certain
separation n′z,min from the source is reached.
In principle, this minimal separation necessary to sufficiently exclude higher contribu-

tions should hold on all lattices with the same spacing and temperature. However, an
appropriate n′z,min. fixed by this procedure on a large lattice will often be unusable on
a smaller lattice, because it is too close to or even exceeds 1

2Nσ on a small lattice. On
these small aspect ratio lattices, it is therefore inevitable to pick up contributions from
exited states in the fit.
In this sense the one-state fits mimic the behavior of the effective masses and the

same solution can be applied: The contributions from higher states are removed in the
next step of the analysis by extrapolating towards the thermodynamic limit. Now the
requirement for nz is to be chosen in a consistent way while ideally still reaching the
ground state plateau for large Nσ. A common choice also employed in this analysis is
to set nz = Nσ/4, motivated by ground state plateau onset on larger lattices.
The fit-approach has a big advantage when analyzing staggered correlators that in-

clude oscillating and non-oscillating components: By including both ground states into
eq. (4.3), two particles can be fitted simultaneously.

Gstagg.(nz) = 2Ano
0 e
−NσEno

0 /2 cosh((Nσ/2− nz) ·mno
0 )︸ ︷︷ ︸

non-oscillating

+ (−1)nz · 2Aos
0 e
−Nσmos

0 /2 cosh((Nσ/2− nz) ·mos
0 )︸ ︷︷ ︸

oscillating

+ . . .

=A′,no0 cosh((Nσ/2− nz) ·mno
0 ) + (−1)nzA′,os0 cosh((Nσ/2− nz) ·mos

0 ) (4.6)

As for the Wilson case, care has to be taken in choosing the fit window, but the
situation is now more complicated: On the one hand, small lattice extents Nσ still cause
problems, even more so since the fit now has four free parameters, A′,no0 , Eno

0 , A′,os0 , Eos
0 .

Additionally, since the mno
0 and mos

0 may differ, one state falls off steeper with nz than
the other. If the fit window is too small, one state is no longer picked up by the fit
because its contribution is lost in the (statistical) noise of the state with the lower m0.
Both effects forbid using too narrow fit windows, so contributions from higher exited
states again have to be removed in the infinite volume extrapolation. Fortunately, the
generic choice of Nσ/4 still works and thereby holds for these more involved staggered
fits. In figure fig. 4.3 an example of a correlator fit is shown for the vector channel of
both actions on a small lattice, where the oscillation can be observed very clearly.

4.1.3 Extracting the ground state mass by fitting multiple states
While it is possible to take the thermodynamic limit in order to extract the ground
state, a second approach is to directly separate ground and exited states when fitting
the correlator on the finite size lattices. On the one hand, this offers a cross-check: After
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4 Meson screening masses
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Figure 4.3: A fit to the vector correlation function measured on a 323 × 16 lattice at
1.5 Tc. Wilson correlator (left) fitted with eq. (4.5), and staggered correlator (right)
with an additional oscillating ground state contribution through eq. (4.6). The arrows
mark the fit window 1

4Nσ . . .
3
4Nσ.

reaching a certain physical volume that allows to extract the ground state, the result
should no longer vary with raising lattice volume. On the other hand, a thermodynamic
limit is often an expensive calculation in terms of computing costs, since large aspect
ratios are needed to take the limit. Being able to extract correct ground state results on
moderate aspect ratios will thus reduce computing times.
To perform the two-state fit, an additional term for an exited state is introduced to

the ansatz as

G(nz) = A′0 cosh((Nσ/2− nz) ·m0)︸ ︷︷ ︸
Ground state

+A′1 cosh((Nσ/2− nz) ·m1)︸ ︷︷ ︸
First exited state

(4.7)

Now the fit window can be set to include much more data points of the correlator,
e.g. [Nτ/2, Nσ − Nτ/2]: Varying the window still shows that with lower distances nz
contributions from higher exited states m2,m3, . . . enter into the correlator. However
(see fig. 4.4), these contributions do not change the ground state mass, but are picked
up as a contribution to m1. This fit method is convenient especially for medium sized
lattice extents Nσ/Nτ ∼ 4, where now a clear enough plateau for a ground state m0 can
be found.
As a more technical side note, checks for correct convergence should be done when

performing these fits. To automate the process, it is useful to start from a large enough
fit window to extract sensible starting parameters, afterwards reducing the window step
by step to its final size. Datasets like those shown in fig. 4.4 can then be extracted as a
by-product of this algorithm.
For staggered fermions, an ansatz allowing an exited state for both the oscillating

and the non-oscillating contribution would give eight free parameters and would need a

64
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Figure 4.4: A two-state fit to the vector correlation function measured on a 643 × 16
lattice at 1.5 Tc. Wilson correlator (left) fitted with eq. (4.7), and staggered correlator
(right) with an additional oscillating ground state contribution through eq. (4.9). The
arrows mark the fit range Nτ/2 to Nσ −Nτ/2.

very clean, noise-free dataset to be successfully fitted. Instead, it is useful to only allow
an excited state for the dominating contribution in a correlator channel, reducing the
number of parameters to six. For example, if the oscillating contribution dominates for
larger distances nz, the ansatz would be

G(nz) = (−1)nz
(
A′,os0 cosh((Nσ/2− nz) ·mos

0 )︸ ︷︷ ︸
Oscil. ground state

+A′,os1 cosh((Nσ/2− nz) ·mos
1 )︸ ︷︷ ︸

Oscil. first exited state

)
(4.8)

+A′,no1 cosh((Nσ/2− nz) ·mno
0 )︸ ︷︷ ︸

any non-oscillating state

(4.9)

In the following, fits only taking into account one ground state, given by eqs. (4.5)
and (4.6) are referred to as one-state fits. Fits allowing for an additional exited state,
given by eqs. (4.7) and (4.9) are referred to as two-state fits. This definition is impor-
tant for the staggered action, as here one and two denote the number of states in the
dominating channel, and an additional second or third state can enter for the parity
partner.

4.2 A study at 1.5 Tc and 3.0 Tc

Two temperatures in the deconfined phase 1.5 Tc and 3.0 Tc were chosen for this study.
For the low temperature, a set of five aspect ratios Nσ/Nτ = 2, 3, 4, 6, 8 allows to take
the thermodynamic limit, while four lattice extents Nτ = 8, 10, 12, 16 were picked for
the continuum extrapolation. This yields 20 combinations Nσ × Nτ . For the high
temperature, a reduced set of four aspect ratios Nσ/Nτ = 2, 3, 4, 8 and three extents
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Figure 4.5: Staggered pseudoscalar screening masses for different quark masses
mq,MS(µ = 2 GeV) (see eq. (3.17)), at both 1.5Tc (left) and 3.0Tc (right) and for
different lattice sizes. The masses are obtained by fits of eq. (4.6) with a fit range
of 1

4Nσ . . .
3
4Nσ. Within errors, no dependence of the meson screening mass on the

quark masses is found for mq,MS(µ = 2 GeV) < 25 MeV.

Nτ Nσ β κWilson CSW mstagg
q

8 16, 24, 32, 48, 64 6.338 0.13572 1.548725 0.003864
10 20, 30, 40, 60, 80 6.503 0.13554 1.493023 0.002190
12 24, 36, 48, 72, 96 6.640 0.13536 1.457898 0.001707
16 32, 48, 64, 96, 128 6.872 0.13495 1.412488 0.001028

Table 4.1: Simulation parameters for meson screening masses at 1.5 Tc.

Nτ = 8, 12, 16, with a total of 12 lattice sizes Nσ × Nτ , proved to be sufficient for the
analysis.
For each Nτ , the β-value was tuned to match a lattice spacing corresponding to the

temperature (see section 3.1). As a further parameter, the influence of the quark mass
on the meson screening masses was checked. Light quark masses were used for both
actions. The procedure of obtaining these masses, especially for the Wilson action, is
laid out in section 3.3. For quark masses mq,MS(µ = 2 GeV) < 25 MeV no noticeable
effect on the meson screening masses could be found, see fig. 4.5. A summary of all
simulation parameters can be found in tables 4.1 and 4.2.
The full analysis was carried out at a temperature of 1.5 Tc, with one- and two-state

fits performed for each lattice size. On the smaller dataset at 3.0 Tc, only one-state fits
were performed. For the staggered scalar and pseudoscalar channels, it is found that the
contribution of the parity partner was suppressed enough so that it did not affect the
fit. For the vector and axial-vector however, both the one- and the two-state fits had
to allow for an additional contribution from an oscillating or non-oscillating state in the
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4.2 A study at 1.5 Tc and 3.0 Tc

Nτ Nσ β κWilson CSW mstagg
q

8 16, 24, 32, 64 6.872 0.13495 1.412488 0.001028
12 24, 36, 48, 96 7.192 0.13440 1.367261 0.000453
16 32, 48, 64, 128 7.457 0.13390 1.338927 0.000250

Table 4.2: Simulation parameters for meson screening masses at 3.0 Tc.

correlator.

4.2.1 The thermodynamic limit

Obtaining the screening masses from the one-state fits eqs. (4.5) and (4.6), with a fit
window fixed to a certain ratio of the spatial lattice extent, for example 1

4Nσ . . . 3
4Nσ,

the fit will not pick up a pure ground state. Instead contributions from higher states
will enter into the fit, especially on lattices with smaller aspect ratios where 1

4Nσ is in
closer proximity to the source.
To compensate for this effect, the thermodynamic limit Nσ → ∞ has to be taken to

arrive at the infinite volume ground state mass. The volume dependence is linear in the
inverse aspect ratio Nτ/Nσ for the free theory, while zero temperature simulations show
the mass at finite volume to scale with the third power of the spatial lattice extend [49].
For finite temperature, it is therefore sensible to choose

mNσ/Nτ = mNσ→∞/Nτ (1 + bNτ · (Nτ/Nσ)c) (4.10)

as an ansatz for the fit, with three free parameters mNσ→∞/Nτ , bNτ and c. With a
linear relation to the lattice volume for the free theory and a cubic dependence at zero
temperature, the exponent c is to be expected to fall within 1 and 3 at finite temperature.

Nτ Wilson stagg.

12 2.47(50) 2.08(25)
16 2.31(36) 3.46(35)
all 2.06(23) 2.36(35)

Table 4.3: c for the pseudo-
scalar at 1.5 Tc, see
eq. (4.10).

Since a continuum extrapolation a → 0 will also be
carried out, the thermodynamic limit is taken separately
for different lattice spacings a. At a fixed finite temper-
ature these map to a set of temporal lattice extends,
e.g. Nτ = 8, 12, . . . . As indicated by the index, bNτ is
allowed to vary for different Nτ , while the exponent c
should only depend on the temperature and the fermion
action. Performing the fit for the thermodynamic limit
for all Nτ in a combined fit, with one shared free param-
eter c, reduces the total number of free parameters and
stabilizes the fit. A crosscheck of this assumption can
be performed if enough points for a stable fit are available on single lattice spacings.
This technique is applied to the 1.5 Tc dataset: All 20 data points from 5 aspect ratios

at 4 different lattice spacings enter into a fit of the ansatz eq. (4.10), with a common
exponent c for all lattice spacing. In fig. 4.7 the result of these fits for both actions are
shown. It also holds (as thin lines) two fits in which the exponent c was determined with
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4 Meson screening masses

the 5 data points from Nτ = 12 and Nτ = 16 lattices only, to crosscheck if the procedure
to fix the exponent as independent of the lattice spacing is correct.
Exemplary result for c obtained for the pseudo-scalar channel at 1.5 Tc are provided

in table 4.3. The staggered result limited to the Nτ = 16 dataset is an outlier. It is
likely caused by a quite low mass on the 64 × 16 lattice, with an underestimated error
entering into the weighted fit. Otherwise all exponents all well compatible to the average
c = 2.21(41), which also lies in the expected region of c = 1 . . . 3.

4.2.2 Ground state extracted from multiple state fits on finite lattices

The finite volume effects removed by taking this thermodynamic limit are (as laid out for
the effective masses) in a sense artificially introduced: Most of the contribution enters
due to the fact that the fit window is set to a fixed portion of the lattice, 1

4Nσ . . . 3
4Nσ.

The fit will pick up more contributions from higher states E1, E2, . . . with decreasing
aspect ratio, because Nσ/4 moves closer to the source with decreasing Nσ.
This allows for an alternative: A ground state mass can be found by performing the

two-state fits eqs. (4.7) and (4.9). The fit window of 1
2Nτ . . . Nσ − 1

2Nτ ensures that a
constant distance to the source is maintained for all aspect ratios and lattice spacings,
since for a constant temperature 1

2Nτ translates to a constant distance in physical units.
To test the procedure, the fit window is varied around 1

2Nτ . In fig. 4.6, masses for
different fit window sizes for both the one-state and the two-state fits are shown. The
mass found by one-state fits is clearly influence by the fit window size, where the mass
raises towards the source. This is excepted, as it is in agreement with the behaviour
for effective masses. For the two-state fits, the second state seems to absorb the higher
contributions, while the ground state is mostly uneffected and stable over a wider region
of fit window sizes. Thus, the two-state fit procedure seems to be capable of extracting
stable ground state masses.
This procedure fails for very small aspect ratios (Nσ/Nτ = 2, 3), where the system is

too small to show a clear ground state. A minimal aspect ratio of Nσ/Nτ = 4 seems to
suffice for larger Nτ = 12, 16, while Nσ/Nτ = 6, 8 give more precise results, especially
on coarse lattices Nτ = 8, 10.
Fit results from the two-state fits show no clear dependence on the aspect ratio for

Nσ/Nτ ≥ 4. Thus they are averaged, with results given in fig. 4.8. For the pseudo-scalar
and scalar channels as well as all staggered channels, results from the two-state fits are
compatible with the thermodynamic limit of one-state fits shown in fig. 4.7.
For the Wilson vector and axial-vector channel, results from the one-state fits are

somewhat lower then from the two-state fits. Looking ahead on the final comparison of
both actions, the Wilson two-state fits are compatible with the staggered results for the
vector and axial-vector channel, while the one-state fits are too low. It can be assumed
that the thermodynamic limit overestimated the finite volume contributions, thus the
extrapolation reaches an infinite volume mass that is too low.
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Figure 4.6: Wilson (left) and staggered (right) pseudo-scalar screening masses, obtained
at 1.5 Tc on 643 × 16 lattices, for different sizes nz . . . Nσ − nz of the fit window. In
the upper row, the ground state results of the one- and two-state fits are compared,
where the one-state fits show a much higher dependence on the fit window size. In the
lower row, the ground state and the exited state of the two-state fits are compared,
showing that when increasing the fit window size, higher contributions mainly enter
into the existed state, while the ground state is mostly uneffected. The arrows mark
the fit window position nz chosen for the analysis.
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Figure 4.7: Thermodynamic limit obtained by fitting eq. (4.10) to Wilson (left) and
staggered (right) pseudoscalar meson screening masses at 1.5 Tc. The thick lines
are obtained from a full fit with one shared exponent c for all lattice spacings. The
thin lines are obtained by fits with a dataset limited to Nτ = 12 and Nτ = 16 to
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Figure 4.8: Results of the ground state pseudoscalar screening mass obtained from two-
state fits (eq. (4.7), eq. (4.9)) for the Wilson (left) and staggered (right) action at
1.5 Tc. The lines mark the masses obtained from weighted averages for Nσ/Nτ > 4
on each lattice spacing. The dotted line at 2π marks the free theory limit.
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4.2 A study at 1.5 Tc and 3.0 Tc

4.2.3 The continuum limit

Both the clover-improved Wilson action as well as the standard staggered fermion action
show O(a2) discretization errors. At a fixed temperature, since T = 1/(a · Nτ ), the
continuum is reached by extrapolating in 1/N2

τ , so

mNτ = mcont. ·
(
1 + d · 1

N2
τ

)
(4.11)

Higher orders as O(a4) or O(a2 ln(a)) could enter into eq. (4.11), but these contribu-
tions seem to be small enough to not influence the results.
As input for mNτ , the y-axis intercepts in fig. 4.7 and fig. 4.8 give the thermodynamic

limit of the meson masses for different temporal lattice extents Nτ = 8, 10, 12, 16, cor-
responding to four different lattice spacings a. The extrapolation results are shown in
fig. 4.9.
Comparing Wilson and staggered fermions in these plots, it becomes very apparent

that the staggered action yields a much higher dependence on lattice spacing effects,
while Wilson fermions seem much less affected. For the Wilson action, the slope d in
ansatz eq. (4.11) is compatible with zero (dWilson

S = 1.5(6.0)) for the (pseudo)scalar
and quite low (dWilson

AV = −4.9(1.6)) for the (axial)vector channel. For the staggered
action, both slopes are much higher than for the Wilson action. Here, the (pseudo)scalar
shows a higher lattice spacing dependence (dstagg.S = −29(1)) than the (axial)vector
(dstagg.AV = −16(4)) channel.

4.2.4 Interchanging thermodynamic and continuum limit

The continuum limit can be taken either after performing the thermodynamic limit,
reaching the full continuum, or at a fixed aspect ratio, e.g. Nσ/Nτ = 3, 4, . . . . The
thermodynamic limit Nσ → ∞ for a set of different temporal extents Nτ is generally
performed first, the continuum limit on the results of thermodynamic extrapolation is
taken afterwards.
However, the result can be independent of the order in which the extrapolations are

carried out: Varying Nτ , Nσ at a fixed aspect ratio and a fixed temperature keeps the
lattices at a fixed physical size, thus in principle introducing the same finite volume
effects while varying the discretization errors due to the change in lattice spacing a.
The continuum extrapolation can then be performed on a series of fixed (physical) size
lattices and afterwards be extrapolated to the thermodynamic limit.
This interchange of limits was tested on the 1.5 Tc dataset: The continuum extrapola-

tion eq. (4.11) was performed on sets of lattices with the same aspect ratios but varying
lattice spacing, e.g. on a series Nσ/Nτ = 4 with 323× 8, 403× 10, 484× 12 and 643× 16.
Due to the fixed temperature, these lattices have the required constant physical extent.
The results of these extrapolations should therefore be free of finite spacing effects, but
still carry the finite volume effects introduced by their limited physical size.
In the next step, the volume dependence is removed by the same ansatz eq. (4.10) as

above. For the one-state fits, this procedure interchanges both extrapolations. For the
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Figure 4.9: Continuum extrapolation using eq. (4.11) of the scalar and axial-vector chan-
nels (upper row) and the pseudoscalar and vector channels (lower row), for both Wil-
son (left) and staggered (right) fermions, at 1.5 Tc. The data points are the result
of the thermodynamic limit (infinite volume extrapolation of the one-state fits) and
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Figure 4.10: Continuum and thermodynamic limit interchanged for Wilson (left) and
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through eq. (4.11) in this figure (lower x-axis). Data points marked "Cont, then Vol"
are the results of continuum extrapolations on fixed aspect ratios and extrapolated
to infinite volume through eq. (4.10) (upper x-axis).

two-state fits, no finite volume effects are expected as long as a minimal aspect ratio
is maintained. Here the procedure interchanges averaging over the results on different
aspect ratios and taking the continuum limit. A set of all extrapolations is summarized
in fig. 4.10 for the pseudoscalar screening mass. It is found that, within errors, the
interchanged limit yields compatible results.

4.2.5 Results at 3.0 Tc

A subset of the analysis presented so far was performed on the smaller dataset for a
temperature of 3.0 Tc. The masses were extracted by one-state fits, extrapolated to
the thermodynamic limit through eq. (4.10) and the results were extrapolated to the
continuum through eq. (4.11) afterwards. A summary of the results for the pseudoscalar
channel. can be found in fig. 4.11 and table 4.5.
The shortened analysis of the 3.0 Tc dataset was motivated by the fact that the 3.0 Tc

dataset proved much easier to analyse than the 1.5 Tc dataset: The 3 lattice spacings
with 4 aspect ratios each, resulting in 12 data points for the combined fit of eq. (4.10),
are enough to provide a stable fit with conclusive result for every particle channel in
both actions.

4.3 Final results and conclusion
The final results of this study are meson screening masses extrapolated to the ther-
modynamic and continuum limit, for the pseudo-scalar, scalar, vector and axial-vector
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Figure 4.11: 3.0 Tc results for the Wilson (left) and staggered (right) pseudoscalar screen-
ing mass. Colored (red, green, blue) lines denote the volume extrapolation eq. (4.10)
for Nτ = 8, 12, 16, with Nτ/Nσ set on the lower x-axis. The y-axis intercepts cor-
respond to the extrapolation results, and the black line represents their continuum
extrapolation eq. (4.11) with 1/N2
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channel, for both the Wilson and the staggered action, and at both 1.5 Tc and 3.0 Tc. In
fig. 4.12 and tables 4.4 and 4.5 all final data points are summarized, where they allow
for a set of observations, concerning on one hand the method and technical details, and
on the other hand conclusions about the physical interpretation.
A summary of findings concerning the methodology and the technical details involved

can now be given:

• As the staggered action shows much more pronounced lattice spacing effects, the
continuum limit is the crucial step in this process. The finite lattice volume has a
similar effect in both actions, indicated by their similar exponents c in the fit of
eq. (4.10).

• The thermodynamic limit is reached by extrapolation through ansatz eq. (4.10)
or by fitting multiple states to a correlator on a reasonably sized lattice. For the
vector and axial-vector in the Wilson action, the former method yields results that
are somewhat too low, which indicates that the fit overestimates volume effects.
For the staggered action and both actions in the pseudoscalar and scalar channel
all results are consistent.

• The multiple state fits at larger Nτ = 12, 16 reach results compatible to the full
thermodynamic limit already at aspect ratios of Nσ/Nτ = 4. If this holds for other
temperatures and actions, it might help to reduce the lattice sizes and thereby
computing cost needed in screening masses studies. With the continuous increase
in computing power, today dynamical calculations are becoming feasible on 483×12
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Channel Nτ Wilson staggered
1 state 2 states 1 state 2 states

PS

8 5.574(27) 5.670(23) 5.250(13) 5.288(13)
10 5.579(29) 5.707(21) 5.394(22) 5.460(16)
12 5.629(20) 5.665(10) 5.488(42) 5.541(25)
16 5.652(14) 5.708(10) 5.605(15) 5.638(7)

∞ 5.678(13) 5.706(30) 5.717(16) 5.755(4)

S

8 5.663(18) 5.706(10) 5.263(9) 5.294(9)
10 5.742(11) 5.758(1) 5.419(16) 5.472(10)
12 5.660(20) 5.701(16) 5.504(30) 5.543(22)
16 5.666(11) 5.710(11) 5.612(12) 5.641(8)

∞ 5.668(57) 5.751(64) 5.723(8) 5.758(8)

V

8 5.883(39) 6.010(7) 5.877(42) 5.899(22)
10 5.942(30) 6.060(19) 5.880(29) 5.937(24)
12 5.942(35) 6.043(12) 5.995(29) 6.025(13)
16 5.964(24) 6.083(26) 6.029(15) 6.067(8)

∞ 5.991(13) 6.088(20) 6.090(33) 6.126(15)

AV

8 5.890(44) 6.003(3) 5.885(39) 5.904(22)
10 5.943(33) 6.054(16) 5.887(28) 5.951(27)
12 5.936(40) 6.037(11) 5.989(32) 6.032(17)
16 5.961(27) 6.083(27) 6.027(15) 6.066(7)

∞ 5.983(14) 6.085(21) 6.082(32) 6.122(10)

Table 4.4: Summary of the final extrapolation results at 1.5 Tc.
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Channel Nτ Wilson staggered

PS

8 5.889(13) 5.754(46)
12 6.010(9) 5.931(27)
16 6.036(8) 6.005(35)

∞ 6.089(11) 6.083(9)

S

8 5.877(13) 5.756(32)
12 6.006(9) 5.931(23)
16 6.026(8) 6.006(29)

∞ 6.083(16) 6.082(10)

V

8 6.060(39) 6.025(98)
12 6.180(17) 6.134(58)
16 6.204(16) 6.219(53)

∞ 6.255(14) 6.272(34)

AV

8 5.982(26) 6.025(98)
12 6.167(19) 6.134(58)
16 6.190(18) 6.219(53)

∞ 6.274(29) 6.272(34)

Table 4.5: Summary of the final extrapolation results at 3.0 Tc.

76



4.3 Final results and conclusion

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

Wilson
stagg.

Wilson
stagg.

Pseudoscalar Scalar

3.0 Tc

1.5 Tc

2π 2π
m/T

3.0 Tc
1 state 1.5 Tc

2 states 1.5 Tc 5.5
5.6

5.7
5.8

5.9
6

6.1
6.2

6.3
6.4

Wilson
stagg.

Wilson
stagg.

VectorAxialvector

3.0 Tc

1.5 Tc

2π 2π
m/T m/T

3.0 Tc
1 state 1.5 Tc

2 states 1.5 Tc

Figure 4.12: Final dataset after thermodynamic and continuum limits of the meson
screening masses.

and even 643 × 16 lattices, where Nσ/Nτ ≥ 4 holds and this analysis might be
carried out.

• The thermodynamic limit and the continuum limit can be interchanged, performing
a continuum limit on a set of fixed aspect ratio lattices first and the extrapolation
to infinite volume afterwards. This can serve as an important crosscheck in the
analysis and also allows to calculate continuum extrapolated results at finite vol-
umes. This method also seems to overestimate the volume effects for the Wilson
vector and axial-vector channel.

• As more of a practical side-note than a quantifiable fact, it is also found that
running this analysis became much more involved at the lower temperature of
1.5 Tc, needing a larger set of lattice spacings, aspect ratios and overall statistics
in the correlator analysis. The analysis at 3.0 Tc, closer to the free theory, proved
easier and more consistent at a much earlier point.

The meson masses acted as a suitable observable for answering the initial question of
differences between Wilson and staggered fermions, and allowed to develop the frame-
work introduced to extract consistent continuum results. There is also an important
physical interpretation of these results:

• Differences between both actions on finite lattices vanish when the ground state
masses are extracted (by taking the thermodynamic or performing a two-state fit)
and the continuum limits are carried out.

• Both the pseudoscalar and the scalar masses as well as the vector and the axi-
alvector mass are clearly degenerate at both temperatures 1.5 Tc and 3.0 Tc. This
holds not only for the continuum extrapolation, but already for finite size lattices.
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Figure 4.13: An illustrating sketch of an expected temperature dependence of meson
screening masses. With increasing temperature, the masses start from below 2πT ,
cross the 2πT line at some point (here 3.0 Tc for the vector channel), rise further,
level off and finally approach 2πT from above.

This degeneracy is expected in the UA(1)-restored phase; the caveat here is that
the Wilson action breaks chiral symmetry explicitly and the study is performed in
the quenched approximation.

• Both HTL and dimensional reduction [45, 46] currently predict the free theory me-
son screening masses 2πT to be reached from above, for both the (pseudo)scalar
and the (axial)vector. At 1.5 Tc, none of the masses reach this free theory limit,
they are both clearly below. For 3.0 Tc, all masses are closer to 2πT and the vector
and axial-vector are compatible with 2πT . A sketch of a possible temperature de-
pendence, where the masses rise further with growing temperature and then reach
2πT , is given in fig. 4.13. However, the analytic results currently available are trun-
cated, so higher order contributions might easily change the expected temperature
dependence.

• The free theory also predicts a full degeneracy between scalar, vector, pseudoscalar
and axialvector, so a common mass for all four channels should be seen when
approaching the free limit. However, this is not observed at either temperature.
Taking into account the last point and fig. 4.13, neither 1.5 Tc nor 3.0 Tc can be
considered a temperature close to the free theory.
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5 Thermal dilepton rates
Thermal dileptons are an important observable to study the strongly interacting medium
of a quark-gluon-plasma near the phase transition temperature. As mentioned in the
introduction, a QGP is produced in heavy ion collisions, thus allowing for experimental
studies of its properties. Theoretical predictions of medium properties as transport co-
efficients and the dilepton rates studied in this work closely accompany these studies, so
advancements in experimental and theoretical understanding are tightly linked. There-
fore, a short overview of the experimental and theoretical state of heavy ion collisions
and the role of dileptons is given below. As a starting point for more in-depth reading,
a brief but very recent overview on heavy ion collisions and the theoretical considera-
tions involved is provided in [50], and an extensive review of dilepton rates in heavy ion
collision is found in [51].

5.1 Heavy ion collisions and thermal dileptons
The current heavy ion experiments at RHIC and LHC are able to produce a QGP
with a temperature of T = 221(19) MeV at RHIC[54, 55] and T = 304(51) MeV at
LHC[56], see fig. 5.2. The temperatures given here are determined from direct photon
measurements, thus they pose a lower limit on the temperatures reached in the QGP.
The initial temperatures of the QGPs will be higher, but cannot be probed directly.
They have to be extracted from models of the QGP evolution, so their values largely
depend on the choice of model parameters[55].
After the initial collision, the QGP is expected to then thermalize. Afterwards it cools

down further till finally the hadrons bind and freeze out, see fig. 5.1 for a sketch. Wether
the region marked mixed phase in the sketch exists is linked to the form of the QCD
phase diagram, that is if it features a cross-over or a phase transition. This matter is
subject to active research.
Dileptons and photons are produced in the QGP. They serve as an important ex-

perimental observable, as they escape the QGP mostly uneffected after being generated.
Thereby they allow to study the medium properties, see [57, 58] and the sketch in fig. 5.1.
The dilepton rates measured by the two experiments PHENIX and STAR at the RHIC

collider are given in fig. 5.3. The enhancement of the measured dilepton rate over the
cocktail model predictions in the region Mll = 150 . . . 750 MeV is presumed to relate
to QGP contributions. This motivates to find acquire in-depth understanding of the
QGP properties, especially the contribution of the vector meson to the dilepton rate at
different temperatures.
Different theoretical models are used to describe the evolution of the QGP and predict

the rates for dileptons from different production processes, their yields and invariant
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5.2 Dilepton rates and the vector spectral function
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Figure 5.3: Dilepton rates measured by the PHENIX (left, [55]) and STAR (right, [59])
experiment, Au+Au heavy ion collisions.

masses. Today these models have become rather extensive and complex, for current
reviews see [53, 60, 61].
These models depend on medium properties, e.g. transport coefficients, as input,

so obtaining precise theoretical predictions of these parameters is worthwhile. At high
temperatures, hard thermal loop (HTL) approaches, see e.g. [62], can be used to this end.
However, they break down as the temperature approaches the phase transition, see [63]
for a quantitative study. Thus, for lower temperatures near the phase transition, lattice
QCD calculations are employed for ab-initio determination of transport coefficients.
The study at hand employs continuum extrapolated euclidean vector current cor-

relation functions measured in quenched lattice QCD and an ansatz-based approach,
developed and laid out in [7], to find vector meson spectral functions and thus dilepton
rates in the deconfined phase at three temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc.
First lattice studies of a more exploratory nature can be found in [64, 65, 66]. Nowa-

days, extracting transport coefficients and dilepton rates is an established objective for
lattice QCD calculations. For recent studies see e.g. [67, 68, 69, 70], and for an extensive
review [22]. However, the determination of these quantities is much more involved than
for example the calculation of hadron masses: Spectral functions cannot directly be ex-
tracted from lattice calculations, they are only linked to measurable lattice observables
through Laplace-like transformations.

5.2 Dilepton rates and the vector spectral function
The vector spectral function is a central quantity in this analysis: It directly relates to
the dilepton rate as

dW

dωd3~p
= 5α2

54π3
1

(ω2 − ~p2)(eω/T − 1)
ρii(ω, ~p, T ) (5.1)
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Here and in the following, ρii indicates a summation over all spatial components, while
ρ00 marks the time-like component. The full vector spectral function is then given by
ρV = ρ00 + ρii.
Also, as already done for observables in previous chapters, the explicit temperature

dependence of ρV is dropped and observables are quoted in matching units of the tem-
perature T .
The electrical conductivity is connected to the spectral function by a Kubo formula[71].

Thus, extracting the spectral function also yields access to the electrical conductivity σ,
by taking the limit ω → 0 of ρii(ω) as

σ

T
= Cem

6 lim
ω→0

ρii(ω)
ωT

(5.2)

Cem is given by the elementary charges Qf of the quark flavors f as Cem =
∑
f Q

2
f .

Spectral functions like ρV are not directly accessible to lattice QCD calculations.
Instead, their relation to the vector correlation function has to be used. A Laplace-like
transformation of the form

GH(τ, ~p, T ) =
∫ ∞

0

dω

2π ρH(ω, ~p, T )cosh(ω(τ − 1/2T ))
sinh (ω/2T ) with: H = 00, ii, V. (5.3)

provides the link of the spectral function to the vector correlation function G(τ, ~p),
which is directly accessible in lattice QCD calculations. Unfortunately, transformations
as eq. (5.3) cannot be inverted easily. Therefore, more involved methods have to be
employed to reconstruct ρH from GH .
The goal to obtain a spectral function through eq. (5.3) from a given correlator has

motivated and initiated a lot of work, the results of which can be divided into two broad
categories:

5.2.1 Bayesian techniques: Maximum entropy method

Bayesian techniques like the widely used maximum entropy method (MEM) have long
been used to extract hadron spectral functions from lattice QCD calculation [72, 70, 65].
They are –in principle– capable of reproducing a spectral function from a given dataset
of the correlator, with only a default model as small additional input.
The default model is used to set an initial form of the spectral function. Iteratively, this

model is then modified to find the most probable spectral function that is in agreement
with the data through eq. (5.3). On a precise, high resolution dataset, this process
reaches a unique solution that is not influenced by any (reasonable) choice of the default
model.
While in general Bayesian techniques are mathematically well understood, they have

certain drawbacks when used for this purpose: Most lattice datasets do not meet the
requirements of being precise and high in resolution to make the solution independent of
the input default model and thus fully unique. In this case, systematic error estimates
become involved, since the choice of a default model has to be motivated and taken into
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account. Also, in these cases it can be hard to keep MEM from reaching results that are
unphysical solutions for the spectral function, if these solutions fit the data well.
To date, improvements to MEM addressing these issues are on their way [73], adapting

MEM to better cope with lattice QCD results.

5.2.2 Model-based ansatz
An alternative to Bayesian methods is to propose an ansatz for the spectral function
and fit it to the given dataset by employing standard minimization techniques.
For this procedure, it is necessary to motivate and parametrize a form for the spectral

function. In contrast to MEM, this model becomes a fixed, unmutable part of the
analysis.
A previous study at 1.4 Tc [67] laid the foundation for this technique as used in

this work. Extracting a spectral function by an ansatz fitted to continuum extrapolated
lattice data was, for the first time, successfully implemented there. Together with related
results on the temperature dependence of the electrical conductivity [74], it motivated
the systematic study of the temperature dependence of dilepton rates presented in this
work.
By now, the same ansatz has also successfully been used to analyze results obtained

from finite size dynamical lattices [69, 75].

5.3 Ansatz for the vector spectral function
The ansatz used to model the spectral function in this work has to be motivated. First,
the spectral functions division into a time-like component ρ00 and a spatial component
ρii becomes important:
The time-like component of vector correlator G00 is a measure for the quark number

susceptibility χq. Since the quark number is a conserved quantity, the vector correla-
tor is constant in Euclidean time: G00(τT ) = −χqT . Its spectral representation, the
corresponding component in the spectral function ρ00, therefore has to be a delta peak:

ρ00(ω) = −2πχqωδ(ω). (5.4)

In the free field limit, the spatial component of the spectral function is known to
increase quadratically for large ω, so for massless quarks

ρfreeii (ω) = 2πT 2ωδ(ω) + 3
2πω

2 tanh(ω/4T ). (5.5)

is obtained. For the full spectral function ρV = ρ00 +ρii, the delta peaks in the time-like
and in the spatial component cancel in the free field massless limit, and the free spectral
function becomes

ρfreeV (ω) = 3
2πω

2 tanh(ω/4T ). (5.6)

This form of the spectral function changes in the interacting case: The delta peak in
the time-like component does not vanish, as it stems from the conserved quark number
susceptibility. The form of ρ00 given in eq. (5.4) therefore does not change.
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However, the delta peak in the spatial component smears out when moving from free
theory to finite temperature. It is expected to become a Breit-Wigner peak [64, 76, 77,
78], which motivates an ansatz for the interacting version of eq. (5.5) that reads

ρinterac.ii (ω) = χqcBW
ωΓ

ω2 + (Γ/2)2 + (1 + κ) 3
2πω

2 tanh(ω/4T ). (5.7)

The full spectral function ρV is still given by ρV = ρ00+ρii, but now holds a delta peak
in the time-like component that is no longer canceled by a corresponding contribution
in the spatial component.
The ansatz in eq. (5.7) now holds three parameters to match the spectral function to

a given correlator: The strength (cBW) and width (Γ) of the Breit-Wigner, modifying
mostly the low frequency behavior, and κ to adjust the high frequency deviation from
free theory with a constant factor, that is motivated from leading order perturbation
theory. It was shown that at 1.4 Tc this rather simple ansatz fits the data already very
well [7, 67].
Taking the limit ω → 0, the electrical conductivity directly follows from the parame-

trization of the Breit-Wigner peak, as eq. (5.2) becomes

σ

T
= Cem

6 lim
ω→0

ρii(ω)
ωT

→ σ(T )/Cem = 2χqcBW/(3Γ). (5.8)

5.4 Setup of a temperature dependence study

The approach laid out in section 5.3 so far has been developed and employed in the pre-
vious study [7, 67], which provided a first dataset at 1.4 Tc and motivated the systematic
study of temperature dependence in the deconfined phase towards Tc.
The work presented here analyses two further temperatures 1.1 Tc and 1.4 Tc, where

preliminary results on the first temperature 1.1 Tc have been presented in [8].
The simulation parameters for the two new temperatures 1.1 Tc and 1.2 Tc have been

set up with a certain set of constraints: Three couplings β = 7.192, 7.544 and 7.793
were chosen with corresponding lattice spacings to allow for a continuum extrapolation.
These β-values are picked in a way that at each coupling three temperatures 1.1 Tc,
1.2 Tc and the original 1.4 Tc can be realized with even values of Nτ . The lattices extent
Nσ is set to a fixed physical volume Nσ · a, translating to one fixed aspect ratio per
temperature. A summary of the simulation parameters for the temperatures 1.1 Tc and
1.2 Tc can be found in table 5.1, the parameters for the first dataset at 1.4 Tc are quoted
in table 5.2.
All calculations have been carried out with light quark masses tuned to mMS(µ =

2 GeV) < 25 MeV. A short analysis on how the hopping parameter κ of the Wilson action
has been tuned to obtain these masses can be found in the corresponding section 3.3.1.
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1.1 Tc 1.2 Tc
β Nσ 1/a[GeV] a[fm] Nτ κ # conf Nτ κ # conf

7.192 96 10.4 0.0190 32 0.13440 314 28 0.13440 232
7.544 144 15.5 0.0125 48 0.13383 367 42 0.13382 417
7.793 192 20.4 0.0097 64 0.13345 242 56 0.13345 195

Table 5.1: Summary of simulation parameters, linking three different lattice spacings a
(with corresponding couplings) and two temperatures T/Tc. The resulting lattices
are set to a constant physical size Nσ · a, which results in one constant aspect ratio
per temperature. The physical scales are quoted from section 3.1, quark masses
corresponding to the given κ-values can be found in section 3.3.1. Note that the
temperature 1.4 Tc of the preceding study could be realized by settingNτ = 24, 36, 48.

1.4 Tc
β Nσ Nτ 1/a[GeV] a[fm] κ # conf

7.192 128 24 10.4 0.0190 0.13440 340
7.458 128 32 14.1 0.0140 0.13383 255
7.793 128 48 20.4 0.0097 0.13340 451

Table 5.2: Summary of simulation parameters of the preceding study at 1.4 Tc. Lattice
spacings and the quoted temperature have been recalculated from the new results in
sections 3.1 and 3.2.
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5 Thermal dilepton rates

5.5 Continuum correlators from the lattice

The vector correlation function G(τ, ~p) on the left hand site of (5.3) can be calculated
on the lattice, see section 1.5.2. These calculations are subject to a set of limitations:

• The finiteness of the lattice leads to a discrete and finite number of points Nτ in
the correlator. Increasing Nτ at a constant temperature and on an isotropic lattice
reduces the lattice spacing. To keep the volume constant, Nσ has to be increased
by the same factor. The computing effort rises faster than linear with increasing
the 4-volume N3

σ ×Nτ , so higher Nτ quickly lead to huge demands in computing
power.

• The measurements have statistical errors due to the finite number of gauge con-
figurations that sample the path integral. Sampling more contributions will of
course lower the error, which scales with

√
n to the number of sampling points n.

Therefore, doubling the precision will yield a factor of four in computing time.

• Finite volume effects can enter through the limited spatial lattice size Nσ · a. A
series of different lattice volumes Nσ at fixed spacing is usually used to check for
finite volume effects and to choose a minimal lattice size where they are low enough.
The lattice volume also influence which momenta ~p are accessible, since they are
linked to the lattice aspect ratio.

• Most importantly, the correlator is influenced by cutoff effects due to the finite
lattice spacing a. A small spacing a helps to minimize the cutoff effects, but it also
largely increases computing costs by raising Nτ . A continuum extrapolation allows
for a necessary improvement: The cutoff effects of non-perturbatively improved
Wilson fermions scale with O(a2) in the lattice spacings. By calculating correlators
for (at least) three different lattice spacing a, a continuum extrapolation of these
correlators can be performed.

5.5.1 Ratios to free continuum and lattice correlators

A few requirements have to be met for the continuum extrapolation to work, and some
improvements can be introduced to make them more precise:
Lattice calculations have to be performed at fixed temperature T on a set of different

extents Nτ , where a is tuned to keep T = 1/(Nτ · a) constant. This yields a set of
couplings β, since a is directly linked to the coupling, as laid out in section 3.1.
The spatial extent of the lattice also has to be checked. In any case, it has to be big

enough for the results to be free of finite volume effects. It is also advisable to keep the
extent in physical units Nσ · a fixed, which translates to a fixed aspect ratio Nσ/Nτ .
On the one hand, this should ensure that any finite volume effects that are still left
at a certain lattice size should be similar for each lattice spacing. On the other hand,
and more importantly, constant aspect ratios are necessary when extrapolating for finite
momenta GV (τT, ~p 6= 0), as the aspect ratio sets the momenta available on the lattice.
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Figure 5.4: Extrapolation of GV towards continuum a → 0, for the 1.1 Tc dataset, nor-
malized by both Gfree,cont.

V (closed symbols) and Gfree,lat
V (open symbols) at different

distances τT . As expected, especially for the normalization Gfree,cont.
V , stronger cutoff

effects can be observed towards lower distances τT .

When extrapolating a correlation function to the continuum, it has to be evaluated at
a fixed distance τ = a·nt. Only a few combinations where τ = afine·n(1)

t = amedium·n(2)
t =

acoarse · n(3)
t will be available on a set of finite lattice extents Nτ . Even in the best case

this number of common points will be limited to Nτ on the coarsest lattice. To solve
this problem, the correlation function has to be interpolated on all but the finest lattice
spacings, such that an extrapolation towards the continuum is possible for all points
Nfine
τ .
Correlation functions usually fall off exponentially, making them not very suitable for

interpolation when used directly. Normalizing them with the free correlation function
Gfree
H (that shares a similar exponential fall-off) yields a much smoother function that

can easily be interpolated by, for example, a cubic spline. Two variations of this free
correlation function can be chosen, either one in the continuum Gfree,cont.

H (τT ) or one on
a matching (same Nτ ) finite lattice Gfree,lat.

H (τT ). When normalizing with the free lattice
correlator, the portion of cutoff effects that is present in the free theory is divided out.
As a crosscheck, both normalizations have to produce compatible results in the contin-

uum limit, because ideally both should remove the lattice cut-off effects in the same way.
Differences emerge at smaller distances τT , where the extrapolation should no longer be
considered valid. In fig. 5.4 this extrapolation is visualized for different distances τT .
A last point to consider is renormalization. Since different lattice spacings a cor-

respond to different couplings β, the correlators would have to be renormalized as
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G′H = Gbare
H · ZH(β), where Z(β) depends on the coupling. While non-perturbative re-

sults for the renormalization constant are available, a more precise method can be used:
Since G00 is constant (see eq. (5.4)) and renormalized by the same constant ZV (β), the
ratios GV (τT )/G00 and Gii(τT )/G00 are free of renormalization constants. The ratio to
the free theory is not influenced, since Gfree

00 = 1/T 3.

5.5.2 A summary of the extrapolation procedure
To sum up the discussion laid out in the last section, the following procedure is employed
to arrive at a continuum correlator:

• A double ratio to cancel renormalization constants and the exponential fall-off
is calculated for each correlator. Both the free continuum and the free lattice
correlation function can enter into the normalization:

RNτ (τT ) = GV,ii(τT )
G00︸ ︷︷ ︸

cancels renormalization

· Gfree
00 = 1/T 3

Gfree
V,ii(τT )︸ ︷︷ ︸

cancels exponential fall-off

(5.9)

• A cubic spline interpolation is performed for the ratio eq. (5.9) on every spacing.
This allows to calculate the correlator ratio at any arbitrary distance τT .

• Values for the correlator ratio eq. (5.9) are calculated on every distance τT acces-
sible by points nt on the finest lattice.
Using a fit of the relation

RNτ (τT ) = (1 + d(τT ) 1
N2
τ

) ·RNτ→∞(τT ) (5.10)

the results are extrapolated to the continuum. The parameter d depends on the
distance and can be viewed as a measure of the cutoff effect. The extrapolation
should be independent of the free normalization (continuum or lattice) used in
eq. (5.9).

In fig. 5.5 the results of this procedure for Gii(τT ) and GV (τT ) at 1.1 Tc and 1.2 Tc
can be found. For both temperatures, precise continuum extrapolations have been car-
ried out in a range from τT = 0.5 down to the same physical distance to the source
na=0.0097 fm
t = 8. For smaller distances, the extrapolation clearly breaks down due to ris-

ing cutoff effects. These distances translate to points na=0.0125 fm
t = 6 and na=0.0190 fm

t = 4
on the coarser lattices and to τT = 0.125 at 1.1 Tc as well as τT = 0.142 at 1.2 Tc.
While on finite lattices cutoff effects set in with lower τT , the continuum extrapolated

correlator ratios have to converge towards T 2/χq in the limit τT → 0. As can be seen
in the figures, this convergence is found for both 1.1 Tc and 1.2 Tc.
A continuum value for G00 can be found by extrapolating G00 using the same ansatz as

for GV , Gii. Here, the non-perturbative renormalization constant ZV (β), see section 3.4,
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Figure 5.5: GV (τT )/Gfree,lat.
V (τT ) (upper row) and Gii(τT )/Gfree,lat.

V (τT ) (lower row) on
finite lattices (red, blue, green), interpolated between points nt and extrapolated to
the continuum (black). Both new datasets at 1.1 Tc (left) and 1.2 Tc (right) are
shown.
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β ZV (β) 1.1 Tc 1.2 Tc
Nτ χq/T Nτ χq/T

7.192 0.8421 32 0.8330 28 0.8538
7.544 0.8539 48 0.8431 42 0.8794
7.793 0.8612 64 0.8559 56 0.8894

∞ 0.8590(8) ∞ 0.9001(30)

Table 5.3: Values of G00 = χq/T for temperatures 1.1 Tc and 1.2 Tc, on all three lattice
spacings and extrapolated to the continuum. ZV (β) is given in eq. (3.20). At 1.4 Tc,
χq/T = 0.897(3) for a→ 0, see [7].

replaces the normalization by G00. The continuum extrapolated value for G00 can be
used to reverse the normalization through 1/G00 on the other continuum extrapolated
ratios. Values of G00 = χq/T

2 for both temperatures on finite lattices and in the
continuum are given in table 5.3.

5.5.3 Error estimate of the continuum extrapolation

The correlators entering into the continuum extrapolation are subject to statistical er-
rors. For the correlators on finite lattices, these errors are obtained by a jackknife
analysis. The error of the resulting continuum correlators have been estimated in two
different ways:
A weighted linear regression in a2 is used for the continuum extrapolation, taking

the jackknifed averages and errors on each finite lattice as input. The variance and
correlation of the linear regression is used as an error estimate denoted standard error.
Also, a re-sampling approach has been implemented: On each finite lattice, a subset

of m randomly selected correlators is used to calculate a continuum extrapolated data
set. This process is repeated n times, providing n samples of the continuum extrapolated
correlator ratio. These samples are then used to calculate a continuum average and error.
The number of randomly chosen correlators m and the number of samples n are set to
be in the same order as the original dataset size, e.g. m = 200, 500 and n = 200, 500.
In fig. 5.6 the resulting continuum error estimates are given. Also, the difference

between the averages obtained with the standard method and the re-sampled correlators
are shown. The errors are distributed differently for both methods: The re-sampled
errors grow larger towards larger distances τT , where the correlator gets smaller and
possibly more noisy. The errors obtained from the linear regression grow in regions of
τT where the assumption of a linear behaviour in 1/a2 does not hold as well as in other
regions.
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Figure 5.6: Error estimates using the standard error from a weighted linear regression
and the error employing re-sampling (left). Difference between the average continuum
extrapolated correlators using re-sampling to the standard continuum extrapolation
(right). Re-sampling parameters, as given in section 5.5.3 are m = 200 and n = 200.

5.6 Spectral function fit procedure
Now that an ansatz for the spectral function has been motivated and continuum corre-
lators are available on the lattice, the next step is to perform fits to obtain the spectral
function.
Following eq. (5.9) the ratio of the spatial correlator Gii(τT ) to the full free correlator

Gfree
V (τT ) as T 2 · Gii(τT )/χq · Gfree

V (τT ) is used to serve as input to the fit. While all
combinations are in principle equivalent descriptions of the system, this specific combi-
nation leads to spectral functions ρii and ρfreeV which are both free of delta peaks. This
fact helps to perform numerical integrations for the fit.
For the implementation of the fit, substitutions

a′ := 1 + κ, g′ := Γ/2, c′ := 2χqcBW/Γ (5.11)

are used to write the ansatz in eq. (5.7) as

ρii(ω) = χqcBW
ωΓ

ω2 + (Γ/2)2 + (1 + κ) 3
2πω

2 tanh(ω/4T )

= c′
ω

ω2
g′2 + 1

+ a′
3

2πω
2 tanh(ω/4T ). (5.12)

While a′ and g′ are only shorthands, the choice of c′ introduces a fit variable that is
directly proportional to the electrical conductivity, as 3 ·σ(T )/(TCem) = c′, see eq. (5.8).
The fit can be performed either to the ratio Gii(τT )/Gfree

V (τT ), found by multiplying
out the quark number susceptibility from the data first, or directly to the data set
T 2 · Gii(τT )/χq · Gfree

V (τT ). In the second case, a factor of χq is passed through the
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transformation and enters into the spectral function. Labeling the variables of a fit to
T 2 ·Gii(τT )/χq ·Gfree

V (τT ) as a, c and g, they relate to eq. (5.12) as

a = a′/χq = (1 + κ)/χq, g = g′ = Γ/2, c = c′/χq = 2cBW/Γ (5.13)

Two more components enter into the fit: Introducing thermal moments stabilizes the
fit by imposing a further constraint and modifying the spectral function ansatz allows
for a systematic error analysis.

5.6.1 Thermal moments

The low ω behavior given by the Breit-Wigner contribution to eq. (5.7) is of high im-
portance for the determination of the electrical conductivity. This low frequency region
of the spectral function is most affected by the correlator at large distances τT .
A constraint on the spectral function fit can thus be introduced to make it more

sensitive to large Euclidean distances τT . The thermal moments

G
(n)
H = 1

n!
dnGH(τT )
d(τT )n

∣∣∣∣
τT=1/2

= 1
n!

∫ ∞
0

dω

2π

(
ω

T

)n ρH(ω)
sinh(ω/2T ) with H = ii, V

(5.14)
are defined as the Taylor coefficients of the correlation function expanded around the
midpoint

GH(τT ) =
∞∑
n=0

G
(2n)
H (1

2 − τT )2n. (5.15)

By calculating these moments for the free correlation function Gfree
V analytically, they

can also be used in ratios like eq. (5.9).
For the analysis, the ratios of the interacting to the free midpoint subtracted correla-

tors

∆V (τT ) = GV (τT )−G(0)
V

Gfree
V (τT )−G(0),free

V

= G
(2)
V

G
(2),free
V

(
1 + (R(4,2)

V −R(4,2)
V,free)(

1
2 − τT )2 + . . .

)
(5.16)

are calculated, where R(n,m)
V = G

(n)
V /G

(m)
V . A varying number of contributions, generally

the first two terms (up to quadratic) are then obtained through a fit of eq. (5.16) to the
correlator, see fig. 5.7 and table 5.4 for the results.
Restricting the spectral function fit to also reproduce the thermal moments allowed

to obtain a stable fit in the preceding study at 1.4 Tc. The same analysis is thus used
for the new 1.1 Tc and 1.2 Tc datasets. Specifically, the ratio of the second to the zeroth
thermal moment

G(2)

G
(0)
ii

= G(2)

G(2),free ·
G

(0),free
ii

G
(0)
ii

· G
(2),free

G
(0),free
ii

= ∆ii(0.5) ·Gii(0.5) · 28
15π

2 (5.17)
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Figure 5.7: Midpoint subtracted correlator data and fits to obtain the thermal moments,
eq. (5.16), up to quadratic order, with 1.1 Tc on the left, 1.2 Tc on the right. For large
distances of τT → 0.5, the continuum extrapolation of the 1.1 Tc dataset becomes
somewhat unstable. The errors quoted in table 5.4 take these uncertainties into
account.

G
(0)
V /(χqG(0),free

V ) G
(0)
ii /(χqG

(0),free
ii ) G

(2)
V,ii/(χqG

(2),free
V,ii ) G

(2)
ii /G

(0)
ii

1.1 Tc 1.280(3) 1.189(2) 1.238(5) 19.188(50)
1.2 Tc 1.228(2) 1.151(1) 1.210(2) 19.366(36)
1.4 Tc 1.211(9) 1.142(9) 1.189(13) 19.215(180)

Table 5.4: Results for the thermal moments eq. (5.15), obtained by fitting eq. (5.16) to
data, for temperatures 1.1 Tc and 1.2 Tc. G(0) is given by the correlator at midpoint,
needed to calculate the ratio of second to zeroth thermal moment. It is given in the
last column G(2)

ii /G
(0)
ii and used to constrain the fits. Values of χq can be found in

table 5.3. Values and errors for 1.4 Tc are quoted from [7].
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is used as the constraint. The right hand side is found by fitting eq. (5.16) to obtain ∆ii,
by evaluating the correlator itself at midpoint, since G(0)

ii = Gii(0.5), and by the ratio
of the free thermal moments. Contributions of χq in the extrapolated correlators cancel
in this ratio.

5.6.2 Systematic error estimates

Fitting the spectral function yields the standard error estimates for the fit parameters.
However, these errors do not capture systematics, as the functional form of the spectral
density is not mutable by the fit.
A modification of the low energy structure in eq. (5.7) is introduced to check if and

how the high frequency region, dominated by the free spectral function, influences the
low ω region dominated by the Breit-Wigner peak.
A smeared heavy-side step function

Θ(ω0,∆ω) =
(
1 + e(ω2

0−ω2)/ω∆ω

)−1
(5.18)

parametrized with a cutoff position ω0 and the strength of the falloff ∆ω is used to
smoothly cut off the continuum contributions in eq. (5.7) towards low frequencies. This
extended spectral function now reads

ρtrunc.ii (ω) = χqcBW
ωΓ

ω2 + (Γ/2)2 + (1 + κ) 3
2πω

2 tanh(ω/4T )Θ(ω0,∆ω) (5.19)

where setting ω0 = 0 and ∆ω reproduces eq. (5.7). The fit of eq. (5.19) is now performed
as before, with ω0 and ∆ω set to suitable values. Moving the cut-off ω0 towards higher
frequencies, the area of the Breit-Wigner-peak should increase, in most cases leading
to a higher electrical conductivity. The influence of the strength ∆ω is not as easy to
predict.
The contributions of the Breit-Wigner and the truncated continuum, adding up to the

full spectral function, are shown in fig. 5.8 for different choices of w0 and ∆ω at 1.1 Tc.
While the functional form of the ansatz eq. (5.19) is still rather simple, the fit procedure

itself becomes more involved: For the original ansatz, the transformation of eq. (5.7)
through eq. (5.3) can be rewritten, so only the Breit-Wigner-contribution has to be
numerically integrated and the free continuum enters as a constant. For the truncated
ansatz, the full spectral function eq. (5.19) has to be numerically integrated through
eq. (5.3) to arrive at the correlator. Some care has to be taken that this integration is
performed with adequate precision.

5.7 Fit of the spectral function ansatz
With the spectral function ansatz, continuum extrapolated correlators and the thermal
moments in place, results of the fit procedure and therefore the spectral functions can
now be discussed.
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Figure 5.8: Contributions of the Breit-Wigner peak and the truncated continuum to the
spectral function at 1.1 Tc, for different values of ω0 and ∆ω. For the non-truncated
spectral function (ω0 = 0,∆ω = 0), the intersection of Breit-Wigner and continuum
contribution is found at ω ≈ 2, marked by the arrow. Because of the steep falloff of
the truncated continuum contribution, the hard cut-off at ω0 = 1.5 with ∆ω = 0.1 is
clearly visible in the full spectral function.
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Figure 5.9: Correlator ratios as they enter into the spectral function fit procedure (left),
for all three temperatures 1.1 Tc, 1.2 Tc, 1.4 Tc. For comparison, the same data set
free of the T 2/χq contribution is shown, which is found by multiplying with values
from table 5.3 (right).

Three temperatures were analyzed, the simulation setup for 1.1 Tc and 1.2 Tc is given
in table 5.1. The dataset at 1.4 Tc is taken from the previous study [7, 67]. The setup
for 1.4 Tc is quoted in table 5.2.
Before turning to the results of the spectral function fits, it is sensible to take another

close look at the input dataset, the continuum extrapolated correlators Gii(τT )/GV (τT ).
In fig. 5.9 these correlators are given as ratios Gii(τT )/GV (τT ), found by multiplying
the extrapolated ratios with the continuum values of χq, see table 5.3. This allows for a
direct comparison between the correlators at different temperatures. All three data sets
are very similar, as they are almost compatible within errors. This similarity is quite
sensitive to the continuum extrapolated value of χq. This effect should be kept in mind,
as it shows the importance of obtaining precise values for χq.
Spectral functions have been calculated from the continuum extrapolated correlators

by using the analysis procedure as laid out in the previous sections.
To test the analysis and especially the systematic error estimates, two truncated spec-

tral functions, with ω0 = 1.0, ∆ω = 0.5 and ω0 = 1.5, ∆ω = 0.1, denoted smooth and
hard continuum cut-off in fig. 5.8, have been fitted to the data set at all three tempera-
tures. From the fit results, the correlators were then calculated by eq. (5.3). This allows
for a direct comparison between the input dataset and the obtained results. In fig. 5.10
the spectral functions and a comparison of the obtained correlator is given, fig. 5.11
shows the same comparison applied to the older 1.4 Tc dataset.
Using the ansatz without truncation of the continuum, a very good agreement between

the correlators in the input dataset and the correlators obtained from the fitted spectral
functions is found at all three temperatures. Thus, the ansatz is able to provide a valid
description of the datasets.
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Figure 5.12: Spectral functions and correlators obtained from a fit that converged to
a local minimum. The good matching fit has χ/d.o.f = 0.52, the inferior fit
has χ/d.o.f ≈ 1.2. The electrical conductivity found by the mismatching fit is
ρ(T )/Cem = 0.260(8).

98



5.7 Fit of the spectral function ansatz

5.7.1 Systematic error estimation

Turning to the systematic errors, the correlators calculated from the spectral function
with a smooth continuum cut-off ω0 = 1.0, ∆ω = 0.5 are within errors of the input
dataset. For larger separations τT , a trend becomes apparent: Here the correlator
relates most to the low ω region of the spectral function. The contribution of the
free spectral function to this region is cut away, and now the enhanced Breit-Wigner
contribution can only partially compensate this effect. The resulting correlator becomes
lower than the input dataset. The rise in the Breit-Wigner peak leads to a higher
electrical conductivity. For the hard cut-off ω0 = 1.5, ∆ω = 0.1, this trend continues
and the correlators, calculated from the spectral functions, are no longer fully within the
errors of the input data. Since this is observed at all three temperatures, the cut-off at
ω0 = 1.5, ∆ω = 0.1 is set as an upper boundary to obtain systematic errors.
Th procedure of calculating correlators from the fitted spectral function and comparing

them with the input dataset also provides an important check of the fit convergence:
The spectral function in fig. 5.12 was obtained from a fit with apparently good quality
χ/d.o.f ≈ 1.2, but the fit converged to a local minimum, as it is very sensitive to a
good initial choice of Breit-Wigner parameters. The comparison with the input dataset
allows to easily find these mismatches, at least for the untruncated ansatz. The fits with
truncated continuum contributions are harder to asses, as their results naturally deviate
from the input data.

5.7.2 Results

Results for the spectral functions at all three temperatures are shown in fig. 5.13, together
with the corresponding dilepton rates as calculated from eq. (5.1).
A summary of the fit results is given in tables 5.5 and 5.6. The fits have been performed

for the three set of cut-off values motivated above, for both the re-sampled and the
standard error estimates. Additional values for ω0,∆ω have been tested for the dataset
with re-sampled error estimates: The full set of cut-off parameters as used in [67] was
tested at 1.1 Tc, and a selection of this set, up to and including the hard continuum
cutoff motivated above, at 1.2 Tc.
The error estimates for fit parameters of the 1.2 Tc dataset are noticeably higher that

for the 1.1 Tc dataset. This is also reflected in the lower χ/d.o.f obtained in these fits in
comparison to 1.1 Tc. While the errors between both correlators are similar, see fig. 5.6,
the number of points in the 1.2 Tc correlator that enters into the fit is decisively lower.
A more precise determination of the correlator, as it was performed for 1.4 Tc, might
thus be worthwhile.
The current results do not allow to find a clear temperature dependence for the dilep-

ton rate or the electrical conductivity in the range of 1.1 Tc to 1.4 Tc. For example, both
a linear dependence as well as no temperature dependence at all is compatible with the
current data within the systematic errors. An illustrating plot is provided by fig. 5.19 in
the conclusion of this chapter, together with a short comparison to other current studies.

99



5 Thermal dilepton rates

0

1

2

3

4

5

6

0 2 4 6 8 10

ρii(ω)/ωT

ω/T

HTL
T = 1.4Tc
T = 1.2Tc
T = 1.1Tc

Born

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0 1 2 3 4 5 6

ω/T

dW
dρ d3p

HTL
1.4Tc
1.2Tc
1.1Tc
Born

Figure 5.13: Spectral functions obtained by fitting eq. (5.19) to data (left) and dilepton
rates (right) calculated by eq. (5.1) from the spectral functions. The thin lines
represent the spectral function obtained with systematic error estimates as laid out
in section 5.7. The free spectral function (Born) is given in eq. (5.6), the HTL results
follow [62].

ω0 ∆ω (1 + κ)/χq 2cBW/Γ Γ 2
3χq

cBW
Γ χ/d.o.f Data

– – 1.216(5) 1.353(23) 2.058(85) 0.387(7) 0.52 RS
1.215(3) 1.328(12) 2.110(34) 0.380(4) 0.65 ST

0.0

0.5

1.217(5) 1.399(20) 1.963(74) 0.401(6) 0.97 RS
0.5 1.218(5) 1.420(19) 1.923(69) 0.406(6) 1.24 RS
1.0 1.219(4) 1.497(15) 1.783(57) 0.429(5) 2.71 RS
1.0 1.219(4) 1.595(8) 1.643(16) 0.456(3) 2.81 ST

1.5

0.0 1.222(4) 1.609(12) 1.607(45) 0.461(4) 6.99 RS
0.1 1.222(4) 1.705(11) 1.506(39) 0.488(3) 4.71 RS
0.1 1.213(2) 1.675(7) 1.528(14) 0.479(3) 5.50 ST
0.25 1.222(4) 1.728(11) 1.481(38) 0.495(3) 5.37 RS
0.5 1.222(4) 1.632(12) 1.572(43) 0.467(4) 8.27 RS

1.75 0.5 1.206(4) 2.139(8) 1.247(26) 0.612(2) 2.21 RS

Table 5.5: Results for fits of eqs. (5.7) and (5.19) to data, at 1.1 Tc. Values ω0 and ∆ω

in eq. (5.19) are motivated in the discussion of systematic errors. 2
3χq

cBW
Γ relates to

the electrical conductivity as given in eq. (5.8). Columns 3 to 5 directly relate to fit
variables, see eq. (5.12) and the discussion there. Abbreviations in the column Data
denote the dataset used in the fit, where RS is the dataset with resampling error
estimates, ST the dataset with standard errors, see section 5.5.3. Correlator data
points with τT ≥ 0.1875 enter into the fit.
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ω0 ∆ω (1 + κ)/χq 2cBW/Γ Γ 2
3χq

cBW
Γ χ/d.o.f Data

– – 1.166(5) 1.010(118) 2.947(347) 0.303(40) 0.11 RS
1.165(3) 1.056(104) 2.807(386) 0.316(31) 5.56 ST

0.0

0.5

1.160(3) 1.049(173) 2.809(636) 0.315(57) 0.44 RS
0.5 1.159(5) 1.024(111) 2.904(405) 0.307(37) 0.23 RS
0.75 1.163(11) 1.159(137) 2.486(516) 0.348(45) 0.91 RS
1.0 1.166(9) 1.260(49) 2.212(190) 0.378(16) 0.04 RS
1.0 1.164(1) 1.143(12) 2.521(43) 0.343(4) 3.94 ST

1.5

0.1 1.176(7) 2.129(8) 1.152(35) 0.639(2) 0.74 RS
0.1 1.174(1) 1.792(8) 1.398(3) 0.537(2) 10.34 ST
0.25 1.170(7) 1.822(11) 1.404(48) 0.547(3) 0.08 RS
0.5 1.163(8) 1.586(17) 1.683(69) 0.476(5) 0.22 RS

Table 5.6: Results for fits of eqs. (5.7) and (5.19) to data, at 1.2 Tc, legend see table 5.5.
Concerning the large χ/d.o.f. of the data sets with standard error estimates, compare
the errors given in fig. 5.6. Correlator data points with τT ≥ 0.25 enter into the fit.

5.7.3 Fit without thermal moments
The thermal moment were introduced as a constraint to the fit, making it more sensible
to the low ω region of interest for the electrical conductivity. As an additional crosscheck,
the fits of the 1.1 Tc dataset were also performed without this restriction.
The fit range for the 1.1 Tc correlator has been set to τT ≥ 0.1875, which leaves 20

points from T 2 · Gii(nt)/χq · Gfree
V (nt) to enter into the fit. The fit converges without

problems and the result is well compatible within errors to the one obtained with thermal
moments, as the electrical conductivity is found as σ(T )/(TCem) = 0.345(65). The
results are shown in fig. 5.14, the large error of the electrical conductivity is linked to
the missing constraint through the thermal moment.

5.7.4 Modified ansatz for the spectral function
An analysis by Operator Product Expansion [79] of the ansatz eq. (5.7) suggests a
different high frequency ω →∞ fall-off of the transport contribution. This motivated a
modification of eq. (5.7)

ρinterac.ii (ω) = χqcBW
tanh(ω)Γ
ω2 + (Γ/2)2

+ (1 + κ) 3
2πω

2 tanh(ω/4T ). (5.20)

where tanh(ω) yields a 1
ω2 falloff for ω →∞.

This ansatz is now used to study the systematic effect. The results, given in fig. 5.15,
show only a minimal influence, the electrical conductivity is found as σ(T )/(TCem) =
0.350(80) and thus well compatible with the main results.
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Figure 5.14: Fit of the spectral function with and without the additional constraint
through the thermal moments (left), at 1.1 Tc. The fit without thermal moments
converges well. The correlator calculated from the spectral function (right) matches
the input data. Within errors, the electrical conductivities are compatible.
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5.8 Continuum extrapolated correlators at finite momenta

5.8 Continuum extrapolated correlators at finite momenta
The dilepton rates and the electrical conductivity are extracted from the spectral func-
tion at vanishing momentum ~p = 0, corresponding to the vector correlator GV (τT, ~p) =
0.
Finite momenta GV (τT, ~p) 6= 0 are also accessible to lattice calculation, see eq. (1.45).

The vector correlator and the corresponding spectral function split into a longitudinal
part VL and a transversal part VT . The transversal component of the spectral function
ρT is related to the photon rate

ω
dRγ
d3p

∼ ρT (ω = |~p|, T )
exp(ω/T )− 1 . (5.21)

and thus extracting ρT from lattice calculations would be rewarding.

5.8.1 A momentum-dependent spectral function

It is much harder to motivate a parametrized ansatz for a momentum dependent spectral
function ρL or ρV then it is for vanishing momentum, and such an ansatz would be
necessary to follow a similar fit procedure as used for the dilepton analysis with ρV (ω, ~p =
0). A Bayesian analysis on the continuum extrapolated finite momentum correlators
might provide first insights.
Also, to extract photon rates, eq. (5.21) shows that the spectral function has to be

known at one point, ω = |~p|. Reproducing one point in the spectral function with high
precision might require additional input extracted from the correlator prior to a fit or
a Bayesian analysis, as spectral functions and correlators for finite momenta are linked
through the same transformation eq. (5.3) as their zero momentum counterparts. How-
ever, a constraint similar to the thermal moments, which are used to increase precision
at ω = 0 for spectral function at vanishing momentum, has not yet been found.
While finding an ansatz for the momentum-dependent spectral function proves dif-

ficult, continuum-extrapolated momentum-dependent correlators –that are an essential
first step in the analysis– have successfully been calculated in the course of this work.

5.8.2 Finite momentum correlators

A discrete set of momenta ~p in GV (τT, ~p) is accessible on the lattice. ~p is given by

~p/T = 2π · ~k · Nτ

Nσ
(5.22)

where ~k is a vector of integer numbers.
The longitudinal contributions are given by ~k-vectors with only one integer compo-

nent different from zero, for example ~k = (kx, 0, 0, 0) when choosing to set VL as Vx,
corresponding to ρ11 and thus the vector channel linked to the γ1 matrix.
For the transversal contribution, two components in ~k may be different from zero.

Again as an example, choosing to evaluate VT as Vz –corresponding to ρ33 and thus
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ky kx = 0 1 2 3 4

0 0.0000 2.0944 4.1888 6.2832 8.3776
1 – 2.9619 4.6832 6.6231 8.6354
2 – – 5.9238 7.5514 9.3664
3 – – – 8.8858 10.4720
4 – – – – 11.8477

Table 5.7: Momenta |p/T | = |~k| · 2π · Nτ/Nσ accessible on a Nσ/Nτ = 3. Choosing to
evaluate VT as Vz along the z-axes, the purely transversal momenta are obtained by
keeping kz = 0 and varying kx and kz. Evaluating VL as Vx along the x-axes, the
purely longitudinal momenta are found by setting ky = 0 and kz = 0 while varying
kx, so they can be read off the first row of the table. Of course, other permutations
of x, y, z are possible, the selection here is merely by convention.

the γ3 vector channel– ~k takes the form ~k = (kx, ky, 0, 0). The absolute values for the
momentum here are |~k| =

√
k2
x + k2

y, so non-integer momenta |~k| are accessible for the
transversal, but not for the longitudinal channel.
For both examples, VL as Vx and VT as Vz are chosen by convention. Because of the

rotational invariance, permutations of x, y, z yield equivalent momenta. In table 5.7 a
summary of possible momenta for a Nσ/Nτ = 3 lattice can be found.

5.8.3 Continuum extrapolation at non-vanishing momentum

A fixed aspect ratio of Nσ/Nτ = 3 has been set for all three lattice spacings in the
setup for the new datasets at 1.1 Tc and 1.2 Tc. This allows to perform a continuum
extrapolation following eq. (5.10) in the same way as for correlators with vanishing
momentum.
Though finite momentum correlators are available for 1.4 Tc, their aspect ratios differ,

so currently no continuum extrapolation can be performed at that temperature. A new
set of correlators with Nτ = 24, 36, 48, otherwise following table 5.1, would have to be
recalculated to allow for this extrapolation.
Results of the extrapolation at |~k| = 2 for both the longitudinal and the transversal

correlator ratios are shown in fig. 5.17. A summary of only the continuum extrapolated
results at different momenta is given in fig. 5.18.
The vector correlators with longitudinal momenta do not show a noticeable depen-

dence on their momentum. The vector correlator is however influence by transversal
momenta, where higher momenta ~k cause a steeper fall-off of the ratio T 2 ·GV (τT, ~p)/χq ·
Gfree
V (τT ) towards rising τT .
This behaviour can be qualitatively interpreted in the context of [78], where the

transversal and longitudinal vector spectral functions were calculated for small ω and
small, non-vanishing momenta, in a leading order log Boltzmann Approximation. In
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Figure 5.16: Leading order log Bolzmann calculation[78] of the finite momentum lon-
gitudinal (left) and transversal (right) vector spectral functions. The dotted lines
denote the free spectral functions at the same momenta, highlighting the deviations
between free and interacting spectral functions.

fig. 5.16 the obtained longitudinal and transversal spectral functions are shown for dif-
ferent momenta, together with dotted lines for the corresponding free spectral functions.
The transversal spectral function is found to be finite and constant in ρT (ω)/ω for ω → 0,
while the longitudinal spectral function ρL(ω)/ω becomes zero for ω → 0.
This relates to the observed behaviour of the correlators, as for the transversal part,

free and interacting spectral functions deviate in the region of ω → 0. This region relates
to large separations τT → 0.5 in the correlator, where also a deviation from the free
correlator is observed. For the longitudinal part, the spectral functions deviate at larger
values of ω, but are compatible at ω → 0. This agrees with the observed behaviour of
the longitudinal correlator, which shows no momentum dependence for τT → 0.5.
This behaviour may contradict the findings in [80], where a non-zero intercept was

found for both polarizations. A detailed study of the spectral function, based on the
continuum extrapolated correlators at non-zero momentum, may clarify this in the fu-
ture.

5.9 Conclusion
A systematic study of the temperature dependence was planned and set up: Calculations
have been carried out at three temperatures above the phase transition, 1.1 Tc and 1.2 Tc,
complemented by 1.4 Tc from the preceding study [7]. At each temperature a set of three
lattice spacings, see tables 5.1 and 5.2, allows for a continuum extrapolation. At 1.1 Tc
and 1.2 Tc a constant aspect ratio at each lattice spacing enables this extrapolation
also for finite momenta, at 1.4 Tc a set of configurations matching these parameters is
available.
Continuum extrapolations have been performed on a ratio of interacting to free lattice
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Figure 5.17: Longitudinal (VL, left) and transversal (VT , right) vector correlators at non-
vanishing momentum |~p| = 4.188 at 1.1 Tc (upper row) and 1.2 Tc (lower row).
Results are on finite lattices (red,green,blue) and extrapolated to the continuum
(black) via eq. (5.10).
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Figure 5.18: Continuum extrapolations for different momenta p/T = |~k|·2.094 with |~k| =
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Figure 5.19: Electrical conductivity for temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc, with sys-
tematic error estimates as laid out in section 5.6.2, with a maximal ω0 = 1.5 and
∆ω = 0.1, see also tables 5.5 and 5.6. To compare the temperature dependence, re-
sults are given in units of temperature T (left) and in units of the critical temperature
Tc (right).

correlators normalized by the quark number susceptibility as T 2 ·Gii(τT )/χq ·Gfree
V (τT ).

The ratios are smooth so they allow for a cubic spline interpolation on the coarser
lattices. The continuum extrapolation is well behaved and removes lattice cutoff effects
down to distances τT = 0.125 at 1.1 Tc and τT = 0.142 at 1.2 Tc.
Spectral functions have been extracted successfully from the continuum extrapolated

correlators at all three temperatures by using a phenomenologically motivated ansatz.
This rather simple ansatz, consisting of a Breit-Wigner peak and a continuum contri-
bution, see eq. (5.7), is found to provide a good descriptions of the data set at all three
temperatures.
A systematic error analysis was performed via a parametrized modification of the

ansatz, by truncating the continuum contributions, see eq. (5.19). It is found that an
increasing continuum cutoff can not be fully compensated by an enhanced Breit-Wigner
peak, thus the truncated ansatz yields an inferior description of the data set. This allows
to find an upper limit for the Breit-Wigner contribution.
The spectral function is linked to the dilepton rate, which thus can be calculated for

all three temperatures. A summarizing plot of the spectral functions and associated
dilepton rates is provided in fig. 5.13.
In the low frequency limit, the spectral function also gives access to the electrical

conductivity as an important transport coefficient. With the systematic error estimates
in place, lower and upper bounds for the electrical conductivity have been calculated.
Within these limits, the conductivity shows no clear temperature dependence, see

fig. 5.19. The systematic error analysis – as currently employed – implies a low limit
for the electrical conductivity at each temperature. The upper limit is influence by
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the choice of cut-off parameter. A consistent choice of this parameters for all three
temperatures has been motivated.
At present, two current studies are published that allow for a direct comparison with

the results for the electrical conductivity obtained in this work: A MEM analyses of
calculation with dynamical clover fermions, on anisotropic lattices [68] and studying
multiple temperatures, yields somewhat lower results for the electrical conductivity.
Another analysis[69], also employing dynamical Wilson fermions, but using a modified
version of the spectral function ansatz, yields a result at ≈ 1.4Tc that is compatible with
this study. In an older study [70], where the electrical conductivity is obtained from a
MEM analysis of quenched staggered fermions, a value of σ(T )/T = 0.4(1) is found,
which is also in agreement with this work.
As an outlook, the continuum extrapolations for correlators at finite momenta ~p 6= 0

were successfully carried out. The results are promising and can hopefully serve as input
to future studies of, for example, the photon rate in the quark-gluon-plasma.
Results obtained for the 1.2 Tc dataset currently do not reach the precision of the 1.1 Tc

and 1.4 Tc dataset. It is worthwhile to determine if the dataset should be extended, so
the results for the electrical conductivity become more precise. In this case, they might
allow for determination of the temperature dependence.
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6 Conclusion

This general conclusion complements the introduction given in the front matter of this
thesis. A short conclusion, highlithing the main results of each of the four topics discussed
in this thesis is given here, while more in-depth discussions of the results and more specific
conclusions are given in the (self-contained) chapters corresponding to each topic.

6.1 Parallel Lattice Code
In the course of this work, a software suite for lattice QCD calculations was developed.
The code is designed to be modular and layered, allowing to easily tune, enhance and
exchange its functionality.
The code is in successful productive use for multiple research efforts. Available func-

tionality includes heatbath and overrelaxation code for pure gauge measurements and
the generation of quenched configurations, standard and clover improved Wilson fermion
actions and accompanying inverters, measurement routines for diffusion coefficients and
Wilson loops, and an interface to specific routines of the QUDA framework.
The code is under constant development. Future plans include the implementation

of interfaces to external lattice QCD libraries, such as a full interface to the QUDA
framework and the SciDac suite. This will allow for speedups on more specialized su-
percomputing machines. Also, measurement routines for more observables and advanced
inverters, like multi-grid techniques, can be implemented.

6.2 Scale setting
The precise determination of the lattice spacing and the critical temperature Tc is an
important requisite for quenched lattice QCD studies.
New results for couplings β < 7 where obtained for both the lattice spacing and the

critical temperature, with
Tc · r0 = 0.7497(1)

found as a central result.
Especially for the critical temperature, these new datasets greatly improve the preci-

sion over previously used data, allowing for more precise extrapolation. Updated values
for lattice spacings and temperatures T/Tc for all relevant couplings have been calculated
and tabulated.
Quark masses for the clover-improved Wilson fermion action were also retuned and

recalculated, updating older results and ensuring more constant quark masses among all
lattice sizes.
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This study will be extended with further values βc(Nτ ) and [r0/a](β), or a similar
observable more suited for β > 7. This will provide a check and further refinement of
the extrapolations.

6.3 Meson screening masses

When calculating meson screening masses on finite lattices, differences in the results
between the clover-improved Wilson and the standard staggered fermion actions are
found. This study helps answering the question whether these differences vanish if
appropriate thermodynamic and continuum limits are taken.
At two temperatures (1.5 Tc and 3.0 Tc) and for four different meson channels, the

(pseudo)scalar and the (axial)vector, it is found that their screening masses become
compatible if and only if both limits are carried out correctly. This agreement is easier
to find at 3.0 Tc than at 1.5 Tc, where high statistics and an involved analysis procedure
had to be used to obtain conclusive results.
It is also found that the pseudo-scalar and the scalar degenerate at both temperatures,

as well as the vector and the axial-vector. This is expected for the deconfined phase of
QCD. In the free theory limit, all four masses degenerate, which is neither observed for
1.5 Tc nor for 3.0 Tc. At 3.0 Tc, the (axial)vector mass reaches the free theory limit of
2πT , but it is not clear if the mass will rise further with increasing temperature and
approach 2πT from above, as suggested by HTL predictions.
The insights gained into extracting screening ground state masses and their thermo-

dynamic and continuum limits are hopefully valuable for other studies, as currently the
first simulations employing dynamical quarks reach lattice sizes where such an analysis
might be feasible.

6.4 Thermal dilepton rates

The extraction of vector meson spectral functions from the vector current correlation
functions on the lattice is a long-standing research effort.
An ansatz-based approach, developed and documented in the course of [7], was used

to set up a systematic temperature dependence study of thermal dilepton rates in the
deconfined phase near the phase transition.
The temperature of 1.4 Tc from the previous study was complemented with two fur-

ther temperatures closer to the phase transition, 1.1 Tc and 1.2 Tc. Lattice sizes and
coupling were tuned to allow for a controlled continuum extrapolation of zero and finite
momentum vector correlation functions.
Continuum extrapolations were carried out successfully at both new temperatures

and compensate for the cut-off effects of the obtained correlation functions. This is an
important requirement for the spectral function analysis.
Spectral functions and therefore the dilepton rates and the electrical conductivity

have been extracted, passing the datasets of all three temperatures through a systematic
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error analysis. Parameters for this analysis have been chosen consistently for all three
temperatures.
The results put lower and upper boundary on the electrical conductivity in the quark

gluon plasma at 1.1 < T/Tc < 1.4, with

1
Cem

σ

T
= 0.303(40) to 0.734(8)

within rather conservative systematic error estimates, see tables 5.5 and 5.6. Within
these errors, no clear temperature dependence was found. The results are, for example,
compatible with a linear as well as no temperature dependence at all, see fig. 5.19.
These results can directly be compared to three other recent lattice studies. The two

most current employ dynamical fermions but lack a continuum extrapolation: A first
study[68], using a MEM-based approach and anisotropic lattices, finds electrical con-
ductivities that are somewhat lower and feature a stronger temperature dependence. A
second study[69], usingWilson fermions and a modification of the ansatz-based approach,
finds a conductivity at T/Tc ≈ 1.4 that is well compatible with the result presented here.
An older study [70] obtains the electrical conductivity from a MEM analysis of quenched
staggered fermions and finds a value of σ(T )/T = 0.4(1), which is also in agreement with
this work.
Lattices with constant aspect ratios at all lattice spacings were used in this study.

Thus, continuum extrapolations of finite momentum correlation functions are possible
and were successfully obtained for both new temperatures. Eventually, an ansatz for a
momentum-dependent vector spectral function, allowing for an analysis analog to the
one performed at zero momentum, would be very rewarding. However, finding such an
ansatz is a major effort.
Over all, two prospects emerge: A study employing dynamical fermions, where – with

advancements in algorithms and computing power – also continuum extrapolations may
become feasible, and the study of finite momentum spectral functions, giving access to
the photon rate from lattice QCD calculations.
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