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Abstract

Advancements in the field of robotics enable the creation of systems with cognitive
abilities which are capable of close interaction with humans in real world scenarios.
These systems may take over jobs previously executed by humans like house clean-
ing and cooking or they can be supportive and act as a helper for elderly people.
One consequence of this progress is the increased need for dependable and fault
tolerant behavior of today’s robotic systems because they share the same spaces
with humans and operate in close proximity to them. Unreliable and faulty behavior
may frustrate users or even endanger them resulting in poor acceptance of robotic
systems.
The contribution of this thesis is a fault detection approach called AuCom. Fault detec-
tion is a basis element for fault tolerant system behavior which is the ability of a system
to autonomously cope with occurring faults while it is engaged in interaction. The ap-
proach is designed to tackle the specific needs of cognitive robotic systems which
feature a component based hardware and software structure and are characterized
by frequent changes due to research and development efforts as well as uncertain
and variant behavior resulting from the interaction in real world environments.
The solution presented in this thesis belongs to the class of data-driven fault detection
approaches. This class of approaches assumes that fault relevant information can be
directly derived from data gathered in the robotic system. The data exploited in this
work for fault detection is the communication between the system’s components. This
communication is represented with features which are common to all elements of the
communication (i.e., they are generic). Furthermore, the approach assumes that
the current element of the communication can be estimated from the history of the
system’s communication and that a deviation from the expected estimate indicates a
fault. This assumption is encoded in the model in terms of a novel representation of
the communication as a time-series of temporal dynamic features.
A concrete integration of the approach into a real system is exemplified on our robotic
platform BIRON. In addition, exemplary integration solutions for robotic frameworks
currently prominent in literature are discussed in this thesis. The actual capability of
the approach to report faults is evaluated for several artificial systems in simulation
and on BIRON in an off-line and on-line manner. The performance is compared to a
histogram-based baseline approach.
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1. Introduction

One of the grand challenges in the field of robotics is the development of artificial
systems equipped with cognitive abilities which take over dull or dirty jobs previously
performed by humans in real world scenarios. Imagine a service robot ready to sup-
port and serve 24 hours a day by taking care of repeating household tasks (see
figure 1.1). The system could for example serve beverages and food to humans and
subsequently bring the dirty dishes back into the kitchen and clean them. It could
take over chore weekly cleaning tasks like vacuuming, dusting or ironing. It could
provide a helping hand whenever needed for example by cooking your favorite meal
just in time when you are back from work and take care of all emerging disorderli-
ness [49]. It might help elderly people to retain their autonomy by supporting them
during everyday tasks, helping remember important dates, or call for help in case of
an emergency [72, 55].

A robot capable of autonomously performing these activities would be very helpful in
many conditions of our daily life. The demand for supportive robotic systems is sub-
stantiated through the statistics published by the IFR Statistical Department in [38].
According to this, in 2011 alone, around 1.7 million service robot have been sold
for the private (i.e., non-industrial) usage. Although, most of these were vacuum
cleaners, lawn-mowing robots, research robots and a wide variety of entertainment
systems with by far less sophisticated capabilities than necessary in order to cope
with the aforementioned tasks, these numbers imply that a great desire for robotic
systems exists.

1



1. Introduction

Figure 1.1.: The idea of a supportive robot. The picture shows the Care-O-Bot 3
system acting as a butler [47].

Advances in miniaturization and the performance of hardware in combination with
trends in machine learning and architectural concepts enable the research of sys-
tems whose capabilities slowly converge towards those necessary to accomplish
complex cognitive tasks. Great progress in this domain can be particularly perceived
through the RoboCup@Home competition [80, 134] which is part of the RoboCup
initiative [43]. Here, the participating teams demonstrate their expertise in various
home related scenarios requiring cognitive capabilities like object and speech recog-
nition, manipulation of the environment, localization or scene awareness and many
others. As considerable research progress can be attested to the cognitive robotics
domain [77] and “situations in which novice users come into contact with service
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1.1. Contribution

robots that operate in close proximity to them and share the same spaces are be-
coming more and more common” [82] dependability becomes a vital aspect of robotic
systems. For example, imagine again a robotic system designed to support elderly
people moving around in their home. What if the human needs urgent help but the
system is in a standby mode and poor integration leads to multiple restarts before the
system reaches full functionality? What if an unhandled exception or a memory leak
leads to a crash of a component leaving the system unresponsive and requiring the
intervention of a technician? Or what if the system gets stuck in its movement during
a supportive walk with a human? These situations illustrate that faults occurring in
field may frustrate the user and render the system useless or even dangerous.

Although crucial, dependability seems not to be first priority in today’s robotic systems.
For example, an analysis of fifteen mobile robots over three years has shown that
these systems are rather unreliable having a mean time to failure of 24 hours [25, 24]
implicating the visit of a technician each day if such a system were to be deployed in a
home environment. While these studies have been concerned with mobile platforms
they suggest that robots in close human interaction suffer from similar problems and
thus require additional means to increase their reliability and dependability.

1.1. Contribution

There exist several ways to improve the dependability of a robotic system and they
are applicable in different phases of its life-cycle (see Chapter 2). The work laid out
within this thesis focuses on fault detection as a means of detecting faults while the
system is in field. With respect to the example introduced in the previous section
fault detection would allow the system to autonomously find out that some kind of
fault has occurred (e.g., a component crash) and eventually trigger recovery routines.
While this approach does not improve the system’s reliability in terms of mean time to
failure it has a positive impact on the system’s operation time by reducing the number

3



1. Introduction

of faults which need to be handled by a human. The main contribution of this thesis
is the answer to the following question:

How to design a data-driven fault detection approach for a Component
Based Robotic System that does not modify the system’s components?

The AuCom1 fault detection approach developed in this thesis takes account of the
specific aspects of cognitive robotic system. Compared to other fields (e.g., stan-
dard industrial robotics) cognitive robotics often involves close, bidirectional, human
robot interaction which takes place in open-end dynamic environments and makes
the system’s behavior variable and difficult to predict. Furthermore, algorithms used
to implement cognitive skills frequently employ machine learning techniques which
increase variation and uncertainty of the system’s behavior.

To tackle these issues the proposed approach is based on the data-driven fault de-
tection paradigm. This class of fault detectors2 relies on the assumption that in order
to detect faults it is sufficient to gather fault-sensitive data in the target system, derive
a model from it and apply the model to decide whether the system behaves normal or
not. For complex systems this procedure is beneficial since the model can be learned
instead of generating it manually which can be a tedious task and requires system
expert knowledge. In case of system changes, adaptations of the detector often can
be realized by re-training the model with new data.

In this work a system is regarded as a Component Based Robotic System (CBRS)
whose components communicate with each other in order to fulfill a task. A nov-
elty of the approach proposed here is that it exploits the communication between
the system’s components as fault-sensitive input. In the remainder of this thesis the
communication is called the inter-component communication (ICC) of a system. The

1The work within this thesis was initially started within the context of Autonomic Computing [49].
Although the focus has shifted away from this concept, the author decided to keep the acronym
AuCom as the name of the detection approach.

2In this work the implementation of a particular fault detection approach in software is called a detector
and the implementation of the approach presented in this work is called the AuCom-detector.

4



1.2. Outline of the Thesis

advantage of relying on ICC as input is that it can be gathered in the system without
the modification of single components.

The approach proposed in this work exploits solely the generic information of the com-
munication. Considering ICC as a set of single communication data-points produced
by different components and ordered by time this means that the features extracted to
represent each single data-point have to be common to a wide range of components
and systems. This way of encoding the ICC simplifies the application of the AuCom-
detector to different systems and makes it more robust in the face of changes.

Fault detection is basically a classification task. This classification can be realized ei-
ther with one or with several classes. In the former case the classifier maintains only
one class which represents the system’s normal behavior and outliers to this class
are regarded as faults. In the latter case the classifier possesses additional classes
representing faulty states and detection takes place by deciding to which class the
current system behavior belongs to. While the latter may yield a more accurate de-
tection, it is dependent on data from faulty behavior. In this work, I therefore choose
to exploit a one class classifier solution.

Another contribution made within this thesis is the implementation of the AuCom fault
detection approach in a modularized way which makes it easy to apply the approach
to other robotic systems. Furthermore, an experimental framework was designed
which facilitates the repetitive execution of experiments.

1.2. Outline of the Thesis

The remainder of this thesis is structured as follows. The upcoming chapter 2 consists
of two parts. Part one is concerned with basic terms and concepts of dependability
including definitions of the terms fault and fault detection. It provides the basis for the
upcoming discussion on fault detection concepts and brings fault detection in line with

5



1. Introduction

the framework of dependability. The second part is concerned with the description
of Component based Robotic systems (CBRS) which are the targeted systems in
this work. The chapter concludes with an introduction of challenging aspects when
applying fault detection to the targeted systems.

Chapter 3 provides an overview of the various fault detection approaches present
in the literature. The discussion starts with an introduction of historical approaches
summarized as legacy solutions. Subsequently, the two prominent groups of model-
based and data-driven techniques are presented. In the last part of this chapter, the
literature is discussed in the light of the challenges introduced at the end of chapter 2.

In chapter 4 the discussion turns towards the AuCom fault detection approach devel-
oped within this thesis. The benefits of ICC as the input for the AuCom-detector are
discussed together with the notion of Temporal Dynamic Features (TDF) as a generic
representation of ICC. Furthermore, the different processing steps of the algorithm
are introduced covering both the training and the application phase.

Implementation and integration efforts of the approach are discussed in chapter 5.
The modularized structure of the AuCom-detector is presented together with typical
workflows in which the AuCom-detector was used during the research period. Fur-
thermore, integration aspects of the detector into robotic systems are introduced.
Concrete integration efforts are presented for the robotic system called the BIelefeld
Robot Companion (BIRON) [59] together with hypothetical integration efforts for fur-
ther communication frameworks currently prominent in robotic systems.

In chapter 6 the quantitative evaluation of the AuCom-detector executed in simulation
and on a real robot is presented. The simulation experiments were conducted on
different artificial systems implemented based on the CAST communication frame-
work [63]. The evaluation on a real system was executed on the BIRON system in an
off-line and on-line manner.

In Chapter 7 the findings of this thesis are summarized, conclusions are drawn and
an outlook with implications for future work is given.

6



2. Dependability in Component
Based Robotic Systems

The following chapter is concerned with the conceptual framework of dependable
computing and the domain of Component based Robotic systems (CBRS). The inten-
tion is to i) define the concept of fault detection as a major foundation of fault tolerant
systems and ii) give a comprehensive description of the targeted systems. In addi-
tion, the coherent terminology introduced in this chapter shall facilitate the discussion
in the remainder of this thesis. The chapter begins with the concept of dependabil-
ity in section 2.1 comprising attributes, threats and means of dependable robotics.
Among others, this involves the concepts of fault and fault detection. In section 2.2
the discussion turns towards the description of the set of CBRS. Component based
Software Engineering (CBSE) [64, 121] which is a fundamental concept of CBRS is
introduced and it is argued that it is meaningful to focus on systems build this way
because CBSE is a successful and promising concept for the development of robotic
systems. The section concludes with the introduction of challenging aspects on fault
detection in the context of CBRS.

2.1. Dependability: Attributes, Threats, Means

This section introduces the fundamental terms and concepts of dependability and
dependable computing as an overarching concept of the actual topic of this work,

7



2. Dependability in Component Based Robotic Systems

namely fault detection. The main intention is to provide a set of crisp definitions in
order to simplify the discussion of the fault detection approach from different points
of view in the upcoming chapters. The concepts on dependability have their origin in
the engineering domain and were subsequently adapted and extended for their use
in the robotics domain leading to slightly differing terms used in these domains. In
this section the definitions from both domains are introduced due to the fact that they
are both frequently used in the literature on fault detection in robotic systems.

We begin with a definition of dependability given by Avizienis et al. [6]:

Dependability is the ability to avoid service failures that are more frequent
and more severe than is acceptable.

This definition takes into account that a system can (and usually does) fail whereas
it is up to the user of the system to decide whether the system can be still regarded
as dependable or not. In addition, this definition implies that the dependability of
a system also depends on the actual task to be executed. Furthermore, Avizienis
et al. describe dependability as an integrating concept which encompasses several
different attributes1:

. Availability: The probability that a system will operate satisfactorily and effec-
tively at any period of time.

. Reliability: The ability of a system to perform a required function under stated
conditions, within a given scope and during a given period of time.

. Safety: The ability of a system not to cause damage to persons or the environ-
ment. It can be also described as the absence of catastrophic consequences
on the user or the environment.

. Integrity: The absence of improper system alterations.

1It shoud be noted that enumeration of the attributes of dependability follow the work of Avizienis et
al. [6]. However, the descriptions used in [6] were too short and thus have been augmented with
the work of Iserman [70].
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. Maintainability: The ability of the system to undergo modifications and repairs.

. Security: The ability of a system to prevent unauthorized access or handling of
system information.

These attributes may vary in their importance in regard to a given robotic system
and the intended application of the system. For example, in case of a robot that
is licensed under open source, security might not be an attributes with top priority2.
Instead, if the system is intended to work in populated spaces, safety is a crucial
attribute. The extent to which a system incorporates the attributes of dependability
should be measured in a relative and probabilistic sense because the unavoidable
presence of occurrence of faults, a system will never be totally available, reliable,
safe, or secure [6].

2.1.1. Threats to Dependability

The dependability of a system can be affected by threats throughout its entire life-
cycle which consists of a development and an application phase [6]. These threats
are usually known as faults, failures, malfunctions and errors. There exist two major
definitions of threats widely used in the domain of engineering [70, 39] and computer
science [6]. For the engineering domain Isermann et al. [70] define a fault as follows:

Definition 2.1.1.1
A fault is an unauthorized deviation of at least one characteristic property (feature) of
the system from the acceptable, usual, standard condition.

This definition marks a fault as a state within the system whereas the transition to a
faulty state may develop abruptly (step-wise) or incipiently (drift-wise). Based on this,
the definition of a failure is given as follows:

2Assuming that in an open source system anyone is able to access any information related to the
system and its application.
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Definition 2.1.1.2
A failure is a permanent interruption of the system’s ability to perform a required
function under specified conditions.

A failure is an event which may result from one or more faults and may occur in
different types (i.e., random, deterministic, systematic, causal etc.). Similar to a failure
a malfunction is defined as:

Definition 2.1.1.3
A malfunction is an intermittent irregularity in the fulfillment of a system’s desired
function.

Thus, a malfunction can be seen as a discontinuous failure i.e., a temporary inter-
ruption of the system’s function. The last threat, the error, remains undefined in the
engineering domain3.

In the context of dependable computing and robotics the definitions of the aforemen-
tioned threats are slightly different whereas the focus lies on the concepts of error,
fault, and failure [6].

Definition 2.1.1.4
An error is a part of system state that may cause a subsequent failure.

This definition is similar to 2.1.1.1 since it addresses the fact that if something goes
wrong in a system, it is most probably reflected in the system’s overall state. How-
ever, here the system state is used to define an error. As a consequence, fault de-
tection approaches which follow this definition are often also termed error detection
approaches. Based on the definition of an error Avizienis et al. propose an alternative
definition of a fault:

Definition 2.1.1.5
A fault is an adjudged or hypothesized cause of an error.

3Although there exist definitions for the term error in the engineering domain, this is not the case for
the work of Isermann [70] referenced in this thesis.
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This definition describes a fault as the reason why the state of a system may change
resulting in an error. The authors in [6] define a classification of faults based on the
following eight viewpoints:

. Phase of creation: Depending on the phase a fault can be a development or
application fault.

. System boundaries: Here faults are differentiated according to whether they
are internal to the system (internal faults), or come from its external environ-
ment (external faults).

. Phenomenological cause: The phenomenological nature of fault enables the
classification into (a) natural faults, i.e. faults which are caused by natural phe-
nomena and (b) human-made faults.

. Dimension: Faults can be either associated with hardware (hardware faults) or
software (software faults).

. Objective: From the security point of view faults can be also classified into
malicious and non-malicious.

. Intent: This category also affects the security standards of a system. One can
differentiate deliberate faults carried out to cause harm or damage and non-
deliberate faults usually introduced by a user or developer without being aware
of them.

. Capability: This category targets the human factor when introducing faults into
a system. One can differentiate accidental faults, which are similar in their se-
mantics to non-deliberate faults and (b) incompetence faults, which are often
caused by a lack of competence of the parties involved.

. Persistence: This category describes the temporal behavior of faults. Transient
(sometimes called intermittent) faults are difficult to detect due to their temporary
nature. Persistent faults are continuously present in a system which simplifies
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the detection problem.

In the domain of dependable computing a failure has the following definition:

Definition 2.1.1.6
A failure is an event that occurs when the delivered service deviates from correct
service.

Following this definition, a service delivered by a system is its behavior as it is per-
ceived by its user(s) [6]. Failures can be categorized into content failure (deviation
from expected content) or timing failure (deviation from the expected time of arrival or
duration of delivery of a service).

As previously said in the literature on fault detection in robotic systems both definition
(Isermann and Avizienis) are being frequently utilized which leads either to the use
of the concept of fault detection (in case of the engineering point of view) or of error
detection (for the dependable computing domain). Often the usage of one of these
definitions is implicit i.e., it can be only derived from the exploited terminology and
the content of the work. Both aspects hamper a coherent discussion of the literature.
In this work I therefore decide to use fault detection a synonym for both fault and
error detection. Furthermore, the terminology used for the description of the AuCom
approach corresponds to the one defined in the engineering domain and follows the
work of Isermann et al. [70]. As a consequence, fault detection in this work is defined
by exploiting definition 2.1.1.1 as follows [70, p. 61]:

Definition 2.1.1.7
A fault detection approach is a method which uses the relations between several
measured variables to extract information on possible changes caused by faults.
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2.1.2. Means of Dependability

Throughout the years many ways to improve the dependability of artificial systems
have been developed. Following [6] these means can be broadly divided into four
complementary categories:

. Fault prevention techniques are part of the general engineering task and in-
volve best practice methodologies for software (e.g. information hiding or mod-
ularization) and hardware (e.g. design rules) and for the development process
as such (e.g., revision control of code or automatized regression tests).

. Fault removal techniques are targeting the reduction of the number and severity
of faults by manually verifying conditions, diagnosing the system and removing
faults. These three steps can be either executed during development or while
the system is in use. In the latter case the user is involved in the fault removal
process by reporting occurred faults which are then fixed during the mainte-
nance of the system.

. Further techniques are concerned with Fault forecasting where the goal is
to qualify failure indicators (failure modes) in the system and quantify them in
terms of probabilities. By exploiting this information an estimate of the expected
number of faults in a system can be given or the probability of future occurrences
can be estimated.

. The fourth group of techniques is concerned with Fault tolerance. In gen-
eral, fault tolerance comprises three phases. First, faults are detected in the
system based on monitored fault-related measures. The next step comprises
techniques to diagnose the fault and identify the reason for its occurrence. Fi-
nally, recovery routines are executed which bring the system back into a normal
operation mode.

Figure 2.1 depicts a summary of the attributes, threats, and means of dependability
in a tree-like structure.
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Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Integrity

Maintainability

Faults

Failures

Errors

Malfunctions

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2.1.: A representation of the attributes, threats, and means of dependability in
a tree-like structure [6].

The research carried out in this thesis is focused on fault detection as a basic ingre-
dient for fault tolerance. Fault tolerance techniques play an important role in robotic
systems which primarily operate in close interaction with humans in an autonomous
way. They enable the automatic removal of faults in order to prevent failures from
generating a harmful impact on humans, the environment, or the system itself.

2.2. Component Based Software Engineering for

Robotic Systems

This section introduces CBRS which represents the set of robots build upon the con-
cept of Component Based Software Engineering [20, 21]. Simultaneously, CBRS
defines the set of systems eligible for the application of the fault detection approach
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developed in this work. CBSE is an approach that has arisen in the software engi-
neering community in the last fifteen years and aims to move the focus when building
a system from the long-established programming to the composition of systems as
a mixture of pre-built and custom built components [18]. In CBSE a system is re-
garded as a set of components which communicate with each other to cooperate and
solve a given task. This perspective on a system emphasizes the separation of con-
cerns, facilitates re-use of components, and improves the scalability, maintainability,
and robustness of the system. It proved to be beneficial in the development process
of large and complex systems in various domains like factory automation, avionics, or
automotive [20].

Modem robots are considered complex distributed systems consisting
of a number of integrated hardware and software modules. The robot’s
modules cooperate together to achieve specific tasks. [86]

The congruency of the CBSE definition and this perspective on today’s robots sug-
gest the utilization of CBSE for robotic systems. Despite this, in the robotic context
where research plays an important role, the strong emphasis on software reuse ac-
celerates the research progress, since researchers do not have to constantly reinvent
the wheel but can rather build upon already present solutions implemented by oth-
ers. Often, large scale projects are realized by a heterogeneous group of cooperating
researchers potentially distributed all over the world. By considering the different
research topics during system decomposition CBSE also enables to challenge the
topics independently and in parallel, thereby facilitating the cooperative aspects of
research.

The benefits of CBSE led to the development of a plethora of CBRS. Among others,
exemplary systems are BIRON [131], Dora [62], cosero [119], PR2 [16], or Nao [54].
Besides complete systems, plenty of robotic frameworks and middleware solutions
which follow the CBSE principle were developed with a particular emphasis on the
needs in robotics. Here, the most popular ones are XCF [136], YARP [44], OR-
COS [22], OpenRTM-aist [4], ROS [103], Cast [63], and RSB [132].
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The arguments presented here show that CBRS already comprises a huge number
of modern robots and suggests that Component Based Software Engineering is an
important concept for the development of future systems. This renders the choice of
these types of robots as the set of targeted systems for the fault detection approach
developed in this work a meaningful option. To facilitate further discussions in the
remainder of this thesis, basic terms and concepts of CBRS are introduced now based
on the work of Brugali and Scandurra [20, 21]. The set of presented concepts is
limited to aspects which are sufficient in order to discuss the fault detection aspects
in this work. For an exhaustive description the interested reader is referred to [20, 21].

A System is an entity that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world. These other systems are the
environment of the given system. Each system is regarded as being composed of
components which interact and cooperate with each other, and thus generate the be-
havior of the system. Each component represents a modular part of a system that
implements a coherent set of robotic functions and whose manifestation is replace-
able within its environment. In robotic systems a component may implement a skill of
the system like the detection and recognition of faces and objects or self-localization
and navigation. Other components act as connectors for the hardware of the robot
and manage sensors (i.e., stereo cameras) or actuators (e.g., a gripper). The behav-
ior of a component is completely determined by its implementation and its interfaces.
Interfaces describe the interaction capabilities of a component and consist of oper-
ations and data elements. Two different types of interfaces can be distinguished: i)
provided interfaces which expose services implemented by a component including
data elements and ii) required interfaces which describe the necessary input of a
component in terms of required services and data. Components in a system have
their required interfaces connected to the provided interfaces of other components
of the system. All infrastructural functionality necessary for example for the com-
munication between the components has to be implemented in the middleware of
the system. Thus, the middleware is a vital element in a CBRS. It provides means
for component communication, execution, life-cycle management, and other required
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features [111]. In a middleware based system components are not connected directly
with each other but through the middleware which acts as a mediator by providing
appropriate implementations of various communication paradigms. In this work, com-
munication plays the role of the primary source of information in order to detect faults
in the targeted system. Thus, the fault detection approach developed here puts also
particular demands on the system’s middleware. However, the concrete discussion
of these requirements makes the most sense when conducted in the light of the im-
plementation aspects of the approach and is therefore postponed to chapter 5. Fig-
ure 2.2 summarizes the description of the various terms and concepts of CBRS based
on an exemplary two-component system.

System

Physical world

Component A Component B

Middleware

System B

Component A Component B

Middleware

Interaction

Interaction

Communication

Figure 2.2.: A conceptual view on a Component Based Robotic System. The system
interacts with other systems, humans, and its environment. The compo-
nents in the system communicate with each other through their interfaces
and with the help of a middleware as a mediator.
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2.2.1. Challenges

Having introduced the class of robotic systems targeted in this work (i.e., CBRS),
this section is concerned with challenging aspects for fault detection when applying
it to these systems. In this context, challenges arise from i) specific properties of the
targeted systems, ii) the development process and iii) the application of the system in
real-world scenarios. In particular, the following challenges were discovered:

. A central aspect of the development and application of today’s robotic system
is research and education. Often many students and researchers work on the
same robot either in context of a common projects or on separate ones thereby
sharing the robotic environment. The developers add, exchange or modify the
functionality of the commonly used system. This renders frequent changes
an integral part of the life-cycle of today’s robots. Changes to the system’s
behavior can also emerge on-line during its interaction with the environment for
example when the system learns new skills [127] or improves older ones. All
in all, frequent system changes need to be considered in the design of a fault
detection approach.

. Applying a fault detector to a concrete robot always requires integration efforts.
In general, it involves modifications of the targeted system in order to access
data which is expected to be fault sensitive and adaptations of the detector in
order to cope with new input data. One (rigorous) option is to modify each sin-
gle component of the system and gather component internal features as fault
detection input. This forces tight coupling between the target system and the
detector and reduces the portability of the approach to other systems. In ad-
dition, for large systems it may result in a high amount of integration efforts.
This proceeding is also incompatible with the previous challenge since compo-
nent modifications may render the monitoring and detector code to be subject
to modifications, too. Thus, the second challenging aspect identified in this work
is minimal invasive integration of the detector into a target system.
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. Another challenge which needs to be tackled is the usage of expert knowledge
during the application of a fault detection approach to a particular system. In
general, such knowledge is convenient as it enables the design of precise and
fine-tuned models with improved detection capabilities. For example, knowing
that a component A produces an output 100 milliseconds after receiving input
from component B could be used to define an appropriate rule and check for
it. However, as CBRS are regarded to be complex systems with an increasing
amount of functionality often realized based on machine learning techniques,
incorporating expert knowledge becomes a challenging and tedious task. The
rules to be defined become more complex due to a larger number of compo-
nents and complex interaction among them. In addition, relying upon expert
knowledge requires a system expert at hand each time changes have to be
made to the detector. As a consequence, the minimization of expert knowl-
edge exploited for fault detection is considered to be another challenge which
needs to be tackled.

. A cognitive robotic system is exposed to a broad range of environmental con-
ditions during real-world interaction like changing light and sound conditions,
different rooms and open spaces and varying human interaction partners. This
diversity in the environment leads to variations in the systems behavior even if
no explicit changes are applied to it. In addition, variance results from the imple-
mentation of behavior with the help of machine learning in order to realize capa-
bilities like object recognition [51], face detection [128], speech recognition [40]
or simultaneous localization and mapping methods [123]. Further uncertainty is
introduced into the system through the system’s sensors which produce inher-
ently noisy readings. Varying input data may for example lead to classification
errors of objects, faces, or spoken language. These findings suggest that un-
certain and variant behavior should be considered throughout the designing
process of a fault detection approach, too.

. Robotic systems consist of components realized either in hardware or software.
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Clearly, both types of components are subject to faults. In case of hardware
components this might happen due to e.g., wear or overheating while software
components often fail because of programming failures (e.g., leading to mem-
ory leaks), unconsidered inputs and system states or temporarily not available
resources (e.g., out of memory situations). Consequently, an appropriate ap-
proach should provide means for fault detection in hardware & software com-
ponents.

2.3. Summary

This chapter has introduced two vital aspects which together provide a conceptual
frame for the discussion of the fault detection approach presented in this work. In sec-
tion 2.1 the notion of dependability and dependable computing has been introduced.
The intention was to provide the reader with an overview of the theoretical framework
of dependability in robotics, to show how fault detection fits into this framework and
to introduce a coherent terminology which will be used throughout the remainder of
this thesis. In particular, the concept fault detection, which is central in this work, has
been introduced and identified as a fundamental element of fault tolerant systems.
The second part of this chapter was dedicated to Component Based Robotic Sys-
tems as the set of systems the fault detection approach developed in this work can
be applied to. The underlying concept of Component based Software Engineering
has been introduce and arguments have been provided to support the decision of the
author to focus on this type of systems. Finally, challenges on fault detection in the
context of CBRS were discussed.
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Fault detection has a long tradition in the field of artificial systems dating back to
the early 1970s [68]. First approaches were based upon hardware redundancy, sig-
nal processing and plausibility checks and their application field were mainly indus-
trial plants. The idea of hardware redundancy [120, 139] is depicted in figure 3.1(a)
where two or more functional identical components are fed with the same input and
are therefore expected to produce the same output. The detection of faults is then
based on deviations of the outputs. Hardware redundancy offers precise, depend-
able, and fast detection of faults sourced in the system. Simultaneously, it comprises
the diagnosis aspect by indicating which component delivers unexpected output. A
preferred variant of the scheme is to implement the redundant components in different
ways which renders the approach more robust to externally induced faults because
it is expected that different implementations are not influenced in the same way thus
reducing the probability of a dead loss. However, this technique is expensive in terms
of money and space. As a consequence, this technique is only recommendable for
a limited number of extraordinary critical components in a system and thus can be
regarded as a complementary solution. Signal processing approaches assume that
the output of a component contains valuable information which can be used to detect
faults. Detection is done by applying mathematical or statistical operations on the out-
put in order to detect unexpected changes. The signal processing scheme is depicted
in figure 3.1(b). Due to the fact that only the output is considered, these techniques
have its limits for service robotics where many components have high dimensional
state spaces and ambiguous input output mappings. Another class of approaches
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Figure 3.1.: Schematic description of the processing schemes for hardware redun-
dancy, plausibility check and signal processing [39].

is called Plausibility checks. These approaches assume that fault detection can be
done by checking whether the values of the monitored system output variables are
located within plausible ranges. By checking state variables plausibility checks can
be customized for specific operating conditions representing rough process models.
However, in complex systems a consistent coverage of the process requires a huge
amount of rules and a lot of expert knowledge drawing these approaches less inter-
esting for this work. The scheme for plausibility checks is depicted in figure 3.1(c).

Based on the experience with these three concepts more advanced and improved
fault detection approaches have been developed. They can be broadly divided into
model-based and data-driven solutions [39]. Model-based approaches can be further
partitioned into analytical and knowledge-based solutions. Data-driven fault detec-
tion can be further differentiated based on the exploited data processing technique.
Figure 3.2 summarized all the just mentioned concepts in a taxonomy tree whereas
hardware redundancy, signal processing, plausibility checks have been summarized
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as legacy approaches.
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Figure 3.2.: A taxonomy of fault detection approaches divided into three main groups:
i) legacy, ii) model-based, and iii) data-driven. The dots in the data-driven
listing indicate that the list is not exhaustive.

The remainder of this chapter is structured as follows: Section 3.1 introduces model-
based fault detection approaches and gives an overview of the literature on analytical
and knowledge-based solutions. Subsequently, in section 3.2 data-driven techniques
are presented. The chapter concludes in section 3.3 with a discussion of the pre-
sented concepts in terms of applicability to component based robotic system thereby
considering the challenges introduced previously in section 2.2.1.

3.1. Model-based Approaches

Model-based approaches continue the idea of hardware redundancy yet the redun-
dant component is a software model of the system (i.e., instead of a hardware com-
ponent). The models are built upon the experiences with signal processing and plau-
sibility check approaches [39]. Model-based approaches all follow a common basic
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structure depicted in figure 3.3. They all utilize a system model of quantitative or quali-
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knowledge
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Figure 3.3.: Schematic description of the processing schemes of the model-based
fault detection paradigm [39].

tative nature which is a description of the system’s dynamic and static behavior. While
the real system is in field the model runs in parallel and is driven by the same inputs.
The assumption is that that while processing the same inputs, the outputs computed
by the model will be identical or similar to the output of the real system in a fault-free
situation. Calculating the difference between the real and the reconstructed values
yields valuable information about the current health state of the system. This process
is also called residual generation. Unknown disturbances and model uncertainties
negatively influence the residual generation and need to be treated adequately to
reduce false alarms [39]. Hence, additional processing in terms of filtering and ex-
tracting can be optionally applied to the residuals. Subsequently, some decision logic
is applied in order to decide whether the residuals indicate a fault or not.

3.1.1. Analytical Approaches

Analytical approaches constitute the first type of model-based fault detection tech-
niques dating back to the early 1970s [73]. The model exploited in analytical
approaches is a mathematical description of the system grounded on first princi-
ples (e.g., physical laws) [15]. These approaches are therefore well suited for solu-
tions which operate on information very closely related to the hardware of the targeted
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system. Commonly applied techniques are parameter estimation [67, 46], adaptive
filtering [57, 113], (variable) threshold logic [65], or statistical decision making [113].
Next, the work of Freyermuth [46] will be presented in more detail in order to facilitate
the basic idea of an analytical fault detection approach.

The task in the work of Freyermuth is to monitor and detect faults in an industrial robot
with n many rotational axes. Common faults in such systems arise from deficient
maintenance, mechanical collisions, wear of the mechanics or heating problems. The
proposed approach is a parameter estimation based technique which means that the
evidence of a fault is estimated from the parameters of a mathematical system model
rather than from the model’s output. Furthermore, the parameters in the proposed
model represent physical process coefficients like friction or moments of inertia which
is why the approach is said to be based on first principles.

In order to exploit the physical process coefficients for fault detection it is necessary
to either measure them directly or estimate them based on other variables which can
be accessed more easily. Freyermuth chose the latter solution which is less costly
as no modifications of the system and no new hardware is required. He proposed
a mathematical model which links the physical process coefficients to sensor mea-
surements for the currents of the electro motors of the robot, angular velocities of the
joints, and angular position of the robot’s parts. The model is defined as a system
of non-linear differential equations of the static and dynamic, behavior of the robot
which is a common representation for such systems [78]. The model comprises one
equation for each of the n axes which is defined as follows:

MA(t) = J(ϕ0,mL)ω̇(t) +MD0sign(ω(t)) (3.1)

+MD1ω(t) +MD3ω
3(t) +MGcos(ϕ(t)) + e(t) (3.2)
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Whereas the elements denote the following:

MA(t) : Time dependent actuating drive torque

J : Position and load dependent moment of inertia

MD0,MD1,MD2,MD3 : Torque friction coefficients

MG : Gravitational torque

mL : Mass of load at end effector

ϕ(t), ω(t), ω̇(t) : Position, Velocity, Acceleration

e(t) : Stochastic disturbances and slight model inaccuracies

This formula combined with the proportional relation MA(t) = ΨIA(t) connects the
measurable parameters Ψ = [J,MD0,MD1,MD2,MD3,MG] to the latent parameters
Θ = [IA(t), ω̇(t), ω(t), ϕ(t)]. Each single latent parameter Θj represents a physical
process coefficient except for some proportional sensor-specific factors. In the re-
mainder of this example single latent variables Θj will be denoted by pj. Monitoring
and fault detection takes place in two steps. Firstly, the values for Θ are estimated
based on samples taken from the sensors. Secondly, each estimated pj ∈ Θ is classi-
fied in order to decide whether it deviates significantly from its expected value thereby
indicating a fault.

Estimation of the latent parameters Θ is done by first taking n+1 consecutive samples
for the measurable values Ψ and inserting each of the samples into formula 3.1 which
results in an equation only dependent on Θ. Overall, the equations represent an over-
determined equation system which is transformed into a regression equation and is
solved yielding estimates for Θ [69]. This estimation technique requires the number
of samples n to be greater than the number of model parameters in equation 3.1.

In the classification step the estimates are examined for unexpected deviations which
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eventually indicate a fault. First, for each pj a smoothed value µj is computed us-
ing a moving average filter (MA) thereby reducing the influence of noise and other
uncertainties. Subsequently, each µj is transformed relative to an expected mean
µ0(pj) ≡ µj and variance σ2

0(pj) ≡ σ2
0. The expected values are assumed to be known

from experiments with the system or a dedicated training phase. The result is fed
into membership function according to the concept of fuzzy logic [52] which defines
the membership of the value µj to the linguistic expressions "numerical value of the
respective coefficient changed" or "numerical value of the respective coefficient de-
creased". In case a µj is classified as being member of one of these expressions it
is said to deviate significantly which again is interpreted as a system fault. In case
where µj does not belong to any of the two expressions, no fault in the system is
reported.

Another approach has been proposed by Fathi et al. with the goal to monitor a feed-
water subsystem of a coal-fired power plant [42]. Regarding this system, common
issues are problems with the deaerator, its controller and the gas transportation lines.
The proposed method is based on structural decomposition of the system and an
additional modeling of each of the resulting sub-systems with an adaptive Kalman
filter [75]. In [113] Selkäinaho and A. Halme demonstrated their approach for fault
detection in a dynamic positioning system of a ship. The model is realized as an
adaptive non-linear filter [60] which describes the ship dynamics in terms of: a) exter-
nally generated movements forced by wind and waves and b) intendedly introduced
forces by the ship’s thrusters. Simulated faulty situations comprise a loss of a thruster
and a gyro-compass fault. Another analytical approach was proposed by Saif and
Guan in [108]. The system to be monitored is a vertical takeoff and landing (VTOL)
aircraft. In this work the authors assume that a linear, time invariant, dynamical model
is sufficient in order to detect faults in the sensors and actuators of the aircraft. The
model is based on the unknown input observer (UOI) theory which enables the con-
sideration of unknown external disturbances in the modeled dynamics [129]. The
applicability of the approach is evaluated in simulation.
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Clark et al. applied fault detection to a hydrofoil boat in order to detect incipient faults
of the accelerometers, roll gyro and yaw rate gyro-compass which might happen due
to wear [31]. The used model is based on the dedicated observer scheme [32] where
each instrument has a dedicated observer linked to a model of the boat state. In order
to detect which one of the instruments is actually faulty additional logic is applied on
the common output of all observers. Fourteen different single-faults were induced in
a system with four different instruments and could be all detect even if some system
parameters vary (e.g., mass of the boat).

These examples are representative for the category of analytical fault detection ap-
proaches and demonstrate the range and type of systems where solutions tightly
coupled to first principles have been successfully applied. Limitations for the appli-
cation of analytical models arise from the complexity of the system in terms of the
number of components and their interaction. In this case mathematical descriptions
become impracticable [42]. Furthermore, analytical models are not suitable for de-
tection of faults in components with functionality represented on a higher abstraction
level than physical laws (e.g., software components).

3.1.2. Knowledge Based Approaches

Knowledge based approaches also exploit a system model and feed it with identical
real system inputs in order to detect faults by comparing outputs. Yet, the model used
here is defined in a more qualitative and abstract way rather than as an exact and
physically correct description. By this means, complex systems can be modeled eas-
ier by abstracting from irrelevant and focusing on relevant details [39]. Furthermore,
components of a system which are not based on first principles can be modeled, too.

Again, the discussion of the knowledge based fault detection literature begins with
a detailed example which will highlight vital characteristics of this approach and the
differences to analytical approaches. The detailed example is the work of Steinbauer
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et al. on a fault detection, diagnosis and repair approach which is applicable to the
control software of mobile robots [117]. Although the approach is capable of iden-
tification of the source of the fault and can trigger recovery routines the description
given here is concentrated on the monitor part of the approach to keep this example
focused on the topic of this thesis. The targeted system in Steinbauer’s work is a
RoboCup MSL robot interacting within the robot soccer scenario [43]. The control
software of the robot comprises separated modules called services. Each service
is an independent process and implements a specific task e.g., image processing,
world modeling or planning. The overall functionality of the system is given by the
single tasks of the services and their interaction. The control system is organized
in three levels with increasing abstraction. At the lowest abstraction level services
like the laser abstraction service or the CAN-Bus directly communicate with the hard-
ware. The next level contains services which perform computation of sensor inputs
including image processing, or sensor fusion tasks. The planner is located on top of
this hierarchy implementing an abstract symbolic representation of the knowledge of
the robot together with reasoning capabilities. The various services can communi-
cate with each other through two different techniques: 1) remote method calls and 2)
the so called event channels. While the former follows a client/server paradigm the
latter implements a publish subscriber relation between the participants and allows
for a loose coupling of the participating components. In order to monitor the control
software Steinbauer et al. apply the concept of dedicated observers. An observer
monitors either the behavior of a single service or the communication between differ-
ent services. By this means, a fault in the control system is detected if one observer
determines deviation from the expected behavior. In order to represent different dy-
namics of components and the interaction between them, several types of observers
have been defined:

. Periodic event production: This observer checks whether a specific event e is at
least produced every n milliseconds. An example for this observer is the event
MotionDelta containing odometry data which is produced every 50 ms by the
Motion service.
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. Conditional event production: This observer checks whether an event e1 is pro-
duced within n milliseconds after an event e2 occurred. An example for this
observer is the event WorldState which is produced by the WorldModel service
after an event ObjectMeasurement occurs.

. Periodic method calls: This observer checks whether a service calls a remote
method m at least every n milliseconds. An example for this observer is the
RangeSensor interface of the Sonar service which is regularly called by the
BehaviorEngine service.

. Spawn processes: This observer checks whether a service spawns at least n
threads.

The types of different observers were defined based on experiences made during the
development of the mobile robot platform and its components. For the evaluation of
the proposed diagnosis system and its implementation several experiments has been
conducted on a team of soccer playing robots. Two types of faults were induced into
the control system: a deadlock fault and a service crash deadlock whereas both could
be detected successfully.

The example above demonstrates the benefits of utilizing a knowledge-based de-
scription of a system for fault detection thereby spanning the fault detection capabili-
ties over several abstraction levels of the system. This allows to a) focus on important
features, b) reduce the complexity of the created detection model and c) model soft-
ware components of a system. These facts have been exploited in many other fault
detection approaches for various systems. A model can be completely hand crafted
as in the example above but it can also contain parameters which can be adjusted
based on training input as in the work of Freitas et al. [35]. The authors proposed an
approach for fault detection of locomotion faults of a waiter robot and a Mars-rover.
A robot is assumed to be a complex non-linear process and is modeled as a mixture
of linear processes. The different states of the system (i.e., normal and faulty) are
explicitly represented by a discrete variable in the model. The distributions over the
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parameters of the model are estimated with particle filters, whereby the generation of
new particles is directed with the help of a Kalman-filter resulting in a more directed
sampling. The approach has been applied to two different mobile robot platforms.
The first one is a waiter-robot and its purpose is to facilitate research on general pur-
pose skills e.g., skills necessary for fetch & carry tasks [43]. The other system is a
Mars-rover developed for extraterrestrial missions. In both cases only sensors and
actuators already present in the system were used in order to detect faults in the lo-
comotion of the robot. Here, the examined faults were inspired by experience with the
particular platform e.g., a "rock under a wheel" fault for the Mars-rover.

Another knowledge-based approach was proposed by Bajawa and Sweet [8]. They
applied a fault detection and diagnosis system called Livingstone 2 to the main propul-
sion system of a spacecraft. Livingstone 2 is a consistency-based reasoning tech-
nique which operates on a discrete model of the monitored system thereby maintain-
ing a belief state over time of the system’s current mode (i.e., normal or faulty). The
model consists of discrete state variables which represent states of the components
of the system, constraints and transitions between this variables, as well as input com-
mands to the system. The belief state of the system is updated over time based on an
initial state and consecutive observations taken from the actual system. In each step
the most consistent belief state is found by first finding the set of the most consistent
belief states and then choosing the one with the highest a-priori probability. Bajawa
and Sweet successfully demonstrated the performance of Livingstone 2 applied to a
main propulsion system by inducing and detecting ten different faults.

Narasimhan and Bronston proposed in [93] a framework for fault detection and diag-
nosis called HyDE which offers the possibility to exploit different techniques for fault
detection. HyDE supports stochastic modeling, allows for discrete and continuous
variables in models as well as combinations of both which leads to the concept of hy-
brid models. The applicability of the framework was demonstrated in different NASA
projects. For example, in the Drilling Automation for Mars Environment project HyDE
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was applied to detect known faults1 related to the drill, the bit, and the auger of the
system. The detection system based on HyDE was able to successfully identify faults
like chocking of binding in about 85% of the cases with a false positive rate of about
5%. Another application took place in the Autonomous Lander Demonstrator project
where this approach was applied to the propulsion system in order to detect common
faults such as stuck valves and regulator failures.

Another knowledge based fault detection approach was proposed by Mikaelian et.
al. [124]. They argue that models reflecting solely hardware components cannot cap-
ture occurred faults correctly in any case. Therefore, they proposed a novel approach
which enables the mutual modeling of software and hardware components based on
a probabilistic, hierarchical, constraint-based automata [133] which is a compact, hi-
erarchical form of a Hidden Markov Model [104]. The application of this method was
demonstrated on a vision-based rover navigation-system and a formation flying test-
bed called SPHERES [96]. This test-bed was used to demonstrate novel control and
autonomy technologies in the International Space Station.

Knowledge based approaches benefit from qualitative modeling and can therefore be
applied to complex systems in order to detect faults in hardware and software. Yet,
knowledge and analytical approaches share some common drawbacks. Firstly, in or-
der to successfully apply them to real systems, a certain amount of expertise is always
necessary. This includes knowledge about the interesting components of the system
and their interplay. Furthermore, expertise needs to be gathered in order to select
parameter values which represent normal system behavior. Secondly, depending on
the complexity of the system changes to the models can be time intensive. Consider
for example an upgrade of one of the central processing units (CPUs) in the system.
In this case software components need less time to process and can produce outputs
with a higher frequency. This consequently influences parameterization of the fault
detection model which requires human intervention.

1A known fault is a fault which was experienced in the field at least once.
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3.2. Data-driven Approaches

Data-driven fault detection techniques also employ a model of the system in order to
detect faults. Yet, in contrast to model-based techniques the model is not hand-crafted
but is learned from data gathered in the system. This is advantageous particularly
when dealing with complex systems because hand crafting a model in this case may
be a tedious task. The scheme for data-driven fault detection is depicted in figure 3.4.
It can be represented as an extension to the model-based paradigm where an addi-
tional module (trainer) exploits gathered input and output data of the system in order
to learn a system model. Another advantage results from the fact that characteristics

system

system 
model

processing decision 
logic

knowledge
of the faultresidual

trainer

learns

Figure 3.4.: Schematic description of the processing schemes of the data-driven fault
detection paradigm.

about the system’s health status are extracted from the training data which reduces
the amount of necessary system expert knowledge in order to build an expressive
fault detection model. In case of changes to the system, adaptation of the model can
often be solved by gathering new data and re-training. The drawback of data-driven
approaches is that they rely upon the number and the quality of the gathered training
data.

Data-driven techniques have been applied to a number of different technical sys-
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tems like aircraft engines [109], automotive [83, 98], autonomous underwater vehi-
cles [5], space shuttle engines [101, 112, 10] or helicopters [100]. In robotics the
most common targeted applications are the detection of faults in the locomotion of
mobile robots [36, 37], faults in actuators [102] and sensors [30].

In their work Fault detection in autonomous robots based on fault injection and learn-
ing Christensen et al. [30] present an approach to detect faults occurring in the lo-
comotion of a swarm-bot robotic platform [87]. The work is based upon the following
hypothesis:

A hardware fault changes the flow of sensory data and the actions per-
formed by the control program of the robot. By detecting these changes,
the presence of a fault can be inferred.

To derive a model which captures the sensor/action relationship the authors exploit
a time-delay neural network (TDNN) [33]. TDNNs are feed-forward networks that al-
low reasoning based on time-varying inputs without the use of recurrent connections.
The input layer of the network represents groups of historical sensor data and actuator
control signals. Available sensors in this scenario are: a light sensor, proximity sen-
sors, a camera and infrared (IR) ground sensors. While some readings from sensors
like IR and ground sensors can be feed into the neural network in a straightforward
manner, other require specific preprocessing based on system expert knowledge in
order to be useful. This is the case for the camera sensor where the image is not di-
rectly fed into the neural network because it is too high dimensional. Instead, it is pre-
processed in order to compute distances to specific objects in the robots environment
i.e., it is used as a range sensor. These distances are then fed into the network. The
input layer of the network is fully connected to a hidden layer which again is connected
to a single output neuron. This output neuron indicates whether the system behaves
normal (ideally 0) or abnormal (ideally 1). A threshold based classification is applied
to derive the actual system state. The authors examine two different faults in three
setups. The first fault causes one or both wheel to stop moving (stuck-at-zero) while
the second fault leaves one or both motor(s) at constant speed (stuck-at-constant).
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The two faults were successfully detected in all three setups.

In [116] the authors train multiple local model neural networks to capture the input-
output relationship for the components in a robot for which faults should be detected.
The authors focus on detecting faults in the wheels of a robot. The input corresponds
to the different voltages of the motors which accelerate the robot’s wheels and the
output consist of the speeds of the wheels, respectively. Supervised learning is used
to train neural networks as models for the single wheels of the robot (i.e., local mod-
els). During operation, the speeds predicted by the local models are compared to the
actual speeds and the residuals are computed. For evaluation purposes, a blocked
wheel fault has been simulated and successfully detected.

Another interesting approach for data-driven fault detection was proposed by Canham
et al. in [23]. It is biologically inspired and follows the idea of artificial immune sys-
tems (AIS) [45]. The immune system which can be found in higher living beings is a
multi-layered, distributed system that can identify numerous disease-causing foreign
organisms and other harmful effects [23]. The basic idea of an AIS fault detection
approach is to distinguish between self and non-self [23]. In fault detection, self cor-
responds to fault-free operation while non-self refers to observations resulting from a
faulty system behavior. Canham et al. applied an AIS based fault detector to a mo-
bile robot in order to detect faults in its locomotion. In their work the authors assume
that the system can be described as a function which maps input values to a single
output in a deterministic manner. This function (self) is approximated with a set of
detectors which represent different parts of the system state (i.e., different parts of
the mapping). The approach has been evaluated on a Khepera [74] robot and a con-
trol module of a BAE Systems RascalTM [34] robot. The two systems are first trained
during fault-free operation and their capacity to detect faults in their motion controller
is then tested.

The just presented approaches cover only parts of a complete robotic system i.e.,
sensors or actuators whereas data-driven solutions which monitor a complete sys-
tem are not known to the author. However, recently a set of approaches has been
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proposed which target the efficient monitoring of data in the system and offer pre-
processing capabilities which are well suited in order to develop holistic data-driven
fault detection approaches. In [11] the authors introduce a learning algorithm to au-
tomatically discover a state-transition model of the system’s behavior. The algorithm
monitors the communication between architectural components, in the form of func-
tion calls, and finds the frequencies at which various functions are polled. Based
on this, it determines the states according to what polling frequencies are active at
any time. The approach is unsupervised and the authors call it task-agnostic which
means that it can be applied to any new task or architecture with minimal effort. The
authors also discussed the possibility to exploit the model for fault detection.

Niemueller et al. in [95] proposed a generic robot data base which taps into common
robot middleware to record data produced at run-time. The system features the ability
to record and store any and all data produced on the robot in real-time. It integrates
with typical robot middleware like ROS [103] or Fawkes [94]. Furthermore, it requires
only minimal configuration efforts and is easy adaptable to evolving data structures.
Niemueller et al. demonstrate how to exploit the generic robot data base for post-
mortem fault detection.

3.3. Discussion

The related work presented in this chapter shows the huge spectrum of fault detection
solutions for various application domains and systems present in the literature. We
now want to discuss them in the context of the challenging aspects for fault detection
in CBRS system.

Recalling the discussion from section 2.2.1 an adequate detection approach should
i) cope with frequent system changes, ii) rely only on a minimal amount of system
expert knowledge, iii) cope with uncertainty and variation in the system’s behavior,
iv) consider faults residing within software and hardware components of the system.
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Frequent changes and minimal system expert knowledge render data-driven fault de-
tection approaches more suitable solutions for CBRS systems in contrast to hand
crafted model-based solutions due to their ability to derive a model from exemplary
data. Variation and uncertainty in the target system behavior is frequently tackled
in the literature with statistical modeling techniques [113, 58, 105, 26, 138], fuzzy
logic [46] or artificial neural networks [30]. This work lines up with these ideas and
exploit statistical modeling techniques as discussed in the upcoming chapter. The
detection of faults in the software & hardware constitutes the last challenge when
dealing with fault detection in CBRS. While hardware faults are well covered, only
a few approaches exist in literature that directly address the problem of the detec-
tion of software faults in general [117, 124] and fault detection in Component Based
Robotic System [117], in particular. Though, these solutions belong to the class of
model-based approaches which already have been rendered less suitable for fault de-
tection in CBRS. Further presented solutions for robotic systems target the detection
of faults in parts of the overall system like locomotion, actuators or sensors and thus
have the potential to be applicable for these particular tasks in CBRS. Yet, even if the
aforementioned partial detectors could be combined to a single one, still the resulting
solution would not be capable to detect faults residing within the software components
of a CBRS. In contrast, the detection approach presented in this thesis makes no as-
sumption whether faults occur in software or in hardware and thus provides means to
detect both types.

This chapter introduces the general concept of fault detection, gives an overview over
the various solutions proposed in literature and illuminates them in relation to the
challenges in this work. The upcoming chapter is devoted to the data-driven fault
detection approach developed in the context of this thesis.
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4. The AuComFault Detection
Approach

The discussion at the end of the previous chapter suggests that state-of-the-art fault
detection approaches do not entirely tackle the challenges discussed in section 2.2.1
which arise in the context of Component Based Robotic systems. In this chapter I
now introduce the AuCom fault detection approach which is designed to cope with
these challenges. The approach belongs to the class of data-driven techniques and
exploits the communication between the system’s components as the only source of
information for fault detection. The features exploited to build the model are based
on generic attributes of the communication only. To create a model of the system’s
normal behavior I utilize statistical techniques and exploit durations between the com-
municated data in the system as features thereby assuming that a deviation from the
statistics over the durations indicate a fault. By this means, my approach is robust
in the face of minor changes as well as uncertain and variant behavior and can be
easily adapted to changes if necessary. In addition, it can be integrated with mini-
mal changes to the targeted system, and is largely independent from the presence of
system expert knowledge.

This chapter is structured as follows: Section 4.1 describes the data selected for fault
detection in this work. It also contains a discussion of alternative data sources and
provides the arguments why I chose the communication between the components as
input. Subsequently, section 4.2 introduces the notion of a complex robotic system
as a stochastic process. Using this definition the features selected to represent the
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input data in the algorithm are introduced and discussed in relation to alternative
modeling techniques for such processes. In section 4.3 the model is introduced while
section 4.4 is concerned with the actual estimation of the system state in terms of
normal or faulty behavior. This chapter concludes with a summary of the findings in
section 4.5.

4.1. Input Data Selection

An initial step in the development of a fault detection approach is the selection of an
adequate subset of system data for further processing. The main concern when se-
lecting data is to find the balance between the reduction of the input size to speed up
the detection process while simultaneously preserve enough fault sensitive informa-
tion to enable successful fault detection. Besides this, in literature other criteria have
been used to select the appropriate subset. For example, Freyermuth [46] decide to
estimate fault-indicating attributes in an n-axes robotic arm like friction and moments
of inertia from data already present in the system rather than measure them directly.
In particular, he derives these attributes from dc-motor currents, motor angular ve-
locities and axis positions. By this means, no additional sensors are needed which
simplifies data recording and reduces costs but may also render the approach less
accurate. Another example is the work of Steinbauer et. al. [117]. Here, the goal is
to detect different faults in the control software of a soccer playing robot. To do so,
the authors exploit the communication between different services of the system and
the number of threads each service usually spawns during operation. This data can
be retrieved uniformly for all services which reduces the implementation efforts and
enables easy adaptation in case new services are introduced in the system.

In this work the decision which data to choose is partially driven by the challenges for
fault detection discussed in section 2.2.1. In particular, it is influenced by i) the need
to cope with frequent system changes, ii) the challenge to integrate the detector min-

40



4.1. Input Data Selection

imally invasive into a system, and iii) the request for minimal usage of system expert
knowledge for fault detection. To tackle these challenges I follow a similar idea as in
the work of Steinbauer et. al. [117] and exploit the inter-component communication
of a system as input. In contrast to Steinbauer I omit the usage of information like
the number of threads per component which additionally reduces the coupling of the
approach to a specific robot or its underlying operating system. I also omit any ex-
plicit information about the structure of the target system (e.g., the inter-connection
between the components). If I would like to exploit this information, adaptations to
the learned detection model would be necessary each time the system is subject to
changes. As changes were identified to be frequent in the type of systems regarded
in this work (see section 2.2.1), adaptations of the model would be frequent, too. As
a consequence, means to automatically retrieve structural information would be nec-
essary in order to still be able to match the challenges defined in the context of this
work. Such means already exist in some software architecture frameworks like in the
work of Nordman and Wrede [97]. Here, access to structural information is enabled
because the authors provide an explicit description of the system with the help of a
domain specific language. This explicit description can be also exploited to enhance
a fault detection model. However, an automatically processable description cannot be
assumed for robotic systems in general and thus relying on it would eventually restrict
the set of targeted systems.

A crucial aspect of data exploited for fault detection is that it needs to contain infor-
mation which characterize different system states and thus can be used to distinguish
them. I assume this characteristic for the inter-component communication of a sys-
tem (which is the input of the AuCom-detector) based on the following considerations:
The overall behavior of a Component Based Robotic System (CBRS) emerges from
the interaction and communication of its components. This communication contains
patterns which are characteristic for a specific system state (e.g., normal or faulty).
Based on this, I assume that if I have a representation of these patterns recorded
during the system’s normal behavior I can exploit it for fault detection by interpreting
significant deviations from it as system faults.
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In order to substantiate this statement let us consider an example derived from the
robotic system BIRON [59]. Research on BIRON is dedicated to the development of a
robot companion capable of social like interaction [135]. This requires many different
hardware and software components which realize cognitive capabilities like object,
face and obstacle detection/recognition, speech understanding, object manipulation
or navigation. However, to keep the example simple I only regard a subsystem of
BIRON. It consists of the following three elements: a laser, an odometry and a Si-
multaneously Localization and Mapping (SLAM) component. All three components
are depicted in figure 4.1 together with their communication paths indicated by black
arrows. In case where all three components perform as intended (which equals nor-
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Figure 4.1.: Exemplary communication in a subsystem of a mobile robot. The sub-
system consists of a laser, an odometry and a SLAM component. The
laser and the odometry produce outputs at fixed rates but independently
of each other. The SLAM component depends on the input of both laser
and odometry and produces two outputs which are dependent on its in-
put.

mal system behavior), the communication can be described as follows: The laser
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component provides readings from the laser scanner to the system at a fixed rate in-
dependently from other components. The odometry component estimates the robot’s
driven distance over time and supplies this information also at a fixed frequency. The
SLAM component depends on the input of both laser and odometry and produces two
different outputs. Each time new input data is available SLAM estimates the robot’s
current position and provides it to other components in the system. Thus, the gen-
eration of the position is directly correlated to the outputs of the laser and odometry
components. Additionally, while the robot is moving, SLAM updates the system’s in-
ternal environment representation. The output of this information is also correlated to
the odometry and laser output but in addition it is also bound to the condition that the
robot is moving thus rendering the resulting pattern more complex. Each of these in-
put/output descriptions can be seen as a simple pattern present in the ICC and based
on the previously stated considerations I expect that significant deviations from such
patterns indicate a system fault.

An additional benefit gained when exploiting component communication for fault de-
tection is that recording it can often be realized upon the build-in communication func-
tionality of the system (i.e., the functionality provided by the system’s middleware). If
this is the case, the recorder acts as another system component and recording takes
place without modifying the system’s components thus contributing to the request for
minimal invasive integration.

In the remainder of this work the communication between the system’s components
is regarded as a time-series D of communication elements. Each element of D is
called a data-point and is denoted as d. Each d consists of two parts: a payload
and metadata. The payload represents the specific information a component wants
to communicate to other components in the system while the metadata encompasses
general information like the timestamp of occurrence or additional information about
the sender of a data-point.
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4.1.1. Attributes

After discussing the choice of the input data for the AuCom-detector, this section is
concerned with the selection of attributes used for feature generation in further pro-
cessing steps. The goal of this step is to further reduce the input for the algorithm
while preserving fault-sensitive information and transforming it into a representation
which can be processed automatically. Continuing the subsystem example from the
previous section (Figure 4.1) one could use existent expert knowledge about each
single component of the system and extract specific information from its data-points.
An example on how to exploit expert knowledge about a component for fault detec-
tion is given by Christensen et. al. in its work on fault detection in mobile robots [30].
Christensen relates specific transformations of the sensory information of the robot to
commands of the control program responsible for the locomotion of the robot. In par-
ticular, each image gathered by the robot’s camera sensor is segmented into sixteen
slices. Each slice corresponds to a single input value of the algorithm and represents
the distance to the closest object perceived in this slice. Used this way, the camera
sensor effectively becomes a range sensor for objects while the input for the algorithm
is significantly reduced. Christensen also argues that this idea helps to optimize the
amount of fault-sensitive information available in the subsequent processing steps.
However, this procedure conflicts with the requirements resulting from the challenges
defined in section 2.2.1 for the following reasons:

. It requires expert knowledge for each of the components in order to select the
attributes.

. It introduces strong coupling between the fault detection approach and the ac-
tual components of the system leading to adaptations of the detector in case of
system changes.

. It hampers the portability of this approach to other systems.
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Consequently, specific attributes are unsuitable for the approach in this work. There-
fore, I focus on generic attributes of the data-points which do not suffer from the
aforementioned issues. An attribute is considered to be generic if it is common for
all data-points in a system and if it can be extracted in an analogous manner from all
data-points. This definition also includes data-points which might be present in the
system in future e.g., due to a new component added to the system. It implies that
generic attributes are independent of the payload’s content and thus from the com-
ponent which sends it. In addition, further processing for fault detection is decoupled
from a concrete system. By this means, generic attributes increase the robustness of
the approach to changes of the targeted system. On the component level changes to
the content of a data-point do not influence the retrieval of generic attributes. On the
system level, new components can be added or old can be removed without changes
to the set of used attributes or their retrieval mechanism.

The selected attributes for feature generation in this work partially result from com-
monalities of the communication paradigms exploited in CBRS. Therefore, they are
now shortly introduced in order to facilitate the description of the attributes. These
communication paradigms are Caller/Provider and Broadcaster/Listener [21]. Caller/-
Provider is also called remote procedure call (RPC) [13] or in the context of object
oriented languages remote method invocation (RMI) [85]. It enables the calling of in-
dividual functions exposed through the component’s interface across network bound-
aries. It features a point-to-point communication style on a per-function level. In the
Broadcaster/Listener communication paradigm components are equipped with the
ability to broadcast1 and listen to messages [21]. The messages sent between the
components are self-contained and are not restricted to a given signature of an oper-
ation which differs from the former Caller/Provider communication style. Extensions
of this basic idea have been developed like Publish/Subscribe where components
subscribe to topics. Afterwards, components will receive only messages which cor-
respond to a given topic description [137]. This selective message delivery helps to
reduce load on both, the overall communication of the system and the processing of

1Broadcasting refers to a method of transferring a message to all recipients simultaneously.
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a component. Broadcaster/Listener has also been adopted in event-driven architec-
tures (EDAs) [41]. Here, a message is called an event and it represents a significant
state change of a component. Listener-components are notified about an event only
if they match a subscription previously defined by this component [91].

In the light of these communication paradigms the first commonality exploited as a
generic attribute is the fact that each data-point sent in the system has a sender
component which I call its Source. Secondly, each data-point is also received by
a set of recipients. This set may consists of only one recipient as it is the case of
point-to-point connections or a selected set of recipients e.g., the set of subscribers
to a specific topic in a Publish/Subscribe implementation. The set of components,
which receives the data-point, is called the Scope of that data-point. The third and
last generic attribute is derived from a semantic interpretation of data processed in
robotic systems. In such systems consecutive data-points sent by the same compo-
nent can be semantically connected. This connection indicates whether a data-point
represents semantically new information in the system, an update of already present
information, or whether the data-point represents a deprecated piece of information.
This generic attribute is called the Type of the data-point. To illustrate the idea of this
attribute consider the following example: A user enters the field of view of a robot in
order to interact with it. The robot’s face recognizer detects and identifies the user and
sends a message into the system which indicates that a new face has been recog-
nized. During the interaction a user stays in the field of view of the robot and the face
recognizer keeps recognizing him and sends data-points which represent the same
face but with possibly different coordinates of the face relative to the robot’s position.
These data-points represent updates of information already existing in the system.
Finally, the user finishes the interaction and walks away from the robot and its face is
no longer detected. After a while the corresponding information gets deprecated and
the face recognition component sends another data-point which indicates the invalid-
ity of the face. This semantic information may not be present for all data-points send
in a system either because the data does not have this semantics or because it has
not been considered during the development of the component. However, it provides
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valuable information for fault detection for data-points where the semantic is valid. In
the case of the face recognizer for example few frequently updated interaction part-
ners may indicate normal behavior while many new recognized faces in a row could
be an indication of a fault. Data which does not correspond to this semantic has its
type attribute set to the “new” value. Table 4.1 provides a consolidated view on the
introduced generic attributes. In table 4.2 the different values of the type attribute
together with the corresponding semantic interpretations are summarized.

Attribute Short description

Source The sending component of a data-point. Possible values are single
components.

Scope Representation of the receiving components of a data-point. Possible
values are sets of components.

Type Semantic interpretation of a data-point in relation to previous
data-points sent by the same component. Possible values are listed in
table 4.2.

Table 4.1.: Summary of the different generic attributes used to represent data-points
in the inter-component communication of a CBRS.

Type attribute

Value Semantic interpretation of the value

new : Represents new information in the system. It is also the default
value for data which does not correspond to the type attribute
semantic.

update: Represents an update of already present information in the system.
deprecated : Represents the deprecated status of an information in the system.

Table 4.2.: Summary of the type attribute values and the corresponding semantic in-
terpretation.
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4.2. Feature Extraction

In this section I introduce the novel concept of a Temporal Dynamic Feature (TDF)
as meaningful representation of a data-point d based upon the generic attributes in-
troduced in the previous section. This representation is the input for the further pro-
cessing steps of my algorithm i.e., Model Training (Section 4.3) and System State
Estimation (Section 4.4). Thus, it has to encapsulate information about communica-
tion patterns in the system’s ICC which are assumed to be sensitive to faults. This
section starts with an introduction of the basic idea of a TDF and explains its benefits
as a representation of the system’s communication in comparison with state-of-the-art
approaches suitable for modeling such data. Subsequently, a TDF is defined in math-
ematical terms and the procedure to generate TDFs from input data is presented.

A complex robotic system can be thought of as a complex process that is not com-
pletely visible or accessible. From this point of view a meaningful way to deal with the
ICC of a system is to regard it as the output of a stochastic process which is moni-
tored at discrete points in time (here the points in time correspond to the timestamps
of sending data-points) and has a discrete state-space consisting of the different data-
points. The result is a time-series ordered based on the timestamp when data-points
d were sent as depicted in figure 4.2. A prominent approach to model a state-space
and time discrete process is to assume that the process satisfies the Markov Prop-
erty and thus can be expressed as a Markov Chain [122]. The assumed Markov
Property has the following definition: Given a history of values at points in time t− n
to t for a variable X. In order to predict the value of X at t + 1 it is sufficient to know
the value of X from time t [14]. A Process which fulfills this property is also called
memoryless because the history of the time-series is discarded. This model is often
used because of its efficient implementation and often good approximation capabili-
ties [118]. In cases where the data is more complex, the incorporation of the history
becomes necessary leading to models like the Markov Chain of order n [14]. Hid-
den Markov Models (HMM) constitute another extension of the Markov Chain. Here,
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Figure 4.2.: Representation of the inter-component communication as a time-series
ordered based on the timestamps when the data was sent.

the assumption is that the actual state of the process is hidden and the observed
time-series values represent process outputs which can be related to the states of
the process [106]. Hidden Markov models are known for their application in temporal
pattern recognition such as speech [40], handwriting [89], or gesture recognition [88].

Regarding the ICC of a system modeling the Markov assumption between consecu-
tive data-points proves to be challenging. In order to explain this let us continue the
three-component example from section 4.1 (Figure 4.1) and extend it with a camera
and object detection component. Both components act independently from the three
components introduced in the initial example. The communication between these
new components can be described as follows: The camera component outputs im-
ages grabbed from the camera sensor at a fixed frequency while the object detection
component analyses each image for detectable objects in the field of view of the
robot and generates an output if it finds any. In order to model this communication
and the one described for the initial example, two separate Markov chains could be
used. Both chains together would then represent the system’s normal behavior. How-
ever, as mentioned in section 2.2.1 in this work explicit information about the system’s
structure is omitted and thus the approach is not aware of this two independent sys-
tem parts. Consequently, the communication in this example is regarded as a whole
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where the two communication chains are interleaved leading to a more challenging
modeling situation in case the model is based upon the Markov assumption. One
could try to cope with this issue by considering a history of k data-points which would
enable to relate consecutive elements of one communication chain to each other even
if it is interleaved with non-related data-points (i.e., in this case, the ones coming from
the second communication chain). This can be done in two different ways: Firstly,
the current data-point could be related to its k consecutive predecessors which corre-
sponds to the idea of a Markov chain of order k. Secondly, k consecutive data-points
could be grouped to one composite data-point of higher dimensionality and the re-
sulting time-series of composite data-points could be treated as a common first order
Markov chain. The two solutions are visualized in figure 4.3. The problem in both
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Figure 4.3.: Two possible means to cope with an interleaved communication chain by
exploiting the Markov property. The first solution (upper part of the fig-
ure) is based on a Markov chain of order k (here k = 3). In the second
solution consecutive data-points are grouped first. The resulting com-
posite data-points are modeled with a first order Markov chain. Different
data-points are labeled with letters. Color coding indicates the different
communication chains.
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cases is that the model complexity increases exponentially with k either in the num-
ber of the needed probability distributions for the first solution [14] or in the size of
the state-space for the second one. Furthermore, each non-related data-point of the
k data-points in the regarded history projects the feature derived from this history
into another sector of the state space. By this means, the actual distribution is artifi-
cially and unnecessarily spread across several areas (thinning-out), which increases
its variance. The ICC communication could also be modeled by exploiting a Hidden
Markov Model. In this case, data-points are interpreted as observations emitted in
either a normal or faulty (hidden) system state. Observations in a state can be single
data-points or (similar to the second case of the Markov chain approach explained
above) can be grouped to form composite data-points. Such a model could be then
used to estimate whether the system is either in a normal or faulty state given an
observation (i.e., a data-point or a composite data-point). Unfortunately, to learn this
model training data from faulty situations would be necessary in order to estimate
the emission probabilities of the observations in the faulty state. Due to the consid-
erations at the beginning of this chapter this data is not available which prevents the
application of such a model. Alternatively, one could remove the faulty state from
the model and learn only emissions for the normal state resulting in some kind of a
degenerated HMM. This model would correspond to the previously described Markov
Chain model but without the transition probability matrix between consecutive data-
points or composite data-points since there is no description of transitions between
consecutive observations in a HMM. This renders the one-state HMM less expressive
than the Markov Chain solution and therefore also a less suited solution.

In this work I follow an alternative way to model the inter-component communication.
At first data-points d of the communication are represented as composite features e
by exploiting the three generic attributes (Source, Scope, Type) introduced in sec-
tion 4.1.1. Next, the composite features e are used to generate Temporal Dynamic
Features tdf which incorporate temporal dependencies to historical composite fea-
tures ê in the communication of the system. In other words, rather than trying to cope
with temporal dependencies of the communication in the structure of the model, in
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this work this information is encoded in the features used by the AuCom-detector. A
tdf for a given composite feature e consists of the durations between the time-stamp
of e and the last occurrences of all other composite features ê present in the system.
To explain this idea in more detail, consider figure 4.4 which shows an extract of an
exemplary interleaved communication in the system recorded between two points in
time t0 and tn. The single circles on the time-line represent data-points, the related
letters show the corresponding composite features and the color coding indicates
that the communication consists of different communication chains which interleave
each other. The upper part of the figure shows a Temporal Dynamic Feature tdf for

t

τa,e

tdfn

ab ec

τc,e

τb,e

τe,e

bb acc a ee
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Figure 4.4.: Visualization of the TDF idea for a data-point at time tn based on the inter-
leaved communication example. The tdfn consists of the set of durations
between the last occurrences of all different data-points in the history of
the time-series. Data-points are labeled with letters representing different
composite features. Color coding indicates the different communication
chains.

the data-point d at time tn with the related composite feature e. The upper part also
depicts the durations τa,e between the last occurrences of the different composite fea-
tures present in the system (i.e., e, a , b, and c) and the composite feature e (belonging
to d) at time tn. It can be seen that a tdf does not consider all consecutive data-points
in a communication but may skip some of them because it only encodes the last oc-
currences. In general, the TDF representation follows the same basic assumption
as the previously described (Markov-based) approaches namely that current values
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of a time-series (here data-points represented by composite features) are related to
past ones. However, the difference is that instead of assuming that the prediction can
be done based on a fixed number of consecutive data-points, the hypothesis in this
work is that most information can be extracted when regarding the contribution from
the last occurrences of each of the different data-points d (i.e., data-points mapped
to different composite-features e) in the system independently of their position in the
history of the time-series. These last occurrences are highlighted in figure 4.4 with
grey bars. From another perspective this means that while the previous models (e.g.,
the n-th order HMM) assume a fixed time horizon (e.g., the last n data-points) our
features cover varying time horizons for the different data-points. In addition, while
Markov-based models suffer from an increased complexity when the history growth
in the case of TDFs this merely leads to larger values which need to be modeled
but has no impact on the model’s complexity. Furthermore, as TDFs do not explicitly
represent the order of the data-points in the time-series they do not suffer from the
thinning-out argument previously described for the Markov Chain based models.

Next, the generation of a time-series R of TDFs tdf from data-points d in the input
time-series D is described in mathematical terms. As mentioned above, each d ∈
D needs to be transformed into a composite feature e, first. The transformation of
the complete time-series D results in a new time-series E of composite features.
Afterwards, the durations between all e ∈ E are computed and the corresponding tdf
features are created. Let D be the range of different data-points d which are sent
between the components of a given system. The mapping function which transforms
d into a composite feature e is written as follows:

f(d) : D 7→ E := e (4.1)

where E is the domain of composite features e. In combination with the findings from
section 4.1.1 the concrete mapping function in this work is defined as:

f(d) : D 7→ SOURCE × SCOPE × TY PE (4.2)
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Thus, each data-point d is represented as the Cartesian product of the generic at-
tributes Source, Scope and Type. Applying this function to the whole time-series D
yields the intermediate time-series E of composite features e.

f(D) = (f(d1), . . . , f(dn)) := E (4.3)

In order to define a Temporal Duration Feature tdf b for a data-point d represented
by a composite feature b, first the notion of the last occurrence last(a, b) = â of a
composite feature a relative to b in the time-series E needs to be defined. Let tb be
the timestamp of b. Then, the last occurrence of a before b is defined as follows:

last(a, b) := â = a : ta < tb ∩ @ ã ∈ E : ã = a ∩ ta < tã < tb (4.4)

Equation 4.4 states that â has occurred at time tâ which is smaller than tb and no
other composite feature with the value a has occurred between tâ and tb in E. Based
on this, the duration between b and the last occurrence â of a can be computed as:

τa,b = tb − tl(a,b) = tb − tâ (4.5)

Using the formulas above, a temporal duration feature tdfb for b ∈ E can be defined
as follows:

tdf(b) := tdf b = {τa,b | ∀ a ∈ E} (4.6)

It is worth noting that E is a fixed set which means that all TDFs in a time-series have
the same dimensionality. In order to relate equation 4.6 to E we write:

tdf(E(i)) = tdfi := tdf b : b = E(i) (4.7)

and finally
tdf(E) = (tdf1, . . . , tdfn) := R. (4.8)
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The subsequent pseudo code 4.1 illustrates how the extraction of the TDFs from a
time-series E is computed. At first the necessary structures R and lastTimestamps

Algorithm 4.1 R = tdf_generation(E, E)
1: initialize R
2: initialize lastTimestamps
3: for all a in E do
4: meana = calculateMeanDuration(E, a)
5: lastTimestamps(a)← E(0).timestamp−meana

6: end for
7: for (i = 0; i < size(E); i+ +) do
8: for all a in lastTimestamps.keys do
9: b = E(i)

10: τa,b = b.timestamp− lastTimestamps(a)
11: tdf b(a) = τa,b

12: end for
13: lastTimestamps(b) = b.timestamp
14: R(i) = tdf b

15: end for
16:
17: return R

are initialized. R is the output time-series and lastTimestamps is a hash map used to
track the timestamps of the last occurrences during the processing of an input time-
series. Initially lastTimestamps is set to the timestamp of the first element of E minus
the mean duration between two occurrences of the same composite feature e. This
initialization is done for all c ∈ E . The rationale here is that when starting to generate
tdfs based on E there is no information present about the time before E. Thus, a
reasonable guess is to assume that a particular composite feature e occurs at a point
in time marked by the mean duration of self-occurrence before the beginning of E. By
this means, there always exist a timestamp for all e ∈ E which prevents the generation
of an incomplete tdf for composite features e at the beginning of E where some of
the composite features from the set E didn’t occur yet. Next, the loop which starts in
line seven runs over the whole input time-series E and for each composite feature b
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at position i the tdf b is computed.

In the next section the discussion is focused on how to generate a model of the
system’s normal behavior based on the just introduced notion of Temporal Dynamic
Features.

4.3. Model Training

Model training describes the procedure executed in order to create a representation of
the system’s states from collected data. Following definition 2.1.1.7 from section 2.1.1
which states that fault detection uses the relations between several measured fea-
tures to extract information on possible changes caused by faults the model exploited
in this work represents the normal behavior of the targeted system. Data-driven fault
detection approaches in the literature often exploit additional models which represent
specific faults in order improve their discriminative capabilities. For example, in the
work of Christensen [30] the neural network based classifier is trained with data gath-
ered during normal behavior of the system and while the wheels of the robots were
stuck at zero or while they were rotating with a constant velocity which represents the
two induced faults in Christensen’s work. Such an approach provides additional infor-
mation valuable for the diagnosis of the detected fault. Yet, it requires that exemplary
fault data is gathered which might be challenging in some cases. In addition, relying
on fault models may have the effect that if there is no model for a particular fault, it
might remain undetected. In this work, therefore a model is employed which consists
of data gathered during normal system behavior only.

In this thesis, the definition of the system’s normal state is done in a qualitative man-
ner based on the execution performance of the system in relation to the given task.
In particular, this means that a human who knows the intended behavior of the sys-
tem during a task decides whether the system behaves normal and thus whether the
data gathered during this interaction can be used for training of the normal behavior
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model. Gathering normal data in this way requires only task specific knowledge to be
present rather than detailed expert knowledge about the behavior of single compo-
nents which constitutes another characteristic attuned towards the challenges stated
in this work. It also enables the acquisition of training data by non-developers which
reduces efforts when the model needs to be retrained at short notice. On the other
hand, this way of defining normal state introduces additional variance in the training
data in case the data is gathered by different users. The additional variance results
from the fact that each user may have its own subjective view on normal behavior
of a system in relation to a given task. In addition, some internal faults may remain
unrecognized in case they do not alter the system’s perceivable behavior.

The concrete model in this work is based upon statistical modeling techniques ac-
cording to the following assumption: Normal data instances occur in high probability
regions of a stochastic model, while anomalies occur in the low probability regions of
the stochastic model. [28] By this means, we gain a statistically justifiable solution for
fault detection. Furthermore, a statistical model naturally provides means to describe
the uncertainty and variation present in the training data which results from the sys-
tem’s interaction (see section 2.2.1) and the previously mentioned way to define the
normal state of the system. In the remainder of this section the mathematical descrip-
tion of the model is introduced together with a discussion of the selected statistical
representations in relation to alternative ones.

4.3.1. Mathematical Formulation

Let E be the set of the different composite features a, b present in a system then
the fault detection model M is described as a set of probabilities P (τa,b) for single
durations τa,b as follows:

M = {P (τa,b)| ∀ a, b ∈ E} (4.9)

Equation 4.9 defines M as the set of probabilities over the durations for all possible
combinations of two composite features of a given system. From this definition it can
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be concluded that I assume the durations of a temporal duration feature tdf b to be
independent from each other which yields the following probability P (tdf b):

P (tdf b) = P (τa
1,b, τa

2,b. · · · , τan,b) = P (τa
1,b) ·P (τa

2,b) · · · · ·P (τa
n,b) (4.10)

The equation 4.10 serves as the basis for system fitness estimation and fault detection
introduced in the subsequent sections.

An important aspect for the generation of the model M is the choice of a concrete
probability distribution P := P (τa,b). When selecting a distribution for P two things
need to be considered. Firstly, the domain space of all τa,b is the set of positive nat-
ural values. Secondly, variation in the system’s behavior and different system states
during interaction are potentially reflected in the ICC thus leading to training sets for
each τa,b which contain different regimes. Regarding P this means that an appropriate
distribution needs to be able to cover positively valued multi-modal data. Probability
distributions which are well suited to model durations have been developed in do-
mains which are concerned with waiting-times between events [48]. Here, exemplary
events are telephone calls, durability of atoms in a decay process, or the life-span
of machines. The distributions used in this context are the exponential distribution,
gamma distribution, erlang distribution or the poisson distribution. However, all these
distributions are unimodal which makes them unsuitable due to the multi modality of
the data. An alternative which covers both aspects is the histogram-based distribu-
tion [14]. This non-parametric approach can adapt to multi-modal data and allows
to restrict its density to natural numbers (i.e., N). However, a problem of this distri-
bution is that the estimated density has discontinuities and that it requires a lot of
training examples because no assumptions are made about the shape of the mod-
eled probability. In extreme cases adjacent duration values may have widely differing
probabilities which makes the approach unsuitable from the generalization point of
view. The problem of discontinuities can be tackled with the use of Gaussian Mix-
ture Models (GMMs) [19] instead of histograms. A GMM is a linear superposition of
a constant number k of Gaussian distributions which provides a good estimate for
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multi-modal data even for a small number of samples (i.e., small training data-set). A
drawback of GMMs is that the number of distributions k needs to be predefined be-
fore learning the distribution. Regarding the TDFs which have to be modeled in this
work, it might be challenging to estimate k, because the number of different regimes
is unknown. The distribution chosen to represent durations in this work is therefore
the Kernel Density Estimator (KDE) [107]. Given a training set Γa,b, the KDE places
a kernel k(u) centered around each element τa,bi ∈ Γa,b of the training set. In order to
estimate the probability of a data-point τa,b the following formula is used:

f(τa,b) =
1

nh

n∑
i=1

K(
τa,b − τa,bi

h
) (4.11)

where n is the number of elements in the training set and h > 0 is a smoothing
parameter called the bandwidth. The bandwidth h controls how well the KDE adapts
to the data. Very small values of h lead to a noisy estimate with many artifacts while
too big values would wash out any multi-modal structure in the data. As k(u) any
function can be chosen which is subject to the conditions k(u) > 0 and

∫
k(u)du =

1. Here I use the Gaussian kernel which has convenient mathematical properties
and thus enables efficient bandwidth selection [17]. The resulting equation looks as
follows:

f(τa,b) =
1

n

n∑
i=1

1√
(2πh2)

e
(τa,b−τa,b

i
)2

2h2 . (4.12)

Based on the model M defined in this section the system state can now be assessed
for an input time-series. The details on the assessment represent the topic of the next
section.

4.4. System State Estimation

This step of the algorithm is concerned with the actual decision whether a system
shows normal or abnormal behavior. Similar to the model training step, the state esti-
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mation algorithm gets a time-series R of temporal duration features as input. Together
with the model M developed in the previous section, the system state is classified into
normal or abnormal. We introduce this procedure in two steps. Firstly, the computa-
tion of a score value is explained which expresses the fitness of the regarded system
as a single real-valued variable. Secondly, the mapping of the score value to one of
the two possible states normal or abnormal is explained. This mapping is realized
with the help of a binary classifier whereas a particular difficulty stems from the facts
that there exist no counter examples in order to train the classifier. Here, ideas from
the field of one class classifiers [76] play an important role.

Score Estimation: Let us assume that we have already trained a model M of nor-
mal behavior for a robotic system. Furthermore, let us assume that we have a test
time-series D of data-points d which were recorded while the system was in field. We
now want to assess how well the recorded time-series D fits the model M , that is,
how well did the system perform during the recording of D in relation to the model M .
We first apply the findings from sections 4.1 and 4.2, and transform D to a time-series
R of temporal duration features tdf . Then, the performance for each tdf is expressed
as a single fitness value s called score. The equation used to compute s for a tdf b

based on the model M looks as follows:

score(tdf b) := sb = log(P (tdf b)). (4.13)

Using equation 4.10 we write

score(tdf b) = log(P (τa1,b) ·P (τa2,b) · · · · ·P (τan,b)) (4.14)

=
n∑

i=1

log(P (τai,b)). (4.15)
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Additionally, we apply a weighting scheme to each contributing duration τan,b leading
to the final equation:

score(tdf b) =
n∑

i=1

log(P (τai,b)) ·wai,b (4.16)

(4.17)

whereas

wai,b = 1− hai,b

Hb
(4.18)

and

Hb =
n∑

j=1

haj ,b. (4.19)

The value hai,b is the entropy of the distribution P (τai,b) as defined in the informa-
tion theoretical context [66]. It is a measure of the uncertainty in a random variable
whereas higher values indicate greater uncertainty. Equation 4.16 states that the
score of a tdf b is the sum of weighted log-likelihoods of the corresponding durations
τai,b. The rationale behind this equation is that each τai,b shall contribute to the score
sb but to different proportions. The contribution is driven by the strength of the corre-
lation between each two composite features ai, b whereas highly correlated features
should contribute more than weakly correlated ones. It is implicitly represented in
equation 4.16 through the probabilities P (τai,b) and explicitly enhanced by the en-
tropy based weight wai,b. In order to illustrate this, consider two composite features
aj and b which have a low correlation. Low correlation means that the corresponding
data-point of aj and b do not form a strong pattern in the communication data but are
rather sent at arbitrary points in time in relation to each other. This again results in a
wide range of durations τaj ,b which is then used to train P (τaj ,b). This distribution fea-
tures high variance and at average will provide lower probabilities for queried values.
This implicitly lowers the impact of aj, b on the score sb of tdf b. Furthermore, P (τaj ,b)

has also a high haj ,b entropy value. haj ,b is explicitly used in the weight whereas high
values have a negative impact on the contribution of aj, b to the overall score.
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Classification: Based on the score value s for tdf it can be now decided whether
the current system state is normal or faulty in regard to the learned model M . This is
done by a binary classifier:

faulty(tdf) =

 True : s < s∗

False : else
(4.20)

If s is smaller than the threshold s∗, then tdf is declared as being in a faulty system
state. Otherwise tdf is assumed to represent a normal system state. The threshold
s∗ is calculated based on the following equation:

s∗ = w · s∗val + (1− w) · s∗val ·
Svar

s∗var
(4.21)

where 0 ≤ w ≤ 1. Equation 4.21 expresses the assumption that the classifier can
be improved by incorporating the variance Svar of a history of length k of scores
S = (sj−k, · · · , sj−2, sj−1) into the computation of the threshold. The rationale is that
we expect Svar to be lower for data-points recorded during normal system behavior
represented by the normal model M than for data-points which do not belong to M

and thus represent a faulty system state. If the variance of the history values is low
s∗ is lowered and thus can be easier exceeded. Otherwise s∗ increases which makes
it harder to surpass it by a score value. To realize this, additional parameters s∗var,
k = |Svar| and w ∈ [0, 1] are added to the classifier. The weight w is used to balance
the impact of the constant fraction of the threshold and the variance based one. In
total, the parameters of the threshold s∗ are represented as α = (s∗val, s

∗
var, w, k).

Recalling that the approach in this thesis exploits data of the system’s normal behavior
only, means that the estimation of the classifier’s parameter needs to be done without
counter examples (i.e., without data which represents faulty situations). The absence
of counter examples renders the definition of the class border (here the definition
of the threshold s∗) challenging because usually it is not feasible to gather enough
training data-set in order to cover the whole input space and find the true border
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between normal and faulty behavior. Instead of the true border, I use scores si ∈ S
computed for a training data-set and choose the parameters α of s∗ such that it is as
close as possible to the scores of the training data-set by minimizing the squared sum
of errors between the scores si and the corresponding thresholds s∗i [14, p.3]:

E(α) =
1

2

|S|∑
i=1

||s∗i (α)− si||2 (4.22)

Determining s∗ in this way may result in a threshold which is frequently higher than
scores si because for the minimal value of E(α) it only matters that s∗i (α) and si as
as similar as possible but it is irrelevant which one is bigger. The consequence of s∗

being higher than the scores si is a high rate of false alarms for the training set and
most likely also for data gathered while the system is in field. To resolve this issue,
the set of valid thresholds is restricted to the ones which do not exceed a certain
false alarm rate level sfarl following the idea of Japkowicz in [71]. In general, false
alarms are not desirable because they may lead to frequent recovery action and one
could be inclined to set sfarl = 0. However, setting sfarl > 0 enables to account for
additional variance in the data which has not been covered by the model M (e.g., due
to the incompleteness of the training data-set). In order to estimate the parameters
of s∗ which minimize equation 4.22 a grid search [79] (constrained by the false alarm
rate) is performed in the parameter space spawned by α.

4.5. Summary

In this chapter the fault detection approach developed in this work has been intro-
duced. The presented solution is designed to cope with the challenges defined in
section 2.2.1. In particular, the approach is data-driven which enables fast and easy
adaptation to changes in the system and reduces the amount of expert knowledge
in order to apply it. The training input used to learn the model is the recorded inter-
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component communication (ICC). Exploiting ICC for fault detection reduces the cou-
pling to specific system components and the amount of component specific knowl-
edge necessary in order to integrate the detection approach into a system. In addi-
tion, it enables fault detection without modifying its components in case the system’s
build-in communication functionalities can be used to gather fault-sensitive data. The
approach exploits generic attributes from the data-points in the ICC for feature gen-
eration only. By this means, the need for expert knowledge is additionally reduced
and makes the approach robust against changes to the system. We consider the
ICC to be the output of a time and state discrete stochastic process and model re-
lations between current and past data-points (represented by generic attributes) as
temporal dynamic features (TDFs). TDFs differ from other techniques for state and
time discrete time-series by providing efficient means to represent relations between
non-consecutive elements. The actual model is based on statistical modeling tech-
niques and represents only the normal state of the system without any representation
of possible faults. By this means, the approach does not depend upon the presence
of exemplary data of fault situations in order to detect them. The normal state of a
system is estimated by the user based on the system’s performance for a given task.
This definition is based on task related knowledge without further information on the
normal behavior of single components which enables training data acquisition even
to non-system-experts.

Having introduced the AuCom fault detection approach, the upcoming chapter is con-
cerned with important implementation details of the presented approach, the integra-
tion efforts into robotic systems and its empirical evaluation.
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This chapter is concerned with implementation and the integration efforts conducted
within these thesis. It starts in section 5.1 with the description of the modularized im-
plementation of the algorithm introduced in chapter 4. In section 5.2 typical workflows
in which the AuCom-detector was used during the research period are presented. At
last, in section 5.3 integration aspects of the detector into a robotic system are dis-
cussed. Section 5.3 starts with a discussion of the requirements on a target system
in order to apply the detection approach. Subsequently, the concrete integration on
BIRON [59] is presented followed by hypothetical efforts for currently unsupported but
prominent robotic frameworks.

5.1. Implementation of the Algorithm

The description of the implementation efforts starts with an introduction of the data
representation used throughout the code as a basis for further discussions. Subse-
quently, the actual implementation of the algorithm is discussed.

The implemented data types are depicted in a class diagram in figure 5.1. Among oth-
ers, they represent the outputs of the different intermediate processing steps of the
algorithm (see chapter 4). In particular, this means that composite features, temporal
dynamic features, temporal dynamic probabilities, scores and classifications are rep-
resented with an own data type. All these types inherit from a common abstract class
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called AbstractData. AbstractData enables uniform handling of intermediate results
on a higher abstraction level and provides facilities to add and delete attributes to a
data object. For example, this is useful in order to mark an element of the recorded

TemporalDynamicFeatureProbabilities

AbstractData

attributeMap<String,String>
-timestamp : long

+addAttribute( String name, String value )
+deleteAttribute( String name )
+String getAttributeValue( String name )

...

TimeSeries<T extends AbstactData>

Observation

+T getConent()
+Observation( T inContent, long ts )

-T content
TemporalDynamicFeature

ObservationTimeSeries

CompositeFeature ClassificationScore

      <Bind>
<Observation>

Figure 5.1.: Class structure of the data types used in the fts-graphs. Subclasses of
AbstractData represent processing results of the AuCom-detector except
for the Observation class. It is an optional container format for a more
sophisticated communication representation prior to algorithmic process-
ing providing useful input for off-line analysis. The TimeSeries class is a
composition of subclasses of AbstractData ordered in time.

inter-component communication as the first recorded element after a fault has been
induced1. Besides the representation of intermediate results, an optional container
data format called Observation<T> was implemented as a generic Java type [92].
This container provides a possibility to represent the input of the AuCom-detector in
a customized format prior to the algorithmic processing i.e., before it is reduced to
composite features as the first intermediate processing output (see chapter 4). As
the detector is directly connected to the robotic system, this can be exploited in order
to save a more sophisticated view on the inter-component communication for later
evaluation or repetition of the experiments. Regarding the subsystem example de-
picted in figure 4.1 in section 4.1 an observation could consist of the complete laser

1This information is of particular interest when evaluating a detection approach under controlled con-
ditions.
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or velocity readings of the laser or odometry component. Furthermore, the set of
data types used in this work also encompasses a representation of a time-series
called TimeSeries<T extends AbstractData>. This class maintains temporal aspects
of a time-series and manages the membership of single data objects to a concrete
data-set (e.g., a training data-set or a test data-set).

The discussion now moves forward to the description of the actual AuCom-detector
implementation which is aimed at two major goals: On the one hand, it shall provide a
separation of the algorithmic part of the implementation from the part which encapsu-
lates the target-system specific adaptations necessary in order to apply the approach
to a concrete system. On the other hand, it shall enable flexible modifications of the
different algorithmic steps. For example, this is beneficial in order to experiment with
different variants of the algorithm like different classifiers.

To realize this, the AuCom-detector is implemented in Java [99] and realized within the
Filtering, Transformation and Selection (FTS) framework proposed by Luetkebohle
et.al. [84]. The aim of FTS is to foster re-use at the component level by providing a
general pattern that supports the structuring of components into sub-parts of lower
granularity. Components based on FTS are represented as transformation graphs
consisting of inner-nodes as well as sinks and sources which act as inputs and out-
puts of a graph. Edges in the graph represent possible data-flow between fts-nodes.
A general policy in a FTS-graph is that data is processed from sources to sinks.

Following the FTS idea the functionality of the AuCom-detector was decomposed and
encapsulated in fts-nodes. The granularity of the nodes reflects the various process-
ing steps discussed in the algorithmic part of this work in chapter 4. In addition,
the chosen decomposition is fine grained enough in order to facilitate reuse among
graphs and it supports the decoupling of system-specific and system-independent
parts of the algorithm. In particular, the following nodes have been implemented:

. SourceAdapter : Implements the connection to the monitored system consisting
of functions to connect, disconnect and reconnect to the system and routines
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necessary to discover and gather the system communication. This node may
have a significant impact on the monitored system. Consequently, computa-
tional efforts should be minimal which is why its output is expected to contain
the data-points d still encoded in the systems native communication format.

. ObservationCreator : This node provides the possibility to pre-process a data-
point d before actually applying the fault detection processing steps on it. For
example, it enables to save the ICC of a system in a more complete manner i.e.,
other than solely the required input for the algorithm. The output of the node is
of type Observation<T> whereas T may be any type of data. T could also be the
native communication format of a system. In this case the node merely passes
through all incoming input.

Observation

Creator

TimeSeries

Sink

Framework

dependent

data-point
Observation<T>

Attribute

Extractor

TimeSeries

Sink

Composite

Feature

Figure 5.2.: The system connection fts-graph. It manages the access to the robotic
system and provides input to the AuCom-detector as observations or as
composite features.

. AttributeExtractor : Extracts the generic attributes Source, Scope, and Type from
the content T of an observation object and creates a composite feature e. In
other words, it implements the mapping function defined by equation 4.2.

. TimeSeriesSink : A sink which adds incoming data elements to a time-series.
Input data is required to be a subtype of the AbstractData class.

. TemporalDynamicFeatureCreator : Maintains a history of the last occurrences of
each composite feature e ∈ E present in the system. The node uses this history
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to compute a Temporal Dynamic Feature tdf e for an input composite feature e.
To do so, it implements the algorithm defined in listing 4.1.

. Trainer : Implements the training of the model M of the system’s normal behav-
ior. Each incoming tdf e is exploited to train corresponding probability distribu-
tions for each τa,e ∈ tdf e of M whereas a is a predecessor composite feature of
e as defined in section 4.2.

. ModelQueryNode: Maintains an instance of the model M . For each incoming
tdf e computes single probabilities P (τa,e) = pa,e for the durations τa,e ∈ tdf e. The
output is the set Pre = {pa,e| τa,e ∈ tdf e} of probabilities.

. ScoreCalculator : Calculates a score s by applying equation 4.16 to the set of
probabilities Pre.

. Classifier : Classifies the system’s behavior into normal or faulty state based on
an input score value s. This node implements the equation 4.20.

. TimeSeriesSource: A source that reads single data elements from a given time-
series and pushes them into the connected graph. Input data is required to be
a subtype of the AbstractData class.

The presented nodes have been assembled to graphs in order to implement the func-
tionality of the AuCom-detector. To illustrate this, three exemplary graphs are dis-
cussed now which realize the detector’s capability to i) connect to a robotic system,
ii) detect faults and iii) record data to a file for later analysis.

The system connection graph is shown in figure 5.2. The purpose of this graph is
to manage the connection to the robot through the SourceAdapter node and provide
input for the AuCom-detector. Input is provided in two ways: i) as a time-series of
composite features which is the first processing step of the algorithm (i.e., the generic
representation of the communication between the system’s components) and ii) as a
time-series of Observations. The time-series of observations can be used for example
to save the ICC in a more complete format (see the introduction of the Observation
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data type previously discussed in this section). The composite feature time-series
is used as input for further algorithmic processing of the AuCom-detector. It is a
system independent format which means that graphs which use it as input are also
system independent. Integration efforts of the AuCom-detector into a new system
concentrate on the grey shaded nodes of the system connection graph2.

The next graph to be discussed is the fault detection graph depicted in figure 5.3. It
realizes the processing chain of the detection algorithm proposed in section 4. The
graph requires a composite feature time-series as input and can be directly linked to
the system connection graph. In this configuration (Figure 5.3) the AuCom-detector is
ready to be applied in an on-line fault detection scenario. Alternatively, the time-series
can be read from the file system in case the AuCom-detector is applied off-line. Sin-
gle elements of the time-series are pushed into the graph by the TimeSeriesSource
node. After the input is processed by the TemporalDynamicFeatureCreator, Model-
QueryNode, ScoreCalculator and the Classifier the result is saved to a classification
time-series in the TimeSeriesSink node. The time-series can be accessed by other

Figure 5.3.: The AuCom-detector graph realizes the processing chain of the detection
algorithm proposed in chapter 4. Its output is a classification time-series.

2For detection purposes only, robot specific implementations of these three nodes are actually suffi-
cient. However, if Observation data has to be saved to and loaded from a file additional converter
classes need to be implemented (See the data recording graph explanation further below).
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sub-components of the AuCom-detector, too. An exemplary component which uses
the above mentioned time-series is the visualizer. This sub-component plots the clas-
sifications over time using the JFreeChart plotting library [50]. In order to transform
the classification results into a representation suitable for the plotting library the visu-
alizer again exploits a fts-graph.

The third graph is depicted in figure 5.4 and is called the data recording graph. It gets
its input in terms of Observations from a time-series source node and its purpose is to
save data for a later in-depth analysis and result reproduction. The second node in the
graph provides the possibility to mark a passing Observation as being the last one in
the current record by providing an appropriate public function setMarkNextAsLast().
This mark is used to decide when to close the output file in the OutputStreamSink
node. Since this function is public, it can be called externally for example in a function
related to a button press in a graphical user interface (GUI) or by a timer in order to
record a specific duration of the communication. The sink node takes care of the file
writing procedure. The payload (i.e., the object with the generic type T) of each in-
coming Observation is streamed into a file. The formatting of the output is delegated
to a specific converter. By this means, data can be saved in different formats like the
Extensible Markup Language (XML) [130] or the comma separated values (CSV) for-
mat. Specific converters need to be provided by the developer for each generic type
T which is why the OutputStreamSink node is shaded grey indicating target system
dependency.

The decomposition of the functionality of the AuCom-detector into fts-nodes yields
high flexibility during the application and experiments phase whereas the predefined
graphs provide larger building blocks which can be combined in order to easily adapt
the detector to different application cases. One example is the case of on-line fault
detection. Here, the system-connection graph is linked to the AuCom-detector graph
providing its input. This setup is sufficient for the task of on-line fault detection. How-
ever, in order to reproduce the results at a later point in time, it is necessary to save
the ICC to the file system. A simple solution is to connect the recorder graph to the
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Mark as last
DataPoint

TimeSeries
Source

Observation<T> Observation<T>

OutputStreamSink

Figure 5.4.: The data recording graph used to save recorded inter-component com-
munication to a file for later analysis.

system-connection graph and record the data in parallel. Graphs can be also ex-
tended with additional nodes. An example of an actually realized extension is the
addition of a SlidingWindow node between the ScoreCalculator node and Classifier
node of the AuCom-detector graph. This node computes a mean over score values in
a defined time span and replaces the input for the classifier node with that computed
value. By this means, unwanted noise in the score can be diminished which eventu-
ally leads to a reduction of false alarms. Particular nodes can be also exchanged in
order to evaluate different implementations of the same functionality or they can be
run in parallel and compared on the fly.

5.2. Common Workflows with the AuCom-detector

Throughout the research project the AuCom-detector has been used in different ap-
plication scenarios. The intention of this section is to present the most prominent
workflows executed during this time and document the flexibility of the chosen imple-
mentation. The presented workflows are: i) data acquisition, i) off-line experiments,
iii) and on-line fault detection.
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5.2.1. Data Acquisition

The workflow used to record data without fault detection is depicted in figure 5.5 as
an activity diagram. It begins with the setup of the robot and the connection of the

 Interact with robot (x seconds)

Record (x seconds)

Add tag
the next recorded

data-point

User adds tag

Save 
fault induced 
timestamp

Setup robot

Induce fault 
at random 

point in time
before 

x seconds
Shutdown 

robot

Connect
recorder
to robot

Save 
data

Induce fault?

Next run?

Yes

No

NoYes

Figure 5.5.: Activity diagram of the data recording workflow.

recorder component to its communication framework. Next, several actions take place
in parallel. The recording component gathers the inter-component communication in
the system while the system is engaged in interaction with a user. If the intention of
the data acquisition run is to record a test data-set, another task which is executed in
parallel is the induction of a fault. Inducing a fault is executed by a dedicated compo-
nent and takes place at a random point in time following a probability distribution P .
After a time period of X seconds the recorded data is saved and the robot is turned
off. The complete run can be repeated in order to acquire several sets of training and
test data for a specific fault in a controlled way.

In addition, during the interaction the operator of the recording component is pro-
vided with a means to add short comments (tags) to the recorded communication
data indicated by the User adds tag event and the Add tag to next data-point action
in figure 5.5. Tagging provides an immediate means for the developer to annotate
interesting observations relative to the point in time when they were perceived. An
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example is the annotation of experienced real faults which were not induced on pur-
pose i.e., while the system was expected to behave normally.

5.2.2. Off-line Experiments

Off-line experiments conducted in this work comprise the comparison of alternative
implementations and parameterizations of the different algorithmic steps, the replica-
tion of results acquired on-line and the comparison of the AuCom-detector to the per-
formance of another approach. These experiments are characterized by numerous
iterations on previously recorded data with slightly varying conditions (e.g., parame-
ters). Furthermore, they do not require a real robot or a human interaction partner
which makes them suitable for automatization. Off-line experiments have been con-
ducted within an experiment execution framework which is briefly introduced now.

Implement 
Experiment & 

ExperimentFactory
interface

Take
description &

create experiment

Load
training & test

data

Run detector 
on 

test data

Describe 
experiments

 as xml file

Load 
experiment

file

Set 
classifier 

parameters

Train 
model

Save 
results

Experiments 
descriptions

 left?

Setup Experiment with varying 
classifier parameters for 
different train & test data-sets.

pre-process post-processprocess

Yes
No

Figure 5.6.: Activity diagram of the off-line analysis case.
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The Experiment Execution Framework The intention of this framework is to pro-
vide a simple means to facilitate recurrent execution of experiments. The structure
of this framework is shown in figure 5.7. The framework provides an interface called

Experimenter

-Experiments : List

+load( File f ) : Document
+start()
+create( Element description ) : Experiment
+getFactory( Element description ) : ExperimentFactory

...

ExperimentFactoryImp

+create( Element description ) : ExperimentImp
...

ExperimentFactory

+create( Element description ) : Experiment

Experiment

+preprocess()
+process()
+postprocess()

ExperimentImp

<<use>>

creates

<<use>>

Figure 5.7.: Class diagram of the experiment framework.

Experiment which structures the execution of an experiment into three phases: pre-
process, process and post-process. While there is no strict rule on how to implement
these phases, a general policy is that the pre-process step should comprise all actions
necessary in order to prepare the experiment like loading all necessary training and
test data-sets or set the parameters of the AuCom-detector. The processing phase
represents the core of the experiment i.e., all code which produces the outcome of
the experiment. The post-processing step is the right place to put code which e.g.,
saves results and cleans up the environment. The execution of experiments is man-
aged by the Experimenter class which reads the description of experiments from an
XML configuration file, instantiates, and runs them in consecutive order. Instantia-
tion of an experiment is delegated to a factory class which has to be provided by
the experiment designer. The ExperimentFactory interface defines a single function
called Experiment create(Element description) which gets an XML element as input
and outputs an Experiment object.

An exemplary workflow is depicted in figure 5.6. It shows the different steps in a
scenario where different parameter settings of the classifier described in section 4.4
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are evaluated on several training and test data-sets. The first step is the implementa-
tion of the Experiment and ExperimentFactory interfaces. The implementation of the
Experiment interface comprises the definition of the aforementioned three phases of
pre-processing, processing and post-processing. Here, these phases correspond to
the steps five to nine of the workflow as highlighted in figure 5.6. The implementa-
tion of the ExperimentFactory is used in the fourth activity of the workflow in order
to correctly instantiate and parameterize an experiment from the XML-description.
Afterwards, the different variants of the experiments are described in an XML file.
Subsequently, experiments are loaded from the file by the Experimenter, instantiated
and executed one after the other. This includes model training, classifier parameteri-
zation, fault detection on test data, and saving the results.

5.2.3. On-line fault Detection

The primary application scenario for a fault detector is the on-line application which
is why the present approach has also been evaluated in such a scenario. In the on-
line fault detection case the detector runs in parallel to the monitored system and is
expected to detect faults during interaction. The workflow for this type of experiments

Interact with robot 
until scenario finished

Monitor the system 
for faults

Execute a 
data acquisition

phase
and train a model

Load 
fault detection 

model

Fault 
detected

Fault 
detected

Setup robot
Disconnect
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Report the 
fault

Shutdown 
Robot

Save 
results

Connect
detector
to robot

Yes

No

Model 
present?

Figure 5.8.: Activity diagram for the on-line fault detection case. The system is in
interaction with a human and the detector monitors the system in parallel.
In case of a fault detection the user is informed.

is depicted in figure 5.8. In the initial step the robot needs to be setup for the specific
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interaction scenario. Next, the detector needs to be configured for the targeted sys-
tem. This can be done in two different ways. An appropriate model can be loaded
from the file system if present3. If not, data has to be gathered and a model needs to
be trained. Subsequently, the detector runs in parallel to the interaction of the robot
within the given scenario. If a fault is encountered, the detector gathers fault relevant
information like the timestamp of occurrence and a history of the inter-component
communication shortly before the fault has been detected and reports it to the user.
After finishing the scenario the detector is disconnected, the robot is shutdown and
the results are saved.

3A model can be present if it was learned during a previous interaction and the system setup didn’t
change.
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5.3. Integration

This part of the thesis is concerned with integration aspects of the AuCom-detector.
Section 5.3.1 introduces the requirements imposed on a robotic system in order to
apply the detector to a new system. Subsequently, in section 5.3.2 a concrete ex-
ample on how the approach was incorporated into our robotic system BIRON [59] is
given. At last, in section 5.3.3 integration case studies are discussed for prominent
robotic frameworks.

5.3.1. Requirements

Recalling chapter 4 we know that a fundamental design decision of the fault detector
in this work is that it is solely grounded on the inter-component communication data
of the targeted system as input. As a consequence, integration of the approach into
a new system is concerned with the communication framework and the architectural
layout of the system only thus omitting any constrains on individual components. Still,
there exist several requirements which have to be fulfilled by a system in order to
enable the application of the AuCom-detector. These requirements result from the
challenges stated in section 2.2.1 and from the design decisions taken in section 4.1
and are discussed next.

Granularity The partitioning of a system has a significant impact on the set of faults
detectable by the approach. It predetermines the granularity of the communication
between the components of a system which constitutes the input for the fault detection
approach. If the data gathered this way turns out to contain insufficient fault-sensitive
information, a possible solution is to incorporate additional monitoring probes into
the system’s components. This enables the recording of the communication between
sub-components, single routines or functions.
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Scalability A system is said to be scalable if it can handle the addition of users
and resources without suffering from a noticeable loss of performance or increase in
administrative complexity [115]. Regarding the communication framework this means
that additional components incorporated into the system should have no significant
impact on the communication latency, reactivity and thus performance of the overall
system. This requirement is often considered in communication frameworks used in
robotic systems [137]. Consequently, it seems that simply incorporating the detec-
tor as an additional component into the robotic system should have minimal impact
and thus should be unproblematic. However, the detector challenges the scalability
of a communication framework in a different way. It records the complete ICC in the
system, which is a case that often is not explicitly considered by the developers of
a particular framework and thus may actually have a great impact on the system’s
overall performance. If it turns out to be the case, an alternative way of data record-
ing is necessary. A possible solution is to intercept the communication on a lower
layer of the communication stack within the framework in order to gather the data
more efficiently. For example, in the CoSy Architecture Schema Toolkit (CAST) [63]
components subscribe to specific information based on a filtering system in order to
implement the communication efficiently. For the AuCom-detector no filters would be
used thus not taking advantage of this optimization possibility. If this way turns out
to be not efficient enough, CAST also allows to establish a TCP/IP connection to the
core module in order to grab the complete unfiltered communication more efficiently.

Architecture Level Introspection Robust and autonomous application of the
AuCom-detector requires means to automatically discover & connect to communi-
cation channels in the system. This requirement also helps to tackle the challenge
for minimal system expert knowledge because the connection has to be implemented
only once for a communication framework. Afterwards, it can be reused for different
system configurations without modification. Holistic communication recording can
be realized by discovering all active communication channels and exploiting ordinary
communication mechanisms of the framework. Communication channel discovery is
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often a built-in functionality of a framework. It is used by the system’s components
to dynamically connect to other components during run-time. An example is the
trading-service in CORBA [114]. Alternatively, if no such service is present, the to
be monitored communication channels can be predetermined and are static during
run-time which renders the approach less flexible in case new communication chan-
nels are opened during runtime. In cases where no framework support is present the
same alternative solution can be applied as in the case of scalability i.e., the recording
mechanism can be implemented into the communication framework manually either
on the system, network, or programming language level.

Communication Level Introspection The next requirement with functional impli-
cations for the detector is the need to obtain required attributes of the communicated
data. In particular, this means access to the timestamp of occurrence of a data-point
as well as to the generic attributes Source, Scope, and Type introduced in section 4.2.
The timestamp of occurrence of a data-point is often added by the respective com-
munication framework to the metadata of that data-point. This is for example true
for XCF [137], ROS [103], RSB [132], and CAST [63] which altogether cover a huge
range of robotic systems. The attributes Source and Scope, if not provided in the
same way as the timestamp, require additional adaptations of the framework. How-
ever, here only the communication framework is subject to modification while single
components of the system remain untouched. The Type attribute has been described
in section 4.2 to be a semantic interpretation of the data-point regarding its novelty
in the system which means a data-point may represent new, present or deprecated
information regarding a certain aspect of the robot’s internal or external state (e.g.,
information about a human interaction partner). This kind of information is valid for
many cognitive tasks a robotic system has to perform like visual tracking of objects [7],
learning new environments [62] or executing tasks which involve the interaction and
coordination of several objects [61]. As such, this attribute is strongly related to the
semantics of the component which generates the data-point. If this kind of semantic
information is not derivable from the communicated data-points a subsequent im-
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plementation has to be done for each component individually by the component de-
veloper. In this case it might be more efficient to omit this attribute and represent
data-points by Source and Scope solely.

5.3.2. Integration into BIRON

Person/Object

Camera

Microphone

Gripper

Laser

Figure 5.9.: The BIelefeld Robot Com-
panion (BIRON) for which
the concrete integration of
the AuCom-detector was exe-
cuted.

This section describes the integration of
the detector into BIRON [59] realized for
the empirical evaluation of the approach
which is presented discussed in the sub-
sequent chapter 6. The BIRON efforts
are aiming at developing a robot com-
panion exhibiting social interaction capa-
bilities [23]. The robot is i.e. able to fo-
cus and recognize its current interaction
partner from a number of persons, which
allows the robot to interact in a more
efficient and natural way while carrying
out useful tasks. One of the scenarios
the research is aiming at is the so-called
home-tour scenario which is driven by
the vision of future household robots be-
ing introduced to the new home for the
first time after purchase. The robot is
guided through its new interaction environment and is supposed to learn important
places and objects. Similar interaction scenarios are defined in the context of the
RoboCup@Home competition [80]. Here, robots compete with each other in solv-
ing household relevant tasks like identifying and fetching objects or safely navigating
through a realistic apartment thereby following a human. As depicted in figure 5.9
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BIRON possesses a microphone, a camera, a laser scanner and a 3D-sensor. BIRON
is also equipped with a differential drive to move along and a gripper in order to ma-
nipulate objects. Its cognitive capabilities are implemented in a set of software com-
ponents which will be introduced in section 6.3.1.

The communication between BIRON’s components is based upon the XML enabled
Communication Framework (XCF) [137]. XCF provides several means of interac-
tion, the most important one being the active memory [9] and the publish/subscriber
communication styles. In regard to the active memory style, components can insert,
update, delete and retrieve contents in memories. The content is represented as
XML documents with optional binary attachments. Components can also subscribe
to events resulting from the modifications of memory contents by using XPath state-
ments [12].

Communication channel discovery in XCF is provided through a unified interface
called the XcfManager. Monitoring a system is realized by i) registering to all pub-
lishers, ii) subscribing to all changes to the complete data in all memories. Listing 5.1
depicts a small but complete example written in Java on how to implement moni-
toring. This code is extracted from the XCFSourceAdapter class which is the XCF
implementation of the SourceAdapter node of the fts-graph introduced in section 5.1.
For the sake of simplicity the listing omits the code which handles the removing and
adding of publishers after the initial connection phase. At first a XCF specific Syn-
chronizedQueue is instantiated which is used to collect XcfEvents from one or more
event sources. To do so, the function convertFromXcfEvent needs to be defined. It
is used to convert each inserted XcfEvent into another data type before saving it in
the queue. Keeping processing efforts minimal in the XCFSourceAdapter node each
XcfEvent is directly inserted into the queue. Next, the XcfManager is used to add
listeners to all present publishers in the system. The listeners are represented by
QueueAdapter objects which reference the previously defined queue. In a similar
way, listeners are added to all memories known to the xcfManager. After this code
was executed the XCFSourceAdapter is ready to forward BIRON’s communication to
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any connected fts-nodes which can process XcfEvents.

Listing 5.1: Connect to Xcf

1 void connectToXcf ( ) {
2 SynchronizedQueue<XcfEvent > queue = new SynchronizedQueue<XcfEvent > ( ) {
3 @Override
4 public XcfEvent convertFromXcfEvent ( XcfEvent e ) {
5 return e ;
6 }
7 } ;
8
9 for ( S t r i n g pub l i she r : getXcfManager ( ) . ge tReg is t r y ( ) . p u b l i s h e r L i s t ( ) ) {

10 Subscr iber sub = getXcfManager ( ) . c rea teSubscr iber ( pub l i she r ) ;
11 sub . addLis tener (new QueueAdapter ( queue ) ) ;
12 }
13
14 for ( S t r i n g memory : getXcfManager ( ) . ge tReg is t r y ( ) . s e r v e r L i s t ( ) ) {
15 i f ( isActiveMemory (memory ) {
16 ActiveMemory m = getXcfManager ( ) . createActiveMemory (memory ) ;
17 m. addLis tener (
18 new QueueAdapter ( queue ,
19 new Condi t ion ( MemoryAction . ALL , new XPath ( " / " ) ) ) ) ;
20 }
21 }
22 }

One such node is the AttributeExtractor presented in the implementation section. It
converts XcfEvent to an internal representation called Composite Feature which con-
sists of the generic attributes Source, Scope, Type and the timestamp of occurrence
of the XcfEvent. Listing 5.2 depicts the function getGenericFeatures used to extract
the generic attributes. Each XcfEvent is casted to a specific sub-class representing
either a publisher or a memory event thus enabling the use of specific functions of
each sub-class. In case of the publisher event the Source attribute is the name of
the publisher. It is extracted from the XML content of the event. This information was
inserted into the XML document by the communication framework and is thus consis-
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tent for all publisher events. The Scope and Type attributes are set to default values
representing a publisher.

Listing 5.2: Extract generic features

1 Map<St r ing , S t r ing > getGener icFeatures ( XcfEvent event ) {
2 Map<St r ing , S t r ing > fea tu res = new HashMap<St r ing , S t r ing > ( ) ;
3
4 i f ( i sPub l i sherEven t ( event ) ) {
5 Publ ishEvent p_event = ( Publ ishEvent ) event ;
6 fea tu res . put ( " Source , getGenerator ( p_event ) ) ;
7 fea tu res . put ( " Scope " , " pub l i she r " ) ;
8 fea tu res . put ( " Type " , " INSERT" ) ;
9 } e lse {

10 MemoryEvent m_event = ( MemoryEvent ) event ;
11 fea tu res . put ( " Source " , m_event . getName ( ) ) ;
12 fea tu res . put ( " Scope " , m_event . getMemory ( ) ) ;
13 fea tu res . put ( " Type " , m_event . getType ( ) . t o S t r i n g ( ) ) ;
14 }
15 r e t u r n fea tu res ;
16 }

In case of a memory event all three attributes are extracted using MemoryEvent
member-functions thereby representing the component which led to the emission of
the event (Source), the memory the event was generated in (Scope) and the change
made in the memory (Type). The timestamp of occurrence of a particular event is
obtained with the extractTimestamp function shown in listing 5.3. This function takes
advantage of the convention that each event generated in the XCF framework has
coherent time information about the instant of time where it was created and about
the time when it was modified lastly. These two timestamps are equal for publisher
events. In case of events resulting from changes in a memory these two timestamps
may differ for example when the event represents an update of data already present
in that particular memory.
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Listing 5.3: Extract timestamp of event occurrence

1 Long extractTimestamp ( XcfEvent event ) {
2 S t r i n g xpath = " . / / t s [@key= ’ xc f : pub ’ ] " ;
3 XPathContext con tex t = new XPathContext ( " xc f " , " h t t p : / / xc f . s f . net " ) ;
4 Document data = event . getData ( ) . getDocument ( ) ;
5 Element t im ing = ( Element ) data . query ( xpath , con tex t ) . get ( 0 ) ;
6 Long timestamp = Long . va lueo f ( t im ing ) . g e t A t t r i b u t e V a l u e ( "ms" ) ) ;
7 return t imestamp ;
8 }

Listings 5.3, 5.2 and 5.1 represent all modifications necessary to adapt the AuCom-
detector to an XCF-based system like BIRON. Furthermore, these changed only af-
fect the SourceAdapter and the AttributeExtractor fts-nodes defined as system spe-
cific in section 5.1 while all other processing nodes of the detector remain unmodified.

5.3.3. Integration into Common Communication Frameworks

In this section the integration of the AuCom-detector into communication frameworks
prominent in robotics is discussed. These solutions have not been implemented yet,
instead they shall demonstrate how the specific communication capabilities of each
framework can be theoretically exploited in order to integrate the detector. As such,
they act as sanity checks.

Robot Operating System (ROS) ROS is a structured communications framework
designed for the development of large-scale robotic systems [103]. In ROS, modules
or components are presented as nodes which exchange messages via so called top-
ics in a publish/subscriber way. A node sends a message by publishing it to a given
topic, which is for example a string such as odometry or map. Nodes that are inter-
ested in a certain kind of data can subscribe to the specific topic. In recent years, ROS
became popular and is now used in various robotic systems such as mobile manip-
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ulators, mobile robots, humanoid robots, unmanned aerial vehicles, or autonomous
cars (see [1] for an exhaustive list of systems).

Communication recording in ROS encompasses the subscription to all topics. One
way to do this is to exploit the Master_API provided by the roscore: a collection of
nodes (including the master node) and programs that are pre-requisites of a ROS-
based system [2]. The retrieval of all topics is realized by calling the getSystem-
State function on the master node which provides an overview of all topics that are
available for subscription as well as the publishers and subscribers of these topics.
Subsequently, listening to topics is realized by registering subscribers using the reg-
isterSubscriber function on the master node with the respective topic. The extraction
of generic attributes can be done by reusing the information about the publishers to
represent the Source attribute and subscribers for the Scope attribute. ROS does not
provide explicit support for the semantic classification of the exchanged messages
into new, update and deprecated like it is the case for the active memory concept [9]
or the memory concept in CAST [63] and thus the Type attribute is subject to the par-
ticular component. If it is not present, communication data can be represented by the
Source and Scope attributes solely.

CORBA based Communication Frameworks The Common Object Request Bro-
ker Architecture (CORBA) is a standard defined by the Object Management Group
which provides a framework for building distributed systems, regardless of the hard-
ware or software platform [90]. There exist various communication frameworks for
robotic systems which are based on the CORBA standard like Miro [125], Orocos [22],
Orca [18] or Smartsoft [110].

The CORBA standard defines the ORB-Core to be the central point of transparent
communication handling between components in a distributed system. The access to
components regardless of their physical location is realized based on Interoperable
Object References (IORs). Components can acquire the IOR of a component they
want to interact with through a Naming-Service given they know its name. In order to

87



5. Implementation & Integration

find components available for communication the Trading-Service can be used. This
service and the possibility to intercept client calls and server answers via Portable
Interceptors [56] can be exploited for ICC monitoring in CORBA based communication
frameworks. The interceptor enables access to the complete parameters of the call
and thus provides the information about the Source of the call (i.e., the client) as well
as the target which can be interpreted as the Scope attribute of the communicated
information. Thus, it can be assumed that CORBA based systems should provide the
capabilities to gather ICC data in order to apply the AuCom-detector.

CoSy Architecture Schema Toolkit (CAST) CAST [63] is robotic framework which
was developed at the University of Birmingham. In CAST components of a system
exchange information by adding, overwriting or deleting objects in so called working
memories. These operations are broadcasted in the system’s architecture as events.
Components can subscribe to specific events based on the executed operation, the
source of the event, and the object and data-type the operation was performed on.
When receiving an event, a component can use the information it contains to access
the referenced object in the memory. A robotic system build upon CAST typically
consists of several sub-architectures which represent coherent concepts. An example
is the sub-architecture structure of Dora the Explorer which is a mobile robot with a
sense of curiosity and a drive to explore its world [62]. In the DORA system sub-
architectures represent different modalities like vision, language or mapping. The
components belonging to a sub-architecture share information through a memory.
Sub-architectures are again connected in order to be able to fuse information from
different modalities. Integration of the fault detection approach developed here into
a CAST based system involves the registration on all events independently of the
memory the event is inserted into. This can be done by registering a callback function
using the addChangeFilter function with a WorkingMemoryChangeFilter customized
to accept all occurring events in all working memories of the system [63]. An initial
integration into CAST was done by Jeremiah Via in its bachelor thesis [126]. He
uses an alternative way to puck off the communication between the components by
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opening a socket connection to the CAST server instance. This solution is fast but
may be vulnerable to changes because it operates on a string representation of the
messages.

5.4. Summary

In this chapter the modularized realization of the detector’s functionality based of the
fts-toolkit [84] was presented. The modularization is aligned to the AuCom algorithm
introduced in chapter 4. It simplifies the exploration of alternatives, the visualization
of intermediate processing results and the integration of the detector into new robotic
systems. In addition, common workflows have been introduced in which the detector
was used. The second part of this chapter was dedicated towards integration aspects
of the detector. This involves the presentation of requirements in order to apply the
detector to a robotic system. Major results of this discussion are: i) all integration
requirements only affect the communication framework of the targeted robotic system
and ii) the approach can often be integrated by exploiting built-in functionalities of a
particular communication framework of a system. To support these statements, the
concrete integration into the XCF framework used in the BIRON system has been
presented in section 5.3.2. In addition, possible means to integrate the detector into
common frameworks in robotics were discussed in section 5.3.3 showing the potential
of the approach to be applicable to other robotic systems.
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In this chapter the discussion turns over to the quantitative evaluation of the AuCom-
detector which was executed in simulation and on a real robot. Simulation experi-
ments were conducted on different artificial systems implemented based on the CAST
communication framework. They are discussed in section 6.2. The evaluation on a
real robot was executed on the BIRON system in an off-line and on-line manner and
is presented in section 6.3. Yet, before presenting any results the measures used to
evaluate the algorithm are introduced next.

6.1. Performance Measures

Measures to assess the performance of a fault detector should provide information
about two major aspects: i) the speed of detection i.e., the latency ∆t = td − to

between the occurrence of the fault (to) and the actual detection time (td)1 and, ii)
the reliability of the detection [29]. By interpreting fault detection as a binary clas-
sification task the latter aspect can be evaluated based on measures derived from a
confusion matrix [3]. A confusion matrix represents the false positives (FP), false neg-
atives (FN), true positives (TP), and true negatives (TN) values of a (not necessarily
binary) classifier applied to a classification data-set. The matrix for binary classifica-

1In this work the detection time corresponds to the timestamp of the first data-point d after fault
occurrence which has been classified as being faulty. It is worth noting that this is not always
the case e.g., for fault detection approaches which compute a system health estimate periodically
rather than for each gathered data-point.
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tion is depicted in table 6.1. The terminology is adapted to the fault detection appli-
cation case. Given a time-series C of classifications computed for a time-series D of

System Behavior

faulty normal

D
et

ec
to

r
O

ut
-

co
m

e
faulty True Positive (TP) False Positive (FP)

normal False Negative (FN) True Negative (TN)

Table 6.1.: A confusion Matrix used to visualize the performance of a classification
algorithm. The wording is adapted to the terminology of a fault detector.

data-points d which was recorded during a system run2 where a fault has occurred at
timestamp to. C can be re-written as:

C := (C+, C−)

where C+ contains all classifications c with t(c) < to (i.e., before the fault was induced)
and C− all c with t(c) ≥ to. Here, c = 1 indicates a fault while c = 0 stands for no
fault. Now, computing the confusion matrix on a set C of such classification time-
series Ci can be done in two different ways: In the first case, the resulting values
are called the intra-run measures and the word intra is added as a subscript to their
notations in order to differentiate them from the second case. In this case, the FP

value represents the number of fault detections in C+
i and TN the number of c which

indicate no fault detection. Accordingly, TP stands for the number of detections in
C−i and FN stands for all c in C−i representing no fault detection. Based on this, for a
single classification time-series Ci the following equations can be defined:

TP intra
i =

∑
c∈C−

i

c, FP intra
i =

∑
c∈C+

i

c

2Here, a run is defined as a period of time where the system interacts with its environment.
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and
TN intra

i =
∑

c∈C+
i ∧ c=0

1, FN intra
i =

∑
c∈C−

i ∧ c=0

1.

In the second interpretation case, the values are called inter-run. Here, each single
fault detection in Cn

i renders the complete run as a false positive run (FP ) while a
true positive (TN ) requires Cn

i to contain no detections. Similarly, each single fault
detection in C− renders the whole run as TP and if C− contains no single detection
the run is marked as FN . The equations for the inter-run measures are given as
follows:

TP inter
i = min(1,

∑
c∈C−

i

c), FP inter
i = min(1,

∑
c∈C+

i

c)

and
TN inter

i = b 1

n

∑
c∈C+

i ∧ c=0

1c, FN inter
i = b 1

n

∑
c∈C−

i ∧ c=0

1c

where 1
n

is a normalization factor and n is the number of runs considered for the
computation of the measure. Figure 6.1 depicts the discussed measures on an ex-
emplary time-series Ci together with the latency. It also shows the corresponding
score time-series Si and the threshold used to decide upon faulty and normal system
state.

Computing these measures for the set C is realized by summing up over all Ci ∈
C (e.g., TP inter =

∑
Ci∈C). On the basis of the inter-run measures for C two more

expressive measures can be computed which are the false alarm rate (FAR) and the
fault detection rate (FDR):

FDR =
TP inter

TP inter + FN inter
, FAR =

FP inter

FP inter + TN inter

FDR (also called sensitivity ) indicates the likelihood that the fault detector will correctly
detect a faulty state. FAR indicates the likelihood that the system in normal state will
be wrongly classified as being faulty. FAR is closely related to specificity (1-FAR)
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which describes the likelihood that a normal state is detected correctly. While both
measures express similar information, here FAR is preferred for the discussion of
misclassification issues.

Applying the same formulas to the intra-run measures yields another two measures:

FTR =
TP intra

(TP intra + FN intra)
, SFAR =

FP intra

FP intra + TN intra

The first measure yields an estimate of the percentage of data-points in one run which
were correctly classified as faulty. It is called the fault tracking rate (FTR). The second
one provides an estimate of the average percentage of false alarms within one run
and is called the seriousness of false alarm rate (SFAR).

The intuition behind the inter measures (FDR and FAR) is that they shall provide
an estimate on how unreliable one single application of the detector to a system is
i.e., how often does a given approach yield a fault detector which misses faults or
reports non-existent ones. On the other hand, the intra measures (SFAR and FTR)
enable the discussion of reliability within one run of an experiment which has practical
implications in case further processing of the results of the detector takes place. For
example, a detector may provide a poor FAR value over several trials, which makes
it not useful in practice because the high number of wrongly reported faults would
frequently result in (automatic) repair actions. However, if the detector features a
low SFAR value additional temporal post processing may be applied to significantly
reduce false alarm rate. Likewise, an approach may have a very high detection rate
thus indicating good application performance. However, having a low FTR value (i.e.,
only few consecutive detections) may diminish its practical value because in this case
it might be hard to distinguish real faults from false positives.
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6.2. Simulation Experiments

Simulation experiments were conducted on artificially designed component systems
using the CAST communication framework. This work was done in corporation with
Jeremiah Via in the context of his bachelor thesis [126]. The primary goal was to apply
the AuCom-detector to another robotic system providing evidence for its portability.
Beyond this, Jeremiah’s work yields insights into the performance of the fault detection
approach applied to artificial patterns under controlled circumstances. This can be
considered as a proof of concept for this approach.

In order to evaluate the system, Jeremiah created three different artificial CAST sys-
tems, each with properties to challenge the algorithm in some way. In each of the
experiments, the data published by each component is mapped to a single composite
feature i.e., the number of components corresponds to the number of composite fea-
tures. The induced fault in the different system is a simulated crash of a component.

The artificial systems designed to evaluate the AuCom-detector on CAST are de-
picted in figure 6.2 and can be described as follows:

Linear Chain System: This is the simplest artificial system used for evaluation. It
consists of three components which are connected in pairs resulting in a commu-
nication chain. Each component produces its output following a normal distribution
with a mean of 100 ms and a standard deviation of 10 ms conditioned on the input of
the predecessor component. The fault in this system affects the second component
in the chain (Comp2 in figure 6.2) . This system implements the Markov property
which means that the probability of the data-point at time t to be generated by com-
ponent Compi is only dependent on the output generated at time t − 1 by the com-
ponent Compj. It shall provide evidence that the temporal dynamic features defined
in section 4.2 are able to preserve enough information in order to model the Markov
property.
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Comp1 Comp2 Comp3

Comp24

Comp23

Comp22

Comp20

Comp21

Comp25

Comp26

Comp27

Comp29

Comp28

Linear Chain System

Non-connected
System

Parallel Chains System

Comp4 Comp5 Comp6 Comp7

Comp8 Comp9 Comp10 Comp11

Comp12 Comp13 Comp14 Comp15

Comp16 Comp17 Comp18 Comp19

Figure 6.2.: The three different systems used in simulation in order to evaluate the
AuCom-detector.

Parallel Chains System: This system simulates the problem of interleaved commu-
nication chains discussed in section 4.2. It consists of four independent linear chain
systems running in parallel whereas the fault was induced in the first component of
the third linear chain (Comp12 in figure 6.2) . Regarding the complete inter-component
communication the Markov property cannot be assumed like for the linear chain sys-
tem. The goal here is to evaluate whether the approach can cope with this issue.

Non-connected System: In the previous two systems each component produced
an output upon the input from another component within a strictly defined time frame
describable by a unimodal distribution. However, in a realistic system interaction be-
tween components often feature more complex patterns. For example, components
may decide to postpone the generation of an output based on their internal state
leading to an increased variation of the patterns. In the extreme case the variation
may reach a level where the components seem to interact arbitrarily. Although this
corner case is not very realistic, it is simulated here with a set of ten unconnected
components in order to evaluate how the AuCom-detector copes with this situation.
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The fault induced in this system affects the first component (Comp20 in figure 6.2).

6.2.1. Methodology

For each system Jeremiah executed ten experimental runs whereas each run consists
of two phases. During the first phase, 4000 data-points are collected from a normal
run of each system. This data is used to train the model. In the second phase, each
system is run until another 4000 data-point were collected with a fault being induced
at the 2000 message data-point mark. Jeremiah analyzed the performance using the
latency, the FTR and the SFAR measures introduced in section 6.1.

6.2.2. Results

System FTR SFAR Latency

Linear 1.00 0.00 0.37 s

Parallel 1.00 0.10 0.15 s

Non-connected 0.99 0.06 0.50 s

Table 6.2.: Results of the application of the AuCom-detector in simulation. They depict
the performance of the approach for three different artificial systems.

Table 6.2 summarizes the results of the experiments. Jeremiah found out that the
approach applied to the artificial patterns had a nearly perfect fault tracking rate in
all experiments meaning correct classification occurred during almost the complete
time where the system was in a faulty state. For the linear system case the algorithm
has a SFAR value 0.0 % meaning that no false alarms were produced within the runs
whereas in case of the parallel and non-connected systems the higher complexity
of the systems results in several false alarms. All faults could be detected in less
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than half of a second. The approach was least performant on the non-correlated
component system. This result is reasonable because this case does not correspond
to the assumption made for the design of temporal dynamic features in section 4.2
where correlation between current and past data-points is presumed.

From the findings of the simulation experiments two conclusions can be drawn. First,
the AuCom-detector is generally capable of detecting faults based on temporal dy-
namic features drawn from a sequence of data-points which were generated in sim-
ulation. The detector also shows a good performance in case where the correlation
has not been introduced into a system on purpose (i.e., in the non-connected system
case). Second, the developed approach could be successfully integrated into CAST
which is a different communication framework than the initial one used to develop it.
In addition, this integration was accomplished by Jeremiah Via, an external research
student who has to initially get familiar with the topic of fault detection in general and
my approach in particular. This emphasizes the plainness of applicability of this ap-
proach.

6.3. Robotics Experiments

After the evaluation of the AuCom-detector on artificial data this section is dedicated
towards experiments with a real robot. It begins with a description of the interaction
scenario used for the experiments in section 6.3.1. Next, section 6.3.2 is dedicated
to experiments executed on previously recorded data in an off-line manner. After-
wards, in section 6.3.3 evaluation results of the approach in a scenario which could
be executed on-line are presented.
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6.3.1. The Interaction Scenario

Robotic experiments were conducted within the “Follow Me” interaction scenario
which belongs to the set of standard scenarios designed for the RoboCup@Home
competition 2010 [81]. In this competition the performance of robotic systems is
compared under different interaction conditions. In the Follow Me scenario the robot
has to execute navigation tasks commanded by a human. In particular, the human
interaction partner uses the commands follow me, stop, turn right and turn left to
indicate to the robot what to do. In order to make the interaction more robust the
robot is allowed to ask questions (e.g. do you want me to follow you?) if it is unsure
which action to perform and the user can correct the command if necessary.

The experiments with a real robot were executed on the robotic platform BIRON which
was already introduced in section 5.3. BIRON was configured with components for
spoken language understanding, utterances generation, interaction partner detection
& tracking, and navigation. Figure 6.3 provides an overview of the components used
in this scenario together with the exploited hardware. The system also contains an
active-memory component called ShortTerm for communication purposes. Arrows
between components represent direct communication while arrows to the memory
represent insert, replace, or remove actions on the ShortTerm instance. No arrows
were drawn for possible subscriptions of components on the memory as this informa-
tion is not exploited in the model anyway and would clutter the figure. The numbers
near the arrows correspond to the composite features listed on the right. They rep-
resent the communicated data in the BIRON system based on equation 4.2 from
section 4.2. Note that the same composite feature may label the communication be-
tween different partners if the source is equal because the receiving component is
not encoded in the feature. All in all, the system consists of ten different components
which exchange data represented as fourteen different composite features. The inter-
component communication in the system has an overall frequency of 163 Hz whereas
single components produce outputs with frequencies ranging from 0.5 Hz to 86 Hz. All
experiments were executed in our laboratory and in the hallway adjacent to the labo-
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Figure 6.3.: A component view on the BIRON system used for evaluation. Arrows
between components indicate direct communication while arrows to the
memory represent insert, replace, or remove actions. The numbers rep-
resent composite features listed on the right.

ratory by the author of this thesis. The aforementioned commands were used in an
arbitrary order and with arbitrary time intervals between them. The details on the con-
crete procedure of each experimental-run differ between the off-line and the on-line
application case and are thus explained later on in the corresponding sections.

6.3.2. Off-line Evaluation

The first evaluation of the approach on a real robot was conducted in an off-line man-
ner. This interim step on the way to an on-line application enables us to focus on
the evaluation of the algorithm’s performance thereby omitting any possible difficul-
ties resulting from an on-line application like performance impact on the target system
or an insufficient amount of data present for training. The results of this evaluation
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were published at the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 2010 [53].

Methodology Ten data-sets during the system’s normal behavior were recorded
and used as training input. Furthermore, for each different induced fault in the sys-
tem additional ten data-sets were recorded. All sets represent 100 seconds of inter-
component communication. In case of the faulty-runs the fault was randomly induced
between second twenty and sixty. A leave-one-out cross-validation approach [14]
was applied during the training phase which means that nine of the ten data-sets of
normal behavior were used to estimate the model parameters and one data-set was
used to estimate the parameters of the classifier. This procedure results in 100 runs
for each fault. The measures used to assess the off-line performance are the same
as in the simulation experiments. Four different types of faults were induced. The
first two are crashes of components which are denoted with CC1 and CC2. For the
CC1 fault a crash of the component called player which publishes laser data into the
system was triggered. This crash results in the immobility of the robot. The second
fault affects the Simultaneous Localization and Mapping (SLAM) component which
generates hypothesis about the robot’s position in the environment. Without the infor-
mation from the SLAM component, the robot cannot navigate anymore. The intention
of these two cases was to evaluate if the approach is capable of detecting faults on
different levels of data processing i.e., barely processed sensory data which occurs at
a high frequency and hypothesis of the robot’s position which is computed with lower
frequency. As third fault a resource starvation (RS) problem was triggered by induc-
ing a high CPU-load via a dedicated busy worker component. Resource starvation
faults are of interest as they occur fairly often when integrating independently devel-
oped components into a robotic system. The last induced fault occurs in the context
of distributed systems and results from asynchronous clocks on physically distinct
machines. This fault affects all pairs of components which rely on synchronization
based on the system clock if they run on different hardware. This case is called the
asynchronous communication fault (AC).
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Results The results for the detection performance are summarized in table 6.3.
Compared to the simulation experiments the performance of the detector drops
slightly for all used measures. This can be assigned to the increased variance in
the data. While in the simulation case all components have a data-production-rate
guided by a normal distribution with fixed parameters the real system does not explic-
itly encode such rules. Furthermore, additional variance and uncertainty results from
the interaction of the robot with a human partner. The additional variance slightly
increases the SFAR value which ranges from 2% to 12% with a mean of 4%.

Fault FTR SFAR Latency

CC1 0.95 (0.07) 0.12 (0.04) 1.40 (0.9) s

CC2 0.99 (0.01) 0.02 (0.01) 1.65 (0.6) s

RS 0.98 (0.02) 0.04 (0.03) 1.88 (0.8) s

AC 0.25 (0.09) 0.05 (0.05) 1.01 (1.7) s

Table 6.3.: Fault detection results for the off-line application of the AuCom-detector on
the BIRON system. The table shows the fault detection rate, seriousness
of false alarm rate and the detection latency in regard to the four induced
faults. The values are averaged over the trails of the experiments. The
numbers in the parentheses represent the corresponding standard devia-
tions δ of the averaged values.

Table 6.3 illustrates that good performance was achieved for the CC1 fault which is
the crash of the player component. Player’s output is used by other components like
SLAM and RDS and its absence influences the output of these components, too.
Altogether, the CC1 fault has a significant and rapid impact on the score manifesting
in a tracking rate of 95% and a low detection latency averaging to 1.40 s. For the
CC2 fault, which affects the SLAM component, the detector shows a nearly perfect
tracking rate of 99%, although it features a slightly increased detection latency. This
can be accounted to the lower data producing frequency of the SLAM component and
reduced impact on the remaining system i.e., only one other component is affected
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by the CC2 fault which is the RDS component.

Regarding the resource-starvation RS fault the detector shows a similar tracking rate
as for the previous two faults (98 %). In contrast to the aforementioned faults which
have a direct impact on a specific component known beforehand, the impact of the
RS fault is undefined a priori. It rather affects all components which are currently
running by “stealing” their resources. The detection latency increases slightly in com-
parison to the two previous faults featuring an average of 1.88 s. The worst perfor-
mance was achieved for the asynchronous communication fault where only 25 % of
its occurrences could be detected. This can be accounted to the fact that the AC

fault only affects components that are dependent on an accurately timed input from
components which reside on the remote machine affected by the asynchronous fault.
An example of such a component in the present system is the Person Tracking and
Anchoring (PTA) component. PTA fuses information from different modalities in order
to detect and track interaction partners. These modality data comes from the RDS
and from the face recognition component, where RDS runs on the machine which
is affected by the asynchronous fault. The usual behavior of this component during
interaction is to initially detect a person at the beginning of the interaction and track
it in subsequent processing steps. Detection of a new interaction partner triggers
an Insert action on the ShortTerm memory while tracking a person is executed with
Replace actions. Consequently, the communication data generated by the PTA dur-
ing fault-free interaction is dominated by a pattern of consecutive Replace actions.
After inducing the AC fault the communication also features this pattern almost con-
sistently. Yet, there exist points in time where the PTA loses the current interaction
partner indicated by a Remove action in the ShortTerm memory and followed by a
period of missing Replace actions where the PTA could not establish a tracking mode
for a few seconds. This pattern is a significant change to the modeled system behav-
ior and the detector produces a lower score for this period of time eventually leading
to the detection of a fault. After a while the PTA component manages to track the in-
teraction partner again and the detector stops reporting a fault. Figure 6.4 depicts the
described situation along an exemplary asynchronous fault experiment. It is divided
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into two sub-figures where the top one shows the computed score as a green line and
the detector’s fault detection output in red. The bottom figure shows the occurrences
of the different composites features in the BIRON system with the discussed Replace
actions highlighted in black. The timestamp of fault occurrence is marked in the fig-
ure at around second 25 s. It is immediately recognized by the detector because the
introduction of the asynchronous fault means a shift in time for all components which
run on the machine affected by that fault. In subsequent timestamps the fault can be
reported only infrequently. The most significant fault tracking period is marked in the
figure in correspondence to the missing Replace action. This period correlates with
the missing PTA Replace actions in the ShortTerm memory.

The AC fault case has shown that the data-driven AuCom-detector is not able to
reliably track faults which manifest itself only temporarily in the inter-component com-
munication of the system. In general, this flaw could be compensated by adding an
additional decision mechanism on top of the current approach which exploits the out-
put of the classifier and learns signatures of volatile faults. However, this extension is
not in the focus of this work and thus in the remainder of the evaluation chapter the
AC fault is omitted.

Results for Reduced Training Sets The presented results for the detection of
faults on a real robot show a good performance of the detector. However, the ex-
periments were executed in an off-line mode which is not the primary application
case for a fault detection approach. The next step of the evaluation in section 6.3.3
shall therefore concentrate on the evaluation of the on-line performance. Before mov-
ing on to this scenario the performance of the detector in relation to the amount of
data provided for training shall be examined here. The rationale is that while gath-
ering training data in the off-line evaluation lasts approximately seventeen minutes, a
shorter duration is desirable for the on-line application of the detector.

For that purpose, the experiments were performed on ten different portions of the
original training data-set ranging from 90 % to 10 %. The size of the test data remains
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(a) Seriousness of False Alarm Rate progression for differently sized training data-sets.
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(b) False Tracking Rate progression for differently sized training data-sets.

Figure 6.5.: SFAR and FTR results for different percentages of the original training
data-set.

the same. Figures 6.5 and 6.6 summarize the impact of the reduced amount of train-
ing data on the three applied measures SFAR, FTR, and latency. The results suggest
that in general the reduced amount of training data has minor negative impact on the
performance of the detector. Regarding the SFAR value the performance drops only
slightly even with only 10 % of the original training size. Regarding FTR and latency
the results reveal a minor improvement of the detector’s performance. Collectively,
the results show that for smaller training data-sets the detector tends to report faults
more often which either lead to more false positives or to a higher fault tracking rate
and a lower latency. Based on these results the amount of data for the evaluation in
an on-line scenario was significantly reduced by roughly 70 % which corresponds to
about 210 s of recorded ICC.
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Figure 6.6.: Latency results for different percentages of the original training data-set
in regard to the three faults CC1, CC2, RS.

6.3.3. On-line Evaluation

We now move on to the evaluation of the AuCom-detector in an on-line scenario.
In this work, on-line fault detection means that data recording, model training and
detection is executed in parallel to the running system. However, this section also
contains evaluation results computed off-line (but still on the data recorded during
the on-line experiments). This off-line experiments were conducted in order to evalu-
ate an optimization to the original approach and to compare the performance of the
AuCom-detector to a baseline fault detection approach.

This part of evaluation begins with the introduction of a baseline approach. The re-
mainder of this section is structured as follows: Firstly, the methodology used in the
on-line case is presented. Secondly, the results of the on-line application and the
outcomes of the comparison to the baseline approach are discussed. Finally, an
adaptation of the AuCom-detector is evaluated which enables the reduction of false
positives generated by the detector.

The Baseline Fault Detector The chosen baseline approach is a data-driven fault
detector. Similarly to the AuCom-detector, it incorporates temporal aspects of the
input data into the model. The input for the approach is a time-series of composite
features e representing communicated data-points d (See. section 4.2 for details on
composite features). The baseline approach also benefits from the generic repre-
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sentation of the communication but does not exploit the temporal dynamic features
(TDFs) introduced in this work. Consequently, comparing the AuCom-detector to the
baseline provides also a rough estimate on how fault sensitive the TDF features are
in contrast to the generic representation of the communication.

The fault detection idea for the baseline approach is to count the number of occur-
rences of the different e ∈ E (i.e., all known composite features in a given system) in
a time interval ∆t and compare it to the expected number of occurrences. If the num-
ber of occurrences meets the expectation the system is assumed to behave normally,
otherwise it is assumed to be in a faulty state. To implement this idea histograms are
exploited as follows:

Let E be a time-series of composite features e representing recorded inter-component
communication. E is segmented into intervals Ei of length ∆t. Each interval is rep-
resented with a histogram Mi consisting of one bin me

i for each e ∈ E . A bin me
i is a

function which counts the number of e in Ei:

me
i = me(Ei) =

∑
ê∈Ti:ê=e

1

A model M = {me|e ∈ E} of normal system behavior is a histogram which represents
the mean number of occurrences of e ∈ E in the segments Ei of a training time-series
E. The bins me are computed on E as follows:

me(E) =
1

n

∑
Ei∈E

me(Ei)

where n is the number of segments Ei of length ∆t generated from E.

Now, let E be a time-series recorded during an unknown system state. Assessing
whether E belongs to a normally behaving system consists of again segmenting E

into intervals Ei of length ∆t, computing histograms Mi and measuring the histogram
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distance ď between Mi and M . The distance ď is given as:

ď =
k∑

g=1

|mk
i −mk| (6.1)

which is the Manhattan distance between two histograms [27]. The decision if Mi

represents an interval Ei recorded during a faulty system state is made by applying
the following equation:

faulty(Mi) =

 True : ď(Mi,M) > ď∗

False : else
(6.2)

whereas ď∗ is a constant threshold which separates normal behavior from faulty one.
In contrast to equation 4.20 normal behavior is indicated by small ď i.e., a small dis-
tance between the histograms. If the distance is too large, the a fault is assumed. The
estimation of ď∗ is done in a similar way as for the AuCom-detector approach (See
the classification paragraph in sec. 4.4). Since the number of bins in each histogram
is predefined by the number of different composite features c ∈ E , the parameters
which need to be estimated in order to apply this approach are the interval ∆t and
the threshold ď∗.

Methodology Having described the baseline approach I now introduce the method-
ology for the on-line fault evaluation experiments: Ten evaluation runs were conducted
for each induced fault. Each run consists of three phases, all performed on-line during
the Follow Me task. In phase one data from 210 seconds of interaction is recorded
and used to train the fault detection model. Next, the last thirty seconds of the training
data are used to optimize the parameters of the classifier. After training the model and
assessing the parameters of the classifier the detector is ready to monitor the system.
The subsequent evaluation phase is defined as follows: First, 30 seconds of normal
interaction are monitored. Second, the fault is induced at a random point in time but
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no later than after additional 20 seconds. After that, the faulty state is then monitored
for 30 seconds. If the detector reports a fault within this time, the fault is considered
to be detected. Otherwise, the detector fails to detect the induced fault.

The analysis in the on-line case is done based on all measures mentioned in sec-
tion 6.1 i.e., FDR, FPR, detection latency, the SFAR, and FTR. The induced faults
are the same as in the off-line evaluation case except for the asynchronous com-
munication (AC) fault which was omitted due to the reasons discussed in the off-line
evaluation section. It was replaced with a new fault case which is the crash of the
speech recognition (CC3) component of the robot resulting in the inability of the sys-
tem to understand spoken commands. This fault widely influences the human robot
interaction because the robot cannot receive further commands after fault occurrence.

Results The experimental results of the application of the AuCom-detector to
BIRON in an on-line manner are shown in table 6.4. In general, the results suggest

Fault FDR FTR FAR SFAR Latency

CC1 1.00 1.00 (0.00) 1.00 0.19 (0.15) 0.84 (0.49) s

CC2 1.00 0.72 (0.23) 0.80 0.17 (0.06) 2.83 (3.70) s

CC3 0.90 0.81 (0.23) 0.70 0.22 (0.28) 9.18 (6.15) s

RS 1.00 0.84 (0.18) 0.80 0.19 (0.28) 0.67 (2.63) s

Table 6.4.: Fault detection results for the on-line application of the AuCom-detector on
the BIRON system in regard to the four induced faults. The FTR, SFAR
and Latency values are averaged over the trails of the experiments. The
numbers in the parentheses represent the corresponding standard devia-
tions δ of the averaged values. δ for the FDR and FAR values is not useful
because these two measures represent binary decisions for each exper-
iment run (i.e., a fault could be detected (FDR) or a false alarm occurred
during the run (FAR)).
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that the AuCom-detector applied in the on-line scenario shows a weaker performance
compared to the previous scenarios which can be accounted to the reduced amount
of training data. The fault tracking rate is still high ranging from 72 % to 100 % resulting
in a fault detection rate between 90 % and 100 % which means that in worst case the
fault couldn’t be detected in two of ten runs. Regarding unnecessary alarms of the
detector the performance degrades noticeably in relation to the previous experiments.
The intra-run measure SFAR shows that about 20 % of the assessed data before fault
induction was classified wrongly and that false alarms exist in 70 % of the runs in best
case. The detection latency covers a range between 0, 84 s for the CC1 fault which
is the crash of the player component up to 9.18 s for the newly introduced fault i.e.,
the crash of the speech recognition. The overall performance drop is also reflected
in an increased variance for the measures depicted in table 6.4. Next, these results
are discussed in comparison to the performance of the introduced histogram based
baseline detector.

Figures 6.7, 6.8, and 6.9 depict the outcome of the histogram based detector for dif-
ferent time intervals ∆t. The complete evaluation was executed on four intervals from
the range of 0.1 s to 2.9 s. The baseline approach shows a detection rate between
90% and 100% for the smallest interval i.e., ∆t = 0.1 seconds which is comparable to
the performance of the AuCom-detector. With an increase of ∆t the detection perfor-
mance drops significantly for the CC2 and CC3 faults. Regarding the FTR measure
it can be seen that the AuCom-detector outperforms the baseline approach for every
faulty state independently of the chosen ∆t except for the RS fault with the param-
eter ∆t = 0.1 s where both perform well while the baseline solution is slightly better.
Furthermore, the plots reveal that an increase of the interval for histogram generation
almost always reduces the tracking abilities of the detector except for the CC2 fault
case. In case of the latency figure 6.9 suggests that the base-line approach is faster
than the AuCom-detector with detection latencies ranging between 0.13 s and 2.23 s

for the best interval value which is again ∆t = 0.1 s. However, if the SFAR value of the
detector for ∆t = 0.1 s is taken into account the fast detection can be at least partially
accounted to the presence of a high number of false positives (see figure 6.8). This
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Figure 6.7.: FDR and FTR results for the baseline approach in regard to the four faults
CC1, CC2, CC3, RS and different time intervals ∆t.

assumption is also supported by the progress of the latency in case ∆t is increased.
In all cases it either doubles as in case of CC3 or is increased by at least one order of
magnitude for the remaining faults. The results of the baseline approach for the inter-
val ∆t = 0.1 s show a high false alarm rate of at least 90 % and a SFAR value ranging
between 99 % and 25,%. The increase of ∆t leads to the reduction of the FAR values
ranging between 70 % and 40 % depending on the specific fault. The SFAR measure
also improves reaching values between 32 % and 10 %. In general it can be concluded
that the increase of ∆t improves the performance of the baseline approach in terms of
the FAR and SFAR measures. It negatively influences the performance in terms of the
FDR, FTR values and the detection latency. The simultaneous performance reduc-
tion in terms of the SFAR and FTR (i.e., more fault detections altogether) measures
suggests that the approach gets insensitive to faults in general when ∆t is increased.

The just discussed findings reveal that the AuCom-detector is generally superior in
terms of fault detection and tracking. Furthermore, depending on the chosen param-
eter for the baseline approach the AuCom-detector either outperforms it in terms of
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Figure 6.8.: FAR and SFAR results for the baseline approach in regard to the four
faults CC1, CC2, CC3, RS and different time intervals ∆t.

SFAR or shows equivalent performance. Regarding the number of experiment-runs
with false alarms (i.e., FAR) the baseline approach can be parameterized to per-
form better than the AuCom-detector yet at the costs of higher detection latencies.
The detection latency results initially suggest that the baseline shows a better perfor-
mance. Yet, this only happens at the cost of a very high SFAR value which usually
cannot be tolerable in an on-line scenario. When omitting this single configuration
(i.e., ∆t = 0.1 s) the AuCom-detector performs better in terms of latency except for
the RS fault.

Adjusting the False Alarm Rate The general application case of a fault detector is
to run in parallel with the monitored system and report detected faults. Usually, this
information is then used to execute analysis tasks in order to localize and identify the
fault and trigger recovery actions. Recovery actions may be as simple as restarting
or reconfiguring a component or may lead to the restart of the complete system.
In any case recovery takes time. Bearing this in mind, the role of false positives
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Figure 6.9.: Latency results for the baseline approach in regard to the four faults CC1,
CC2, CC3, RS and different time intervals ∆t.

becomes critical for on-line fault detection which is why this paragraph evaluates an
extension of the previous approach which enables the active control of false positives.
The extension is a sliding window function sw applied to a short history of scores si
relative to a score value s computed for a temporal dynamic feature tdf . The function
is defined as follows:

sw(s,∆t) := s̄ =
1

|W |
∑
ŝ∈W

ŝ (6.3)

where W is defined as:

W = {si|tsi ≤ ts ∧ tsi > tsi −∆t}. (6.4)

The sw function was applied to the data of the on-line scenario in a post-mortem
evaluation step. The results of the experiments conducted on intervals ranging from
0.3 s to 1.5 s seconds with a step size of 0.3 s can be seen in figures 6.10 and 6.11. For
comparison, the figures also contain the original results (i.e., without smoothing) indi-
cated by the 0.0 s interval. In general, the sliding window has the expected impact on
the results. With an increasing ∆t the SFAR can be reduced by 7 % to 15 % depend-
ing on the type of fault. Similarly, the percentage of runs having false alarms (FAR)
is also reduced although it remains at a relative high level ranging between 40 % and
57 %. The consequence of these results is that in order to take action based on the
outcome of the detector further processing steps need to take care of false alarms
e.g., by incorporating additional fault decision logic on top of the detector’s results.
The capability to detect faults (FDR) in a run is slightly diminished whereas the track-
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(a) Fault Detection Rate

(b) Fault Tracking Rate

Figure 6.10.: FDR and FTR results of the AuCom-detector after applying the sliding
window function as defined by equation 6.3. The interval ∆t ranges
between 0.3 s and 1.5 s. The values for 0.0 s are the original results
without sliding window usage.

ing rate (FTR) increases by 3 % to 8 %. The FDR values indicate that with a smoothed
score a single application of the approach consisting of training and parameter opti-
mization has a marginally lower probability to provide a fault sensitive detector. The
FTR results however, indicate an increase in the detector’s capability to track faults. In
combination with the reduced SFAR measure the results imply that the sliding window
smoothing provides an improved decision-making basis for further processing steps
i.e., diagnosis and recovery. The smoothing of the score also impacts the detection
latency in the expected way. Depending on the induced fault the latency increases
between 0, 84 s and 2, 43 s as can be seen in figure 6.12. The severity of this increase
in detection latency strongly depends on the influenced components and the current
state of the system which makes it difficult to make a general statement. For example,
the occurrence of the RS fault during interaction in the “Follow Me” scenario would
result in the system’s inability to react upon new commands. This may lead to an
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(a) False Alarm Rate

(b) Seriousness of False Alarm Rate

Figure 6.11.: FAR and SFAR results of the detector after applying the sliding window
function as defined by equation 6.3. The interval ∆t ranges between
0.3 s and 1.5 s. The values for 0.0 s are the original results without sliding
window usage.

unsatisfactory interaction experience but most probably does not result in harm to a
human, the system or its environment. On the other hand, if the system experiences
a fault in the navigation components (i.e. fault CC2) while it is moving, a low detection
latency is recommended in order to prevent the robot to hit anything. Altogether, the
results show that by applying the sliding window function to the score the detector’s
reliability can be significantly improved at the cost of the detection latency.
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Figure 6.12.: Latency results of the detector after applying the sliding window function
as defined by equation 6.3. The interval ∆t ranges between 0.3 s and
1.5 s. The values for 0.0 s are the original results without sliding window
usage.

6.4. Discussion

This chapter summarizes experimental results conducted within the scope of this the-
sis. At first, fault detection in three artificial systems was evaluated in simulation.
Here, the primary goal was to demonstrate that the approach can be successfully
applied to systems with a different underlying communication framework than the one
used in BIRON which is the robotic system the detector has been initially developed
for. The experiments were conducted on artificial systems designed within the CAST
communication framework representing three probable communication situations in a
real robotic system which are: i) a linear communication chain based on the Markov
property, ii) several linear communication chains executed in parallel resulting in an
interleaved communication as discussed in section 4.1, and iii) non-connected com-
munication chain which simulates a system of independently acting components. In
all three cases the AuCom-detector shows good performance.

Next, the results of experiments executed on data gathered during interaction with the
robotic system BIRON have been discussed. In the off-line case four different faults
have been examined targeting different processing aspects in the system. While for
three of them the results suggest good performance of the AuCom-detector, the asyn-
chronous communication fault case reveals the detector’s weakness in case where a
fault manifests itself only sporadically in the inter-component communication. This

118



6.4. Discussion

can be accounted to the fact that my detection approach assumes that a fault has
a continuous impact on the system’s inter-component communication. Furthermore,
the approach does not utilize dedicated fault models to capture specific fault pat-
terns. Both aspects represent reasonable research topics for future extensions of
the AuCom-detector. Another finding resulting from the off-line evaluation is that the
training input for the data-driven fault detector can be reduced significantly with only
minimal impact on the detector’s performance. This reduces the time to set up the
detector which is particularly beneficial when the detector has to be trained and used
on-line.

The findings from the off-line experiments influenced the evaluation of the detector in
an on-line scenario in two ways: i) the training data has been reduced to 30% of the
size of off-line training sample and, ii) the asynchronous fault case has been replaced
by a fault impacting speech recognition of the robot. Results from the on-line case
have also been compared to the performance of a base-line fault detection approach
and proved to outperform it. A relevant aspect in the on-line case is the presence
of false positives if the results of the detector are used to trigger additional process-
ing steps. Frequent false alarms may result in unnecessary execution of recovery
strategies which is undesirable as it has a negative impact on the overall interac-
tion experience with the system. As a consequence, in the last evaluation case the
AuCom-detector has been extended with a sliding window approach which turns out
to be an effective way to reduce the number of false positives. The downside of the
extension is that with an increase of the sliding window size the latency of the detector
increases, too.

The major results of the evaluation chapter are the following: Data-driven fault detec-
tion based on temporal dynamic features extracted from the inter-component com-
munication of a robotic system is feasible. In general, the approach shows a high
detection rate of the induced faults and performs with an acceptable false alarms rate
which can be further reduced at the costs of detection latency. The question whether
the achieved detection latency is acceptable or not cannot be answered in general.
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The concrete answer depends on the interaction state of the robot and the type of ex-
perienced fault. For example, experiencing resource starvation during interaction in
the “Follow Me” scenario may delay the system’s reaction upon new orders leading to
an unsatisfactory interaction experience. Yet, most probably it does not result in harm
to a human, the system or its environment. In this case, several seconds of delay until
fault detection and subsequent triggering of recovery routines may be acceptable. In
another situation for example when a fault disables the navigation component of the
robot (i.e. fault CC2) while it is moving a low detection latency is required in order to
prevent the robot from hitting anything on its way. Hence, from a conservative point
of view the latency performance of the AuCom-detector is the prime area for further
improvements.
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Fault detection is a key element for fault tolerant behavior and a mean to increase the
system’s dependability. Dependability is considered to be of particular importance for
robotic systems which act closely to human users and share the same spaces. In this
thesis I proposed a fault detection approach as a means to autonomously detect faults
in cognitive robotic systems build upon the concepts of Component Based Software
Engineering also known as Component Based Robotic Systems (CBRS). In particu-
lar, I answered the question on how to apply a data-driven fault detection approach
to a CBRS without modifying its components. This section summarizes the findings
of this thesis and provides suggestions on what questions need to be addressed in
future research.

7.1. Summary of Contributions

Successful fault detection in an artificial system depends on the ability of the approach
to cope with challenges arising in the context of that specific system. Regarding cog-
nitive robotics challenges considered in this work arise from i) specific properties of
the targeted system, ii) its development process and iii) the application of the system
in real-world scenarios. The challenges identified for the targeted systems in this work
were discussed in section 2.2.1. In particular, these are: minimal invasive integration,
minimization of expert knowledge required for application, robustness in face of fre-
quent changes as well as uncertainty and variant behavior, and detection of hardware
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& software faults. These challenges were used to assess the applicability of fault de-
tection approaches in literature in chapter 3. They also guided the development of the
fault detection algorithm in chapter 4 and its implementation in chapter 5.

The literature review conducted in chapter 3 showed the broad range of different fault
detection approaches but also revealed a lack of solutions which tackle the introduced
challenging aspects and thus would be suitable for fault detection in CBRS. As a con-
sequence, in chapter 4 I presented a novel fault detection approach which belongs
to the set of data-driven approaches. Learning a model from data provides a conve-
nient way to adapt to changes in the systems. The training input for the presented
approach consists of the system’s inter-component communication. Furthermore, the
approach exploits only generic attributes extracted from this communication. By this
means, the components of the system remain untouched which reduces the coupling
of the detector to a system and the amount of component specific knowledge neces-
sary in order to apply the approach to a new robot. The generic attributes are used
to represent each communicated information element as a temporal dynamic feature
which encodes temporal relations between past elements in the communication. The
fault detection model is founded on statistical modeling techniques and represents
only the normal state of the system without any representation of possible faults. By
this means, the approach does not depend upon the presence of exemplary data of
fault situations in order to detect them and can cope with unknown faults.

The approach was implemented in a modular way by utilizing a graph like processing
structure. The decomposition into sub-modules is aligned to the algorithmic process-
ing of the detector. This simplifies reconfiguration and reduces adaptations efforts
when applying the approach to a new system. The discussion of integration costs
in section 5.3 led to the following results: i) Integration requirements affect the com-
munication framework of the targeted robotic system only and ii) the approach can
often be integrated by exploiting build-in functionalities of a particular communication
framework of a system. Concrete integration efforts were shown for the robotic plat-
form BIRON where in fact build-in functionality could be exploited. In addition, pos-
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sible means on how to apply the approach to communication frameworks commonly
used in cognitive robotics were presented.

Evaluation of the algorithm was conducted in simulation as well as on the robotic
platform BIRON. Simulation results yield an initial proof of concept for the detector
and demonstrate its integration into a communication framework other than the one
the approach was initially developed for. Robotic experiments were executed off-line
and on-line.

Major evaluation results are: The data-driven fault detection based on temporal dy-
namic features extracted from the inter-component communication of a robotic sys-
tem is appropriate for the detection of the faults induced in this thesis. The approach
showed a high detection rate of the induced faults and performs with an acceptable
false alarms rate which can be further reduced at the costs of detection latency. The
question whether the achieved detection latency is acceptable couldn’t be answered
in general. The answer depends on the interaction state of the robot and the type of
experienced fault. The latency performance of the AuCom-detector was identified as
a prime area for improvement.

7.2. Discussion and Future Perspectives

This thesis has shone light on the topic of fault detection for CBRS with cognitive ca-
pabilities. The findings and experiments executed in the context of this work suggest
that a data-driven approach based on inter-component communication is a reason-
able solution in order to detect faults in these type of systems. Being able to detect
faults provides the option to complete the fault tolerant loop consisting of additional
means like fault identification, fault localization, and fault recovery. Consequently, one
next step which needs to be taken in future research is to extend the current approach
and add capabilities to backtrack the source of the fault. The main question is how
the fault can be located if it has been propagated in the system and is evident in the
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communication output of several components which makes the pinpointing of the real
source challenging.

The evaluation presented in this work was focused on the robotic platform BIRON
featuring the XCF communication framework and on the CAST communication frame-
work. In addition, suggestions on how to apply the detector to further systems were
given. In order to confirm the findings in this thesis an aim in future research should
be the evaluation of the approach on additional robotic systems. A reasonable next
step would be the evaluation of the approach on a robotic system based on ROS as a
popular and widely accepted communication framework (see [1] for a list of systems).
A similar objective can be stated for the number and type of evaluated faults in the
system. In particular, the evaluation of hardware faults should be tackled in future
experiments in order to confirm the performance of the proposed solution.

Robotic systems in this work feature close interaction with humans. As such, delays
or unexpected behavior due to faults may have a negative impact on the user’s ex-
perience. In such situations feedback to the user about the current health status of
the system would be beneficial. The system may tell the user to wait while it fixes
the problem or it may ask him to call for help after several recovery trials have failed.
Therefore, another research direction which is worth to follow up is the question on
how and how much feedback about faults should be provided to the user.

One of the challenges tackled in this work is variation in the system’s behavior. Here,
this issue was resolved by exploiting kernel density estimators as the basis for the
statistical model. By this means, different system states were modeled implicitly. A
possible future enhancement to the model may involve an explicit representation of
the system’s different behavior states. Besides potential detection performance im-
provements explicit states may be beneficial when debugging the system. The source
of a fault can be tracked down faster because the fault can be related to a part of the
behavior space which again represents a subset of components. In addition, this in-
formation can be also evaluated in regard to the intended behavior of the system in
order to detect unintended or unexpected states or transitions between states. Explicit
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state representation could be done by re-interpreting the current model as a dynamic
Bayesian network and adding an additional discrete variable which represents differ-
ent behavior states. An estimate for the number of states and corresponding training
data could be acquired by segmenting the original training data.
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