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Kurzfassung

In den letzten Jahren hat der Grad an Automatisierung im Bereich der Flu-
oreszenz Mikroskopie stark zugenommen. Dies umfasst sowohl die Bildauf-
nahme als auch die Probenpräparation und führt zu einer stark zunehmenden
Menge an Bilddaten, welche für ein Experiment ausgewertet werden müssen.
Die für die Durchführung eines Experiments benötigte Zeit wird infolgedessen
maÿgeblich durch die Dauer der Bildauswertung bestimmt, insbesondere
bei manuell ausgewerteten Experimenten. Darüber hinaus sind manuelle
Auswertungen meinst nur schwer reproduzierbar und häu�g subjektiv.

Automatisierte Bildanalysesoftware kann dazu dienen, die experimentelle
Auswertung zu beschleunigen und deren Reproduzierbarkeit und Objek-
tivität zu verbessern. Die meisten Bildanalyseansätze basieren auf einer
Segmentierung des Bildes. Hierfür wird häu�g eine Kombination mehrerer
Segmentierungsverfahren angewandt. Sowohl durch Auswahl und Anord-
nung der Methoden als auch durch das Einstellen freier Parameter wird
eine Anpassung der Segmentierung an unterschiedliche Aufgabenstellun-
gen ermöglicht. Der Hauptaufwand für den Nutzer besteht folglich in der
Auswahl der zu verwendenden Methoden und in deren Parametrisierung.
Beide Schritte stellen insbesondere für Anwender mit geringen Bildverar-
beitungskenntnissen ein Hindernis dar. Infolgedessen werden im Forschungs-
alltag viele Experimente, welche von einer automatisierten Bildanalyse prof-
itieren könnten, manuell ausgewertet.

Um den Anpassungsaufwand für die automatisierte Bildanalyse zu ver-
ringern, wird in dieser Arbeit ein neuartiges Konzept implementiert und
evaluiert, welches die Segmentierung anhand von Nutzereingaben automa-
tisiert optimiert. Statt Segmentierungsmethoden auszuwählen und deren
Parametrisierung anzupassen, umrandet der Nutzer manuell oder interak-
tiv eine repräsentative Auswahl von Zellen. Die Optimierung des Segmen-
tierungsablaufs kann dann automatisch und ohne weitere Nutzereingaben
erfolgen.

Hauptherausforderung ist es, ein System mit akzeptabler Laufzeit und zu-
gleich guter Segmentierungsleistung zu entwickeln, welches für verschiedene
Fluoreszenz Datensätze angewandt werden kann. Hierfür wird eine soge-
nannte Segmentierungspipeline implementiert, welche aus austauschbaren
Methoden besteht. Diese Methoden realisieren die Segmentierungsschritte
Vorverarbeitung, Vordergrund-Hintergrundtrennung und Zelltrennung. Für
die Implementierung der einzelnen Methoden werden sowohl auf dem Stand
der Technik basierende als auch neue, im Rahmen dieser Arbeit entwickelte
Verfahren implementiert und evaluiert.

Die Diskretisierung der Parameter muss so gewählt werden, dass eine
möglichst groÿe Bandbreite an Bilddatensätzen unterstützt wird. Um dies
bei möglichst geringem Rechenaufwand zu gewährleisten werden sowohl Pa-
rameter mit konstanten als auch mit nichtlinear zu- oder abnehmenden
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Schrittweiten implementiert. Neben der Diskretisierung der Segmentierungs-
parameter hängt die Qualität der Optimierung stark von der Auswahl des
Optimierungsverfahrens ab. Um ein geeignetes Verfahren auszuwählen wer-
den die Parameterräume verschiedener Segmentierungsverfahren untersucht.
Dieses Experiment zeigt, dass die zu Grunde liegenden Parameterräume
zwar groÿteils monoton sind, jedoch mit lokalen Extrema gerechnet wer-
den muss. Der Vergleich verschiedener Optimierungsverfahren bestätigt,
dass das Coordinate Descent Verfahren gut geeignet ist, um die Segmen-
tierungspipeline an die Bilddaten anzupassen.
Damit der manuelle Annotationsaufwand für den Nutzer möglichst gering

gehalten werden kann, wird der Zusammenhang zwischen Segmentierungsleis-
tung und der Anzahl manuell annotierter Zellen untersucht. Dieses Exper-
iment zeigt, dass für einen Groÿteil der Datensätze bereits zehn manuell
annotierte Zellen eine gute Kalibrierung der Segmentierungspipeline ermö-
glichen.
Zusammenfassend lässt sich sagen, dass aufgrund der geringen Anzahl von

Zellen, welche für die Kalibrierung des entwickelten Verfahrens nötig sind,
und der kurzen Laufzeit der Optimierung, welche über Nacht durchgeführt
werden kann, eine Verbesserung der Automatisierung und somit der E�zienz
bei der Auswertung �uoreszenzmikroskopischer Bilder ermöglicht wird.
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Abstract

In the past decade, automation in �uorescence microscopy has strongly in-
creased, particularly in regards to image acquisition and sample prepara-
tion, which results in a huge volume of data. The amount of time required
for manual assessment of an experiment is hence mainly determined by the
amount of time required for data analysis. In addition, manual data analysis
is often a task with poor reproducibility and lack of objectivity.

Using automated image analysis software, the time required for data anal-
ysis can be reduced while quality and reproducibility of the evaluation are
improved. Most image analysis approaches are based on a segmentation
of the image. By arranging several image processing methods in a so-called
segmentation pipeline, and by adjusting all parameters, a broad range of �u-
orescence image data can be segmented. The drawback of available software
tools is the long time required to calibrate the segmentation pipeline for an
experiment, particularly for researchers with little knowledge of image pro-
cessing. As a result, many experiments that could bene�t from automated
image analysis are still evaluated manually.

In order to reduce the amount of time users have to spend in adapting
automated image analysis software to their data, research was carried out
on a novel image analysis concept based on hand-labeled data. Using this
concept, the user is required to provide hand-labeled cells, based on which
an e�cient combination of image processing methods and their parameteri-
zation is automatically calibrated, without further user input.

The development of a segmentation pipeline that allows high-quality seg-
mentation of a broad range of �uorescence micrographs in short time poses
a challenge. In this work, a three-stage segmentation pipeline consisting
of exchangeable preprocessing, �gure-ground separation and cell-splitting
methods was developed.

These methods are mainly based on the state of the art, whereas some
of them represent contributions to this status. Discretization of parameters
must be performed carefully, as a broad range of �uorescence image data
shall be supported. In order to allow calibration of the segmentation pipeline
in a short time, discretization with equidistant as well as nonlinear step sizes
was implemented. Apart from parameter discretization, quality of the cali-
bration strongly depends on choice of the parameter optimization technique.
In order to reduce calibration runtime, exploratory parameter space analysis
was performed for di�erent segmentation methods. This experiment showed
that parameter spaces are mostly monotonous, but also show several local
performance maxima. The comparison of di�erent parameter optimization
techniques indicated that the coordinate descent method results in a good
parameterization of the segmentation pipeline in a small amount of time.

In order to minimize the amount of time spent by the user in calibration
of the system, correlation between the number of hand-labeled reference
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samples and the resulting segmentation performance was investigated. This
experiment demonstrates that as few as ten reference samples often result
in a good parameterization of the segmentation pipeline.
Due to the low number of cells required for automatic calibration of the

segmentation pipeline, as well as its short runtime, it can be concluded that
the investigated method improves automation and e�ciency in �uorescence
micrograph analysis.
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1. Introduction

Research in microbiology, immunology, virology and similar disciplines often
requires the investigation of interactions in biological systems, ranging from
whole organism level down to single molecule level. In the �eld of systems
biology, a variety of new biomedical imaging techniques have been developed
in the last few decades which enable the investigation of such interactions
(Megason and Fraser, 2007).

In this context, a new �eld of research known as bioimage informatics has
been established, which deals with the development of novel software tools
for image processing, data mining, database and visualization (Peng, 2008).
With the increasing number of methods based on �uorescence microscopy, as
well as advancing automation in sample preparation and image acquisition,
the amount of image data that must be analyzed is strongly growing. For
most applications, assessment of the data poses a bottleneck, particularly if
evaluation is performed manually. Typical data analysis tasks require the
counting of cells or nuclei, measuring the size of cells or quantifying intensity
distributions. For some high throughput experiments, the assessment of
several 100,000s of cells is required. Manual interpretation of such data is
a repetitive and error-prone task with low reproducibility which can easily
take several weeks.

Additionally, a speci�c outcome for an experiment is often expected and
hypothesized by the experimenter. Such assumptions can lead to a biased
interpretation of the data. As a result, the outcome of manually performed
evaluations may di�er if the data is repeatedly interpreted by two or more
independent observers (interobserver variance) or if the dataset is repeatedly
analyzed by a single observer (intraobserver variance).

To improve objectivity and reproducibility of the evaluations and to reduce
the amount of time researchers have to spend with data analysis, automated
image analysis software can be utilized. A coarse work�ow on which most
image analysis tools are based is depicted in Figure 1.1. After acquisition
of the image data, each image is partitioned into regions representing cells
or the image background. Based on this partitioning, also known as image
segmentation, automated image analysis is performed. Thereby, low quality
segmentation results usually lead to erroneous measurements. Hence, high
quality image segmentation methods are crucial for the subsequent auto-
mated image analysis step.

To enable the segmentation of �uorescence image data from di�erent ap-
plication domains, publicly available tools like the CellPro�ler (Carpenter
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1. Introduction

Figure 1.1.: Overview of the image analysis work�ow applied for analysis of
many �uorescence microscopy based experiments.

et al., 2006) or MBF ImageJ (Collins et al., 2007) o�er an extensive collec-
tion of image processing and image segmentation methods. Adapting the
available methods to a given type of micrograph requires the user to select
a combination of segmentation methods, arranging them in a so-called seg-
mentation pipeline, and to adjust all free parameters. This step, in this work
referred to as calibration of the segmentation pipeline, o�ers �exibility for
adaptation to data from di�erent �uorescence imaging domains. However,
with the �exibility of such a system, the time required for selection of a good
combination of methods and for adjusting all parameters increases. Preto-
rius et al. (2011) report that a typical pipeline of the Cell Pro�ler consists of
up to 150 parameters, and manual selection and adjustment of these param-
eters can easily take several days. If the default cell detection routine of the
CellPro�ler named "IdentifyPrimaryObjects" is used, 19 parameters have to
be adjusted manually. Apparently, using state of the art image analysis soft-
ware can improve objectivity and reproducibility of an evaluation. However,
the amount of time researchers have to spend in the data analysis with such
software is still high, particularly for non-image processing experts. That is
why many experiments that could bene�t from automated image analysis
are still performed manually.

After calibrating the segmentation pipeline, methods and parameters must
be re-adjusted if the acquisition parameters (microscope type, camera type,
magni�cation, etc.) or parameters of the experimental setup (investigated
cell type, staining protocol) change. Particularly in microbiological research,
sample preparation or data acquisition can vary for each experiment. As
a result, the amount of time researchers are willing to spend for manual
calibration of the segmentation pipeline is very low for non-recurring exper-
iments.

In order to improve acceptance of automated image analysis software, e�-
ciency and automation of the software must be improved. This corresponds
to reducing the amount of hand labelings and the time that is required for
calibrating the segmentation pipeline for a speci�c experiment. Therefore,
this work addresses the development of a novel software tool for analysis
of �uorescence micrographs which enables automated calibration of the seg-
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1.1. Segmentation of �uorescence micrographs based on hand-labeled data

mentation pipeline based on hand-labeled data. It will be demonstrated that
this system can be applied for segmentation of a broad range of �uorescence
microscopy image data. For the improvement of runtime and automation, a
strong focus was put on the selection and discretization of image processing
methods, optimization of the corresponding parameter spaces, as well as on
minimizing the amount of required hand-labeled reference data.

In the following, the concept of a segmentation pipeline calibrated based
on hand-labeled data is illustrated. Next, a brief introduction into the tech-
nique of �uorescence microscopy and the resulting image data is provided,
as well as an overview of this work.

1.1. Segmentation of �uorescence micrographs

based on hand-labeled data

Figure 1.2.: Work�ow of segmentation based on hand labelings. Reproduced
with courtesy of Wittenberg et al. (2009).

To reduce the amount of time required for the calibration of automated
image analysis software, research was carried out on a segmentation pipeline
applicable to a broad range of �uorescence imaging domains (but not limited
to them) as described by Wittenberg et al. (2009). An overview of this
concept is provided in Figure 1.2. Using this framework, the image dataset
is split into a set of reference images (1) and a one of test images (6) for
which segmentation is still unknown. The set of reference images is then
manually annotated (2) by the user, and a formal description of the image
content (3) is obtained. The annotated reference images are then used for
calibration of the segmentation pipeline (4), which corresponds to selecting a
good combination of parameterized image processing methods and adjusting
all parameters. After calibration (5), test images (6) can be segmented
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1. Introduction

by application of the segmentation pipeline (7) and a segmentation of the
complete data (8) is obtained.

Using the described image segmentation concept for a new dataset, the
user is required to provide hand labelings of a representative subset of the
images instead of selecting a combination of segmentation methods and ad-
justing their parameters. For a comparison of the manual image analysis
work�ow to the one using hand-labeled data see Figure 1.3.

(a) Manual work�ow

(b) Segmentation based on hand-labeled data

Figure 1.3.: Comparison of two conceptually di�erent work�ows for the seg-
mentation of �uorescence image data. Using the conventional
manual work�ow (a), calibration of the segmentation pipeline
is performed by the user. Hence, selection of a combination of
methods, variation of the parameters and manual inspection and
evaluation of the preliminary segmentation results require user
input. Calibrating the segmentation pipeline based on hand-
labeled data (b), no user interaction is required apart from pro-
viding the hand-labeled data.
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1.2. From optical microscopy to �uorescence

microscopy

Microscopy enables the investigation of objects that cannot be seen with
the naked eye. Its origin is a matter of debate, but mostly Hans Janssen is
credited for the invention of the �rst compound microscope about 400 years
ago. It consisted of a bi-convex eyepiece lens and a plano-convex objective
lens and enabled 60x magni�cations. Jan Swammerdam (1637-1703) was the
�rst to use this microscope for the investigation of insects and the observation
of red blood cells (Robenek, 1999).

Figure 1.4.: Jablonski diagram illustrating �uorescence (left). After pho-
ton absorption, an electron is excited to a higher energy state.
After a short period of time, the electron relaxes back to the
ground state by emission of a lower energy photon. Fluores-
cence causes characteristic absorption and emission spectra for
each �uorescent material. The distance between positions of the
band maxima of absorption and emission spectra is known as
Stokes shift (right).

Two hundred years after invention of optical microscopy, the e�ect of
�uorescence was discovered and �rst described by George Gabriel Stokes, in
1852. The term �uorescence refers to the excitation process of an atom or
a molecule by an outside source of energy (Ghiran, 2011). Due to photon
absorption, electrons are transferred to an excited state. Photon emission is
then caused by relaxation back from the excited to the ground state after
a very short period of time, which is usually less than 1 µs (Ghiran, 2011).
Due to non-radiative transmission (Figure1.4, left), wavelength of emitted
light is longer then that of absorbed light. The distance between peaks of
absorption and emission spectra is known as Stokes shift (Figure 1.4, right).

Several decades after discovering the e�ect of �uorescence, between 1911
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and 1913, the �rst commercial �uorescence microscope was developed by
Otto Heimstädt and Heinrich Lehmann and produced by Reichert and Zeiss
(Rost, 1995). Most �uorescence microscopes use a light source emitting a
continuous spectrum. Light of a speci�c wavelength is then selected by an
excitation �lter and applied to the sample. Hence, �uorophores contained
in the sample are excited and �uorescence light with a longer wavelength
is emitted. After removing excitation light by an emission �lter, the �uo-
rescence signal can be observed. For a schematic drawing of a �uorescence
microscope, see Figure 1.5.

Figure 1.5.: Schematic illustration of a �uorescence microscope.

1.3. Fluorescence image data

Before 1941, �uorescence microscopy was only applicable for investigation
of molecules showing auto-�uorescence. Describing a technique for labeling
antibodies with �uorescent dyes, Coons et al. (1941) enabled a revolution in
immunology and biology. Applying this technique, �uorescent markers can
be attached to proteins or molecules and used for visualization and local-
ization of reagents. In the past decades, various dyes have been developed
for staining of speci�c targets. For a broad overview of available dyes, see
(Day and Davidson, 2009; Chudakov et al., 2010). Figure 1.6 provides some
exemplary images depicting di�erent types of staining.
Analyzing �uorescence micrographs from di�erent application domains

shows that this kind of image data is very multifarious. Appearance of the
objects of interest depends on the type of experiment, the applied stain-
ing and the experimental setup. Some experiments even pose a challenge
for manual interpretation, as cell boundaries cannot be recognized unam-
biguously. In the following, a categorization of �uorescence micrographs
is performed according to characteristics determining di�culty of the data
analysis task:
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1.3. Fluorescence image data

(a) Macrophages: DAPI and CD11b/APC (b) Chloroplasts: FDA

(c) HeLa: Phalloidin Alexa 568 (d) HeLa: DiD

Figure 1.6.: Representative micrographs depicting di�erent types of �uores-
cent staining. (a) macrophages stained with the dyes DAPI
(blue), for visualization of the cell nuclei, and CD11b/APC (yel-
low), for visualization of the macrophage cells. Chlorophyll in-
side chloroplasts stained with FDA (b, green) enables viewing
non-apoptotic chloroplasts. The actin cytoskeleton of HeLa cells
labeled with the probe Phalloidin Alexa 568 (c). Nuclei of HeLa
cells labeled with DAPI (d, blue) and cytoplasmic membrane of
HeLa cells labeled with DiD (d, violet). Scale bars correspond
to 10µm (a, b, c) or 20µm (d).

• Irregularity: Irregularity of the cell boundary. Objects with low
irregularity show a round, oval or convex shape (nuclei in Figure 1.6
(a)). Objects with a very irregular boundary are often multipolar
(HeLa cells, Figure 1.6 (d)).

• Overlapping: Simple data contains mainly isolated cells (macrophages,
Figure 1.6 (a)), whereas more complex data consists of touching or
overlapping cells (HeLa cells, Figure 1.6 (d)). Interpretation of data
containing overlapping cells is often an ambiguous task for machine as
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well as for the human observer.

• Intensity distribution: The intensity distribution inside each object
is based on the selected staining and on the investigated object. Ob-
jects showing homogeneous intensity distribution (nuclei, Figure 1.6
(a)), increasing or decreasing intensities from the core to the bound-
ary of the object are easier to segment than objects showing a more
complex intensity distribution including several local intensity minima
and maxima (HeLa, Figure 1.6 (c)).

A categorization of the data that will be used in this work according to
the mentioned characteristics is provided in Figure 1.7.

Figure 1.7.: Categorization of �uorescence image data used in this work ac-
cording to irregularity, overlaps and intensity distribution. Ob-
jects showing irregular cell boundaries, strong overlaps and non-
homogeneous intensity distribution often pose a challenge to au-
tomated image segmentation.

1.4. Overview

Following the introduction, Chapter 2 provides an overview of publications
related to the segmentation of �uorescence micrographs. Additionally, pub-
licly available software tools that can be used for analysis of �uorescence
micrographs are described. Based on this review, contributions of this work
to the state of the art are summarized in Chapter 3.
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1.4. Overview

In Chapter 4, image processing and evaluation methods that constitute a
basis for this work are summarized. These methods are applied for imple-
mentation and parameterization of the segmentation pipeline, which is de-
scribed in detail in Chapter 5. This segmentation pipeline can be con�gured
based on hand-labeled data without requiring any further user interaction,
and improves automation in �uorescence micrograph analysis. Chapter 6
deals with the question of how to con�gure the segmentation pipeline based
on the hand-labeled data in a short amount of time. After providing an
overview of image data used in this work (Section 6.1), di�erent objective
functions for comparison between automated segmentation and hand-labeled
data will be compared (Section 6.2). Based on this, di�erent segmenta-
tion algorithms are compared to investigate if the described segmentation
pipeline is applicable for segmentation of a broad range of �uorescence im-
age data (Section 6.3). In this context, a novel graph cut based method was
developed for �gure-ground separation of micrographs. Based on studying
the e�ect of artifacts, such as noise and out of focus cells (Section 6.4), it
was shown that graph cut methods can improve segmentation for noisy data
and out of focus cells.
Next, an exploratory parameter space analysis was performed (Section 6.5)

to identify an optimization method able to identify a good parameterization
of the segmentation pipeline in a short time. The resulting measurements
also allow estimation of the error implemented by using non-greedy opti-
mization techniques. Apart from the optimization runtime, e�ciency of
the described segmentation techniques strongly depends on the amount of
required hand-labeled data. That is why research was carried out on the re-
sulting segmentation performance for varying numbers of reference cells, as
well as for di�erent strategies for selecting representative cells (Section 6.7).
Based on the described experiments, two more runtime-e�cient segmenta-

tion pipelines are explored in Chapter 7. The �rst version performs balancing
between segmentation performance an runtime and can be con�gured, based
on a reference image, in less than 8 hours, whereas the more runtime-e�cient
version can be con�gured in less than 9 minutes using a standard single core
CPU (one core of an Intel Core 2 Duo CPU with 2,66 GHz).
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2. Related work

In this chapter, an overview is provided on publications and software tools
related to the �eld of �uorescence micrograph segmentation and analysis.
First, methods from the literature are reviewed which have been applied for
segmentation of �uorescence image data. Then, available freeware tools that
can be used for micrograph segmentation and analysis are reviewed.

2.1. Fluorescence micrograph segmentation

A lot of research has been carried out on the segmentation of �uorescence
micrographs. The most frequently covered topics are the segmentation of
cell nuclei, the segmentation of cells or similar objects and the multi-channel
segmentation of cells and nuclei. Multi-channel cell segmentation refers to
incorporating information on size and extension of the nuclei for segmenta-
tion of the cells.

2.1.1. Shading correction

Some �uorescence images show poor image quality and exhibit low-frequency
illumination artifacts; these can be removed by shading correction. Leong
et al. (2003) describe shading correction based on di�erence imaging for the
segmentation of digital microscope images. First, the image background is
estimated by convolving the input image with a strong Gaussian �lter ker-
nel. Then, the estimated background is subtracted from the input image. A
di�erent method for shading correction is described by Wang et al. (2008).
They used a cubic B-spline for approximation of the background intensities.
Comparison of di�erent retrospective shading correction methods for vari-
ous images was carried out by Tomaºevi£ et al. (2002). Their experiments
show that performance of most shading correction methods depends on the
image content, and especially on the size of the objects. Only the shad-
ing correction method using entropy minimization shows good results for all
test images. Parameters of each method were thereby adjusted manually to
obtain the best possible results for each method.

2.1.2. Segmentation of �uorescence nuclei

All publications dealing with the segmentation of �uorescent nuclei focus
on a speci�c application domain. Hence, none of the publications in this
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section handles the applicability for di�erent types of nuclei staining. Basic
approaches for nuclei segmentation with focus on object classi�cation use
interactive threshold selection methods or a �xed threshold value for seg-
mentation of �uorescent nuclei. Research carried out by Wang et al. (2008)
addressed support vector machine based cell cycle identi�cation, done with
basis on a segmentation of the cell. For segmentation of the FISH labeled
nuclei, a cubic B-spline shading correction method is applied before utilizing
a �xed threshold value. In (Wang et al., 2010b), this method was improved
by using an interactive threshold value.
Most other publications apply fully automated methods for the segmen-

tation of �uorescent nuclei, whereof the watershed transform is most fre-
quently used. Fully automatic means that no user interaction is required
after selecting segmentation methods and adjusting parameters. Malpica
et al. (1997) proposed the hybrid watershed transform that combines a dis-
tance transformed binary image and a gradient magnitude image for splitting
of clustered nuclei. Lin et al. (2003) utilized a histogram based threshold
and applied a hybrid watershed transform for segmentation of 3D nuclei.
Based on the segmentation, a Gaussian mixture model is trained for merg-
ing of touching or overlapping nuclei based on the features shape, texture,
volume, convexity, circularity, area, eccentricity and mean radius. Wählby
et al. (2004) described a segmentation scheme based on seeded watershed
transform, applicable to 2D or 3D �uorescent nuclei data. First, morpho-
logical �lters are applied for foreground and background seed identi�cation.
These seeds are then used as input for a gradient magnitude based water-
shed transform. For reduction of over-segmentation artifacts, a gradient
magnitude based merging step is implemented. Chen et al. (2006) applied
Otsu's threshold selection algorithm for identi�cation of �uorescent nuclei.
Additionally, an improved watershed transform was used for splitting of
touching nuclei. For reduction of over-segmentation, an additional merging
step based on size and circularity was implemented. Nandy et al. (2009)
proposed the watershed transform for segmentation of FISH-stained nuclei.
First, a wavelet based preprocessing routine is applied. Then, threshold
selection is performed using a combination of isodata and triangle thresh-
olding algorithms. For re�nement of nuclei contours, a level set contour
evolution method is applied. Splitting of touching nuclei is then performed
based on the watershed transform. Jeong et al. (2009) performed threshold
selection for �uorescent nuclei based on a Gaussian mixture model. Nuclei
were then assigned to the classes "overlapping" or "isolated" by a Bayesian
network. Next, the watershed transform was applied to the gradient im-
age for splitting of touching nuclei. A further watershed transform based
scheme was described by Cheng and Rajapakse (2009), which incorporates
seeds extracted by an adaptive H-minima transform.
As an alternative to the watershed transform, the level set method can be

applied for segmentation of �uorescent nuclei. Ersoy et al. (2009) utilized a
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version, improved in terms of speed, of the graph partitioning active contours
method for the segmentation of �uorescent nuclei. An algorithm based on
Chan-Vese level set for segmentation and tracking of 3D nuclei was proposed
by Dzyubachyk et al. (2010a). In (Dzyubachyk et al., 2010b), several ex-
tensions to the level set based segmentation methods are described and the
improvement in terms of segmentation performance is demonstrated. Chinta
and Wasser (2011) used multiple level sets for the segmentation of 3D nuclei.
The level set is thereby initialized with the output from a combination of
Gaussian mixture model and k-means clustering.

Apart from the large number of approaches applying the watershed trans-
form or level sets for segmentation of �uorescent nuclei, some alternative
methods have also been proposed. Ortiz De Solorzano et al. (2001) applied
a seeded region growing method based on gradient curvature �ow for the
segmentation of �uorescent nuclei. A two-stage graph cut method for seg-
mentation of �uorescence nuclei was used by Danek et al. (2009). Here, cells
are �rst separated from the image background by a minimum cut based on
edge capacities and histogram analysis. The resulting binary image is then
distance transformed, and a second cut combining information on the dis-
tance image and gradient magnitude is applied for splitting of the nuclei. A
completely di�erent approach based on fast ellipse �tting for segmentation
and splitting of �uorescent nuclei was proposed by Brüllmann et al. (2012).

Harder et al. (2006, 2007) described a comparison of di�erent �gure-
ground separation methods for �uorescent nuclei. This comparison demon-
strates that Otsu's global threshold selection method shows poor results,
even after applying background correction techniques. Furthermore, two
adaptive threshold selection methods are described and compared. One of
these methods utilizes a sliding window based, locally adaptive threshold
combined with a global one that is used if variance is below a user-de�ned
threshold. The second adaptive threshold selection method computes one
threshold value for each window, and applies this threshold for every pixel
inside the window to reduce computational time of the algorithm. Harder
et al. showed that using adaptive threshold selection segmentation quality
for nuclei segmentation can be improved.

2.1.3. Segmentation of �uorescence cells

The segmentation of �uorescently labeled cells poses a challenge, as cells
often touch or even overlap each other. An interactive approach for cell
segmentation was published by Baggett et al. (2005). Using the described
method, the user selects one point at the center of the cell and another
point at the cell boundary. Then, a polar transform around the user-de�ned
center point is performed. Based on a gray-weighted distance transform, the
optimal cell border is extracted.

Other research groups have applied morphological operators for segmen-
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tation of �uorescence cell images. Metzler et al. (1999) described a mor-
phology based method for splitting of mouse �broblasts. In (Metzler et al.,
2000), this method was extended to a morphological multiple-scale method.
Di�erently, Wang et al. (2010a) performed a segmentation of �uorescence
cells using iterative erosions and dilations. Further, Zhang et al. (2010a)
proposed a mathematical morphology based approach for the extraction of
cell boundaries. Fluorescent puncta are then identi�ed by means of a win-
dow based contrast measurement. Mech et al. (2011) proposed a threshold
selection method combining histogram information and shape information
for analysis of host-pathogen interactions. Further improvements have been
achieved by removing objects that deviate in terms of roundness, area or
intensity.
Apart from nuclei segmentation, the watershed transform is also applied

for segmentation and splitting of �uorescence cells. Wählby et al. (2002) de-
scribed an algorithm for the segmentation of Chinese hamster ovary (CHO)
cells. For removal of the image background, a di�erence imaging scheme
based on cubic B-spline is utilized. Segmentation of the cells is then per-
formed by a watershed transform. In order to reduce over-segmentation,
small objects are merged with touching neighbor objects. Karvelis et al.
(2006) also used the watershed transform for segmentation of chromosomes
based on gradient magnitude information. Di�erently, Hodneland et al.
(2009) described and compared two methods for the segmentation of �uo-
rescently stained cells. For preprocessing, a Gaussian �lter and a ridge en-
hancement technique are applied. For segmentation and splitting of touching
cells, a watershed transform based method is compared to a level set based
one. Obtained results have demonstrated that both methods enable a good
segmentation and are comparable. Zhu et al. (2010) also applied the seeded
watershed transform for segmentation of �uorescent cells. Thereby, seeds
are determined based on local intensity maxima.
As for segmentation of cell nuclei, the level set method is also applied for

segmentation of �uorescent cells. Dufour et al. (2005) proposed a method
based on multiple active surfaces, with or without edges, for the segmenta-
tion of 3D cells. A Chan-Vese level set based cell segmentation method was
described by Bunyak et al. (2006). Srinivasa et al. (2007) used a multiscale
active contour transformation framework for segmentation of di�erent types
of cells. In (Srinivasa et al., 2009), an active mask based framework was
proposed. Möller et al. (2010) described a segmentation scheme based on
coupled active contours that is applicable for the segmentation of �uores-
cently labeled cells as well as for the segmentation of particles and dots.
In the following, alternative methods to the watershed transform and the

level set method that are applicable for cell segmentation are described.
Nattkemper et al. (2000) utilized a competitive layer model (CLM) for seg-
mentation of �uorescent micrographs using Gestalt-based feature binding.
In (Nattkemper, 2002), a neural network was applied for detection of �u-
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orescence cell positions. Cell boundaries were then determined by using a
recurrent neural network model. Di�erently, Pham et al. (2004) performed a
segmentation of �uorescently labeled vesicles by an improved fuzzy c-means
clustering algorithm. Yet Qian et al. (2009) used a self-organizing map
based multi-threshold technique for the identi�cation of background pix-
els, foreground tissue as well as seeds. Based on this information, a seeded
watershed transform was applied for segmentation of the cells. Bradbury
and Wan (2010) used a spectral k-means approach for the segmentation of
muscle cells in bright �eld images. This algorithm was based on spectral
graph partitioning, splitting a graph into two pieces based on the eigenvec-
tors and eigenvalues of the Laplacian matrix of the graph. Further, a shape
based method determining the best �tting ellipse for segmentation of the
eggshell surrounding embryo cells was described by Blanchoud et al. (2010).
Zhang et al. (2010b) reported an image segmentation method based on the
Laplacian of a Gaussian edge detector. In this application, straight lines
are regarded as artifacts and removed by a combination of eccentricity �l-
ters and morphological operations. Yet Zaritsky et al. (2011) proposed the
MultiCellSeg algorithm to separate cellular from background regions. This
non-parametric algorithm classi�es local patches in an image by a cascade of
Support Vector Machines (SVMs) based on reference data. For re�nement
of the resulting regions, postprocessing based on a graph cut is implemented.
Further, segmentation of cells guided by an atlas was proposed by Qu et al.
(2011). This so-called simultaneous recognition and segmentation method
uses a 3D target atlas guided voxel classi�cation system. The atlas is thereby
smoothly deformed until it best matches the image. The authors of this
study further demonstrated the applicability of tis method for detection of
varying cell types.

2.1.4. Multi channel segmentation of cells and nuclei

Segmentation, and particularly automated splitting of nuclei, is usually a
much less complex task than segmentation and splitting of �uorescently
labeled cells. Hence, information on position and extension of the nuclei can
be combined for segmentation and splitting of the cells.

An interactive scheme that incorporates information on location and ex-
tension of the nuclei for segmentation of the cells was described by Palmieri
et al. (2010). The proposed interactive method �rst requires the user to
de�ne a threshold level in order to select all of the stained nuclei (Palmieri
et al., 2010). Cells are then segmented by a seeded watershed method.

Based on work of Wählby et al. (2002), Lindblad et al. (2004) described
a multi-channel segmentation scheme applicable to CHO cells. First, a seg-
mentation of the nuclei using contrast based threshold selection is performed,
which maximizes the contrast between image background and cell nuclei.
Touching or overlapping nuclei are separated by applying the watershed
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transform to the distance transformed image. Information on the nuclei is
then used for segmentation of the CHO cells by a seeded watershed transform
based on intensity information. Bengtsson, E. and Wahlby (2004) also used
information on the nuclei as input for an intensity based seeded watershed
method.

Apart from methods based on the seeded watershed transform, level set
based methods are also proposed for segmentation of multi-channel micro-
graphs. In this context, Yan et al. (2008) performed an automatic RNA
interference screening, for which a modi�ed watershed transform was used
for extraction of the nuclei. Furthermore, these authors demonstrated that
independent level sets perform a low-quality segmentation of the cells. Ow-
ing to this, an interaction model was included which improves segmentation
of touching cells. Yu et al. (2009) used a method based on topological anal-
ysis for evaluation of neuronal cells. After segmenting the nuclei, neuronal
cells are also segmented. Therefore, a level set method is combined with
topology preserving constraints that prevent cells from merging or splitting.
This method was later improved by using generalized Voronoi diagrams (Yu
et al., 2010).

2.1.5. Parameter adjustment for �uorescent micrograph
segmentation

Most of the above described methods can be calibrated for di�erent image
data by adjusting several parameters. Nevertheless, manual adjustment of
these parameters is very time-consuming. In this sense, a new concept to
support the user in the adjustment of these parameters was provided by Pre-
torius et al. (2011). Instead of adjusting parameters and reviewing results
in an iterative process, segmentation results are computed o�ine for several
di�erent combinations of parameters. A plugin for the CellPro�ler software
displays results for di�erent combinations of parameters. The user can then
select high-quality and low-quality segmentation results. Based on these
selections, the optimal parameter combination is identi�ed. In contrast to
iterative calibration, the user is able to change parameters in real time. A
disadvantage hereby is that pre-computation and storing of the segmenta-
tion results for di�erent combinations of parameters is time-consuming and
requires a large volume of memory. A concept for automated calibration of
a segmentation pipeline based on hand-labeled data was proposed by Wit-
tenberg et al. (2009). Carrying out research on applicability of this concept
for segmentation of �uorescence microscopy image data is part of this work.
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2.2. Available freeware tools for automated analysis

of �uorescence micrographs

A variety of freeware as well as commercial tools allow the segmentation
and automated analysis of �uorescent micrographs. For this section, focus
is put on non-commercial tools. Of these tools, the CellPro�ler has shown
to be the most �exible software for biologists with only little knowledge of
image processing. However, its full power can only be revealed by image
processing experts. For experienced users, ImageJ (Abràmo� et al., 2004) is
also an option. In order to support this hypothesis, a short summary will be
provided for the tools ImageJ, CellPro�ler, ICY, Blob-Finder, OME, Bisque
and BioIMAX.

ImageJ is an open source, Java based image analysis tool used for many
imaging and image processing applications ranging from skin analysis to
neuroscience (Abràmo� et al., 2004). ImageJ, which is currently at version
1.45, provides a huge functionality. Basic image editing functionalities like
changing brightness, image contrast or the image size are o�ered as well as
routines for stack viewing, and stack editing. A rich collection of binary
�lters exists that consists of morphological erosion, dilation, opening, clos-
ing, skeletonization, hole �lling, watershed transform, distance transform,
Voronoi maps, etc. Furthermore, a collection of �lters such as mean, median,
Gaussian, maximum, minimum, unsharp masking, variance, edge detection,
Fourier band pass �lters and many others is provided. For image analysis
and quanti�cation, ImageJ o�ers region of interest (ROI) based measure-
ment of area, minimum, maximum, mean, median and standard deviation
of gray level, among many other measurements. Furthermore, functionality
of ImageJ can be extended by creating custom plugins. On the ImageJ web-
site, currently more than 400 plugins are available for image analysis, color
image analysis, image �ltering, segmentation, visualization, the handling of
image stacks, etc. As each �eld of research uses di�erent functionalities of
ImageJ, some publicly available collections of plugins and macros for the pro-
gram have been created. The MBF ImageJ collection of plugins and macros
(Collins et al., 2007) was developed for the analysis of microscopic images.
It additionally o�ers support for many commonly used �le formats, such as
the Zeiss .zvi extension and the Leica .lei and .lif image formats. Further
functionalities o�ered are deconvolution, co-localization analysis, 3D surface
rendering, particle analysis, among others. For a complete list of �le formats
and functionalities, see (Collins et al., 2007).

The CellPro�ler (Carpenter et al., 2006; Lamprecht et al., 2007), currently
available in version r10997, is a commonly used freeware and open source
tool for the analysis of �uorescent micrographs. It was developed by the
group of Anne Carpenter at the Broad Institute of Massachusetts Institute
of Technology (MIT) and Harvard University. Using the CellPro�ler, the
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user de�nes an image processing pipeline consisting of several methods. This
pipeline can then be used for image segmentation and analysis. For users
with only little image processing knowledge or for simple segmentation tasks,
a method named "IdentifyPrimaryObjects" is o�ered which performs a seg-
mentation of objects in a single image channel. The "IdentifySecondaryOb-
jects" method performs a multi-channel segmentation by additionally using
seeds from a di�erent channel (e.g. cell nuclei). Both methods require ad-
justment of several parameters. For less experienced users, it is very helpful
that a default value is assigned to each parameter. Apart from this, the
CellPro�ler o�ers several further image processing routines, and is able to
execute ImageJ plugins and macros.
The software package ICY (de Chaumont et al., 2011) was developed at

the Quantitative Image Analysis Unit at the Institute Pasteur, and is a
further image processing software with good usability and plugin support.
As of May 22, 2013, 187 di�erent image processing plugins for ICY could be
downloaded. Furthermore, ICY is able to execute ImageJ plugins.
Daime (Daims et al., 2006) is a further �uorescent image analysis tool,

though its scope is tailored to the analysis of �uorescent in situ hybridization
probes. It o�ers methods for background removal and noise reduction, as
well as di�erent threshold selection methods ranging from manual thresholds
to locally adaptive thresholds and edge detection algorithms.
An additional tool, though with a very dedicated scope, is the Blob-Finder

(Allalou and Wählby, 2009), which is designed for the evaluation of subcel-
lular structures and uses a less �exible segmentation pipeline, with only
few parameters. For segmentation of the nuclei, Otsu's threshold selection
method is applied. Touching nuclei are then split by applying the water-
shed transform to the distance transformed image. Cytoplasm is estimated
based on the nuclei by a distance transform with a user-de�ned radius. For
the segmentation of subcellular structures, local maxima in the image are
assumed to represent individual objects. These objects are separated from
the image background by interactive thresholds.
Apart from tools with a strong focus on image processing and visualiza-

tion, software solutions with a focus on data management or web based an-
notation are available that also o�er some segmentation routines. The open
microscopy environment OME (Goldberg, 2005), for instance, is a frame-
work for analysis as well as management of image data. The OME o�ers
routines for manual annotation as well as a wrapper to run ImageJ routines.
The Bio-Image Semantic Query User Environment (Bisque) software was

developed by Kvilekval et al. (2009) at the Center for Bio-Image Informatics
at University of California. It was developed for the exchange and analysis
of biological 5D image data. Users can write custom plugins or download
them. Currently available are, for example, a 3D nuclei counter and an
ImageJ wrapper.
A further tool for bioimage analysis and exploration is the BioIMAX tool
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(Loyek et al., 2011), developed by the Biodata Mining Group at the Bielefeld
University, Germany. It provides methods for the annotation of image data
as well as di�erent clustering techniques for image segmentation.

2.3. Summary

In this chapter, an overview on publications dealing with the segmentation
of �uorescent micrographs, as well as an overview on publicly available image
analysis software for �uorescence image data, were provided. This review
demonstrated that the task of �uorescence micrograph segmentation can be
subdivided into three areas of application: The segmentation of �uorescence
nuclei, segmentation of �uorescence cells and the multi-channel segmentation
of cells and nuclei. For all three areas of application, methods based on the
watershed transform as well as level sets were most commonly used.

Most publications dealing with the automated segmentation or analysis
of �uorescence micrographs have focused on a speci�c experimental setup.
Only publications from Tomaºevi£ et al. (2002), Srinivasa et al. (2009),
Möller et al. (2010) and Zaritsky et al. (2011) evaluated algorithms based
on image data from multiple application domains. Con�guration of the seg-
mentation pipeline has usually been done manually. Exceptions to this were
machine learning based methods from Nattkemper et al., who applied a
competitive layer model (Nattkemper et al., 2000) and a neural network ar-
chitecture (Nattkemper, 2002) for automatic segmentation of �uorescence
micrographs. Di�erently, Lin et al. (2003) and Jeong et al. (2009) uti-
lized machine learning techniques, including Gaussian mixture models and
Bayesian networks, for segmentation of �uorescence nuclei.

For evaluation, 10 of the 55 studies compared results to hand-labeled
data, whereas 27 studies counted the number of correctly and erroneously
segmented objects. Remaining publications did not perform a quantitative
evaluation.

In addition to an overview of segmentation methods, publicly available
software solutions were also reviewed. It was shown that tools like the
CellPro�ler or ImageJ allow the user to de�ne an image processing work�ow
based on macros or a pipeline concept. However, the selection of appropriate
methods is very time-consuming and may pose an obstacle for researchers
with no or only little knowledge of image processing. Alternative tools like
the Blob-Finder have been developed with respect to a speci�c application,
and hence cannot be applied for analysis of a broad range of �uorescence
image data.
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2.4. Conclusion

Much progress has been made towards the development of algorithms and
software solutions enabling automated and objective image analysis for var-
ious �uorescence microscopy based experiments. Nevertheless, there is still
room for improvement, in particular for the following topics:

• Segmentation of overlapping cells: Most state of the art methods en-
able the segmentation of touching cells. Resolving overlaps is possible
for simple convex cells or nuclei (Brüllmann et al., 2012). However,
methods for resolving overlaps for cells with irregular boundaries and
non-homogeneous intensity distribution have not been developed thus
far.

• Development and evaluation of segmentation methods based on data
from di�erent �uorescence imaging domains: Most methods focus on a
particular experimental setup. In order to enable the segmentation of a
broad range of �uorescence image data, algorithms must be adjustable
for segmentation of various staining and cell types. For evaluation,
most publications do not perform any qualitative comparison to hand-
labeled data and often use only a single dataset.

• Improving automation for software tools: Existing tools either focus on
a particular experimental setup or require the user to select a segmen-
tation work�ow and to manually adjust the parameters. The manual
adjustment of the segmentation work�ow to the data is often very time-
consuming and requires expert knowledge of image processing. Hence,
novel software tools are required aiming to reduce the amount of time
that the user has to spend optimizing the segmentation work�ow.

20



3. Summary of own contributions

Below, an overview of contributions of this thesis to the �eld of bioimage
informatics is provided:

1. Design and implementation of a parameterized segmentation pipeline
that is calibrated based on hand-labeled data. This system enables
the segmentation of �uorescence micrographs from various application
domains and reduces the time required for evaluation. From exper-
imental data, it can be concluded that a small number of manually
annotated cells (often <10) is su�cient for calibration of the segmen-
tation pipeline. As con�guration of the segmentation pipeline can be
performed in less than 8 hours, or in less than 5 minutes if a more
runtime-e�cient setup is used, e�ciency and the degree of automa-
tion in �uorescence micrograph analysis are improved. This is a novel
approach that has not been implemented for micrograph segmentation
before.

2. In order to improve �gure-ground separation, a novel graph cut based
method was developed. It could be demonstrated that this method
outperforms other state of the art methods for several application do-
mains, particularly for blurred and noisy micrographs.

3. Applicability of this system is illustrated based on data from varying
�uorescence imaging domains, including simple nuclei as well as mul-
tipolar and overlapping cell data. For evaluation, the segmentation
results were compared to manually hand-labeled data. This includes
measurements of inter- and intra-observer variability. Most state of the
art methods are evaluated based on a single dataset without manual
hand labelings. Furthermore, parameters are often optimized manu-
ally, which might introduce a bias. To the author's knowledge, this is
the �rst time that algorithms based on watershed transform, level sets
and graph cut are compared using �uorescence microscopy image data
from di�erent application domains, based on manual hand labelings
and automated parameter optimization.

4. In order to reduce the time required for calibration of the segmentation
pipeline, time-e�cient strategies for determining the optimal parame-
terization of the segmentation pipeline are compared. In this context,
parameter spaces of di�erent segmentation methods are investigated
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for varying types of data. Apart from the present publication (Held
et al., 2012), this is the �rst time that parameter spaces are investi-
gated for di�erent image processing methods based on a broad range
of �uorescence microscopy image data.
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4. Overview of image
segmentation, optimization and
evaluation methods

In this thesis, methods from di�erent �elds of research are used. The most
important segmentation, optimization and evaluation methods which are
relevant for this thesis are brie�y described and discussed in this chapter.

4.1. Image segmentation

Image segmentation provides a basis for most automated image analysis
tasks. In the following, a brief description of segmentation methods that
will be adapted for �uorescence micrograph segmentation in this work is
provided.

4.1.1. Watershed transform

The watershed transform (WT) (Roerdink and Meijster, 2000) is a com-
monly used mathematical morphology based image segmentation method,
and is often applied for splitting of touching cells or nuclei. Interpreting the
image intensity pro�le as a surface, the WT simulates a �ooding process.
Thereby, each local intensity minimum is interpreted as a source of water.
Instead of using local intensity minima, alternative sources (e.g. based on
morphology) can be used as sources of water, also known as seeds. Based
on the seeds, �ooding is performed until regions from di�erent sources touch
each other. Corresponding touching points are then interpreted as the wa-
tershed lines that separate touching objects.

Applying the WT for splitting of touching cells or nuclei based on inten-
sity information, each local intensity minimum leads to an individual cell or
nucleus. Due to the �ooding, touching cells or nuclei are split at the location
of maximum intensity. As a result of this, a high quality splitting is only
obtained if the input image shows monotonously increasing intensity values
from the core of an object to the boundary. For micrographs showing more
complex intensity distribution, erroneous segmentation results are obtained
if the WT is applied to the intensity image. An example of such �uorescence
image data is provided in Figure 4.1(a). In order to extend the scope of the
WT to a broader range of image data, alternative input images are required.
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(a) (b)

Figure 4.1.: When using the watershed transform for splitting of
macrophages based on intensity (a), splitting must be carried
out at locations with maximum intensities (red arrows), or at
locations with minimum intensities (blue arrows). Instead, gra-
dient magnitude can be used for splitting of the cells as splitting
for this example can always be performed at location of maxi-
mum gradient magnitude (b).

Instead of image intensity, cells can be split at locations of strongest gradient
magnitude (compare Figure 4.1(b)). For splitting of round, oval or convex
objects, the inverted distance transformed image can be used as input for
the WT. A typical application is the splitting of touching nuclei based on
a binarization of these nuclei, as can be seen in Figure 4.2. After distance
transform and inversion, each local intensity minimum (Figure 4.2(e)) repre-
sents an individual nucleus. Furthermore, intensities of the inverted distance
image increase from the core of an object to the boundary, which is ideal for
the watershed transform. As a result, using the gradient magnitude image or
the distance transformed image enables splitting of cells with convex shape
or non-complex intensity distribution. Note that an object with a complex
intensity distribution shows several local intensity minima and maxima.

For objects with irregular boundaries and complex intensity distribution,
additional information is required to enable robust splitting. For some appli-
cations, information on position and extension of the cell nuclei is available
and incorporated for segmentation of the cells. Seeds based on local intensity
minima can then be replaced by information on the nuclei. The resulting
method is known as seeded watershed transform (SWT).

From an implementation point of view, theWT and SWT can be e�ciently
implemented based on a heap. As each pixel must be be visited only once,
this results in complexity O(n log n).
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4.1. Image segmentation

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.2.: Applying the watershed transform to the image intensities (a)
results in a strong over-segmentation (b). Instead, the binarized
image (c) can be used for splitting of the nuclei based on their
convex shape. After performing a distance transform (d), each
local maximum is assumed to represent an individual nucleus.
Applying the watershed transform to the inverted distance im-
age (e), touching nuclei are split (f) and over-segmentation is
reduced. An additional overlay image is shown in (g).

4.1.2. Level sets and fast marching level sets

In the past years, the level set method (Sethian, 1999) has become a very
popular framework for image segmentation. This method can be nicely
illustrated by a wave front moving according to a speed function F (x, y),
de�ned for each pixel (x, y). The level set method performs tracking of a
given initial wave front in time. Thereby, splitting and merging of di�erent
fronts is possible. Hence, topology of the described objects can change.
Tracking the level set Φ in time requires solving the initial value problem:

Φt + F (x, y)|∇Φ| = 0,

where Φt denotes partial derivative of the level set function and Γ =
{(x, y)|Φ(x, y) = 0} the initialization. Solving this initial value problem
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requires an iterative solution scheme updating each image pixel at each it-
eration, which is very time-consuming. Instead, update of the level set
function can be restricted to points located near the current boundary. This
procedure speeds up the computation and is known as narrow band level set
method (for details, see Sethian (1999)).

By restricting motion of the front to positive values F (x, y) ≥ 0, the fast
marching level set method is obtained. Due to this restriction, arrival time
of the front T (x, y) can be described by a boundary value problem:

|∇T (x, y)|F (x, y) = 1, T (x, y) = 0 on Γ.

For solving the fast marching (FM) level set equation, Sethian (1999)
provides a very e�cient discretization scheme, which can be solved with
complexity O(n log n).

In literature, level sets are applied for �gure-ground separation as well
as for the separation of touching cells incorporating information on the cell
nuclei. Figure 4.3 shows an example of cells split based on a seeded fast
marching level set (SFM) technique.

4.1.3. The graph cut method

The graph cut algorithm was �rst applied for image binarization by Greig
et al. (1989). Several years later, a more e�cient scheme was developed
by Boykov et al. (1999). In this work, Boykov's implementation is used as
described in (Boykov and Funka-Lea, 2006; Boykov and Kolmogorov, 2003,
2004; Boykov et al., 2001).

In contrast to the level set method that locally optimizes an energy func-
tion, the graph cut algorithm globally optimizes an energy function by inter-
preting the image as a graph. This graph is then cut into di�erent regions,
in such way that an energy function is globally minimized. For each pixel p
contained in a set of Pixels P and a neighborhood system N represented by a
set of neighbor pixels {p, q}, the cost function E(A) is minimized. Thereby,
A describes a labeling of the image. In this application, P contains every
pixel in the input image and N denotes a 4-neighborhood system. E(A) is
then de�ned as:

E(A) = Edata(A) + Esmooth(A) = λ
∑
p∈P

Rp(A) +
∑
{p,q}∈N

B{p, q}δ(Ap, Aq),

where Rp denotes a penalty for assigning pixel p to a label l out of a set
of labels L.

The graph cut method can be applied for �gure-ground separation as well
as for splitting of touching cells. For �gure-ground separation, a two-label
graph cut is used. In this case labels represent foreground or background
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(a) (b) (c)

(d) (e) (f)

Figure 4.3.: Illustration of the fast marching level set method. Touching
macrophages (a) are split incorporating information on position
and extension of nuclei (b) and binary fore- and background in-
formation (c). Arrival times of the fast marching level set (d) are
computed using a gradient magnitude and an image curvature
based speed function (for implementation and parameterization
of the fast marching level set, see Section 5.4.2, p. 50). The
resulting label image (e) and an overlay of the segmentation
result (f) show the split macrophages.

pixels. For splitting of touching objects, a unique label can be assigned
to each object. Hence, the number of required labels correlates with the
number of touching cells, and a so-called multi-label graph cut is required.
For both applications, the data energy term and the smoothness energy term
must be carefully chosen to provide good results. For a detailed description
of the graph cut based threshold selection method, see Section 5.3.4, p. 44.
The graph cut based splitting method that uses information on nuclei is
described in Section 5.4.3, p. 52.
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(a) (b) (c) (d)

Figure 4.4.: Illustration of graph cut shrinking bias: Assume that the
macrophage fully contained in (a) shall be separated from the
image background based on gradient magnitude (b) using the
graph cut based method. Also assume that the regional term
forces the nucleus to be assigned to the foreground label and all
background pixels to be assigned to the background class. In
this case, the contour overlaid in (c) depicts the expected result.
However, solution (d) is preferred by the graph cut, as the sum
of gradient costs along the object boundary is smaller for (d).
The e�ect that smaller contours are preferred by the graph cut
is known as shrinking bias.

The major drawback of the graph cut method is known as shrinking bias,
and refers to the fact that small objects are preferred by the graph cut
method. The reason for this is the smoothness energy term that sums up
costs of all pixels with di�erent neighbor labels. As a result, smoothness
energy tends to be smaller for smaller objects. This e�ect is illustrated in
Figure 4.4.

4.2. Calibration of the segmentation pipeline

For automatic calibration of the segmentation pipeline, choice of an ap-
propriate optimization method is crucial. For most optimization problems
occurring in this work, testing all possible settings is not applicable, as run
time increases exponentially with the number of free parameters. Using
such a brute force technique would require a very long time on a standard
computer. Instead, more runtime-e�cient optimization methods enabling
optimization of multi-dimensional parameter spaces are required. As the
investigated parameter spaces are currently unknown, ill-conditioned pa-
rameter spaces must be considered. Hence, the optimization method must
be able to handle local performance maxima and minima.
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Figure 4.5.: Illustration of a genetic algorithm's crossover and mutation op-
erations for a genome consisting of 5 parameters. In this exam-
ple, 2 parameters are mutated.

4.2.1. Genetic algorithms

Due to the ability of jumping out of local extrema and e�ciently opti-
mizing multi-dimensional parameter spaces, genetic algorithms (Goldberg,
1989) are applied for automated parameter optimization. Using genetic al-
gorithms, parameters to be optimized are regarded as a genome that consists
of a set of alleles. Each of the alleles thereby represents a parameter. In
this work, discrete parameters de�ned by a minimum value, a maximum
value and a step size are used to reduce size of the parameter space. For
initialization of the genome, each parameter is initialized with a random
value.

After initialization, the parameter space is explored. Therefore, new in-
dividuals de�ned by their genome are created based on so-called crossover
and mutation operations. Depending on encoding of the genome, di�erent
mutation and crossover operators can be used. The mutation operator ap-
plied for this work creates a new individual based on a parent individual by
mutating each of the alleles with a given probability pmut. By mutating an
allele, an equally distributed random value is assigned to the correspond-
ing parameter. The crossover operation creates a new individual based on
two parent individuals. For this work, the single point crossover operator
is used. Thereby, both parent genomes are split at a random location and
mixed. Probability that a crossover operation occurs is denoted as pcross. For
an illustration of crossover and mutation operations see Figure 4.5. For this
work, pmut is adjusted in such way that one to two mutations are expected
for each new individual. Assuming that the investigated parameter spaces
consist of 5 to 10 parameters, pmut is set to 0.2. Additionally, pcross = 0.5 is
used to expect a crossover operation for every second individual. Figure 4.6
shows an example for optimization of a complex parameter space with local
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extrema. For implementing the genetic algorithm, the GAlib developed by
M. Wall at the MIT is used (Wall, 1996).

For runtime reasons, convergence of the genetic algorithm is assumed if
no better individual has been determined for 200 iterations. Using this con-
vergence criterion, in practice about 1000 iterations were performed until
convergence for a �xed combination of methods. Using an average reference
dataset consisting of 20 images and including tree-fold cross-validation, op-
timization required about 24 hours for runtime-e�cient algorithms. For the
less e�cient graph cut based cell splitting, parameter optimization required
about one week.

4.2.2. Coordinate descent

The coordinate descent optimization method is an approach for minimiza-
tion of a multidimensional function f(x1,x2, ...,xn) that does not require
gradient information. The outcome of this method strongly depends on its
initialization. Using coordinate descent, each parameter is optimized in-
dividually at each iteration by a brute-force approach. Hence, for the �rst
iteration parameter x1 is varied and optimized. All other parameters remain
�xed. The resulting optimal parameter vector is then used for optimization
of parameters x2, ..., xn. This coordinate-wise optimization of all param-
eters is then repeated until no new performance maximum is determined.
For a 2D example of this search method, see Figure 4.6 (b, c).

Results for this search method strongly depend on initialization, and iden-
ti�cation of the global optimum is not guaranteed. For details on conver-
gence of the coordinate descent method, see (Luo and Tseng, 1992).

4.2.3. Cross validation

Automatic parameter optimization requires disjunctive reference and testing
datasets to prevent learning by heart and over-�tting. Hence, a k-fold cross
validation can be applied. Splitting the dataset into k equally sized subsets,
calibration is performed on k − 1 subsets. The remaining subset is used for
testing of the algorithm. This procedure is repeated for each constellation
of reference and testing data. Using the k-fold cross validation, a perfor-
mance measurement is obtained for each sample in the dataset, ensuring
that reference and testing data are always disjunctive.

4.3. Evaluation

Comparison of the user-de�ned hand-labeled data to the automatically gen-
erated result is an important aspect of parameter optimization. For this
task, di�erent metrics can be used.
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(a)

(b) (c)

(d) (e)

Figure 4.6.: Optimization of a two-dimensional function, with parameters
x and y showing several local maxima and minima (a), using
coordinate descent optimization (b, c) and genetic algorithms
(d, e). Note that size of the dots encodes the sequence of in-
vestigated parameter combinations. The smallest point is tested
�rst, whereas the largest point is the last tested one. (b, c) show
that output of the coordinate descent method depends on the
initialization, whereas output of the genetic algorithm hardly
depends on initialization, but rather on chance. Using a bad ini-
tialization, the coordinate descent optimization scheme sticks in
a local performance optimum (b). In (c), the global maximum
is correctly identi�ed. The genetic algorithm can also stick in
local maxima as depicted in (d), whereas the global optimum is
correctly identi�ed in (e).

31



4. Overview of image segmentation, optimization and evaluation methods

4.3.1. Jaccard Overlap

The Jaccard similarity enables pairwise comparison of segmentation results.
Denoting the set of pixels representing the hand-labeled data as Sgt, and
the set of pixels representing the segmentation result as Sres, the Jaccard
similarity oj is de�ned as the ratio between intersection and union of Sgt and
Sres:

oj =
|Sgt

⋂
Sres|

|Sgt
⋃
Sres|

.

This results in oj = 1 for a perfect match, and oj = 0 if hand labeling and
segmentation results are disjunctive.

4.3.2. Hausdor� distance

In contrast to the Jaccard similarity, the Hausdor� distance considers object
boundaries instead of overlaps. Denoting the set of boundary pixels of the
hand labeling as Bgt and the boundary pixels of the segmentation results as
Bres, the distance of each pixel contained in Bgt to the closest pixel in Bres is
determined. In this work, for distance measurement, the Euclidean distance
was utilized. The Hausdor� distance is then determined by computing the
maximum of all minimum distances:

ohd(Bgt, Bres) = max
p∈Bgt

min
q∈Bres

d(p, q),

where d(p, q) denotes the Euclidean distance of boundary pixels p and q.

As the Hausdor� distance is not symmetric, ohd(Bgt, Bres) = ohd(Bres, Bgt)
does not always hold. That is why the following symmetric version of the
Hausdor� distance is de�ned:

oH = max(ohd(Bgt, Bres), ohd(Bres, Bgt)).

Instead of determining the maximum of all minimum distances for com-
parison of two segmentation results, which corresponds to measuring only
the largest error, the root mean square of minimum distances can be used.
This results in the orms

hd metric, which takes the complete boundary into
account:

orms
hd =

√√√√ 1

|Bres|
∑
p∈Bgt

( min
q∈Bres

d(p, q))2.

The symmetric root mean square of minimum distances is de�ned as:

orms
H = max(orms

hd (Bgt, Bres), o
rms
hd (Bres, Bgt)).
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4.3.3. Accuracy

The Jaccard similarity and the Hausdor� distance only take qualitative over-
lap or boundary based features into account. Information on the number
of correctly identi�ed cells ntp, number of missed cells nfn, and the number
of erroneously detected cells nfp is not used for assessment of segmentation
performance.

Reduction of nfn and nfp is crucial for many experiments requiring mea-
surement of average cell size or counting objects. In order to evaluate this
quantitative information, accuracy oa of the segmentation is de�ned as:

oa =
ntp

ntp + nfp + nfn
.

Determining ntp, nfp and nfn requires a mapping between all hand-labeled
objects and the segmentation result. For this mapping, each of the seg-
mented result objects is assigned to the best-�tting hand-labeled object.
In addition, only a single segmented object can be assigned to each hand-
labeled region. Additionally, a rejection class is implemented. This rejection
class is used, for instance, for regions that exceed the image boundary and
for those that cannot be split unambiguously by the human observer. Ob-
jects assigned to the rejection class are excluded from evaluation and do not
in�uence the performance measurement. Hence, a decision rule for deter-
mining if a segmented region of interest is assigned to the rejection class is
required. For this work, regions that better �t to a rejection class region
than to any valid region, in terms of Jaccard similarity, are regarded as
objects corresponding to the rejection class and excluded from evaluation.

4.3.4. Combined Jaccard metric

In order to associate quantitative and qualitative performance measure-
ments, the combined Jaccard metric has been de�ned. Using this metric, a
mapping between segmented and hand-labeled regions is performed as de-
scribed in Section 4.3.3. This also includes incorporation of the rejection
class. Based on this mapping, corresponding pairs of hand-labeled regions
and segmented regions are obtained. Jaccard similarity of such an optimal
pair of corresponding regions is denoted as o∗i with i ∈ 1, 2, ..., ntp. Note that
each segmentation result can only be assigned to one hand-labeled object,
and vice-versa. Based on these measurements, the combined Jaccard metric
ocj is de�ned as:

ocj =
1

ntp + nfp + nfn

ntp∑
i=1

o∗i .

Examples for some typical constellations of hand-labeling and segmented
regions and the corresponding performance values are shown in Figure 4.7.
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(a) (b) (c) (d)

(e) ocj = 1 (f) ocj = 0.25185 (g) ocj = 0.12593 (h) ocj = 0.29509

Figure 4.7.: Illustration for representative scenarios comparing segmentation
results to hand-labeled data based on the combined Jaccard sim-
ilarity measurement. Hand labelings are shown in images (a-d).
For segmentations and the resulting performance measurements,
compare images (e-h). Note that additional degradation of false
positive and false negative detections reduces performance for
images (f), (g) and (h).

Note that ocj = 1 corresponds to a perfect segmentation, whereas ocj = 0
corresponds to disjunctive hand-labeled data and segmentation results.

4.3.5. Friedman test

In order to determine if the segmentation resulting from di�erent methods
is signi�cantly di�erent, a repeated measurement analysis of variance can
be performed if the data is normally distributed. For most of the data, the
assumption of normal distribution is violated. That is why, for statistical
analysis, the non-parametric Friedman test (Friedman, 1937) is used to ver-
ify statistically signi�cant di�erences. In order to carry out this test, the
statistical software package R in version 2.13.2 was used.

4.3.6. Wilcox test

The Wilcox signed-rank test Wilcoxon (1945) is a non-parametric statistical
hypothesis test that can be used for determining if repeated measurements
of a speci�c experiment are signi�cantly di�erent. In contrast to Student's
t-test, no normal distribution of the data is required. For adjustment of P-
values for multiple testing, the method of Benjamini and Hochberg (1995)
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is applied. In order to carry out this test, the statistical software package R
in version 2.13.2 was used.

4.4. Summary

In this chapter, an overview of well-established techniques that constitute
a basis for this work was provided. This includes the watershed transform,
level set and fast marching level set methods from the �eld of image pro-
cessing. From the area of discrete multidimensional optimization, genetic
algorithms and the coordinate descent method were brie�y described. For
evaluation of segmentation performance, di�erent boundary as well as over-
lap based qualitative and quantitative performance metrics were described,
as well as statistical signi�cance tests for non-normally distributed repeated
measurements.
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5. Design of the segmentation
pipeline

The robust segmentation of �uorescence micrographs poses a challenge, as
the development of an algorithm applicable for segmentation of a broad
range of di�erent �uorescence micrographs is hardly possible. Such an al-
gorithm must be able to handle di�erent cell types, stains and acquisition
conditions. In order to support a broad range of application domains, the
segmentation pipeline consists of exchangeable image processing methods,
each implementing one of the following stages:

1. Preprocessing (noise reduction and shading correction).

2. Figure-ground separation (di�erentiation between foreground and back-
ground pixels).

3. Object splitting (separation of touching, overlapping and overlaying
objects).

For an illustration of the segmentation pipeline, see Figure 5.1.

Figure 5.1.: Stages of the segmentation pipeline.

In the following, developed methods are described and discussed for each
stage of the segmentation pipeline. In order to decrease runtime for cali-
bration and to improve segmentation for blurred and noisy micrographs and
for micrographs showing strong intensity variations, custom methods are
developed and included.
As the best performing combination of methods and its parameterization

shall be automatically determined on the basis of hand-labeled data, imple-
mented methods must be chosen carefully, considering that, with the number
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of supported methods, runtime of the calibration process increases. Hence,
only methods are considered that are not too similar. Furthermore, meth-
ods with a short runtime are preferred against slower ones. For an overview
on implemented methods and corresponding adjustable parameters, see Fig-
ure 5.2. Apart from the number of image processing methods, discretization
of each method's parameter space strongly a�ects runtime of the calibration
process. That is why discretization of each parameter is performed in such
a way that a broad range of �uorescent micrographs can be segmented while
keeping the number of discrete values small. For this work, each parameter
was discretized by a maximum of 30 values. Due to this limitation, for some
parameters, constant step sizes were not appropriate; for them, exponen-
tially increasing step sizes were used. An example for such a parameter is
the radius of the minimum �lter based preprocessing that is adjustable from
2 to 1024 pixels.

Figure 5.2.: Overview of implemented methods and adjustable parameters
for each of the methods.

5.1. Acronyms

A unique acronym was de�ned for each method of the segmentation pipeline.
For an overview on these acronyms, see Figure 5.2. Based on this, a seg-
mentation pipeline can be denoted as M1-M2-M3, where M1 indicates a
preprocessing, M2 a �gure-ground separation, and M3 an object-splitting
method. Thus, a combination of MIN Preprocessing, KM �gure-ground
separation and WS cell splitting, for instance, is denoted as MIN-KM-WS.
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5.2. Preprocessing

5.2. Preprocessing

Preprocessing methods improve the image in such way that the subsequent
�gure-ground separation and object splitting tasks are facilitated. Prepro-
cessing methods developed for the segmentation pipeline aim to reduce the
noise level in the image and remove shading artifacts caused by uneven il-
lumination or blur that could otherwise harden the segmentation process.
Furthermore, tiny details that might mislead �gure-ground separation and
object splitting are reduced by preprocessing.

In this work, two di�erent preprocessing methods were implemented. Both
methods combine a smoothing step for reduction of sensor noise, with a dif-
ference imaging based technique for shading correction as well as correction
of illumination artifacts. The �rst method is based on the Di�erence of Gaus-
sian (DoG) �lter, as proposed by Leong et al. (2003). As runtime of the DoG
�lter increases for large �lter kernels, a more runtime-e�cient minimum �lter
based preprocessing method was developed to accelerate calibration of the
segmentation pipeline. Due to runtime limitations, edge-preserving methods
based on median or bilateral �lters were not considered for preprocessing.

5.2.1. Di�erence of Gaussian based preprocessing (DOG)

The DoG preprocessing method applies a Gaussian smoothing �lter with
standard deviation σd1 ∈ {1, 2, ..., 20} for noise reduction. Then, a di�er-
ence imaging based shading correction technique is performed. For shading
correction, the estimated background image is subtracted from the smoothed
one. Using this preprocessing method, the image background is estimated
based on a Gaussian �lter with standard deviation σd2 for the removal of
background objects. Next, the background corrected image is subtracted
from the smoothed image. This is equivalent to applying a di�erence of
Gaussian (DoG) �lter (see Figure 5.3). In order to reduce runtime of the
Gaussian �lter, convolution is implemented using a separable �lter kernel.
However, runtime of the �lter still increases linearly with increasing stan-
dard deviations. As a result, runtime is very high for micrographs depicting
large objects and for micrographs with a low-frequency image background.
In order to prevent the DoG preprocessing method from slowing down the
optimization process, σd2 is restricted to σd2 < 100. For supporting mi-
crographs that do not require shading correction, no shading correction is
performed if σd2 > 100. In this case, the smoothed image is returned and no
di�erence imaging operation is performed. These characteristics are encoded
by σd2 ∈ {3, 6, ..., 102}.
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Figure 5.3.: Work�ow of the di�erence imaging based preprocessing method.

5.2.2. Minimum �lter based preprocessing (MIN)

As runtime of the Gaussian �lter increases for large standard deviations,
a more time-e�cient preprocessing method was developed. This method
also applies a Gaussian smoothing �lter with standard deviation σm ∈
{1, 2, ..., 20} for noise reduction. Image background is estimated based on
a minimum �lter with a rectangular kernel to remove all background ob-
jects. For bandpass-�ltering, a di�erence imaging operation is performed
(Figure 5.3). In order to reduce runtime of this method, the minimum �lter
is implemented according to the method of Van Herk (1992), which results
in constant runtime independent from the kernel size O(1). As size of the
objects of interest varies from smaller than 10 pixels for spot detection to
more than 1000 pixels for the segmentation of large cells, kernel size of
the minimum �lter based preprocessing method must be adjustable in this
range. This leads to a large search space if a �xed step size is used. For
more e�cient parameterization, exponentially increasing step sizes are ap-
plied. Hence, width and height of the �lter kernel are set to 2εm +1. Further,
adjusting the parameter εm ∈ {1, 2, ..., 10} corresponds to a minimum �lter
radius ranging from 3 to 2049 pixels.

5.3. Figure-ground separation

After reduction of illumination artifacts and noise by preprocessing rou-
tines, objects of interest are separated from the image background. In order
to solve this task, di�erent �gure-ground separation routines are selected,
compared and evaluated. For this work a global intensity based k-means
clustering method, a locally adaptive threshold selection method and an im-
proved locally and globally combined threshold method, which are closely
related to the state of the art, were implemented. In order to improve the
segmentation of blurred micrographs and micrographs showing strong vari-
ation in intensity, a novel graph cut based �gure-ground separation method
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was developed.

5.3.1. K-means clustering based �gure-ground separation (KM)

For the separation between fore- and background pixels, a k-means clus-
tering based method (Hartigan and Wong, 1979) was developed. If solely
image intensity is used as a feature, k-means clustering can be implemented
e�ciently using the histogram of the image (Cheng and Rajapakse, 2009).
In contrast to alternative routines, this method enables adjustment of the
threshold level by changing the number of clusters k∗ ≥ 2. After clustering,
pixels belonging to each of the clusters are interpreted as fore- or background.

For simplicity, it is now assumed that the dynamics of the cells are large
compared to dynamics of the background. In this case, after clustering with
k∗ ≥ 2, the darkest cluster represents the image background; all remaining
clusters are interpreted as foreground. This rule for assigning clusters to
fore- and background classes is denoted as mode m1 from here on. Using
m1 for �gure-ground separation results in a lower global threshold value if the
number of clusters is increased. The drawback of this parameterization is the
inability to handle intensity distributions exhibiting more dynamics in the
image background than in the image foreground. Using mode m1, clustering
with k∗ ≥ 2 results in an over-segmentation of the image. In order to
enable robust �gure-ground separation for unexpected image data, a second
mode m2 that interprets only the brightest cluster as image foreground and
remaining clusters as image background is o�ered. Using m2, increasing the
number of clusters results in higher threshold values.

In order to segment data from di�erent �uorescence imaging domains, pa-
rameterization of k-means clustering must be adjustable in such way that
both modes for assigning clusters to fore- and background are supported.
This could be implemented by introducing a second variable switching be-
tween the two modes. In this case, the user of this method is required to
adjust two parameters, while low threshold values are obtained using a high
number of clusters if mode m1 is applied, or using a low number of clusters
for mode m2.

To improve the usability of this method, parameterization was improved
by reparameterization based on a single variable k. Depending on the value
of k, the number of clusters used for k-means clustering k∗ is de�ned. In-
creasing k will then correspond to increasing size of the segmented objects,
which results in lower threshold values. That is why, for k ≥ 2, clustering
can be performed with k∗ = k clusters while interpreting only the darkest
cluster as image background; this corresponds to mode m1. In order to
support m2 and to guarantee that increasing values for k result in lower
threshold values, k∗ must decrease if k increases. Hence, the number of clus-
ters could be set to k∗ = −k, if k ≤ 2 while interpreting only the brightest
cluster as image foreground. This would correspond to m2.
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The drawback of the described approach is that clustering results are the
same for k = 2 and k = −2, and that output is not de�ned for k ∈ {−1, 0, 1}.
In order to overcome these drawbacks and to ensure that increasing the
number of clusters corresponds to increasing size of foreground objects, the
number of clusters is set to k∗ = 4 − k if k < 2. For an illustration of
segmentation results using varying values for k, see Figure 5.4. Using the
described method, the k-means clustering based �gure-ground separation is
parameterizable by a single parameter k ∈ {−8,−7, ..., 12}.

(a) Input image

(b) 2 clusters (c) 3 clusters (d) 5 clusters

(e) k = −1, 5
clusters

(f) k = 1, 3
clusters

(g) k = 2, 2
clusters

(h) k = 3, 3
clusters

(i) k = 5, 5
clusters

Figure 5.4.: Illustration of the KM �gure-ground separation method based
on a representative micrograph (a). Images (b - d) show the
output of intensity based k-means clustering for di�erent num-
bers of clusters. For images (e, f), after clustering, the brightest
cluster is assumed to represent the objects of interest, which is
parameterized by k < 2. For these parameterizations, cluster-
ing is performed with k clusters. For images (g - i), all clusters
except the darkest one represent the object of interest, which is
parameterized by k ≥ 2, and clustering is performed with 4− k
clusters to avoid redundancy in the parameterization.
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5.3.2. Locally adaptive �gure-ground separation (LOC)

The k-means clustering based threshold selection method, which does not
take local image features into account, is prone to shading and illumination
artifacts that can only partially be removed by preprocessing. As Harder
et al. (2006, 2007) described the locally adaptive threshold selection method
as superior to Otsu's method, this approach is considered as an alternative
to the k-means clustering based method. Using locally adaptive thresholds,
intensity distribution in a local rectangular neighborhood around each pixel
is modeled to form a decision rule determining if the current pixel represents
an object of interest or noise. Assuming that noise in this local neighborhood
is normally distributed, it can be modeled based on the average intensity
µ(x, y) and the standard deviation of the intensity σ(x, y). The investigated
pixel I(x, y) is then considered as foreground if its intensity deviates from
the neighborhood's mean and standard deviation:

I(x, y) ≥ µ(x, y) + λlσ(x, y),

where λl adjusts the dissimilarity required to interpret the current pixel
as foreground. For time-e�cient optimization, width and height of the lo-
cal neighborhood are set to 2εl +1 to support di�erent object sizes. Based on
this, parameter space is discretized by εl ∈ {1, 2, ..., 20} and λl ∈ {−5,−4.5, ..., 5}.

5.3.3. Combined global and locally adaptive �gure-ground
separation (GLOC)

A drawback of the locally adaptive �gure-ground separation method (LOC)
are outliers produced in background regions. These outliers are caused by
the local neighborhood containing only few foreground pixels. For such re-
gions, average and standard deviation of intensities are very low. Utilizing
locally adaptive thresholds, this corresponds to low threshold values, which
often lead to misinterpreting background pixels as foreground ones. In or-
der to suppress these outliers, the locally adaptive method is combined with
a global threshold selection method, as described by Harder et al. (2007).
Pixels are then only considered as foreground if both the locally adaptive as
well as the global threshold selection method identify a pixel as foreground.
Harder et al. (2007) therefore combine the locally adaptive �gure-ground
separation method with Otsu's global threshold selection method (Otsu,
1975). As previously described, the k-means clustering based threshold se-
lection method is used instead of Otsu's approach due to the possibility of
conveniently adjusting threshold values by changing the number of clusters.
Combining the global k-means clustering based threshold selection method
with the locally adaptive method requires optimization of parameter spaces
of both methods. Owing to this, a di�erent parameterization of this �gure-
ground separation method was developed for this work. Therefore, local
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dissimilarity λgl(x, y) based on local measurements of mean µgl(x, y) and
standard deviation σgl(x, y) in a rectangular neighborhood of width and
height 2εgl + 1 is de�ned as:

λgl(x, y) =
I(x, y)− µgl(x, y)

σgl(x, y)
.

The local dissimilarity is then used as a weight map for the input im-
age I(x, y) to obtain the locally adaptive weighted image Igl(x, y) (for an
example, see Figure 5.5(b)):

Igl(x, y) = λgl(x, y)I(x, y).

Next, Igl(x, y) is used as input for the k-means clustering based threshold
selection technique. As a result, the described adaptive thresholding scheme
enables combining local and global intensity features requiring only two pa-
rameters: the number of clusters kgl and the parameter adjusting width
and height of the rectangular neighborhood rgl. Figure 5.5 illustrates the
work�ow of this combined threshold selection method. In order to enable
time-e�cient adaption to a broad range of �uorescence micrographs, the
number of clusters is restricted to a range kgl ∈ {−8,−7, ..., 12} and size of
the neighborhood is discretized by εgl ∈ {1, 2, ..., 10}.

(a) (b) (c) (d)

Figure 5.5.: Illustration of the combined global and locally adaptive �gure-
ground separation method. Based on a noisy image with shading
artifacts (a), local dissimilarity between each pixel and a local
neighborhood is computed (b). Using this method, global k-
means clustering based threshold selection is performed, and a
binary image is obtained (c, d).

5.3.4. Graph cut based �gure-ground separation (GC)

The precise identi�cation of object boundaries for blurred �uorescence mi-
crographs poses a challenge, as object boundaries for some data show a low
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contrast to the image background. This task is even more complicated if
object intensities strongly vary in a micrograph. In order to improve bound-
ary extraction under such challenging conditions, a novel graph cut based
�gure-ground separation technique for �uorescent micrographs was devel-
oped and included in the segmentation pipeline. This novel algorithm has
also been published and evaluated based on publicly available data in (Held
et al., 2013b).
The graph cut method (for details, see Chapter 4.1.3, p. 26) interprets

the image as a graph and globally minimizes an energy function. Apply-
ing the graph cut for �gure-ground separation, a two-label energy function
classifying pixels as fore- or background is used. This requires de�nition of
the data and the smoothness energy terms Edata(A) and Esmooth(A), with
both depending on a labeling A of the image. Both energy terms are de�ned
based on penalty terms B{p, q} and Rp(A). In the following, a work�ow
for estimating both terms based on image data is described that aims to
improve robust �gure-ground separation for blurred and noisy data.
For this task, foreground objects are separated from the image background

at the location of strong gradients. That is why the smoothness energy term
depends on the image gradient ∇I(x, y), which is additionally normalized
to a range of [0, 1] and denoted as ∇I(x, y)[0,1]. Including an exponential
weighting factor αc > 0, which adjusts strength of the gradient magnitude
component, the smoothness energy is de�ned as:

B{p, q} = (1−∇I(x, y)[0,1])αc .

The ∇ operator is implemented using the non-parametric Sobel operator,
as appropriate smoothing has been carried out in the preprocessing step.
The graph cut data term Rp(A) evaluates how well a speci�c labeling �ts

to a given data model. In this application, Rp(A) is de�ned by a set of fore-
and background pixels that are very likely to be part of fore- or background
objects. A method for identifying fore- and background seeds is described
in the following sections. Based on these seeds, the penalty Rp(A) is set to
1 if pixel p is a fore- or background seed, but assigned to the wrong class by
the graph cut. Otherwise, penalty Rp(A) is set to 0.
Based on seeds that are known to represent fore- or background structures,

remaining pixels are classi�ed by minimization of the graph cut energy and
a binary segmentation of the image is obtained. An overview on the work-
�ow of the graph cut based �gure-ground separation routine is provided in
Figure 5.6.

Identi�cation of background seeds for the graph cut data term

The identi�cation of background seeds is a rather simple task because it is
su�cient to use pixels that are very likely to represent the background due
to the shrinking bias (for an illustration, see Figure 5.7). Such pixels can be
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Figure 5.6.: Illustration of the work�ow for the graph cut based �gure-
ground separation routine. First, foreground and background
seeds are determined. Foreground seeds are identi�ed by a k-
means clustering technique (B) and background seeds by a com-
bination of DoG �lters, dual threshold selection and the removal
of small objects (C). These seeds are then used to de�ne the
graph cut method's energy function. By minimization of this
energy function, a segmentation of the image (D) is obtained.

identi�ed by analyzing global image intensity distribution, as illumination
artifacts have already been reduced by the preprocessing method. Hence, for
identi�cation of background seeds, a very conservative threshold selection
method is applied. This conservative method is implemented using a k-
means clustering based threshold selection method with a high number of
clusters kc (see Section 5.3.1, p. 41), which interprets only the darkest cluster
as image background.

Identi�cation of foreground seeds for the graph cut data term

The identi�cation of foreground seeds poses a challenge, mainly due to the
shrinking bias of the graph cut. Hence, it is of utter importance that fore-
ground seeds are contained in each tiny extensions of an object, otherwise
small extensions of cells are often not correctly separated from the back-
ground and cut o� (see Figure 5.7). Furthermore, intensity distribution can
vary from cell to cell. That is why global threshold selection methods fail
with the robust identi�cation of foreground seeds.

Instead of utilizing global intensity features, pixels are used that are rela-
tively bright compared to the image background. For estimation of the fore-
ground seeds, the input image I(x, y) is smoothened with a strong Gaussian
�lter function G, with standard deviation σc2. In order to select relatively
bright objects and to reduce liability to noise, this di�erence imaging scheme
can be extended to a DoG based band pass �lter by:
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(a) (b) (c)

Figure 5.7.: Illustration of the graph cut shrinking bias based on a micro-
graph depicting a macrophage (a). For the graph cut based
�gure-ground separation, precise location of foreground seeds
(blue) is usually more important than precise location of back-
ground seeds (red). Despite imprecise background seeds, seg-
mentation is carried out correctly (white line in image (b)). In
contrast, cell extensions are cut o� in image (c) if foreground
seeds are missing in the cell extensions. The e�ect, that smaller
objects are preferred by the graph cut, is known as shrinking
bias and is caused by the graph cut energy function.

Ibp(x, y) = (I(x, y) ∗G(σc1))− (I(x, y) ∗G(σc2)), with σc1 < σc2,

where Ibp(x, y) denotes the band pass �ltered image and σc1 and σc2
denote the standard deviation of Gaussian �lter kernels. By removing pixels
with a negative �lter response, I+bp(x, y) is obtained. Note that parameters
of this step are usually adjusted in such way that only the boundary of each
object is recognized as foreground to increase the probability that seeds
are also contained in small extensions. Figure 5.8(b) shows an example for
such a DoG �ltered image. For this image, foreground structures must be
separated next from noise and artifacts.
The robust separation of foreground structures from noise and artifacts

poses a challenge, as cell extensions often show a poor contrast to the im-
age background. This results in image intensity values that are very similar
to background structures. Many techniques, including global and locally
adaptive threshold selection ones, have been applied to solve this task. This
includes all threshold selection techniques described in this work (i.e., k-
means clustering based �gure-ground separation, locally adaptive thresh-
olds and combined global and locally adaptive thresholds), Isodata thresh-
old (Velasco, 1980), Otsu's threshold selection method (Otsu, 1975), entropy
based thresholds (Kapur et al., 1985) and dual thresholds (Buie et al., 2007).
However, none of these methods allows robust separation between cell ex-
tensions and background noise. Instead, a non-parametric method based
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(a) (b) (c)

(d) (e)

Figure 5.8.: Work�ow for the identi�cation of foreground seeds. Input im-
age (a) is �ltered with a DoG �lter (b). Pixels with a nega-
tive �lter response are eliminated (c). In the following step, it
is important that seeds representing the image background or
noise are eliminated. Image (d) is obtained by optimal manual
threshold selection. Note that by applying the proposed non-
parametric scheme using dual thresholds and removing small
objects, high quality seeds preserving small extensions and weak
boundaries of each cell are obtained (d). Arrows indicate im-
portant di�erences.

on dual thresholds was developed. This method automatically adapts to
the noise level and size of objects represented in the image, based on infor-
mation on the background seeds. This method showed good results across
datasets from di�erent application domains, without requiring adjustment of
parameters. In the following, this method will be described and illustrated.

Application of the dual threshold technique requires a lower and a higher
threshold value. As background seeds that are known to represent back-
ground pixels have already been determined, this information can be used
for estimation of both threshold values. Therefore, intensity distribution is
analyzed inside and outside the background seeds. The lower threshold is
then chosen so that pgc = 98% of the background seeds exhibit a lower inten-
sity compared to the threshold value. In contrast to this, for estimation of
the higher threshold value only non-background seeds are considered. The
higher threshold value is empirically set to the median intensity of the fore-
ground pixels. For both estimations, pixels that hold I+bp = 0 are ignored.
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After applying the dual threshold for identi�cation of potential foreground
seeds, small objects that are likely to correspond to noise or background
structures are removed. Therefore, minimum size of the objects of interest
is estimated. As the lower threshold value is chosen in such way that some
background or noise pixels are still contained in the image, objects with a
size smaller than the average object size can be removed. This results in the
foreground seeds required to estimate Rp(A). An overview on this work�ow
is provided in Figure 5.8.
The method for identi�cation of foreground seeds can additionally be ad-

justed by replacing routines for computation of lower threshold value, higher
threshold value and the size estimation method. Due to the possibility of
changing the noise level in the image by the preprocessing step, usage of
�xed parameters showed good results across several �uorescence imaging
data. Hence, using this method with the described �xed parameters is pro-
posed to reduce size of the parameter space.

5.4. Object splitting

After �gure-ground separation, a binary image separating the image into
fore- and background pixels is obtained. In this image, touching, overlap-
ping or overlaying objects are not yet separated from each other. This sec-
tion describes methods for the splitting of touching objects. Most of these
approaches exploit characteristics of the cell shape or intensity distribution.
For example cell nuclei are often separated from each other incorporating
information on their convex shape. If cell morphology and intensity distri-
bution are more complex, these methods become prone to errors and tend to
split cells erroneously. In order to improve the segmentation of such complex
cells, information on the cell nuclei is incorporated. In this section, methods
for cell splitting based on seeds like cell nuclei as well as non-seeded methods
are described and investigated. The most commonly used method that can
be used with or without seeds is the watershed transform. As an alternative
to the seeded watershed transform method, both an approach based on fast
marching level sets and another based on graph cuts were developed.

5.4.1. Cell splitting based on watershed transform and seeded
watershed transform (WS and SWS)

The watershed transform requires appropriate input data that shows in-
creasing intensities from the core of each object to the object boundary.
For �uorescence microscopy image data, the most commonly used input is
a distance transformed and inverted binary image, a gradient magnitude
image, or a combination of both images, named hybrid image. Applying the
distance transform to the binary image allows splitting of the objects of in-
terest based on shape. After distance transform and inversion, it is assumed
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that each local intensity minimum represents an individual object. Using
this method, the convex shape of some cell types or cell nuclei is exploited
(for an example, see Figure 4.2, p. 25). Using the gradient magnitude based
approach, it is assumed that gradient magnitude is 0 at the core of each
object, and that touching objects can be split at the location of strongest
gradient magnitude. In contrast to the distance transform based method,
the gradient magnitude based approach is misled by objects showing several
local intensity minima or maxima. In order to combine and bene�t from
both methods, the hybrid approach was implemented in this work as de-
scribed by (Malpica et al., 1997). Denoting the gradient magnitude based
image as ∇I(x, y) and the distance transformed binary image as ID(x, y),
the input for the hybrid watershed transform IH(x, y) is de�ned as:

IH(x, y) = (1− αw)ID(x, y) + αw∇I(x, y),

where αw ∈ [0, 1] is a weighting factor that allows balancing between the
impact of the gradient magnitude based and the distance transform based
components.

Application of the watershed transform in various scenarios has shown
that it tends to result in an over-segmentation of the image. In order to
reduce over-segmentation, a merging step is commonly applied using, for
example, information on cell shape or maximizing gradient magnitude at the
cell boundary. As an alternative to this approach, a Gaussian smoothing
�lter with standard deviation σw can be used for smoothing of IH(x, y)
and thus reducing over-segmentation artifacts. For this application, the
letter approach is implemented, as no prior knowledge on cell size, shape or
intensity distribution is required.

In contrast to the watershed transform, the seeded watershed transform
does not regard local intensity extrema as seeds. Instead, cell nuclei that
have been previously segmented in a di�erent channel are used as seeds. The
seeded watershed transform works analogously to the watershed transform,
and uses parameters αs for balancing of gradient and distance information
and σs for smoothing of the hybrid image.

5.4.2. Cell splitting using seeded fast marching level sets (SFM)

For micrographs with available information on nuclei, a fast marching level
set method can be used as alternative to the seeded watershed transform.
For a brief description of the level set and the fast marching level set method,
see Section 4.1.2, p. 25. Preliminary results for this approach have been pub-
lished in (Held et al., 2011). Using the fast marching level sets for splitting
of touching cells can be illustrated by several wavefronts released at the lo-
cation of each nucleus. Each wavefront expands until it touches another
wavefront or the image boundary. Motion of the front is controlled by a
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Figure 5.9.: Estimation of curvature κ(x, y) ∈ [−0.5, 0.5] based on a label
image used by the fast marching level set method. A circle
with n (in this example 8) equally spaced points (bold pixels)
is investigated, and the number of pixels that share the label of
the center point is counted. In this example, 1 out of 8 points
shares the label of the center point, which results in a curvature
κ(x, y) = 1

8 − 0.5 = −0.375. Based on this information, the
front of the level set can be slowed down for this pixel in order
to reduce leaking.

speed function F (x, y). In order to increase probability that touching ob-
jects are split at a location of strong gradient magnitude, the wavefronts are
slowed down at locations of large gradient values ∇I(x, y). The ∇ opera-
tor is implemented using a DoG �lter with standard deviation σfm. Fur-
thermore, an exponential weighting factor αfm determining impact of the
gradient magnitude information is included. F (x, y) is additionally chosen
so that the fast marching level set method is prevented from running into
the image background. Therefore, information on background pixels is used.
Note that a binary image IB(x, y), that holds IB(x, y) = 0 if pixel (x, y) is
a background pixel and IB(x, y) = 1 otherwise, is available from the �gure-
ground separation step. As the fast marching level set method has a known
tendency to leaking, a curvature term κ(x, y) is incorporated as proposed
by Nilsson and Heyden (2003). For this work, a slightly modi�ed version of
this term was used, which was described in (Held et al., 2011). Modi�cation
is required, because in the present application, the image contains multiple
fronts starting at locations of di�erent nuclei. Owing to this, motion of each
front is tracked in an additional label image IL(x, y). For estimation of the
curvature κ(x, y), n equally spaced points ∆(x, y)i, i = 1, ..., n located on
a discrete circle with radius rfm are analyzed. Curvature is then estimated
based on counting the number of points that share the label of the current
pixel:
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(a) (b) (c) (d)

Figure 5.10.: Macrophages (a) and corresponding manual annotation (b).
The splitting resulting from fast marching level sets (c) shows
leaking (white arrow). Including the curvature based term,
leaking is reduced(d).

κ(x, y) =
1

n
#{i : IL(x, y) = IL((x, y) + ∆(x, y)i)} −

1

2
.

For illustration of this term, see Figure 5.9. In order to increase or decrease
in�uence of the curvature term, a weighting factor λfm ∈ {0, 0.2, ..., 1.8} is
included in the speed function. For an example showing that including this
curvature based term can reduce leaking, see Figure 5.10. Combining infor-
mation on seeds and image background, gradient magnitude and curvature,
the speed function is de�ned as:

F (x, y) =
1 + λfmκ(x, y)

(∇I(x, y))αfm
IB(x, y).

To allow time-e�cient optimization of parameters of the seeded fast march-
ing level set method, parameter space is discretized by rfm ∈ {3, 6, ..., 17},
λfm ∈ {0, 0.2, ..., 1.8}, σfm ∈ {1, 2, ..., 9} and αfm ∈ {1, 2, ..., 10}.

5.4.3. Cell splitting with seeded graph cuts (SGC)

In contrast to the fast marching level set method that determines a local
optimum of an energy function for splitting of touching cells, the graph cut
algorithm is able to globally optimize an energy function. That is why the
graph cut approach is considered as an alternative to both the seeded fast
marching level set method and the seeded watershed transform. Instead of
the binary graph cut used for �gure-ground separation (Section 5.3.4, p. 44),
a multi-label graph cut is applied for the splitting of touching objects. Using
the multi-label graph cut, each seed is represented by a unique label. As
described in Section 4.1.3 (p. 26), the graph cut method minimizes an energy
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function E(A) based on sum of smoothness energy Esmooth(A) and a data
based regional energy term Edata(A):

E(A) = Edata(A) + Esmooth(A).

In order to enable fair comparison of splitting capabilities of the graph
cut and the fast marching level set method, Esmooth(A) is de�ned such that
cells are split at the location with strongest gradient magnitude. For balanc-
ing of the in�uence of gradient magnitude values ∇I(x, y), an exponential
weighting factor αgc ∈ {1, 2, ..., 10} is included.
For consistence with the level set method, the ∇ operator is implemented

by a di�erential of Gaussian �lter with standard deviation σgc ∈ {1, 2, ..., 9}.
One of the major problems of the graph cut method is the well-known shrink-
ing bias (Boykov and Funka-Lea, 2006). As a result of this, initialization of
each cell with the contour of its nucleus often leads to erroneous segmenta-
tions. For an illustration of the shrinking bias, see Figure 5.8, p. 48. In order
to reduce this shrinking bias, an additional distance prior based weight map
ID(x, y) is included.
Assuming that a binary segmentation partitioning the image into fore-

and background is known from the previous �gure-ground separation stage
and denoted as IB(x, y), the distance based weight map can be determined
by computing the distance of each pixel to the closest nucleus. The distance
of pixels assigned to the image background as well as the distance inside the
cell nuclei is set to 0. This image is then inverted and normalized to the range

[1, qgc], with qgc ∈ {0, 0.2, ..., 1}, and denoted as I
[1,qgc]
D (x, y). An example

for the resulting distance image is shown in Figure 5.11 (c). Combining
information on the distance prior and gradient magnitude, the smoothness
energy term is obtained:

Esmooth(A) = (1− I [1,qgc]D (x, y))(1−∇I(x, y))αgcδ(Ap, Aq),

where δ(Ap, Aq) is 0 if Ap = Aq, and 1 if otherwise.
For the data based energy term, information on �gure-ground separation

is combined with information on the cell nuclei. Assuming that each cell
contains only one nucleus, an object containing n nuclei is split into n cells.
By assigning a unique label to each nucleus and an additional label to the
image background, n+ 1 labels are required for de�nition of the data term.
For pixels belonging to the image background, the data term is set to ∞ for
all labels, except the background label. For pixels representing a nucleus, the
data term is set to∞ for all labels, except its unique label. For pixels that are
not part of the image background and do not represent a nucleus, the regional
term is set to ∞ for the background label only. All remaining combinations
of target label and label assigned by the graph cut are plausible. Hence,
the corresponding data term is set to 0. An example for application of the
described graph cut based cell splitting scheme is provided in Figure 5.11(d).
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(a) (b) (c) (d)

Figure 5.11.: Example for splitting of touching macrophage cells (a) by
means of a graph cut based splitting scheme, which uses in-
formation on corresponding nuclei (b). Cells touch each other
after �gure-ground separation. For splitting of these cells, a
multi-label graph cut method is used. For the smoothness en-
ergy term, a distance based weight map (c) is incorporated,
providing information on the splitting of the cell nuclei if no
gradient information is available. Shrinking bias is thus re-
duced. The smoothness cost term combines the distance func-
tion with information on the gradient magnitude. Together
with information on size and extension of the cell nuclei, infor-
mation on the image background and the smoothness energy
term, cells are separated from each other (d).

5.5. Parameterization of the segmentation pipeline

Runtime of the calibration strongly depends on discretization of the param-
eters of each method. Thus, discretization of each parameter is performed
in such way that a broad range of �uorescent micrographs can be segmented
while keeping the number of discrete values small. For this work, each pa-
rameter was discretized by a maximum of 30 values. For an overview of
parameterization of all methods implemented for the segmentation pipeline,
see Table 5.1.

5.6. Brute force calibration of the segmentation

pipeline

Using the described modular segmentation pipeline (see Chapter 5, p. 37)
allows segmentation of a broad range of �uorescent image data. In order
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Method Parameter Range

MIN σm {1, 2, ..., 20}
εm {1, 2, ..., 11}

DOG σd1 {1, 2, ..., 10}
σd2 {3, 6, ..., 102}

KM k {-8, -7, ..., 12}

LOC εl {1, 2, ..., 20}
λl {-5, -4, ..., 5}

GLOC εgl {1, 2, ..., 20}
kgl {-9, -7, ..., 12}

GC σc1 {1, 2, ..., 9}
σc2 {5, 7, ..., 19}
αc {1, 2, ..., 10}
kc {3, 6, ..., 21}

WS αw {0, 0.1, ..., 1}
σw {1, 2, ..., 10}

SWS αs {0, 0.1, ..., 1}
σs {1, 2, ..., 10}

SFM rfm {3, 6, ..., 18}
λfm {0, 0.2, ..., 1.8}
σfm {1, 2, ..., 9}
αfm {1, 2, ..., 10}

SGC σgc {1, 2, ..., 9}
αgc {1, 2, ..., 10}
qgc {0, 0.2, ..., 1}

Table 5.1.: Overview of discretization of all methods.

to calibrate the segmentation pipeline based on hand-labeled data, a dual
optimization problem must be solved (see Figure 5.12). Hence, using brute
force optimization, all combinations of methods and all combinations of free
parameters must be tested.

Using a brute force approach for calibrating the segmentation pipeline is
very time-consuming. For the described segmentation pipeline consisting of
two preprocessing, four �gure-ground separation and four splitting methods,
32 combinations of methods must be tested to identify the optimal combina-
tion thereof. As the average number of di�erent parameterizations for each
method corresponds to approximately 1500, about 15003 ≈ 3.4 · 109 combi-
nations of parameters must be tested for each combination of methods. This
results in 3.4 ·109 ·32 ≈ 1011 di�erent parameterizations of the segmentation
pipeline. Assuming that only a single image is used for calibration of the
segmentation pipeline and application of the segmentation pipeline requires
1s, this would result in a runtime of 3170 years.
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5. Design of the segmentation pipeline

Figure 5.12.: Illustration of the work�ow to solve the dual optimization prob-
lem. In order to determine the best con�guration of the seg-
mentation pipeline, the optimal combination of methods and
all method parameters must be automatically adjusted.
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5.7. Summary

The question of how to speed up the calibration process by utilizing more
time-e�cient segmentation methods is addressed in the following chapter.

5.7. Summary

In this chapter, design of the segmentation pipeline consisting of the stages of
preprocessing, �gure-ground separation and object splitting was described.
This included the development of exchangeable parameterized methods for
each of the stages, as well as discretization of each method. All methods
were developed with a focus on the segmentation of �uorescent micrographs
depicted in this work (compare Figures 6.1-6.7, pp. 60-66), but can poten-
tially be used for segmentation of similar data. Range and discretization of
each parameter were carefully chosen so that a broad range of data can be
segmented, while keeping search spaces small.
Most of the described methods are mainly based on the state of the art.

An exception to this is the graph cut based �gure-ground separation that was
developed for this work. The k-means clustering based and the combined
global and locally adaptive �gure-ground separation methods are based on
state of the art, and were improved to decrease runtime of the calibration.
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Automatic calibration of the segmentation pipeline based on hand-labeled
data requires both determining an optimal combination of segmentation
methods and optimizing each method's parameters. As optimal parame-
terization of each method depends on the combination of methods, and
vice-versa; this task is called dual optimization problem. Using a brute
force approach, runtime of the optimization increases exponentially with
the number of methods and parameters. For the described segmentation
pipeline, brute force optimization would take several years and is hence not
applicable (for details, compare Section 5.6, p. 54). Thus, more e�cient
strategies to solve the dual optimization problem are investigated.
In this chapter, an overview of the data on which this work is based on is

provided (Section 6.1). Based on this, di�erent objective functions required
for calibration of the segmentation pipeline are compared (Section 6.2). Fur-
thermore, applicability of each method for segmentation of data from various
�uorescence imaging domains is investigated (Section 6.3). As data from all
application domains shows high image quality, micrographs were overlaid
with simulated shading and noise artifacts (Section 6.4) to explore the lim-
its of the presented segmentation methods. Next, a detailed investigation
of method parameter spaces was performed to allow selection of a time-
e�cient parameter optimization method (Section 6.5). Based on this, dif-
ferent optimization methods are compared (Section 6.6). Finally, strategies
for providing high-quality hand-labeled data in a short time are compared
and discussed (Section 6.7).

6.1. Materials

For validation and improvement of the segmentation pipeline, micrographs
from di�erent application domains are required. In the following sections, a
brief overview is provided on representative image data and the hand-labeled
data used for evaluation.

6.1.1. Fluorescence image data used in this thesis

In order to provide an insight into various �uorescence datasets, for each
application domain one of the simplest and one of the most challenging
images are depicted in Figures 6.1 to 6.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1.: D1: CD11b/APC-stained macrophages: Corresponding
images of simplest (a, c, e) and most challenging micrograph
(b, d, f) representing bone marrow-derived macrophages from
C57BL/6 mice that were stimulated with LPS. For visualization
of the macrophages, a CD11b/APC staining was applied (a, b).
Nuclei were visualized with DAPI staining (overlay images c,
d). Images with a size of 1388 × 1040 pixels were captured
using a Zeiss Axiovert microscope with a 20x objective (scale
bar corresponds to 10 µm). Note that cells exceeding the image
boundary and cells whose boundaries could not be recognized
by the human evaluator were assigned to a rejection class (red
cells in images e, f). For details on the di�erent classes see
Section 6.1.2.



6.1. Materials

(a) (b)

(c) (d)

Figure 6.2.: D2: DAPI-stained nuclei: Corresponding images depicting
simplest (a, c) and most challenging micrograph (b, d) con-
sisting of cell nuclei of bone marrow-derived macrophages from
C57BL/6 mice. For visualization of the nuclei, a DAPI staining
was applied (images a, b). Images with a size of 1388 × 1040
pixels were captured using a Zeiss Axiovert microscope with
a 20x objective (scale bar corresponds to 10 µm). Images (c,
d) show overlays from hand-labeled nuclei with colors encoding
feasibility classes.
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(a) (b)

(c) (d)

Figure 6.3.: D3: FDA-stained chloroplasts: Corresponding images
showing simplest (a, c) and most challenging micrograph (b,
d) showing chlorophyll inside chloroplasts after Fluorescein di-
acetate (FDA) staining (a, b). Images with a resolution of
1392 × 1040 pixels were acquired with an Olympus BX60 mi-
croscope using a 10× objective and a Leica DFC300 Fx camera.
Images (c, d) show the hand-labeled cells with colors encoding
feasibility classes. Scale bar corresponds to 10 µm.
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(a) (b)

(c) (d)

Figure 6.4.: D4: Confocal DAPI-stained nuclei: Corresponding im-
ages showing simplest (a, c) and most challenging (b, d) DAPI-
stained cell nuclei of HeLa cells (a, b). Images (c, d) show the
hand-labeled cells with colors encoding feasibility classes. Scale
bar corresponds to 20 µm.
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(a) (b)

(c) (d)

Figure 6.5.: D5: Alexa 568-stained HeLa cells: Corresponding images
of simplest (a, c) and most challenging (b, d) micrographs show-
ing the actin cytoskeleton of HeLa cells after Phalloidin Alexa
568 staining (a, b). A Zeiss Axiovert microscope with 63x oil
immersion objective was used for image acquisition. The image
size is 1388 × 1040 pixels. Images (c, d) show corresponding
hand labelings, with colors encoding feasibility classes. Scale
bar corresponds to 10 µm.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.: D6: DiD-stained HeLa cells: The cytoplasmic membrane
of HeLa cells was labeled with DID TM (a, b). Corresponding
images (a, c, e) depict the simplest and (b, d, f) the most chal-
lenging micrograph. For image acquisition, a 20x oil immersion
objective was mounted onto a Zeiss Axiovert microscope. Im-
ages were captured with a size of 1388 × 1040 pixels. For this
micrograph, additional DAPI and phase contrast images were
captured, as can be seen in merged images (c, d). An overlay
of hand labelings is shown in (e, f). Scale bar corresponds to 20
µm.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7.: D7: pUL97-stained HeLa cells: HeLa cells were stained
with pUL97. Corresponding images (a, c, e) show the simplest
and (b, d, f) the most challenging micrographs. For visualization
of the cell nuclei, DAPI staining was applied. Images (c, d)
show an overlay of both channels, including an additional green
GFP channel. Images with a resolution of 512×512 pixels were
captured using a confocal Leica TCS SP5 microscope. Images
(e, f) depict the hand-labeled HeLa cells with colors encoding
feasibility classes. Scale bar corresponds to 20 µm.66



6.2. Experiment I: Comparison of objective functions

6.1.2. Generation of hand-labeled data

In order to enable comparison between hand-labeled and automatically seg-
mented data, the solution of the segmentation problem must be de�ned.
Therefore, a trained and experienced user provides a high-accuracy annota-
tion of each dataset by delineating each object manually. To obtain high-
quality hand labelings in a short time, a Wacom Cintiq 21UXTM digital
drawing board (Wacom Europe, Krefeld, Germany) was used for labeling of
the data.
As each sample contains cells of di�erent di�culty, feasibility classes are

assigned to each cell or nucleus. This information is required, for instance,
to investigate if usage of simple or challenging cells for calibration results in
the best parameterization of the segmentation pipeline.
Objective assessment of the di�culty in segmenting an object is hardly

possible, particularly if objects from di�erent datasets are compared. Thus,
objects are di�erentiated based on whether they are isolated, touching or
overlapping neighbor cells.
For the segmentation pipeline, cells exceeding the image boundary pose

a particular challenge. As only part of the cell is visible, it is often hard
to correctly split touching or overlapping cells near the image boundary.
Additionally, information on nuclei is missing for some of these cells. In
order to exclude such cells from the evaluation and to be able to di�erentiate
between cells of di�erent complexity, one of the following feasibility classes
is assigned to each object:

• Isolated object

• Touching object

• Overlapping or overlaying object

• Invalid (Object that exceeds image or boundaries and cannot be recog-
nized by the human observer, e.g. due to blur or very strong overlap)

A detailed overview on the composition of data used in this work is pro-
vided in Table 6.1. This table shows that both datasets showing cell nuclei
rarely contain overlapping and touching objects, whereas feasibility classes
strongly vary for micrographs depicting cells. This supports the hypothe-
sis that segmentation of cells usually poses a stronger challenge than the
segmentation of the corresponding nuclei.

6.2. Experiment I: Comparison of objective

functions

Results from automated calibration of the segmentation pipeline are strongly
determined by the objective function used for comparison between segmen-
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Application Domain # images # GT I T O Inv

D1: CD11b/APC-stained macrophages 20 588 116 169 273 320
D2: DAPI-stained nuclei 20 710 688 18 4 110
D3: FDA-stained chloroplasts 5 2287 1150 1075 62 437
D7: pUL97-stained HeLa cells 46 303 214 77 12 36
D4: Confocal DAPI-stained nuclei 46 1672 1656 14 2 444
D5: Alexa 568-stained HeLa cells 64 294 177 90 27 509
D6: DiD-stained HeLa cells 20 717 215 125 377 263

Table 6.1.: Composition of the datasets depicting the number of captured
images (# images) and the number of manually annotated hand-
labeled cells (# GT) for each application domain. Additionally,
the number of isolated (I), touching (T), overlapping (O) and
invalid cells (Inv) is provided.

tation result and hand-labeled data. For identi�cation of an appropriate
metric, the overlap based Jaccard similarity metric oj (see Section 4.3.1,
p. 32), the boundary based Hausdor� metric oH, and the root mean squared
Hausdor� distance orms

H (see Section 4.3.2, p. 32) were compared. These mea-
surements were selected as the Jaccard similarity represents a pure overlap
based measurement, whereas the Hausdor� metric solely depends on the ob-
ject boundaries. By determining similarity between segmentation result and
hand labeling, a performance measurement is obtained for each segmented
cell. Respectively, a vector of performance measurements x is obtained eval-
uating segmentation performance for a set of �uorescent micrographs. For
evaluating segmentation quality for the complete dataset, the Lp norm of x
is used:

||x||p =

(
n∑

i=1

|xi|p
)1/p

,

where n denotes the number of elements in x.

Experimental setup

In the following, di�erent metrics using boundary or overlap based measure-
ments are compared considering the L1, L2and the L∞ norms. For determin-
ing a good objective function, all parameters are automatically calibrated
based on the hand labelings. For this comparison, a �xed image segmen-
tation pipeline consisting of DoG based preprocessing, k-means clustering
based �gure-ground separation and fast marching cell splitting (DOG-KM-
SFM) is applied, as this pipeline enables time-e�cient calibration of the
segmentation pipeline. Parameters of all methods are adapted towards the
hand-labeled data by using genetic algorithms. The reference images were
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chosen in such way as to include cells with varying shapes and intensities.
Note that the reference images are also used for testing, as ability to adapt to
the hand labelings was investigated for varying objective functions. In order
to minimize random e�ects of the optimization procedure, this experiment
was carried out three times.

Results and discussion

Reference image, as well as the results from automated calibration of the
segmentation pipeline, are shown in Figures 6.8 to 6.10. The experimen-
tal data clearly shows that the overlap based Jaccard similarity provides
the most stable results. Using the boundary based Hausdor� metric can
lead to exclusive segmentation of the cell boundary, which can result in a
segmentation excluding the inside of the cells (Figures 6.8(h), 6.9(k) and
6.10(h)). Furthermore, quality of results varies much more strongly for the
Hausdor� based metric than for the Jaccard similarity based one. This indi-
cates that the Jaccard similarity is more suitable for automated parameter
optimization.
Comparison of the L1, L2 and the L∞ norms indicates that using the

L1 norm results in the best segmentation. This can be explained by the larger
impact of well-segmented cells when using the L2 or the L∞ norm. Hence, a
parameter setting may be accepted that allows a very good segmentation of
some cells while disregarding other, erroneously segmented, cells. Applying
the L∞ norm, only the best segmented cell is considered.

Conclusion

This experiment clearly demonstrates that using the Jaccard similarity and
the L1 norm outperforms Hausdor� based measurements for calibration of
the segmentation pipeline. In order to improve robustness with outliers, the
median Jaccard similarity can be used instead of the L1 norm.
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(a) (b) (c)

(d) Jaccard-L1 (e) Jaccard-L2 (f) Jaccard-L∞

(g) RMS-L1 (h) RMS-L2 (i) RMS-L∞

(j) Max-L1 (k) Max-L2 (l) Max-L∞

Figure 6.8.: Calibration of the segmentation pipeline for corresponding im-
ages (a) and (b), based on hand-labeled data (c), using the
Jaccard similarity, root mean squared of the Hausdor� distance
(RMS), the maximum Hausdor� distance (Max) and L1, L2,
L∞norms (d-l). Red cells in (c) are excluded due to exceeding
the image boundary, which might lead to errors. In general,
the Jaccard similarity metric and the L1 norm provide the best
results, whereas use of Hausdor� RMS based measurements can
lead to exclusive segmentation of the cell boundary (h).
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(a) (b) (c)

(d) Jaccard-L1 (e) Jaccard-L2 (f) Jaccard-L∞

(g) RMS-L1 (h) RMS-L2 (i) RMS-L∞

(j) Max-L1 (k) Max-L2 (l) Max-L∞

Figure 6.9.: Repeated calibration of the segmentation pipeline for corre-
sponding images (a) and (b), based on hand-labeled data (c) for
di�erent objective functions and norms (d-l). Carrying out this
experiment for a second time for reduction of random e�ects con-
�rmed that the Jaccard similarity metric and the L1 norm result
in a good calibration and that usage of Hausdor� based measure-
ments can lead to exclusive segmentation of the cell boundary
(k).
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(a) (b) (c)

(d) Jaccard-L1 (e) Jaccard-L2 (f) Jaccard-L∞

(g) RMS-L1 (h) RMS-L2 (i) RMS-L∞

(j) Max-L1 (k) Max-L2 (l) Max-L∞

Figure 6.10.: Repeated calibration of the segmentation pipeline for corre-
sponding images (a) and (b), based on hand-labeled data (c) for
di�erent objective functions and norms (d-l). Carrying out this
experiment for a second time for reduction of random e�ects
con�rmed that the Jaccard similarity metric and the L1 norm
result in a good calibration.
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6.3. Experiment II: Comparison of segmentation

performance for di�erent application domains

For testing each method of the segmentation pipeline, applicability for seg-
mentation of �uorescence image data from di�erent application domains was
investigated. State of the art algorithms are mostly developed and evalu-
ated for a single application domain. Comparing di�erent state of the art
as well as new methods based on a broad range of �uorescence image data
constitutes one of the contributions of this work.

Based on this experiment, it could be concluded which kind of �uorescence
microscopy data can be handled by each segmentation method. This also
enables the removal of methods that are outperformed by alternative ones,
for every dataset, to reduce the amount of computational time required for
calibration of the segmentation pipeline. For comparison of di�erent meth-
ods and combinations thereof, all free parameters were optimized towards
the hand-labeled data using genetic algorithms. Additionally, a three-fold
cross validation was included in the calibration process to avoid over�tting
and to allow fair comparison of di�erent combinations of methods. Conver-
gence of the genetic algorithm was assumed if no new performance maximum
was identi�ed for 200 iterations. Using the proposed setup, calibration for
most datasets was performed in about 24 hours, using a given combination
of image processing methods. An exception to this was the graph cut based
splitting scheme, which requires up to one week for calibration due to its
longer runtime.

6.3.1. Evaluation of segmentation performance for di�erent
combinations of methods

For comparison of di�erent preprocessing, �gure-ground separation or ob-
ject splitting methods for a speci�c application domain, the segmentation
pipeline is calibrated for each combination of methods. Comparing segmen-
tation results to the hand-labeled data, a Jaccard performance measurement
is obtained for each cell in the dataset. Based on this, segmentation perfor-
mance for each dataset can be represented by the median Jaccard similarity.
In order to evaluate applicability of an image processing method for seg-
mentation of a speci�c dataset, evaluation of performance for all method
combinations making use of this speci�c method is necessary. Hence, the
average of median Jaccard similarity values is used for comparison of these
methods. This is best illustrated by an example. Assuming that average of
median Jaccard similarity shall be analyzed for MIN preprocessing, then the
average value of median Jaccard similarities is determined for segmentation
pipelines MIN-M2-M3, where M2-M3 denotes all possible combinations of
�gure-ground separation and object splitting methods.

In order to investigate if performance of a method is signi�cantly better
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than performance of an alternative method, all plausible combinations of
methods are tested for signi�cance. Assuming for example that di�erences
in segmentation performance are analyzed for DOG preprocessing and MIN
preprocessing, then signi�cance is tested for all pairs of method combina-
tions MIN-M2-M3 and DOG-M2-M3. By counting the number of method
combinations that show statistically signi�cant di�erences, a conclusion on
statistical signi�cance can be drawn.
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6.3.2. Application domain D1: CD11b/APC-stained
macrophages

(a) Merged image (b) Hand-labeled data

(c) Segmentation without using
information on nuclei

(d) Segmentation using informa-
tion on nuclei

Figure 6.11.: Macrophages stained with CD11b/APC and DAPI (merged
image (a)) and corresponding hand labelings (b). Note that in-
valid hand-labeled cells in (b) exceed the image and are shown
in red. These cells are assigned to a rejection class and excluded
from calibration and evaluation. Results from the calibrated
segmentation pipeline without and with use of information on
the corresponding nuclei are shown in (c) and (d).

The CD11b/APC-stained macrophage dataset (Figure 6.1, p. 60) is used
for comparison of segmentation performance because of its overlapping cells
that are partially out of focus and exhibit only low contrast to the image
background. Furthermore, the number of cells strongly varies inside the
dataset which poses a challenge for most �gure-ground separation methods.
For comparison of preprocessing, �gure-ground separation or object splitting
methods, segmentation performance was evaluated for all 32 combinations of
methods. The resulting accuracy, median Jaccard similarity and combined
performance values are summarized in Figure 6.12. Additionally, representa-
tive result images based on the calibrated segmentation pipeline are depicted
in Figure 6.11.
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Figure 6.12.: Accuracy, median Jaccard coe�cient and combined perfor-
mance for di�erent combinations of preprocessing (Pre), �gure-
ground separation (Fg) and object splitting (Split) meth-
ods applied for the segmentation of CD11b/APC stained
macrophages. Additionally, some signi�cant or non-signi�cant
di�erences are highlighted, which are identi�ed by a Friedman
test followed by pairwise Wilcox post-hoc test.
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Comparison between manual and automated segmentation

Using the described experimental setup, a combination of minimum �lter
based preprocessing (MIN), graph cut based �gure-ground separation (GC)
and seeded graph cut (SGC) (MIN-GC-SGC) showed the highest combined
performance measurement, pc = 0.757, a Jaccard similarity pj = 0.80, and
an accuracy of pa = 0.94 (see Figure 6.12). Comparing this to the inter-
and intraobserver combined Jaccard similarity of pc = 0.784 and pc = 0.742
indicates that, for this dataset, the proposed segmentation pipeline can com-
pete with the human if the combined segmentation performance is taken into
account. This could be con�rmed by a Friedman test, followed by a pair-
wise Wilcox post-hoc test, showing that resulting Jaccard similarities for
interobserver, intraobserver and the optimal segmentation pipeline are not
statistically signi�cant. Comparison of segmentation accuracy using MIN-
GC-SGC (pa = 0.94) to accuracy of inter- and intraobserver (pa = 0.94 and
pa = 0.89) demonstrates that accurate splitting of cells is an ambiguous
task for human experts, as the intraobserver measurement is outperformed
by the automated approach if information on position and extension of the
cell nuclei is incorporated.

Comparison of image processing methods

Comparison of the applied image processing methods shows only a slight
di�erence between MIN and DOG preprocessing applied for segmentation
of CD11b/APC-stained macrophages. Comparison of the average com-
bined performance for all method combinations using DOG preprocessing
(pavc = 0.559) to the average combined performance of methods using MIN
preprocessing (pavc = 0.547) indicates that the MIN preprocessing method
and the DOG preprocessing methods result in a very similar segmentation.
A pairwise Wilcox test con�rms that segmentations are signi�cantly di�er-
ent based on the Jaccard similarity metric for 3 of 16 method combinations
(MIN-M2-M3, DOG-M2-M3).
Comparing methods for �gure-ground separation, KM results in an average
combined segmentation performance of pavc = 0.579. Usage of LOC, GLOC
and GC results in the values pavc = 0.529, pavc = 0.452 and pavc = 0.648. The
deduced hypothesis that the GC �gure-ground separation method signi�-
cantly outperforms alternative �gure-ground separation ones was con�rmed
by the pairwise Wilcox test showing signi�cant di�erences between Jaccard
similarities for all method combinations, comparing graph cut based �gure-
ground separation to alternative �gure-ground separation methods.
For comparison of object splitting methods, the average of median Jac-
card similarities was determined for WS (pavc = 0.246), SWS (pavc = 0.638),
SFM (pavc = 0.672) and SGC (pavc = 0.654). Based on statistical analysis us-
ing a Friedman test, followed by a pairwise Wilcox test, the conclusion may
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be drawn that incorporating information on the cell nuclei signi�cantly in-
creases the median Jaccard similarity for the investigated data (p < 0.0001).
Comparison of di�erent seeded cell splitting methods only shows tiny dif-
ferences, whereof about 50% of the observed Jaccard similarities are signif-
icantly di�erent. This indicates that identi�cation of the optimal seeded
scheme for splitting of the cells can be neglected when accepting a small
decrease in segmentation performance for the analyzed data.
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6.3.3. Application domain D2: DAPI-stained nuclei

(a) Input image (b) Hand-labeled data (c) Segmentation without
using information on nuclei

Figure 6.13.: Results from the calibrated segmentation pipeline applied for
segmentation of DAPI stained nuclei of macrophages (a-c).

An overview of performance for di�erent combinations of image processing
methods applied for segmentation of �uorescently stained cell nuclei is pro-
vided in Figure 6.14. Calibration of the segmentatino pipeline was performed
based on hand-labeled data by a GA including three-fold cross validation.
For a representative example image and the corresponding hand labelings
see Figure 6.13.

Figure 6.14.: Accuracy, median Jaccard coe�cient and combined perfor-
mance for di�erent combinations of preprocessing (Pre), �gure-
ground separation (Fg) and object splitting (Split) methods.
For the DAPI-stained nuclei data, performance of all methods
is comparable and can compete with human performance in
terms of accuracy and Jaccard similarity.

Comparison between manual and optimal automated segmentation

Comparison of combinations of segmentation methods for DAPI-stained nu-
clei (see Figure 6.14) shows that a segmentation pipeline DOG-LOC-WS
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enables segmentation with highest combined performance (pc = 0.794), ac-
curacy (pa = 0.96) and median Jaccard similarity (pj = 0.83). For this
dataset, a combined performance of pc = 0.721 was obtained for interob-
server analysis, and pc = 0.783 for intraobserver analysis. Focusing on
combined performance, the human observer is slightly outperformed by au-
tomated image analysis. Detailed analysis showed that the human part
achieves higher accuracy (pa = 0.97 and pa = 0.98 vs. pa = 0.96), but me-
dian Jaccard similarity was slightly better for automated segmentation. The
obtained inter- and intraobserver measurements nicely demonstrate that, for
this simple dataset, automated image analysis can outperform the human
element in terms of objectivity and reproducibility.

Comparison of di�erent methods

Comparison of di�erent combinations of methods indicates that DOG pre-
processing outperforms MIN preprocessing for the DAPI-stained nuclei. This
is supported by an average combined performance pavc = 0.785 for the DOG
and pavc = 0.747 for the MIN preprocessing method. Statistical analysis
of the obtained data with a Friedman and a pairwise Wilcox post-hoc test
shows that observed Jaccard similarity measurements for pairs of obser-
vations (MIN-LOC-WS, DOG-LOC-WS) and (MIN-GC-WS, DOG-LOC-
WS) are signi�cantly di�erent (p < 0.01), whereas measurements (MIN-
KM-WS, DOG-KM-WS) and (MIN-GLOC-WS, DOG-GLOC-WS) are not
signi�cantly di�erent (p > 0.01).
Comparing di�erent methods for �gure-ground separation demonstrates that
all of them can robustly handle the DAPI-stained nuclei data. This is con-
�rmed by the resulting average combined Jaccard similarity measurements
pavc = 0.769 for KM, pavc = 0.771 for LOC, pavc = 0.761 for GLOC and
pavc = 0.762 for GC �gure-ground separation. This hypothesis is further
strengthened by the pairwise Wilcox test showing signi�cantly di�erent mea-
surements for only three out of 12 pairs of measurements (p < 0.01).
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6.3.4. Application domain D3: FDA-stained chloroplasts

(a) Input image (b) Hand-labeled data (c) Segmentation without
using information on nuclei

Figure 6.15.: Corresponding images (a, b, c) depict results from use of the
calibrated segmentation pipeline for FDA-stained chloroplasts.

An overview of performance for di�erent combinations of image processing
methods for segmentation of �uorescently stained chloroplasts is provided
in Figure 6.16. Calibration of the segmentation pipeline was automatically
performed based on hand-labeled data using a GA including three-fold cross
validation. For a representative exemplary image, see Figure 6.15.

Figure 6.16.: Median Jaccard coe�cients and resulting combined perfor-
mance measurements for di�erent combinations of preprocess-
ing (Pre), �gure-ground separation (Fg) and object splitting
(Split) methods. For the FDA-stained chloroplast data, infor-
mation on cell nuclei is not available.

Comparison between manual and optimal automated segmentation

Con�guring the segmentation pipeline for segmentation of FDA-stained chloro-
plasts (see Figure 6.16), the pipeline DOG-KM-WS resulted in the highest
performance (pc = 0.820, pa = 0.93, pj = 0.89). Analysis of interobserver
variability lead to pc = 0.850, pa = 0.98, pj = 0.87, and intraobserver
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variability to pc = 0.888, pa = 0.99, pj = 0.90. These measurements demon-
strate that segmentation of the analyzed chloroplasts is an unambiguous and
well-reproducible task for the human observer (pa = 0.99, pa = 0.98). For
automated image analysis, robust splitting poses a challenge, as some chloro-
plasts cannot be completely separated from the image background in the
�gure-ground separation step. These incomplete cells often mislead shape-
based splitting methods. Comparing Jaccard similarity for the intraobserver
measurements based on a pairwise Wilcox test, automated methods are sig-
ni�cantly outperformed with p < 0.0001 by man, though for the interob-
server analysis di�erences are not statistically signi�cant (p > 0.01). This
data nicely demonstrates that quality of �gure-ground separation using au-
tomated methods is often comparable to manual annotation, but splitting
capabilities of the automated approaches cannot compete with the human
element for this data.

Comparison of di�erent methods

Detailed analysis of di�erent combinations of methods showed a small perfor-
mance advantage using DOG preprocessing (average combined performance
pavc = 0.808, compared to pavc = 0.790 for MIN preprocessing). A pairwise
Wilcox test con�rmed that observed di�erences are small, as only di�erences
for pairs of observations (MIN-KM-WS, DOG-KM-WS) and (MIN-GC-WS,
DOG-GC-WS) are statistically signi�cant.
Comparison of KM, LOC, GLOC and GC for �gure-ground separation

yielded the average combined performance values pavc = 0.817, pavc = 0.798,
pavc = 0.785 and pavc = 0.796. This demonstrates that k-means clustering
based threshold selection allows the best segmentation for the FDA-stained
chloroplast data. This hypothesis is supported by a pairwise Wilcox test
showing that results are signi�cantly di�erent for eight out of 12 combina-
tions of methods based on KM, compared to combinations of methods not
using KM.
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6.3.5. Application domain D4: Confocal DAPI-stained nuclei

(a) Input image (b) Hand-labeled data (c) Segmentation without
using information on nuclei

Figure 6.17.: Representative micrographs depicting DAPI-stained nuclei
captured with a confocal microscope (a), corresponding hand
labelings (b) and result of the calibrated segmentation pipeline
(c).

Comparison of segmentation performance for di�erent combinations of
image processing methods applied for segmentation of cell nuclei captured
with a confocal microscope is provided in Figure 6.18. Con�guration of the
segmentation pipeline was performed based on hand-labeled data by apply-
ing a GA including three-fold cross validation. Representative segmentation
results are depicted in Figure 6.17.

Comparison between manual and automated segmentation

Calibration of the segmentation pipeline for confocal DAPI-stained nuclei
(see Figure 6.18) resulted in a pipeline MIN-KM-WS with pc = 0.848,
pa = 0.95 and pj = 0.89. Based on interobserver measurements pc = 0.881,
pa = 0.97, pj = 0.91 and intraobserver measurements pc = 0.914, pa = 0.99,
pj = 0.92, it could be concluded that the proposed segmentation pipeline,
for this dataset, can identify cell boundaries nearly as well as the human
observer. However, for splitting of touching cells some additional errors
are implemented for ambiguous cases. Statistical analysis using a pairwise
Wilcox test showed that di�erence between observed Jaccard similarities
are highly statistically signi�cant, with p < 0.0001 for all pairs of interob-
server, intraobserver and automated segmentation, but also for intra- and
interobserver measurements.
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Figure 6.18.: Median Jaccard coe�cient and accuracy for di�erent combina-
tions of preprocessing (Pre), �gure-ground separation (Fg) and
object splitting (Split) methods. For the DAPI-stained confo-
cal cell nuclei, human handling is outperformed by machine
in terms of Jaccard similarity. However, human is superior in
splitting of touching cells, which is concluded from an observed
higher accuracy. Analyzing combined performance, machine is
slightly outperformed by man.

Comparison of di�erent methods

In this section, di�erent methods from the segmentation pipeline are com-
pared to each other. For confocal DAPI-stained nuclei, MIN preprocessing
outperformed that with DOG as an average Jaccard median of pavc = 0.844
was obtained for segmentation pipelines using MIN and pavc = 0.835 for
pipelines using DOG preprocessing. For �gure-ground separation, the GC
method slightly outperformed alternative methods. This was con�rmed by
analyzing average combined Jaccard similarity for KM (pavc = 0.836), LOC
(pavc = 0.842), GLOC (pavc = 0.834) and GC (pavc = 0.846). A Friedman test
followed by a Wilcox post-hoc test comparing Jaccard coe�cients for pairs of
observations (M1-GC-M3, M1-M2-M3) showed that all these combinations
generated signi�cantly di�erent results. Hence, it could be concluded that
GC �gure-ground separation outperforms competing �gure-ground separa-
tion methods for the confocal nuclei data.
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6.3.6. Application domain D5: Alexa 568-stained HeLa cells

(a) Input image (contrast
enhanced)

(b) Hand-labeled data (c) Segmentation without
using information on nuclei

Figure 6.19.: Corresponding images (a, b, c) depicting merged input image
(a), hand labelings (b) and results for the calibrated segmen-
tation pipeline (c) for segmentation of Alexa568-stained HeLa
cells.

A detailed overview of di�erent combinations of methods applied for seg-
mentation of Alexa568-stained HeLa cells is provided in Figure 6.20. Op-
timal con�guration of the segmentation pipeline was automatically deter-
mined based on hand-labeled data by a GA including three-fold cross vali-
dation. Representative segmentation results are provided in Figure 6.19.

Figure 6.20.: Accuracy, median Jaccard coe�cient and combined perfor-
mance for di�erent combinations of preprocessing (Pre), �gure-
ground separation (Fg) and object splitting (Split) methods
applied to Alexa568-stained HeLa cells.

Comparison between manual and optimal automated segmentation

For this very challenging dataset containing overlapping cells that can only
be recognized by dot patterns, the optimal segmentation pipeline (MIN-KM-
WS) achieved a combined performance pc = 0.187, median Jaccard coe�-
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cient pj = 0.61 and accuracy pa = 0.31. When this dataset was annotated
twice by two independent observers, a combined performance of pc = 0.780
with pj = 0.81 and pa = 0.96 was obtained. Intraobserver measurements re-
sulted in pc = 0.668 with pj = 0.79 and pa = 0.85. For this dataset, human
observation clearly outperformed the proposed algorithms, particularly in
terms of accuracy, as parameters cannot be adjusted in such way that cells
are automatically split correctly. A Friedman test followed by a pairwise
Wilcox post-hoc test con�rmed that ability to recognize cell boundaries is
signi�cantly greater for inter- and intraobserver measurements.
In order to improve segmentation for this challenging data, information

on cell nuclei could be included.

Comparison of di�erent methods

Comparison of the utilized image processing methods demonstrates that
average combined performance of MIN preprocessing (pavc = 0.153) is supe-
rior to that of DOG preprocessing (pavc = 0.076). Di�erences between both
methods are mainly caused by accuracy, not by observed median Jaccard
measurements (see Figure 6.20). This is supported by the pairwise Wilcox
test showing statistically signi�cant di�erences, with p < 0.01 for two out of
four pairs of observations (MIN-KM-WS, DOG-KM-WS) and (MIN-GLOC-
WS, DOG-GLOC-WS).
Comparing combined performance for �gure-ground separation methods,

KM achieves pavc = 0.142, LOC pavc = 0.124, GLOC pavc = 0.070 and GC
pavc = 0.122. This suggests that the KM �gure-ground separation method
outperforms LOC, GLOC and GC for this dataset. Comparison of Jaccard
similarities con�rms this hypothesis, as these are statistically signi�cant for
all combinations of preprocessing and �gure-ground separation methods.
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6.3.7. Application domain D6: DiD-stained HeLa cells

(a) Input image (contrast enhanced) (b) Hand-labeled data

(c) Segmentation without using informa-
tion on nuclei

(d) Segmentation using information on nu-
clei

Figure 6.21.: Corresponding images (a-d) illustrating segmentation perfor-
mance of calibrated segmentation pipeline without (c) and with
use of information on nuclei (d) for the segmentation of DiD-
stained HeLa cells.

Results for calibrating the segmentation pipeline based on hand labelings
of DiD-stained HeLa cells are provided in Figure 6.22. For this experiment,
calibration was carried out using a GA and including three-fold cross vali-
dation. For resulting images, see Figure 6.21.

Comparison between manual and optimal automated segmentation

Calibrating the segmentation pipeline, the combination of methods MIN-
GC-SGC performs best for DiD-stained HeLa cells, and results in a com-
bined segmentation performance of pc = 0.649, pj = 0.70 and pa = 0.93.
Interobserver measurements pc = 0.705, pj = 0.75 and pa = 0.94 as well as
intraobserver measurements pc = 0.666, pj = 0.77 and pa = 0.87 demon-
strate that automatically segmented data shows slightly lower quality than
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Figure 6.22.: Median Jaccard coe�cient and accuracy for di�erent combi-
nations of preprocessing (Pre), �gure-ground separation (Fg)
and object splitting (Split) methods applied for segmentation
of DiD-stained HeLa cells. Due to information on cell nuclei,
algorithms can compete with the human handling in terms of
accuracy. However, analysis of median Jaccard measurement
shows that the calibrated segmentation pipeline is nearly able
to resolve cell boundaries as well as humans.
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hand-labeled data. Note that, in terms of accuracy, measurements from
automated methods outperform the intraobserver measurements. Statisti-
cal analysis using a Friedman test, followed by a pairwise Wilcox post-hoc
test, shows that Jaccard similarities are not signi�cantly di�erent for the
calibrated segmentation pipeline and the interobserver measurements. This
demonstrates that automated image segmentation can compete with manual
annotation for DiD-stained HeLa cells.

Comparison of di�erent methods

Comparing MIN to DOG preprocessing, average combined Jaccard measure-
ments of pavc = 0.543 for MIN and pavc = 0.511 for DOG preprocessing are
obtained. A pairwise Wilcox test shows that Jaccard similarities for two out
of 16 method combinations comparing pairs of observations (MIN-M2-M3,
DOG-M2-M3) are statistically signi�cant. Hence, using MIN or DOG pre-
processing has only little in�uence on segmentation quality for DiD-stained
HeLa cells.
For �gure-ground separation, pavc = 0.518 is obtained for KM, pavc = 0.535

for LOC, pavc = 0.481 for GLOC and pavc = 0.553 for GC based segmentation
pipelines. This indicates that the GC �gure ground separation method out-
performs competing approaches for the presented data. This is also strongly
supported by the pairwise Wilcox test showing statistically signi�cant dif-
ferences for 32 out of 40 pairs of segmentation pipelines (M1-GC-M3, M1-
M2-M3, with M2 6= GC).
Analyzing average combined performance for WS (pavc = 0.272), SWS

(pavc = 0.608), SFM (pavc = 606), and SGC (pavc = 0.602) object splitting
shows that information on nuclei strongly supports the cell splitting. How-
ever, performance hardly di�ers for di�erent cell splitting methods using
information on nuclei. To substantiate this hypothesis with statistical data,
a pairwise Wilcox test was performed comparing the averagely best splitting
method (SWS) to alternative seeded splitting methods. This test con�rmed
that none of the di�erences for all pairs of observed Jaccard measurements
(M1-M2-SWS, M1-M2-M3) with (M3 6= SWS) is statistically signi�cant.
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6.3.8. Application domain D7: pUL97-stained HeLa cells

(a) Input image (b) Hand-labeled data

(c) Segmentation without using informa-
tion on nuclei

(d) Segmentation using information on nu-
clei

Figure 6.23.: Merged input image (a), corresponding hand-labeled data (b)
and results from the calibrated segmentation pipeline using
non-seeded (c) and seeded (d) splitting methods for the seg-
mentation of pUL97-stained HeLa cells. These example images
nicely demonstrate that the challenging task of splitting touch-
ing cells can be facilitated when information on cell nuclei is
included.

An overview of performance for di�erent combinations of methods applied
for the segmentation of pUL97-stained HeLa cells is provided in Figure 6.24.
For the pUL97-stained HeLa dataset, information on combined performance
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and accuracy was not determined for seeded methods, as for this dataset
many cells do not express any signal (see Figure 6.7, p. 66). This leads
to numerous false positive detections if information on position and exten-
sion of the nuclei is used for initialization. Removal of these false positive
detections is easily possible by adapting the splitting methods (e.g., cells
can be removed that are only few pixels larger than the corresponding nu-
clei). However, such postprocessing routines are speci�c for the presented
dataset, and therefore not incorporated into this general-purpose approach.
For examples of resulting segmentations, see Figure 6.23.

Comparison between manual and optimal automated segmentation

Due to many false positive detections caused by nuclei with missing corre-
sponding cell signals in the pUL97 channel, the median Jaccard similarity
was used for comparison of segmentation methods. The best combination of
methods (MIN-KM-FM) resulted in a median Jaccard similarity of pj = 0.88.
Median Jaccard similarity for interobserver measurements was pj = 0.87, and
pj = 0.91 for intraobserver measurements. A statistical pairwise Wilcox test
showed that di�erences between inter- and intraobserver Jaccard similarities
are signi�cant with p < 0.0001. The described measurements nicely demon-
strate that automated �gure-ground separation can compete with manual
�gure-ground separation.

Comparison of di�erent methods

Comparing average median Jaccard similarity of MIN preprocessing (P av
c =

0.81) to that of DOG (P av
c = 0.81) indicates that both methods show identi-

cal performance for the pUL97-stained HeLa cells. This could be con�rmed
by the pairwise Wilcox test, which showed that none of the pairs of obser-
vations (MIN-M2-M3, DOG-M2-M3) are signi�cantly di�erent.
Next, average median Jaccard similarities were compared for KM (P av

c =
0.80), LOC (P av

c = 0.81), GLOC (P av
c = 0.78) and GC (P av

c = 0.83) �gure-
ground separation. Observed measurements and the pairwise Wilcox test
showed that median Jaccard similarity using GC �gure-ground separation
was signi�cantly better than performance of KM, LOC or GLOC for most
method combinations.
Evaluating median Jaccard similarity for di�erent object splitting meth-

ods resulted in P av
c = 0.67 for WS, P av

c = 0.85 for SWS, P av
c = 0.86 for SFM

and P av
c = 0.85 for SGC based object splitting. The pairwise Wilcox test

con�rmed that observed measurements were hardly signi�cantly di�erent. In
detail, only three out of 21 pairs of observations (M1-M2-M3,M1-M2-M

∗
3 )

with M∗3 6= M3 are signi�cantly di�erent with p < 0.01.
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Figure 6.24.: Accuracy, median Jaccard coe�cient and combined segmen-
tation performance for di�erent combinations of preprocess-
ing (Pre), �gure-ground separation (Fg) and object splitting
(Split) methods. For the pUL97-stained HeLa data, informa-
tion on combined performance and accuracy is not determined
for methods requiring information on the cell nuclei, as many
cells do not express any signal located in the cytoplasm (com-
pare to Figure 6.23). Otherwise, this would result in numerous
false positive detections.
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6.3.9. Summary and Discussion

In order to draw conclusions on applicability of a speci�c image processing
method for a given task, this work compared di�erent state of the art as
well as new methods, based on a broad range of �uorescence microscopy
data. The resulting measurements of average combined performance for
each segmentation and image processing method are shown in Table 6.2.

Method D1 D2 D3 D4 D5 D6 D7

MIN 0.55 0.75 0.79 0.84 0.15 0.53 0.75
DOG 0.56 0.79 0.81 0.84 0.08 0.51 0.74

KM 0.58 0.77 0.82 0.84 0.14 0.52 0.75
LOC 0.53 0.77 0.80 0.84 0.12 0.54 0.75
GLOC 0.45 0.76 0.79 0.83 0.07 0.48 0.70
GC 0.65 0.76 0.80 0.85 0.12 0.55 0.78

WS 0.25 0.75 0.80 0.84 0.11 0.27 0.52
SWS 0.64 - - - - 0.61 0.85
SFM 0.67 - - - - 0.61 0.86
SGC 0.65 - - - - 0.60 0.75

Manual 0.76 0.75 0.87 0.90 0.72 0.69 0.89

Table 6.2.: Average of median combined performance measurements for each
image processing method and each dataset (D1-D7). Missing
values "-" could not be determined as these methods require in-
formation on nuclei. Note that for D7, Jaccard similarities are
provided instead of combined Jacccard similarities (for details see
Figure 6.24). In order to assess performance of manual annota-
tion, average combined performance of inter- and intra-observer
measurements are provided.

Measurements of segmentation performance showed that MIN prepro-
cessing outperforms DOG preprocessing for �ve out of seven application
domains. For some of the remaining data, DoG preprocessing shows signif-
icantly improved Jaccard similarity measurements. Hence, it can be con-
cluded that applicability of both preprocessing methods is speci�c for each
dataset.
Comparing methods for �gure-ground separation, the novel GC based

method shows best performance for four out of seven application domains.
Particularly for data showing strong variation in intensity inside each image,
GC outperforms KM based �gure-ground separation. This is consistent with
the results published in (Held et al., 2013b), where the GC approach was
shown to outperform the KMmethod and the CellPro�ler for several publicly
available �uorescence datasets. Comparison of global methods (KM and GC)
to locally adaptive ones (LOC and GLOC) shows that the latter can compete
for data with a constant con�uence. If con�uence varies strongly inside the
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dataset, area occupied by cells also varies. As a result, estimated average
and standard deviation of intensity distribution also change. This reduces
performance for LOC and GLOC, as can be seen for data from application
domain D1: CD11b/APC-stained macrophages.
Comparing methods for splitting of cells clearly demonstrates that ad-

ditional information on seeds (e.g. cell nuclei) signi�cantly improves the
segmentation process. Comparing seeded SWS, SFM and SGC for splitting
indicates that all seeded methods achieve comparable results. Surprisingly,
the SGC based method is slightly outperformed by SFM based ones, despite
ability of SGC to enable global minimization of the corresponding energy
function, whereas SFM performs a local optimization of a very similar en-
ergy function. This is consistent with �ndings from Hodneland et al. (2009),
who compared a watershed transform based method to a level set based
approach for segmentation of �uorescence micrographs.

6.3.10. Conclusion

Based on the described results, it can be concluded that the novel GC �gure-
ground separation method outperforms alternative approaches for several
application domains. In addition, it was shown, based on a broad range
of �uorescence microscopy data, that cell splitting methods based on SWS,
SFM and SGC result in similar segmentation quality.
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6.4. Experiment III: Comparison between KM and

GC �gure-ground separation using partially

simulated micrographs

Fluorescence image data used in this work consist of several micrographs
with varying cell types and staining. Most of these micrographs show high
image quality with large contrast between object and background. Hence,
the e�ect of noise and shading artifacts cannot be studied in detail using this
data. In order to analyze how such artifacts in�uence segmentation perfor-
mance, micrographs were overlaid with simulated artifacts. Based on these
images, performance of KM can be compared to the novel GC �gure-ground
separation method, which has been developed to improve segmentation of
blurred and noisy micrographs.

6.4.1. Simulation of noise and illumination artifacts

For simulation of degraded reference and testing data, images I(x, y) are
overlaid with simulated additive noise artifacts A(x, y). Additionally, a mul-
tiplicative term M(x, y) is included for simulation of illumination artifacts.
Based on this, a simulated micrograph S(x, y) is de�ned as:

S(x, y) = M(x, y)I(x, y) +A(x, y).

For simulation of the additive noise component, an equally distributed
random number A(x, y) ∈ [−ηmax, ηmax] is applied. For the multiplicative
noise component, intensity is assumed to decrease from the center of the
image to the boundary. Let d(x, y) denote the distance of pixel (x, y) to
the image center using the Euclidean norm, and dmax be the distance from
the center to an image corner. Then, the multiplicative noise component
M(x, y) is de�ned as:

M(x, y) = 2
−
(
d(x,y)
σd

)2
dmax .

Additionally, values of the resulting image are cropped to a range [0, 255]
by setting values > 255 to 255 and values < 0 to 0. Resulting images for
varying parameters σd and ηmax are depicted in Figure 6.25.

6.4.2. KM vs. GC �gure-ground separation

Using the described methods for simulation of shading artifacts and noise,
performance of KM based �gure-ground separation (Figure 6.26) is com-
pared to performance of GC �gure-ground separation (Figure 6.27). There-
fore, noise and shading artifacts with di�erent parameterization are added
to the reference and the testing image. For each reference image, calibration
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(a) ηmax = 0, σd = 0 (b) ηmax = 25, σd = 0

(c) ηmax = 25, σd = 1 (d) ηmax = 50, σd = 1

Figure 6.25.: Examples for di�erent values of additive noise component, pa-
rameterized by ηmax, and shading artifacts, parameterized by
σd, added to the reference image (a - d).

of the segmentation pipeline is performed using KM and GC based �gure-
ground separation. For reduction of the number of con�gurations and for
reduction of runtime, SFM object splitting is applied, as it showed good
results for segmentation of the CD11b/APC-stained macrophages (compare
Figure 6.12, p. 76) and is much more time-e�cient than SGC object split-
ting. Optimal parameterization for all combinations of methods is then
determined based on hand-labeled data utilizing genetic algorithms and the
combined Jaccard similarity metric as objective function. Convergence of
the genetic algorithm is assumed if no new performance maximum is de-
termined for 200 iterations. The resulting calibrated segmentation pipeline
is then applied for segmentation of di�erent test images. Corresponding
test images with di�erent strengths of noise and shading artifacts using KM
�gure-ground separation are shown in Figure 6.26. Results from GC �gure-
ground separation are provided in Figure 6.27. Enlarged images enabling
better comparison between KM and DOG �gure-ground separation are pro-
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Figure 6.26.: Examples for calibrating the segmentation pipeline based on
KM �gure-ground separation and SFM object splitting for seg-
mentation of partially simulated micrographs. For enlarged
images, see Figures A.2 - A.5, pp. 136 - 139. Note that most
severe segmentation errors were highlighted by white arrows.

vided in Appendix A, pp. 135 �.

For quantitative comparison, median Jaccard similarities enabling com-
parison of KM and GC for di�erent constellations of reference and testing
data are summarized in Figure 6.28.

6.4.3. Discussion

In general, highest segmentation performance is achieved if strength of shad-
ing and illumination artifacts is equal for reference and testing data (Fig-
ure 6.28). This shows that both methods are not able to adapt parameters
independently of noise and illumination artifacts. Hence, it can be concluded
that algorithms are able to adapt to a constant level of noise or illumination
artifacts. However, if strength of these artifacts varies inside the dataset,
segmentation performance usually decreases.

Analyzing variation in performance for a �xed reference image, for testing
images with varying noise and illumination artifacts, clearly shows that such
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Figure 6.27.: Examples for calibrating the segmentation pipeline based on
GC �gure-ground separation and SFM object splitting for seg-
mentation of partially simulated micrographs. For enlarged
images see Figures A.2 - A.5, pp. 136 - 139. Note that the
most severe segmentation errors were highlighted with white
arrows.

variations are less strong for GC than for KM. This nicely demonstrates that
parameterization of GC based �gure-ground separation is less a�ected by
noise and illumination artifacts than parameterization of KM �gure-ground
separation. This supports the hypothesis that GC based �gure-ground se-
lection enables improved segmentation for images showing large variation
in intensities, noise, as well as illumination artifacts. This hypothesis is
supported by visual inspection of the image data (Figures 6.26 and 6.27
as well as Figures A.2-A.5, pp. 136-139) since GC is often able to recog-
nize cells that could not be recognized by KM. Furthermore, GC enables
improved recognition of cell boundaries and often shows less leaking. This
could be con�rmed by qualitative median Jaccard measurements, depicted
in Figure 6.28. If measurements for calibration with ηmax = 50, σd = 1 in
Figure 6.28(c) are interpreted as an outlier, median Jaccard similarity of
GC is always larger than median Jaccard similarity of KM �gure-ground
separation.
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(a) (b)

(c) (d)

Figure 6.28.: Median Jaccard similarities for various constellations of simu-
lated artifacts, for reference and testing data of GC and KM.
Calibration based on original data ηmax = 0, σd = 0 (a), noisy
data ηmax = 25, σd = 0 (b), noisy data with illumination arti-
facts ηmax = 25, σd = 1 (c) and very noisy data with illumina-
tion artifacts ηmax = 50, σd = 1 (d).

6.4.4. Conclusion

The described data con�rms that the novel GC �gure-ground separation
method outperforms the state of the art KM method, particularly for the
segmentation of blurred and noisy micrographs.
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6.5. Experiment IV: Exploratory parameter space

analysis

Investigation of the parameter spaces for each of the utilized image process-
ing methods is essential for choice of an automated parameter optimization
approach. As this topic is hardly covered in literature, an exploratory pa-
rameter space analysis was carried out based on a broad range of �uorescence
microscopy image data.

As the segmentation pipeline uses di�erent methods for preprocessing,
�gure-ground separation and object splitting, analysis of each parameter for
all combinations of methods is hardly possible for all datasets. In order
to reduce runtime of this experiment, the number of data and combina-
tions of methods, and hence the number of investigated parameter spaces,
was reduced. For this reason, only CD11b/APC-stained macrophages, D2:
DAPI-stained nuclei and D6: DiD-stained HeLa cells were considered for
detailed analysis of parameter search spaces. D1: CD11b/APC-stained
macrophages were selected, as they represent a challenging dataset, depict-
ing cells with varying intensities as well as overlapping and overlaying cells.
D6: DiD-stained HeLa cells were analyzed due to the multipolar nature of
these cells, showing strong overlaps, as well as D2: DAPI-stained nuclei, for
including a simple nuclei dataset. Besides restriction to three application
domains, the number of investigated combinations of methods was also re-
stricted. Therefore, the optimal combination of image processing methods
was determined for each application domain by a genetic algorithm including
three-fold cross validation. Note that optimal corresponding combinations
of methods for each dataset have already been determined in Section 6.3.
Parameter spaces of all methods were then investigated by replacing a sin-
gle method in this pipeline while keeping the remaining ones. Denoting the
optimal combination of methods as (M∗1 , M

∗
2 , M

∗
3 ), the combinations of

methods (M1-M
∗
2 -M

∗
3 ) are considered for preprocessing, (M∗1 -M2-M

∗
3 ) for

�gure-ground separation and (M∗1 -M
∗
2 -M3) for the splitting of objects. For

this experiment, a genetic algorithm without cross-validation was applied
for calibration of the segmentation pipeline. Based on this, all pairs of pa-
rameters were varied around the performance maximum, so as to provide an
insight into the parameter space for each dataset. Examples and visualiza-
tions of the resulting parameter spaces are shown in the following sections.
Note that parameter spaces for segmentation pipelines MIN-KM-WS and
MIN-KM-SWS using the macrophage dataset have already been published
in (Held et al., 2013a).

6.5.1. Parameter spaces for preprocessing

For CD11b/APC-stained HeLa cells, the optimal combination of image pro-
cessing methods used GC �gure-ground separation methods and SGC for
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splitting of the cells. As a result of this, parameter spaces of the prepro-
cessing methods were explored using pipelines MIN-GC-SGC and DOG-GC-
SGC. For the DAPI-stained nuclei, pipelines MIN-LOC-WS, DOG-LOC-WS
were explored, whereas for DiD-stained HeLa, pipelines MIN-GC-SGC and
DOG-GC-SGC were used. Parameters of all methods were calibrated in such
way that optimal performance could be obtained by a genetic algorithm.
Then, pairs of parameters were varied for each preprocessing method. The
resulting visualizations of parameter spaces are shown in Figure 6.29.

(a) Macrophages-
CD11b/APC

(b) Nuclei-DAPI (c) HeLa-DiD

(d) Macrophages-
CD11b/APC

(e) Nuclei-DAPI (f) HeLa-DiD

Figure 6.29.: Exploration of parameter spaces based on di�erent data for
preprocessing (a-f) with intensities encoding combined Jaccard
similarity for varying parameterization of MIN (a-c) and DOG
(d-f) preprocessing methods.
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6.5.2. Parameter spaces for �gure-ground separation

For investigation of parameter spaces for �gure-ground separation, methods
KM, LOC, GLOC and GC were investigated based on data from CD11b/APC-
stained macrophages. Therefore, parameters of segmentation pipelines MIN-
KM-SGC, MIN-LOC-SGC, MIN-GLOC-SGC and MIN-GC-SGC were con-
�gured using genetic algorithms and no cross-validation. Parameter spaces
were then investigated by varying all pairs of parameters around the perfor-
mance maximum.
Accordingly, combinations of image processing methods DOG-KM-WS,

DOG-LOC-WS, DOG-GLOC-WS and DOG-GC-WS were optimized and
investigated for DAPI-stained nuclei. In order to investigate parameter
spaces for DiD-stained HeLa cells, combinations of methods MIN-KM-SGC,
MIN-LOC-SGC, MIN-GLOC-SGC and MIN-GC-SGC were analyzed. The
resulting parameter spaces for KM, LOC and GLOC can be visualized in
Figure 6.30 as well as Figures 6.31 to 6.32 for the GC �gure-ground separa-
tion method.
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(a) Macrophages-
CD11b/APC

(b) Nuclei-DAPI (c) HeLa-DiD

(d) Macrophages-
CD11b/APC

(e) Nuclei-DAPI (f) HeLa-DiD

(g) Macrophages-
CD11b/APC

(h) Nuclei-DAPI (i) HeLa-DiD

Figure 6.30.: Parameter spaces for KM (a-c), LOC (d-f) and GLOC (g-i)
�gure-ground separation for di�erent datasets (a-i), with in-
tensities encoding combined Jaccard similarity for varying pa-
rameterization of the methods. Parameter space for GC �gure-
ground separation is given in Figures 6.31 and 6.32.
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(a) Macrophages-
CD11b/APC

(b) Nuclei-DAPI (c) HeLa-DiD

(d) Macrophages-
CD11b/APC

(e) Nuclei-DAPI (f) HeLa-DiD

(g) Macrophages-
CD11b/APC

(h) Nuclei-DAPI (i) HeLa-DiD

Figure 6.31.: Parameter space of GC �gure-ground separation (a-i), part 1
of 2, with intensities encoding combined Jaccard similarity for
varying parameterization of the methods. Further visualiza-
tions are given in Figure 6.32.
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(a) Macrophages-
CD11b/APC

(b) Nuclei-DAPI (c) HeLa-DiD

(d) Macrophages-
CD11b/APC

(e) Nuclei-DAPI (f) HeLa-DiD

(g) Macrophages-
CD11b/APC

(h) Nuclei-DAPI (i) HeLa-DiD

Figure 6.32.: Parameter space of GC �gure-ground separation (a-i), part 2
of 2, with intensities encoding combined Jaccard similarity for
varying parameterizations.
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6.5.3. Parameter spaces for object splitting

In order to investigate parameter spaces for object splitting, segmentation
pipelines MIN-GC-WS, MIN-GC-SWS, MIN-GC-SFM and MIN-GC-SGC
were investigated for CD11b/APC-stained macrophages. For DAPI-stained
nuclei, only DOG-LOC-WS were investigated due to the lack of information
on nuclei. For DiD-stained HeLa cells, optimal method combinations MIN-
GC-WS, MIN-GC-SWS, MIN-GC-SFM and MIN-GC-SGC were analyzed.
In order to explore parameter spaces for object splitting methods, all param-
eters were automatically optimized towards the hand labelings using genetic
algorithms. Then, pairs of parameters were varied around the optimum.
The resulting parameter spaces are available in Figures 6.33 and 6.34.

6.5.4. Results and discussion

Detailed analysis of parameter spaces for preprocessing (Figure 6.29, p. 101)
showed that combined Jaccard performance strongly depends on optimiza-
tion of the parameter space for preprocessing methods. Hence, sticking to a
local performance maximum could lead to a strong decrease in segmentation
performance. However, probability to stick at a local performance optimum
is low if adequate optimization techniques are applied, as corresponding pa-
rameter spaces are quite monotonous and show only few local performance
maxima.
Exploring parameter spaces for di�erent �gure-ground separation meth-

ods (Figures 6.30-6.32, pp. 103-105) indicates that, as for the preprocess-
ing methods, identi�cation of the global performance maximum is crucial,
otherwise segmentation performance could strongly decrease. Most of the
corresponding parameter spaces are quite monotonous, showing only few lo-
cal performance maxima. Solely for the graph cut based method, pairs of
parameters (σc2, kc) and (αc, σc1) showed low monotony and several local
performance maxima. Fortunately, segmentation performance only slightly
depends on optimization of these parameters.
For object splitting methods, most parameter spaces are very monotonous.

Moreover, parameter space of WS is more monotonous than that of SWS
(Figures 6.33 and 6.34, pp. 107, 108). This is consistent with the �ndings
published in (Held et al., 2013a).

6.5.5. Conclusion

Taken together, exploration of method parameter spaces showed that many
approaches exhibit local performance maxima. Performance of the global
optimum is thereby often much higher than performance of local optima.
Consequently, sticking at a local performance optimum must be avoided.
This demonstrates that optimization schemes able to jump out of local per-
formance optima are required. In practice, this poses a challenge for manual
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(a) Macrophages-
CD11b/APC

(b) Nuclei-DAPI (c) HeLa-DiD

(d) Macrophages-
CD11b/APC

(e) HeLa-DiD

(f) Macrophages-
CD11b/APC

(g) Macrophages-
CD11b/APC

(h) Macrophages-
CD11b/APC

(i) HeLa-DiD (j) HeLa-DiD (k) HeLa-DiD

Figure 6.33.: Investigation of parameter spaces for WS (a-c), SWS (d, e)
and SGC (f-k) object splitting methods, with intensities encod-
ing combined Jaccard similarity for varying parameterizations.
Note that parameter space for SFM is shown in Figure 6.34 .
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(a) Macrophages-
CD11b/APC

(b) Macrophages-
CD11b/APC

(c) Macrophages-
CD11b/APC

(d) HeLa-DiD (e) HeLa-DiD (f) HeLa-DiD

(g) Macrophages-
CD11b/APC

(h) Macrophages-
CD11b/APC

(i) Macrophages-
CD11b/APC

(j) HeLa-DiD (k) HeLa-DiD (l) HeLa-DiD

Figure 6.34.: Investigation of parameter space for SFM object splitting with
intensities encoding combined Jaccard similarity for varying
parameterizations and application domains.
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calibration of a segmentation pipeline, as local performance maxima are
often accepted.

6.6. Experiment V: Comparison of parameter

optimization techniques

Exploratory parameter space analysis for di�erent data showed that auto-
mated optimization algorithms must be able to handle parameter spaces
showing several local extrema. This con�rms that genetic algorithms (GA)
are a good choice for optimization of the depicted parameter spaces. For a
further speedup of the calibration process, more runtime-e�cient optimiza-
tion techniques are required. As no comparison on parameter optimization
techniques for �uorescence microscopy image data are available, GA was
compared to the coordinate descent (CD) method in this experiment. The
CD method is considered an alternative due to its ability to jump out of
local performance optima as well as to its capability to e�ciently optimize
high dimensional parameter spaces. As the GA and the CD method are not
always able to identify a globally optimal parameter setup, using a brute
force technique for identi�cation of the global performance optimum is de-
sirable. Based on this, errors resulting from the GA or CD could be assessed.
Unfortunately, runtime of brute force exceeds several years, even for a single
image, and is hence not applicable. In the following, convergence as well as
quality of the parameterization are compared for GA and CD.

6.6.1. Comparison of maximum performance

For this experiment, combined Jaccard similarity was compared for GA and
CD based parameter optimization. In this context, parameters were opti-
mized for all combinations of image processing methods using GA and CD.
Note that this experiment was only carried out for the application domains
D1: CD11b/APC-stained macrophages - D2: DAPI-stained nuclei and D6:
DiD-stained HeLa cells, in order to reduce the amount of required compu-
tational time. In this experiment, the segmentation pipeline was calibrated
based on hand-labeled data for all combinations of image processing meth-
ods. The GA as well as the CD method both include a three-fold cross
validation for separation between reference and testing data. Figure 6.35
shows the resulting segmentation performance measurements for both op-
timization techniques for CD11b/APC-stained macrophages. Results for
DAPI-stained nuclei are provided in Figure 6.36. Measurements based on
DiD-stained HeLa cells are available in Figure 6.37.
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(a)

(b)

Figure 6.35.: Comparison between segmentation performance of genetic al-
gorithm (GA) and coordinate descent (CD) parameter opti-
mization for di�erent combinations of image processing meth-
ods as well as reference and testing data (1-96) based on
CD11b/APC-stained macrophages (a). Additionally, three-
fold cross validation is included to separate reference from test-
ing data. The corresponding di�erence plot is provided in (b).
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(a)

(b)

Figure 6.36.: Comparison between segmentation performance of GA and CD
parameter optimization based on DAPI-stained nuclei. Three-
fold cross validation is included to separate reference from test-
ing data. The corresponding di�erence plot is shown in (b).

6.6.2. Comparison of convergence

Apart from ability to determine a parameterization close to the global op-
timum, convergence rate is crucial for this application. For fair compari-
son, convergence is analyzed for combinations of methods and data where
GA and CD result in the most di�erent or most similar parameterization.
This corresponds to the combinations of methods where GA is most out-
performed by CD, and vice-versa. Resulting convergence plots are shown in
Figure 6.38. Additionally, convergence is investigated for combinations of
image processing methods where GA and CD achieve most similar results
(see Figure 6.39).
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(a)

(b)

Figure 6.37.: Comparison between segmentation performance of GA and CD
parameter optimization for di�erent combinations of image
processing methods as well as reference and testing data (1-
96) based on DiD-stained HeLa cells. Note that three-fold
cross validation is included. The corresponding di�erence plot
is provided in (b).
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(a) CD11b/APC-stained macrophages (b) DAPI-stained nuclei

(c) DiD-stained HeLa

Figure 6.38.: Comparison of convergence for GA (blue) and CD (red) opti-
mization techniques for di�erent application domains (a, b, c).
For this plot, only combinations of methods where GA and CD
result in the most di�erent parameterization are considered.
This corresponds to scenarios where CD most outperforms GA
and vice versa.
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(a) CD11b/APC-stained macrophages (b) DAPI-stained nuclei

(c) DiD-stained HeLa

Figure 6.39.: Convergence using GA (blue) and CD (red) optimization for
segmentation of di�erent data (a, b, c). For this plot, com-
binations of image processing methods are selected where GA
and CD result in the most similar segmentation performance.
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6.6.3. Discussion

In this section, GA and CD parameter optimization methods were com-
pared for calibration of the segmentation pipeline for data from a broad
range of application domains. For the CD11b/APC-stained macrophage
data, CD resulted in a slightly better parameterization than GA (compare
Figure 6.35(b)). For DAPI-stained nuclei of macrophages, both methods
showed comparable results (see Figure 6.36(b)), whereas for DiD-stained
HeLa cells, GA tended to outperform CD (compare Figure 6.37(b)). Based
on these experiments, it was concluded that both methods are comparable
for calibration of the segmentation pipeline.

Comparing convergence of both methods indicates that convergence of CD
is more time-e�cient than GA, as a lower number of iterations is required
until convergence. This e�ect is mainly caused by the convergence criterion
of the GA, assuming convergence if no new performance maximum is iden-
ti�ed for 200 iterations. Convergence plots clearly demonstrate that time
e�ciency of the GA could be improved by modi�cation of the convergence
criterion. For example, convergence could be assumed if performance in-
creased for less than δ in the past 200 iterations. Optimal choice of δ would
depend on the applied performance metric and the image data. Hence, ad-
justing δ might pose a challenge.

A further question that must be addressed is whether GA or CD param-
eter optimization could replace parameter optimization by a greedy brute
force technique. Comparison of results from GA or CD to those from brute
force search is not possible due to the long runtime of the automated meth-
ods. Hence, data from the comparison between GA and CD is employed
to discuss this question. Comparing performance of the calibrated segmen-
tation pipeline using GA and CD shows a di�erence in combined Jaccard
similarity up to 0.1. This di�erence is quite large and poses a serious draw-
back for non-greedy parameter optimization methods. Fortunately, large
errors are relatively rare and di�erences between Jaccard similarity for GA
and CD are usually below 0.025. Additionally, for solving the dual opti-
mization problem, only the best combination of methods is used. Hence,
probability is low that a con�guration of the segmentation pipeline that is
far below the possible optimum is selected, as such a con�guration is usually
outperformed by alternative con�gurations. This hypothesis is supported
by the performance plots (Figures 6.35-6.37) showing similar performance
values for di�erent combinations of methods.

6.6.4. Conclusion

Based on this experiment, it could be concluded that CD slightly outper-
forms GA, as both methods result in similar segmentation performance,
though convergence of CD is often faster. It was further shown that errors
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implemented by using CD or GA are usually small (below 0.025 combined
Jaccard similarity) and can be accepted.

6.7. Experiment VI: Recommended input to the

segmentation pipeline

For most applications in research and industry, measurement of segmenta-
tion performance is usually not included in the experimental setup. Hand-
labeled data is hence only used for calibration of the segmentation pipeline.
As a result, a small number of hand-labeled cells shall be used for calibra-
tion. In the following, research carried out on the in�uence of the number
of hand-labeled cells on the resulting segmentation performance is reported.
Additionally, di�erent strategies for selecting cells for manual annotation
are compared. Note that experiments in this chapter were carried out solely
for application domains D1: CD11b/APC-stained macrophages, D2: DAPI-
stained nuclei and D6: DiD-stained HeLa cells, due to limited availability
of hand labelings from experts. These three datasets have been selected
because they range from simple nuclei data to challenging touching and
overlapping cells.

6.7.1. Required number of cells

In order to investigate the in�uence of the number of hand labelings on the
resulting segmentation performance, each dataset was split into a reference
and a testing subset for each application domain. Size of the reference set
was chosen in such way that as to consist of about 100 valid cells. Hence,
each testing dataset still contained more than 400 cells. For each reference
dataset, 1, 5, 10, 25, 50 and 100 cells were randomly selected and manually
annotated. Remaining cells were assigned to a rejection class. Based on
these di�erent amounts of reference cells, calibration of the segmentation
pipeline was performed using genetic algorithms and the combined Jaccard
similarity metric. Additionally, a �xed segmentation pipeline was used to re-
duce the amount of required computational time. Therefore, a combination
of image processing methods was selected that had shown good segmenta-
tion performance in previous experiments (see Chapter 6.3). In order to
draw a conclusion on the required number of hand labelings, calibration was
performed for varying amounts of hand labelings. The calibrated segmenta-
tion pipeline was applied to the testing subset of data. Resulting combined
Jaccard similarity performance values for varying numbers of reference cells
are shown in Figure 6.40.
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Figure 6.40.: Measurement of combined performance for calibration of the
segmentation pipeline based on varying numbers of randomly
selected hand-labeled reference samples which are not included
in the testing dataset.

6.7.2. Selection of cells for hand labeling

In order to reduce of the amount of required hand labelings, recommenda-
tions for the selection of cells for this purpose were required. Hence, the
question was addressed of whether calibration based on isolated, touching
or overlapping cells would result in the best segmentation performance.

For this experiment, the dataset was split into equally sized reference
and testing subsets of data. Calibration of the segmentation pipeline was
then performed by using genetic algorithms without cross-validation on the
reference dataset, whereas only isolated (respectively touching or overlap-
ping) cells were used. All remaining cells were assigned to the rejection
class. Performance evaluation was then carried out using all cells in the
testing dataset (excluding only invalid cells). Carrying out this experiment
for CD11b/APC-stained macrophages yielded combined Jaccard similarity
measurements pc = 0.749 for calibration with only isolated macrophages,
pc = 0.736 for calibration with only touching macrophages, and pc = 0.726
for calibration using only overlapping cells.

6.7.3. Discussion

Comparison of combined Jaccard similarity for calibration based on varying
numbers of hand labelings indicated that segmentation performance ten-
dentiously increased with the number of hand labelings. For most datasets,
usage of 10 hand-labeled cells resulted in good segmentation. Only for DiD-
stained HeLa cell data segmentation performance increased if more than 50
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cells were used for calibration. This indicates that the selection of represen-
tative cells is more important than quantity of the annotated cells.
In the second part of this experiment, only isolated, touching or overlap-

ping cells were used for calibration of the segmentation pipeline. The results
indicated that usage of isolated cells results in the best parameterization of
the segmentation pipeline. However, this piece of information must be inter-
preted very carefully, as isolated cells can touch close neighbor cells in case
of an over-segmentation. As a result, calibrating parameters for splitting of
touching cells may also be possible based on isolated cells.
From a theoretical point of view, using only isolated cells for calibration

results in well-adjusted parameters for preprocessing and �gure-ground sep-
aration. However, parameters for object splitting are mainly determined by
chance. In contrast, all parameters can be adjusted appropriately if touch-
ing cells are used for calibration. Using overlapping cells for calibration is
only useful if the segmentation pipeline is able to perform an overlapping
segmentation of these cells. As the described segmentation pipeline as well
as state of the art methods can only perform a segmentation of touching
cells, using these cells for calibration results in a bias towards small objects
when applying a combined Jaccard similarity based objective function. The
reason for this bias is the larger impact of small cells. An example as well
as a detailed explanation are provided in Figure 6.41. Apart from this, pa-
rameters of cell splitting cannot be calibrated correctly if the reference data
consists of only overlapping cells.
As a result of the described measurements and the bias towards correct

segmentation of smaller objects, touching cells are regarded as optimal input
for the proposed segmentation pipeline, as long as segmentation of overlap-
ping and overlaying cells is not supported.
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(a) (b) (c) (d)

Figure 6.41.: Calibration of the segmentation pipeline with overlapping cells
(a - d) can result in biased parameter optimization when us-
ing the combined Jaccard similarity metric. This bias leads to
an improved splitting for smaller objects, whereas splitting per-
formance for larger objects decreases. Hence, segmentation (d)
results in the best combined performance. More speci�cally, in
(b) a low Jaccard similarity ≈ 0.5 is obtained when evaluat-
ing segmentation performance for the small cell and pj ≈ 1
for the large cell. This results in a combined performance of
≈ 0.75. In (c) Jaccard similarity is mainly degraded by the
small cell with pj ≈ 0.75. Combining this with a Jaccard simi-
larity pj ≈ 1 for the large cell leads to a combined segmentation
performance of ≈ 0.88. Splitting the small cell correctly and
neglecting splitting of the large cell (d) leads to the highest
combined segmentation performance of ≈ 0.95, as pj = 1 for
the small cell and pj ≈ 0.9 for the larger cell.
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6.8. Summary of experiments

In this chapter, research was carried out towards improving runtime, e�-
ciency and segmentation performance for the calibration of a segmentation
pipeline based on hand-labeled data. As this topic is not considered in the
state of the art, the described experiments constitute a contribution.

In order to compare quality of the segmentation for di�erent con�gurations
of the segmentation pipeline to the hand labelings, an objective function is
required. Based on �uorescence micrographs of macrophage cells, segmen-
tation pipeline was calibrated using di�erent objective functions. This ex-
periment clearly showed that the overlap based combined Jaccard similarity
outperforms Hausdor� based measurements, as the latter occasionally re-
sulted in an exclusive segmentation of the cell boundary. This experiment
further demonstrated that using the L1norm should be preferred to alterna-
tive norms, as segmentation performance of all cells should have an equal
impact.

After identi�cation of an objective function, performance of di�erent seg-
mentation methods was compared based on a broad range of �uorescence
image data. A three-fold cross validation was applied for the separation
of reference and testing data, and genetic algorithms were used for opti-
mizing parameters of all method combinations. This experiment clearly
demonstrated that performance di�erences between preprocessing methods
are relatively small. For �gure-ground separation, locally adaptive meth-
ods were outperformed by alternative ones for most datasets. In addition,
the novel graph cut based �gure-ground separation outperformed alternative
approaches for most datasets. For cell splitting, the seeded fast marching
level set method slightly outperformed alternative approaches, particularly
the graph cut based splitting method. Comparing results from automated
image segmentation to inter- and intraobserver results showed that auto-
mated methods can compete with the human performance for simple image
data. In this context, most nuclei and cell data with convex shape, objects
with homogeneous intensity distribution as well as data that does not con-
tain touching or overlapping cells can be considered as simple. Experimental
data con�rmed that information on the cell nuclei allows separation of touch-
ing cells for most data. However, the segmentation of overlapping cells still
remains a challenge. Particularly for overlapping cells, manual annotations
remain more accurate than automated segmentation results. As these eval-
uations were carried out on a broad range of �uorescence micrographs, using
hand-labeled data and automated calibration for a fair comparison of the
methods, this experiment represents an extension to the state of the art.

So far, the area of application for the segmentation pipeline was demon-
strated based on high-quality image data. However, several types of artifacts
can hamper image segmentation in practice, even after careful sample prepa-
ration and image acquisition. Cells expressing di�erent amounts of staining
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can lead to varying intensities of cells in a micrograph, as well as to a high
noise level. In order to study the in�uence of such e�ects on segmentation
performance, micrographs were overlaid with simulated noise and shading
artifacts. The resulting data nicely demonstrated that shading artifacts,
which are very similar to cells of varying intensity, can decrease segmenta-
tion performance. Nevertheless, particularly for these data, the novel graph
cut based �gure-ground separation algorithm was shown to be more robust
against noise and artifacts than the k-means clustering based state of the
art approach.
In order to reduce runtime for calibration of the segmentation pipeline,

more runtime-e�cient optimization methods are required. For identi�ca-
tion of applicable methods, an exploratory parameter space analysis was
performed. As this experiment revealed that parameter spaces were mostly
monotonous, but showed several local performance maxima, usage of very
time-e�cient optimization methods (e.g. the hill-walking method) often re-
sults in a local performance optimum. Hence, optimization methods must
be able to jump out of local performance optima.
Based on this result, genetic algorithms and the coordinate descent method

were considered for optimization and compared to each other. Comparing
Jaccard similarity for the optimal parameter settings identi�ed by GA or
CD showed comparable results for both methods. Comparing the number of
iterations, required until convergence, the coordinate descent method out-
performed genetic algorithms for most data. Comparing GA to CD also
enabled estimation of the error caused by not using a brute force approach
for parameter optimization. It was shown that median Jaccard similarity
using GA or CD optimization should rarely decrease by more than 0.025
compared to brute force optimization.
The last experiment carried out in this section addresses the question of

how many and which kind of data is best to be used for calibration of the
segmentation pipeline. Based on experimental data, it could be shown that
a small amount of about 10 hand-labeled samples often results in a good
calibration of the segmentation pipeline. In addition, it was argued that
representative, ideally touching, but not overlapping data should be used
for calibration.
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7. Summary: Design of e�cient
segmentation pipeline(s) - a
trade-o� between performance
and runtime

Based on experimental data from the previous chapter, two very e�cient
segmentation pipelines were developed. E�cient means that high-quality
calibration of the segmentation pipeline is performed in a short runtime.
The �rst version of this segmentation pipeline performs a trade-o� between
a high segmentation quality and runtime, whereas the second version focuses
on the reduction of runtime. Compared to the �rst segmentation pipeline,
the second version can result in a decreased segmentation performance. How-
ever, due to its short runtime, the second variant can be used in an iterative
work�ow that facilitates the selection of representative reference data.

7.1. Choice of objective function and optimization

strategies

Choice of the objective function is essential for an e�cient calibration of
the segmentation pipeline. Based on quantitative comparison of di�erent
objective functions (Section 6.2, p. 67), the combined Jaccard similarity is
used for calibration of the segmentation pipeline, as Hausdor� distance based
measurements can lead to exclusive segmentation of the object boundary.
Runtime of the calibration is strongly in�uenced by choice of the optimiza-

tion technique. Based on an exploratory parameter space analysis, it can
be concluded that optimization techniques must be able to handle local per-
formance extrema. Comparison of genetic algorithms (GA) to coordinate
descent (CD) optimization techniques (Section 6.6, p. 110) demonstrates
that both methods enable identi�cation of parameter settings with compa-
rable segmentation quality, but convergence of CD is faster. As a result, CD
is used for calibration of the highly e�cient segmentation pipeline.
A further issue that must be addressed is the convergence criterion used

by CD. As this algorithm converges if no new performance maximum is
detected in an iteration, the required number of iterations is unknown for
each new optimization task. Hence, time required for optimization is not
predictable. Analysis of convergence for di�erent combinations of methods

123



7. Design of e�cient segmentation pipeline(s)

and application domains shows that the CD method usually converges after
less than 5 iterations (Section 6.6.2, p. 110). Based on this information,
runtime of the CD method can be restricted by limiting the number of
maximum iterations.

7.2. Focusing on performance and runtime

The �rst segmentation pipeline performs a trade-o� between segmentation
quality and runtime of the calibration process. For the development of
this segmentation pipeline, methods that have not outperformed alternative
methods on any dataset are removed. Hence, runtime of the calibration is
reduced, while the resulting segmentation performance is not in�uenced. Ad-
ditionally, parameter spaces of all image processing methods are redesigned
to improve the trade-o� between runtime and segmentation performance.

Based on comparison of image processing methods for various application
domains (Section 6.3.9, p. 93), MIN as well as DOG based preprocessing
are considered for the segmentation pipeline. For �gure-ground separation,
KM, LOC and GC based methods are utilized, whereas the GLOC method is
removed. Comparison between seeded object splitting methods shows that
choice of the optimal method only leads to small improvements in segmenta-
tion performance as long as information on nuclei is incorporated. As SFM
object splitting showed best performance for two out of three datasets that
contain information on nuclei, SFM is applied for splitting of cells if infor-
mation on nuclei is available. Otherwise, WS is used for splitting of the cells.
As a result, SGC and SWS are removed from this improved segmentation
pipeline.

Apart from removing image processing methods that cannot compete in
practical applications, parameter spaces of the remaining methods are re-
designed to reduce runtime of the parameter optimization. Adjustment of
range and step size of each parameter must be done carefully to preserve
ability to adapt to a broad range of �uorescence image data.

Based on the initial discretization (see Table 5.1, p. 55) and the ex-
ploratory parameter space analysis, range and step size are adjusted for
all parameters. A summary on the resulting ranges of parameters and cor-
responding numbers of discrete values is provided in Table 7.1.

To ensure that calibration of the segmentation pipeline can be performed
over-night, maximum number of iterations of the CD method must be re-
stricted. Analysis of convergence for CD demonstrates that, in practice,
a maximum of �ve iterations is required until convergence. In the follow-
ing, number of iterations that can be carried out in 8 hours are estimated
based on a typical image of 1024× 1024 pixels. For such an image, segmen-
tation usually takes about one second using a single-core implementation
on an Intel Core 2 Duo with 2.66 GHz. A single iteration of CD testing
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7.3. Focusing on runtime

Method Parameter Discretization Number of steps

MIN σm {1, 2, 4, ..., 32} 6
εm {1, 2, 3, ..., 11} 11

DOG σd1 {1, 2, 4, ..., 32} 6
σd2 {4, 8, 16, ..., 256} 7

KM k {0, 1, 2, ..., 10} 11

LOC εl {2, 4, 6, ..., 20} 10
λl {−5,−4,−3, ..., 5} 11

GC σc1 {1, 2, 4, 8} 4
σc2 {4, 8, 16, ..., 128} 6
αc {1, 2, 3, ..., 10} 10
kc {2, 4, 8, 16, 32} 5

WS αw {0, 0.2, 0.4, ..., 1} 6
σw {1, 2, 4, ..., 64} 7

SWS αs {0, 0.2, 0.4, ..., 1} 6
σs {1, 2, 4, ..., 64} 7

SFM rfm {2, 4, 8, 16} 4
λfm {0, 0.45, 0.9, 1.35, 1.8} 5
σfm {1, 2, 4, 8, 16} 5
αfm {1, 2, 4, 8, 16} 5

Table 7.1.: Overview on discretization and number of parameter values for
the di�erent image processing methods from the improved seg-
mentation pipeline.

all combinations of methods requires testing 284 combinations of parame-
ters, if information on the cell nuclei is excluded for segmentation, and 320
combinations of parameters if this information is incorporated. Hence, for
calibration based on a multi-channel image, 284+320 = 604 parameter com-
binations must be tested. This results in a maximum number of 3600s·8

2s·604 ≈ 24
iterations if a runtime of 2s per image is assumed. Hence, maximum number
of iterations for CD is restricted to 8 to enable calibration based on three
reference images in less than 8 hours for multichannel image data.

7.3. Focusing on runtime

The second segmentation pipeline focuses on the reduction of runtime. Hence,
losing a small amount of segmentation performance can be tolerated. For
identi�cation of image processing methods used for this highly time-e�cient
segmentation engine, runtime of all methods was compared. As runtime
of each method depends on its parameterization, parameters were varied
manually according to Table 7.1 to estimate the runtime of each method.
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7. Design of e�cient segmentation pipeline(s)

Table 7.2 summarizes runtime measurements for a representative micrograph
from the macrophage dataset.

Method Min runtime (ms) Max runtime (ms)

MIN 78 281
DOG 200 1373

KM 16 32
LOC 125 140
GLOC 187 1230
GC 900 1100

WS 811 1590
SWS 796 1060
SFM 2409 2686
SGC 1124 25000

Table 7.2.: Runtime estimations for all methods based on a macrophage im-
age of size 1388 × 1040 pixels. Parameters of each method are
varied for estimation of minimum and maximum runtime.

These measurements demonstrate that segmentation pipelines MIN-KM-
WS and MIN-KM-SWS allow the most time-e�cient segmentation. Using
MIN-KM-WS, a runtime between 0.90s and 1.90s can be expected for a 1.44
megapixel image. For MIN-KM-SWS, a runtime between 0.89s and 1.37s
is measured. Using these segmentation pipelines, one iteration of the CD
method requires testing 41 parameter combinations for each of the method
combinations. Hence, a single iteration of the CD method is estimated
to take 0.90s+1.90s

2 41 ≈ 57s for MIN-KM-WS and 0.89s+1.37s
2 41 ≈ 46s for

MIN-KM-SWS. Setting the maximum number of iterations for CD to �ve, a
runtime of less than 9 minutes is achieved using a single core from an Intel
Core 2 Duo with 2.66 GHz.

Focusing solely on runtime, parameterization is optimized for a single com-
bination of methods. This can result in a decreased segmentation perfor-
mance, particularly for blurred micrographs and micrographs showing strong
variations in image intensity, as the graph cut based �gure-ground separation
method is not incorporated. Furthermore, errors caused by the optimization
method sticking in local performance optimum cannot be leveled if only a
single combination of methods is investigated. The e�ect of these errors
can be estimated based on performance measurements in Section 6.3. The
data indicates that errors are between 0 and 7% for the datasets used in
this work. Note that, for these measurements, genetic algorithms were used
for parameter optimization. However, as comparison between GA and CD
showed that both methods result in a similar segmentation performance,
usage of CD is assumed to result in similar estimations.
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7.4. Facilitating the selection of representative

reference samples by an iterative work�ow

Segmentation quality of both segmentation pipelines strongly depends on
selection of the reference samples. This task poses a challenge, particularly
for users with little knowledge of image processing. In order to overcome
this problem, an interactive work�ow is proposed. A further advantage of
this concept is the very small amount of initial hand-labeled data required
for calibration of the segmentation pipeline. For this work�ow, starting with
a single cell is usually su�cient. Based on this hand-labeled reference data,
a calibration of the segmentation pipeline is performed.

By visualizing preliminary segmentation results, information on challeng-
ing cells is provided to the user, as such cells show the largest errors in
segmentation performance. By correcting such cells using interactive soft-
ware tools, the hand-labeled reference data is improved. In turn, using this
improved data usually results in a better segmentation of the cells. An
illustration of this work�ow is depicted in Figure 7.1.

Figure 7.1.: Illustration of the interactive calibration process. Based on a
very small amount of reference samples (usually a single cell
is su�cient), parameter optimization is performed by the CD
method. During calibration, a preliminary segmentation is
shown to the user, presenting the performance for the currently
best con�guration of the segmentation pipeline. During calibra-
tion, the user can approve the segmentation. In this case, CD
is terminated. Alternatively, the user can correct cells interac-
tively. This user input is used to create improved reference data,
and ultimately calibration.
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7.5. Discussion

Using a large number of methods for the segmentation pipeline usually re-
sults in a good segmentation performance, but runtime of the calibration also
increases. That is why, in this work, two e�cient segmentation pipelines us-
ing only a subset of the described image processing methods were presented
that can be optimized more time-e�ciently. For the �rst version of the seg-
mentation pipeline, methods GLOC, SWS and SGC were removed, as they
were outperformed by alternative methods in most application domains. Ad-
ditionally, all parameter spaces were redesigned to enable more time-e�cient
calibration (see Table 7.1, p. 125). In the second version, only methods with
the shortest runtimes were considered. This resulted in the segmentation
pipeline MIN-KM-WS for single-channel data, and MIN-KM-SWS if infor-
mation on nuclei is available. Experimental data showed that using the
segmentation pipeline can lead to a decrease in segmentation performance
of up to 7% (combined Jaccard similarity), but allows using an iterative
work�ow, avoiding the task of selecting representative sample data.

128



8. Conclusion and outlook

As existing software solutions require the user to select a combination of
segmentation methods and to adjust all parameters manually, research was
carried out on a novel image analysis concept enabling automated selec-
tion of segmentation methods and automated optimization of all parameters
based on hand-labeled data. For implementation of this concept, two di�er-
ent modular segmentation pipelines were developed, consisting of the stages
of preprocessing, �gure-ground separation and object splitting. Both seg-
mentation pipelines allow the segmentation of a broad range of �uorescence
micrographs. The �rst segmentation pipeline was developed in such way
that both segmentation performance and runtime are optimized, whereas a
strong focus was put on a short runtime in the second version of the seg-
mentation pipeline. Based on experimental data, it was shown that ten
reference samples often result in a good parameterization of the segmen-
tation pipeline. Assuming that representative reference samples have been
selected, segmentation results are often at least comparable to those from
manually calibrated segmentation pipelines. The reason for this is the large
number of di�erent parameterizations that are tested systematically by the
coordinate descent optimization method. Furthermore, runtime for calibra-
tion of the described segmentation pipelines was shown to be below 8 hours
for three manually annotated reference samples. If a stronger focus is put
on runtime, calibration for a single image takes less than 9 minutes. In
addition, an iterative work�ow was proposed for the more runtime-e�cient
segmentation pipeline, which facilitates the challenging task of selecting rep-
resentative reference data.

The aim of this work was the improvement of e�ciency and automation
in �uorescence image analysis. Due to the low amount of hand-labeled data
required for calibration of the segmentation pipeline, as well as to the low
runtime of the calibration process, it could be concluded that the amount of
time researchers have to spend in the evaluation of their data could strongly
reduced with the proposed image analysis concept. Hence, e�ciency and
automation in �uorescence microscopy image analysis could be improved.

A second topic in this work was carrying out research on image processing
methods that are applicable for segmentation of a broad range of �uores-
cence micrographs. Based on this, the area of application and objectivity
for automated image analysis software will be described. In addition, reduc-
tion of runtime for the calibration based on parallel implementation of the
segmentation pipeline will be discussed and an outlook of this work will be

129



8. Conclusion and outlook

provided.

Area of application for automated image analysis software

In the introduction of this work, �uorescence micrographs were classi�ed
according to the features irregularity, intensity distribution and overlaps.
Based on these features, the current area of application for automated image
analysis software will be described below.
Figure 8.1 provides an overview of segmentation performance for di�erent

combinations of the named features based on the experiments carried out in
this work. This illustration shows that the developed segmentation pipeline
is able to perform a robust segmentation of cells with irregular boundaries
or complex intensity distribution, as long as cells do not touch or overlap
each other. In this case, the results of automated segmentation routines are
often comparable to manual annotation. This demonstrates that, for the
presented data, �gure-ground separation can usually be performed with high
accuracy. An exception to this are micrographs showing strong variations
in intensity, blur or shading artifacts. In order to extend the application
area of automated image analysis, a novel graph cut based �gure-ground
separation algorithm was developed for improving the segmentation for such
micrographs.
Touching and overlapping cells can be considered as the greatest chal-

lenge for the segmentation of �uorescence micrographs. For touching or
overlapping cells, segmentation performance usually strongly decreases if
no additional information on nuclei is available, particularly for cells with
irregular cell boundaries or non-homogeneous intensity distribution. If infor-
mation on nuclei is available, touching cells can often be handled robustly,
but overlapping cells still pose a challenge, as overlaps are not resolved in
the cell splitting step. This is due to the lack of algorithms enabling ro-
bust splitting of overlapping micrographs for di�erent application domains.
Consequently, using automated segmentation methods for these micrographs
results in an erroneous segmentation. Depending on the application, such
errors can impede automated analysis and evaluation of an experiment. In
order to improve applicability of automated image analysis for challenging
objects, two di�erent work�ows are plausible, whereas only the �rst is ap-
plicable for high-throughput scenarios:

1. Prevention of overlapping cells: During slide preparation, cells can
be seeded less con�uently, so that touching or overlapping cells appear
less frequently. Alternatively, only images showing isolated or touching
cells can be captured or selected by the experimenter.

2. Manual correction: Based on fully automatic segmentation, erroneously
segmented objects can be corrected manually by interactive software
tools. For this purpose, application tools for splitting and merging of
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Figure 8.1.: Illustration of combined segmentation performance pc using the
calibrated segmentation pipeline. Measurements denoted with
(S) make use of information on cell nuclei or seeds, whereas
measurements denoted by (N) do not use this information. Min-
imum of intra- and interobserver measurements is denoted by
(H). Note that for the pUL97-stained HeLa cells, Jaccard simi-
larity is shown (orange bars) instead of combined performance.
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cells, and tools for interactively adding regions to objects, or removing
regions from objects, were implemented.

Objectivity of automated image analysis for �uorescent
micrographs

In general, evaluations carried out by using automated image analysis soft-
ware are reproducible and objective. However, a bias can already be im-
plemented at the image acquisition stage. Usually, each captured image
represents only a tiny portion of the complete slide; hence, only a small part
of the cell population is analyzed. Selection of regions of interest that are
captured and used for automated image analysis is thereby done by the ex-
perimenter. As a result, it can happen that only regions showing objects that
con�rm the experimental hypothesis are selected. This results in a biased
evaluation that can be avoided by acquisition and analysis of the complete
object slide. Segmentation of whole slide image data based on the described
segmentation pipeline could result in a long runtime or huge memory re-
quirements, particularly if runtime or memory consumption of an algorithm
increases more than linearly with the number of pixels, which is the case
for all described object splitting routines. This drawback can be eliminated
by tiling the whole slide image into several smaller sub-images. By tiling,
calibration of the segmentation remains possible over-night for whole slide
image data.

Reducing runtime by parallelization

Today, most computers contain multi-core processors as well as multi-core
graphics hardware that can be used for parallel computing. The CPUs hexa-
core (e.g. AMD Phenom II X6) or octa-core (e.g. Intel Xeon E7-2820),
consisting of 6 to 8 processors, can be regarded as state of the art. Mod-
ern graphics cards consist of several hundreds of processors (e.g., a NVIDIA
GeForce GTX 560 TI consists of 448 cores). By using such hardware, run-
time for calibrating the segmentation pipeline can be reduced.

For parallelization of the calibration, the coordinate descent optimization
strategy as well as each of the image processing methods can be considered.
Parallelization of the coordinate descent is easily achievable, as several per-
formance values must be determined for optimization of each coordinate.
Computation of these performance values can be executed in parallel be-
cause sequential dependencies do not exist. As computation of each perfor-
mance measurement requires application of the segmentation pipeline with a
di�erent con�guration, memory requirement increases nearly linearly, while
runtime decreases nearly linearly with the number of processors. Hence, par-
allelizing coordinate descent parameter optimization can e�ciently be done
by using a multi-core CPU.
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Apart from parallelization of the optimization strategy, each method of
the segmentation pipeline can also be considered for parallelization. The
drawback of this strategy is that most of the methods can hardly be paral-
lelized. Examples for this are the watershed transform, fast marching level
sets and the graph cut method. For such algorithms, parallel implemen-
tations require lots of e�ort and time, and performance decreases far from
linearly with the number of multiprocessors. As a result, parallelizing the
coordinate descent optimization strategy is proposed. Afterwards, GPU ac-
celeration can be considered for a further speedup of speci�c algorithms.

Future Research

In this work, applicability of the concept of calibrating a segmentation
pipeline using hand-labeled data was demonstrated for the segmentation
of �uorescence imaging data. However, all methods proposed in this work
focus on segmentation of 2D image data. Thus, future work may include the
development of methods for segmentation of multi-dimensional image data,
including segmentation of 3D, 4D or whole-slide image data, as well as cell
tracking.
Instead of focusing on data with a higher dimension, research might be

carried out to develop segmentation methods that take several image chan-
nels into account. State of the art methods as well as algorithms proposed
in this thesis incorporate information on size and extension of the cell nuclei
during segmentation of the cells. Similarly, information on phase contrast
or further staining could be included to improve segmentation.
A further still unsolved topic is the segmentation of overlapping or over-

laying objects with irregular boundaries or complex intensity distribution.
In this context, independent level sets using information on position and
extension of the nuclei did not show satisfying results (Yan et al., 2008).
Hence, future research could include the development of methods applicable
to segmentation of irregularly overlapping �uorescent micrographs.
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A. Appendix: KM vs. GC
�gure-ground separation

(a) Hand-labeled data

(b) ηmax = 0, σd = 0 (c) ηmax = 25, σd = 0

(d) ηmax = 25, σd = 1 (e) ηmax = 50, σd = 1

Figure A.1.: Examples for di�erent strengths of additive noise component,
parameterized by ηmax, and shading artifacts, parameterized by
σd, for the test image.
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