
Neural Learning of Vector Fields for
Encoding Stable Dynamical Systems

A. Lemme, K. Neumann, R. F. Reinhart, J. J. Steil

Research Institute for Cognition and Robotics (CoR-Lab)
Bielefeld University - Germany

Abstract

The data-driven approximation of vector fields that encode dynamical systems is a persistently hard task in machine
learning. If data is sparse and given in form of velocities derived from few trajectories only, state-space regions exists,
where no information on the vector field and its induced dynamics is available. Generalization towards such regions
is meaningful only if strong biases are introduced, for instance assumptions on global stability properties of the to-be-
learned dynamics. We address this issue in a novel learning scheme that represents vector fields by means of neural
networks, where asymptotic stability of the induced dynamics is explicitly enforced through utilizing knowledge from
Lyapunov’s stability theory, in a predefined workspace. The learning of vector fields is constrained through point-wise
conditions, derived from a suitable Lyapunov function candidate, which is first adjusted towards the training data. We
point out the significance of optimized Lyapunov function candidates and analyze the approach in a scenario where
trajectories are learned and generalized from human handwriting motions. In addition, we demonstrate that learning
from robotic data obtained by kinesthetic teaching of the humanoid robot iCub leads to robust motion generation.

Keywords: Extreme learning machine, neural network, vector fields, dynamical systems learning, motion generation,
movement generation

1. Introduction

The approximation of vector fields from sparse data that
represent dynamical systems, e.g. to encode quantitative
flow visualization [1], optical flow in computer vision [2]
or force fields in motor control [3, 4], is an important but
also persistently hard task for learning algorithms. In re-
cent work, vector fields were applied to learn and generate
complex motions for robots [5, 6]. In such scenarios, train-
ing data typically consist of only few trajectories and thus
leave many regions in the state space with no informa-
tion of the desired vector field. Generalization towards
regions subject to sparse sampling is challenging, because
small errors in the approximation of the vector field can
get amplified during integration and can lead to diverging
behavior of the dynamical system.

Thus, a strong model bias is needed for generalization
which has to be derived from prior knowledge about the
underlying dynamics. In [7], a superposition of irrotational
basis fields is used to approximate a variety of vector pat-
terns, where it is assumed that the data originate from the
gradient of a potential function. Kuroe and Kawakami in-
troduced a combination of neural networks to reconstruct
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vector fields where prior knowledge of inherent vector field
properties is used to enhance the accuracy [8, 9].

Wave propagation [10], which was introduced to dy-
namic path planning in [11], can be used to create poten-
tial fields, which in turn can be adapted to demonstrations
[12]. Following the respective gradients then leads to an
inherently stable dynamical system.

Motion generation methods, developed in computa-
tional imitation learning and programming by demonstra-
tion, appear to be promising in order to generalize to
unseen areas in the workspace by providing stable so-
lutions [13, 14, 15]. The stability of the motion is en-
sured by a linear spring damper system, which generates a
straight line with a biologically plausible velocity profile.
The shape is then induced by adding a perturbation force
term. These time-dependent perturbations are learned by
means of a mixture of Gaussian functions. The force term
is suppressed at the end of the motion ensuring stability,
because only the linear components drive the dynamical
system. An alternative approach to the standard DMP ap-
proach is the task-parameterized Gaussian mixture model
(TpGMM [16]), where the parameterization of the motion
is variable. It models a second order dynamical system,
which uses a probabilistic representation of the demon-
strations. This representation can be parameterized either
time-dependent, task-dependent or in combination.

For motion generation from vector fields, one promi-
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nent approach is the stable estimator of dynamical systems
(SEDS [17]). This learning approach represents vector
fields by a Gaussian mixture of linear dynamical systems.
Learning is achieved by solving a nonlinear constrained
optimization problem formulated as a quadratic program.
The learned dynamical system then complies to a specific
quadratic Lyapunov function. The main advantage of this
method is that the learned dynamics are provably globally
asymptotically stable. On the downside, the stability con-
straints may be too restrictive with respect to the motion
that shall be learned. If the training data and the stabil-
ity constraints contradict, accurate learning of the desired
motion is prevented.

An extension of SEDS called SEDS-II was very recently
published in [18] and implements less conservative stability
conditions as compared to SEDS. This extension relies on
a stabilization approach called control Lyapunov function
derived from Artstein and Sontag’s stability theory [19].
Such functions are used to stabilize nonlinear dynamical
systems through online corrections at runtime and inter-
fere with the learned dynamical system. This methodology
can be applied in combination with any learning approach
to represent the training data and leaves the stability issue
to the online correction mechanism. However, the learning
of dynamics that satisfy desired Lyapunov functions and
guarantees stability without interfering with the data or
requiring online corrections is so far only solved for special
cases and remains difficult in case of using a dynamical
systems represented by vector fields.

These issues are partly addressed in [20]. Here a neural
network approach is used to learn from demonstrations
and to generate motions for the humanoid robot iCub.
The accuracy performance and the stability are addressed
by two separately trained but superimposed neural net-
works. The first network approximates the data while the
second network addresses stability by learning a velocity
field, which implements a contraction towards the desired
movement trajectory. However, the superposition of two
networks seems complex for representing only one motion.
Additionally, no guarantee for stable motion generation is
given.

The contribution of this paper is the introduction of
Lyapunov theory in neural networks learning for stable
motion generation. Therefore, we extend the ideas re-
cently published in [21] and propose a novel learning ap-
proach. This approach is based on the idea to represent
time-independent vector fields in one neural network that
lead to asymptotically stable dynamics in a predefined
workspace. The learning is separated into three steps:
First, construct a suitable Lyapunov candidate through
parameter optimization towards the data. Second, use
the constructed Lyapunov candidate to obtain inequalities
constraints for learning. Third, add inequality constraints
which ensure that the dynamics cannot leave a predefined
region. The inequality constraints are implemented by a
quadratic program, which minimizes the error between the
training data and the output of the network. To keep the

Vector Field
v̂(x)

Data
(X, V )

Dynamical 
System
ẋ = v̂(x)

Lyapunov Candidate
L : ⌦ ! R 
x 7! xT Px 

Sa
m

pl
in

g:
 U

1

Constraints: 
L̇(U) < 0

Stability

In
te

gr
at

io
n

Pa
ra

m
et

er
 o

pt
im

iz
at

io
n:

 P

Neural Network Learning 
with Quadratic Program 

Workspace
 ⌦

Sa
m

pl
in

g:
 U

2

Fig. 1: Schematic view of the proposed approach to learn vector
fields. The learning is separated into two main steps: i) predefine
a proper Lyapunov candidate through parameter optimization and
ii) use this function to sample inequality constraints that are im-
plemented by a quadratic program learning the data and iii) add
constraints to restrict the motion to stay in the defined workspace.
The resulting dynamical system approximates the data and is asymp-
totically stable in the defined workspace after learning.

amount of used constraints to a minimum, a sampling algo-
rithm identifies problematic regions and adds constraints
until the dynamical system is stabilized. Thus, the result-
ing vector field induces stable dynamics by construction.
This approach is schematically illustrated in Fig. 1.

The reminder of this paper is organized as follows. In
Sec. 2 we explain the theoretical basis of training neural
networks with stability constraints. In Sec. 3 we show that
the accuracy of the estimates is highly dependent on the
applied Lyapunov candidate and show two different candi-
dates in comparison. A rigorous analysis conducted here
evaluates the relation between the regularization of the
weights, the obtained errors, and the number of sampled
constraints needed to implement stability. Additionally,
it is demonstrated that the approach generates smooth
and accurate motions in several experiments including also
a kinesthetic teaching scenario with the humanoid robot
iCub. Before we conclude this work in Sec. 5, we discuss
the main features of this approach in Sec. 4.

2. Extreme Learning Machine for Estimation of
Vector Fields

We consider trajectory data that are driven by time in-
dependent vector fields:

ẋ = v(x) ,x ∈ Ω , (1)

where a state variable x(t) ∈ Ω ⊆ Rd at time t ∈ R with di-
mensionality d, defines a state trajectory in the workspace
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Fig. 2: ELM with its three layer structure used in an integration
loop. Only the read-out weights are trained.

Ω. It is assumed that the vector field v(x) is nonlinear
and continuous with a single asymptotically stable point
attractor x∗ with v(x∗) = 0 in Ω. The limit of each tra-
jectory in Ω thus satisfies:

lim
t→∞

x(t) = x∗ : ∀x(0) ∈ Ω . (2)

The key question of this paper is how to learn v as a
function of x by using demonstrations for training and
ensure its asymptotic stability at target x∗ in Ω. The
estimate is denoted by v̂ in the following. The evolution
of motion can then be computed by numerical integration
of ẋ = v̂(x), where x(0) ∈ Ω denotes the starting point of
the motion.

Consider the neural architecture depicted in Fig. 2 for
estimation of v. The figure shows a single hidden layer
feed-forward neural network: x ∈ Rd denotes the input,
h ∈ RR the hidden, and v̂ ∈ Rd the output neurons. The
input is connected to the hidden layer by the input ma-
trix W inp ∈ RR×d. The read-out matrix is given by
W out ∈ Rd×R. For input x, the output of the ith neu-
ron is thus given by:

v̂i(x) =

R∑
j=1

W out
ij f(

d∑
n=1

W inp
jn xn + bj) , (3)

where i = 1, . . . , d and bj is the bias for neuron j.
f(x) = 1/(1 + exp(−x)) denotes the activation function
applied to each neuron in the hidden layer. The compo-
nents of the input matrix and the biases are drawn from a
random distribution and remain fixed after initialization.
This approach is called extreme learning machine (ELM)
[24]. The following experiments reveal that this network
architecture is particularly well suited for incorporation of
stability constraints in the learning.

Let D = (x(k),v(k)) : k = 1 . . . Ntr be the data set for
training where Ntr is the number of samples in the data
set. Supervised learning for ELMs is restricted to the read-
out weights W out and is usually done by ridge regression
in a computationally cheap fashion:

W out =
(
HHT + εI

)−1
HV T , (4)

where H = (h(x(1)), . . . ,h(x(Ntr))) : k = 1 . . . Ntr is a
matrix harvesting the hidden states for each input x(k) in
the training data set, I is the identity matrix, and ε > 0
is a regularization parameter.

2.1. Asymptotically Stable Dynamics

Learning a vector field from few training trajectories
gives only sparse information about the shape of the vec-
tor field in the entire state space. Therefore, considerable
need for generalization towards regions subject to sparse
sampling is obvious. Recent studies have emphasized that
stability of a predefined target plays an important role for
the generalization ability in robotics tasks [17].

In order to analyze the stability of the dynamical system
induced by the neural network, we recall the conditions for
asymptotic stability of arbitrary dynamical systems found
by Lyapunov: A dynamical system is asymptotically stable
at fixpoint x∗ ∈ Ω in the compact and positive invariant
region Ω ⊂ Rd if there exists a continuous and continuously
differentiable function L : Ω→ R

(i) L(x∗) = 0 ,

(ii) L(x) > 0 : ∀x ∈ Ω,x 6= x∗ ,

(iii) L̇(x∗) = 0 ,

(iv) L̇(x) < 0 : ∀x ∈ Ω,x 6= x∗ .

(5)

We assume that a function L satisfying condition (i)-(iii)
is given. In order to obtain a learning algorithm for W out

that also respects condition (iv) of the Lyapunov function
L, we analyze this condition by taking the time derivative
of L and inserting the network’s output v̂i(x):

L̇(x) =
d

dt
L(x)

= (∇xL(x))T · d

dt
x = (∇xL(x))T · v̂

=

d∑
i=1

(∇xL(x))i ·
R∑
j=1

W out
ij · fj(x) < 0 .

(6)

Note that L̇ is linear in the output parameters W out ir-
respective of the form of the Lyapunov function L. For
a given point x ∈ Ω, condition (iv) in Eq. (6) defines a
linear inequality constraint L̇(x) < 0 on the read-out pa-
rameters W out, which can be implemented by a quadratic
programming scheme as first introduced for ELMs in [23].

Hence, the read-out weights are trained by solving a
quadratic program optimizing W out subject to a set of
collected point constraints U = {u1, . . . ,uNu} : u ∈ Ω and
additional weight regularization:

W out = arg min
W

(‖W ·H(X)− V ‖2 + ε‖W‖2)

subject to: L̇(U) < 0 ,
(7)

where the matrix H(X) = (h(x(1)), . . . ,h(x(Ntr))) again
collects the hidden layer states obtained from a given data
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set D = (X,V ) for inputs X and the corresponding out-
put vectors V . The parameter ε again denotes the regu-
larization parameter, and L̇(U) < 0 defines the collected
inequality constraints for a set of points U .

2.2. Positive Invariant Regions

The previous section introduced the implementation of
inequalities, which are derived from a Lyapunov candidate
L, at discrete points. These points are element of a prede-
fined region Ω. However, stability according to condition
(iv) is not stringently achieved in the entire space Ω with-
out consideration of L. Even if the condition (iv) is valid
in Ω, the state of the dynamical system ẋ = v̂(x) can pos-
sibly cross the border of Ω during numerical integration.
In this case, stability cannot be guaranteed, since those
parts of the input space outside Ω are not considered in
the sampling process. Stability is, in principle, enforced
in the largest level set region of the candidate function L
that is completely intersecting with the sampling region Ω.
Each initial point outside this region is potentially subject
to divergence. The identification of such regions is difficult
for arbitrary Lyapunov candidates.

We therefore introduce an additional constraint defined
on the surface of Ω (denoted by ∂Ω) which forces the
learned dynamics to stay in the predefined region. It will
be shown in the following sections that this technique also
stabilizes the dynamics by implementing a positive invari-
ant region Ω. This region can principally have arbitrary
shapes, however, we only use hypercubes where each point
x ∈ Ω on the surface of this cube ∂Ω is mapped onto an
uniquely defined normal vector n(x) ∈ Rd with ‖n(x)‖ = 1
that point outward of the cube. The resulting constraints
are expressed as a scalar product between the normal vec-
tor n(x) and the network’s output v̂(x):

L∂(x) := n(x)T · v̂(x) ≤ 0 : x ∈ Ω . (8)

Note that the scalar product has the same form as Eq. (6)
and is thus linear in W out. It forces the network’s dynam-
ics to stay inside the hypercube implementing a positive
invariant region.

2.3. Sampling Strategy

We introduce the following sampling strategy in order
to minimize the number of samples needed for generaliza-
tion of the local constraints towards the continuous region
Ω. The data set D for training and the region Ω where
the constraints are supposed to be implemented are as-
sumed to be given. As a first step (k = 0), the network
is initialized and trained without any constraints (i.e. the
sample matrices Uki = U0

i = ∅ are empty). In this case
learning can be accomplished by ridge regression, which is
the standard learning scheme for ELMs, see Eq. (4).

In the next step, NC samples Û = {û1, û2, . . . , ûNC}
are randomly drawn from a uniform distribution in Ω and
∂Ω, respectively. Afterwards, the number of samples ν1

fulfilling (iv) of Lyapunov’s conditions of asymptotic sta-
bility (see Eq. (6)) and the number of samples ν2 satisfying
Eq. (8) are determined.

The sampling algorithm stops if more or equal than p
percent of these samples fulfill the continuous constraints,
i.e. νi/NC ≥ p. Otherwise, the most violating sample û
for each constraint is added to the respective sample pool
Uk+1
i = Uki ∪ û to constitute the new sample set Uk+1

i .
The most violating sample û thus maximizes either L̇(û)
or L∂(û) with respect to the Lyapunov candidate L. The
obtained set of samples is then used for training. A pseudo
code of the learning procedure is provided in Alg. 1.

Algorithm 1 Sampling Strategy

Require: data set D, region Ω, counter k = 0, sample
pools Uki = ∅, and ELM v̂ trained with D
repeat

draw NC samples Û = {û1, û2, . . . , ûNC}
ν1 = no. of samples in Û fulfilling condition (iv)
ν2 = no. of samples in Û fulfilling Eq. (8)
if p > ν1

NC
then Uk+1

1 = Uk1 ∪ arg maxu∈Û L̇(u)

if p > ν2
NC

then Uk+1
2 = Uk2 ∪ arg maxu∈Û L∂(u)

train ELM with D and Uk+1
i

until p ≤ νi
NC

: ∀i

Note that the constraints at points U and the input sam-
ples X of the training data are not the same. For learning
according to Eq. (7), it remains to select a set of samples U
in addition to the training inputs X. It was already shown
in [23] that a well-chosen sampling of points U is sufficient
for generalization of the incorporated discrete constraints
towards a continuous region Ω and that stability can be
proven ex-post after learning. This ex-post verification al-
gorithm is based on Taylor approximation of the learned
function.

This is possible since the neural network method allows
analytical differentiation and exploits the linear depen-
dency on the learning parameters in order to use a worst
case approximation by means of Taylor polynomials. The
approximation of the constraint surface is, however, com-
putationally costly and should only be applied if required.
It is also important to note that, in absence of the ver-
ification processes, stability is only given with a certain
probability which is related to the value of p. We use
p = 1 throughout the paper. Note further that sampling
and ex-post verification is only possible in finite regions
and can only enforce local asymptotic stability.

2.4. Learning Lyapunov Candidates

The previous section introduced the learning process
and showed how to use a Lyapunov candidate function
in order to construct stable dynamics. This raises the
important question what kind of Lyapunov candidate is
desirable?
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Fig. 3 illustrates the impact of different Lyapunov can-
didate functions on the approximation ability of the pro-
posed neural network approach for an exemplary motion.
The first row of Fig. 3 shows the used Lyapunov candidates
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Fig. 3: The impact of different Lyapunov candidate functions on
the learning of dynamical systems from data. The first row contains
the respective Lyapunov candidates while the second row depicts
the learned dynamics. The vector field obtained for a quadratic
Lyapunov candidate L = x2 (first column) and the result of learning
when using a proper Lyapunov candidate (second column).

while the second row visualizes the obtained vector fields.
The first column of Fig. 3 shows the results for a simple
candidate function Lq = xTx. This Lyapunov candidate is
not well suited to approximate the example motion (black
line), because it is not possible to find any vector field
that approximates the data and simultaneously satisfies
the constraints given by the Lyapunov candidate function
Lq. Part of the training samples (x(k),v(k)) are violated
by Lq, where violation means that the angle between the
negative gradient of the Lyapunov candidate at point x
and the velocity of the data sample v is bigger than 90◦:

^(−∇L(x(k)),v(k)) > 90◦ ⇔ (∇L(x(k)))T · v(k) > 0
(9)

Note that the derivation in Eq. (6) shows that this is
in contradiction to condition (iv) of Lyapunov’s theorem.
Fig. 3 (second column) shows the learning result for a more
suitable Lyapunov candidate L. The conflict between the
training data and the Lyapunov candidate L is resolved
which leads to an accurate dynamical estimate of this mo-
tion. This example illustrates the importance of selecting
a proper Lyapunov candidate L that matches the target
motion. Otherwise, a mismatch between data approxima-

tion and stability constraints remains and the reproduced
trajectory does not follow the target motion (see first ex-
ample), because the constraints overrule the training data
in the learning process. The second example shows that a
suitable Lyapunov candidate resolves this mismatch such
that the learned dynamics closely follow the demonstra-
tions.

In the following, the violation of the training data by
a Lyapunov candidate is formalized and it is shown how
a parameterized Lyapunov candidate can be fitted to the
data in order to minimize this violation.

The violation of the training data D by a Lyapunov
candidate L(x) can be formalized by generalizing condi-
tion (iv) of Lyapunov’s theorem and defining the following
measure:

M(L) =
1

Ntr

Ntr∑
k=1

Θ
[
(∇L(x(k)))T · v(k)

]
, (10)

where Θ is the ramp function. Only samples (x(k),v(k))
where the scalar product between ∇L(x(k)) and v(k) is
positive are counted in M .

We exemplary consider parameterized Lyapunov candi-
dates L(x) of the following quadratic form in the experi-
ments similar to the Lyapunov functions in [25]:

LP (x) =
1

2
(x− x∗)T · P · (x− x∗) . (11)

This Lyapunov function LP will be employed for learning
to implement asymptotic stability at the known fixpoint
x∗. Note that (i) - (iii) describe the general form of a
Lyapunov function and are fulfilled by Eq. (11) if P is
positive definite and symmetric.

We use the measure M to adapt P in order to prevent
a strong violation of the training data D. If a data set D
is given, P can be chosen as:

P = arg min
P∈P

M(L) with

M(L) =
1

Ntr

Ntr∑
k=1

Θ
[
(xi(k))T · P · vi(k)

]
,

(12)

The minimization operator on the right hand side of
Eq. (12) can be formulated as a nonlinear program. We use
successive quadratic programming based on quasi-Newton
methods for optimization of Eq. (12) [26]. To prevent an
infinite stretching of P through minimization of M we re-
strict the eigenvalues λi of P to α ≤ λi ≤ 1,∀i = 1 . . .K,
where α = 0.1 in the following experiments.

Since Eq. (6), which is used to enforce asymptotic sta-
bility, is linear in the read-out parameters W out and at
the same time independent of the form of the respective
Lyapunov candidate L, it is also possible to use more
complex Lyapunov candidates of higher complexity. A re-
cently published study in [22] shows how to learn flexible
Lyapunov candidates that can be used to enforce asymp-
totic stability for complex and robust motion generation in

5



robotic imitation learning. We nevertheless use Lyapunov
candidates of quadratic form for the sake of clarity in this
paper.

3. Learning Stable Point-to-Point Motions

In order to analyze the impact of the learning with con-
straints, we perform experiments where the networks learn
from human-demonstrated handwriting motions collected
for movement primitive learning [27]1. We first consider a
single motion from this data set which is composed of three
S-like trajectories with 250 samples each and the end-point
located at the origin (see Fig. 4). The trajectories are in
millimeters and get scaled to decimeters for the following
experiments.

The ELM is initialized with R = 100 neurons in the
hidden layer. The biases bi and components of W inp

are initialized randomly drawn from the uniform distri-
bution on [−1, 1]. The regularization parameter is set to
ε = 10−4. The parameterized Lyapunov candidate func-
tion is adapted to the training data according to Eq. (12).
The set of constraints U1 consists of samples drawn from
the region Ω = [−0.9, 2.5] × [−2.0, 3.4], which covers the
relevant region of the task space, while the sample pool
U2 is located on the surface of Ω. The sampling strategy
used NC = 1000 and p = 1 to find regions that violate the
constraints.

Sampled

Unsampled

2

1

3

Fig. 5: The impact of sampling stability constraints for the learning
only in one half of the workspace.

Fig. 4 (left) illustrates an example of learning the S-
like trajectories by an ELM without the usage of stability
constraints. In the areas close to the demonstrations, the
trajectories converge to an attractor next to the target.
In other regions of the space, they either converge to spu-
rious attractors or diverge. In contrast, Fig. 4 (center)
and Fig. 4 (right) show the same network setups trained
with the stabilization method using Eq. (11) with metric
P chosen according to Eq. (12). The center plot shows
the learning results with consideration of the constraints

1The data set was collected at the LASA institute at EPFL.

drawn from the Lyapunov candidate function without ap-
plication of the border constraints given by Eq. (8). The
right plot visualizes the additional enforcement of the pos-
itive invariance of the workspace Ω by sampling it’s sur-
face ∂Ω according to Eq. (8). The generated trajectories
converge to the target, because the constrained learning
process enforces asymptotic stability at target x∗. This
ensures that the target is reached when starting from any
point in the workspace Ω. The adopted Lyapunov function
candidate enables the accurate modeling of the dynamics.
Furthermore, Fig. 4 demonstrates that the sampling of the
workspace border ensures the convergence of the state to
the target attractor irrespective of the starting point in
the workspace Ω. Note that only a few constraints are
necessary to incorporate stability (green and red ’+’ in
Fig. 4). The sampling algorithm adds constraints only in
critical regions which results in a non-uniform distribution
of constraint samples in U1 and U2.

3.1. Systematic Evaluation

In the following a systematic evaluation of the new
stability mechanism is conducted using four performance
measures. The first measure is the root mean square error

Etr =
√

1
Ntr

∑
k ‖v(k)− v̂(x(k))‖2 evaluated on the train-

ing data, which quantifies the ability to approximate the
training data. The second and third measure quantify the
stability of the dynamical system numerically. For these
measures, we simulate the motion generation by choosing
Ns = 100 starting points uniformly drawn in Ω and iterate
the dynamical system for Nmax time steps with step size
∆t = 0.1. If the end-point x(Nmax) of the reproduced tra-
jectory is in the vicinity of the desired attractor x∗ = 0,
the learned dynamics are rated as converged to the tar-
get (i.e. ‖x(Nmax)− x∗‖ < δ = 1), otherwise as diverged.
The distance dist = ‖x(Nmax)−x∗‖ of the end-point to the
attractor for each converged trajectory constitutes the sec-
ond measure. The amount of the converged trajectories S
divided by the number of starting points Ns quantifies the
stability of the system as a third measure. In addition, the
CPU Time used for training conducted on a x86 64 linux
machine with at least 4 GB of memory and a 2+ GHz intel
processor in matlab R2010a2 is recorded. All results are
averaged over 10 different network initializations.

The results of the experiments for networks with and
without stabilization for different regularization parame-
ters ε are shown in Tab. 1. The performance of imple-
menting the desired attractor is given by the Euclidean
distance (dist). The ratio S/Ns shows how many motions
generated according to the discretization of the dynamics
are close to the desired target. Note that S/Ns = 1 holds
for all constrained networks. The results show that the
stability ratio increases with increasing regularization ε for
networks trained without constraints. This reveals a trade-
off between stability and accuracy for the unconstrained

2MATLAB. Natick, Massachusetts: The MathWorks Inc., 2010.
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Fig. 4: Impact of incorporating asymptotic stability into the learning. The figure shows the dynamics of a network trained without stability
constraints (left), the dynamics of a network trained solely with stability constraints derived from the Lyapunov function (center), and the
dynamics of the same network trained with constraints for stabilization and restriction to the workspace (right).

without constraints
lg ε dist S/Ns Etr CPU Time [s]
−8 .431±.067 .686±.053 .21±.0006 0.22 ± 0.001
−6 .431±.018 .813±.031 .22±.0008 0.21 ± 0.001
−4 .401±.013 .917±.053 .24±.0027 0.22 ± 0.001
−2 .382±.010 .965±.044 .30±.0028 0.20 ± 0.001

with constraints
lg ε dist S/Ns Etr # U1 # U2 CPU Time [s]
−8 .049±.014 1 .26 ± .0008 52.1 ± 6.1 47.8 ± 8.4 638.6 ± 184.2
−6 .043±.016 1 .28 ± .0011 32.7 ± 5.9 26.4 ± 4.7 249.1 ± 80.4
−4 .055±.014 1 .31 ± .0014 23.3 ± 4.4 12.4 ± 4.6 139.2 ± 44.9
−2 .020±.012 1 .38 ± .0015 8.5 ± 0.7 13.6 ± 3.6 59.4 ± 18.6

Tab. 1: Network learning with and without constraints compared for different regularization parameters ε averaged over 10 trails. Additional
information about the learning time and the amount of derived constraints from the Lyapunov function (#U1) and from the workspace
constraint (#U2) is given. S/Ns is the ratio of converged motions.

networks. For the explicitly stabilized ELMs, the trade-off
is resolved, because all networks converge to the target in-
dependent of the regularization while the network can still
approximate the training data accurately for less regular-
ization. Thus, the target attractor is imprinted very close
to the desired attractor (cf. dist in Tab. 1). The succes-
sive implementation of the constraints is computationally
more costly (this is strongly depending on the number of
constraint samples #U1 and #U2 that are used for train-
ing ) but can be reduced by increasing regularization. The
main reason for this effect is that the generalization of
the constraint becomes easier with lower model complex-
ity (larger ε). Note that the positioning of the samples
is non-uniform, because the samples are only placed in re-
gions that are more prone to instability with respect to the
Lyapunov candidate and the border of the workspace Ω.

Fig. 5 demonstrates the locality of the proposed ap-
proach, please compare to Fig. 4. In this experiment, only
the region below the black stroke is subject to constraint
sampling and no border constraint is considered. Three
regions in this experiment are interesting: the spiral re-

peller in region 1 is still active since the data close to this
region forces the dynamics to this behavior. The spiral
and spurious attractor in region 2, that appears in the left
plot of Fig. 4, is deleted due to the sampling of constraints.
Region 3 shows that the stability constraint can be general-
ized towards regions not subject to sampling, since no data
is present in this region, thanks to the strong model bias
induced by the stability constraints. This example shows
that the locality of the approach is no disadvantage. In-
stead, locality adds high flexibility to the approach: The
application of different constraints in selected regions is
possible.

3.2. Results on the LASA Data Set

This section extends the evaluation of the proposed ap-
proach to experiments performed on the entire data set of
hand-writing motions from [27]. Fig. 6 shows an investi-
gation of several measures on each of the twenty motion
shapes separately. The plot in the upper part of the figure
shows the value for M defined in Eq. (10) for each motion
of the data set. It is revealed that the simple quadratic
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Lyapunov candidate Lq = xTx strongly violates the train-
ing data for some of the motions. This violation can be
relaxed by introduction of the matrix P . Some of the mo-
tions are not violated to a high degree anymore after op-
timization of LP - e.g. the sharp-C shaped motion. These
results support the idea that optimized Lyapunov candi-
dates enhance the class of accurately learnable motions.
Fig. 6 (second row) shows the training error obtained in
this experiment. It is observable that the training error is
high for motions which also produce a high value of viola-
tion M . This is expected because the networks are forced
to implement the Lyapunov candidate. Thus, if the Lya-
punov candidate violates the training data, the network
dynamics will not accurately reproduce the demonstra-
tions. It is also revealed that the training error is decreas-
ing for lower regularization parameters ε. The additional
experiments show that the regularization parameter is still
important to tune. However, the stability of the resulting
estimate is mainly influenced by the sampling scheme. The
plot in the third row of Fig. 6 shows the number of samples
#U1 drawn form the Lyapunov candidate in the learning
phase until implementation of asymptotic stability. The
third plot in the figure shows the number of samples #U2

drawn on the border of Ω to enforce this region to be pos-
itive invariant. The last plot in Fig. 6 contains the time
needed for learning. These plots summarize the results for
networks with different regularization parameters. Two
results can be deduced from this experiment. First, there
is a clear correlation between difficult motions - in the
sense of M - and the number of applied samples: difficult
motions need more samples for implementation of stabil-
ity. Second, networks with stronger regularization need
less constraints to enforce stability. Note that the number
of samples for some motions could be reduced significantly
by increasing the regularization parameter from ε = 10−8

to ε = 10−2. This is advantageous, because the time for
learning strongly depends on the required number of con-
straints which is related to the number of iterations of the
quadratic program. Higher regularization leads obviously
to a reduced need for constraint sampling and therefore
significantly accelerates the learning process. Regulariza-
tion is an appropriate means to tackle the curse of dimen-
sionality of the constraint sampling in higher dimensional
spaces Ω.

Fig. 7 shows the motions learned from human demon-
strations (black) from the LASA benchmark data set with
the reproduced trajectories (red) and the surrounding vec-
tor field (blue). Note that all networks produce stable and
accurate motions which converge to the given target point
attractor due to the combination of the optimized Lya-
punov candidate and constrained learning.

3.3. Generating Motions for iCub

The data considered in the previous experiments are 2D
trajectories. In this section, we show that the approach
is also suited for 3D trajectories recorded in a program-
ming by demonstrations scenario with the humanoid robot

iCub [28]. Humanoid robots are typically designed to solve
service tasks in environments where a high flexibility is
required. Reliable and robust adaptability by means of
learning is thus a prerequisite for such systems.

The experimental setting is illustrated in Fig. 8. A hu-
man tutor physically guides iCub’s left arm using a re-
cently established force control on the robot [29, 30]. The
tutor can thereby actively move the joints of the arm to
place the end-effector at a desired position. Beginning
on the right side of the workspace, the tutor moves the
arm in a half circle towards the left side of the workspace
were the motion stops. This procedure is repeated five
times, where the position of the end-effector of the robot
is recorded. Each of the five recorded trajectories has be-
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Fig. 8: Kinesthetic teaching of the humanoid robot iCub (a) and
learned motions for iCub (b). Dynamical estimate with demonstra-
tions and reproductions without stabilization (b, top) and with sta-
bilization through application of a Lyapunov candidate (b, bottom).

tween Ntraj = 125 and Ntraj = 167 discrete data points,
which are used for learning without further preprocessing.
The hidden layer of the networks estimating the motion
by means of a dynamical system consists of R = 100 neu-
rons and the regression parameter is ε = 10−5 in this
experiment. The networks’ weights and biases are ini-
tialized randomly from a uniform distribution in the in-
terval [−10, 10] due to the small ranges of the motion in
meters. The results of the experiment are visualized in
Fig. 8. The figure shows the impact of the explicit stabi-
lization on the estimation of the dynamics by visualizing
the reproduction of the motions by the robot iCub. The
estimation of the networks trained without explicit stabi-
lization is prone to instabilities even if the motions stay
close to the demonstrations in the beginning, see Fig. 8
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Important parameters for learning
L Suitable Lyapunov candidate to draw constraints from
Ω Workspace to implement constraints
NC Amount of samples drawn from region Ω used in Alg. 1
ε Regression parameter
R Number of neurons in the hidden layer

W inp Initialization range of the input weight matrix (input scaling)
a, b Initialization ranges of the nonlinearity see Eq. (4)

Tab. 2: Important parameters which need to be set by the user before network learning. The last set of parameters are needed already for
the standard ELM approach. The first part of the table gives the new parameters important for inducing stability.

(upper right). The networks trained with the Lyapunov
candidate from Eq. (11) achieve a good performance and
stability, see Fig. 8 (lower right).

4. Discussion

The methods described above ensure the resulting dy-
namical system to be asymptotically stable in a predefined
workspace describing a local region of the state space. The
main advantage of the proposed approach is the inherently
decoupled process of finding a proper Lyapunov candidate
and implementing the dynamical systems itself in one neu-
ral network. In principle it allows the implementation of
arbitrary Lyapunov candidates and can thus lead to flexi-
ble, robust, and accurate dynamical systems learned from
data. However, to reach a good approximation ability of
the training data, it is essential that the Lyapunov function
does not contradict the training data. Therefore, finding a
suitable Lyapunov candidate is one of the key steps in this
approach, because a quadratic energy function is for many
motions too restrictive and results in poor reproduction of
the targeted dynamics. The idea of using Lyapunov sta-
bility constraints and incorporate them into the model is
not new. In the SEDS approach [17] a quadratic Lyapunov
function is used, but arbitrary Lyapunov functions cannot
be exploited. The SEDS-II approach [18] tackles this is-
sue by correcting the dynamical system online according
to a Lyapunov function adapted to the data. The main
difference to the proposed approach is that in SEDS-II the
adapted Lyapunov function is not incorporated into the
vector field representation itself, but is applied in parallel.
Our approach is capable of learning complex dynamics in a
neural network which satisfy arbitrary Lyapunov functions
without an additional correction mechanism.

The learning process proposed in this paper uses con-
straints that are generated by a sampling strategy. It iden-
tifies potential unstable regions and uses them to construc-
tively enforce stability into the learned dynamics. The lo-
cality of the approach allows to choose desired regions for
the implementation of constraints. This flexibility is ad-
vantageous in cases where a variety of different stability
constraints has to be satisfied. They can appear in several
bounded regions in possibly lower dimensional subregions
of the input space. Also, multiple attractors can be im-
plemented with this approach. Although, the locality of

this approach prevents a direct stability guarantee for a
previously defined basin of attraction, asymptotic stabil-
ity can be effectively proven ex-post if needed. The prove
exploits the linear dependency on the learning parameters
and uses a worst case approximation by means of Taylor
polynomials (see [23]).

An important difference of related approaches to the
presented approach is the guarantee of global asymptotic
stability. The main advantage of global stability is the
missing requirement of a predefined local workspace. How-
ever, the relevant region of the task space, in which the
dynamical system is applied to generalize and perform mo-
tions, is in many applications bounded and known a pri-
ori. In case of a strong perturbation, pushing the state of
the dynamical system outside of the stable region, a high-
level controller can react and apply counter measures (e.g.
emergency stop of the robot or switch to another motion).

The presented results show that the required number
of samples and thus the time for training can be signifi-
cantly reduced by increasing the regularization parameter
of the ELM. This becomes important if we consider the
scalability of this approach, because scaling the approach
to higher dimensions depends on the number of samples
needed to implement stability.

In Tab. 2 we summarize the important parameters,
which are set before the learning process starts. Note that
only three additional parameters are added (top) to the
standard ELM parameters (bottom). The Lyapunov can-
didate L is the most important variable to reach good
performance in approximating the training data. The size
of the workspace is mostly task dependent and needs to
be determined accordingly. The amount of samples NC
drawn from this region is a crucial parameter with respect
to computation time. If too few samples are drawn, the
probability to implement asymptotic stability decreases,
because regions for which the learner violates the stability
constraints maybe overlooked. Thus, this parameter needs
to be linked to the size of the workspace Ω.

5. Conclusion

In this paper we proposed a novel scheme for learning
vector fields from sparse data by using Lyapunov’s stabil-
ity theory. Due to the strong bias applied to the model,
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induced by stability assumptions, save and stable motion
generation in the workspaces becomes feasible. The learn-
ing scheme incorporates linear inequality constraints, de-
rived from a Lyapunov candidate function, which are ef-
ficiently implemented by quadratic programming at dis-
crete points of the workspace. Despite the fact that the
constraints are only satisfied at discrete points by con-
struction, they can be generalized towards a continuous
region by using a simple sampling strategy also presented
in this work.

In addition, the accuracy of the estimated dynamical
systems is enhanced by using a parameterized Lyapunov
candidate, which is adapted to the data. In fact, the
proposed scheme allows the integration of more complex
Lyapunov candidates [22]. Further experiments show the
impact of regularization regarding performance and the
number of samples needed for learning stable dynamics.
Finally, we demonstrate that the learning scheme can
cope with data obtained by kinesthetic teaching of the hu-
manoid robot iCub and that the learned dynamical system
is able to generate smooth and accurate reproductions in
a three-dimensional task space.
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Fig. 6: Investigation on 20 motion shapes of the LASA data set. Evaluation of the violation measure M on each motion (first row) comparing
the quadratic Lyapunov candidate Lq with the parameterized version Lp. The following plots show the results using Lp and different
regularizations ε. The second row show the the training errors. The next two rows show the amount of samples used for learning without
and with border constraints. At last we show the CPU time during learning when using Lp with both types of constraints.
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Fig. 7: Dynamical system estimates for 20 motions from the LASA benchmark data set. The black lines represent the training data and the
red lines are the reproduced motions. The learned vector fields are depicted in blue. The green and red ’+’ are the constraints in U1 and U2

after the final iteration of Algorithm 1. The borders of regions Ω are shown by dashed lines.
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