
Semantic Question Answering System over Linked Data
using Relational Patterns

Sherzod Hakimov Hakan Tunc Marlen Akimaliev Erdogan Dogdu

TOBB University of Economics and Technology, Ankara, Turkey

{hakimov, hakantunc, makimaliev, edogdu}@etu.edu.tr

ABSTRACT
Question answering is the task of answering questions in natural
language. Linked Data project and Semantic Web community
made it possible for us to query structured knowledge bases like
DBpedia and YAGO. Only expert users, however, with the
knowledge of RDF and ontology definitions can build correct
SPARQL queries for querying knowledge bases formally. In this
paper, we present a method for mapping natural language
questions to ontology-based structured queries to retrieve direct
answers from open knowledge bases (linked data). Our tool is
based on translating natural language questions into RDF triple
patterns using the dependency tree of the question text. In
addition, our method uses relational patterns extracted from the
Web. We tested our tool using questions from QALD-2, Question
Answering over Linked Data challenge track and found promising
preliminary results.
Categories and Subject Descriptors
H.5.2 [Information Systems]: User interfaces-natural language,
Theory and methods

I.2.1 [Artificial Intelligence]: Natural language interfaces.
General Terms
Algorithms, Performance, Design, Experimentation.
Keywords
Question Answering, Pattern Extraction, Linked Data, Semantic
Web.

1. INTRODUCTION

Recently, question answering on the web gained momentum due
to the large structured knowledge bases such as DBpedia,
Freebase, YAGO that regularly collect information from open and
ever expanding knowledge resources such as Wikipedia.

Web of Data and Linked Data

Linked data refers to the Web of data in contrast to the Web of
documents. Linked data extends the current Web that consists of
documents and the links between documents. In the case of linked

data or the Web of data, meaningful links with types between data
elements exist unlike the links in the Web of documents where
links are only untyped references in the form of hyperlinks.
Linked data is therefore more structured and machine processable;
applications can traverse this Web of data, easily find useful data
and pinpoint the right information [12]. In the Web of documents,
or the current web, searching and finding information is by way of
parsing documents and looking for useful information by
matching keywords and terms or using some natural language
processing techniques; thus it is a dummy search. Instead, users
can query structured databases like DBpedia1, YAGO2 or
Freebase3 to find the exact information such as who the president
of the USA, or the population of Italy, etc. However, querying
these knowledge bases requires the knowledge of RDF data model
and the related ontologies. For example the above facts are
presented in DBpedia in the form of RDF triples as follows:
<United_States, leaderName, Barack_Obama> and <Italy,
populationCencus, “59.464.644”>. But someone to find this
information, that person has to know leaderName and
populationCencus properties and the regarding entities to
formulate the queries.

If search engines or question answering systems can make use of
linked data and translate the natural language questions to linked
data queries automatically, users can find the intended
information much faster.

DBpedia

DBpedia is one of the central linked data datasets in Linked Open
Data4 project [13]. It is created by converting infobox information
of Wikipedia articles to RDF data model. Latest version of
DBpedia contains more than 3.77 million things, including
764.000 persons, 573.000 places, 112.000 music albums, 72.000
films and 18.000 video games, 192.000 organizations, etc. in 111
different languages.

In this paper, we present a method to translate natural language
questions to linked data queries. We developed a tool that takes
natural language questions, converts them to SPARQL5 queries
for DBpedia and answer the questions automatically.

We explain our approach in detail in Section 2. In Section 3 we
present the evaluation results and show that the method is capable
of translating natural language questions to SPARQL queries and
provide an answer. We present the related work in section 4 and

1 http://dbpedia.org
2 http://yago-knowledge.org
3 http://freebase.com
4 http://linkeddata.org
5 http://www.w3.org/TR/rdf-sparql-query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

some discussion on the topic in section 5, and conclude in Section
5.

2. PROPOSED APPROACH

The question answering system in our approach consists of the
following 3 main steps:

(1) Triple pattern extraction: Candidate RDF triples are

extracted from natural language questions using the
dependency graph and POS tags of the questions.

(2) Entity and property extraction: Using RDF triples from
the previous step, all subject, predicate and objects are
mapped to DBpedia entities, classes or properties.

(3) Answer extraction: Candidate triples are queried over
DBPedia and all the answers matching the expected
type of a question are ranked and the top result is given
as an answer.

These steps are explained below in detail:

2.1 Triple Pattern Extraction

In order to delve into the linked data ocean we have to talk with
its own language that is not English or any other natural language.
Just like words’ combination build up a sentence, linked data is
the building block of the Semantic Web and it is based on uniform
triples. Thus, we need to translate natural language words into
triples’ elements and sentences into triples.

To extract triples from the natural language sentences, we are
using Stanford CoreNLP6 (SCNLP) [2] [3] library which provides
a number of natural language analysis tools. SCNLP basically
generates the tree structure of the English language text. It helps
us analyze the parts of speech (POS), tags of phrases and word
dependencies. By utilizing this information, our triple pattern
extraction tool determines the triple patterns and the relations
between the triples.

We provide a sentence to SCNLP and receive dependency tree as
the one shown in Figure 1. The tree includes the POS tags and the
relation of children phrases with its parent. The relations include a
wide range of tags such as subject, object and their types,
participial modifier, prepositional modifier and copula. Starting
from the root of the tree we examine each node with its children.
We treat a node and its children as a subtree and by looking their
POS tags, relation tags and children’s own triples, we decide if
they make up any triple. We apply the same procedure to the
children of the node. Then, we consider if the triples should be
combined by one common element of the triples. We traverse the
whole tree recursively.

For each query sentence, we build a triple bucket. Initially the
bucket is empty and in the end it must have all the essential
extractable triples from the sentence. In our method, we treat the
triple including root as the main triple and derive other triples as
dependent on it through its elements as subjects or objects.

So far, we have covered the basic and intermediate grammar
structures; there is still a great deal of sentence structure though.
Verbs are the central elements in the decision process.

6 http://nlp.stanford.edu/software/corenlp.shtml

Dependency graph received from the SCNLP for the question
“Which book is written by Orhan Pamuk” is given below.

Figure 1 Dependency graph

This is the structure we receive from the library. From this
structure, through the POS tags of the words and relations
between them, we define triples. The above example results with
two triples:

[Subject: ?x] [Predicate: rdf:type] [Object: book]
[Subject: ?x] [Predicate: written] [Object: Orhan Pamuk]

Since the entrance point is 'written', the first triple candidate is
between ‘written’ and its children ‘book’, ‘is’, and ‘Pamuk’. The
verbs are the most likely predicates of triples. As we can find out
which child the questioned element is by traversing the tree and
locating the question word, we extract our first triple from the
sentence: [Subject: ?x] [Predicate: written] [Object: Orhan
Pamuk]. Then each child will be evaluated recursively.

Next step is going through other words treating them as roots. The
only other triple will be derived from ‘book’ and its child ‘which’.
Since ‘which’ is the questioned element and it determines the
word ‘book’, we resolve the questioned element as a book, thus:
[Subject: ?x] [Predicate: rdf:type] [Object: book].

Although there are different cases for extracting triples, the above
example shows the basic structure.

2.2 Entity and property extraction

Let T={t1 ,.., tn} be the set of triple patterns produced for a
question in the previous triple pattern extraction step. For each
triple pattern ti in T we take the subject and the object of the triple
and find the matching DBpedia entities if they exist. Then we find
a set of possible properties found in DBpedia for each predicate ti.
Let this property set be Pti={pi1 ... p(im)}. Therefore, we have
cardinality of Pti possible triples for each ti. By using all members
of T, we can build ‘n’ piece of triples. By using all possibilities
we can build ∏ (cardinality of Ptn) (from 1 to n). For example if T
has three members each has 2, 5 and 3 possible predicates
consecutively. Then there will be 30 possible triple query list. Let
Q={q1 ... qproduct of P(t1 to tn)} be the set of candidate queries
constructed using T.

Our goal is to find all possible DBpedia entities, classes, object
and data properties for each ti in T using string similarity and
relational patterns. First, all subject and objects are mapped to
DBpedia entities or classes. Then, all predicates are mapped to
DBpedia object or data properties.

2.2.1 Find object properties
Predicates with POS tag value that are verbs are searched among
DBpedia object properties using a string similarity score.

For example, predicate “written” is searched for properties in
DBpedia property list that have the greatest common

subsequence. The score is calculated by the length of greatest
common subsequence over the length of the word. For instance,
the property ‘taxiDriver’ encapsulates the word ‘river’. With this
scoring scheme, we eliminate these kinds of miscalculations. The
object property dbont:writer7 is the most similar object property
for the predicate “written”.

We constructed a list of all possible pairs of object properties
from DBpedia with similar meanings. For each item we have
calculated the similarity score by using Lin and Wu & Palmer
metrics in WordNet::Similarity [14]. If the metrics are higher than
the assigned threshold (0.75 for Lin, 0.85 for Wu & Palmer) then
both properties are regarded as properties with similar meanings.
By doing so, we get a list of object properties with their similar
meanings. For the sample question, dbont:writer has similar
meaning with dbont:author; the full list can be obtained from the
project homepage.

For each tn in T object properties are added to the list of possible
predicates for tn as Pt1(“written”) = {dbont:writer, dbont:author}.
The predicate rdf:type is already a DBpedia object property,
which is found in Triple Extraction step.

2.2.2 Find data properties
Predicates with POS tag value noun or adjective is searched for
candidate DBpedia data properties using score of string similarity.

For the question “What is the height of Michael Jordan?” the
resulting triple will be:
[Subject: Michael Jordan] [Predicate: height] [Object: ?x].

Using common subsequence of the predicate, “height” is mapped
to dbont:height.

We constructed a list of adjectives for all data properties defined
by DBpedia ontology using API WordNet Searching (JAWS)8. By
doing so, we get a list of data properties with their adjective
meanings.

For the question “How tall is Michael Jordan?” the resulting
triple will be :
[Subject: Michael Jordan] [Predicate: tall] [Object: ?x].
Using adjective list the predicate “tall” is mapped to
dbont:height.

For each tn in T, object properties are added to the list of possible
predicates for tn as Pt1(“height”) = {dbont:height} or Pt1(“tall”) =
{dbont:height}.

2.2.3 Find properties using relational patterns
Question answering systems need patterns that denote relations
between entities. There would be cases where the intended
questions can be phrased in numerous ways. For instance, a
question about the birth place of Michael Jackson can be built as
“Where was Michael Jackson born in?” or “Where was Michael
Jackson born at?”. However, in order to query DBpedia we will
need the object property of “birthPlace”. For this reason, we have
to construct a “birthPlace” relationship with “Michael Jackson”
and Gary, Indiana, where he was born in, for both questions. Here,

7 dbont: http://dbpedia.org/ontology/
8 http://lyle.smu.edu/~tspell/jaws/

“born in” and “born at” are text phrases and we need a tool that
maps such phrases into the same object property.

Nakashole et al. [6] proposed a method that constructs a large
resource for textual patterns that denotes binary relations between
entities, organizing patterns into a set of synonymous patterns
similar in spirit to WordNet [7]. The patterns are semantically
typed and organized into a subsumption taxonomy called PATTY.
Extracting textual patterns from a corpus follows two steps:

Firstly, relational patterns from a corpus are compiled and then a
semantically typed structure is imposed on them.

After extracting the textual patterns from a corpus, this work
arranges the patterns in a semantic taxonomy. A prefix-tree for
frequent patterns is used to determine inclusion, mutual inclusion,
or independence. The prefix-tree stores support sets of patterns.
An algorithm is developed for obtaining set intersections from
prefix-tree. Although this work effectively extracts patterns from
a corpus and arranges these patterns in a semantic taxonomy, it
has some drawbacks.

Firstly, the PATTY extraction and mining algorithms were run on
two different input corpora: the New York Times archive and the
English edition of Wikipedia. PATTY taxonomy is restricted to a
number of relational patterns because these corpora include a
certain number of textual patterns that denote a relation between
entity pairs. It does not make use of a universal corpus that can
include nearly all available facts about entities or textual phrases
combining entity pairs.

Next, PATTY includes some noisy data that is not related with the
actual pattern; conversely, it harnesses patterns that have an
opposite meaning against the actual pattern. For instance, the
“deathPlace” relation name includes a textual pattern “born in”
which is opposed to “died at” and has a relatively strong
confidence. The cause of this PATTY’s behavior is related to the
noisy data existing in corpora.

In this work, we used relational patterns extracted by PATTY.

Considering the question “Where did Abraham Lincoln die?”
the resulting triple is :
[Subject: Abraham Lincoln] [Predicate: die] [Object: ?x] .
Using relational patterns the predicate “die” is mapped to
DBpedia properties like dbont:deathPlace, dbont:birthPlace,
dbont:residence.

The word “die” may occur in many forms in pattern texts. We
count all occurrences of the word and assign it as a frequency
value to the relative property. Thus, dbont:birthPlace,
dbont:residence, dbont:deathPlace contain the word “die”. In
this case, we rank properties based on frequency values.
Frequency of the predicate “die” is higher for dbont:deathPlace
than dbont:birthPlace and dbont:residence. Frequency of a
pattern determines the ranking score of the predicate. We use this
ranking score in Answer E step to assign priorities between
queries.

For each tn in T object properties are added to the list of possible
predicates for tn as Pt1(“die”) = {dbont:deathPlace,
dbont:birthPlace, dbont:residence}.

2.2.4 Find entity classes
For each t in T if ti contains rdf:type9 predicate then the object of
tn is regarded as DBpedia entity class. For the question “Which
book is written by Orhan Pamuk?” the word “book” is mapped to
dbont:Book using label properties of all entity classes.

2.2.5 Find named entities and disambiguate
For each t in T if ti contains named entity it is disambiguated
using method described in [15]. The disambiguation method is
based on page links between all spotted named entities.
Additionally, we assign score of string similarity between spotted
entities and named entity, which needs to be disambiguated.

For the question “Which book is written by Orhan Pamuk?” the
named entity “Orhan Pamuk” in [Subject: ?x] [Predicate:
written] [Object: Orhan Pamuk] is disambiguated to
res:Orhan_Pamuk10.

Finally, for each t in T we have a list of candidate properties
denoted with P. For each p in P of any t we add candidate query q
to Q with ranking score of property based on ranking method
explained in 2.3.1.

2.3 Answer Extraction

In this step, we construct all possible queries using object and data
properties extracted from step 2.2 and execute on knowledge base.

For the question “Which book is written by Orhan Pamuk?” the
extracted triples are given below.

[Subject: ?x] [Predicate: rdf:type] [Object: book]
[Subject: ?x] [Predicate: written] [Object: ?Orhan Pamuk]

predicate “written” is mapped to dbont:writer and dbont:author,
object “book” is mapped to dbont:Book class,
subject “Orhan Pamuk” is mapped to res:Orhan_Pamuk.

So, candidate queries for our sample question are given below.

Query1:
 SELECT ?x WHERE {
 ?x rdf:type dbont:Book.
 ?x dbont:writer res:Orhan_Pamuk.
 }

Query2:
 SELECT ?x WHERE {
 ?x rdf:type dbont:Book.
 ?x dbont:author res:Orhan_Pamuk.
 }

2.3.1 Ranking of Answers
We run all queries against the knowledge base and we assign
ranking score for each triple in a query. The ranking score of a
query is calculated by multiplying frequencies of all used triples’
predicates. Extracted answers are ranked based on ranking scores.

9 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
10 http://dbpedia.org/resource/Orhan_Pamuk

2.3.2 Expected Type Checking
Depending on questions, expected answer type is determined for
each question type. The list is given below.

Table 1 Expected answer types for questions

Question Type Expected answer type

Who Person, Organization, Company

Where Place

When Date

How many Numeric

‘Which’ questions are usually followed by a noun that is extracted
by using step in 2.1and there is no need to check answer type.

Finally, we execute all constructed queries. Candidate answers
matching expected type of a question are ranked based on ranking
score. The candidate with the highest-ranking score is given as an
answer.

3. EVALUATION

We evaluated our system based on DBpedia questions that are
used in QALD-211 workshop open challenge (Question answering
over linked data workshop as part of ESWC 2012 Extended
Semantic Web Conference). The test set contains 100 questions.

We excluded some of the questions that contain YAGO classes,
YAGO entities and DBpedia RDF properties. We selected
questions where query relies only on properties from DBpedia
ontology without any links to other knowledge bases such as
YAGO. The remaining set contains 55 questions. Results for each
question is available at project homepage12.

Table 2 Precision, Recall and F1 values

 Precision Recall F1

Our method 83 % 32 % 46 %

As results in Table 2 suggest, our tool performs well for finding
correct answers to attempted questions with precision 83%. It
indicates that the tool provides the correct answer most of the time
if the question type is implemented. However, our tool can
process only 32% of questions (18 questions out of 55) and
provides an answer with 83% precision (15 correct answers out of
18) yet due to incomprehensiveness of Triple and Entity and
property extraction methods.

4. RELATED WORK

Yahya et al. [5] present a method to answer questions by
segmenting questions into phrases, mapping phrases to semantic

11 http://greententacle.techfak.uni-

bielefeld.de/~cunger/qald/index.php?x=challenge&q=2
12 http://wis.etu.edu.tr/qas

entities, classes and relations, and disambiguating all semantic
entities jointly by using integer linear programming. Unlike them,
we solve two problems separately. First, we get candidate triples
then disambiguate the entities and find DBPedia properties. Our
methods differ especially in using external data such as relational
patterns.

Unger et al. [4] present a system that uses templates to be filled by
using parse trees of questions. After, each entity in queries is
instantiated to knowledge base entity using statistical entity
identification and predicate detection. In our method, however, we
do not have any template queries. For each question we build a
query bucket to question DBPedia.

Ferrucci et al. [1] demonstrated a new kind of deep question
answering system called Watson. A key element in Ferrucci et
al.’s approach is to decompose questions into several cues and
sub-cues, with the aim to get answers for variations of cues.

Pythia et al. [9] present a system that relies on deep linguistic
analysis of questions. They constructed manually vocabulary of
meaning representations of a given ontology. The system can
process linguistically complex questions using the constructed
lexicon. We, on the other hand, constructed our own vocabulary
(relation patterns) too, but extracted from large corpora using all
relations in DBPedia.

FREyA [10] relies on user’s feedback for the question to
disambiguate the entity and select the most appropriate one. Their
method is in need of supervision to train the system. In our
system, the solution is fully automated and unsupervised.

PowerAqua [11] is a question answering system over based on
data combined from different and distributed sources. The
possible drawback of using different sources may result in
incomplete, low quality or noisy data. Using heterogeneous data is
important in the future of Semantic Web and Question Answering
Systems. However, we only use DBPedia in our implementation
to benefit from homogeneity of the data. In future projects, being
able to use heterogeneous ontologies jointly is going to be crucial.

5. DISCUSSION

Our tool lacks the ability to map all questions to triples using
method described in 2.1. For some questions, triple extraction step
provides candidate triples for a question but finding appropriate
object property by only using the list of DBpedia properties and
relational patterns is not enough. For instance, the question “Is
Frank Herbert still alive?” is mapped to [Subject: Frank
Herbert] [Predicate: is] [Object: alive] from triple extraction
step. The triple should be mapped to [Subject: Frank Herbert]
[Predicate: deathDate] [Object: ?x]. Neither relational patterns
contain the word “alive” nor the list of DBpedia properties. Thus,
the new methods should be implemented to overcome this kind of
issues.

Translating questions to candidate triples using triple extraction in
2.1 should be adapted to respond to more comprehensive
questions. Even though our tool is not complete yet, the method
based on dependency graph is promising. The dependency graph
is giving all the necessary information for a text to build up the
triples as long as the implementation covers all the subtree
patterns.

Although the method described in [6] effectively extracts patterns
from a corpus and arranges these patterns in a semantic taxonomy,
it has some drawbacks.

Firstly, the PATTY extraction and mining algorithms were run on
two different input corpora: the New York Times archive and the
English edition of Wikipedia. PATTY taxonomy is restricted to a
number of relational patterns because these corpora include a
certain number of textual patterns that denote a relation between
entity pairs. It does not make use of a universal corpus that can
include nearly all available facts about entities or textual phrases
combining entity pairs.

Next, PATTY includes some noisy data that is not related with the
actual pattern; conversely, it harnesses patterns that have an
opposite meaning against the actual pattern. For instance, the
“deathPlace” relation name includes a textual pattern “born in”
which is opposed to “died at” and has a relatively strong
confidence. The cause of this PATTY’s behavior is related to the
noisy data existing in corpora.

Extracted relational patterns in [6] consist of only object
properties. There is a research gap for extracting relational pattern
for data properties. Additionally, relational patterns should be
extracted from large corpora to capture all possible expressions
used in natural language.

6. CONCLUSION

We presented a tool for translating natural language questions to
SPARQL queries. Our tool is based on extracting candidate triples
using dependency graph and part of the speech tags of a question.
Then, disambiguating and replacing triples with DBpedia property
and entities using subject, predicate and object values in candidate
queries. Finally, based on ranking score of queries and the
expected answer type of the questions, the answer is presented to
the user. Evaluation on the selected questions showed promising
results and a room for improvement.

As for the future work, triple extraction method should be
improved to handle a broad range of questions. Also, relational
patterns for object and data properties can be extracted from large
corpora, the web.

7. REFERENCES

[1] Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D.,
Kalyanpur, A. A., ... & Welty, C. 2010. Building Watson: An
overview of the DeepQA project. AI Magazine, 59–79.

[2] Toutanova, K., & Manning, C. D. 2000. Enriching the
Knowledge Sources Used in a Maximum Entropy.
Proceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large
Corpora (EMNLP/VLC-2000), 63–70.

[3] Toutanova, K., Klein, D., Manning, C. D., & Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic
dependency network. Proceedings of HLT-NAACL 2003,
252–259.

[4] Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C. N.,
Gerber, D., & Cimiano, P. 2012. Template-based question
answering over RDF data. Proceedings of the 21st
international conference on World Wide Web - WWW 2012 -

Ontology Representation and Querying: RDF and SPARQL,
639–648.

[5] Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M.,
Tresp, V., & Weikum, G. 2012. Natural Language Questions
for the Web of Data. Empirical Methods in Natural
Language Processing and Natural Language Learning
(EMNLP 2012).

[6] Nakashole, N., Weikum, G., & Suchanek, F. 2012. PATTY:
A Taxonomy of Relational Patterns with Semantic Types.
Empirical Methods in Natural Language Processing and
Natural Language Learning (EMNLP 2012).

[7] M. M. Stark and R. F. Riesenfeld. Wordnet: An electronic
lexical database. In Proceedings of 11th Eurographics
Workshop on Rendering. MIT Press, 1998.

[8] M. De Marneffe, B. MacCartney, and C. Manning. 2006.
Generating typed dependency parses from phrase structure
parses. Proceedings of LREC, 6:449–454, 2006.

[9] C. Unger and P. Cimiano. 2011. Pythia: Compositional
meaning construction for ontology-based question answering
on the Semantic Web. In Proceedings of the 16th
International Conference on Applications of Natural
Language to Information Systems (NLDB 2011).

[10] Damljanovic, D., Agatonovic, M., & Cunningham, H. 2011.
FREyA: An interactive way of querying Linked Data using

natural language. Proceedings of the 1st Workshop on
Question Answering over Linked Data (QALD-1), ESWC
2011.

[11] Lopez, V., Fernandez, M., Stieler, N., & Motta, E. 2011.
PowerAqua  : supporting users in querying and exploring the
Semantic Web content. Semantic Web Journal.

[12] Bizer, C., Heath, T., Berners-Lee, T. 2009. Linked data-the
story so far. Int. Journal on Semantic Web and Information
Systems, Special Issue on Linked Data, 4(2), 1–22, 2009.

[13] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker,
C.,Cyganiak, R., Hellmann, S. 2009. DBpedia - A
crystallization point for the Web of Data. Journal of Web
Semantics: Science, Services and Agents on the World Wide
Web, 7(3), 154-165, 2009.

[14] Pedersen, T., Patwardhan, S., & Michelizzi, J. 2004.
WordNet:: Similarity: measuring the relatedness of concepts.
In Demonstration Papers at HLT-NAACL 2004 (pp. 38-41).
Association for Computational Linguistics.

[15] Hakimov, S., Oto, S. A., & Dogdu, E. 2012. Named Entity
Recognition and Disambiguation using Linked Data and
Graph-based Centrality Scoring. In Proceedings of the 4th
International Workshop on Semantic Web Information
Management, SIGMOD 2012.

