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ABSTRACT 
Question answering is the task of answering questions in natural 
language. Linked Data project and Semantic Web community 
made it possible for us to query structured knowledge bases like 
DBpedia and YAGO. Only expert users, however, with the 
knowledge of RDF and ontology definitions can build correct 
SPARQL queries for querying knowledge bases formally. In this 
paper, we present a method for mapping natural language 
questions to ontology-based structured queries to retrieve direct 
answers from open knowledge bases (linked data). Our tool is 
based on translating natural language questions into RDF triple 
patterns using the dependency tree of the question text. In 
addition, our method uses relational patterns extracted from the 
Web. We tested our tool using questions from QALD-2, Question 
Answering over Linked Data challenge track and found promising 
preliminary results. 
Categories and Subject Descriptors 
H.5.2 [Information Systems]: User interfaces-natural language, 
Theory and methods 

I.2.1 [Artificial Intelligence]: Natural language interfaces. 
General Terms 
Algorithms, Performance, Design, Experimentation. 
Keywords 
Question Answering, Pattern Extraction, Linked Data, Semantic 
Web. 

1. INTRODUCTION 
 

Recently, question answering on the web gained momentum due 
to the large structured knowledge bases such as DBpedia, 
Freebase, YAGO that regularly collect information from open and 
ever expanding knowledge resources such as Wikipedia. 

Web of Data and Linked Data 

Linked data refers to the Web of data in contrast to the Web of 
documents. Linked data extends the current Web that consists of 
documents and the links between documents. In the case of linked 

data or the Web of data, meaningful links with types between data 
elements exist unlike the links in the Web of documents where 
links are only untyped references in the form of hyperlinks. 
Linked data is therefore more structured and machine processable; 
applications can traverse this Web of data, easily find useful data 
and pinpoint the right information [12]. In the Web of documents, 
or the current web, searching and finding information is by way of 
parsing documents and looking for useful information by 
matching keywords and terms or using some natural language 
processing techniques; thus it is a dummy search. Instead, users 
can query structured databases like DBpedia1, YAGO2 or 
Freebase3 to find the exact information such as who the president 
of the USA, or the population of Italy, etc. However, querying 
these knowledge bases requires the knowledge of RDF data model 
and the related ontologies. For example the above facts are 
presented in DBpedia in the form of RDF triples as follows: 
<United_States, leaderName, Barack_Obama> and <Italy, 
populationCencus, “59.464.644”>. But someone to find this 
information, that person has to know leaderName and 
populationCencus properties and the regarding entities to 
formulate the queries. 

If search engines or question answering systems can make use of 
linked data and translate the natural language questions to linked 
data queries automatically, users can find the intended 
information much faster.  

DBpedia 

DBpedia is one of the central linked data datasets in Linked Open 
Data4 project [13]. It is created by converting infobox information 
of Wikipedia articles to RDF data model. Latest version of 
DBpedia contains more than 3.77 million things, including 
764.000 persons, 573.000 places, 112.000 music albums, 72.000 
films and 18.000 video games, 192.000 organizations, etc. in 111 
different languages. 

In this paper, we present a method to translate natural language 
questions to linked data queries. We developed a tool that takes 
natural language questions, converts them to SPARQL5 queries 
for DBpedia and answer the questions automatically. 

We explain our approach in detail in Section 2. In Section 3 we 
present the evaluation results and show that the method is capable 
of translating natural language questions to SPARQL queries and 
provide an answer. We present the related work in section 4 and 

                                                                    
1 http://dbpedia.org 
2 http://yago-knowledge.org 
3 http://freebase.com 
4 http://linkeddata.org 
5 http://www.w3.org/TR/rdf-sparql-query 
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some discussion on the topic in section 5, and conclude in Section 
5.  

2. PROPOSED APPROACH 
 

The question answering system in our approach consists of the 
following 3 main steps: 

 
(1) Triple pattern extraction:  Candidate RDF triples are 

extracted from natural language questions using the 
dependency graph and POS tags of the questions. 

(2) Entity and property extraction: Using RDF triples from 
the previous step, all subject, predicate and objects are 
mapped to DBpedia entities, classes or properties. 

(3) Answer extraction: Candidate triples are queried over 
DBPedia and all the answers matching the expected 
type of a question are ranked and the top result is given 
as an answer. 
  

These steps are explained below in detail: 
 

2.1 Triple Pattern Extraction 
 
In order to delve into the linked data ocean we have to talk with 
its own language that is not English or any other natural language. 
Just like words’ combination build up a sentence, linked data is 
the building block of the Semantic Web and it is based on uniform 
triples. Thus, we need to translate natural language words into 
triples’ elements and sentences into triples. 

 
To extract triples from the natural language sentences, we are 
using Stanford CoreNLP6 (SCNLP) [2] [3] library which provides 
a number of natural language analysis tools. SCNLP basically 
generates the tree structure of the English language text. It helps 
us analyze the parts of speech (POS), tags of phrases and word 
dependencies. By utilizing this information, our triple pattern 
extraction tool determines the triple patterns and the relations 
between the triples. 
 
We provide a sentence to SCNLP and receive dependency tree as 
the one shown in Figure 1. The tree includes the POS tags and the 
relation of children phrases with its parent. The relations include a 
wide range of tags such as subject, object and their types, 
participial modifier, prepositional modifier and copula. Starting 
from the root of the tree we examine each node with its children. 
We treat a node and its children as a subtree and by looking their 
POS tags, relation tags and children’s own triples, we decide if 
they make up any triple. We apply the same procedure to the 
children of the node. Then, we consider if the triples should be 
combined by one common element of the triples. We traverse the 
whole tree recursively. 

 
For each query sentence, we build a triple bucket. Initially the 
bucket is empty and in the end it must have all the essential 
extractable triples from the sentence. In our method, we treat the 
triple including root as the main triple and derive other triples as 
dependent on it through its elements as subjects or objects. 

 
So far, we have covered the basic and intermediate grammar 
structures; there is still a great deal of sentence structure though. 
Verbs are the central elements in the decision process. 
                                                                    
6 http://nlp.stanford.edu/software/corenlp.shtml 

 
Dependency graph received from the SCNLP for the question 
“Which book is written by Orhan Pamuk” is given below. 

Figure 1  Dependency graph 

This is the structure we receive from the library. From this 
structure, through the POS tags of the words and relations 
between them, we define triples. The above example results with 
two triples: 

[Subject: ?x ] [Predicate: rdf:type ] [Object: book ] 
[Subject: ?x ] [Predicate: written] [Object: Orhan Pamuk ] 

Since the entrance point is 'written', the first triple candidate is 
between ‘written’ and its children ‘book’, ‘is’, and ‘Pamuk’. The 
verbs are the most likely predicates of triples. As we can find out 
which child the questioned element is by traversing the tree and 
locating the question word, we extract our first triple from the 
sentence: [Subject: ?x ] [Predicate: written ] [Object: Orhan 
Pamuk ]. Then each child will be evaluated recursively. 

Next step is going through other words treating them as roots. The 
only other triple will be derived from ‘book’ and its child ‘which’. 
Since ‘which’ is the questioned element and it determines the 
word ‘book’, we resolve the questioned element as a book, thus: 
[Subject: ?x ] [Predicate: rdf:type ] [Object: book ]. 

Although there are different cases for extracting triples, the above 
example shows the basic structure. 

2.2 Entity and property extraction 
 

Let T={t1 ,.., tn} be the set of triple patterns produced for a 
question in the previous triple pattern extraction step. For each 
triple pattern ti in T we take the subject and the object of the triple 
and find the matching DBpedia entities if they exist. Then we find 
a set of possible properties found in DBpedia for each predicate ti. 
Let this property set be Pti={pi1 ... p(im)}. Therefore, we have 
cardinality of Pti possible triples for each ti. By using all members 
of T, we can build ‘n’ piece of triples. By using all possibilities 
we can build ∏ (cardinality of Ptn) (from 1 to n). For example if T 
has three members each has 2, 5 and 3 possible predicates 
consecutively. Then there will be 30 possible triple query list. Let 
Q={q1 ... qproduct of P(t1 to tn)} be the set of candidate queries 
constructed using T. 

Our goal is to find all possible DBpedia entities, classes, object 
and data properties for each ti in T using string similarity and 
relational patterns. First, all subject and objects are mapped to 
DBpedia entities or classes. Then, all predicates are mapped to 
DBpedia object or data properties.  

2.2.1 Find object properties 
Predicates with POS tag value that are verbs are searched among 
DBpedia object properties using a string similarity score. 

For example, predicate “written” is searched for properties in 
DBpedia property list that have the greatest common 



subsequence. The score is calculated by the length of greatest 
common subsequence over the length of the word. For instance, 
the property ‘taxiDriver’ encapsulates the word ‘river’. With this 
scoring scheme, we eliminate these kinds of miscalculations. The 
object property dbont:writer7 is the most similar object property 
for the predicate “written”. 

We constructed a list of all possible pairs of object properties 
from DBpedia with similar meanings. For each item we have 
calculated the similarity score by using Lin and Wu & Palmer 
metrics in WordNet::Similarity [14]. If the metrics are higher than 
the assigned threshold (0.75 for Lin, 0.85 for Wu & Palmer) then 
both properties are regarded as properties with similar meanings. 
By doing so, we get a list of object properties with their similar 
meanings. For the sample question, dbont:writer has similar 
meaning with dbont:author; the full list can be obtained from the 
project homepage. 

For each tn in T object properties are added to the list of possible 
predicates for tn as Pt1(“written”) = {dbont:writer, dbont:author}. 
The predicate rdf:type is already a DBpedia object property, 
which is found in Triple Extraction step. 

2.2.2 Find data properties 
Predicates with POS tag value noun or adjective is searched for 
candidate DBpedia data properties using score of string similarity. 
 
For the question “What is the height of Michael Jordan?”  the 
resulting triple will be:   
[Subject: Michael Jordan ] [Predicate: height ] [Object: ?x ].  
 
Using common subsequence of the predicate, “height” is mapped 
to  dbont:height. 
 
We constructed a list of adjectives for all data properties defined 
by DBpedia ontology using API WordNet Searching (JAWS)8. By 
doing so, we get a list of data properties with their adjective 
meanings. 
 
For the question “How tall is Michael Jordan?”  the resulting 
triple will be : 
[Subject: Michael Jordan ] [Predicate: tall ] [Object: ?x ].  
Using adjective list the predicate “tall” is mapped to 
dbont:height. 
 
For each tn in T, object properties are added to the list of possible 
predicates for tn as Pt1(“height”) = {dbont:height} or Pt1(“tall”) = 
{dbont:height}. 
 

2.2.3 Find properties using relational patterns 
Question answering systems need patterns that denote relations 
between entities. There would be cases where the intended 
questions can be phrased in numerous ways. For instance, a 
question about the birth place of Michael Jackson can be built as 
“Where was Michael Jackson born in?” or “Where was Michael 
Jackson born at?”. However, in order to query DBpedia we will 
need the object property of “birthPlace”. For this reason, we have 
to construct a “birthPlace” relationship with “Michael Jackson” 
and Gary, Indiana, where he was born in, for both questions. Here, 

                                                                    
7 dbont: http://dbpedia.org/ontology/ 
8 http://lyle.smu.edu/~tspell/jaws/ 

“born in” and “born at” are text phrases and we need a tool that 
maps such phrases into the same object property. 
 
Nakashole et al. [6] proposed a method that constructs a large 
resource for textual patterns that denotes binary relations between 
entities, organizing patterns into a set of synonymous patterns 
similar in spirit to WordNet [7]. The patterns are semantically 
typed and organized into a subsumption taxonomy called PATTY. 
Extracting textual patterns from a corpus follows two steps: 
 
Firstly, relational patterns from a corpus are compiled and then a 
semantically typed structure is imposed on them. 

 
After extracting the textual patterns from a corpus, this work 
arranges the patterns in a semantic taxonomy. A prefix-tree for 
frequent patterns is used to determine inclusion, mutual inclusion, 
or independence. The prefix-tree stores support sets of patterns. 
An algorithm is developed for obtaining set intersections from 
prefix-tree. Although this work effectively extracts patterns from 
a corpus and arranges these patterns in a semantic taxonomy, it 
has some drawbacks. 

 
Firstly, the PATTY extraction and mining algorithms were run on 
two different input corpora: the New York Times archive and the 
English edition of Wikipedia. PATTY taxonomy is restricted to a 
number of relational patterns because these corpora include a 
certain number of textual patterns that denote a relation between 
entity pairs. It does not make use of a universal corpus that can 
include nearly all available facts about entities or textual phrases 
combining entity pairs. 

 
Next, PATTY includes some noisy data that is not related with the 
actual pattern; conversely, it harnesses patterns that have an 
opposite meaning against the actual pattern. For instance, the 
“deathPlace” relation name includes a textual pattern “born in” 
which is opposed to “died at” and has a relatively strong 
confidence. The cause of this PATTY’s behavior is related to the 
noisy data existing in corpora. 

 
In this work, we used relational patterns extracted by PATTY. 
 
Considering the question “Where did Abraham Lincoln die?”  
the resulting triple is  :  
[Subject: Abraham Lincoln ] [Predicate: die ] [Object: ?x ] .  
Using relational patterns the predicate “die” is mapped to 
DBpedia properties like dbont:deathPlace, dbont:birthPlace, 
dbont:residence. 
 
The word “die” may occur in many forms in pattern texts. We 
count all occurrences of the word and assign it as a frequency 
value to the relative property. Thus, dbont:birthPlace, 
dbont:residence, dbont:deathPlace contain the word “die”. In 
this case, we rank properties based on frequency values. 
Frequency of the predicate “die” is higher for dbont:deathPlace 
than dbont:birthPlace and dbont:residence. Frequency of a 
pattern determines the ranking score of the predicate. We use this 
ranking score in Answer E step to assign priorities between 
queries. 
 
For each tn in T object properties are added to the list of possible 
predicates for tn as Pt1(“die”) = {dbont:deathPlace, 
dbont:birthPlace, dbont:residence}.  
 



2.2.4 Find entity classes 
For each t in T if ti contains rdf:type9 predicate then the object of 
tn is regarded as DBpedia entity class. For the question “Which 
book is written by Orhan Pamuk?” the word “book” is mapped to 
dbont:Book using label properties of all entity classes. 
 
2.2.5 Find named entities and disambiguate 
For each t in T if ti contains named entity it is disambiguated 
using method described in [15]. The disambiguation method is 
based on page links between all spotted named entities. 
Additionally, we assign score of string similarity between spotted 
entities and named entity, which needs to be disambiguated.  
 
For the question “Which book is written by Orhan Pamuk?” the 
named entity “Orhan Pamuk” in [Subject: ?x ] [Predicate: 
written] [Object: Orhan Pamuk ] is disambiguated to 
res:Orhan_Pamuk10. 
 
Finally, for each t in T we have a list of candidate properties 
denoted with P. For each p in P of any t we add candidate query q 
to Q with ranking score of property based on ranking method 
explained in 2.3.1. 
 

2.3 Answer Extraction 
 

In this step, we construct all possible queries using object and data 
properties extracted from step 2.2 and execute on knowledge base. 
 
For the question “Which book is written by Orhan Pamuk?” the 
extracted triples are given below. 
 
[Subject: ?x ] [Predicate: rdf:type ] [Object: book ] 
[Subject: ?x ] [Predicate: written] [Object: ?Orhan Pamuk ] 
 
predicate “written” is mapped to dbont:writer and dbont:author, 
object  “book” is mapped to dbont:Book class, 
subject  “Orhan Pamuk” is mapped to res:Orhan_Pamuk. 
 
So, candidate queries for our sample question are given below. 
 
Query1: 
   SELECT ?x WHERE { 
 ?x    rdf:type          dbont:Book. 
 ?x   dbont:writer    res:Orhan_Pamuk. 
   } 
 
Query2: 
   SELECT ?x WHERE { 
 ?x    rdf:type            dbont:Book. 
 ?x    dbont:author    res:Orhan_Pamuk. 
   } 
 
2.3.1 Ranking of Answers 
We run all queries against the knowledge base and we assign 
ranking score for each triple in a query. The ranking score of a 
query is calculated by multiplying frequencies of all used triples’ 
predicates. Extracted answers are ranked based on ranking scores. 
 

                                                                    
9 http://www.w3.org/1999/02/22-rdf-syntax-ns#type 
10 http://dbpedia.org/resource/Orhan_Pamuk 

2.3.2 Expected Type Checking 
Depending on questions, expected answer type is determined for 
each question type. The list is given below. 
 

Table 1 Expected answer types for questions 

Question Type Expected answer type 

Who Person, Organization, Company 

Where Place 

When Date 

How many Numeric 

 
‘Which’ questions are usually followed by a noun that is extracted 
by using  step in 2.1and there is no need to check answer type. 
 
Finally, we execute all constructed queries. Candidate answers 
matching expected type of a question are ranked based on ranking 
score. The candidate with the highest-ranking score is given as an 
answer. 
 

3. EVALUATION 
 

We evaluated our system based on DBpedia questions that are 
used in QALD-211 workshop open challenge (Question answering 
over linked data workshop as part of ESWC 2012 Extended 
Semantic Web Conference). The test set contains 100 questions.  
 
We excluded some of the questions that contain YAGO classes, 
YAGO entities and DBpedia RDF properties. We selected 
questions where query relies only on properties from DBpedia 
ontology without any links to other knowledge bases such as 
YAGO. The remaining set contains 55 questions. Results for each 
question is available at project homepage12. 
 

Table 2 Precision, Recall and F1 values 

 Precision Recall F1 

Our method 83 % 32 % 46 % 

 
As results in Table 2 suggest, our tool performs well for finding 
correct answers to attempted questions with precision 83%. It 
indicates that the tool provides the correct answer most of the time 
if the question type is implemented. However, our tool can 
process only 32% of questions (18 questions out of 55) and 
provides an answer with 83% precision (15 correct answers out of 
18) yet due to incomprehensiveness of Triple and Entity and 
property extraction methods. 
 

4. RELATED WORK 
 

Yahya et al. [5] present a method to answer questions by 
segmenting questions into phrases, mapping phrases to semantic 
                                                                    
11 http://greententacle.techfak.uni-

bielefeld.de/~cunger/qald/index.php?x=challenge&q=2 
12 http://wis.etu.edu.tr/qas 



entities, classes and relations, and disambiguating all semantic 
entities jointly by using integer linear programming. Unlike them, 
we solve two problems separately. First, we get candidate triples 
then disambiguate the entities and find DBPedia properties. Our 
methods differ especially in using external data such as relational 
patterns. 
 
Unger et al. [4] present a system that uses templates to be filled by 
using parse trees of questions. After, each entity in queries is 
instantiated to knowledge base entity using statistical entity 
identification and predicate detection. In our method, however, we 
do not have any template queries. For each question we build a 
query bucket to question DBPedia. 
 
Ferrucci et al. [1] demonstrated a new kind of deep question 
answering system called Watson. A key element in Ferrucci et 
al.’s approach is to decompose questions into several cues and 
sub-cues, with the aim to get answers for variations of cues. 

 
Pythia et al. [9] present a system that relies on deep linguistic 
analysis of questions. They constructed manually vocabulary of 
meaning representations of a given ontology. The system can 
process linguistically complex questions using the constructed 
lexicon. We, on the other hand, constructed our own vocabulary 
(relation patterns) too, but extracted from large corpora using all 
relations in DBPedia. 

 
FREyA [10] relies on user’s feedback for the question to 
disambiguate the entity and select the most appropriate one. Their 
method is in need of supervision to train the system. In our 
system, the solution is fully automated and unsupervised. 

 
PowerAqua [11] is a question answering system over based on 
data combined from different and distributed sources. The 
possible drawback of using different sources may result in 
incomplete, low quality or noisy data. Using heterogeneous data is 
important in the future of Semantic Web and Question Answering 
Systems. However, we only use DBPedia in our implementation 
to benefit from homogeneity of the data. In future projects, being 
able to use heterogeneous ontologies jointly is going to be crucial.  
 

5. DISCUSSION 
 

Our tool lacks the ability to map all questions to triples using 
method described in 2.1. For some questions, triple extraction step 
provides candidate triples for a question but finding appropriate 
object property by only using the list of DBpedia properties and 
relational patterns is not enough. For instance, the question “Is 
Frank Herbert still alive?” is mapped to [Subject: Frank 
Herbert ] [Predicate: is] [Object: alive ] from triple extraction 
step. The triple should be mapped to [Subject: Frank Herbert ] 
[Predicate: deathDate] [Object: ?x ]. Neither relational patterns 
contain the word “alive” nor the list of DBpedia properties. Thus, 
the new methods should be implemented to overcome this kind of 
issues. 
 
Translating questions to candidate triples using triple extraction in 
2.1 should be adapted to respond to more comprehensive 
questions. Even though our tool is not complete yet, the method 
based on dependency graph is promising. The dependency graph 
is giving all the necessary information for a text to build up the 
triples as long as the implementation covers all the subtree 
patterns. 

Although the method described in [6]  effectively extracts patterns 
from a corpus and arranges these patterns in a semantic taxonomy, 
it has some drawbacks. 
 
Firstly, the PATTY extraction and mining algorithms were run on 
two different input corpora: the New York Times archive and the 
English edition of Wikipedia. PATTY taxonomy is restricted to a 
number of relational patterns because these corpora include a 
certain number of textual patterns that denote a relation between 
entity pairs. It does not make use of a universal corpus that can 
include nearly all available facts about entities or textual phrases 
combining entity pairs. 

 
Next, PATTY includes some noisy data that is not related with the 
actual pattern; conversely, it harnesses patterns that have an 
opposite meaning against the actual pattern. For instance, the 
“deathPlace” relation name includes a textual pattern “born in” 
which is opposed to “died at” and has a relatively strong 
confidence. The cause of this PATTY’s behavior is related to the 
noisy data existing in corpora. 
 
Extracted relational patterns in [6] consist of only object 
properties. There is a research gap for extracting relational pattern 
for data properties. Additionally, relational patterns should be 
extracted from large corpora to capture all possible expressions 
used in natural language. 
 

6. CONCLUSION 
 
We presented a tool for translating natural language questions to 
SPARQL queries. Our tool is based on extracting candidate triples 
using dependency graph and part of the speech tags of a question. 
Then, disambiguating and replacing triples with DBpedia property 
and entities using subject, predicate and object values in candidate 
queries. Finally, based on ranking score of queries and the 
expected answer type of the questions, the answer is presented to 
the user. Evaluation on the selected questions showed promising 
results and a room for improvement. 
 
As for the future work, triple extraction method should be 
improved to handle a broad range of questions. Also, relational 
patterns for object and data properties can be extracted from large 
corpora, the web. 
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