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Abstract

This thesis is devoted to the study of stochastic nonlinear Schrödinger equations

(abbreviated as SNLS) with linear multiplicative noise in two aspects: the well-

posedness in L2(Rd), H1(Rd) and the noise effects on blowup phenomena in the

non-conservative case.

1. The well-posedness in L2(Rd).

The first fundamental question when dealing with SNLS is the well-posedness

problem. In the first chapter, we prove the global well-posedness results in L2(Rd)

with the subcritical exponents of the nonlinear term, and we also obtain the local

existence, uniqueness and blowup alternative in the critical case.

Our approach is different from the standard literature on stochastic nonlinear

Schroödinger equations. By a rescaling transformation we reduce the stochastic

equation to a random nonlinear Schroödinger equation with lower order terms and

treat the resulting equation by a fixed point argument, based on generalizations of

Strichartz estimates proved by J. Marzuola, J. Metcalfe and D. Tataru in 2008. This

approach allows to improve earlier well-posedness results obtained in the conserva-

tive case by a direct approach to the stochastic Schroödinger equation. In contrast

to the latter, we obtain the global well-posedness in the full range (1, 1 + 4/d) of

admissible exponents in the non-linear part (where d is the dimension of the un-

derlying Euclidean space), i.e. in exactly the same range as in the deterministic

case.

2. The well-posedness in H1(Rd).

In the second chapter, we study the well-posedness for SNLS in the energy space

H1(Rd). The main motivation comes from the physical significance of the energy

space H1(Rd), and this work develops the preliminary results and machinery for the

blowup analysis in the chapter later on. We consider here both focusing and defocus-

ing nonlinearities and obtain the global well-posedness, including also the continuous
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dependence on the initial data, with the subcritical exponents α satisfying{
1 < α <∞, if d = 1, 2;

1 < α < 1 + 4
d−2

, if d ≥ 3,
(0.0.1)

in the defocusing case λ = −1, and

1 < α < 1 +
4

d
. (0.0.2)

in the focusing case λ = 1, i.e. in exactly the same ranges as in the deterministic

case. We also prove the local existence, uniqueness and blowup alternative in the

energy-critical case where α = 1 + 4
d−2

with d ≥ 3.

This work improves the earlier results obtained in the conservative case by A.

de Bouard and A. Debussche in 2003, where the global existence and uniqueness

were restricted to the case α < 1 + 2
d−1

if d ≥ 6. Moreover, the mass-critical value

α = 1 + 4
d

in the focusing case and the energy-critical value α = 1 + 4
d−2

with d ≥ 3

obtained here allow to study in the stochastic case the blowup phenomena, which

are extensively studied in the deterministic case. As a matter of fact, this is also

one of our main motivations to study well-posedness in the H1 context and leads to

the work in the next chapter about the noise effects on blowup phenomena in the

non-conservative case.

3. The noise effects on blowup in the non-conservative case.

In this chapter we focus on the noise effects on blowup phenomena in the non-

conservative focusing mass-critical/supercritical case, i.e. λ = 1 , α ∈ [1 + 4
d
,∞)

with d = 1, 2 and α ∈ [1 + 4
d
, 1 + 4

d−2
) with d ≥ 3. Our main motivation comes from

the wide interests in the field of stochastic partial differential equations (SPDE)

to investigate the effects (e.g. uniqueness, blow-up) of noise on the deterministic

equations. We prove here that adding a large space-independent noise one can, with

high probability, prevent the blowup on the whole time interval [0,∞). Furthermore,

for more generally space-dependent noise, the explosion can also be prevented with

high probability on a given bounded interval [0, T ], 0 < T <∞.

These noise effects are quite different than those in the conservative case obtained

by A. de Bouard and A. Debussche in 2005, where spatial smooth noise can cause

blow-up immediately with positive probability for any smooth initial data.
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Chapter 0

Introduction

Stochastic nonlinear Schrödinger equation

This thesis is devoted to the study of stochastic nonlinear Schrödinger equation

(abbreviated as SNLS) with linear multiplicative noise

idX(t, ξ) = ∆X(t, ξ)dt+ λ|X(t, ξ)|α−1X(t, ξ)dt

− iµ(ξ)X(t, ξ)dt+ iX(t, ξ)dW (t, ξ), t ∈ (0, T ), ξ ∈ Rd, (0.0.1)

X(0) = x.

Here X is a complex valued function on [0, T ] × Rd, λ = −1 (defocusing) or λ = 1

(focusing) and α > 1. W (t, ξ) is the colored Wiener process

W (t, ξ) =
N∑

j=1

µjej(ξ)βj(t), t ≥ 0, ξ ∈ Rd,

where we assume N < ∞ for simplicity, µj ∈ C, ej are real-valued functions on

Rd, and βj(t), 1 ≤ j ≤ N , are independent real Brownian motions on a probability

space (Ω,F ,P) with natural filtration (Ft)t≥0.

For physical reasons (see below), we choose µ of the form µ(ξ) = 1
2

N∑
j=1

|µj|2e2j(ξ),

ξ ∈ Rd, in order to make |X(t)|22 a martingale from which one can define the ”physical

probability law”.

In the case without noise effect, i.e. µj = 0, 1 ≤ j ≤ N, (0.0.1) is the classical

nonlinear Schrödinger equation (NLS). This equation is one of the basic models for

nonlinear wave and has widely physical applications, e.g. nonlinear optics, plasma

physics and quantum field theory, etc. We refer the reader to [84] for more details.

From the mathematical point of view, On one hand, NLS possesses both conservation
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of mass and conservation of Hamiltonian, that is

|X(t)|22 = |x|22,

1

2
|∇X(t)|22 −

λ

α+ 1
|X(t)|α+1

Lα+1 =
1

2
|∇x|22 −

λ

α+ 1
|x|α+1

Lα+1 .

Hence, it is appropriate to study the well-posedness in the space L2(Rd) or H1(Rd).

On the other hand, NLS is a kind of dispersive equation. The linear part possesses

dispersive properties, e.g. the Strichartz estimates and local smoothing estimates.

These dispersive properties allow us in suitable Banach spaces to apply Banach’s

fixed point theorem and to control the nonlinearity for α in the subcritical and

critical ranges. Therefore, one can obtain the local well-posedness of (0.0.1) in

the subcritical and critical cases, based on the dispersive properties. Then the

global existence in L2(Rd) (resp. H1(Rd)) in the subcritical case follows from the

conservation of mass (resp. Hamiltonian). However, the global existence in the

critical case is much more delicate. In this case, the nonlinearity competes with the

kinetic energy, solutions may blow up in finite time and more interesting phenomena

will appear, e.g. L2-mass concentration, self-similarity, etc. We refer the reader to

[46, 22, 58] for more sophisticated studies on this argumentss.

In the stochastic case with noise effects, this equation was earlier studied in the

conservative case with a purely imaginary noise, i.e., Reµj = 0, 1 ≤ j ≤ N, and

in this case the L2 norm of the solution is still conserved |X(t)|2 = |x|2. This case

was proposed in [2] as a model for the propagation of nonlinear dispersive waves in

nonlinear or random media (see [3, 75]). The global existence and uniqueness results

in L2 andH1 spaces were first obtained by de A. de Bouard and A. Debussche [10, 12]

in the subcritical case, and they also studied the influence of noise on the blowup

phenomena in the focusing mass-supercritical case [13] (see also [11] for the additive

noise case). Moreover, we refer the interested reader to [14, 26, 27] for numerical

simulations in the focusing mass-critical case, where the numerical tests suggest that

the spatially smooth noise is able to delay the blowup and the white noise can even

prevent the explosion.

The general stochastic equation (0.0.1) with µj ∈ C, including the two previous

cases, was first studied in our recent paper [7]. In this case one of the main feature is

that |X(t)|22 is no longer independent of time, but a general martingale (see (1.3.79)

in Chapter 1).

Now, let us first briefly present the physical meaning of SNLS (0.0.1). X =

X(t, ξ, ω), ξ ∈ Rd, t ≥ 0, ω ∈ Ω, represents the quantum state at time t, while the

stochastic perturbation iXdW represents a stochastic continuous measurement via
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the quantum observables µjej. Equation (0.0.1) can be also derived by a Schrödinger

equation with the potential XV , where the random field V fluctuates rapidly and

so can be approximated by Gaussian white noise W . A better insight in equation

(0.0.1) can be gained from the analysis in [8], [9]. Then, an (at this stage) heuristic

application of Itô’s formula implies that

|X(t)|2L2 = |x|L2 + 2
N∑

j=1

Re(µj)

∫ t

0

〈X(s), X(s)ej〉L2dβj(s), t ≥ 0. (0.0.2)

Applying Itô’s formula to log |X(t)|2L2 , we see that

|X(t)|2L2 = |x|22 exp

{
N∑

j=1

[∫ t

0

vj(s)dβj(s)−
1

2

∫ t

0

v2
j (s)ds

]}
,

where vj(t) = 2Re〈X(t), µjejX(t)〉L2|X(t)|−2
L2 . Clearly, by (0.0.2), t → |X(t)|2L2 is a

continuous martingale and so, if |x|L2 = 1,

P̂T
x (F ) =

∫
F

|X(T, ω)|2L2dP(dω), F ∈ FT ,

defines a probability law on (Ω,FT ) (the physical probability law) and, under this

law by Girsanov’s theorem the continuous process

β̃j(t) = βj(t)−
∫ t

0

vj(s)ds, t ∈ [0, T ], j = 1, ..., N, (0.0.3)

are independent Gaussian processes with respect to the filtration (Ft) (Theorem 2.14

in [5]). Here P̂ T
x is the physical probability law of the events occurring in time [0, T ],

while ψ̂(t, ω) = X(t, ω)|X(t, ω)|−1
2 is the state of the quantum system conditioned

by observation of s→ βj(s, ω), 0 ≤ s < t.

In the stochastic conservative case mentioned above, we have vj(t) = 0, |X(t)|L2 =

|x|L2 , ∀t and P̂ T
x = P|FT

. Then, by (0.0.3), β̃j = βj, ∀j, and so, in this case, the

randomness is independent of the quantum system, and the measurement does not

provide any information on the quantum system.

In this thesis, we will focus on two aspects of SNLS (0.0.1): the well-posedness

problems in L2(Rd), H1(Rd) and the noise effects on blowup in the non-conservative

case. The content of the thesis is briefly presented below.

Chapter 1 is concerned with the well-posedness of (0.0.1) in L2(Rd), which is the

fundamental problem when dealing with SNLS. Unlike in the standard literature
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[10], we apply a new method to study the well-posedness of (0.0.1). We obtain the

sharp global well-posedness in the subcritical case, improving the earlier results in

[10]. Moreover, the local existence, uniqueness and blowup alternative in the critical

case are also given.

Chapter 2 is a natural continuation of Chapter 1. In this chapter we treat the

well-posedness inH1(Rd). The main motivation comes from the physical significance

of the energy space H1(Rd), but the results claimed here will be also used for the

blow-up analysis in the next chapter. We study here both defocusing and focusing

cases and prove the global well-posedness of (0.0.1) in the subcritical case. We

also show the local existence, uniqueness and blowup alternative in the critical case.

This work improves the earlier results in [12]. Moreover, the sharper results obtained

here will be also used to study the noise effects on the formation of singularities in

Chapter 3.

Chapter 3 is devoted to the study of noise effects on the blowup phenomena in

the non-conservative focusing mass-critical/supercritical cases. Our main motivation

comes from the wide interests in the field of stochastic partial differentia equations

(SPDE) for investigation of the effects (e.g. uniqueness, blow-up) of noise on the

deterministic equations. It is already known that, the multiplicative noise term

in deterministic evolution equations has a dissipativity effect. We show here that

adding a large space-independent noise one can, with high probability, prevent the

blowup on the whole time interval [0,∞). Furthermore, for more generally space-

dependent noise, the explosion can also be prevented on the bounded time interval

[0, T ], 0 < T <∞.

These phenomena are different than those in the deterministic case, where there

exist solutions that blow up in finite time (see e.g. [84, 22, 58]). The noise effects in

the non-conservative case are also quite different than those in the stochastic con-

servative focusing mass-supercritical case, where the spatial smooth noise can cause

blowup immediately with positive probability for any smooth initial data (see [12]).

We continue with a more detailed presentation of each of these three chapters.

Chapter 1. The well-posedness in L2(Rd).

In this chapter we study the well-posedness of SNLS (0.0.1) in L2(Rd), which is

the starting point of the following works in the next chapters.

In the deterministic case, the global well-posedness in the subcritical case 1 <

α < 1 + 4
d

was first obtained by Y. Tsutsumi [90], based on the regularization

procedure with the H1 well-posedness results and the dispersive effect of the free

Schrödinger group eit∆ expressed by the Strichartz estimates. Simplified fixed point
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arguments were presented by T. Kato [46] (see also [90]). Later on, the local well-

posedness in the critical case α = 1 + 4
d

was proved by T. Cazenave and F. B.

Weissler [19]. A more comprehensive review of the basic results can be found in

[84, 22, 58].

In the stochastic setting, the global existence and uniqueness in the conservative

subcritical case were first obtained by A. de Bouard and A. Debussche [10]. In this

article, the authors started with the mild equation of stochastic equation (0.0.1)

and applied the Burkholder inequalities, based on the γ-radonifying operators, to

estimate the Banach space valued stochastic integrals. However, this approach leads

to a restrictive condition on α: 1 < α < 1 + 2
d−1

if d ≥ 3 (see also the comments in

[12]), hence one can not study the blow-up phenomena in the L2-critical case where

α = 1 + 4
d
.

Unlike in the previous work, here we present a new approach to study the well-

posedness of (0.0.1), even for the more general case µ ∈ C as in the physical context

[8, 9]. We prove the global well-posedness, including also the continuous dependence

on the initial data, in the subcritical case with the exponents α of the nonlinearity

as the same as in the deterministic case, i.e., 1 < α < 1+ 4
d
. Moreover, we also show

the local existence, uniqueness and blowup alternative in the critical case α = 1+ 4
d
.

These sharper well-posedness results obtained here improve the work in [10] and

enable one to study the blow-up phenomena in the L2-critical case where α = 1+ 4
d
,

d ≥ 1.

The main results.

Theorem 0.0.1. Assume (H1) (see Section 1.1 below). Let 1 < α < 1+ 4
d
, 1 ≤ d <

∞. Then, for each x ∈ L2 and 0 < T < ∞, there exists a unique strong solution

(X,T ) of (0.0.1) (see Definition 1.1.1 in Section 1.1), which satisfies

X ∈ L2(Ω;C([0, T ];L2)) (0.0.4)

X ∈ Lγ(0, T ;Lρ), P− a.s., (0.0.5)

where (ρ, γ) is any Strichartz pair.

Moreover, for P-a.e. ω ∈ Ω, the map x → X(·, x, ω) is continuous from L2 to

C([0, T ];L2) ∩ Lγ(0, T ;Lρ), and t → |X(t)|22 is a continuous martingale with the

representation

|X(t)|22 = |x|22 + 2
N∑

j=1

Re(µj)

∫ t

0

∫
Rd

ej|X(s)|2dξ dβj(s), t ∈ [0, T ]. (0.0.6)
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In the critical case we have the following local existence, uniqueness and blowup

alternative results.

Theorem 0.0.2. Assume (H1) and let α = 1 + 4
d
. Then, for each x ∈ L2 and

0 < T < ∞, there exists a maximal strong solution (X, (τn)n∈N, τ
∗(x)) of (0.0.1)

(see Definition 1.1.1 in Section 1.1). In particular, uniqueness holds for (0.0.1). X

also satisfies P-a.s for every n ≥ 1

X|[0,τn] ∈ C([0, τn];L2) ∩ L2+ 4
d (0, τn;L2+ 4

d ). (0.0.7)

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

‖X(t)(ω)‖
L2+ 4

d (0,τ∗(x)(ω);L2+ 4
d )

= ∞. (0.0.8)

The strategy of the proof.

The main approach here is based on the rescaling transformation

X = eWy. (0.0.9)

The advantage of this transformation is that it reduces the stochastic equation

(0.0.1) to a Schrödinger equation with random coefficients, to which one can apply

deterministic methods pathwisely. More precisely, we have

∂y

∂t
= A(t)y − λie(α−1)ReW |y|α−1y, (0.0.10)

y(0) = x.

Here A(t)y := −i(∆y + b · ∇y + cy), b(t, ξ) = 2∇W (t, ξ), c(t, ξ) =
d∑

j=1

(∂jW (t, ξ))2 +

∆W (t, ξ)− i(µ+ µ̃) and µ̃ = 1
2

N∑
j=1

µ2
je

2
j .

The explicit definitions of solutions and the equivalence between two equations

(0.0.1) and (0.0.10) will be made clear in Section 1.1.

In this way, the well-posedness problems of (0.0.1) is reduced to those of (0.0.10).

As in the deterministic case, the well-posedness of (0.0.10) relies crucially on the

dispersive property, particularly the Strichartz estimates, of the linear part ∂y
∂t

=

A(t)y. Thanks to the Strichartz estimates established in [59] for the lower order

perturbations of the Laplacian, we can obtain for P-a.e. ω ∈ Ω the local existence,

uniqueness and blowup alternative of (0.0.10) in the exactly the same range as in

the deterministic case.
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To get the global well-posedness, we need certain a priori estimates. In the L2

case, our a priori estimate comes from the analysis of the mass |X(t)|22. Although

|X(t)|22 is no longer conserved as in the deterministic and stochastic conservative

cases, its martingale property is enough for us to obtain the desired a priori esti-

mates and hence to establish the global well-posedness of (0.0.10) in the subcritical

case. Once we prove the well-posedness results of the random equation (0.0.10), we

obtain the corresponding well-posedness of SNLS (0.0.1) by the rescaling approach.

Chapter 1 is based on our recent paper [7] in joint with Prof. Viorel Barbu and

Prof. Michael Röckner. The structure is as follows. In Section 1.1 we set up the

preliminaries, including the definition of solutions and the rescaling transformation.

Then in Section 1.2 we establish the local existence, uniqueness and blowup alter-

native results in both subcritical and critical cases. Section 1.3 is devoted to the

global well-posedness in the subcritical case. Some comments on the relevant results

are also included in Section 1.4.

Chapter 2. The well-posedness in H1(Rd).

The aim of this chapter is to establish the well-posedness of SNLS (0.0.1) in the

energy space H1(Rd), which is a natural continuation of Chapter 1 and also develops

the preliminary results and machinery for the future study of blow-up phenomena

in the focusing mass-critical/supercritical cases.

In the deterministic case, the global well-posedness in the subcritical case was

studied in a series works by J. Ginibre and G. Velo [35, 36, 38] (see also [39] for

a compactness method to prove the existence). Later on, simplified fixed point

arguments were presented by T. Kato [45, 46], based on the Strichartz estimates.

Moreover, the local well-posedness in the critical case was obtained by T. Cazenave

and F. B. Weissler [19]. For more systematic discussions, see e.g., [22, 58].

It should be mentioned that, unlike what happens in the L2 case, the expo-

nents for the global well-posedness in defocusing and focusing cases are different.

More precisely, NLS is globally well posed in the defocusing case (λ = −1) for the

exponents α satisfying {
1 < α <∞, if d = 1, 2;

1 < α < 1 + 4
d−2

, if d ≥ 3,
(0.0.11)

while in the focusing case (λ = 1) for α satisfying 1 < α < 1 + 4
d
. This difference
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comes from the signs in the associated Hamiltonian of (0.0.1), that is,

H(X) :=
1

2
|∇X|22 −

λ

α+ 1
|X|α+1

Lα+1 .

To get the global well-posedness, one needs a priori estimates of |∇X(t)|22 from

H(X(t)). In the defocusing case (λ = −1), the conservation of the mass |X(t)|22 and

the Hamiltonian H(X(t)) give us directly the uniform bound of |X(t)|2H1 . While in

the focusing case (λ = 1), H(X(t)) can be negative and one shall further use the

Gagliardo-Nirenberg inequality to dominate the potential energy |X(t)|α+1
Lα+1 by the

kinetic energy |∇X(t)|22 but for the restrictive exponents 1 < α < 1 + 4
d
. We note

that, α = 1 + 4
d

is indeed a sharp value for the global well-posedness in the focusing

case, in the sense that in this case there exist solutions that can blow up in finite

time.

Now, in the stochastic setting, the global existence and uniqueness in the sub-

critical case were first obtained in [12] in the conservative case. In fact, the authors

proved in [12] the local existence and uniqueness with α satisfying
1 < α <∞, if d = 1 or 2;

1 < α < 5, if d = 3;

2 ≤ α < 1 + 4
d−2

, if d = 4, 5;

α < 1 + 2
d−1

, if d ≥ 6,

and obtained the global well-posedness under the further assumptions α < 1 + 4
d

or λ = −1. Hence in the focusing case λ = 1 with dimension d ≥ 6, the global

well-posedness is established only for the restrictive exponents α < 1 + 2
d−1

.

Following an idea from [7], we apply the rescaling approach to study the well-

posedness problems of SNLS (0.0.1), including also the non-conservative case. We

obtain the global well-posedness, including also the continuous dependence on the

initial data, in the subcritical case with the exponents α in the same ranges as in

the deterministic case. Moreover, we also show the local existence, uniqueness and

blowup alternative in the H1-critical case where α = 1 + 4
d−2

, d ≥ 3.

In conclusion, this work improves the results in [12]. Moreover, as mentioned

above, in the focusing case α = 1 + 4
d

is the mass-critical value for the deterministic

solutions to blow up. Therefore, the sharp value α = 1 + 4
d

obtained here allows to

study the noise effects on blowup phenomena. This is indeed one of our motivations

to study the well-posedness in the H1 context and leads to the study of the noise

effects in the non-conservative case in Chapter 3.

The main results.



Chapter 0. Introduction 9

Theorem 0.0.3. Assume (H2) (see Section 2.1). Let α satisfy (0.0.11) and 1 <

α < 1+ 4
d

in the defocusing and focusing cases respectively. Then for each x ∈ H1 and

0 < T < ∞, there exists a unique strong solution (X,T ) of (0.0.1) (see Definition

2.1.1 in Section 2.1), such that

X ∈ L2(Ω;C([0, T ];H1)) ∩ Lα+1(Ω;C([0, T ];Lα+1)), (0.0.12)

and

X ∈ Lγ(0, T ;W 1,ρ), P− a.s., (0.0.13)

where (ρ, γ) is any Strichartz pair.

Furthermore, for P − a.e ω, the map x → X(·, x, ω) is continuous from H1 to

C([0, T ];H1) ∩ Lγ(0, T ;W 1,ρ).

We also have the following local existence, uniqueness and blowup alternative

results in the critical case.

Theorem 0.0.4. Assume (H2) and α = 1 + 4
d−2

, d ≥ 3. For each x ∈ H1 and

0 < T < ∞, there exists a maximal strong solution (X, (τn)n∈N, τ
∗(x)) of (0.0.1)

(see Definition 2.1.1 in Section 2.1). In particular, uniqueness holds for (0.0.1). X

also satisfies P-a.s for every n ≥ 1

X|[0,τn] ∈ C([0, τn];H1) ∩ Lγ(0, τn;W 1,ρ), (0.0.14)

where (ρ, γ) is any Strichartz pair.

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

‖X(ω)‖
L

2(d+2)
d−2 (0,τ∗(x)(ω);L

2(d+2)
d−2 )

= ∞, P− a.s. (0.0.15)

The strategy of the proof.

Chapter 1 is the starting point of this chapter. We use the rescaling transforma-

tion (0.0.9) to reduce SNLS (0.0.1) to the random equation (0.0.10) (the equivalence

between these two equations will be presented in Section 2.1). Later on, we derive

the Strichartz estimates in Sobolev spaces, with which, as well as the probabilistic

localization arguments involving the stopping times and the adaptedness, we are

able to establish the local existence, uniqueness and blowup alternative results of

(0.0.1) pathwisely in both subcritical and critical cases.
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The global well-posedness in the subcritical case lies in the a priori estimates

of the energy |X(t)|H1 , which will be derived from the analyze of the Hamiltonian

H(X(t)). Inspired by [57], we apply here a different approach than that in Chapter

1 to derive Itô’s formula for the term |X(t)|pLp , p > 2, in H(X(t)). Then, using

standard martingale technique we obtain the desired a priori estimate of the energy

and get the global well-posedness for (0.0.10), hence also for SNLS (0.0.1) by the

rescaling transformation.

Chapter 2 is organized as follows. Section 2.1 includes the definition of solu-

tions and the equivalence theorem via the rescaling transformation. Section 2.2 are

concerned with the local existence, uniqueness and blowup alternative results in

both subcritical and critical cases, based on the Strichartz estimates. Section 2.3

is devoted to the global well-posedness in the subcritical case. Lastly, Section 2.4

contains some comments on relevant results in the literature.

Chapter 3. The noise effects on blowup in the non-conservative case.

This chapter focuses on the noise effects on blowup in the non-conservative fo-

cusing mass-critical/supercritical case, i.e. λ = 1, α ∈ [1 + 4
d
,∞) with d = 1, 2 and

α ∈ [1 + 4
d
, 1 + 4

d−2
) with d ≥ 3.

In the deterministic case, an elementary proof of the existence of blowup solutions

was obtained by R. T. Glassey [40]. Later on, the threshold for solutions to blow up

in the focusing mass-critical case was obtained by M. I. Weinstein [94]. One major

result was obtained by F. Merle [62], stating that in the focusing mass-critical case,

up to symmetries, the critical mass blowup solutions are unique.

In the stochastic conservative case, the effects of noise on blowup were first

mathematically studied by A. de Bouard and A. Debussche [13] (see also [11] for the

additive noise). They proved that in the conservative focusing mass-supercritical

case, i.e. λ = 1, α ∈ (1 + 4
d
,∞) if d = 1, 2 and α ∈ (7

3
, 5) if d = 3, the spatially

smooth noise will cause blowup immediately with positive probability for any smooth

initial data. Moreover, the numerical simulations in [14, 26, 27] suggested that in

the conservative focusing mass-critical case, i.e. λ = 1, α = 1+ 4
d
, the spatial smooth

noise has the effect to delay blowup and white noise can even prevent blowup.

In contrast to the previous case, the situations in the non-conservative case are

quite different. We prove that in the non-conservative focusing mass-critical/supercritical

case, adding a large space-independent noise one can, with high probability, prevent

blowup on the whole time interval [0,∞). Furthermore, for the general space-

dependent noise, the explosion can also be avoided with high probability on the

bounded time interval [0, T ], where 0 < T <∞.
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The main result.

We have the non-explosion result for the space-independent noise as follows.

Theorem 0.0.5. Consider (0.0.1) in the non-conservative case with Reµ1 6= 0. Let

λ = 1, α ∈ [1 + 4
d
,∞) if d = 1, 2, and α ∈ [1 + 4

d
, 1 + 4

d−2
) if d ≥ 3. Assume (H3)

(see Section 3.1 in Chapter 3), but with fj, 1 ≤ j ≤ N , also being fixed constants

and ck for 2 ≤ k ≤ N being fixed. Then for any x ∈ H1

P(X(t) does not blow up on [0,∞)) → 1, as c1 →∞.

For the general space-dependent noise we have

Theorem 0.0.6. Consider (0.0.1) in the non-conservative case with Reµ1 6= 0.

let λ and α be as in Theorem 0.0.5. Assume (H3) with fj, 1 ≤ j ≤ N , and ck,

2 ≤ k ≤ N being fixed. Then for any x ∈ H1 and 0 < T <∞

P(X(t) does not blow up on [0, T ]) → 1, as c1 →∞.

The strategy of the proof.

The proof is based on the observation that, after the first transformation X =

eWy, there appears a damped term µ̂ := µ+ µ̃ in (0.0.10), which is related with the

noise and has positive real part in the non-conservative case. Thus one may expect

this term to prevent the explosion.

In order to explore the noise effects, we use a second transformation

z = ebµty,

to reduce (0.0.10) to the equation below

∂z(t)

∂t
= Â(t)z − ie−(α−1)(Rebµt−ReW (t))|z|α−1z, (0.0.16)

z(0) = x ∈ H1,

where Â(t) := −i(∆ + b̂(t) · ∇ + ĉ(t)) with b̂ = −2t∇µ̂ + 2∇W (t) and ĉ(t) =

t2
N∑

j=1

(∂jµ̂)2 − t∆µ̂− 2t∇W (t) · ∇µ̂+

[
N∑

j=1

(∂jW (t))2 + ∆W (t)

]
.

Here, an exponential decay term e−(α−1)Rebµt appears in front of the nonlinear

term in (0.0.16). This fact enables us to apply the contraction arguments, devel-

oped in Chapter 2, to obtain the solutions existing on large bounded time intervals
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with high probability, as long as µ̂ is sufficiently large. In particular, when the noise

is spatial independent, one can also obtain the non-explosion with high probability

on the whole time interval [0,∞).

The structure of Chapter 3 is as follows. In Section 3.1 we set up some preliminar-

ies, including the equation (0.0.16) after the second transformation. Then in Section

3.2 and Section 3.3 we prove the non-explosion results in the non-conservative case.

Some further reviews on the blow-up works are also given in Section 3.4.



Chapter 1

The well-posedness in L2(Rd)

This chapter is devoted to the well-posedness problems of the stochastic nonlinear

Schrödinger equation (0.0.1) in L2(Rd). We first introduce basic setups in Section

1.1. Then in Section 1.2 we establish the local existence, uniqueness and blowup

alternative results in both subcritical and critical cases. Section 1.3 is concerned

with the global well-posedness in the subcritical case. We end this chapter with

brief notes on some relevant results in Section 1.4.

1.1 Preliminaries

In this section we first introduce the stochastic nonlinear Schrödinger equation (ab-

breviated as SNLS) in Subsection 1.1.1. Then in Subsection 1.1.2 we present the

rescaling transformation (1.1.5) to reduce SNLS to a random equation, and we also

prove the equivalence between two equations via the rescaling transformation.

1.1.1 Stochastic nonlinear Schrödinger equation

Let us consider the stochastic nonlinear Schrödinger equation with linear multiplica-

tive noise

idX(t, ξ) = ∆X(t, ξ)dt+ λ|X(t, ξ)|α−1X(t, ξ)dt

− iµ(ξ)X(t, ξ)dt+ iX(t, ξ)dW (t, ξ), t ∈ (0, T ), ξ ∈ Rd, (1.1.1)

X(0) = x.
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Here X is a complex valued function on [0, T ] × Rd, λ = −1 (defocusing) or λ = 1

(focusing) and α > 1. W is the colored Wiener process

W (t, ξ) =
N∑

j=1

µjej(ξ)βj(t), t ≥ 0, ξ ∈ Rd, (1.1.2)

where we assume N < ∞ for simplicity, µj ∈ C, βj(t), 1 ≤ j ≤ N , are indepen-

dent real Brownian motions on a probability space (Ω,F ,P) with natural filtration

(Ft)t≥0, and ej are real-valued functions under the following spatial decay assump-

tion

(H1) ej ∈ C∞
b (Rd) such that

lim
|ξ|→∞

ζ(ξ)(|ej(ξ)|+ |∇ej(ξ)|+ |∆ej(ξ)|) = 0,

where j ∈ {1, ..., N} and

ζ(ξ) =

{
1 + |ξ|2, if d 6= 2,

(1 + |ξ|2)(ln(3 + |ξ|2))2, if d = 2.

As a matter of fact, the assumption lim
|ξ|→∞

ζ(ξ)|ej(ξ)| = 0 can be removed (see

Remark 3.1.1 in Chapter 3). However, we leave it here for the sake of simplicity.

For physical reasons (see Introduction), we choose µ of the form

µ(ξ) =
1

2

N∑
j=1

|µj|2e2j(ξ), ξ ∈ Rd. (1.1.3)

In this chapter we study the well-posedness of SNLS (1.1.1) in L2 space, and the

solutions are taken in the sense below.

Definition 1.1.1. Let x ∈ L2, α ∈ (1, 1 + 4
d
], fix T > 0.

(i). A strong solution of (1.1.1) is a pair (X, τ) with τ(≤ T ) an (Ft)-stopping

time, such that X = (X(t))t∈[0,T ] is an L2-valued continuous (Ft)-adapted process,

|X|α−1X ∈ L1(0, τ ;H−2(Rd)) P− a.s, and X satisfies P− a.s for t ∈ [0, τ ]

X(t) = x−
∫ t

0

(i∆X(s) + µX(s) + λi|X(s)|α−1X(s))ds+

∫ t

0

X(s)dW (s), (1.1.4)

where the stochastic integral is taken in sense of Ito and equation (1.1.4) is under-

stood as an equation in H−2(Rd).
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(ii). We say that uniqueness holds for (1.1.1), if for any two strong solutions

(Xi, τ i), i = 1, 2, it holds P-a.s. that X1 = X2 on [0, τ 1 ∧ τ 2].

(iii). A maximal strong solution of (1.1.1) is a pair ((Xn)n∈N, (τn)n∈N), where

(Xn, τn), n ∈ N, are strong solutions of (1.1.1) with (τn)n∈N a sequence of increasing

stopping times and Xn+1 = Xn on [0, τn], and ” maximal” means that given any

strong solution (X̃, τ̃), we have for P-a.e. ω ∈ Ω, there exists n(ω) ≥ 1 such that

τ̃(ω) ≤ τn(ω)(ω) and X̃(ω) = Xn(ω)(ω) on [0, τ̃(ω)]. In particular, uniqueness holds

for (1.1.1).

To simplify the notations, we denote the maximal strong solution ((Xn)n∈N, (τn)n∈N)

by the triple (X, (τn)n∈N, τ
∗(x)), where X = lim

n→∞
Xn1[0,τ∗(x)) with τ ∗(x) = lim

n→∞
τn.

Notice that, the pair (X, τ ∗(x)) is independent of the choice of ((Xn)n∈N, (τn)n∈N).

Remark 1.1.2. In Definition 1.1.1,
∫ t

0
X(s)dW (s) is an L2-valued stochastic in-

tegral. Indeed,
∫ t

0
X(s)dW (s) =

∫ t

0
Φ(s)dW̃ (s), where W̃ = (β1, ..., βN) ∈ RN and

Φ(t) : RN → L2(Rd) is defined by

Φ(t)(v) =
N∑

j=1

X(t)µjej < v, fj >

for v ∈ RN , t ∈ [0, τ ] and {fj}N
j=1 is a natural basis in RN .

Hence, Φ(t) are Hilbert-Schmidt operators from RN to L2(Rd), t ∈ [0, τ ], and

∫ t

0

‖Φ(s)‖2
L2(RN ;L2(Rd))ds =

∫ t

0

N∑
j=1

|X(s)µjej|22ds ≤
N∑

j=1

|µj|2|ej|2L∞ sup
s∈[0,τ ]

|X(s)|22 t <∞,

which implies the claim.

1.1.2 Rescaling approach

Let us introduce the rescaling transformation

X(t, ξ) = eW (t,ξ)y(t, ξ). (1.1.5)

The main advantage of this transformation lies in the fact that, it reduces the

stochastic equation (1.1.1) to the following equation with random coefficients, to

which one can apply the deterministic methods. Precisely, applying (1.1.5) to (1.1.1)

we have that

∂y(t, ξ)

∂t
= A(t)y(t, ξ)− λie(α−1)ReW (t,ξ)|y(t, ξ)|α−1y(t, ξ), (1.1.6)
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y(0) = x.

Here

A(t)y(t, ξ) :=− ie−W ∆(eWy)− (µ+ µ̃)y

=− i(∆ + b(t, ξ) · ∇+ c(t, ξ))y(t, ξ), (1.1.7)

where

b(t, ξ) = 2∇W (t, ξ), (1.1.8)

c(t, ξ) =
d∑

j=1

(∂jW (t, ξ))2 + ∆W (t, ξ)− i(µ(ξ) + µ̃(ξ)) (1.1.9)

with

µ̃(ξ) =
1

2

N∑
j=1

µ2
je

2
j(ξ). (1.1.10)

Similarly to Definition 1.1.1, the solutions to (1.1.6) are taken in the following

sense.

Definition 1.1.3. Let x ∈ L2, α ∈ (1, 1 + 4
d
], fix T > 0.

(i). A strong solution of (1.1.6) is a pair (y, τ) with τ(≤ T ) an (Ft)-stopping

time, such that y = (y(t))t∈[0,T ] is an L2-valued continuous (Ft)-adapted process,

|y|α−1y ∈ L1(0, τ ;H−2(Rd)) P − a.s, and y satisfies P − a.s (1.1.6) on [0, τ ] as an

equation in H−2(Rd).

(ii). We say that uniqueness holds for (1.1.6), if for any two strong solutions

(yi, τ i), i = 1, 2, it holds P-a.s. that y1 = y2 on [0, τ 1 ∧ τ 2].

(iii). A maximal strong solution of (1.1.6) is a pair ((yn)n∈N, (τn)n∈N), where

(yn, τn), n ∈ N, are strong solutions of (1.1.6) with (τn)n∈N a sequence of increasing

stopping times and yn+1 = yn on [0, τn], and ” maximal” means that given any

strong solution (ỹ, τ̃), we have for P-a.e. ω ∈ Ω, there exists n(ω) ≥ 1 such that

τ̃(ω) ≤ τn(ω)(ω) and ỹ(ω) = yn(ω)(ω) on [0, τ̃(ω)]. In particular, uniqueness holds

for (1.1.6).

For simplicity, we denote the maximal strong solution ((yn)n∈N, (τn)n∈N) by the

triple (y, (τn)n∈N, τ
∗(x)), where y = lim

n→∞
yn1[0,τ∗(x)) and τ ∗(x) = lim

n→∞
τn. Also,

(y, τ ∗) is independent of the choice of ((yn)n∈N, (τn)n∈N).

The following theorem establishes the equivalence between two strong solutions
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of (1.1.1) and (1.1.6) respectively via the rescaling transformation (1.1.5).

Theorem 1.1.4. (i) Let (y, τ) be a strong solution of (1.1.6) in the sense of

Definition 1.1.3. Define X := eWy. Then, (X, τ) is a strong solution of

(1.1.1) in the sense of Definition 1.1.1.

(ii) Suppose (X, τ) is a strong solution of (1.1.1) in the sense of Definition 1.1.1.

Define y := e−WX. Then, (y, τ) is a strong solution of (1.1.6) in the sense of

Definition 1.1.3.

Before going to the proof of Theorem 1.1.4, a few remarks are in order concerning

the formal calculation given at the beginning to link (1.1.1) and (1.1.6). In fact, it

is purely heuristic since we applied the Itô product to y though it is not of bounded

variation in L2. Furthermore, taking into account that the exponential is an oper-

ator of Nemitsky type in L2 which is not differentiable, the infinite dimensional Itô

formula in L2 is not justified, see e.g. [73]. Also, when we try to apply Itô’s product

rule for complex valued stochastic processes after evaluating the L2-valued processes

X, W , y at ξ ∈ Rd, which by itself is delicate since L2 consists of equivalence classes

of functions, we run into problems since e.g. again X(t, ξ), y(t, ξ), t ∈ [0, T ], might

not be semi-martingales. We refer the reader to [6], [57] for relevant treatments in

this case. See also the proof of Lemma 2.3.11 in Chapter 2.

The proof we give below avoids these two problems, thanks to the hilbertian

structure of L2(Rd) space and the stochastic Fubini theorem. (For the stochastic

calculus for complex valued processes and their products in C, we refer the reader

to [48], Section 2, as background literature in regard to this.)

Proof. We only prove (i), since (ii) can be proved analogously. Let ϕ ∈ H2(Rd).

Then, for every t ∈ [0, τ ], we have

〈ϕ, eW (t)y(t)〉2 =
∞∑

j=1

〈eW (t)ϕ, fj〉2〈fj, y(t)〉2,

where {fj}∞j=1 is an orthonormal basis in L2; fj ∈ H2(Rd).

By Itô’s formula, we have for all ξ ∈ Rd, t ∈ [0, T ],

eW (t,ξ) = 1 +

∫ t

0

eW (s,ξ)dW (s, ξ) + µ̃(ξ)

∫ t

0

eW (s,ξ)ds.

Fix j ∈ N. Then, we have P-a.s. for all t ∈ [0, T ],

〈eW (t)ϕ, fj〉2
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=〈ϕ, fj〉2 +
N∑

k=1

µk

∫
Rd

ϕ(ξ)ek(ξ)f̄j(ξ)dξ

∫ t

0

eW (s,ξ)dβk(s) +

∫ t

0

〈µ̃ eW (s)ϕ, fj〉2ds,

(1.1.11)

where we used the deterministic Fubini theorem in the last term. While, for the

stochastic term, since

E
∫ T

0

N∑
j=1

∣∣ ∫ µkϕekf̄jeW (s)dξ
∣∣2ds

≤

(
N∑

j=1

|µk|2|ek|2L∞

)
|ϕ|22|fj|22

∫ T

0

E[|eW (s)|2L∞ ]ds <∞,

hence, we can apply stochastic Fubini’s theorem and derive from (1.1.11) that

〈eW (t)ϕ, fj〉2

=〈ϕ, fj〉2 +
N∑

k=1

µk

∫ t

0

〈ek eW (s)ϕ, fj〉2dβk(s) +

∫ t

0

〈µ̃ eW (s)ϕ, fj〉2ds, t ∈ [0, T ].

Now, set Jε = (I − ε∆)−1 and let yε = Jε(y). Then, yε ∈ C([0, τ ], H2(Rd)) and

∂yε

∂t
=Jε(A(t)y)− λiJε(e

(α−1)ReW |y|α−1y), t ∈ [0, τ ], (1.1.12)

yε(0) =Jε(x) = xε.

Since fj ∈ H2(Rd), for each j, 〈fj, yε(t)〉2, t ∈ [0, τ ], is of bounded variation. Hence,

we can apply the Itô product rule (for scalar valued processes) to obtain

〈eW (t)ϕ, fj〉2〈fj, yε(t)〉2 =〈ϕ, fj〉2〈fj, xε〉2

+

∫ t

0

〈eW (s)ϕ, fj〉2〈fj, Jε(A(s)y(s))〉2ds

+ λi

∫ t

0

〈eW (s)ϕ, fj〉2〈fj, Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))〉2ds

+
N∑

k=1

µk

∫ t

0

〈fj, yε(s)〉2〈ek eW (s)ϕ, fj〉2dβk(s)

+

∫ t

0

〈fj, yε(s)〉2〈µ̃ eW (s)ϕ, fj〉2ds. (1.1.13)

(We note that, since Jε(Ay) ∈ C([0, τ ];L2), the second integral in the above equality

makes sense.)
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It is not difficult to sum over j ∈ N and interchange the infinite sum with the

integrals. Indeed, for the integrals with respect to ds, we take the third term in the

right hand side of (1.1.13) for example. By Definition 1.1.3 and Assumption (H1),

Jε(e
(α−1)ReW |y|α−1y) ∈ L1(0, t;L2) with t ∈ [0, τ ]. Then for any n ∈ N∣∣∣∣ n∑

j=1

〈eW (s)ϕ, fj〉2〈fj, Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))〉2

∣∣∣∣
≤

√√√√ n∑
j=1

∣∣∣∣〈eW (s)ϕ, fj〉2
∣∣∣∣2
√√√√ n∑

j=1

∣∣∣∣〈fj, Jε(e(α−1)ReW (s)|y(s)|α−1y(s))〉2
∣∣∣∣2

≤|eW (s)ϕ|2 |Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))|2

≤ sup
s∈[0,t]

|eW (s)|L∞ |ϕ|2 |Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))|2 ∈ L1(0, t),

which implies that for t ∈ [0, τ ]

λi
∞∑

j=1

∫ t

0

〈eW (s)ϕ, fj〉2〈fj, Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))〉2ds

=λi

∫ t

0

∞∑
j=1

〈eW (s)ϕ, fj〉2〈fj, Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))〉2ds

=λi

∫ t

0

〈ϕ, eW (s)Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))〉2ds.

Similar arguments also apply to the stochastic term in (1.1.13). In fact, set τM =

inf{t ∈ [0, τ ] : |yε(t)|22 > M} ∧ τ . Then, for any n ∈ N

E
∫ t∧τM

0

N∑
k=1

∣∣∣∣ n∑
j=1

µk〈fj, yε(s)〉2〈ek eW (s)ϕ, fj〉2
∣∣∣∣2ds

≤

(
N∑

k=1

|µk|2|ek|2L∞

)
|ϕ|22 E

∫ t∧τM

0

|eW (s)|2L∞|yε(s)|22ds

≤

(
N∑

k=1

|µk|2|ek|2L∞

)
|ϕ|22M2t E( sup

s∈[0,t]

|eW (s)|2L∞) <∞,

which implies that

∞∑
j=1

N∑
k=1

µk

∫ t

0

〈fj, yε(s)〉2〈ek eW (s)ϕ, fj〉2dβk(s)
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=
N∑

k=1

∫ t

0

∞∑
j=1

µk〈fj, yε(s)〉2〈ekeW (s)ϕ, fj〉2dβk(s)

=
N∑

k=1

∫ t

0

〈ϕ, µkeke
W (s)yε(s)〉2dβk(s) (1.1.14)

holds on {t ≤ τM}. Moreover, since sup
t∈[0,τ ]

|yε(t)|22 <∞, P-a.s, for P-a.e ω ∈ Ω, there

exists M(ω) ∈ N, such that τM(ω) = τ(ω) for all M ≥M(ω). Thus⋃
M∈N

{t ≤ τM} = {t ≤ τ},

which implies that (1.1.14) holds on {t ≤ τ}, P-a.s.

Therefore, summing over j ∈ N in (1.1.13) and interchanging the infinite sum

with the integrals, we conclude that P-a.s., for all t ∈ [0, τ ],

〈ϕ, eW (t)yε(t)〉2

=〈ϕ, xε〉2 +

∫ t

0

〈ϕ, eW (s)Jε(A(s)y(s))〉2ds

+ λi

∫ t

0

〈ϕ, eW (s)Jε(e
(α−1)ReW (s)|y(s)|α−1y(s))〉2ds

+
N∑

k=1

∫ t

0

〈ϕ, µkeke
W (s)yε(s)〉2dβk(s) +

∫ t

0

〈ϕ, µ̃eW (s)yε(s)〉2ds.

On the other hand, since

Jε(f) → f strongly in Hk, as ε→ 0, (1.1.15)

and

|Jε(f)|Hk ≤ |f |Hk , (1.1.16)

where f ∈ Hk and k = 0, 1, 2, we may pass to the limit ε → 0 in the previous

equality to obtain

〈ϕ, eW (t)y(t)〉2 =〈ϕ, x〉2 + i

∫ t

0
H2〈ϕ,∆(eW (s)y(s))〉H−2ds−

∫ t

0

〈ϕ, µeW (s)y(s)〉2ds

+ λi

∫ t

0
H2〈ϕ, eW (s)e(α−1)ReW (s)|y(s)|α−1y(s)〉H−2ds
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+
N∑

k=1

∫ t

0

〈ϕ, µkeke
W (s)y(s)〉2dβk(s), t ∈ [0, τ ],

Therefore, set X(t) := eW (t)y(t), t ∈ [0, T ]. The above equality implies that (X, τ)

is a strong solution of (1.1.1), as claimed. In the above equality, H2〈·, ·〉H−2 is the

pairing between H2 and H−2 or, equivalently,

H2〈ϕ,∆(eWy)〉H−2 =

∫
Rd

∆ϕeW ȳ dξ, ϕ ∈ C2
0(Rd; C).

This completes the proof. �

Thanks to Theorem 1.1.4, the well-posedness problem of the stochastic equation

(1.1.1) is equivalent to that of the random equation (1.1.6), to which we can apply

deterministic methods. This leads to the works in the next section.

1.2 Local existence, uniqueness and blowup alter-

native

As in the deterministic case, the local well-posedness of (1.1.6) relies on the dis-

persive properties of its linear part, i.e., ∂y
∂t

= A(t)y. Hence, we will first introduce

the corresponding evolution operators and Strichartz estimates in Subsection 1.2.1,

and we also prove the equivalence between solutions of weak and mild equations in

Subsection 1.2.2. Then in Subsection 1.2.3 and Subsection 1.2.4 we establish the lo-

cal existence, uniqueness and blowup alternative in the subcritical and critical cases

respectively.

1.2.1 Evolution operator and Strichartz estimate

Lemma 1.2.1. Assume (H1). For P − a.e. ω, the operator A(t) defined in (1.1.7)

generates evolution operators U(t, s) = U(t, s, ω), 0 ≤ s ≤ t ≤ T , in the spaces

Hk(Rd), k ∈ R. Moreover, for each x ∈ Hk(Rd), the process [s, T ] 3 t → U(t, s)x

is continuous and (Ft)-adapted, hence progressively measurable with respect to the

filtration (Ft)t≥s.

Proof of Lemma 1.2.1. This lemma is a direct consequence of the work [32].

Precisely, by assumption (H1) one can check that b, c as in (1.1.8) and (1.1.9) satisfy

the conditions of Theorem 1.1 in [32]. Thus for every x ∈ Hk and f ∈ L1(0, T ;Hk),

k ∈ R, there exists a unique solution y ∈ C([s, T ];Hk) in the sense of distribution
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to the Cauchy problem

dy

dt
= A(t)y + f, a.e t ∈ (s, T ), (1.2.17)

y(s) = x,

where d
dt

is taken in the sense of vectorial Hk−2(Rd)-valued distributions on (s, T ).

This means that y : [s, T ] → Hk−2(Rd) is absolutely continuous and a.e differentiable

on (s, T ).

Moreover

|y(t)|Hk ≤ C(|x|Hk +

∫ t

s

|f(r)|Hkdr), s ≤ t ≤ T. (1.2.18)

These give us the evolution operator U(t, s) ∈ L(Hk, Hk), k ∈ R, defined by

U(t, s)x = y(t), which indeed solves the homogeneous equation (1.2.17) with f ≡ 0,

0 ≤ s ≤ t ≤ T .

Moreover, the continuity of [s, T ] 3 t → U(t, s)x is due to the property y ∈
C([s, T ];Hk), and the progressive measurability follows from the fact that the pro-

cesses t → b(t) and t → c(t) are progressively measurable with respect to the

filtration (Ft)t≥0 and the solution depends continuously on the coefficients b and c.

�

Remark 1.2.2. The estimate (1.2.18) is stated in (1.5) in [31], where the coefficients

b, c of the lower order terms in A are time independent. However, as the author

observed in [32], the proofs work also when they are time dependent.

Next, we will prove the Strishartz estimates which are fundamental tools in the

next two subsections.

Lemma 1.2.3. Assume (H1). Then for any T > 0, u0 ∈ H1 and f ∈ Lq′2(0, T ;W 1,p′2),

the solution of

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)f(s)ds, 0 ≤ t ≤ T, (1.2.19)

satisfies the estimates

‖u‖Lq1 (0,T ;Lp1 ) ≤ CT (|u0|2 + ‖f‖
Lq′2 (0,T ;Lp′2 )

). (1.2.20)

Here (p1, q1) and (p2, q2) are Strichartz pairs, namely

(pi, qi) ∈ [2,∞]× [2,∞] :
2

qi
=
d

2
− d

pi

, if d 6= 2,
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or

(pi, qi) ∈ [2,∞)× (2,∞] :
2

qi
=
d

2
− d

pi

, if d = 2,

Furthermore, the process Ct, t ≥ 0, can be taken to be (Ft)-progressively measurable,

increasing and continuous.

Proof. (1.2.20) follows from the results of [59] on Strichartz estimates for the

linear Schrödinger operator with nonsmooth and asymptotically flat coefficients. We

will prove more than (1.2.20) as follows.

‖u‖Lq1 (0,T ;Lp1 )∩ eX[0,T ]
≤ CT (|u0|2 + ‖f‖

Lq′2 (0,T ;Lp′2 )+ eX′
[0,T ]

), (1.2.21)

where X̃[0,T ] is the local smoothing space introduced in [59] up to time T (see No-

tation) and (qi, pi), i = 1, 2, are Strichartz pairs.

Under Assumption (H1), the conditions (1.4) − (1.6) in [59] on [0, T ] × Rd are

satisfied (see below). Then, by estimate (1.24) in [59] (see Theorem 1.13 and Remark

1.17 in [59]), we have

‖u‖Lq1 (0,T ;Lp1 )∩ eX[0,T ]
≤ C

(
|u0|2 + ‖f‖

Lq′2 (0,T ;Lp′2 )+ eX′
[0,T ]

+ ‖u‖L2(0,T ;L2(|ξ|≤2R))

)
,

(1.2.22)

for R sufficiently large.

We are going to prove first that (1.2.21) holds for T sufficiently small. To this

end, we note that

‖u‖2
L2(0,T ;L2(|ξ|≤2R)) ≤ (m(B2R))

p1−2
p1

∫ T

0

|u(t)|2Lp1dt

≤ (m(B2R))
p1−2

p1 T
q1−2

q1 ‖u‖2
Lq1 (0,T ;Lp1 )

≤ (m(B2R))
p1−2

p1 T
q1−2

q1 ‖u‖2
Lq1 (0,T ;Lp1 )∩ eX[0,T ]

,

where m(B2R) is the volume of the ball B2R of radius 2R. For simplicity, we assume

that q1 > 2, which is the case in the application of Lemma 1.2.3 in later subsections.

Then, for

0 < T =
(
(2C)−2(m(B2R))

− p1−2
p1

) q1
q1−2

, (1.2.23)

we get by (1.2.22) that

‖u‖Lq1 (0,T ;Lp1 )∩ eX[0,T ]
≤ 2C

(
|u0|2 + ‖f‖

Lq′2 (0,T ;Lp′2 )+ eX′
[0,T ]

)
. (1.2.24)
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For q1 = ∞, p1 = 2, we get in a similar way

‖u‖L∞(0,T ;L2)∩ eX[0,T ]
≤ 2C

(
|u0|2 + ‖f‖

Lq′2 (0,T ;Lp′2 )+ eX′
[0,T ]

)
,

for 0 < T < (2C)−2. Reiterating (1.2.24) on the interval (T, 2T ), we get therefore

‖u‖Lq1 (T,2T ;Lp1 )∩ eX[T,2T ]
≤ 2C

(
|u(T )|2 + ‖f‖

Lq′2 (T,2T ;Lp′2 )+ eX′
[T,2T ]

)
≤ 2C

[
2C(|u0|2 + ‖f‖

Lq′2 (0,T ;Lp′2 )+ eX′
[0,T ]

) + ‖f‖
Lq′2 (T,2T ;Lp′2 )+ eX′

[T,2T ]

]
≤ 2C

[
2C|u0|2 + 2(2C + 1)‖f‖

Lq′2 (0,2T ;Lp′2 )+ eX′
[0,2T ]

]
,

≤ 8C(C + 1)

(
|u0|2 + ‖f‖

Lq′2 (0,2T ;Lp′2 )+ eX′
[0,2T ]

)
.

Hence

‖u‖Lq1 (0,2T ;Lp1 )∩ eX[0,2T ]
≤ 16C(C + 1)

(
|u0|2 + ‖f‖

Lq′2 (0,2T ;Lp′2 )+ eX′
[0,2T ]

)
.

Then, after a finite number of steps, we get estimate (1.2.21) on an arbitrary bounded

interval, as claimed.

As regards the measurability in (1.2.20), for each t ∈ [0, T ], we may take

Ct = sup{‖U(·, 0)u0‖Lq1 (0,t;Lp1 ); |u0|2 ≤ 1}

+ sup

{∥∥∥∥∫ ·

0

U(·, s)f(s)ds

∥∥∥∥
Lq1 (0,t;Lp1 )

; ‖f‖
Lq′2 (0,t;Lp′2 )

= 1

}
. (1.2.25)

Obviously, the function t → Ct is monotonically increasing, C0 = 0, and it follows

by (1.2.20) and standard arguments that it is continuous (indeed, one can consider

countable many u0 and f , then prove the continuity with the help of Arzela-Ascoli’s

theorem).

Next, we prove that the process t → ‖U(·, 0)u0‖Lq1 (0,t;Lp1 ) is adapted. Indeed,

choose un ∈ H1, n ∈ N, such that un → u0 in L2. By Lemma 1.2.1, the process

t → U(t, 0)un is adapted in H1, which implies from Sobolev’s imbedding theorem

that t → U(t, 0)un is adapted in Lp1 . Hence t → ‖U(·, 0)un‖Lq1 (0,t;Lp1 ) is adapted.

Now, by Strichartz estimate (1.2.20) we have that

‖U(·, 0)un − U(·, 0)u0‖Lq1 (0,t;Lp1 ) ≤ CT |un − u0|2 → 0,

which implies that t→ ‖U(·, 0)u0‖Lq1 (0,t;Lp1 ) is adapted, as claimed.
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Similar arguments apply to the process t→
∥∥∫ ·

0
U(·, s)f(s)ds

∥∥
Lq1 (0,t;Lp1 )

. In fact,

let us choose fn ∈ C∞
c (0, T )× C∞

c (Rd), such that

fn → f, in Lq′2(0, T ;Lp′2).

Since fn(s) ∈ H1, s ∈ [0, t], it follows from Lemma 1.2.1 that t→
∫ t

0
U(t, s)fn(s)ds is

adapted inH1, hence also in Lp1 , which implies that t→
∥∥∫ ·

0
U(·, s)fn(s)ds

∥∥
Lq1 (0,t;Lp1 )

is adapted. Again, using Strichartz estimate (1.2.20), we deduce that∥∥∥∥∫ ·

0

U(·, s)fn(s)ds−
∫ ·

0

U(·, s)f(s)ds

∥∥∥∥
Lq1 (0,t;Lp1 )

≤CT‖fn − f‖
Lq′2 (0,t;Lp′2 )

→ 0,

yielding the adaptedness of t→
∥∥∫ ·

0
U(·, s)f(s)ds

∥∥
Lq1 (0,t;Lp1 )

as claimed.

Now, we notice that, since by separability the sup in (1.2.25) is a sup over count-

ably many u0 ∈ L2 and f ∈ Lq′2(0, t;Lp′2), we conclude that t → Ct is adapted to

the filtration (Ft)t≥0. But then, as a continuous process, Ct is (Ft)-progressively

measurable, thereby completing the proof. �

In the remaining of this subsection, we show that Assumption (H1) is sufficient

for the coefficients b, c in (1.1.8) and (1.1.9) respectively to satisfy the conditions

(1.4)− (1.6) in [59] on [0, T ]× Rd.

Let us adapt the notations in [59] Dt := −i∂t, Dj := −i∂j, 1 ≤ j ≤ d, to rewrite

(1.2.19) in the weak equation form

Dtu = −∆u+
d∑

k=1

(Dkb̃
k + b̃kDk + c̃)u− if (1.2.26)

where

b̃k =− i∂kWt

=− i
N∑

m=1

µm∂kemβm(t), 1 ≤ k ≤ d, (1.2.27)

and

c̃ =−
d∑

k=1

(∂kW )2 + (µ+ µ̃)i
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=−
d∑

k=1

(
N∑

m=1

µm∂kemβm(t)

)2

+
1

2
i

[
N∑

m=1

(|µm|2 + µ2
m)e2m

]
(1.2.28)

Condition (1.4) in [59] is obviously satisfied for ∆. We will prove below that

under Assumption (H1) the coefficients b̃ and c̃ satisfy∑
j

sup
Aj

< ξ > |̃b(t, ξ)| ≤ κT , (1.2.29)

sup
[0,T ]×Rd

ζ(ξ)(|c̃(t, ξ)|+ |divb̃(t, ξ)|) ≤ κT , (1.2.30)

and

lim sup
|ξ|→∞

ζ(ξ)(|c̃(t, ξ)|+ |divb̃(t, ξ)|) = 0, (1.2.31)

which implies conditions (1.5), (1.6) in [59]. Here < ξ >=
√

1 + |ξ|2, κT is a constant

depending on T , Aj = [0, T ]× Bj with B0 = {|ξ| ≤ 2} and Bj = {2j ≤ |ξ| ≤ 2j+1},
j ≥ 1.

Proof. We set for simplicity |f |∞ = |f |L∞ for any f ∈ L∞(Rd). First, for the

condition (1.2.29), we notice from (1.2.27) and Assumption (H1) that

∑
j

sup
Aj

< ξ > |̃bk| ≤
N∑

m=1

|µm||ζ∂kem|∞ sup
t∈[0,T ]

|βm(t)|
∑
j∈N

sup
Dj

< ξ >− 1
2

≤2
N∑

m=1

|µm||ζ∂kem|∞ sup
t∈[0,T ]

|βm(t)| <∞, (1.2.32)

where we used
∑
j∈N

sup
Dj

< ξ >− 1
2≤

∑
j∈N

2−j = 2. This yields (1.2.29).

Next, for (1.2.30), we have from (1.2.27) that

divb̃ = −i
N∑

m=1

µm∆emβm(t),

then by Assumption (H1)

sup
[0,T ]×Rd

ζ|divb̃| ≤
N∑

m=1

|µm||ζ∆em|∞ sup
t∈[0,T ]

|βm(t)| <∞. (1.2.33)
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Moreover, by (1.2.28) and Assumption (H1)

sup
[0,t]×Rd

ζ|c̃| ≤
N∑

m=1

|µm|2
(

d∑
k=1

|∂kem|∞|ζ∂kem|∞ sup
t∈[0,T ]

|βm(t)|2 + |em|∞|ζem|∞

)
<∞.

(1.2.34)

Hence, (1.2.30) follows from (1.2.33) and (1.2.34).

(1.2.31) can be proved similarly. Indeed,

lim sup
|ξ|→∞

ζ(|c̃|+ |divb̃|)

≤
N∑

m=1

[
|µm||βm(t)| lim sup

|ξ|→∞
|ζ∆em|

+ |µm|2
(

d∑
k=1

|∂kem|∞|βm(t)|2 lim sup
|ξ|→∞

|ζ∂kem|+ |em|∞ lim sup
|ξ|→∞

|ζem|

)]
=0,

which yields (1.2.31) and completes the proof. �

1.2.2 Weak and mild equations

This subsection is concerned with the equivalence between solutions of weak and

mild equations which will be used in Subsection 1.2.3 and Subsection 1.2.4 below.

we refer to [22, 21] and [1] for the semigroup case, e.g. the free Schrödinger group

eit∆. Let us first present the lemma below as a preparation.

Lemma 1.2.4. Let A be as in (1.1.7). Then A ∈ C([0, T ];L(H1, H−1)) and also

A ∈ C([0, T ];L(H−1, H−3))

Proof. For any f ∈ H1, it follows from (1.1.7) that

|A(t)f |H−1 ≤ |∆f |H−1 + |b · ∇f |H−1 + |cf |H−1 .

Obviously, |∆ϕ|H−1 ≤ |ϕ|H1 . Moreover,

|b(t) · ∇f |H−1 ≤ |b(t) · ∇f |2 ≤ |b(t)|L∞|∇f |2,

and

|c(t)f |H−1 ≤ |c(t)f |2 ≤ |c(t)|L∞|f |2.
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Collecting the results above, we have that

|A(t)f |H−1 ≤ (1 + |b(t)|L∞ + |c(t)|L∞)|f |H1 ,

which implies A ∈ L(H1, H−1). Furthermore, from the expressions of b, c in (1.1.8)

and (1.1.9) respectively, it follows that b ∈ C([0, t];L∞) and c ∈ C([0, t];L∞). There-

fore, we deduce thatA ∈ C([0, T ];L(H1, H−1)). The proof forA ∈ C([0, T ];L(H−1, H−3))

follows from similar arguments above, so we omit it here. �.

Theorem 1.2.5. Let x ∈ L2 and U(t, s) be the evolution operators associated with

A as in (1.1.7), 0 ≤ s ≤ t ≤ T . Let y ∈ C([0, T ];L2) and g be a complex function

such that g(y) ∈ L1(0, T ;H−1). If y satisfies the mild equation

y(t) = U(t, 0)x+

∫ t

0

U(t, s)g(y(s))ds, t ∈ [0, T ], in H−1, (1.2.35)

then y also satisfies the weak equation

y(t) = x+

∫ t

0

A(s)y(s)ds+

∫ t

0

g(y(s))ds, t ∈ [0, T ], in H−2. (1.2.36)

Moreover, the converse is also valid.

Proof. (i). We first prove the first part. Below −k〈, 〉k denotes the pair between

H−k and Hk, k ≥ 0.

For any ϕ ∈ H3, we have from (1.2.35) that

−1〈y(t), ϕ〉1 =−1〈U(t, 0)x, ϕ〉1 + −1〈
∫ t

0

U(t, s)g(y(s))ds, ϕ〉1

=−1〈U(t, 0)x, ϕ〉1 +

∫ t

0
−1〈U(t, s)g(y(s)), ϕ〉1ds,

then

−2〈y(t), ϕ〉2 = −2〈U(t, 0)x, ϕ〉2 +

∫ t

0
−3〈U(t, s)g(y(s)), ϕ〉3ds (1.2.37)

Lemma 1.2.1 implies that

U(t, 0)x = x+

∫ t

0

A(r)U(r, 0)xdr, in H−2. (1.2.38)

Moreover, since g(y(s)) ∈ H−1 for dt − a.e s ∈ [0, t], it follows from Lemma 1.2.1
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that

U(t, s)g(y(s)) = g(y(s)) +

∫ t

s

A(r)U(r, s)g(y(s))dr, in H−3, dt− a.e s ∈ [0, t],

(1.2.39)

implying

−3〈
∫ t

0

U(t, s)g(y(s))ds, ϕ〉3

=−3〈
∫ t

0

[g(y(s)) +

∫ t

s

A(r)U(r, s)g(y(s))dr]ds, ϕ〉3

=−3〈
∫ t

0

g(y(s))ds, ϕ〉3 + −3〈
∫ t

0

(

∫ t

s

A(r)U(r, s)g(y(s))dr)ds, ϕ〉3.

Since A ∈ C([0, T ];L(H−1, H−3)) and g(y) ∈ L1(0, T ;H−1), we can interchange the

integrals for the second term and obtain

−3〈
∫ t

0

U(t, s)g(y(s))ds, ϕ〉3

=−3〈
∫ t

0

g(y(s))ds, ϕ〉3 + −3〈
∫ t

0

(

∫ r

0

A(r)U(r, s)g(y(s))ds)dr, ϕ〉3

=−3〈
∫ t

0

g(y(s))ds, ϕ〉3 + −3〈
∫ t

0

A(r)(

∫ r

0

U(r, s)g(y(s))ds)dr, ϕ〉3. (1.2.40)

Therefore, plugging (1.2.38) and (1.2.40) into (1.2.37) and taking into account

(1.2.35), we have

−2〈y(t), ϕ〉2 =−2〈x, ϕ〉2 + −2〈
∫ t

0

A(r)[U(r, 0)x+

∫ r

0

U(r, s)g(y(s))ds]dr, ϕ〉2

+ −3〈
∫ t

0

g(y(s))ds, ϕ〉3

=−2〈x, ϕ〉2 + −2〈
∫ t

0

A(r)y(r)dr, ϕ〉2 + −3〈
∫ t

0

g(y(s))ds, ϕ〉3,

implying

y(t) = x+

∫ t

0

A(r)y(r)dr +

∫ t

0

g(y(s))ds, (1.2.41)

as an equation inH−3. But A(t)y(t) ∈ H−2 and g(y) ∈ L1(0, t;H−1) ⊂ L1(0, t;H−2),

this implies that (1.2.41) holds inH−2, thereby completing the proof of the first part.
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(ii). For the converse part, fix t ∈ [0, T ] and define u(s) = U(t, s)y(s) for

s ∈ (0, t). Then for any h > 0 such that s+ h < t

u(s+ h)− u(s)

=U(t, s+ h)[(y(s+ h)− y(s))− (U(s+ h, s)− I)y(s)]. (1.2.42)

Dividing (1.2.42) by h, and using (1.2.36) and Lemma 1.2.1 to take the limit h→ 0+,

we obtain for dt-a.e. s ∈ (0, t)

(
d

ds
)+u(s) =U(t, s)[(A(s)y(s) + g(y(s)))− A(s)y(s)]

=U(t, s)g(y(s)), in H−2. (1.2.43)

Next, we will prove that s → u(s) is absolutely continuous from (0, t) to H−2.

Indeed, (1.2.36) yields

|y(s+ h)− y(s)|H−2 =

∣∣∣∣ ∫ s+h

s

A(s)y(s)ds+

∫ s+h

s

g(y(s))ds

∣∣∣∣
H−2

≤h‖A‖C([0,T ];L(L2;H−2))‖y‖C([0,T ];L2) +

∫ s+h

s

|g(y(s))|H−1ds.

(1.2.44)

Similarly, Lemma 1.2.1 implies that

U(s+ h, s)y(s)− y(s) =

∫ s+h

s

A(r)U(r, s)y(s)dr, (1.2.45)

then

|(U(s+ h, s)− I)y(s)|H−2

≤h‖A‖C([0,T ];L(L2;H−2)) sup
r∈[s,s+h]

‖U(r, s)‖L(L2,L2)‖y‖C([0,T ];L2). (1.2.46)

Hence, for any ε > 0 and for any non-intersecting intervals {(si, si + hi)}m
i=1 ⊂ (0, t)

satisfying
m∑

i=1

hi < δ with δ chosen later, plugging (1.2.44) and (1.2.46) into (1.2.42)

with si, hi in place of s, h, we come to

N∑
i=1

|u(si + hi)− u(si)|H−2

≤ sup
s∈[0,t]

‖U(t, s)‖L(H−2,H−2)

[
δ‖A‖C([0,T ];L(L2;H−2))‖y‖C([0,T ];L2) +

m∑
i=1

∫ si+hi

si

|g(y(s))|H−1ds
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+ δ‖A‖C([0,T ];L(L2;H−2)) sup
s≤r∈[0,t]

‖U(r, s)‖L(L2,L2)‖y‖C([0,T ];L2)

]
,

which tends to 0 as δ → 0.

Therefore, we conclude the absolutely continuity of u(s), s ∈ (0, t), which implies

the existence of d
ds
u(s) for dt-a.e s ∈ (0, t). Then, it follows from (1.2.43) that for

dt-a.e s ∈ (0, t)

d

ds
u(s) = U(t, s)g(y(s)), in H−2. (1.2.47)

Integrating (1.2.47) over (0, t) and noting that the right hand side is in H−1, we

consequently obtain (1.2.35) and complete the proof of Theorem 1.2.5. �

1.2.3 Subcritical case

In this subsection we establish the local existence, uniqueness and blowup alternative

results in the subcritical case.

Theorem 1.2.6. Assume (H1) and let 1 < α < 1 + 4
d
. For each x ∈ L2 and

0 < T < ∞, there exists a maximal strong solution (X, (τn)n∈N, τ
∗(x)) of (1.1.1)

in the sense of Definition 1.1.1. In particular, uniqueness holds for (1.1.1). X also

satisfies P-a.s for every n ≥ 1

X|[0,τn] ∈ C([0, τn];L2) ∩ Lγ(0, τn;Lρ), (1.2.48)

for each Strichartz pair (ρ, γ).

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

lim
t→τ∗(x)(ω)

|X(t)(ω)|2 = ∞.

Remark 1.2.7. The proof of Theorem 1.2.8 below indeed implies that, if sup
t∈[0,τ∗(x))

|X(t)| <

∞ P− a.s, then τ ∗(x) = T , P− a.s.

Under Theorem 1.1.4, we will prove this result from the following theorem con-

cerning the random equation (1.1.6).

Theorem 1.2.8. Assume (H1) and let 1 < α < 1 + 4
d
. For each x ∈ L2 and

0 < T < ∞, there exists a maximal strong solution (y, (τn)n∈N, τ
∗(x)) of (1.1.6)

in the sense of Definition 1.1.3. In particular, uniqueness holds for (1.1.6). y also

satisfies P-a.s for every n ≥ 1



32 Chapter 1. The well-posedness in L2(Rd)

y|[0,τn] ∈ C([0, τn];L2) ∩ Lγ(0, τn;Lρ), (1.2.49)

for each Strichartz pair (ρ, γ).

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

lim
t→τ∗(x)(ω)

|y(t)(ω)|2 = ∞.

Before the proof we remark that, the advantage to treat (1.1.6) rather than the

stochastic equation (1.1.1) lies in the fact that, for P-a.e. ω ∈ Ω we can apply

standard fixed point arguments (cf. e.g [58, 22, 46]) to construct a unique local so-

lution and then extend this local solution to a maximal interval [0, τ ∗(x)). However,

we also emphasize the detail probabilistic proofs for the construction of L2-valued

continuous stochastic process, involving stopping times and adaptedness, which are

necessary to apply Itô’s formula later to derive the a priori estimates.

Proof. By Theorem 1.2.5, it is equivalent to construct the solution to (1.1.6) in

the ”mild” sense

y(t) = U(t, 0)x− λi

∫ t

0

U(t, s)(e(α−1)ReW (s)g(y(s)))ds, t ∈ [0, T ], (1.2.50)

where g(y) = |y|α−1y. (Note that, we will prove below that g(y) ∈ Lq′(0, t;Lp′),

which implies that g(y) ∈ L1(0, t;H−1) by Sobolev’s imbedding’s theorem, hence we

can apply Theorem 1.2.5.)

We set X = C([0, T ];L2) ∩ Lq(0, T ;Lα+1) with q = 4(α+1)
d(α−1)

, and consider the

integral operator

F (y)(t) = U(t, 0)x− λi

∫ t

0

U(t, s)(e(α−1)ReW (s)g(y(s)))ds, t ∈ [0, T ], (1.2.51)

defined on X .

Step 1. By Stichartz estimate (1.2.20) with the Strichartz pair (α + 1, q), we

have for y ∈ X ,

‖F (y)‖Lq(0,T ;Lα+1) ≤ CT |x|2 + CT‖ e(α−1)ReWg(y)‖
Lq′ (0,T ;L

α+1
α )
,

then using Hölder’s inequality we get

‖e(α−1)ReWg(y)‖
Lq′ (0,T ;L

α+1
α )

≤ γT ‖|y|α‖Lq′ (0,T ;L
α+1

α )

≤ γTT
θ‖y‖α

Lq(0,T ;Lα+1),
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where γT := exp((α− 1)‖W‖L∞(0,T ;L∞)) and θ = 1− d(α−1)
4

> 0.

Therefore,

‖F (y)‖Lq(0,T ;Lα+1) ≤ CT

[
|x|2+γTT

θ‖y‖α
Lq(0,T ;Lα+1)

]
. (1.2.52)

Similarly, by (1.2.20) with the Strichartz pairs (2,∞) and (α+ 1, q)

‖F (y)‖L∞(0,T ;L2) ≤ CT

[
|x|2 + γTT

θ‖y‖α
Lq(0,T ;Lα+1)

]
. (1.2.53)

In particular, this implies that F (X ) ⊂ X .

We note that, in (1.2.52) and (1.2.53) the constant CT , coming from the Strichartz

estimate (1.2.20), depends on ω ∈ Ω. However, as mentioned in Lemma 1.2.3, the

process t→ Ct is (Ft)-adapted.

Now, Fix ω ∈ Ω and consider the operator F on the set

X τ
M1

=

{
y ∈ C([0, τ ];L2) ∩ Lq(0, τ ;Lα+1); sup

0≤t≤τ
|y(t)|2 + ‖y‖Lq(0,τ ;Lα+1) ≤M1

}
where τ = τ(ω) ∈ (0, T ] and M1 = M1(ω) > 0 are random variables.

For y ∈ X τ
M1

, by estimates (1.2.52) and (1.2.53)

‖F (y)‖L∞(0,τ ;L2) + ‖F (y)‖Lq(0,τ ;Lα+1) ≤ 2Cτ (|x|2 + γττ
θMα

1 ). (1.2.54)

This means that F (X τ
M1

) ⊂ X τ
M1
, if M1 and τ are chosen in a such way that

2Cτ (|x|2 + αγττ
θMα

1 ) ≤M1 (1.2.55)

To this end, we choose M1 = 3Cτ |x|2 and define the real-valued continuous (Ft)-

adapted process

Z
(1)
t := 2 · 3α−1α|x|α−1

2 Cα
t γtt

θ, t ∈ [0, T ].

Then (1.2.55) is equivalent to Z
(1)
τ ≤ 1

3
· Hence, defining the (Ft)-stopping time

τ 1 = inf

{
t ∈ [0, T ] : Z

(1)
t >

1

3

}
∧ T,

we have τ 1 > 0 and Z
(1)
τ1 ≤ 1

3
, hence

F (X τ1

3Cτ1 |x|2
) ⊂ X τ1

3Cτ1 |x|2
.

Now, let us show that F is a contraction in C([0, τ 1];L
2)∩Lq(0, τ 1;L

α+1). Arguing
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as in the proof of (1.2.52) and (1.2.53), for y1, y2 ∈ X τ1

3Cτ1 |x|2
we get that

‖F (y1)− F (y2)‖Lq(0,τ1;Lα+1) + ‖F (y1)− F (y2)‖L∞(0,τ1;L2)

≤2Cτ1γτ1
‖|y1|α−1y1 − |y2|α−1y2‖

Lq′ (0,τ1;L
α+1

α )

≤2αCτ1γτ1
τ θ

1(‖y1‖α−1
Lq(0,τ1;Lα+1) + ‖y2‖α−1

Lq(0,τ1;Lα+1))‖y1 − y2‖Lq(0,τ1;Lα+1)

≤4αCτ1γτ1
τ θ

1M
α−1
1 ‖y1 − y2‖Lq(0,τ1;Lα+1)

=2Z(1)
τ1
‖y1 − y2‖Lq(0,τ1;Lα+1)

≤2

3
‖y1 − y2‖Lq(0,τ1;Lα+1), (1.2.56)

by definition of τ 1.

This implies that F is a contraction on the space C([0, τ 1];L
2)∩Lq(0, τ 1;L

α+1).

Hence, by Banach’s fixed point theorem, we know that there exists a unique solution

y ∈ C([0, τ 1];L
2) ∩ Lq(0, τ 1;L

α+1) satisfying y = F (y) on [0, τ 1], which implies that

y solves (1.2.50) on [0, τ 1].

Moreover, there exists a sequence u1,m ∈ X , m ∈ N, such that u1,m+1 = F (u1,m),

m ≥ 1, u1,1(t) = U(t, 0)x, t ∈ [0, T ], and lim
m→∞

u1,m|[0,τ1] = y in C([0, τ 1];L
2) ∩

Lq(0, τ 1;L
α+1). Define y1(t) := y(t ∧ τ 1), t ∈ [0, T ]. Then

y1 = lim
m→∞

u1,m(· ∧ τ 1) in C([0, T ];L2).

Since, each u1,m is (Ft)-adapted in L2, so is y1.

Therefore, we conclude that (y1, τ 1) is a strong solution of (1.1.6), such that

y1(t) = y1(t ∧ τ 1), t ∈ [0, T ], and y1|[0,τ1] ∈ C([0, τ 1];L
2) ∩ Lq(0, τ 1;L

p).

Step 2. We shall use an induction argument to extend (y1, τ 1) to a new strong

solution (yn+1, τn+1) with τn+1 ≥ τ 1. Suppose that at the n-th step we have a strong

solution (yn, τn) of (1.1.6), such that τn ≥ τn−1, yn(t) = yn(t ∧ τn), t ∈ [0, T ], and

and yn|[0,τn] ∈ C([0, τn];L2) ∩ Lq(0, τn;Lp).

Define the integral operator Fn on X

Fn(z)(t) = U(τn+t, τn)yn(τn)− λi

∫ t

0

U(τn+t, τn+s)(e(α−1)ReW (τn+s)g(z(s)))ds,

(1.2.57)

where t ∈ [0, T ]. Set

X σn
Mn+1

=
{
z ∈ C([0, σn];L2) ∩ Lq(0, σn;Lα+1); sup

0≤t≤σn

|z(t)|2+‖z‖Lq(0,σn;Lα+1)≤Mn+1

}
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where σn = σn(ω) and Mn+1 = Mn+1(ω) are random variables.

Similarly to (1.2.54), we have for every z ∈ X σn
Mn+1

,

‖Fn(z)‖L∞(0,σn;L2) + ‖Fn(z)‖Lq(0,σn;Lα+1)

≤2Cτn+σn(|yn(τn)|2 + γτn+σn
σθ

nM
α
n+1), (1.2.58)

which implies that Fn(X σn
Mn+1

) ⊂ X σn
Mn+1

and Fn is a contraction in X σn
Mn+1

, if we take

Mn+1 = 3Cτn+σn|yn(τn)|2 and choose σn such that

2Cτn+σn(|yn(τn)|2 + αγτn+σn
σθ

nM
α
n+1) ≤Mn+1,

i.e.,

2 · 3α−1α|yn(τn)|α−1
2 Cα

τn+σn
γτn+σn

σθ
n ≤

1

3
· (1.2.59)

So, similarly as above, we define the real-valued continuous (Fτn+t)-adapted process

Z
(n)
t := 2 · 3α−1α|yn(τn)|α−1

2 Cα
τn+tγτn+tt

θ, t ∈ [0, T ],

and

σn := inf

{
t ∈ [0, T − τn] : Z

(n)
t >

1

3

}
∧ (T − τn).

Then σn > 0 and Z
(n)
σn ≤ 1

3
, i.e., (1.2.59) holds.

Set τn+1 := τn + σn. Then τn+1 is an (Ft)-stopping time. Indeed, for t ∈ [0, T ],

{τn + σn < t} =
⋃

q1,q2∈Q+
q1+q2<t

{τn < q1, σn < q2},

where Q+ denotes the nonnegative rational numbers. But, by induction, τn is an

(Ft)-stopping time and

{τn < q1, σn < q2} =
⋃

q∈Q+
q<q2

{
τn + q2 < q1 + q2, Z

(n)
q >

1

3

}
∈ F(τn+q2)∧(q1+q2) ⊂ Fq1+q2 ⊂ Ft,

since
{
Z

(n)
q > 1

3

}
∈ Fτn+q ⊂ Fτn+q2 . Since (Ft) is right-continuous, τn+1 is thus

an (Ft)-stopping time.

Analogously to Step 1, one now shows that, by Banach’s fixed point theorem,
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there exists a unique zn+1 ∈ X σn
Mn+1

, satisfying zn+1 = Fn(zn+1). We define

yn+1(t) =

{
yn(t), t ∈ [0, τn],

zn+1((t− τn) ∧ σn), t ∈ (τn, T ].
(1.2.60)

It follows from the definitions of F in Step 1 and Fn that yn+1 = F (yn+1) on [0, τn+1],

which implies that yn+1 solves (1.2.50) on [0, τn+1].

In order to prove that yn+1 is adapted to (Ft) in L2, we first note that, by zn+1 =

Fn(zn+1) and Banach’s fixed point theorem, there exists a sequence {vn+1,m}m≥1,

adapted to (Fτn+t), satisfying vn+1,m+1 = Fn(vn+1,m) for m ≥ 1, vn+1,1(t) = U(τn +

t, τn)yn(τn), t ∈ [0, T ], and zn+1 = lim
m→∞

vn+1,m|[0,t] in C([0, t];L2) ∩ Lq(0, t;Lα+1)),

t ∈ [0, σn]. Define

un+1,m(t) =

{
yn(t), t ∈ [0, τn],

vn+1,m(t− τn), t ∈ (τn,∞).

Then, yn+1 = lim
m→∞

u
τn+1

n+1,m, in C([0, T ];L2).

Now, we show that un+1,m is adapted to (Ft) in L2. In fact, let fj, j ∈ N, be an

orthonormal basis of L2. We have, for each a > 0, {|〈un+1,m(t), fj〉2| < a} = J1,a ∪
J2,a, where J1,a = {|〈yn(t), fj〉2| < a, t ≤ τn} and J2,a = {|〈vn+1,m(t− τn), fj〉2| < a,

τn < t}. Since yn is adapted to (Ft) and τn is an (Ft)-stopping time, it follows that

J1,a ∈ Ft.

By the continuity of t 7→ |〈vn+1,m(t− τn), fj〉2| we see that

J2,a =
⋃
q∈Q
q<a

⋃
h∈N

⋂
s∈Q

Jq,h,s,

where Jq,h,s =
{
|〈vn+1,m(s), fj〉2| < q, t− τn − 1

h
< s < t− τn, τn < t

}
. Taking into

account that {|〈vn+1,m(s), fj〉2| < q} ∈ Fτn+s and τn + s < t, we have Jq,h,s ∈ Ft,

which implies that J2,a ∈ Ft.

Collecting the above results, we obtain that, for any j ∈ N and a > 0, {|〈un+1,m(t), fj〉2| <
a} ∈ Ft. This is enough to imply that un+1,m is adapted to (Ft) in L2. Hence, as

the limit of u
τn+1

n+1,m, yn+1 is also adapted to (Ft) in L2.

Therefore, we conclude that (yn+1, τn+1) is a new strong solution of (1.1.6) with

τn+1 ≥ τn, such that yn+1(t) = yn+1(t ∧ τn+1), t ∈ [0, T ], and yn+1|[0,τn+1] ∈
C([0, τn+1];L

2) ∩ Lq(0, τn+1;L
p).

Step 3. By an induction argument, we finally have a sequence of strong so-

lutions (yn, τn), n ∈ N, with τn increasing (Ft)-stopping times and yn+1 = yn on
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[0, τn]. Defining τ ∗(x) = lim
n→∞

τn and y = lim
n→∞

yn1[0,τ∗(x)), we obtain the triple

(y, (τn)n∈N, τ
∗(x)).

(1.2.49) follows from the fact that yn|[0,τn] ∈ C([0, τn];L2)∩Lq(0, τn;Lp) and the

Strichartz estimate (1.2.20). Indeed, for any Strichartz pair (ρ, γ)

‖y‖Lγ(0,τn;Lρ) =‖F (yn)‖Lγ(0,τn;Lρ)

≤Cτn [|x|2 + ‖λe(α−1)ReWg(yn)‖
Lq′ (0,τn;L

α+1
α )

]

≤Cτn [|x|2 + γτn
τ θ

n‖yn‖α
Lq(0,τn;Lα+1)] <∞, P− a.s.

In order to prove that (y, (τn)n∈N, τ
∗(x)) is indeed the maximal strong solution in

the sense of Definition 1.1.3, let us first show the uniqueness and blowup alternative

given below.

As regards the uniqueness, for another two strong solutions (ỹi, σi), i = 1, 2, as

in (1.2.56) we have for any t, s > 0, s+ t < σ1 ∧ σ2

‖ỹ1 − ỹ2‖L∞(s,s+t;L2) + ‖ỹ1 − ỹ2‖Lq(s,s+t;Lα+1)

≤4αCTγT t
θMα−1‖ỹ1 − ỹ2‖Lq(s,s+t;Lα+1)

with M = ‖ỹ1‖Lq(0,s+t;Lα+1) + ‖ỹ2‖Lq(0,s+t;Lα+1) < ∞ a.s. Thus a properly chosen

small t yields ỹ1 = ỹ2 on [s, s + t], implying the uniqueness on [0, σ1 ∧ σ2). Hence

ỹ1 = ỹ2 on [0, σ1 ∧ σ2] by the continuity in L2.

For the proof of the blowup alternative, setM∗ := sup
t∈[0,τ∗(x))

|y(t)|L2 . Suppose that

P(M∗ <∞; τn < τ ∗(x),∀n ∈ N) > 0. Define the real-valued continuous process

Zt := 2 · 3α−1α(M∗)α−1Cα
T+tγT+tt

θ, t ∈ [0, T ],

and

σ := inf

{
t ∈ [0, T ] : Zt >

1

6

}
∧ T.

By the assumption above, we have σn(ω) < T − τn(ω) for ω ∈ {M∗ < ∞; τn <

τ ∗(x),∀n ∈ N}, hence σn(ω) = inf{t ∈ [0, T − σn(ω)] : Z
(n)
t (ω) > 1

3
}. On the other

hand, since for every n ≥ 1, |y(τn)|2 ≤ M∗, Cτn+t ≤ CT+t and γτn+t ≤ γT+t, it

follows that Zt ≥ Z
(n)
t . Hence σn(ω) > σ(ω) > 0, τn+1(ω) = τn(ω) + σn(ω) >

τn(ω) + σ(ω), which implies that τn+1(ω) > τ 1(ω) + nσ(ω), n ≥ 1. Thus, after

finitely many steps, τn(ω) will exceed T , contradicting the fact that τn(ω) ≤ T .

Therefore, we conclude the blow-up alternative and finish the proof of Theorem

1.2.8.
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Now we show that (y, (τn)n∈N, τ
∗(x)) is the maximal strong solution of (1.1.6).

Suppose not, then by the definition and uniqueness there exists a strong solution

(ỹ, τ̃) of (1.1.6), such that P(τ̃ > τn,∀n ∈ N) > 0. For ω ∈ {τ̃ > τn,∀n ∈ N},
it follows that sup

t∈[0,τ∗(x)(ω))

|y(ω)|2 < ∞. Hence, by the blowup alternative, there

exists n0(ω) ∈ N such that τn0(ω) = τ ∗(x)(ω). As τn0(ω) < τ̃(ω) ≤ T , by the

construction procedure in Step 2 one is able to obtain a new solution to (1.1.1)

on a larger interval [0, τn0+1(ω)] containing [0, τn0(ω)](= [0, τ ∗(x)(ω)]), yielding a

contradiction. Therefore, we complete the proof of Theorem 1.2.8. �

Remark 1.2.9. In theorem 1.2.8, Assumption (H1) on the spatial regularity and

decay is due to Lemma 1.2.1 and Lemma 1.2.3, which allow to construct local so-

lutions pathwisely. This in some sense indicates that spatially smoother noise helps

to obtain the local well-posedness.

It shall be mentioned that, the authors in [10] imposed a different regularity

assumption on the noise. Precisely, let

W (t, ξ) =
∞∑

k=0

βk(t)φek(ξ), (1.2.61)

where (ek)k∈N is an orthonormal basis of L2(Rd,R) (real valued space integrable

functions in Rd). Then it was required in [10] that φ ∈ L2(L
2(Rd,R), L2(Rd,R)) ∩

R(L2(Rd,R), L2+δ(Rd)) for some δ > 2(d−1). Here R(L2(Rd,R), L2+δ(Rd)) denotes

the radonifying operators from L2(Rd,R) to L2+δ(Rd), which enables one to control

Banach space valued stochastic integrals by the Burkholder type inequality. However,

this technical treatment is not applicable to solve (1.1.1) pathwisely and leads to a

restrictive condition on α : 1 < α < 1 + 2
d−1

if d ≥ 3. We refer the reader to [10]

for more details.

1.2.4 Critical case

This subsection is concerned with the L2-critical case α = 1+ 4
d
. Let us first state the

local existence, uniqueness and blowup alternative results for the random equation

(1.1.6).

Theorem 1.2.10. Assume (H1) and let α = 1 + 4
d
. Then, for each x ∈ L2 and

0 < T < ∞, there exists a maximal strong solution (y, (τn)n∈N, τ
∗(x)) of (1.1.6)

in the sense of Definition 1.1.3. In particular, uniqueness holds for (1.1.6). y also

satisfies P-a.s for every n ≥ 1

y|[0,τn] ∈ C([0, τn];L2) ∩ L2+ 4
d (0, τn;L2+ 4

d ). (1.2.62)
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Moreover, we have the blowup alternative, namely, for P − a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

‖y(ω)‖
L2+ 4

d (0,τ∗(x)(ω);L2+ 4
d )

= ∞.

Proof. The proofs below follow the lines in the proof of Theorem 1.2.8, and

some similar arguments will be omitted.

Consider the integral operator F as in (1.2.51) on the set (see, e.g., [58], p. 97)

Gτ1fM1
= {y ∈ C([0, τ 1];L

2) ∩ Lp(0, τ 1;L
p); sup

0≤t≤τ1

|y(t)− U(t, 0)x|2 + ‖y‖Lp(0,τ1;Lp) ≤ M̃1},

where p = 2 + 4
d
. We have for y ∈ Gτ1fM1

sup
0≤t≤τ1

|F (y)(t)− U(t, 0)x|2 + ‖F (y)‖Lp(0,τ1;Lp) ≤ ε1(τ 1) + 2Cτ1γτ1
M̃α

1 ,

where ε1(t) := ‖U(·, 0)x‖Lp(0,t;Lp) and γt = exp((α− 1)‖W‖L∞(0,t;L∞)).

Moreover, for y1, y2 ∈ Gτ1fM1

‖F (y1)− F (y2)‖L∞(0,τ1;L2) + ‖F (y1)− F (y2)‖Lp(0,τ1;Lp)

≤4αCτ1γτ1
M̃α−1

1 ‖y1 − y2‖Lp(0,τ1;Lp).

Notice that ε1(t) → 0 as t→ 0, and t→ ε1(t) is (Ft)-adapted (see the proof of

Lemma 1.2.3). Define the continuous (Ft)-adapted process Z̃
(1)
t = 22−α3α−1αCtγtε

α−1
1 (t),

t ∈ [0, T ], set the (Ft)-stopping time

τ 1 = inf{t ∈ [0, T ]; Z̃
(1)
t >

1

3
} ∧ T

and let M̃1 = 3
2
ε1(τ 1), then F is a contraction map in Gτ1fM1

. Hence, as in Step 1 in

the proof of Theorem 1.2.8, we obtain a strong solution (y1, τ 1) of (1.1.6) such that

y1(t) = y1(t ∧ τ 1), t ∈ [0, T ], and y1|[0,τ1] ∈ C([0, τ 1];L
2) ∩ L2+ 4

d (0, τ 1;L
2+ 4

d ).

Now, suppose that at the nth step we have a strong solution (yn, τn) of (1.1.6)

with τn ≥ τn−1, such that yn(t) = yn(t∧τn), t ∈ [0, T ], and yn|[0,τn] ∈ C([0, τn];L2)∩
L2+ 4

d (0, τn;L2+ 4
d ).

Consider the operator Fn as in (1.2.57) and set

GσnfMn+1
={z ∈ C([0, σn];L2) ∩ Lp(0, σn;Lp);

sup
0≤t≤σn

|z(t)− U(τn + t, τn)yn(τn)|2 + ‖z‖Lp(0,σn;Lp) ≤ M̃n+1}.
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We have for z ∈ GσnfMn+1

sup
0≤t≤σn

|Fn(z)(t)− U(τn + t, τn)yn(τn)|2 + ‖Fn(z)‖Lp(0,σn;Lp)

≤εn+1(σn) + 2Cτn+σnγτn+σn
M̃α

n+1,

where εn+1(t) = ‖U(τn + ·, τn)yn(τn)‖Lp(0,t;Lp) is (Fτn+t)-adapted and tends to 0 as

t→ 0.

Moreover, for z1, z2 ∈ GσnfMn+1

‖Fn(z1)− Fn(z2)‖L∞(0,σn;L2) + ‖Fn(z1)− Fn(z2)‖Lp(0,σn;Lp)

≤4αCτn+σnγτn+σn
M̃α−1

n+1 ‖z1 − z2‖Lp(0,τ1;Lp).

Similarly, in order to let Fn be a contraction map in GσnfMn+1
, we define the con-

tinuous (Fτn+t)-adapted process Z̃
(n)
t = 22−α3α−1αCτn+tγτn+tε

α−1
n+1(t), t ∈ [0, T ], set

σn = inf{t ∈ [0, T − τn]; Z̃
(n)
t >

1

3
} ∧ (T − τn),

and M̃n+1 = 3
2
εn+1(σn). Then Banach’s fixed point theorem implies that there exists

zn+1 ∈ GσnfMn+1
such that Fn(zn+1) = zn+1. Hence, letting τn+1 = τn + σn, defining

yn+1 as in (1.2.60), and using the arguments as in Step 2 in the proof of Theorem 1.2.8

we deduce that (yn+1, τn+1) is a new strong solution of (1.1.6), such that yn+1(t) =

yn+1(t ∧ τn+1), t ∈ [0, T ], and yn+1|[0,τn+1] ∈ C([0, τn+1];L
2) ∩ L2+ 4

d (0, τn+1;L
2+ 4

d ).

Therefore, by induction arguments we finally construct strong solutions (yn, τn)n∈N,

with τn increasing stopping times and yn+1 = yn on [0, τn], which give us the triple

(y, (τn)n∈N, τ
∗(x)) defined by τ ∗(x) = lim

n→∞
τn and y = lim

n→∞
yn1[0,τ∗(x)), and (1.2.62)

follows immediately. Moreover, in order to prove that (y, (τn)n∈N, τ
∗(x)) is the

maximal strong solution in the sense of Definition 1.1.3, we only need to show the

uniqueness and blowup alternative.

As regards the uniqueness, given another two solutions (ỹi, σi), i = 1, 2, we define

ς = sup{t ∈ [0, σ1 ∧ σ2] : ỹ1 = ỹ2 on [0, t]}. Suppose that P(ς < σ1 ∧ σ2) > 0. For

ω ∈ {ς < σ1 ∧ σ2}, by the continuity in L2, ỹ1(ω) = ỹ2(ω) on [0, ς(ω)]. Then for

t > 0, ς(ω) + t < σ1(x)(ω) ∧ σ2(ω), we have

‖ỹ1(ω)− ỹ2(ω)‖Lp(ς(ω),ς(ω)+t;Lp) ≤ αCς(ω)+t γς(ω)+tM̃(t)‖ỹ1(ω)− ỹ2(ω)‖Lp(ς(ω),ς(ω)+t;Lp),

where M̃(t) = ‖ỹ1(ω)‖α−1
Lp(ς(ω),ς(ω)+t;Lp) +‖ỹ2(ω)‖α−1

Lp(ς(ω),ς(ω)+t;Lp) → 0 as t→ 0. Hence,
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a sufficient small t yields ỹ1(ω) = ỹ2(ω) on [ς(ω), ς(ω) + t] and then ỹ1(ω) = ỹ2(ω)

on [0, ς(ω) + t], contradicting the definition of ς.

For the blowup alternative, suppose that P(‖y‖Lp(0,τ∗(x);Lp) <∞; τn < τ ∗(x),∀n ∈
N) > 0. For ω ∈ {‖y‖Lp(0,τ∗(x);Lp) < ∞; τn < τ ∗(x),∀n ∈ N}, by definition

σn(ω) = inf{t ∈ [0, T − τn(ω)]; Z̃
(n)
t (ω) > 1

3
}. Moreover, Z̃

(n)
σn(ω)(ω) = 1

3
, since

Z̃
(n)
t (ω) is continuous. On the other hand, for every n ∈ N and t ∈ [0, σn], by the

definition of Fn

εn+1(t) =‖U(τn + ·, τn)y(τn)‖Lp(0,t;Lp)

≤‖Fn(zn+1)‖Lp(0,t;Lp) + ‖
∫ ·

0

U(τn + ·, τn + s)e(α−1)ReW (τn+s)g(zn+1(s))ds‖Lp(0,t;Lp)

≤‖zn+1‖Lp(0,t;Lp) + Cτn+1γτn+1
‖zn+1‖α

Lp(0,t;Lp)

≤M̃∗
n + CTγT (M̃∗

n)α. (1.2.63)

Since M̃∗
n(ω) := ‖y(ω)‖Lp(τn(ω),τ∗(x)(ω);Lp) → 0, as n→∞, there exists n large enough

such that

Z̃(n)(ω) := 22−α3α−1αCT (ω)γT (ω)[M̃∗
n(ω) + CT (ω)γT (ω)(M̃∗

n)α(ω)]α−1 <
1

6
.

But, this implies from (1.2.63) and the definition of Z̃
(n)
t that for all t ∈ [0, σn(ω)],

1
6
> Z̃(n)(ω) > Z̃

(n)
t (ω) , which is a contradiction, since Z̃

(n)
σn(ω)(ω) = 1

3
.

Therefore, we obtain the blowup alternative and complete the proof of Theorem

1.2.10 �

From Theorem 1.2.10 and Theorem 1.1.4, we have the corresponding results for

SNLS (1.1.1).

Theorem 1.2.11. Assume (H1) and let α = 1 + 4
d
. Then, for each x ∈ L2 and

0 < T < ∞, there exists a maximal strong solution (X, (τn)n∈N, τ
∗(x)) of (1.1.1)

in the sense of Definition 1.1.1. In particular, uniqueness holds for (1.1.1). X also

satisfies P-a.s for every n ≥ 1

X|[0,τn] ∈ C([0, τn];L2) ∩ L2+ 4
d (0, τn;L2+ 4

d ). (1.2.64)

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

‖X(t)(ω)‖
L2+ 4

d (0,τ∗(x)(ω);L2+ 4
d )

= ∞. (1.2.65)
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Remark 1.2.12. Similarly to Remark 1.2.7, the proof of Theorem 1.2.10 indeed

implies that if ‖X(t)(ω)‖
L2+ 4

d (0,τ∗(x)(ω);L2+ 4
d )
<∞ P-a.s, then τ ∗(x) = T , P-a.s. But,

unlike in the subcritical case, a priori estimate of mass does not imply the global

well-posedness in the critical case. In the deterministic case, it was once conjectured

that in the defocusing case one has the finite bound of ‖X(t)‖
L2+ 4

d (0,τ∗(x);L2+ 4
d )

. We

refer to the interested reader to Section 1.4 for further reviews.

1.3 Global well-posedness

This section is devoted to the global well-posedness in the subcritical case. We will

first derive in Subsection 1.3.1 a priori estimate of the mass, with which we then

obtain the global well-posedness in Subsection 1.3.2.

1.3.1 A priori estimate of the mass

From the blowup alternative in Theorem 1.2.6, the proof for the global existence in

the subcritical case lies in the a priori estimate of the mass, i.e sup
0≤t<τ∗(x)

|X(t)|2 <∞,

P-a.s., which will be obtained in Theorem 1.3.1 below thanks to the martingale

property of |X(t)|22.

Theorem 1.3.1. Let x ∈ L2, α ∈ (1, 1 + 4
d
] and (X, (τn)n∈N, τ

∗(x)) be the maximal

strong solution of (1.1.1) from Theorem 1.2.6 and Theorem 1.2.11 respectively. We

have P-a.s for 0 ≤ t < τ ∗(x)

|X(t)|22 = |x|22 + 2
N∑

k=1

∫ t

0

∫
Rd

Re(µk)ek|X(s)|2dξdβk(s), (1.3.66)

Moreover

E

[
sup

0≤t<τ∗(x)

|X(t)|22

]
≤ C̃(T ) <∞. (1.3.67)

Remark 1.3.2. In the deterministic and stochastic conservative cases, the mass is

conserved |X(t)|22 = |x|22, since Reµj = 0, 1 ≤ j ≤ N . While in the stochastic non-

conservative case where Reµj0 6= 0 for some j0 ∈ {1, ..., N}, the mass is no longer a

constant, but a martingale depending on time.

Proof of Theorem 1.3.1. Let {fj}j≥1 ⊂ H2(Rd) be an orthonormal basis in

L2, set Jε = (I − ε∆)−1 and hε = Jεh for any h ∈ H−2. We also set φk = µkek,

1 ≤ k ≤ N , for simplicity.
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From (1.1.4) it follows that P-a.s.

Xε(t) = xε −
∫ t

0

[i∆Xε(s) + (µX)ε(s) + λigε(s)] ds

+
N∑

k=1

∫ t

0

(Xφk)ε(s)dβk(s), t ∈ [0, τn], (1.3.68)

where gε(s) = Jε[|X(s)|α−1X(s)] ∈ L2, 0 ≤ s < τ ∗(x).

Then for every fj

〈fj, Xε(t)〉2 =〈fj, xε〉2 − 〈fj,

∫ t

0

[i∆Xε(s) + (µX)ε(s) + λigε(s)]ds〉2

+ 〈fj,
N∑

k=1

∫ t

0

(Xφk)ε(s)dβk(s)〉2, t ∈ [0, τn]. (1.3.69)

From (1.2.48) and (1.2.64), it is not difficult to interchange the integrals for the

drift term. While for the stochastic integral in (1.3.69), as in the proof of Theorem

1.1.4, we set σn,m = inf{t ∈ [0, τn] : |X(t)|2 > m} ∧ τn, then by (1.1.16)

E
∫ t∧σn,m

0

N∑
k=1

|〈fj, (Xφk)ε(s)〉2|2ds

≤(
N∑

k=1

|φk|2∞)|fj|22E
∫ t∧σn,m

0

|X(s)|22ds

≤(
N∑

k=1

|φk|2∞)|fj|22 m2t <∞.

Hence, by stochastic Fubini’s theorem,

〈fj,
N∑

k=1

∫ t

0

(Xφk)ε(s)dβk(s)〉2 =
N∑

k=1

∫ t

0

〈fj, (Xφk)ε(s)〉2dβk(s) (1.3.70)

holds on {t ≤ σn,m}. But by (1.2.48) and (1.2.64), for P-a.e. ω ∈ Ω, there exists

m(ω) ∈ N such that for m ≥ m(ω), σn,m = τn. Thus⋃
m∈N

{t ≤ σn,m} = {t ≤ τn}, (1.3.71)

which implies (1.3.70) holds on {t ≤ τn}.
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Now, we conclude that P-a.s.

〈fj, Xε(t)〉2 =〈fj, xε〉2 −
∫ t

0

〈fj, i∆Xε(s) + (µX)ε(s) + λigε(s)〉2ds

+
N∑

k=1

∫ t

0

〈fj, (Xφk)ε(s)〉2dβk(s), t ∈ [0, τn]. (1.3.72)

Applying the Itô product rule yields

|〈fj, Xε(t)〉2|22 =|〈fj, xε〉2|22 + 2Re

∫ t

0

〈Xε(s), fj〉2d〈fj, Xε(s)〉2

+ 〈〈Xε(t), fj〉2, 〈fj, Xε(t)〉2〉

=|〈fj, xε〉2|22 + 2Re

∫ t

0

〈Xε(s), fj〉2〈fj,−i∆Xε(s)〉2ds

+ 2Re

∫ t

0

〈Xε(s), fj〉2〈fj,−(µX)ε(s)〉2ds

+ 2Re

∫ t

0

〈Xε(s), fj〉2〈fj,−λigε(s)〉2ds

+
N∑

k=1

∫ t

0

|〈fj, (Xφk)ε(s)〉2|2ds

+ 2Re
N∑

k=1

∫ t

0

〈Xε(s), fj〉2〈fj, (Xφk)ε(s)〉2dβk(s), t ∈ [0, τn].

Summing over j and interchanging the infinite sum with the integrals, which can be

justified as in the proof of Theorem 1.1.4, we derive that

|Xε(t)|22 =|xε|22 + 2Re

∫ t

0

〈Xε(s),−(µX)ε(s)〉2ds

+ 2Re

∫ t

0

〈Xε(s),−λigε(s)〉2ds+
N∑

k=1

∫ t

0

|(Xφk)ε(s)|22ds

+ 2Re
N∑

k=1

∫ t

0

〈Xε(s), (Xφk)ε(s)〉2dβk(s), t ∈ [0, τn]. (1.3.73)

Therefore, since for f ∈ Lp, p ∈ (1,∞), as ε→ 0

|Jε(f)|Lp ≤ |f |Lp and Jε(f) → f, in Lp,

we can pass to the limit ε→ 0 in (1.3.73). Indeed, we take the stochastic integral in
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(1.3.73) for example. Since as ε→ 0, 〈Xε(s), (Xφk)ε(s)〉2 → 〈X(s), X(s)φk〉2, and

E
∫ t∧σn,m

0

N∑
k=1

(Re〈Xε(s), (Xφk)ε(s)〉2)2 ds

≤(
N∑

k=1

|φk|2L∞)E
∫ t∧σn,m

0

|X(s)|42ds

≤(
N∑

k=1

|φk|2L∞)m4t <∞,

hence

2Re
N∑

k=1

∫ t

0

〈Xε(s), (Xφk)ε(s)〉2dβk(s) → 2Re
N∑

k=1

∫ t

0

〈X(s), X(s)φk〉2dβk(s),

(1.3.74)

in probability on {t ≤ σn,m}, which implies by (1.3.71) that (1.3.74) holds on {t ≤
τn}.

After taking the limit in (1.3.73) we notice that the second term cancels with the

fourth term and the third term tends to 0. Consequently we obtain P-a.s. (1.3.66)

on {t ≤ τn}, which implies that (1.3.66) holds on {t ≤ τ ∗(x)} as τn → τ ∗(x), P-a.s.

Now, in order to get a priori estimate (1.3.67), taking into account that
∑N

j=1 |µj|2|ej|2L∞ <

∞, by the Burkholder–Davis–Gundy and Young’s inequality, we have for t ∈ [0, T ]

and all n ∈ N

E

[
sup

s∈[0,t∧τn]

∣∣∣∣∣
N∑

j=1

∫ s

0

∫
Rd

Re(µj)ej|X(r)|2dξ dβj(r)

∣∣∣∣∣
]

≤CE

[∫ t∧τn

0

N∑
j=1

(∫
Rd

Re(µj)ej|X(s)|2dξ
)2

ds

] 1
2

≤CE
[∫ t∧τn

0

|X(s)|42ds
] 1

2

≤CE

[
sup

s∈[0,t∧τn]

|X(s)|2
(∫ t∧τn

0

|X(s)|22ds
) 1

2

]

≤C
√

E sup
s∈[0,t∧τn]

|X(s)|22

√
E
∫ t∧τn

0

|X(s)|22ds
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≤1

4
E sup

s∈[0,t∧τn]

|X(s)|22 + C

∫ t

0

E

(
sup

r∈[0,s∧τn]

|X(r)|22

)
ds,

where C is a constant independent of n and may change from line to line. Together

with (1.3.66), this yields

E

[
sup

s∈[0,t∧τn]

|X(s)|22

]
≤ 2|x|22 + 4C

∫ t

0

E

(
sup

r∈[0,s∧τn]

|X(r)|22

)
ds,

which implies

E

[
sup

t∈[0,T∧τn]

|X(t)|22

]
≤ C̃(T ),

where C̃(T ) is independent of n.

Finally, taking n ↑ ∞ and applying Fatou’s lemma, we obtain (1.3.67), as

claimed. �

1.3.2 Subcritical case

We will show the global well-posedness for SNLS (1.1.1) in the subcritical case

α ∈ (1, 1 + 4
d
) (see Theorem 1.3.4 below). As before, we first present the global

well-posedness for the random equation (1.1.6) as follows.

Theorem 1.3.3. Assume (H1). Let 1 < α < 1+ 4
d
. For each x ∈ L2 and 0 < T <∞

there exists a unique strong solution (y, T ) of (1.1.6) in the sense of Definition 1.1.3,

which satisfies

eWy ∈ L2(Ω;C([0, T ];L2)) (1.3.75)

y ∈ Lγ(0, T ;Lρ), P− a.s., (1.3.76)

where (ρ, γ) is any Strichartz pair.

Moreover, for P-a.e. ω ∈ Ω, the mapping x → y(·, x, ω) is continuous from L2

to C([0, T ];L2) ∩ Lγ(0, T ;Lρ),

Proof. Let (y, (τn)n∈N, τ
∗(x)) be the maximal solution of (1.1.6) from Theorem

1.2.8. We also recall (yn)n∈N in the proof of Theorem 1.2.8. Note that, by Theorem

1.3.1, we have P− a.s.

sup
0≤s<τ∗(x)

|eW (s)y(s)|22 <∞,

which yields sup
0≤t<τ∗(x)

|y(t)|22 <∞, P-a.s, since ‖W‖L∞(0,T ;L∞) <∞. Then it follows

from the blowup alternative in Theorem 1.2.8 that τ ∗(x) = T P-a.s. (see also
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Remark 1.2.7). Therefore, we can modify the definition of y in Theorem 1.2.8 by

y := lim
n→∞

yn and deduce that (y, T ) is the desired unique strong solution of (1.1.6)

in the sense of Definition 1.1.3. Moreover, (1.3.75), (1.3.76) follow from (1.3.67) and

(1.2.49) respectively.

It remains to prove the continuous dependence with respect to the initial data

x ∈ L2. Suppose that xm → x in L2 as m→∞. We have P-a.s. for every m ≥ 1 a

unique strong solution (ym, T ) of equation (1.1.6) with the initial data xm.

Since |xm|2 ≤ |x|2 + 1 for all m ≥ m1 with m1 large enough, we can modify the

stopping time τ 1(≤ T ) in Step 1 in the proof of Theorem 1.2.8 such that

τ 1 = inf{t ∈ [0, T ], 2 · 3α−1α(|x|2 + 1)α−1Cα
t γtt

θ >
1

3
} ∧ T,

which is independent for all m ≥ m1. Hence, using similar contraction arguments

as in Step 1 in the proof of Theorem 1.2.8 and the uniqueness, we deduce that

M̃1 := sup
m≥m1

[‖ym‖L∞(0,τ1;L2) + ‖ym‖Lq(0,τ1;Lα+1)] ≤ 3Cτ1(|x|2 + 1).

Note that for m ≥ m1

‖ym − y‖L∞(0,τ1;L2) + ‖ym − y‖Lq(0,τ1;Lα+1)

≤2CT |xm − x|2 + 4αCτ1γτ1
τ θ

1M̃
α−1
1 ‖ym − y‖Lq(0,τ1;Lα+1),

where θ = 1− d(α−1)
4

> 0. By the choice of τ 1 and the bound on M̃1, we have

4αCτ1γτ1
τ θ

1M̃
α−1
1 ≤ 2

3
,

hence

‖ym − y‖L∞(0,τ1;L2) +
1

3
‖ym − y‖Lq(0,τ1;Lα+1) ≤ 2CT |xm − x|2 → 0, as m→∞.

Moreover, using Lemma 1.2.3 with the Strichartz pairs (ρ, γ) and (α+1, q), we have

‖ym − y‖Lγ(0,τ1;Lρ) =‖F (ym)− F (y)‖Lγ(0,τ1;Lρ)

≤Cτ1|xm − x|2 + Cτ1γτ1
‖|ym|α−1ym − |y|α−1y‖

Lq′ (0,τ1;L
α+1

α )

≤Cτ1|xm − x|2 + 2αCτ1γτ1
M̃α−1

1 τ θ
1‖ym − y‖Lq(0,τ1;Lα+1) → 0.

Thus we obtain the continuous dependence on the interval [0, τ 1]. Now, since

ym(τ 1) → y(τ 1), using similar arguments as above we can extend the above results
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to [0, τ 2] with τ 2 depending on |y(τ 1)|2 and τ 1 ≤ τ 2 ≤ T . Reiterating the arguments,

we then have an increasing sequence of stopping times τn depending on |y(τn−1)|2,
such that the continuous dependence holds on [0, τn], n ∈ N. Since sup

t∈[0,T ]

|y(t)|2 <∞,

P-a.s, as in the proof for the blowup alternative in Theorem 1.2.8, we deduce that

for P-a.e. ω there exists n(ω) <∞ such that τn(ω)(ω) = T . Therefore, we obtain the

continuous dependence on [0, T ] and consequently complete the proof of Theorem

1.3.3. �

As a consequence of Theorem 1.3.3, Theorem 1.1.4 and Theorem 1.3.1, we obtain

the global well-posedness of SNLS (1.1.1) in the subcritical case.

Theorem 1.3.4. Assume (H1). Let 1 < α < 1 + 4
d
, 1 ≤ d < ∞. Then, for each

x ∈ L2 and 0 < T < ∞, there exists a unique strong solution (X,T ) of (1.1.1) in

the sense of Definition 1.1.1, which satisfies

X ∈ L2(Ω;C([0, T ];L2)) (1.3.77)

X ∈ Lγ(0, T ;Lρ), P− a.s., (1.3.78)

where (ρ, γ) is any Strichartz pair.

Moreover, for P-a.e. ω ∈ Ω, the map x → X(·, x, ω) is continuous from L2 to

C([0, T ];L2) ∩ Lγ(0, T ;Lρ), and t → |X(t)|22 is a continuous martingale with the

representation

|X(t)|22 = |x|22 + 2
N∑

k=1

∫ t

0

∫
Rd

Re(µk)ek|X(s)|2dξ dβk(s), t ∈ [0, T ]. (1.3.79)

Remark 1.3.5. Theorem 1.3.4 implies that, given the initial data x ∈ L2, SNLS

(1.1.1) generates a global stochastic flow in L2(Rd) in the subcritical case α ∈ (1, 4
d
),

d ≥ 1.

Remark 1.3.6. For the case N = ∞, besides the assumption (H1) we need the

further assumption (H̃1) below

(H̃1)

∞∑
k=1

|µk|2|ek|2L∞ <∞ (1.3.80)
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and for any multi-index γ, |γ| ≥ 0

∞∑
k=1

|µk||∂γek|L∞ <∞. (1.3.81)

Here (1.3.80) suffices to the justifications of Fubini’s theorem, summation and

taking limits in the previous proofs in this chapter. While (1.3.81) is assumed for the

smoothness of b, c in (1.1.8) and (1.1.9) respectively, so as to satisfy the conditions in

[32] and [59]. Hence, under Assumptions (H1) and (H̃1) the results in this chapter

remain valid for the case N = ∞.

1.4 Notes

For the theory of stochastic partial differential equations (SPDE), we refer the reader

to the standard references [73], [56] and [24].

In the finite dimension case, the rescaling transformation (1.1.5) is well-known to

reduce SDE to random ODE, see e.g. p.79 in [71]. While in the infinite dimension

case, the equivalence between SPDE and random PDE related by the rescaling

transformation is more delicate. A first rigorous proof of this equivalence was given

in [4] for the study of stochastic porous media equations (see also [5] and [6]).

The rescaling transformation was also used by A. de Bouard and R. Fukuizumi for

stochastic nonlinear Schrödinger equations (however, only for one-dimension purely

imaginary noise) in the paper [15], of which we were not aware. But the equivalence

is not proved there (but only justified by informal computations).

The Strichartz estimate is one of the most stable ways of measuring dispersion.

For the free Schrödinger group eit∆, this estimate is first obtained in [83] as a Fourier

restriction theorem. Later on, it was generalized to the homogeneous case by J.

Ginibre and G. Velo [39] and to the inhomogeneous case by K. Yajima [96], T.

Cazenave and F. B. Weissler [18]. The endpoint estimates were established by M.

Keel and T. Tao [47]. A comprehensive review of these basic results is presented in

[46, 84, 22, 58]. Since Strichartz estimate is an essential tool for the well-posedness

of nonlinear Schrödinger equation, the extension of such estimates to more general

Schrödinger operators is extensively studied in the literature. For the Strichartz

estimates and decay estimates in the case −∆ + V , we refer the reader to [44, 80,

77]. See also [33] for Strichartz estimates in the case −∆ + i(A.∇ + ∇.A) + V .

For the variable coefficients case, including the lower order perturbations of the

Laplacian, see [78, 82] for the local in time Strichartz estimates. We also refer the

interested reader to [88, 59] for the global in time Strichartz estimates and local
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smoothing estimates. The latter estimates are very useful in establishing the local

well-posedness for quasilinear Schrödinger equations (see [60, 61] and [58]). We also

refer the reader to [42] for the Strichartz estimate in the flat radial torus T3.

In the L2-subcritical case, the global well-posedness of NLS in L2(Rd) was first

obtained by Y. Tsutsumi [90]. The proofs presented in this chapter adapt the

simplified fixed point arguments in [46] and [58]. The interested reader are also

referred to [22] for more general nonlinear terms, including the non-local nonlinearity.

For the stochastic case, the global existence and uniqueness results were first proved

in the conservative case by A. de Bouard and A. Debussche [10] under the restrictive

condition 1 < α < 1 + 2
d−1

if d ≥ 3. For the general case and shaper global well-

posedness result, we refer the reader to our recent paper [7]. See also Remark 1.2.9

for the discussion on spatial regularity assumptions on the noise.

In the L2-critical case, the local well-posedness can be found in [19], including

also the global well-posedness with small initial data. While, the case for the large

initial data is much more difficult. It was conjectured that, in the defocusing case

(λ = −1) NLS is globally well posed and solutions obey global spacetime bounds in

(1.2.65), in particular, scattering holds. But, in the focusing case (λ = 1), the same

conclusions hold for initial data with mass less than a threshold, characterized by

the ground state. In the defocusing case (λ = −1), this conjecture has been affirmed

in [86, 87, 51] for radial data when d ≥ 2 and in [28, 29, 30] for non-radial data and

all dimensions. In the focusing case (λ = 1), see [51, 55, 28, 29, 30]. We also refer

the reader to [53] for detail presentations and the references therein.



Chapter 2

The well-posedness in H1(Rd)

In this chapter, we continue to study the well-posedness of the stochastic nonlinear

Schrödinger equation (0.0.1) in the energy space H1(Rd). As regards the structure

of Chapter 2, we first present preliminaries concerning the definition of solutions and

the rescaling transformation approach in Section 2.1. Then in Section 2.2 we estab-

lish the local existence, uniqueness and blowup alternative results in both subcritical

and critical cases. Later on, in Section 2.3 we obtain the global well-posedness in

the subcritical case. Some comments on relevant results in the literature are also

given in Section 2.4.

2.1 Preliminaries

We come back to the stochastic nonlinear Schrödinger equaiton (SNLS)

idX(t, ξ) = ∆X(t, ξ)dt+ λ|X(t, ξ)|α−1X(t, ξ)dt

− iµ(ξ)X(t, ξ)dt+ iX(t, ξ)dW (t, ξ), t ∈ (0, T ), ξ ∈ Rd, (2.1.1)

X(0) = x,

where λ = −1 (defocusing) or λ = 1 (focusing), α > 1. W (t, ξ) and µ(ξ) are as in

(1.1.2) and (1.1.3) with N < ∞ for simplicity. While, due to the technical reasons

in deriving the Schtricahrtz estimates in Sobolev spaces (see Subsection 2.2.1), we

now work under the following spatial decay assumptions of {ej}N
j=1 in the colored

Brownian motion W (t, ξ)

(H2) ej ∈ C∞
b (Rd) such that

lim
|ξ|→∞

ζ(ξ)|∂γej(ξ)| = 0,
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where γ is multi-index such that |γ| ≤ 3, 1 ≤ j ≤ N and ζ(ξ) is as in

Assumption (H1).

As in Chapter 1, the assumption lim
|ξ|→∞

ζ(ξ)|ej(ξ)| = 0 can be removed (see Re-

mark 3.1.1 in Chapter 3).

In this chapter, the well-posedness of (2.1.1) is studied in the context of energy

space H1(Rd), and the solutions of (2.1.1) are taken analogously as in Definition

1.1.1.

Definition 2.1.1. Let x ∈ H1, T > 0 and α satisfy{
1 < α <∞, if d = 1, 2;

1 < α ≤ 1 + 4
d−2

, if d ≥ 3.
(2.1.2)

(i). A strong solution of (2.1.1) is a pair (X, τ) with τ(≤ T ) an (Ft)-stopping

time, such that X = (X(t))t∈[0,T ] is an H1-valued continuous (Ft)-adapted process,

|X|α−1X ∈ L1(0, τ ;H−1(Rd)) P− a.s, and X satisfies P− a.s for t ∈ [0, τ ]

X(t) = x−
∫ t

0

(i∆X(s) + µX(s) + λi|X(s)|α−1X(s))ds+

∫ t

0

X(s)dW (s), (2.1.3)

as an equation in H−1(Rd).

(ii). We say that uniqueness holds for (2.1.1), if for any two strong solutions

(Xi, τ i), i = 1, 2, it holds P-a.s. that X1 = X2 on [0, τ 1 ∧ τ 2].

(iii). A maximal strong solution of (2.1.1) is a pair ((Xn)n∈N, (τn)n∈N), where

(Xn, τn), n ∈ N, are strong solutions of (2.1.1) with (τn)n∈N a sequence of increasing

stopping times and Xn+1 = Xn on [0, τn], and ” maximal” means that given any

strong solution (X̃, τ̃), we have for P-a.e. ω ∈ Ω, there exists n(ω) ≥ 1 such that

τ̃(ω) ≤ τn(ω)(ω) and X̃(ω) = Xn(ω)(ω) on [0, τ̃(ω)]. In particular, uniqueness holds

for (2.1.1).

For simplicity, we denote the maximal strong solution by the triple (X, (τn)n∈N, τ
∗(x)),

where X = lim
n→∞

Xn1[0,τ∗(x)) with τ ∗(x) = lim
n→∞

τn.

Notice that, the pair (X, τ ∗(x)) is independent of the choice of ((Xn)n∈N, (τn)n∈N).

As in Remark 1.1.2,
∫ t

0
X(s)dW (s) in Definition 2.1.1 is an H1-valued stochastic

integral.

Again, we apply the rescaling transformation

X(t, ξ) = eW (t,ξ)y(t, ξ) (2.1.4)
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to reduce the stochastic equation (2.1.1) to the random equation

∂y(t, ξ)

∂t
= A(t)y(t, ξ)− λie(α−1)ReW (t,ξ)|y(t, ξ)|α−1y(t, ξ), (2.1.5)

y(0) = x,

where A is as in (1.1.7). The solutions of (2.1.5) are taken in the following sense.

Definition 2.1.2. Let x, α, T be as in Definition 2.1.1.

(i). A strong solution of (2.1.5) is a pair (y, τ) with τ(≤ T ) an (Ft)-stopping

time, such that y = (y(t))t∈[0,T ] is an H1-valued continuous (Ft)-adapted process,

|y|α−1y ∈ L1(0, τ ;H−1(Rd)) P− a.s, and y satisfies P-a.s for t ∈ [0, τ ]

y(t) = x+

∫ t

0

A(s)y(s)ds−
∫ t

0

λie(α−1)ReW (s)|y(s)|α−1y(s)ds, (2.1.6)

as an equation in H−1(Rd).

(ii). The uniqueness of (2.1.5) means that, given any two strong solutions

(yi, τ i), i = 1, 2, it holds P-a.s. that y1 = y2 on [0, τ 1 ∧ τ 2].

(iii). A maximal strong solution of (2.1.5) is a pair ((yn)n∈N, (τn)n∈N), where

(yn, τn), n ∈ N, are strong solutions to (2.1.5) with (τn)n∈N a sequence of increasing

stopping times and yn+1 = yn on [0, τn], and ” maximal” means that given any

strong solution (ỹ, τ̃), we have for P-a.e. ω ∈ Ω, there exists n(ω) ≥ 1 such that

τ̃(ω) ≤ τn(ω)(ω) and ỹ(ω) = yn(ω)(ω) on [0, τ̃(ω)].

For simplicity, (y, (τn)n∈N, τ
∗(x)) denotes the maximal strong solution ((yn)n∈N, (τn)n∈N),

where y := lim
n→∞

yn1[0,τ∗(x)) and τ ∗(x) := lim
n→∞

τn are independent of the choice of

((yn)n∈N, (τn)n∈N).

As in Theorem 1.1.4, we also have in the H1 case the equivalence between two

strong solutions of (2.1.1) and (2.1.5) respectively via the rescaling transformation

(1.1.5).

Theorem 2.1.3. (i) Let (y, τ) be a strong solution of (2.1.5) in the sense of

Definition 2.1.2. Set X := eWy. Then (X, τ) is a strong solution of (2.1.1)

in the sense of Definition 2.1.1.

(ii) Suppose (X, τ) be a strong solution of (2.1.1) in the sense of Definition 2.1.1.

Define y := e−WX. Then (y, τ) is a strong solution of (2.1.5) in the sense of

Definition 2.1.2.

Proof. This theorem follows immediately from Theorem 1.1.4 in the L2 case. In

fact, consider the case (i). Since x ∈ H1 ⊂ L2 and y satisfies (2.1.6) in H−1 ⊂ H−2,
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Theorem 1.1.4 implies that (X, τ) is a strong solution of (2.1.1) in the sense of

Definition 1.1.1, in particularly, X solves (2.1.3) in H−2. But, as y ∈ C([0, T ];H1)

and eW ∈ C([0, T ];W 1,∞), we deduce that X ∈ C([0, T ];H1). Hence, the right hand

side of (2.1.3) is in H−1, which implies that (X, τ) is a strong solution of (2.1.1) in

the sense of Definition 2.1.1, thereby completing the proof of (i). The proof for (ii)

follows analogously. Therefore, we finish the proof of Theorem 2.1.3. �

By Theorem 2.1.3, we will focus on the H1 well-posedness problem of the time

dependent random equation (2.1.5) in the next section.

2.2 Local existence, uniqueness and blowup alter-

native

In this section, we will establish the local existence, uniqueness and blowup alter-

native in both subcritical and critical cases in Subsection 2.2.2 and Subsection 2.2.3

respectively. Before that, in Subsection 2.2.1 we first derive the Strichartz estimates

in Sobolev spaces, and we also show the equivalence between solutions of weak and

mild equations used in this chapter.

2.2.1 Strichartz estimate, weak and mild equations

Unlike the free Schrödinger group eit∆, the evolution operator U(t, s) from Lemma

1.2.1 does not commute with the gradient operator (see (2.2.7) and (2.2.10) below),

hence we will use Proposition 2.3(a) in [59] to control the lower order term, which

leads to the further spatial decay assumptions on {ej}N
j=1 in (H2) in Section 2.1 (see

Section 2.3.3 for the proof.)

Lemma 2.2.1. Assume (H2). For any T > 0, u0 ∈ H1 and f ∈ Lq′2(0, T ;W 1,p′2),

the solution of

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)f(s)ds, 0 ≤ t ≤ T, (2.2.7)

satisfies the estimates

‖u‖Lq1 (0,T ;W 1,p1 ) ≤ CT (|u0|H1 + ‖f‖
Lq′2 (0,T ;W 1,p′2 )

). (2.2.8)

Here (p1, q1) and (p2, q2) are Strichartz pairs as in Lemma 1.2.3.

Furthermore, the process Ct, t ≥ 0, can be taken to be (Ft)-progressively mea-

surable, increasing and continuous.
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Proof of Lemma 2.2.1. Since the proof relies on Theorem 1.13 and Proposition

2.3 (a) in [59], we shall adapt the notations there Dt := −i∂t, Dj := −i∂j, 1 ≤ j ≤ d,

to rewrite (2.2.7) in the weak equation form

Dtu = (Dja
jkDk +Dj b̃

j + b̃jDj + c̃)u− if

with ajk = δjk, b̃
j = −i∂jWt and c̃ = −

d∑
j=1

(∂jW )2 + (µ+ µ̃)i, 1 ≤ j, k ≤ d.

Direct computations show

Dt∇u =∇Dtu

=∇(Dja
jkDku) +∇(Dj b̃

ju) +∇(̃bjDju) +∇(c̃u)− i∇f

=Dj∇(ajkDku) +Dj∇(̃bju) +∇(̃bjDju) +∇(c̃u)− i∇f

=(Dj∇ajkDku+Dja
jkDk∇u) + (Dj∇b̃ju+Dj b̃

j∇u)

+ (∇b̃jDju+ b̃jDj∇u) + (∇c̃u+ c̃∇u)− i∇f

=(Dja
jkDk +Dj b̃

j + b̃jDj + c̃)∇u

+ (Dj∇ajkDku+Dj∇b̃j +∇b̃jDj +∇c̃)u− i∇f,

as ajk = δjk, it follows that

Dt∇u =(−∆ +Dj b̃
j + b̃jDj + c̃)∇u

+ (Dj∇b̃j +∇b̃jDj +∇c̃)u− i∇f, (2.2.9)

or equivalently

∇u(t) = U(t, 0)∇u0 +

∫ t

0

U(t, s)
[
i(Dj∇b̃j(s) +∇b̃j(s)Dj +∇c̃(s))u+∇f(s)

]
ds.

(2.2.10)

We regard (2.2.10) as the equation for the unknown ∇u and treat the lower order

term (Dj∇b̃j +∇b̃jDj +∇c̃)u as the same role of ∇f . Hence applying (1.2.21) to

(2.2.10) and then using Proposition 2.3 (a) to control this lower order term, we have

that

‖∇u‖Lq1 (0,T ;Lp1 )∩ eX[0,T ]

≤CT

[
|∇u0|2 + ‖i(Dj∇b̃j +∇b̃jDj +∇c̃)u+∇f‖

Lq′2 (0,T ;Lp′2 )+ eX′
[0,T ]

]
≤CT

[
|∇u0|2 + ‖i(Dj∇b̃j +∇b̃jDj +∇c̃)u‖ eX′

[0,T ]
+ ‖∇f‖

Lq′2 (0,T ;Lp′2 )

]
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≤CT

[
|∇u0|2 + κT‖u‖ eX[0,T ]

+ ‖∇f‖
Lq′2 (0,T ;Lp′2 )

]
(2.2.11)

≤CT

[
|∇u0|2 + CTκT (|u0|2 + ‖f‖

Lq′2 (0,T ;Lp′2 )
) + ‖∇f‖

Lq′2 (0,T ;Lp′2 )

]
=CT (CTκT + 1)

[
|u0|H1 + ‖f‖

Lq′2 (0,T ;W 1,p′2 )

]
,

where we have used again (1.2.21) to control ‖u‖ eX[0,T ]
in the last two inequality.

This together with (1.2.20) yields the estimate (2.2.8).

Now, set

Ct = sup{‖U(·, 0)u0‖Lq1 (0,t;W 1,p1 ); |u0|H1 ≤ 1}

+ sup

{∥∥∥∥∫ ·

0

U(·, s)f(s)ds

∥∥∥∥
Lq1 (0,t;W 1,p1 )

; ‖f‖
Lq′2 (0,t;W 1,p′2 )

= 1

}
. (2.2.12)

Then the asserted properties of the process Ct, t ≥ 0 follow analogously as in the

proof of Lemma 1.2.3. Consequently, we complete the proof of Lemma 2.2.1. �

In the end of this Subsection, we show the equivalence between solutions of weak

and mild equations in the H1 case.

Theorem 2.2.2. Let x ∈ H1 and U(t, s) be the evolution operators associated with

A as in (1.1.7), 0 ≤ s ≤ t ≤ T . Let y ∈ C([0, T ];H1) and g be a complex function

such that g(y) ∈ L1(0, T ;H−1). If y satisfies the mild equation

y(t) = U(t, 0)x+

∫ t

0

U(t, s)g(y(s))ds, t ∈ [0, T ], in H−1, (2.2.13)

then y also satisfies the weak equation

y(t) = x+

∫ t

0

A(s)y(s)ds+

∫ t

0

g(y(s))ds, t ∈ [0, T ], in H−1. (2.2.14)

Moreover, the converse is also valid.

Proof. The proofs follow the similar arguments as in the proof of Theorem 2.1.3.

In fact, Let y satisfy the mild equation (2.2.13). Since H−1 ⊂ H−2, it follows from

Theorem 1.2.5 that y satisfies the weak equation (2.2.14) in the H−2 sense. But, the

solution y here is in C([0, T ];H1), which implies that y indeed satisfies the (2.2.14)

in the H−1 sense, thereby completing the first part. The converse part can be proved

analogously. �
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2.2.2 Subcritical case

The aim of this subsection is to establish the local existence, uniqueness and blowup

alternative of SNLS (2.1.1) in the subcritical case, i.e.{
1 < α <∞, if d = 1, 2;

1 < α < 1 + 4
d−2

, if d ≥ 3.
(2.2.15)

.

Theorem 2.2.3. Assume (H2) and let α satisfy (2.2.15). For each x ∈ H1 and

0 < T < ∞, there exists a maximal strong solution (X, (τn)n∈N, τ
∗(x)) of (2.1.1)

in the sense of Definition 2.1.1. In particular, uniqueness holds for (2.1.1). X also

satisfies P-a.s for every n ≥ 1

X|[0,τn] ∈ C([0, τn];H1) ∩ Lγ(0, τn;W 1,ρ), (2.2.16)

for each Strichartz pair (ρ, γ).

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

lim
t→τ∗(x)(ω)

|X(t)(ω)|H1 = ∞.

Remark 2.2.4. As in Remark 1.2.7, we have τ ∗(x) = T , P-a.s, provided sup
t∈[0,τ∗(x))

|X(t)|H1 <

∞, P-a.s.

By the equivalence between (2.1.1) and (2.1.5) in Theorem 2.1.3, this theorem

follows from Theorem 2.2.5 below.

Theorem 2.2.5. Assume (H2) and let α satisfy (2.2.15). For each x ∈ H1 and

0 < T < ∞, there exists a maximal strong solution (y, (τn)n∈N, τ
∗(x)) of (2.1.5)

in the sense of Definition 2.1.2. In particular, uniqueness holds for (2.1.5). y also

satisfies P-a.s for every n ≥ 1

y|[0,τn] ∈ C([0, τn];H1) ∩ Lγ(0, τn;W 1,ρ), (2.2.17)

for each Strichartz pair (ρ, γ).

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

lim
t→τ∗(x)(ω)

|y(t)(ω)|H1 = ∞.

Proof. By Theorem 2.2.2, it is equivalent to solve the weak equation (2.1.6) in



58 Chapter 2. The well-posedness in H1(Rd)

the mild sense, namely

y = U(t, 0)x− λi

∫ t

0

U(t, s)e(α−1)ReW (s)g(y(s))ds, (2.2.18)

where g(y) = |y|α−1y. (Note that, the fact that g(y) ∈ L1(0, t;H−1) will follow from

g(y) ∈ Lq′(0, t;Lp′) below and the Sobolev’s imbedding theorem, hence Theorem

2.2.2 is applicable here.)

The following fixed point arguments are standard in the deterministic case (see

e.g. [46] and [58]). Moreover, since the proofs of constructing stochastic process,

especially the stopping times and adaptedness, are analogous to those in Theorem

1.2.8, we will only sketch it here.

Let us first consider the case d ≥ 3. Choose the Strichartz pair (p, q) =

(d(α+1)
d+α−1

, 4(α+1)
(d−2)(α−1)

), set X = C([0, T ];L2)∩Lq(0, T ;Lp), Y = C([0, T ];H1)∩Lq(0, T ;W 1,p),

and consider the integral operator

F (y)(t) = U(t, 0)x− λi

∫ t

0

U(t, s)(e(α−1)ReW (s)g(y(s)))ds, t ∈ [0, T ], (2.2.19)

defined for y ∈ Y .

We claim that

F (Y) ⊆ Y . (2.2.20)

In fact, by Strichartz estimates in Lemma 2.2.1

‖F (y)‖Lq(0,T ;W 1,p) ≤ CT

[
|x|H1 + ‖e(α−1)ReWg(y)‖Lq′ (0,T ;W 1,p′ )

]
. (2.2.21)

To estimate the right-hand side, we have that

‖e(α−1)ReWg(y)‖Lq′ (0,T ;W 1,p′ )

≤D1(T )
(
‖|y|α−1y‖Lq′ (0,T ;Lp′ ) + ‖|y|α−1|∇y|‖Lq′ (0,T ;Lp′ )

)
, (2.2.22)

where in the last inequality we have used |∇g(y)| ≤ α|y|α−1|∇y|, |∇(e(α−1)ReWg(y))| ≤
|e(α−1)W | [(α− 1)|∇W ||g(y)|+ |∇g(y)|] andD1(T ) := α(|∇W |L∞(0,T ;L∞)+2)e(α−1)|W |L∞(0,T ;L∞) .

With our choice of (p, q), it is easy to verify that ( 1
p′
, α

q
) = (α−1)( 1

(α−1)l
, 1

q
)+(1

p
, 1

q
),

where 1
l

= 1
p′
− 1

p
, satisfying 1

(α−1)l
= 1

p
− 1

d
. Hence, from Hölder’s inequality and

Sobolev’s imbedding |y|L(α−1)l ≤ D|y|W 1,p it follows that

‖|y|α−1y‖Lq′ (0,T ;Lp′ ) ≤T θ‖|y|α−1y‖
L

q
α (0,T ;Lp′ )
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≤T θ‖y‖α−1
Lq(0,T ;L(α−1)l)

‖y‖Lq(0,T ;Lp)

≤Dα−1T θ‖y‖α−1
Lq(0,T ;W 1,p)‖y‖Lq(0,T ;Lp), (2.2.23)

with θ = 1
q′
− α

q
> 0, and also

‖|y|α−1|∇y|‖Lq′ (0,T ;Lp′ ) ≤ Dα−1T θ‖y‖α−1
Lq(0,T ;W 1,p)‖∇y‖Lq(0,T ;Lp). (2.2.24)

Thus, taking (2.2.23), (2.2.24) into (2.2.22) and (2.2.21) yields that for y ∈ Y

‖F (y)‖Lq(0,T ;W 1,p) ≤ CT

[
|x|H1 +D2(T )T θ‖y‖α

Lq(0,T ;W 1,p)

]
, (2.2.25)

with D2(T ) = D1(T )Dα−1. Similarly,

‖F (y)‖L∞(0,T ;H1) ≤ CT

[
|x|H1 +D2(T )T θ‖y‖α

Lq(0,T ;W 1,p)

]
. (2.2.26)

Hence (2.2.25) and (2.2.26) yield (2.2.20) as claimed.

We now start to construct a maximal strong solution of (2.1.5) by analogous

arguments as in the proof of Theorem 1.2.8.

Step 1. Fix ω ∈ Ω and consider F on the set

Yτ1
M1

= {y ∈ C([0, τ 1];H
1) ∩ Lq(0, τ 1;W

1,p); sup
0≤t≤τ1

|y(t)|H1 + ‖y‖Lq(0,τ1;W 1,p) ≤M1},

where τ 1 = τ 1(ω) ∈ (0, T ] and M1 = M1(ω) > 0 are random variables.

For y ∈ Yτ1
M1

by estimates (2.2.25) and (2.2.26)

‖F (y)‖L∞(0,τ1;H1) + ‖F (y)‖Lq(0,τ1;W 1,p) ≤ 2Cτ1

[
|x|H1 +D2(τ 1)τ

θ
1M

α
1

]
,

In order to obtain F (Yτ1
M1

) ⊂ Yτ1
M1

, we shall choose M1 and τ 1 in such a way that

2Cτ1

[
|x|H1 +D2(τ 1)τ

θ
1M

α
1

]
≤M1.

To this end, we define the real-valued continuous (Ft)-adapted process

Z
(1)
t = 2 · 3α−1|x|α−1

H1 C
α
t D2(t)t

θ, t ∈ [0, T ],

choose the (Ft)-stopping time

τ 1 = inf

{
t ∈ [0, T ], Z

(1)
t >

1

3

}
∧ T
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and set M1 = 3Cτ1|x|H1 . Then it follows that Z
(1)
τ1 ≤ 1

3
and F (Yτ1

M1
) ⊂ Yτ1

M1
.

Moreover, the estimates as in the proof of (2.2.25) show that for y1, y2 ∈ Yτ1
M1

‖F (y1)− F (y2)‖L∞(0,τ1;L2) + ‖F (y1)− F (y2)‖Lq(0,τ1;Lp)

≤2Cτ1‖λe(α−1)ReW (g(y1)− g(y2))‖Lq′ (0,τ1;Lp′ )

≤Cτ1D1(τ 1)‖(|y1|α−1 + |y2|α−1)|y1 − y2|‖Lq′ (0,τ1;Lp′ )

≤Cτ1D1(τ 1)τ
θ
1D

α−1
(
‖y1‖α−1

Lq(0,τ1;W 1,p) + ‖y2‖α−1
Lq(0,τ1;W 1,p)

)
‖y1 − y2‖Lq(0,τ1;Lp)

≤2Cτ1D2(τ 1)τ
θ
1M

α−1
1 ‖y1 − y2‖Lq(0,τ1;Lp)

≤1

3
‖y1 − y2‖Lq(0,τ1;Lp), (2.2.27)

which implies that F is a contraction in C([0, τ 1];L
2) ∩ Lq(0, τ 1;L

p).

Now, by Banach’s fixed point theorem there exists a sequence u1,m ∈ Yτ1
M1
, m ∈

N, and y ∈ C([0, τ 1];L
2) ∩ Lq(0, τ 1;L

p), such that y = F (y), u1,m+1 = F (u1,m),

m ≥ 1, u1,1(t) = U(t, 0)x, t ∈ [0, T ], and u1,m|[0,τ1] converges to y in C([0, τ 1];L
2) ∩

Lq(0, τ 1;L
p). As u1,m, m ∈ N, are bounded in Yτ1

M1
, from the Banach-Steinhaus the-

orem we deduce that y ∈ Yτ1
M1

and u1,m|[0,τ1] converges weakly to y in C([0, τ 1];H
1)∩

Lq(0, τ 1;W
1,p). Hence, defining y1(t) := y(t ∧ τ 1), t ∈ [0, T ], we have u1,m(t ∧ τ 1)

converges weakly to y1(t) in H1 for t ∈ [0, T ]. This implies the (Ft)-adaptedness of

y1, since each u1,m is (Ft)-adapted in H1.

Therefore, (y1, τ 1) is a strong solution of (2.1.5), such that y1(t) = y1(t ∧ τ 1),

t ∈ [0, T ], and y1|[0,τ1] ∈ C([0, τ 1];H
1) ∩ Lq(0, τ 1;W

1,p).

Step 2. Suppose that at the nth step we have a strong solution (yn, τn) of (2.1.5),

such that τn ≥ τn−1, yn(t) = yn(t ∧ τn), t ∈ [0, T ], and yn|[0,τn] ∈ C([0, τn];H1) ∩
Lq(0, τn;W 1,p).

Set

Yσn
Mn+1

= {z ∈ C([0, σn];H1)∩Lq(0, σn;W 1,p); sup
0≤t≤σn

|z(t)|H1+‖z‖Lq(0,σn;W 1,p) ≤Mn+1},

and define the integral operator Fn on Y by

Fn(z)(t) =U(τn + t, τn)yn(τn)

− λi

∫ t

0

U(τn + t, τn + s)
(
e(α−1)ReW (τn+s)g(z(s))

)
ds, t ∈ [0, T ],

(2.2.28)

for z ∈ Y .
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Analogous calculations as in Step 1 show that for z ∈ Yσn
Mn+1

‖Fn(z)‖L∞(0,σn;H1) + ‖Fn(z)‖Lq(0,σn;W 1,p)

≤2Cτn+σn

[
|yn(τn)|H1 +D2(τn + σn)σθ

nM
α
n+1

]
,

and for z1, z2 ∈ Yσn
Mn+1

‖F (z1)− F (z2)‖L∞(0,σn;L2) + ‖F (z1)− F (z2)‖Lq(0,σn;Lp)

≤2Cτn+σnD2(τn + σn)σθ
nM

α−1
n+1 ‖z1 − z2‖Lq(0,σn;Lp).

Similarly, we define the continuous (Fτn+t)-adapted process

Z
(n)
t := 2 · 3α−1|yn(τn)|α−1

H1
Cα

τn+tD2(τn + t)tθ, t ∈ [0, T ],

set

σn = inf

{
t ∈ [0, T − τn] : Z

(n)
t >

1

3

}
∧ (T − τn)

and choose Mn+1 = 3Cτn+σn|yn(τn)|H1 . It follows that Fn(Yσn
Mn+1

) ⊂ Yσn
Mn+1

and Fn

is a contraction in C([0, σn];L2)∩Lq(0, σn;Lp). Hence, because Yσn
Mn+1

is a complete

metric space in C([0, σn];L2) ∩ Lq(0, σn;Lp), Banach’s fixed point theorem implies

that there is a unique zn+1 ∈ Yσn
Mn+1

such that zn+1 = Fn(zn+1) on [0, σn].

Then, set τn+1 = τn + σn and define

yn+1(t) =

{
yn(t), t ∈ [0, τn];

zn+1((t− τn) ∧ σn), t ∈ (τn, T ].
(2.2.29)

It follows from the definitions of F and Fn that yn+1 = F (yn+1) on [0, τn+1]. More-

over, using the arguments as in Step 2 in the proof of Theorem 1.2.8, we deduce that

τn+1 is an (Ft)-stopping time and yn+1 is adapted to (Ft) in H1. Hence, (yn+1, τn+1)

is a strong solution of (2.1.5), such that yn+1(t) = yn+1(t ∧ τn+1), t ∈ [0, T ], and

yn+1|[0,τn+1] ∈ C([0, τn+1];H
1) ∩ Lq(0, τn+1;W

1,p).

Step 3. By an induction argument, we finally construct a sequence of strong

solutions (yn, τn), n ∈ N, where τn are increasing stopping times and yn+1 = yn

on [0, τn]. Hence we obtain the triple (y, (τn)n∈N, τ
∗(x)), where y := lim

n→∞
yn1[0,τ∗(x))

with τ ∗(x) := lim
n→∞

τn.

The integrability (2.2.17) follows from the fact that yn|[0,τn] ∈ C([0, τn];H1) ∩
Lq(0, τn;W 1,p) and the Strichartz estimate (2.2.8). In fact, for any Strichartz pair
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(ρ, γ),

‖y‖Lγ(0,τn;W 1,ρ) =‖F (yn)‖Lγ(0,τn;W 1,ρ)

≤Cτn [|x|H1 + ‖λe(α−1)ReWg(yn)‖Lq′ (0,τn;W 1,p′ )]

≤Cτn [|x|H1 +D2(τn)τ θ
n‖yn‖α

Lq(0,τn;W 1,p)] <∞, P− a.s.

Moreover, as in the proof of Theorem 1.2.8, the maximality of (y, (τn)n∈N, τ
∗(x))

follows from the uniqueness and blowup alternative given below.

To prove the uniqueness, for another two strong solutions (ỹi, σi), i = 1, 2, as in

(2.2.27) we have for any t, s > 0, s+ t < σ1 ∧ σ2

‖ỹ1 − ỹ2‖L∞(s,s+t;L2) + ‖ỹ1 − ỹ2‖Lq(s,s+t;Lp)

≤2CTD2(T )tθMα−1‖ỹ1 − ỹ2‖Lq(s,s+t;Lp)

with M = ‖ỹ1‖Lq(0,s+t;W 1,p) + ‖ỹ2‖Lq(0,s+t;W 1,p) < ∞ a.s. Thus a properly chosen

small t yields ỹ1 = ỹ2 on [s, s + t], which implies ỹ1 = ỹ2 on [0, σ1 ∧ σ2), hence

ỹ1 = ỹ2 on [0, σ1 ∧ σ2] by the continuity of ỹi in H1, i = 1, 2.

Finally, the proof for the blowup alternative follows the analogous arguments as

those of Theorem 1.2.8. Suppose that P(M∗ < ∞; τn < τ ∗(x),∀n ∈ N) > 0, where

M∗ := sup
t∈[0,τ∗(x))

|y(t)|H1 . Let us define the real-valued continuous process

Zt := 2 · 3α−1(M∗)α−1Cα
T+tD2(T + t)tθ, t ∈ [0, T ],

and

σ := inf

{
t ∈ [0, T ] : Zt >

1

6

}
∧ T.

For ω ∈ {M∗ <∞; τn < τ ∗(x),∀n ∈ N}, since τn(ω) < T , ∀n ∈ N, by the definition

of σn in Step 2, we have

σn(ω) = inf

{
t ∈ [0, T − τn(ω)] : Z

(n)
t (ω) >

1

3

}
.

Moreover, since, for every n ≥ 1, |y(τn(ω))|H1 ≤M∗, Cτn(ω)+t ≤ CT+t andD2(τn(ω)+

t) ≤ D2(T + t), it follows that Zt(ω) ≥ Z
(n)
t (ω), then σn(ω) > σ(ω) > 0. Hence

τn+1(ω) = τn(ω) + σn(ω) > τn(ω) + σ(ω), which implies τn+1(ω) > τ 1(ω) + nσ(ω)

for every n ≥ 1, contradicting the fact that τn(ω) ≤ T . Therefore, we conclude the

blow-up alternative and finish the proof of Theorem 2.2.5 for the case d ≥ 3.
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For the case d = 2, we modify the Strichartz pair (p, q) by p = α + 1 and

q = 4(α+1)
d(α−1)

. Then ( 1
p′
, 1

q
) = (α− 1)(1

p
, 0) + (1

p
, 1

q
) and 2 < p <∞. Hölder’s inequality

and Sobolev’s imbedding |y|Lp ≤ D|y|H1 give

‖|y|α−1y‖Lq′ (0,T ;Lp′ ) ≤T θ‖|y|α−1y‖Lq(0,T ;Lp′ )

≤T θ‖y‖α−1
L∞(0,T ;Lp)‖y‖Lq(0,T ;Lp)

≤Dα−1T θ‖y‖α−1
L∞(0,T ;H1)‖y‖Lq(0,T ;Lp) (2.2.30)

where θ = 1− 2
q
> 0, and

‖|y|α−1∇y‖Lq′ (0,T ;Lp′ ) ≤ Dα−1T θ‖y‖α−1
L∞(0,T ;H1)‖∇y‖Lq(0,T ;Lp), (2.2.31)

Hence, the estimates (2.2.25) and (2.2.26) are accordingly modified by

‖F (y)‖Lq(0,T ;W 1,p) ≤ CT

[
|x|H1 +D2(T )T θ‖y‖α−1

L∞(0,T ;H1)‖y‖Lq(0,T ;W 1,p)

]
, (2.2.32)

and

‖F (y)‖L∞(0,T ;H1) ≤ CT

[
|x|H1 +D2(T )T θ‖y‖α−1

L∞(0,T ;H1)‖y‖Lq(0,T ;W 1,p)

]
. (2.2.33)

Similarly to (2.2.27)

‖F (y1)− F (y2)‖L∞(0,T ;L2) + ‖F (y1)− F (y2)‖Lq(0,T ;Lp)

≤2CT‖λe(α−1)ReW (g(y1)− g(y2))‖Lq′ (0,T ;Lp′ )

≤CTD2(T )T θ
(
‖y1‖α−1

L∞(0,T ;H1) + ‖y2‖α−1
L∞(0,T ;H1)

)
‖y1 − y2‖Lq(0,T ;Lp). (2.2.34)

Therefore, similar arguments as those after (2.2.25) and (2.2.26) yield the as-

serted results in the case d = 2.

The remaining case d = 1 is much simpler due to the Sobolev embedding |y|L∞ ≤
D|y|H1 . In this case for y ∈ C([0, T ];H1)

‖F (y)‖L∞(0,T ;H1) ≤CT

[
|x|H1 + ‖λe(α−1)ReWg(y)‖L1(0,T ;H1)

]
≤CT

[
|x|H1 +D1(T )(‖|y|α−1y‖L1(0,T ;L2) + ‖|y|α−1∇y‖L1(0,T ;L2))

]
≤CT

[
|x|H1 +D1(T )T‖y‖α−1

L∞(0,T ;L∞(Rd))
‖y‖L∞(0,T ;H1)

]
≤CT

[
|x|H1 +D2(T )T‖y‖α

L∞(0,T ;H1)

]
,
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and for y1, y2 ∈ C([0, T ];H1)

‖F (y1)− F (y2)‖L∞(0,T ;L2)

≤CTD2(T )T (‖y1‖α−1
L∞(0,T ;H1) + ‖y2‖α−1

L∞(0,T ;H1))‖y1 − y2‖L∞(0,T ;L2).

Therefore, the new spaces X = C([0, T ];L2) and Y = C([0, T ];H1) are enough

for us to apply the above fixed point arguments to conclude the desired results. This

completes the proof of Theorem 2.2.5. �

Remark 2.2.6. As in remark 1.2.9, the spatial assumption (H2) on the noise is due

to Lemma 2.2.1. In [12] the authors assumed differently for the noise as in (1.2.61)

that φ ∈ L2(L
2(Rd,R), H1(Rd,R)) ∩ R(L2(Rd,R),W 1,k(Rd)) with k > 2d. Here

R(L2(Rd,R),W 1,k(Rd)) means the radonifying operators from L2(Rd,R) to W 1,k(Rd)

and allows to apply the theory established for the Banach space valued stochastic

integrals. However, as in [10], a restrictive condition was imposed on the exponent

α, i.e α < 1 + 2
d−1

if d ≥ 6.

2.2.3 Critical case

In this subsection we consider the critical case α = 1 + 4
d−2

with d ≥ 3.

Theorem 2.2.7. Assume (H2) and α = 1 + 4
d−2

, d ≥ 3. For each x ∈ H1 and

0 < T < ∞, there exists a maximal strong solution (X, (τn)n∈N, τ
∗(x)) of (2.1.1)

in the sense of Definition 2.1.1. In particular, uniqueness holds for (2.1.1). X also

satisfies P-a.s for every n ≥ 1

X|[0,τn] ∈ C([0, τn];H1) ∩ Lγ(0, τn;W 1,ρ), (2.2.35)

where (ρ, γ) is any Strichartz pair.

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

‖X(ω)‖
L

2(d+2)
d−2 (0,τ∗(x)(ω);L

2(d+2)
d−2 )

= ∞, P− a.s. (2.2.36)

Following the lines in Subsection 2.2.2, Theorem 2.2.7 follows from Theorem

2.2.8 below owing to the equivalence between (2.1.1) and (2.1.5) in Theorem 2.1.3.

Theorem 2.2.8. Consider the situation of Theorem 2.2.7. For each x ∈ H1 and

0 < T < ∞, there exists a maximal strong solution (y, (τn)n∈N, τ
∗(x)) of (2.1.5)

in the sense of Definition 2.1.2. In particular, uniqueness holds for (2.1.5). y also

satisfies P-a.s for every n ≥ 1



2.2. Local existence, uniqueness and blowup alternative 65

y|[0,τn] ∈ C([0, τn];H1) ∩ Lγ(0, τn;W 1,ρ), (2.2.37)

where (ρ, γ) is any Strichartz pair.

Moreover, we have the blowup alternative, namely, for P-a.e ω, if τn(ω) <

τ ∗(x)(ω), ∀n ∈ N, then

‖y(ω)‖
L

2(d+2)
d−2 (0,τ∗(x)(ω);L

2(d+2)
d−2 )

= ∞, P− a.s. (2.2.38)

Proof of Theorem 2.2.8. Since the arguments are similar to the previous

subcritical case in Theorem 2.2.5, we shall only give a sketch of it. At the first step,

let us consider the operator F as in (2.2.19) on the space Gτ1fM1
= {y ∈ C([0, τ 1];L

2)∩
Lq(0, τ 1;L

p) : ‖y − U(·, 0)x‖L∞(0,τ1;H1) + ‖y‖Lq(0,τ1;W 1,p) ≤ M̃1} with the Strichartz

pair (p, q) = ( 2d2

d2−2d+4
, 2d

d−2
). As in (2.2.25) and (2.2.26), we observe that for y ∈ Gτ1fM1

‖F (y)− U(·, 0)x‖L∞(0,τ1;H1) + ‖F (y)‖Lq(0,τ1;W 1,p) ≤ ε1(τ 1) + 2Cτ1D2(τ 1)M̃
α
1 ,

where ε1(t) := ‖U(·, 0)x‖Lq(0,t;W 1,p) is (Ft)-adapted. By Theorem 2.2.1, ε1(t) =

‖1(0,t)(·)U(·, 0)x‖Lq(0,T ;W 1,p) ≤ CT |x|H1 < ∞, and 1(0,t)(·)U(·, 0)x → 0, as t → 0+.

This implies ε(t) → 0, as t→ 0+.

Furthermore, as in (2.2.27)

‖F (y1)− F (y2)‖L∞(0,τ1;L2) + ‖F (y1)− F (y2)‖Lq(0,τ1;Lp)

≤2Cτ1D2(τ 1)M̃
α−1
1 ‖y1 − y2‖Lq(0,τ1;Lp).

Taking into account the above two estimates, we define the continuous (Ft)-

adapted process

Z̃
(1)
t := 2αCtD2(t)ε

α−1
1 (t), t ∈ [0, T ],

the (Ft)-stopping time

τ 1 = inf

{
t ∈ [0, T ], Z̃

(1)
t >

1

2

}
∧ T

and take M̃1 = 2ε1(τ 1). It follows that F (Gτ1fM1
) ⊂ Gτ1fM1

and F is a contraction

in C([0, τ 1];L
2) ∩ Lq(0, τ 1;L

p). Using the arguments as in Step 1 in the proof of

Theorem 2.2.5, we obtain a strong solution (y1, τ 1), such that y1(t) = y1(t ∧ τ 1),

t ∈ [0, T ], and y1|[0,τ1] ∈ C([0, τ 1];H
1) ∩ Lq(0, τ 1;W

1,p).

Suppose that at the nth step we have a strong solution (yn, τn) with τn ≥ τn−1,
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such that yn(t) = yn(t∧τn), t ∈ [0, T ], and yn|[0,τn] ∈ C([0, τn];H1)∩Lq(0, τn;W 1,p).

Consider the operator Fn as in (2.2.28) and set GσnfMn+1
= {z ∈ C([0, σn];L2) ∩

Lq(0, σn;Lp) : ‖z − U(τn + ·, τn)yn(τn)‖L∞(0,σn;H1) + ‖z‖Lq(0,σn;W 1,p) ≤ M̃n+1}, then

for z ∈ GσnfMn+1

‖Fn(z)− U(τn + ·, τn)yn(τn)‖L∞(0,σn;H1) + ‖Fn(z)‖Lq(0,σn;W 1,p)

≤εn+1(σn) + 2Cτn+σnD2(τn + σn)M̃α
n+1,

and for z1, z2 ∈ GσnfMn+1

‖F (z1)− F (z2)‖L∞(0,σn;L2) + ‖F (y1)− F (y2)‖Lq(0,σn;Lp)

≤2Cτn+σnD2(τn + σn)M̃α−1
n+1 ‖z1 − z2‖Lq(0,σn;Lp),

where εn+1(t) := ‖U(τn + ·, τn)yn(τn)‖Lq(0,t;W 1,p) is (Fτn+t)-adapted and tends to 0

as t→ 0.

Hence, define the continuous (Fτn+t)-adapted process

Z̃
(n)
t := 2αCτn+tD2(τn + t)εα−1

n+1(t), t ∈ [0, T ],

set

σn = inf

{
t ∈ [0, T − τn], Z̃

(n)
t >

1

2

}
∧ (T − τn)

and let M̃n+1 = 2εn+1(σn). We have that Fn(GσnfMn+1
) ⊂ GσnfMn+1

and Fn is a contraction

in C([0, σn];L2) ∩ Lq(0, σn;Lp). Then using similar arguments as in Step 2 in the

proof of Theorem 2.2.5, we obtain a strong solution (yn+1, τn+1) with τn+1 := τn+σn,

such that yn+1(t) = yn+1(t ∧ τn+1), t ∈ [0, T ], and yn+1|[0,τn+1] ∈ C([0, τn+1];H
1) ∩

Lq(0, τn+1;W
1,p).

Therefore, by induction arguments we obtain a sequence of strong solutions

(yn, τn)n∈N with τn increasing stopping times and yn+1 = yn on [0, τn], then we

define the triple (y, (τn)n∈N, τ
∗(x)) by y = lim

n→∞
yn1[0,τ∗(x)) with τ ∗(x) := lim

n→∞
τn.

(2.2.37) follows from the fact that and yn|[0,τn] ∈ C([0, τn];L2)∩Lq(0, τn;W 1,p) and

the Strichartz estimate (2.2.8). Moreover, the maximality of (y, (τn)n∈N, τ
∗(x)) fol-

lows from the uniqueness and blowup alternative below.

The proof for the uniqueness is analogous to that in the L2-critical case. For

any two strong solutions (ỹi, σi), i = 1, 2, define ς = sup{t ∈ [0, σ1 ∧ σ2] : ỹ1 =

ỹ2 on [0, t]}. Suppose that P(ς < σ1 ∧ σ2) > 0. For ω ∈ {ς < σ1 ∧ σ2}, we have
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ỹ1(ω) = ỹ2(ω) on [0, ς(ω)] by the continuity in H1, and for t ∈ [0, σ1 ∧ σ2(ω)− ς(ω))

‖ỹ1(ω)− ỹ2(ω)‖Lq(ς(ω),ς(ω)+t;Lp)

≤2Cς(ω)+tD2(ς(ω) + t)M̃(t)‖ỹ1(ω)− ỹ2(ω)‖Lq(ς(ω),ς(ω)+t;Lp),

where M̃(t) := ‖ỹ1(ω)‖α−1
Lq(ς(ω),ς(ω)+t;W 1,p) + ‖ỹ2(ω)‖α−1

Lq(ς(ω),ς(ω)+t;W 1,p) → 0 as t → 0.

Therefore, with t small enough we deduce that ỹ1(ω) = ỹ2(ω) on [ς(ω), ς(ω) + t],

which implies ỹ1(ω) = ỹ2(ω) on [0, ς(ω) + t] and yields a contradiction.

It remains to prove the blowup alternative. We will adapt the augments as in

[22] and [19]. Set q1 = 2(d+2)
d−2

. Besides the Strichartz pair (p, q) = ( 2d2

d2−2d+4
, 2d

d−2
), let

us choose another Strichartz pair (p2, p2) = (2 + 4
d
, 2 + 4

d
). Then 1

p′2
= α−1

q1
+ 1

p2
.

Suppose that P(‖y‖Lq1 (0,τ∗(x);Lq1 ) < ∞; τn < τ ∗(x),∀n ∈ N) > 0. For ω ∈
{‖y‖Lq1 (0,τ∗(x);Lq1 ) < ∞; τn < τ ∗(x),∀n ∈ N}, we have σn(ω) = inf{t ∈ [0, T −
τn(ω)]; Z̃

(n)
t (ω) > 1

2
} and Z̃

(n)
σn(ω)(ω) = 1

2
. For convenience, we omit the dependence

of ω below.

From the definition Fn and the construction of y, one can verify that for every

n ≥ 1 and t ∈ [0, τ ∗(x)− τn)

y(τn + t) = U(τn + t, τn)y(τn)− λi

∫ τn+t

τn

U(τn + t, s)e(α−1)ReW (s)g(y(s))ds.

Then by Lemma 2.2.1 and Höder’s inequality, for every n ≥ 1 and t ∈ [τ ∗(x)− τn)

‖y‖Lp2 (τn,τn+t;W 1,p2 ) ≤CT |y(τn)|H1 + CT‖e(α−1)ReW (s)g(y(s))‖
Lp′2 (τn,τn+t;W 1,p′2 )

≤CT |y(τn)|H1 + CTD1(T )‖y‖α−1
Lq1 (τn,τ∗(x);Lq1 )‖y‖Lp2 (τn,τn+t;W 1,p2 ),

where D1(T ) is defined as in the proof of Theorem 2.2.5.

Since ‖y‖Lq1 (0,τ∗(x);Lq1 ) < ∞ and τn → τ ∗(x), we have ‖y‖Lq1 (τn,τ∗(x);Lq1 ) → 0 as

n→∞. Hence, choosing n large enough, such that CTD2(T )‖y‖α−1
Lq1 (τn,τ∗(x);Lq1 ) <

1
2
,

we have for t ∈ [τ ∗(x)− τn)

‖y‖Lp2 (τn,τn+t;W 1,p2 ) ≤ 2CT |y(τn)|H1 ,

yielding

‖y‖Lp2 (0,τ∗(x);W 1,p2 ) <∞.

Therefore

‖y‖Lq(0,τ∗(x);W 1,p) ≤CT |x|H1 + CT‖e(α−1)ReW (s)g(y(s))‖
Lp′2 (0,τ∗(x);W 1,p′2 )
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≤CT |x|H1 + CTD1(T )‖y‖α−1
Lq1 (0,τ∗(x);Lq1 )‖y‖Lp2 (0,τ∗(x);W 1,p2 ) <∞.

Now, as in the proof of Theorem 1.2.10, we note that for every n ≥ 1 and

t ∈ [0, σn]

εn+1(t) = ‖U(τn + ·, τn)y(τn)‖Lq(0,t;W 1,p) ≤ M̃∗
n + CTD2(T )(M̃∗

n)α,

where M̃∗
n(ω) := ‖y(ω)‖Lq(τn(ω),τ∗(x)(ω);W 1,p) → 0, as n → ∞. Then choose n large

enough such that

Z̃(n)(ω) := 2αCT (ω)D2(T )(ω)[M̃∗
n(ω) + CT (ω)D2(T )(ω)(M̃∗

n)α(ω)]α−1 <
1

6
.

But this implies 1
6
> Z̃(n)(ω) > Z̃

(n)
t (ω) for any t ∈ [0, σn(ω)], in particular,

1
6
> Z̃(n)(ω) > Z̃

(n)
σn(ω)(ω) = 1

2
, yieding a contradiction. Therefore, we finish the

proof of Theorem 2.2.8. �

Remark 2.2.9. In the critical case, a bound on the solution in H1(Rd) can not

give us the global existence, which is different from the subcritical case (see Theorem

2.2.3). In the last decade, it was extensively studied to derive a finite bound in

(2.2.36) for NLS in the defocusing case (λ = −1). We refer to interested reader to

Section 2.4 for further reviews and references therein.

Remark 2.2.10. Comparing the ranges of exponents α for the local well-posedness

results in Section 1.2 and Section 2.2, we notice that smoother initial data allow to

obtain local well-posedness for more general nonlinearity.

In the deterministic case, the authors in [20] proved that given the initial data

x ∈ Hs, where s is an integral and 0 ≤ s < d
2
, (2.1.1) is locally wellposed for

1 < α ≤ 1 + 4
n−2s

(if s is not an even integer, suppose also s < α). The case when

s is not an integer was also studied there in the context of Besov’s spaces.

2.3 Global well-posedness

This section is devoted to the global well-posedness of SNLS (2.1.1) in the subcritical

case. We will first derive a priori estimates of the energy in Subsection 2.3.1, then

we present the global well-posedness in Subsection 2.3.2. Some technical proofs are

put in Subsection 2.3.3.
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2.3.1 A priori estimate of the energy

As we saw in Theorem 2.2.3, the key ingredient to obtain the global solution in the

subcritical case is an a priori bound on the energy sup
0≤t<τ∗(x)

|X(t)|H1 , which will be

obtained in Lemma 2.3.5 and Theorem 2.3.6 below. Like in the deterministic case,

we obtain such estimate from the Hamiltonian H defined on H1 and for α satisfying

(2.1.2)

H(u) =
1

2

∫
|∇u|2dξ − λ

α+ 1

∫
|u|α+1dξ, u ∈ H1. (2.3.39)

Note that, the condition on the exponents α of the nonlinearity ensures from Sobolev’

imbedding theorem that the Hamiltonian H is well-defined.

Let us start with an evolution formula for H(X(t)) and some technical lemmas.

Some details of the proofs are postponed to Subsection 2.3.3.

Theorem 2.3.1. Let α satisfy (2.2.15) and (X, (τn)n∈N, τ
∗(x)) be the maximal

strong solution of (2.1.1) from Theorem 2.2.3. It holds P-a.s. for 0 ≤ t < τ ∗(x),

H(X(t))

=H(x) +

∫ t

0

Re〈−∇(µX(s)),∇X(s)〉2ds+
1

2

N∑
j=1

∫ t

0

|∇(X(s)φj)|22ds

− 1

2
λ(α− 1)

N∑
j=1

∫ t

0

∫
(Reφj)

2|X(s)|α+1dξds

+
N∑

j=1

∫ t

0

Re〈∇(φjX(s)),∇X(s)〉2dβj(s)

− λ

N∑
j=1

∫ t

0

∫
Reφj|X(s)|α+1dξdβj(s),

where φj = µjej, j = 1, ..., N .

Remark 2.3.2. In the deterministic case µj = 0, 1 ≤ j ≤ N , the Hamiltonian

(2.3.39) is conserved, i.e H(X(t)) = H(x).

In the stochastic conservative case µj = −iµ̃j, µ̃j ∈ R, 1 ≤ j ≤ N , notice that for

1 ≤ j ≤ N , Reφj = 0, −Re〈∇(µX),∇X〉2 + 1
2

N∑
j=1

|∇(Xφj)|22 = 1
2

N∑
j=1

|∇φ̃jX|22 with

φ̃j = µ̃jej, and Re < ∇(φjX),∇X >2= −Im < ∇X,∇φ̃jX >2. Then it follows

from Theorem 2.3.1 that

H(X(t))
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=H(x) +
1

2

N∑
j=1

∫ t

0

|∇φ̃jX(s)|22ds−
N∑

j=1

Im

∫ t

0

< ∇X(s),∇φ̃jX(s) >2 dβj(s),

which coincides with (4.26) in [12].

Proof of Theorem 2.3.1. This formula follows heuristically by applying Itô’s

formula to the integrands in H(X(t)) with the variable ξ fixed and then integrating

over Rd. To prove it rigourously, we introduce the operators Θm, m ∈ N, used in

[12] and defined for any f ∈ S by

Θmf :=

(
θ(
| · |
m

)

)∨
∗ f (= mdθ∨(m·) ∗ f),

where θ ∈ C∞
c is real-valued, nonnegative and θ(x) = 1 for |x| ≤ 1, θ(x) = 0 for

|x| > 2.

By the Hausdorff-Young inequality and
∫
θ∨dξ = 1, for any p ∈ [1,∞)

‖Θm‖Lp→Lp ≤ C, (2.3.40)

where C = C(p) is independent of m, and

Θmf → f in Lp, as m→∞. (2.3.41)

Moreover, for any f ∈ Lα+1
α

Θmf ∈ Lα+1, (2.3.42)

Re

∫
if(ξ)Θmf(ξ)dξ = 0. (2.3.43)

(See Subsection 2.3.3 for the proof.)

Consider the approximating equation

idXm = ∆Xmdt− iµXmdt+ λΘm(g(Xm))dt+ iXmdW, t ∈ (0, T ),

Xm(0) = x,
(2.3.44)

where g(Xm) = |Xm|α−1Xm. Since the bound in (2.3.40) is independent of m, the

arguments in the proof of Theorem 2.2.5 show that there exists a maximal strong

solution (Xm, (τn)n∈N, τ
∗(x)) of (2.3.44), with τn, n ∈ N, independent of m, and it

holds that P− a.s.

R(t) := sup
m≥1

(‖Xm‖C([0,t];H1) + ‖Xm‖Lq(0,t;W 1,α+1)) <∞, t < τ ∗(x), (2.3.45)
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where q = 4(α+1)
d(α−1)

.

Moreover, it follows from Lemma 2.3.11 and Lemma 2.3.12 in Subsection 2.3.3

that

H(Xm(t))

=H(x) +

∫ t

0

Re〈−∇(µXm),∇(Xm)〉2dt+
1

2

N∑
j=1

∫ t

0

|∇(Xm(s)φj)|22ds

− 1

2
λ(α− 1)

N∑
j=1

∫ t

0

∫
(Reφj)

2|Xm(s)|α+1dξds

− λ

∫ t

0

Re

∫
i∇[(Θm − 1)g(Xm)]∇Xmdξds (2.3.46)

+
N∑

j=1

∫ t

0

Re〈∇(φjXm(s)),∇Xm(s)〉2dβj(s)

− λ
N∑

j=1

∫ t

0

∫
Reφj|Xm(s)|α+1dξdβj(s).

We also have P− a.s. for t < τ ∗(x)

Xm → X, in L∞(0, t;H1) ∩ Lq(0, t;W 1,α+1), (2.3.47)

it particular,

Xm → X, ∇Xm → ∇X, in measure dt× dξ (2.3.48)

(see Subsection 2.3.3 for its proof).

Now, to take the limit in (2.3.46), let us take the fifth term for example. We will

show that P-a.s. for t < τ ∗(x)

λ

∫ t

0

Re

∫
i∇[(Θm − 1)g(Xm)]∇Xmdξds→ 0, as m→∞. (2.3.49)

Indeed, by (2.3.48), Lemma 2.3.10 and (2.3.47), it suffices to prove that P-a.s. for

t < τ ∗(x)

∇[(Θm − 1)g(Xm)] → 0, in Lq′(0, t;L
α+1

α ). (2.3.50)

Notice that, by (2.3.40)

‖∇[(Θm − 1)g(Xm)]‖
Lq′ (0,t;L

α+1
α )
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≤‖(Θm − 1)(∇g(Xm)−∇g(X))‖
Lq′ (0,t;L

α+1
α )

+ ‖(Θm − 1)∇g(X)‖
Lq′ (0,t;L

α+1
α )

≤C‖∇g(Xm)−∇g(X)‖
Lq′ (0,t;L

α+1
α )

+ ‖(Θm − 1)∇g(X)‖
Lq′ (0,t;L

α+1
α )
,

where C is independent of m. Using the arguments after (2.3.112) we deduce that

the first term tends to 0. Moreover, the second term also converges to 0, due to

(2.3.41) and (2.3.40). Therefore, we obtain (2.3.49), as claimed.

One easily verifies that we can also take the limit for the remaining terms in

(2.3.46) using (2.3.47). Consequently we complete the proof of Theorem 2.3.1. �

We next state some technical lemmas before the proof of a priori estimates in

Theorem 2.3.6.

Lemma 2.3.3. For 1 < α < 1 + 4
d
, d ≥ 1,

|X|α+1
Lα+1 ≤ C|X|β2 |∇X|

γ
2 , (2.3.51)

where β = (1− θ)(α+ 1) and γ = θ(α+ 1) ∈ (0, 2) with θ = d(α−1)
2(α+1)

∈ (0, 1).

Moreover, we have

|X|α+1
Lα+1 ≤ Cε|X|βp

2 + ε|∇X|22, (2.3.52)

where βp > 2 and p > 1.

Proof. (2.3.51) is the well-known Gagliardo-Nirenberg inequality, (2.3.52) fol-

lows immediately from (2.3.51) and Young’s inequality ab ≤ Cεa
p + εbq, 1

p
+ 1

q
= 1

by choosing γq = 2. �

Lemma 2.3.4. Let Y ≥ 0 be real-valued progressively measurable process, we have

E
(∫ t

0

Y (s)2ds

) 1
2

≤ εE sup
s≤t

Y (s) + Cε

∫ t

0

E sup
r≤s

Y (r)ds.

Proof. This lemma follows from

E
(∫ t

0

Y (s)2ds

) 1
2

≤ E

[
sup
s≤t

Y (s)
1
2

(∫ t

0

Y (s)ds

) 1
2

]
≤
√

E sup
s≤t

Y (s)

√
E
∫ t

0

Y (s)ds,

and the inequality
√
ab ≤ εa+ Cεb. �

Unlike in the deterministic and stochastic conservative cases, |X(t)|22 is no longer

independent of t, but a general martingale (see (1.3.79)). When we use Lemma 2.3.3

to control |X(t)|α+1
Lα+1 , we shall need the following lemma to bound the p-power of

|X(t)|2. The proof of this lemma is postponed to Subsection 2.3.3.
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Lemma 2.3.5. Take p ≥ 2. Let (X, (τn)n∈N, τ
∗(x)) be the maximal strong solution

of (2.1.1) from Theorem 2.2.3. Then there exists C̃(T ) <∞ such that

E sup
t∈[0,τ∗(x))

|X(t)|p2 ≤ C̃(T ) <∞.

With the above preliminaries, we are now ready to prove the following main a

priori estimate in this subsection.

Theorem 2.3.6. Let α satisfy (2.2.15) in the defocusing case and 1 < α < 1 + 4
d

in

the focusing case. Let (X, (τn)n∈N, τ
∗(x)) be the maximal strong solution of (2.1.1)

from Theorem 2.2.3. There exists C̃(T ) <∞ such that

E

[
sup

t∈[0,τ∗(x))

(
|∇X(t)|22 + |X(t)|α+1

Lα+1

)]
≤ C̃(T ) <∞. (2.3.53)

Proof. (i) First assume that λ = 1 (focusing). From the definition of H in

(2.3.39) and Theorem 2.3.1, it follows that P-a.s. for every n ≥ 1 and t ∈ [0, T ]

1

2
|∇X(t ∧ τn)|22

=H(X(t ∧ τn)) +
1

α+ 1
|X(t ∧ τn)|α+1

Lα+1

=H(x) +
1

α+ 1
|X(t ∧ τn)|α+1

Lα+1

+

∫ t∧τn

0

[
Re〈−∇(µX(s)),∇X(s)〉2 +

1

2

N∑
j=1

|∇(X(s)φj)|22

]
ds

− 1

2
(α− 1)

N∑
j=1

∫ t∧τn

0

∫
(Reφj)

2|X(s)|α+1dξds

+
N∑

j=1

∫ t∧τn

0

Re〈∇(φjX(s)),∇X(s)〉2dβj(s)

−
N∑

j=1

∫ t∧τn

0

∫
Reφj|X(s)|α+1dξdβj(s)

=H(x) +
1

α+ 1
|X(t ∧ τn)|α+1

Lα+1 + J1(t ∧ τn) + J2(t ∧ τn) + J3(t ∧ τn) + J4(t ∧ τn),

(2.3.54)

where φj, 1 ≤ j ≤ N , are defined as in Theorem 2.3.1.

To estimate the second term in (2.3.54), we note that, from (2.3.52) and Lemma
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2.3.5 it follows that

1

α+ 1
E sup

s≤t∧τn

|X(s)|α+1
Lα+1 ≤

1

α+ 1
CεE sup

s≤t∧τn

|X(s)|βp
2 + ε

1

α+ 1
E sup

s≤t∧τn

|∇X(s)|22

≤ 1

α+ 1
CεC̃(T ) + ε

1

α+ 1
E sup

s≤t∧τn

|∇X(s)|22. (2.3.55)

For J1(t ∧ τn), since |φj|∞ <∞ and |∇φj|∞ <∞, 1 ≤ j ≤ N , we have that

J1(t) =

∫ t

0

[
Re〈−∇µX(s)− µ∇X(s),∇X(s)〉2

+
1

2

N∑
j=1

|∇X(s)φj +X(s)∇φj|22
]
ds

≤C
∫ t

0

|∇X(s)|22 + |X(s)|22ds.

where C depends on |φj|∞ and |∇φj|∞, 1 ≤ j ≤ N . Hence by Lemma 2.3.5

E sup
s≤t∧τn

|J1(s)| ≤CE sup
s≤t∧τn

∫ s

0

|X(r)|22 + |∇X(r)|22dr

≤CC̃(T )t+ C

∫ t

0

E sup
r≤s∧τn

|∇X(r)|22ds. (2.3.56)

Moreover, since

E sup
s≤t∧τn

|J2(s)| ≤ (α− 1)|µ|L∞
∫ t

0

E sup
r≤s∧τn

|X(r)|α+1
Lα+1ds, (2.3.57)

using the estimate (2.3.55) we have that

E sup
s≤t∧τn

|J2(s)| ≤(α− 1)|µ|L∞CεC̃(T )t

+ ε(α− 1)|µ|L∞
∫ t

0

E sup
r≤s∧τn

|∇X(r)|22ds. (2.3.58)

To estimate J3, since |∇φj|∞ < ∞, |φj|∞ < ∞, 1 ≤ j ≤ N, the Burkholder-

Davis-Gundy inequality shows that

E sup
s≤t∧τn

|J3(s)| ≤ CE

[∫ t∧τn

0

N∑
j=1

(
Re〈∇(φjX(s)),∇X(s)〉2

)2
ds

] 1
2
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= CE

[∫ t∧τn

0

N∑
j=1

(
Re〈∇φjX(s) + φj∇X(s),∇X(s)〉2

)2
ds

] 1
2

≤ CE
(∫ t∧τn

0

|X(s)|42 + |∇X(s)|42ds
) 1

2

,

≤ CE
(∫ t∧τn

0

|X(s)|42ds
) 1

2

+ CE
(∫ t∧τn

0

|∇X(s)|42ds
) 1

2

,

Then, applying Lemma 2.3.4 with Y replaced by |X(s)|22 and |∇X(s)|22 respectively

and using Lemma 2.3.5 yield

E sup
s≤t∧τn

|J3(s)|

≤εCC̃(T ) + CCεC̃(T )t+ εCE sup
s≤t∧τn

|∇X(s)|22

+ CCε

∫ t

0

E sup
r≤s∧τn

|∇X(r)|22ds. (2.3.59)

For the remaining term J4, it follows similarly from the Burkholder-Davis-Gundy

inequality and Lemma 2.3.4 with Y replaced by |X|α+1
Lα+1 that

E sup
s≤t∧τn

|J4(s)| ≤CE

[∫ t∧τn

0

N∑
j=1

(∫
Reφj|X(s)|α+1dξ

)2

ds

] 1
2

≤CE
(∫ t∧τn

0

|X(s)|2(α+1)

Lα+1 ds

) 1
2

≤εCE sup
s≤t∧τn

|X(s)|α+1
Lα+1 + CCε

∫ t

0

E sup
r≤s∧τn

|X(r)|α+1
Lα+1ds. (2.3.60)

Then from (2.3.55) it follows that

E sup
s≤t∧τn

|J4(s)| ≤CCε(εC̃(T ) + CεC̃(T )t) + ε2CE sup
s≤t∧τn

|∇X(s)|22

+ εCCε

∫ t

0

E sup
r≤s∧τn

|∇X(r)|22ds. (2.3.61)

Taking (2.3.55)-(2.3.61) into (2.3.54) and summing up the like terms, we conclude

that

1

2
E sup

s≤t∧τn

|∇X(s)|22 ≤C1(T ) + εC2(T )E sup
s≤t∧τn

|∇X(s)|22

+ C3(T )

∫ t

0

E sup
r≤s∧τn

|∇X(r)|22ds,
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where the constants Ck(T ), 1 ≤ k ≤ 3, depend on T , H(x), α, |φj|∞, |∇φj|∞,

1 ≤ j ≤ N , and E sup
t∈[0,τ∗(x))

|X(t)|p2 with p ≥ 2.

Therefore, choosing a sufficiently small ε and using Gronwall’s lemma, we come

to

E sup
t∈[0,τn]

|∇X(t)|22 ≤ C̃(T ) <∞.

Then taking n→∞ and appylying Fatou’s lemma give us

E sup
t∈[0,τ∗(x))

|∇X(t)|22 ≤ C̃(T ) <∞,

which yields (2.3.53) by (2.3.52) and Lemma 2.3.5.

(ii) In the defocusing case λ = −1, the fact that 1
2
|∇X(t)|22 ≤ H(X(t)) allows

to estimate |X|α+1
Lα+1 more directly without using Lemma 2.3.3. Therefore the calcu-

lations in the previous case can be much simplified and the condition on α is less

restrictive than the focusing case.

More precisely, taking (2.3.56), (2.3.57), (2.3.59) and (2.3.60) into Theorem 2.3.1

and summing up the like terms, we derive that

1

2
E sup

s≤t∧τn

|∇X(s)|22 +
1

α+ 1
E sup

s≤t∧τn

|X(s)|α+1
Lα+1

≤C1(T ) + εC2(T ) E sup
s≤t∧τn

(|∇X(s)|22 + |X(s)|α+1
Lα+1)

+ C3(T )

∫ t

0

E sup
r≤s∧τn

(|∇X(r)|22 + |X(r)|α+1
Lα+1)ds,

where the constants Ck(T ), 1 ≤ k ≤ 3, depend on T , H(x), α, |φj|∞, |∇φj|∞,

1 ≤ j ≤ N , and E sup
t∈[0,τ∗(x))

|X(t)|22.

Therefore, similar arguments as in the end of the previous case yield (2.3.53).

This completes the proof of Theorem 2.3.6. �

2.3.2 Subcritical case

Let us first prove the global well-posedness in the subcritical case for the random

equation (2.1.5).

Theorem 2.3.7. Assume (H2). Let α satisfy (2.2.15) and 1 < α < 1 + 4
d

in the

defocusing and focusing cases respectively. For each x ∈ H1 and 0 < T <∞, there

exists a unique strong solution (y, T ) of (2.1.5) in the sense of Definition 2.1.2, such
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that

eWy ∈ L2(Ω;C([0, T ];H1)) ∩ Lα+1(Ω;C([0, T ];Lα+1)), (2.3.62)

and

y ∈ Lγ(0, T ;W 1,ρ), P− a.s., (2.3.63)

where (ρ, γ) is any Strichartz pair.

Moreover, for P-a.e ω, the map x→ y(·, x, ω) is continuous from H1 to C([0, T ];H1)∩
Lγ(0, T ;W 1,ρ).

Proof. Let (y, (τn)n∈N, τ
∗(x)) be the maximal solution of (2.1.5) from Theorem

2.2.5. We also recall (yn)n∈N in the proof of Theorem 2.2.5. By Lemma 2.3.5 and

Theorem 2.3.6

sup
0≤t<τ∗(x)

(
|X(t)|22 + |∇(X(t))|22

)
<∞, P− a.s.

Since ‖e−W‖L∞(0,T ;W 1,∞) <∞, P-a.s, direct computations show that

sup
0≤t<τ∗(x)

(
|y(t)|22 + |∇y(t)|22

)
<∞, P− a.s. (2.3.64)

Therefore, arguing as in the proof of Theorem 1.3.3 and modifying the defini-

tion of y by y := lim
n→∞

yn, we conclude that that (y, T ) is the desired unique strong

solution of (2.1.5) in the sense of Definition 2.1.2. Moreover, (2.3.62) follows from

Lemma 2.3.5 and Theorem 2.3.6, and (2.3.63) follows from (2.2.17).

We are left to prove the continuous dependence. This proof is analogous to that

of (2.3.47), hence we only sketch it.

Suppose that xm → x in H1 and let (ym, T ) be the unique strong solutions of

(2.1.5) corresponding to the initial data xm, m ≥ 1. Choose the Strichartz pair

(p, q) = (α + 1, 4(α+1)
d(α−1)

). As in the proof of Theorem 1.3.3, we can choose a uniform

τ 1(≤ T ) such that for all m ≥ m1 with m1 large enough

R̃ := sup
m≥m1

(‖ym‖L∞(0,τ1;H1) + ‖ym‖Lq(0,τ1;W 1,p)) <∞, P− a.s.

We will first prove the continuous dependence on the interval [0, τ 1]. Analogous
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calculations as in (2.2.27) show that

‖ym − y‖L∞(0,t;L2) + ‖ym − y‖Lq(0,t;Lp)

≤ 2CT |xm − x|2 + 2CTD2(T )R̃α−1tθ‖ym − y‖Lq(0,t;Lp),
(2.3.65)

where θ = 1− 2
q
> 0. Then taking t small enough and independent of m yields that

‖ym − y‖L∞(0,t;L2) + ‖ym − y‖Lq(0,t;Lp) → 0, as m→∞. (2.3.66)

To obtain

‖ym − y‖L∞(0,t;H1) + ‖ym − y‖Lq(0,t;W 1,p) → 0, (2.3.67)

we notice from (2.2.10) that for m ≥ m1

∇(ym − y) =U(t, 0)∇(xm − x) +

∫ t

0

U(t, s)

{
i(Dj∇b̃j +∇b̃jDj +∇c̃)(ym − y)

− λi∇
[
e(α−1)ReW (s) (g(ym(s))− g(y(s)))

]}
ds. (2.3.68)

Similarly to (2.3.111) we have that

‖i(Dj∇b̃j +∇b̃jDj +∇c̃)(ym − y)‖ eX′
[0,t]

≤C(T )|xm − x|2 + C(T )tθ‖ym − y‖Lq(0,t;Lp), (2.3.69)

where C(T ) depends on κT , CT , ‖eW‖L∞(0,T ;L∞) and R̃.

From (2.3.69), as in (2.3.112), we derive that

‖∇ym −∇y‖L∞(0,t;L2) + ‖∇ym −∇y‖Lq(0,t;Lp)

≤C(T )|xm − x|H1 + C(T )tθ‖ym − y‖Lq(0,t;Lp)

+ C(T )‖∇g(ym)−∇g(y)‖Lq′ (0,t;Lp′ ). (2.3.70)

Collecting (2.3.65), (2.3.70), and choosing t small enough and independent of m,

we come to

‖ym − y‖L∞(0,t;H1) + ‖ym − y‖Lq(0,t;W 1,p)

≤C(T )|xm − x|H1 + C(T )‖∇g(ym)−∇g(y)‖Lq′ (0,t;Lp′ ). (2.3.71)

Therefore, applying similar arguments as we do after (2.3.111) to control the last

term, we finally deduce that (2.3.67) holds for t small enough and independent of m.
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Reiterating this procedure in finite steps we obtain the continuous dependence on

the interval [0, τ 1]. Consequently, as the arguments in the proof of Theorem 1.3.3,

this suffices to obtain the continuous dependence on [0, T ], thereby completing the

proof of Theorem 2.3.7. �

As a consequence of Theorem 2.3.7, Theorem 2.1.3 and the boundedness in space

and time of W (ω) and ∇W (ω) for P-a.e ω ∈ Ω , we obtain the global well-posedness

for SNLS (2.1.1) in the subcritical case.

Theorem 2.3.8. Assume (H2). Let α satisfy (2.2.15) and 1 < α < 1 + 4
d

in the

defocusing and focusing cases respectively. Then for each x ∈ H1 and 0 < T < ∞,

there exists a unique strong solution (X,T ) of (2.1.1) in the sense of Definition

2.1.1, such that

X ∈ L2(Ω;C([0, T ];H1)) ∩ Lα+1(Ω;C([0, T ];Lα+1)), (2.3.72)

and

X ∈ Lγ(0, T ;W 1,ρ), P− a.s., (2.3.73)

where (ρ, γ) is any Strichartz pair.

Furthermore, for P − a.e ω, the map x → X(·, x, ω) is continuous from H1 to

C([0, T ];H1) ∩ Lγ(0, T ;W 1,ρ).

Remark 2.3.9. Theorem 2.3.8 implies that SNLS (2.1.1) generates a global stochas-

tic flow in H1(Rd) in the subcritical case when α satisfies (2.2.15) and 1 < α < 1+ 4
d

in the defocusing and focusing cases respectively.

2.3.3 Appendix

This subsection contains some details of the proofs used in the previous subsections.

Let us first show that Assumption (H2) allows to use Proposition 2.3(a) in [59].

Proof. Recalling the coefficients b̃ and c̃ in (1.2.27) and (1.2.28) respectively,

we need to prove (1.2.29)-(1.2.31) with ∂lb̃ and ∂lc̃ replacing b̃ and c̃ respectively,

1 ≤ l ≤ d. For simplicity set |f |∞ = |f |L∞ for any f ∈ L∞(Rd).

From (1.2.27) and (1.2.28), we have that

∂lb̃
k =− i

N∑
m=1

µm∂lkemβm(t), 1 ≤ k, l ≤ d, (2.3.74)
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div∂lb̃ =− i
N∑

m=1

µm∆∂lemβm(t), 1 ≤ l ≤ d, (2.3.75)

and

∂lc̃ =− 2
d∑

k=1

(
N∑

m=1

µm∂kemβm(t)

)(
N∑

m=1

µm∂klemβm(t)

)

+ i

[
N∑

m=1

(|µm|2 + µ2
m)em∂lem

]
. (2.3.76)

Now, as in (1.2.32), we have from (2.3.74) and Assumption (H2) that for 1 ≤
l, k ≤ d

∑
j

sup
Aj

< ξ > |∂lb̃
k| ≤ 2

N∑
m=1

|µm||ζ∂lkem|∞ sup
t∈[0,T ]

|βm(t)| <∞,

which yields (1.2.29) for ∂lb̃, 1 ≤ l ≤ d.

Moreover, by (2.3.75) and Assumption (H2), we have for 1 ≤ l ≤ d

sup
[0,T ]×Rd

ζ|div∂lb̃| ≤
N∑

m=1

|µm||ζ∆∂lem|∞ sup
t∈[0,T ]

|βm(t)| <∞

and

lim sup
|ξ|→∞

ζ|div∂lb̃| ≤
N∑

m=1

|µm||βm(t)| lim sup
|ξ|→∞

|ζ∆∂lem|∞ = 0,

which yield (1.2.30) and (1.2.31) for ∂lb̃, 1 ≤ l ≤ d.

Similar argument can be applied to ∂lc̃. Indeed, by (2.3.76) and Assumption

(H2), we have that for 1 ≤ l ≤ d

sup
[0,T ]×Rd

ζ|∂lc̃| ≤2
d∑

k=1

(
N∑

m=1

|µm||ζ∂kem|∞ sup
t∈[0,T ]

|βm(t)|

)(
N∑

m=1

|µm||∂klem|∞ sup
t∈[0,T ]

|βm(t)|

)

+ 2

(
N∑

m=1

|µm|2|em|∞|ζ∂lem|∞

)
<∞,
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and

lim sup
|ξ|→∞

ζ|∂lc̃| ≤2
d∑

k=1

(
N∑

m=1

|µm| lim sup
|ξ|→∞

|ζ∂kem||βm(t)|

)(
N∑

m=1

|µm||∂klem|∞|βm(t)|

)

+ 2

(
N∑

m=1

|µm|2|em|∞ lim sup
|ξ|→∞

|ζ∂lem|

)
= 0,

which yield (1.2.30) and (1.2.31) for ∂lc̃, 1 ≤ l ≤ d, and complete the proof. �

Proof of (2.3.40). By Hausdorf-Young’s inequality, for p ∈ [1,∞)

|Θmf |Lp =|mdθ∨(m·) ∗ f |Lp

≤|mdθ∨(m·)|L1|f |Lp ≤ |θ∨|L1|f |Lp .

Since θ ∈ C∞
c ⊂ S, θ∨ ∈ S ⊂ L1, thus |Θm|Lp→Lp ≤ |θ∨|L1 <∞, implying the result.

�

Proof of (2.3.42). The argument is similar as the previous proof. Hausdorf-

Young’s inequality shows that

|Θmf |Lα+1 =|(θ( | · |
m

))∨ ∗ f |Lα+1

≤|(θ( | · |
m

))∨|
L

α+1
2
|f |

L
α+1

α
.

Since θ( |·|
m

) ∈ C∞
c ⊂ S, we have (θ( |·|

m
))∨ ∈ S ⊂ L

α+1
2 implying |Θmf |Lα+1 <∞. �

Proof of (2.3.43). It follows from Fourier’s inversion formula and Fubini’s the-

orem that for f ∈ Lα+1
α ∩ L1

Re

∫
if(ξ)Θm(f)(ξ)dξ

=
1

(2π)d
Re

∫
if(ξ)dξ

∫
Θ̂m(f)(η)eiξ·ηdη

=
1

(2π)d
Re

∫
if(ξ)dξ

∫
θ(
|η|
m

)f̂(η)e−iξ·ηdη

=
1

(2π)d
Re

∫
iθ(

|η|
m

)f̂(η)dη

∫
f(ξ)e−iξ·ηdξ

=
1

(2π)d
Re

∫
iθ(

|η|
m

)f̂(η)f̂(η)dη
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=
1

(2π)d
Re

∫
iθ(

|η|
m

)|f̂(η)|2dη

=0.

For the general case f ∈ Lα+1
α , we can take smooth cut-off function χn, which is

supported on [−n−1, n+1] and equals to 1 on [−n, n]. Since fn := fχn ∈ L
α+1

α ∩L1,

it follows from the above result that Re
∫
ifn(ξ)Θm(fn)(ξ)dξ, which yields (2.3.43)

due to (2.3.42) and the fact that fn → f in L
α+1

α . �

We start to prove Itô’s formula for |Xm(t)|α+1
Lα+1 . We first notice that Theorem

2.1 in [57] can not apply directly here, since we do not have X ∈ Lα+1(0, t;W 1,α+1)

and |X|α−1X ∈ Lα+1(0, t;Lα+1) from Theorem 2.2.3. However, in the approxi-

mating equation (2.3.44) we have by (2.3.42) and (2.3.43) for the nonlinearity that

Θm(g(Xm)) ∈ Lα+1 and Re
∫
ig(Xm)Θm(g(Xm))dξ = 0, which allow to use the tech-

nique in [57] to obtain the Ito formula for |X(t)|α+1
Lα+1 .

We adapt the same notation as in [57] and set hε = h∗ψε for any locally integrable

function h mollified by ψε, where ψε = ε−dψ(x
ε
) and ψ ∈ C∞

c (Rd) is a real-valued

nonnegative function with unit integral. Recall that |hε|Lp ≤ |h|Lp and if h ∈ Lp,

then hε → h in Lp as ε → 0, p > 1, which will be used in the later estimates. We

also need the following lemma, which is a modification of Corollary 3.2 in [57], to

justify some limit procedure later.

Lemma 2.3.10. Let (E,E ,M) be a measure space, un, u ∈ Lr(E), vn, v ∈ Ls(E)

with 1
r

+ 1
s

= 1
p
, r, s ∈ (1,∞). Assume that un → u, vn → v in measure, and

|un|Lr → |u|Lr , |vn|Ls → |v|Ls. Then

unvn → uv, in Lp.

Proof. From the above assumptions it follows that {un}, {vn} are weakly com-

pact in Lr and Ls respectively. Hence, un → u, vn → v weakly in Lr and Ls respec-

tively. Since Lr and Ls are uniformly convex and |un|Lr → |u|Lr , |vn|Ls → |v|Ls , we

have

un → u in Lr, vn → v in Ls,

and the later clearly implies the desired conclusion. �

Lemma 2.3.11. Let (Xm, (τn)n∈N, τ
∗(x)) be the maximal strong solution of (2.3.44)

with τn, n ∈ N, independent of m, and α satisfies (2.2.15). Set p = α+ 1. We have
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P-a.s. for t < τ ∗(x)

|Xm(t)|pLp =|x|pLp − p

∫ t

0

Re

∫
i∇g(Xm)(s)∇Xm(s)dξds

+
1

2
p(p− 2)

N∑
j=1

∫ t

0

∫
(Reφj)

2|Xm(s)|pdξds (2.3.77)

+ p

N∑
j=1

∫ t

0

∫
Reφj|Xm(s)|pdξdβj(s),

where g(Xm) = |Xm|p−2Xm and φj = µjej, 1 ≤ j ≤ N .

Proof. From (2.3.44) we have that P-a.s. for t < τ ∗(x)

Xm(t) = x+

∫ t

0

[−i∆Xm(s)− µXm(s)− λigm(s)] ds+

∫ t

0

Xm(s)φjdβj(s),

(2.3.78)

where gm(s) = Θm(g(Xm(s))), the above equation is taken in the H−1 sense and we

have used the summation convention over repeated indices for simplicity.

Taking convolution of both sides of the (2.3.78) with the mollifies ψε, we claim

that there exists Ω̃ of full probability, such that on Ω̃ for every ξ ∈ Rd

(Xm(t))ε(ξ) = xε(ξ) +

∫ t

0

[−i∆(Xm(s))ε(ξ)− (µXm(s))ε(ξ)− λi(gm(s))ε(ξ)] ds

+

∫ t

0

(Xm(s)φj)
ε(ξ)dβj(s), t < τ ∗(x). (2.3.79)

Indeed, fix ξ ∈ Rd, since ∆Xm ∈ C([0, t];H−1) for t < τ ∗(x),
∫ t

0
−i∆Xm(s)ds

is Bochner integrable in H−1. Moreover, v → H1〈ψε(ξ − ·), v(·)〉H−1 is a continues

linear functional in H−1, hence(
ψε ∗

∫ t

0

−i∆Xm(s)ds

)
(ξ) =〈ψε(ξ − ·),

∫ t

0

−i∆Xm(s)ds〉

=

∫ t

0

〈ψε(ξ − ·),−i∆Xm(s)〉ds

=

∫ t

0

−i (ψε ∗∆Xm(s)) (ξ)ds

=

∫ t

0

−i(∆Xm(s))ε(ξ)ds

=

∫ t

0

−i∆(Xm(s))ε(ξ)ds
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where 〈 , 〉 is the dual pair between H1 and H−1. Similar arguments can also be

applied to the remaining two drift terms. Moreover, for the last stochastic term,

since
∫ t

0
Xm(s)φjdβj(s) is an H1-valued stochastic integral and v → 〈ψε(ξ−·), v(·)〉2

is a continues linear functional in L2, by Lemma 2.4.1 in [73](
ψε ∗

∫ t

0

Xm(s)φjdβj(s)

)
(ξ) =〈ψε(ξ − ·),

∫ t

0

Xm(s)φjdβj(s)〉2

=

∫ t

0

〈ψε(ξ − ·), Xm(s)φj〉2dβj(s)

=

∫ t

0

(Xm(s)φj)
ε(ξ)dβj(s).

Therefore, for any fix ξ ∈ Rd, there exists Ωξ ∈ F with P(Ωξ) = 1, such that (2.3.79)

holds on Ωξ.

In order to find a uniform Ω̃ independent of ξ, we need in (2.3.79) the continuity

with respect to ξ. Let us check this for the stochastic integral term in (2.3.79). Set

σn,l = inf{s ∈ [0, τn] : |Xm(s)|H1 > l} ∧ τn. Since ξ → (Xm(s)φj)
ε(ξ) is continuous

and

E
∣∣∣∣ N∑

j=1

∫ t∧σn,l

0

(Xm(s)φj)
ε(ξ)dβj(s)

∣∣∣∣2

=E
∫ t∧σn,l

0

N∑
j=1

|(Xm(s)φj)
ε(ξ)|2ds

≤E
∫ t∧σn,l

0

(
N∑

j=1

|φj|2L∞)|ψε|22|Xm(s)|22ds

≤(
N∑

j=1

|φj|2L∞)|ψε|22l2t <∞,

it follows that ξ →
∫ t

0
(Xm(s)φj)

ε(ξ)dβj(s) is continuous on {t ≤ σn,l}. But sup
t∈[0,τn]

|Xm(t)|H1 <

∞, P-a.s, for P-a.e ω ∈ Ω there exists l(ω) ∈ N such that σn,l(ω) = τn(ω) for all

l ≥ l(ω). Then ⋃
l∈N

{t ≤ σn,l} = {t ≤ τn}, (2.3.80)

implying that ξ →
∫ t

0
(Xm(s)φj)

ε(ξ)dβj(s) is continuous on {t ≤ τn} hence on
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{t ≤ τ ∗(x)}. One can also check the continuity in ξ for the drift terms in (2.3.79).

Therefore, we conclude the claim.

Now, we set for simplicity Xε
m(t) = (Xm(t))ε(ξ) and correspondingly for the

other arguments. Then by Itô’s formula we have P-a.s.

|Xε
m(t)|p =|xε|p − p

∫ t

0

Re(ig(Xε
m)(s)∆Xε

m(s))ds

− p

∫ t

0

Re(g(Xε
m)(s)(µXm)ε(s))ds

− λp

∫ t

0

Re(ig(Xε
m)(s)gε

m(s))ds

+
p

2

∫ t

0

|Xε
m(s)|p−2|(Xmφj)

ε(s)|2ds

+
1

2
p(p− 2)

∫ t

0

|Xε
m(s)|p−4[Re(Xε

m(s)(Xmφj)
ε(s))]2ds

+ p

∫ t

0

Re(g(Xε
m)(s)(Xmφj)

ε(s))dβj(s), t < τ ∗(x), (2.3.81)

where g(Xε
m) = |Xε

m|p−2Xε
m.

We next integrate this equality over Rd and the integrability property (2.3.45)

allows us to interchange integrals by deterministic and stochastic Fubini’s theorems.

For example, for the second term in the right hand side of (2.3.81), notice that

∆Xε
m ∈ C([0, t];H1) and by Sobolev’s imbedding theorem

‖∆Xε
m‖Lq(0,t;Lα+1) ≤ Dt

1
q ‖∆Xε

m‖L∞(0,t;H1).

Hence ∫ t

0

∫
|Re(ig(Xε

m)∆Xε
m)|dξds

≤‖g(Xε
m)‖

Lq′ (0,t;L
α+1

α )
‖∆Xε

m‖Lq(0,t;Lα+1)

≤Dtθ+
1
q ‖Xε

m‖α
Lq(0,t;Lα+1)‖∆Xε

m‖L∞(0,t;H1) <∞

with θ = 1− 2
q
> 0, implying that

− p

∫ ∫ t

0

Re(ig(Xε
m)∆Xε

m)dξds

=− p

∫ t

0

∫
Re(ig(Xε

m)∆Xε
m)dξds
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=− p

∫ t

0

Re

∫
i∇g(Xε

m)∇Xε
mdξds. (2.3.82)

For the fourth term concerning gε
m in the right hand side of (2.3.81), by (2.3.42)

and Sobolev’s imbedding theorem

λp

∫ t

0

∫ ∣∣Re(ig(Xε
m)(s)gε

m(s))
∣∣ dξds

≤C
∫ t

0

|g(Xε
m)(s)|Lp′ |gε

m(s)|Lpds

≤C
∫ t

0

|Xm(s)|p−1
Lp |g(Xm)(s)|Lp′ds

≤C
∫ t

0

|Xm(s)|2(p−1)
Lp ds

≤Ct sup
s∈[0,t]

|Xm(s)|2(p−1)

H1 <∞ (2.3.83)

with C depending on m, hence

− λp

∫ ∫ t

0

Re(ig(Xε
m)(s)gε

m(s))dsdξ = −λp
∫ t

0

Re

∫
ig(Xε

m)(s)gε
m(s)dξds.

(2.3.84)

Moreover, for the last stochastic integrals in the right hand side of (2.3.81), since

|φj|L∞ <∞, 1 ≤ j ≤ N∫ t

0

(∫
|g(Xε

m)(s)||(Xmφj)
ε(s)|dξ

)2

ds

≤C
∫ t

0

[
|g(Xε

m)(s)|Lp′ |(Xmφj)
ε(s)|Lp

]2
ds

≤C
∫ t

0

|Xm(s)|2p
Lpds

≤Ct sup
s∈[0,t]

|Xm(s)|2p
H1 <∞, (2.3.85)

thus by stochastic Fubini’s theorem, it follows that

p

∫ ∫ t

0

Re(g(Xε
m)(s)(Xmφj)

ε(s))dβj(s)dξ

=p

∫ t

0

Re

∫
g(Xε

m)(s)(Xmφj)
ε(s)dξdβj(s). (2.3.86)

The remaining integrals in (2.3.81) can be treated similarly. Therefore, we obtain
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that

|Xε
m(t)|pLp =|xε|pLp − p

∫ t

0

Re

∫
i∇g(Xε

m)(s)∇Xε
m(s)dξds

− p

∫ t

0

Re

∫
(µXm)ε(s)g(Xε

m)(s)dξds

− λp

∫ t

0

Re

∫
ig(Xε

m)(s)gε
m(s)dξds

+
p

2

∫ t

0

∫
|Xε

m(s)|p−2|(Xmφj)
ε(s)|2dξds

+
1

2
p(p− 2)

∫ t

0

∫
|Xε

m(s)|p−4[Re(Xε
m(s)(Xmφj)

ε(s))]2dξds

+ p

∫ t

0

Re

∫
g(Xε

m)(s)(Xmφj)
ε(s)dξdβj(s)

=|xε|pLp +K1 +K2 +K3 +K4 +K5 +K6. (2.3.87)

We want to pass to the limit ε → 0 in (2.3.87). Below we mainly show the

asymptotics for K1, K3 and K6.

First, we notice that as ε→ 0+

Xε
m → Xm, in Lq(0, t;W 1,p), (2.3.88)

and in particular,

Xε
m → Xm, ∇Xε

m → ∇Xm in measure dt× dξ. (2.3.89)

Indeed, (2.3.88) follows from Lebesgue’s dominated theorem, due to the fact that

Xε
m(s) → Xm(s), in W 1,p, dt− a.e. s ∈ [0, t],

and by (2.3.45)

‖Xε
m(s)‖W 1,p ≤ ‖Xm(s)‖W 1,p ∈ Lq(0, t), dt− a.e. s ∈ [0, t].

Now, in order to take the limit in K1, by Lemma 2.3.10 and (2.3.89) we need

only to show as ε→ 0

‖∇Xε
m‖Lq(0,t;Lp) → ‖∇Xm‖Lq(0,t;Lp), (2.3.90)
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and

‖∇g(Xε
m)‖Lq′ (0,t;Lp′ ) → ‖∇g(Xm)‖Lq′ (0,t;Lp′ ). (2.3.91)

(2.3.90) follows directly from (2.3.88). For (2.3.91), direct calculations show that

∇g(Xε
m) =

p− 2

2
|Xε

m|p−4(Xε
m)2∇Xε

m +
p

2
|Xε

m|p−2∇Xε
m. (2.3.92)

To treat the first term in the right hand side above, observe that for dt−a.e s ∈ [0, t]

as ε→ 0

||Xε
m|p−4(s)(Xε

m)2(s)|
L

p
p−2

= ||Xε
m|p−2(s)|

L
p

p−2
= |Xε

m(s)|p−2
Lp

→|Xm(s)|p−2
Lp = ||Xm|p−4(s)(Xm)2(s)|

L
p

p−2
,

and

|∇Xε
m(s)|Lp → |∇Xm(s)|Lp ,

thus by Lemma 2.3.10 and (2.3.89), as ε→ 0

p− 2

2
|Xε

m|p−4(s)(Xε
m)2(s)∇Xε

m(s) → p− 2

2
|Xm|p−4(s)(Xm)2(s)∇Xm(s), in Lp′ .

Similar results hold also for the second term in the right hand side of (2.3.92). Thus

for dt− a.e s ∈ [0, t] as ε→ 0

∇g(Xε
m)(s) → ∇g(Xm)(s), in Lp′ . (2.3.93)

Moreover

|∇g(Xε
m)(s)|Lp′ ≤ (p− 1)|Xm(s)|p−2

Lp |∇Xm(s)|Lp ∈ Lq′(0, t). (2.3.94)

Therefore, it follows from (2.3.93), (2.3.94) and Lebesgue’s convergence theorem

that (2.3.91) holds, which implies that for K1

lim
ε→0

−p
∫ t

0

Re

∫
i∇g(Xε

m)(s)∇Xε
m(s)dξds

=− p

∫ t

0

Re

∫
i∇g(Xm)(s)∇Xm(s)dξds.

For the term K3 concerning gε
m, first observe that as ε→ 0

|gε
m(s)− gm(s)|Lp → 0, |g(Xε

m)(s)− g(Xm)(s)|Lp′ → 0, s ∈ [0, t],
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thus as ε→ 0

Re

∫
ig(Xε

m)(s)gε
m(s)dξ → Re

∫
ig(Xm)(s)gm(s)dξ, s ∈ [0, t],

Moreover, as in estimate (2.3.83)

∣∣Re∫ ig(Xε
m)(s)gε

m(s)dξ
∣∣ ≤ C sup

s∈[0,t]

|Xm(s)|2(p−1)

H1 <∞.

Therefore, it follows from Lebesgue’s dominated convergence theorem and (2.3.43)

that

lim
ε→0

K3 = lim
ε→0

−λp
∫ t

0

Re

∫
ig(Xm

ε
)(s)gε

m(s)dξds

=− λp

∫ t

0

Re

∫
ig(Xm)(s)gm(s)dξds

=0.

Finally, as regards the last stochastic term K6, we will first prove that for σn,l

defined above, as ε→ 0

E
∫ t∧σn,l

0

Re

[∫
g(Xε

m)(s)(Xmφj)
ε(s)dξ −

∫
g(Xm)(s)(Xmφj)(s)dξ

]2

ds→ 0,

(2.3.95)

In fact, using similar arguments as above, we have

Re

∫
g(Xε

m)(s)(Xmφj)
ε(s)dξ −Re

∫
g(Xm)(s)(Xmφj)(s)dξ → 0, s ∈ [0, t ∧ σn,l].

(2.3.96)

Furthermore, as in the estimate (2.3.85)

∣∣ ∫ g(Xε
m)(s)(Xmφj)

ε(s)dξ
∣∣2 ≤ C sup

s∈[0,t∧σn,l]

|Xm(s)|2p
H1 < Cl2p, s ∈ [0, t ∧ σn,l].

(2.3.97)

Therefore, (2.3.95) follows from the Lebesgue dominated convergence theorem, hence

p

∫ t

0

Re

∫
g(Xε

m)(s)(Xmφj)
ε(s)dξdβj(s) →p

∫ t

0

∫
Reφj|Xm|p(s)dξdβj(s) (2.3.98)

in P-measure on {t ≤ σn,l} as ε → 0, which implies by (2.3.80) that (2.3.98) holds

on {t ≤ τn}. Therefore, as τn → τ ∗(x) P-a.s, we conclude that (2.3.98) holds P-a.s.

for t < τ ∗(x).

Similar results also hold for the remaining integrals in (2.3.87). Therefore, we
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may pass to the limit ε → 0 in (2.3.87) and observe that K2 and K4 are canceled

after taking the limit. We finally conclude the desired formula (2.3.77) . �

We next prove the Ito formula for |∇Xm|22.

Lemma 2.3.12. Assume the conditions in Lemma 2.3.11 to hold. We have P-a.s.

for t < τ ∗(x)

|∇Xm(t)|22 =|∇x|22 + 2

∫ t

0

Re〈−∇(µXm)(s),∇Xm(s)〉2ds+
N∑

j=1

∫ t

0

|∇(Xm(s)φj)|22ds

− 2λ

∫ t

0

Re

∫
i∇gm(s)∇Xm(s)dξds

+ 2
N∑

j=1

∫ t

0

Re〈∇(φjXm(s)),∇Xm(s)〉2dβj(s). (2.3.99)

Proof. We follow the ideas as in the proof of Theorem 1.3.1 in Section 1.3.1

to derive (2.3.99). Let {fk|k ∈ N} ⊂ H2 be an orthonormal basis of L2, set Jε =

(I − ε∆)−1 and hε := Jε(h) ∈ H1 for any h ∈ H−1. Then we have from equation

(2.3.44) that P-a.s. for t ∈ (0, τ ∗(x))

idXm,ε = ∆Xm,εdt− i(µXm)εdt+ λgm,εdt+ i(Xmφj)εdβj,

Xm,ε(0) = xε,
(2.3.100)

where gm,ε = [Θm(g(Xm))]ε and we used the summation convention.

Noticing that ∂lfk ∈ H1 for each fk, 1 ≤ l ≤ d, k ∈ N, it follows from (2.3.100)

and Fubini’s theorem that P-a.s. for t ∈ (0, τ ∗(x))

〈Xm,ε(t), ∂lfk〉2

=〈xε, ∂lfk〉2 +

∫ t

0

〈−i∆Xm,ε(s), ∂lfk〉2ds+

∫ t

0

〈−(µXm)ε(s), ∂lfk〉2ds

+

∫ t

0

〈−λigm,ε(s), ∂lfk〉2ds+

∫ t

0

〈(Xm(s)φj)ε, ∂lfk〉2dβj.

Applying Itô’s product rule and integrating by parts, we deduce that

|〈Xm,ε(t), ∂lfk〉2|2

=|〈xε, ∂lfk〉2|2

+ 2Re

∫ t

0

〈Xm,ε(s), ∂lfk〉2d〈Xm,ε(s), ∂lfk〉2 + 〈〈Xm,ε(t), ∂lfk〉2, 〈Xm,ε(t), ∂lfk〉2〉



2.3. Global well-posedness 91

=|〈∂lxε, fk〉2|2

+ 2Re

∫ t

0

〈∂lXm,ε(s), fk〉2〈−i∂l∆Xm,ε(s), fk〉2ds

+ 2Re

∫ t

0

〈∂lXm,ε(s), fk〉2〈−∂l(µXm)ε(s), fk〉2ds

+ 2Re

∫ t

0

〈∂lXm,ε(s), fk〉2〈−λi∂lgm,ε(s), fk〉2ds

+ 2Re

∫ t

0

〈∂lXm,ε(s), fk〉2〈∂l(Xm(s)φj)ε, fk〉2dβj(s)

+

∫ t

0

|〈∂l(Xm(s)φj)ε, fk〉2|2ds, t < τ ∗(x), P− a.s.

Notice that ∆Xm,ε and gm,ε are in H1, thus the above integrals make sense. This is

the reason that we introduce the operator Jε.

Now summing over k ∈ N and interchanging the infinite sum with integrals

(which can be justified as in the proof of Theorem 1.1.4), we obtain P-a.s. for all

t ∈ (0, τ ∗(x))

|∂lXm,ε(t)|22

=
∞∑

k=1

|〈Xm,ε(t), ∂lfk〉2|2

=|∂lxε|22 + 2

∫ t

0

Re〈i∆Xm,ε(s), ∂
2
l Xm,ε(s)〉2ds

+ 2

∫ t

0

Re〈−∂l(µXm)ε(s), ∂lXm,ε(s)〉2ds+

∫ t

0

|∂l(Xm(s)φj)ε|22ds

− 2λ

∫ t

0

Re〈i∂lgm,ε(s), ∂lXm,ε(s)〉2ds+ 2

∫ t

0

Re〈∂l(Xm(s)φj)ε, ∂lXm,ε(s)〉2dβj(s).

Finally, summing over l : 1 ≤ l ≤ d, and using (1.1.15), (1.1.16) for k = −1, 0, 1,

we can pass to the limit ε → 0 in the above equality and conclude the evolution

formula (2.3.99). �

Proof of (2.3.47). By the rescaling transformation Xm = eWym, it suffices to

prove that P-a.s.

ym → y, in L∞(0, t;H1) ∩ Lq(0, t;W 1,α+1), t < τ ∗(x),

where q = 4(α+1)
d(α−1)

.

From (2.3.44) and Theorem 2.1.3 with the nonlinear term |X|α−1X replaced
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by Θm[g(Xm)], it follows that (ym, (τn)n∈N, τ
∗(x)) with τn independent of m is the

maximal strong solution of the random equation below

dym = −ie−W ∆(eWym)dt− (µ+ µ̃)ymdt− λie−W Θm(g(eWym))dt,

ym(0) = x,
(2.3.101)

or equivalently

ym = U(t, 0)x− λi

∫ t

0

U(t, s)e−W (s)Θm(g(eW (s)ym(s)))ds. (2.3.102)

By (2.3.45), (2.2.17) and ‖W‖L∞(0,T ;W 1,∞) <∞, we have P-a.s. for t < τ ∗(x)

R̃(t) := sup
m≥1

(‖ym‖C([0,t];H1) + ‖ym‖Lq(0,t;W 1,α+1))

+ (‖y‖C([0,t];H1) + ‖y‖Lq(0,t;W 1,α+1)) <∞. (2.3.103)

Moreover, taking into account (2.2.18) and (2.3.102), we have

ym − y = −λi
∫ t

0

U(t, s)e−W (s)
[
Θm(g(eW (s)ym(s)))− g(eW (s)y(s))

]
ds. (2.3.104)

Let us first show that there exists t small enough and independent of m, such

that

‖ym − y‖L∞(0,t;L2) + ‖ym − y‖Lq(0,t;Lα+1) → 0, as m→∞. (2.3.105)

and particularly

ym → y in measure dt× dξ. (2.3.106)

Indeed, applying Strichartz estimate (1.2.20) to (2.3.104) we have

‖ym − y‖L∞(0,t;L2) + ‖ym − y‖Lq(0,t;Lα+1)

≤CT‖e−W‖L∞(0,T ;L∞)‖Θm(g(eWym))− g(eWy)‖
Lq′ (0,t;L

α+1
α )

≤C(T )‖Θm[g(eWym)− g(eWy)]‖
Lq′ (0,t;L

α+1
α )

+ C(T )‖(Θm − 1)g(eWy)‖
Lq′ (0,t;L

α+1
α )
, (2.3.107)

where C(T ) depends on CT and ‖W‖L∞(0,T ;L∞).
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It follows from (2.3.40) and (2.2.34) that

‖Θm[g(eWym)− g(eWy)]‖
Lq′ (0,t;L

α+1
α )

≤ C(T )tθ‖ym − y‖Lq(0,t;Lα+1), (2.3.108)

where C(T ) depends on CT , ‖W‖L∞(0,T ;L∞) and R̃(t∗) with any fixed t∗ ∈ (t, τ ∗(x)),

and θ = 1− 2
q
> 0. Choosing t small enough, plugging (2.3.108) into (2.3.107) and

then using (2.3.41) we consequently obtain (2.3.105).

We next prove that for t sufficiently small and independent of m

‖ym − y‖L∞(0,t;H1) + ‖ym − y‖Lq(0,t;W 1,α+1) → 0, as m→∞. (2.3.109)

Indeed, we notice from (2.2.10) that

∇(ym − y) =

∫ t

0

U(t, s)

{
i(Dj∇b̃j +∇b̃jDj +∇c̃)(ym − y)

− λi∇
[
e−W

(
Θm(g(eWym))− g(eWy)

)]}
ds. (2.3.110)

Using Proposition 2.3(a) in [59], applying the estimate (1.2.21) to (2.3.104), and

then using(2.3.107) and (2.3.108), we derive that

‖i(Dj∇b̃j +∇b̃jDj +∇c̃)(ym − y)‖ eX′
[0,t]

≤κT‖ym − y‖ eX[0,t]

≤κTCT‖e−W
(
Θm(g(eWym))− g(eWy)

)
‖

Lq′ (0,t;L
α+1

α )

≤C(T )tθ‖ym − y‖Lq(0,t;Lα+1) + C(T )‖(Θm − 1)g(eWy)‖
Lq′ (0,t;L

α+1
α )
, (2.3.111)

where X̃[0,t] is the local smoothing space defined in [59], C(T ) depends on κT , CT ,

‖W‖L∞(0,T ;L∞) and R̃(t∗) <∞, P-a.s, and θ = 1− 2
q
> 0.

Thus, applying the estimate (1.2.21) to (2.3.110), using (2.3.111) and similar

estimates as in (2.3.107), we have for m ≥ 1

‖∇ym −∇y‖L∞(0,t;L2) + ‖∇ym −∇y‖Lq(0,t;Lα+1)

≤2CT‖i(Dj∇b̃j +∇b̃jDj +∇c̃)(ym − y)‖ eX′
[0,t]

+ 2CT‖λi∇
[
e−W

(
Θm(g(eWym))− g(eWy)

)]
‖

Lq′ (0,t;L
α+1

α )

≤C(T )tθ‖ym − y‖Lq(0,t;Lα+1) + C(T )‖∇g(eWym)−∇g(eWy)‖
Lq′ (0,t;L

α+1
α )

+ C(T )‖(Θm − 1)g(eWy)‖
Lq′ (0,t;L

α+1
α )
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+ C(T )‖(Θm − 1)∇g(eWy)‖
Lq′ (0,t;L

α+1
α )
, (2.3.112)

where C(T ) is independent of t and m.

Let us estimate the second term in the right hand side of (2.3.112). Since

∇g(y) = F1(y)∇y + F2(y)∇y

with F1(y) = α+1
2
|y|α−1 and F2(y) = α−1

2
|y|α−3y2, we have

∇g(eWym)−∇g(eWy)

=F1(e
Wym)[∇(eWym)−∇(eWy)] + [F1(e

Wym)− F1(e
Wy)]∇(eWy)

+ F2(e
Wym)[∇(eWym)−∇(eWy)] + [F2(e

Wym)− F2(e
Wy)]∇(eWy)

=I1 + I2 + I3 + I4. (2.3.113)

Since |I1|+ |I3| ≤ α|eWym|α−1|∇(eWym − eWy)|, (2.2.31) yields

‖I1 + I3‖
Lq′ (0,t;L

α+1
α )

≤ C(T )tθ‖ym − y‖Lq(0,t;W 1,α+1) (2.3.114)

with C(T ) depending on R̃(t∗) and ‖eW‖L∞(0,T ;W 1,∞).

Thus taking (2.3.113) and (2.3.114) into (2.3.112), together with (2.3.107), we

derive that

‖ym − y‖L∞(0,t;H1) + ‖ym − y‖Lq(0,t;W 1,α+1)

≤C(T )tθ‖ym − y‖Lq(0,t;W 1,α+1) + C(T )‖(Θm − 1)g(eWy)‖
Lq′ (0,t;W 1, α+1

α )

+ C(T )‖I2 + I4‖
Lq′ (0,t;L

α+1
α )

(2.3.115)

Therefore, choosing t small enough and independent of m, taking the first term

to the left and then applying (2.3.41) to the second term in the right hand side of

(2.3.115), we deduce that (2.3.109) holds once we prove that

‖I2 + I4‖
Lq′ (0,t;L

α+1
α )

→ 0, as m→∞. (2.3.116)

To prove (2.3.116), by (2.3.105) we have for dt-a.e. s ∈ [0, t], as m→∞

eW (s)ym(s) → eW (s)y(s), in Lα+1,
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which yields that

|F1(e
W (s)ym(s))|

L
α+1
α−1

=
α+ 1

2
|eW (s)ym(s)|α−1

Lα+1

→α+ 1

2
|eW (s)y(s)|α−1

Lα+1 = |F1(e
W (s)y(s))|

L
α+1
α−1

.

Then by Lemma 2.3.10 and (2.3.106), for dt-a.e. s ∈ [0, t]

F1(e
W (s)ym(s)) → F1(e

W (s)y(s)), in L
α+1
α−1 ,

hence

F1(e
W (s)ym(s))∇(eW (s)y(s)) → F1(e

W (s)y(s))∇(eW (s)y(s)), in L
α+1

α .

Moreover, by (2.2.31), for dt-a.e. s ∈ [0, t]

|F1(e
W (s)ym(s))∇(eW (s)y(s))− F1(e

W (s)y(s))∇(eW (s)y(s))|
L

α+1
α

≤C(T )(|ym(s)|α−1
Lα+1 + |y(s)|α−1

Lα+1)‖y(s)‖W 1,α+1

≤C(T )Dα−1(‖ym‖α−1
L∞(0,t;H1) + ‖y‖α−1

L∞(0,t;H1))‖y(s)‖W 1,α+1

≤C(T )Dα−1R̃(t∗)‖y(s)‖W 1,α+1 ∈ Lq′(0, t),

where C(T ) depends on ‖eW‖L∞(0,T ;W 1,∞) < ∞, P-a.s. Therefore, from Lebesgue’s

dominated convergence theorem it follows that

‖I2‖
Lq′ (0,t;L

α+1
α )

→ 0.

The proof for I4 is similar and consequently we complete the proof of (2.3.47)

for t sufficiently small and independent of m. Reiterating this procedure with the

estimates as above we conclude (2.3.47) for any t < τ ∗(x). �

Proof of Lemma 2.3.5. As in the proof of Theorem 1.3.1, we have P-a.s.

|X(t)|22 = |x|22 + 2
N∑

j=1

∫ t

0

Reµj < X(s), X(s)ej >2 dβj(s), t < τ ∗(x), (2.3.117)

where τ ∗(x) is as in Theorem 2.2.3.

Then, applying Itô’s formula to |X(t)|p2 shows

|X(t)|p2 =|x|p2 + p

∫ t

0

|X(s)|p−2
2

N∑
j=1

Reµj〈X(s), X(s)ej〉2dβj(s)
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+
1

2
p(p− 2)

∫ t

0

|X(s)|p−4
2

N∑
j=1

(Reµj)
2〈X(s), X(s)ej〉22ds, t < τ ∗(x).

Hence, by Burkholder-Davis-Gundy’s inequality and Lemma 2.3.4 with Y re-

placed by |X|2p
2 , we derive that for every τn, n ∈ N

E sup
s∈[0,t∧τn]

|X(s)|p2 ≤|x|
p
2 + CE

[∫ t∧τn

0

p2|X(s)|2p−4
2

N∑
j=1

(Reµj)
2|〈X(s), X(s)ej〉2|2ds

] 1
2

+
1

2
p(p− 2)

N∑
j=1

(Reµj)
2 E
∫ t∧τn

0

|X(s)|p−4
2 |〈X(s), X(s)ej〉2|2ds

≤|x|p2 +
√

2|µ|∞pCE
[∫ t∧τn

0

|X(s)|2p
2 ds

] 1
2

+ 2p(p− 2)|µ|∞E
∫ t∧τn

0

|X(s)|p2ds

≤|x|p2 + ε
√

2|µ|∞pCE sup
s∈[0,t∧τn]

|X(s)|p2

+ Cε

√
2|µ|∞pC

∫ t

0

E sup
r∈[0,s∧τn]

|X(r)|p2ds

+ 2p(p− 2)|µ|∞
∫ t

0

E sup
r∈[0,s∧τn]

|X(r)|p2ds.

Choosing ε small enough and applying Gronwall’s inequality, we have that

E

[
sup

t∈[0,τn]

|X(t)|p2

]
≤ C̃(T ) <∞,

which yields Lemma 2.3.5 by taking n→∞ and applying Fatou’s lemma. �

Remark 2.3.13. Similarly to Remark 1.3.6, the results in this chapter still hold

under Assumption (H2) and Assumption (H̃2) below

(H̃2)

∞∑
k=1

|µk|2(|ek|2L∞ + |∇ek|2L∞) <∞ (2.3.118)
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and for any multi-index γ, |γ| ≥ 0

∞∑
k=1

|µk||∂γek|L∞ <∞. (2.3.119)

2.4 Notes

In the subcritical case, the global well-posedness of NLS goes back to the papers by

J. Ginibre and G. Velo [35, 36, 37]. The fixed point arguments in Theorem 2.2.5

benefit from [46] and [58]. We also refer the reader to [39, 22] for a compactness

argument. This method allows to obtain the existence result in general domains

in Rd, where the Strichartz estimates do not hold, while it can not give us the

uniqueness result.

In the stochastic case, the global existence and uniqueness were first obtained

by A. de Bouard and A. Debussche [12] in the conservative case. The proofs there

follow the direct approach as in [10], which leads to the restrictive condition on

α : α < 1 + 2
d−1

if d ≥ 6.

In the critical case, the local well-posedness of NLS was studied in [19], which also

included the global well-posedness for small initial data. The extension to general

Hs space can be found in [20]. See also Remark 2.2.10 for the smoothness effect of

initial data on the well-posedness results.

For the global well-posedness of NLS with large initial data in the critical case,

two aspects are extensively studied.

One aspect is concerned with the focusing mass-critical case, i.e λ = 1, α = 1+ 4
d
.

M. I. Weinstein [94] found a threshold Q, arising from the optimal constant in

Gagliardo-Nirenberg’s inequality, and proved the global well-posedness for initial

data x with |x|2 < |Q|2. This work inspired numerous works focusing on the blowup

phenomena in the case when |x|2 ≥ |Q|2 (see Section 3.4 in the next chapter for

more details).

Another aspect is concerned with the energy-critical case α = 1 + 4
d−2

(d ≥ 3).

As in the L2-critical case in Notes 1.4 it was conjectured that, in the defocusing case

(λ = −1) NLS is globally well posed and solutions obey global spacetime bounds

in (2.2.36), in particular, scattering holds. While in the focusing case (λ = 1), the

same results hold for initial data less than a threshold which is characterized by

the ground state. The first major step was obtained by J. Bourgain [17] for the

defocusing case (λ = −1) in three and four dimensions with radial data. The case

for higher dimensions with radial data was proved by T. Tao [85]. For the defocusing

non-radial case, see [23] in three dimension and [79, 92, 93] in higher dimensions.
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In the focusing (λ = 1) radial data case, the existence of minimal blowup solutions

was proved by C. E. Kenig and F. Merle [49] in dimensions 3, 4, 5, based on the

concentration compactness arguments. For all dimensions see [54]. For non-radial

data in dimensions five and higher see [52]. We also refer the interested reader to

[53] for comprehensive reviews on this conjecture.



Chapter 3

The noise effects on blowup in the

non-conservative case

This chapter is devoted to the study of noise effects on the blow-up phenomena in the

non-conservative focusing mass-critical/supercritical cases. We first introduce some

preliminaries in Section 3.1. Then in Section 3.2 we prove the non-explosion results

in the non-conservative case, and some technical proofs are included in Section 3.3.

Finally, some reviews of relevant results are contained in Section 3.4.

3.1 Preliminaries.

Consider the stochastic nonlinear Schrödinger equation

idX(t, ξ) = ∆X(t, ξ)dt+ λ|X(t, ξ)|α−1X(t, ξ)dt

− iµ(ξ)X(t, ξ)dt+ iX(t, ξ)dW (t, ξ), t ∈ (0, T ), ξ ∈ Rd, (3.1.1)

X(0) = x ∈ H1.

In this chapter, we will study the non-conservative focusing mass-critical/supercritical

case: λ = 1 and α satifies{
α ∈ [1 + 4

d
,∞), if d = 1, 2;

α ∈ [1 + 4
d
, 1 + 4

d−2
), d ≥ 3,

(3.1.2)

and W (t, ξ) is defined as in (1.1.2), i.e.,

W (t, ξ) =
N∑

j=1

µjej(ξ)βj(t), t ≥ 0, ξ ∈ Rd, (3.1.3)
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where we assume N <∞, βj(t), 1 ≤ j ≤ N , are independent real Brownian motions

on a probability space (Ω,F ,P) with natural filtration (Ft)t≥0.

Moreover, ”non-conservative” means that

∃j0 : 1 ≤ j0 ≤ N, such that Re(µj0) 6= 0. (3.1.4)

We may assume that Reµ1 6= 0 without loss of generality.

(Note that, in the non-conservative case, the mass |X(t)|22 is a general martingale

depending on time, on longer conserved.)

The real-valued functions ej, 1 ≤ j ≤ N , in the colored Brownian motion W are

under the following assumption.

(H3) ej = fj + cj, 1 ≤ j ≤ N , where cj are real constants and fj are real-valued

functions, such that fj ∈ C∞
b and

lim
|ξ|→∞

ζ(ξ)
∑

1≤|γ|≤3

|∂γfj(ξ)| = 0,

where γ is multi-index and ζ is as in Assumption (H1) in Chapter 1.

In the previous two chapters, we have applied the rescaling transformation (1.1.5)

to (3.1.1) and obtained the random equation

∂y(t, ξ)

∂t
= A(t)y(t, ξ)− ie(α−1)ReW (t,ξ)|y(t, ξ)|α−1y(t, ξ), (3.1.5)

y(0) = x,

with A(t) as in (1.1.7), i.e.

A(t) = −i(∆ + b(t) · ∇+ c(t)), (3.1.6)

b(t) = 2∇W (t), (3.1.7)

c(t) =
d∑

j=1

(∂jW (t))2 + ∆W (t)− iµ̂, (3.1.8)

and

µ̂ := µ+ µ̃ (3.1.9)
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with µ, µ̃ as in (1.1.3) and (1.1.10) respectively.

Observe that the real part of the damped term µ̂ is positive in the non-conservative

case. Indeed,

Reµ̂ =
N∑

j=1

(Reµj)
2e2j ≥ (Reµ1)

2c21 > 0. (3.1.10)

Therefore, in order to explore the noise effects, we apply to (3.1.5) a second trans-

formation

z(t, ξ) = ebµty(t, ξ), (3.1.11)

and derive that

∂z(t)

∂t
= Â(t)z(t)− ie−(α−1)(Rebµt−ReW (t))|z(t)|α−1z(t), (3.1.12)

z(0) = x ∈ H1,

where

Â(t) = −i(∆ + b̂(t) · ∇+ ĉ(t)) (3.1.13)

with

b̂(t) = −2t∇µ̂+ 2∇W (t), (3.1.14)

and

ĉ(t) =t2
N∑

j=1

(∂jµ̂)2 − t∆µ̂− 2t∇W (t) · ∇µ̂

+

[
N∑

j=1

(∂jW (t))2 + ∆W (t)

]
. (3.1.15)

We notice that there appears here an exponential decay term e−(α−1)Rebµt in front

of the nonlinear term in (3.1.12), hence we may expect that the blow-up can be

prevented provided µ is sufficiently large (or in other sense, the noise is sufficiently

large). This is indeed the case that we will prove in the next section. For this

purpose, let us rewrite equation (3.1.12) in the mild form

z(t) = V (t, 0)x+

∫ t

0

(−i)V (t, s)
[
h(s)|z(s)|α−1z(s)

]
ds, (3.1.16)
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where

h(s) := e−(α−1)(Rebµs−ReW (s)) (3.1.17)

and V (t, s) is the evolution operator generated by Â(t), that is, V (t, s) = z(t),

s ≤ t ≤ T , where

dz(t)

dt
= Â(t)z(t), a.e t ∈ (s, T ), (3.1.18)

z(s) = x ∈ H1.

(The existence of the evolution operator V (t, s) follows similarly as in Lemma 1.2.1.)

Remark 3.1.1. In Chapter 1 and Chapter 2, the local existence and uniqueness

are established under the assumption that ej satisfy the further decay assumption

lim
|ξ|→0

ζ(ξ)|ej(ξ)| = 0. Indeed, we can remove this restriction, due to the fact that

b̂, ĉ only involves the gradient terms of µ̂ and W (t) (see Section 3.3 for the proof).

Hence we are allowed to take c1 very large to prevent blow-up.

Moreover, under Assumption (H3) one can check from [59] that Strichartz esti-

mates (2.2.8) also hold for V (t, s).

3.2 The non-explosion results

Let us first consider the case when the noise W (t) is independent of the space

variable.

Theorem 3.2.1. Consider (3.1.1) in the non-conservative case (3.1.4). Let λ = 1

and α satisfy (3.1.2). Assume (H3), but with fj, 1 ≤ j ≤ N , also being fixed

constants and ck for 2 ≤ k ≤ N being fixed. Then for any x ∈ H1,

P(X(t) does not blow up on [0,∞)) → 1, as c1 →∞.

(where we recall that by assumption (3.1.4) we have Reµ1 6= 0.)

Similar phenomena happen for the deterministic damped nonlinear Schrödinger

equation ([72]),

i∂tu+ ∆u+ |u|α−1u+ iau = 0, a > 0. (3.2.19)

Notice that, this equation is analogous to (3.1.5) in the case where the noise W (t)

is space-independent and µk ∈ R, 1 ≤ k ≤ N , namely

i∂ty −∆y − e(α−1)ReW (t)|y|α−1y + iµ̂y = 0, µ̂ > 0.
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(This similarity indicates that the multiplicative noise term has a dissipativity effect

in the non-conservative case.)

Under the assumption that a is large enough, the authors obtained the global

well-posedness for (3.2.19), based on the decay estimate of eit∆ (see Lemma 4 in

[72]).

The proof we present below is quite different than that in [72]. It is based on the

contraction mapping arguments as in Chapter 2 without use of the decay estimate.

The adavantage of this proof is that it can also be applied to the case when the

noise is space-dependent (see Theorem 3.2.2 below).

Proof. By the transformations (1.1.5) and (3.1.11), it is equivalent to prove this

theorem for the random equation (3.1.12).

Let us first observe in equation (3.1.18) that b̂ = ĉ = 0, hence V (t, s) = e−i(t−s)∆

and the Strichartz coefficient Ct ≡ C is independent of t.

Choose the Strichartz pair (p, q) = (α+ 1, 4(α+1)
d(α−1)

), Set

Zτ
M = {u ∈ C(0, τ ;L2) ∩ Lq(0, τ ;Lp) : ‖u‖L∞(0,τ ;H1) + ‖u‖Lq(0,τ ;W 1,p) ≤M},

(3.2.20)

and define the integral operator G on Zτ
M by

G(u)(t) = V (t, 0)x+

∫ t

0

(−i)V (t, s)
[
h(s)|u(s)|α−1u(s)

]
ds, (3.2.21)

for u ∈ Zτ
M .

We first claim that, for u ∈ Zτ
M

‖G(u)‖L∞(0,τ ;H1) + ‖G(u)‖Lq(0,τ ;W 1,p)

≤2C|x|H1 + 2C‖h|u|α−1u‖Lq′ (0,τ ;W 1,p′ )

≤2C|x|H1 + 2CD3(τ)‖u‖α−1
L∞(0,τ ;H1)‖u‖Lq(0,τ ;W 1,p)

≤2C|x|H1 + 2CD3(τ)M
α, (3.2.22)

where

D3(t) = αDα−1‖h‖Lv(0,t) (3.2.23)

with v > 1 satisfying 1
v

= 1− 2
q
> 0.
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Indeed, as in (2.2.30), Hölder’s inequality and Sobolev’s imbedding theorem yield

‖h|u|α−1u‖Lq′ (0,τ ;Lp′ ) ≤|h|Lv(0,τ)‖|u|α−1u‖Lq(0,τ ;Lp′ )

≤Dα−1|h|Lv(0,τ)‖u‖α−1
L∞(0,τ ;H1)‖u‖Lq(0,τ ;Lp), (3.2.24)

and similarly to (2.2.31)

‖h∇(|u|α−1u)‖Lq′ (0,τ ;Lp′ ) ≤α‖h|u|α−1|∇u|‖Lq′ (0,τ ;Lp′ )

≤αDα−1|h|Lv(0,τ)‖u‖α−1
L∞(0,τ ;H1)‖∇u‖Lq(0,τ ;Lp). (3.2.25)

Hence (3.2.22) follows from (3.2.24) and (3.2.25), as claimed.

Moreover, similarly to (2.2.27), we have that for u1, u2 ∈ Zτ
M

‖G(u1)−G(u2)‖L∞(0,τ ;L2) + ‖G(u1)−G(u2)‖Lq(0,τ ;Lp)

≤4CD3(τ)M
α−1‖u1 − u2‖Lq(0,τ ;Lp). (3.2.26)

Let M = 3C|x|H1 and choose the (Ft)-stopping time τ = τ(c1) defined by

τ = inf
{
t > 0 : 2 · 3α|x|α−1

H1 C
αD3(t) > 1

}
. (3.2.27)

Then, using similar arguments as in the proof of Theorem 2.2.5, we obtain a strong

solution (z, τ) of (3.1.12).

We next show that P(τ = ∞) → 1, as c1 →∞. Since the definition of τ involves

the term D3(t), from (3.2.23) we need to estimate ‖h‖Lv(0,∞).

Set φk = µkek, 1 ≤ k ≤ N . By the scaling property of Brownian motion, i.e.

P ◦ [Reφk βk(·)]−1 = P ◦ [βk((Reφk)
2·)]−1, we have for any c ≥ 0

P(‖h‖v
Lv(0,∞) ≥ c)

=P

(∫ ∞

0

N∏
k=1

e−(α−1)v[(Reφk)2s−Reφkβk(s)]ds ≥ c

)

=P

(∫ ∞

0

N∏
k=1

e−(α−1)v[(Reφk)2s−βk((Reφk)2s)]ds ≥ c

)
, (3.2.28)

Moreover, from the law of the iterated logarithm of Brownian motion, it follows

that

C̃1 :=

∫ ∞

0

e−(α−1)v[s−β1(s)]ds <∞, a.s, (3.2.29)
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and

C̃ := max
2≤k≤N

sup
s≥0

e−(α−1)v[(Reφk)2s−βk((Reφk)2s)] <∞, a.s. (3.2.30)

(We may also take C̃ > 1.)

Hence P-a.s. ∫ ∞

0

N∏
k=1

e−(α−1)v[(Reφk)2s−βk((Reφk)2s)]ds

≤C̃N

∫ ∞

0

e−(α−1)v[(Reφ1)2s−β1((Reφ1)2s)]ds

≤ 1

(Reφ1)
2
C̃N C̃1. (3.2.31)

Taking (3.2.31) into (3.2.28), we conclude that, for any fixed c ≥ 0

P(‖h‖v
Lv(0,∞) ≥ c) ≤ P

(
C̃N C̃1 ≥ c(Reφ1)

2
)
→ 0, as c1 →∞, (3.2.32)

where the last convergence is due to the fact that C̃N C̃1 < ∞, a.s. and Re2φ1 ≥
Re2µ1c

2
1 →∞ as c1 →∞.

Now, choose c =
[
4 · 3αα|x|α−1

H1 C
αDα−1

]−v
> 0. By the definition of τ in (3.2.27)

and (3.2.32), we derive that

P(τ = ∞)

=P
(
2 · 3α|x|α−1

H1 C
αD3(t) < 1, ∀t ∈ [0,∞)

)
≥P
(

2 · 3αα|x|α−1
H1 C

αDα−1‖h‖Lv(0,∞) ≤
1

2

)
≥1− P

(
‖h‖v

Lv(0,∞) ≥ c
)

→1, as c1 →∞,

which completes the proof. �

Next, we consider the general case when the noise W (t) is space-dependent.

Theorem 3.2.2. Consider (3.1.1) in the non-conservative case (3.1.4). let λ = 1,

α satisfy (3.1.2). Assume (H3) with fj, 1 ≤ j ≤ N , and ck, 2 ≤ k ≤ N being fixed.

Then for any x ∈ H1 and 0 < T <∞

P(X(t) does not blow up on [0, T ]) → 1, as c1 →∞.
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In this case, we have in Â(t) (see (3.1.13)) the additional lower order terms, for

which we are not sure whether the decay estimate as in [72] still hold. The proof

presented below is based on the contraction mapping arguments as in Theorem 3.2.1

as well as the Strichartz estimates (2.2.8) established for the lower order perturba-

tions of the Laplacian. Since we just have local in time Strichartz estimate, that is,

the Strichartz coefficient CT in (2.2.8) depends on time and goes to ∞ as T → ∞,

we focus on the finite time interval in Theorem 3.2.2.

Proof of Theorem 3.2.2. As in the proof of Theorem 3.2.1, it is equivalent to

prove this theorem for the random equation (3.1.12).

Choose the Strichartz pair (p, q) = (α + 1, 4(α+1)
d(α−1)

) and set Zτ
M , G as in (3.2.20)

and (3.2.21) repectively

Similarly to (3.2.22), for u ∈ Zτ
M

‖G(u)‖L∞(0,τ ;H1) + ‖G(u)‖Lq(0,τ ;W 1,p)

≤2Cτ |x|H1 + 2Cτ‖h|u|α−1u‖Lq′ (0,τ ;W 1,p′ )

≤2Cτ |x|H1 + 2CτD4(τ)‖u‖α−1
L∞(0,τ ;H1)‖u‖Lq(0,τ ;W 1,p)

≤2Cτ |x|H1 + 2CτD4(τ)M
α, (3.2.33)

where

D4(t) = αDα−1‖h‖Lv(0,t;W 1,∞). (3.2.34)

with v > 1 satisfying 1
v

= 1− 2
q
> 0.

Moreover, for u1, u2 ∈ Zτ
M

‖G(u1)−G(u2)‖L∞(0,τ ;L2) + ‖G(u1)−G(u2)‖Lq(0,τ ;Lp)

≤4CτD4(τ)M
α−1‖u1 − u2‖Lq(0,τ ;Lp). (3.2.35)

Set M = 3Cτ |x|H1 and choose the (Ft)-stopping time τ = τ(c1) defined by

τ = inf{t ∈ [0, T ], 2 · 3α|x|α−1
H1 C

α
t D4(t) > 1} ∧ T. (3.2.36)

It follows from (3.2.33), (3.2.35) that G(Zτ
M) ⊂ Zτ

M and G is a contraction on

C([0, τ ];L2)∩Lq(0, τ ;Lp). Therefore, using the arguments as in Step 1 in the proof

of Theorem 2.2.5, we obtain a strong solution (z, τ) to (3.1.12).

We next prove that P(τ = T ) → 1, as c1 →∞. Taking into account (3.2.36) and

(3.2.34), we need to estimate ‖h‖Lv(0,t;W 1,∞). For simplicity, we set |f |∞ = |f |L∞ for
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any f ∈ L∞(Rd) and φk = µkek, 1 ≤ k ≤ N .

Let us first consider the norm ‖h‖Lv(0,t;L∞). From the expression of h in (3.1.17)

and (3.1.10), it follows that

|h(t)|L∞ =
∣∣e−(α−1)

NP
k=1

[Re2φkt−Reφkβk(t)]∣∣
L∞

≤e
−(α−1)

NP
k=1

[
(Reµ1)2c21

N
t−|Reφk|∞|βk(t)|]

. (3.2.37)

Analogously to (3.2.30)

C̃ := max
2≤k≤N

sup
t≥0

e−(α−1)v[
(Reµ1)2c21

N
t−|βk(|Reφk|2∞t)|] <∞, a.s. (3.2.38)

Here, we also take C̃ > 1.

Moreover, choosing c1 large enough such that c1 > |f1|L∞ , we have∫ T

0

e−(α−1)v[
(Reµ1)2c21

N
t−|β1(|Reφ1|2∞t)|]dt

=
1

|Reφ1|2∞

∫ |Reφ1|2∞T

0

e
−(α−1)v[

(Reµ1)2c21
N|Reφ1|2∞

t−|β1(t)|]
dt

≤ 1

|Reφ1|2∞

∫ ∞

0

e−(α−1)v[ 1
4N

t−|β1(t)|]dt

≤ 1

|Reφ1|2∞
C̃1, (3.2.39)

where C̃1 :=
∫∞

0
e−(α−1)v[ 1

4N
t−|β1(t)|]dt <∞, P-a.s.

Thus, as in (3.2.28), it follows from (3.2.37)-(3.2.39) and the scaling property of

βk, 1 ≤ k ≤ N , that for any c > 0 fixed

P
(
Cαv

T ‖h‖v
Lv(0,T ;L∞) ≥ c

)
≤P

(
Cαv

T

∫ T

0

N∏
k=1

e−(α−1)v[
(Reµ1)2c21

N
t−|Reφk|∞|βk(t)|]dt ≥ c

)

≤P

(
Cαv

T

∫ T

0

N∏
k=1

e−(α−1)v[
(Reµ1)2c21

N
t−|βk(|Reφk|2∞t)|]dt ≥ c

)
≤P
(
Cαv

T C̃N C̃1 ≥ |Reφ1|2∞c
)

→0, as c1 →∞, P− a.s., (3.2.40)

where CT is the Strichartz coefficient and the last convergence is due to the fact
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that Cαv
T C̃N C̃1 <∞, P-a.s.

Similar arguments can also be applied to the norm ‖∇h‖Lv(0,t;L∞). Indeed, from

(3.1.17) and (3.1.10)

∇h(t) =h(t)

[
−(α− 1)

N∑
k=1

(2Reφk∇(Reφk)t−∇(Reφk)βk(t))

]

=h(t)

[
−(α− 1)

N∑
k=1

(2Reφk(Reµk∇fk)t−Reµk∇fkβk(t))

]
,

then

|∇h(t)|∞ ≤ (α− 1)|h(t)|∞
N∑

k=1

(2|Reφk|∞|Reµk∇fk|∞t+ |Reµk∇fk|∞|βk(t)|) .

Hence, for any c > 0 fixed

P(Cαv
T ‖∇h‖v

Lv(0,T ;L∞) ≥ c)

≤P
(
Cαv

T

∫ T

0

(α− 1)|h(t)|vL∞[
N∑

k=1

2|Reφk|∞|Reµk∇fk|∞t+ |Reµk∇fk|∞|βk(t)|

]v

dt ≥ c
)

≤P
(
Cαv

T

∫ T

0

(α− 1)

[
N∏

k=1

e−(α−1)v[
(Reµ1)2c21

N
t−|βk(|Reφk|2L∞ t)|]

]
[(

2
N∑

k=1

|Reφk|∞|Reµk∇fk|∞t+ |Reµk∇fk|∞|βk(t)|

)]v

dt ≥ c

)
≤P
(
Cαv

T C̃N 1

|Reφ1|2∞

∫ ∞

0

e−(α−1)v[ 1
4N

t−|β1(t)|][
N∑

k=1

2|Reφk|∞|Reµk∇fk|∞
|Reφ1|2∞

t+ |Reµk∇fk|∞
∣∣∣∣βk(

t

|Reφ1|2∞
)

∣∣∣∣
]v

dt ≥ c

α− 1

)
.

Choosing c1 large enough, such that
N∑

k=1

2|Reφk|∞|Reµk∇fk|∞
|Reφ1|2∞

< 1 and |Reµk∇fk|∞
|Reφ1|∞

< 1,

we have

P(Cαv
T ‖∇h‖v

Lv(0,T ;L∞) ≥ c)

≤P(Cαv
T C̃NC ′

1 ≥
c

α− 1
|Reφ1|2∞)
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→0, as c1 →∞, (3.2.41)

where CT is the Stichartz coefficient and C ′
1 :=

∫∞
0
e−(α−1)v[ 1

4N
t−|β1(t)|]

[
t+

N∑
k=1

βk(t)

]v

dt <

∞, P-a.s.

Now, we turn back to the definition of τ in (3.2.36). Choosing c = [4·3ααDα−1|x|α−1
H1 ]−v >

0, we deduce from (3.2.40) and (3.2.41) that

P(τ = T )

≥P(2 · 3α|x|α−1
H1 C

α
t D1(t) < 1,∀t ∈ [0, T ])

≥P(2 · 3ααDα−1|x|α−1
H1 C

α
T ‖h‖Lv(0,T,W 1,∞) <

1

2
)

≥1− P(Cαv
T ‖h‖v

Lv(0,T,W 1,∞) ≥ c)

≥1− P(Cαv
T ‖h‖v

Lv(0,T,L∞) ≥
1

2
c)− P(Cαv

T ‖∇h‖v
Lv(0,T,L∞) ≥

1

2
c)

→1, as c1 →∞.

Therefore, we complete the proof of Theorem 3.2.2. �

One may ask further whether the result in Theorem 3.2.1 (also in Theorem 3.2.2)

holds with probability 1. This is not generally valid and we have the following result.

Theorem 3.2.3. Assume the condition in Theorem 3.2.2 to hold. Furthermore,

assume µk ∈ R, 1 ≤ k ≤ N . Let x ∈
∑

:= {u ∈ H1,
∫
|ξ|2|u(ξ)|2dξ < ∞.} with

H(x) < 0, where H is the Hamiltonian defined as in (2.3.39).

Then there exists ε0 > 0, such that for 0 < ε < ε0 and 0 ≤
∑

1≤k≤N

|∇fk|L∞ < ε,

the solution to (3.1.1) blows up in finite time with positive probability.

In particular, in the case where fj, 1 ≤ j ≤ N , are fixed constants, the solution

to (3.1.1) blows up in finite time with positive probability.

Proof of Theorem 3.2.3. The proof follows from the classical virial analysis

(see e.g [58]). We remark that, unlike in the deterministic case, there will appear

a positive drift term involving a monomial at3 in the estimate of the variance evo-

lution formula (see (3.2.44) below), this is the reason why we impose the smallness

condition on
N∑

k=1

|∇fk|L∞ to control this term.

For any u ∈
∑

, define the variance

V (u) =

∫
|ξ|2|u(ξ)|2dξ, (3.2.42)
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and the momentum

G(u) = Im

∫
ξu(ξ) · ∇u(ξ)dξ. (3.2.43)

We will prove this theorem by contradiction. Assume that the solution X(t) to

(3.1.1) exits globally in H1, P− a.s.

Let us first show that

EV (X(t)) ≤ V (x) + 4G(x)t+ 8H(x)t2 + at3 (3.2.44)

with

a =
4

3

N∑
k=1

|µk||∇fk|2L∞|x|22.

Indeed, from Theorem 2.3.1 in Chapter 2, Lemma 3.3.1 and Lemma 3.3.2 in

Section 3.3, we have that

V (X(t)) =V (x) + 4G(x)t+ 8H(x)t2

+ 4
N∑

k=1

∫ t

0

(t− s)2|∇φkX(s)|22ds

− 4(α− 1)
N∑

k=1

∫ t

0

(t− s)2

∫
φ2

k|X(s)|α+1dξds

+
16

α+ 1

[
1− d(α− 1)

4

] ∫ t

0

(t− s)|X(s)|α+1
α+1ds (3.2.45)

+Mt,

where φk = µkek, 1 ≤ k ≤ N , and

Mt =8
N∑

k=1

∫ t

0

(t− s)2

[
Re〈∇(φkX(s)),∇X(s)〉2 −

∫
φk|X(s)|α+1dξ

]
dβk(s)

− 8
N∑

k=1

∫ t

0

(t− s)Im

∫
ξ · ∇X(s)X(s)φkdξdβk(s)

+ 2
N∑

k=1

∫ t

0

∫
|ξ|2|X(s)|2φkdξdβk(s).



3.2. The non-explosion results 111

Fix t > 0 and define for r ∈ [0,∞)

M̃(t, r) =8
N∑

k=1

∫ r

0

(t− s)2

[
Re〈∇(φkX(s)),∇X(s)〉2 −

∫
φk|X(s)|α+1dξ

]
dβk(s)

− 8
N∑

k=1

∫ r

0

(t− s)Im

∫
ξ · ∇X(s)X(s)φkdξdβk(s)

+ 2
N∑

k=1

∫ r

0

∫
|ξ|2|X(s)|2φkdξdβk(s). (3.2.46)

Set σm = inf{s ∈ [0, t], |∇Xm(s)|22 > m} ∧ t, then σm → t, as m → ∞. Direct

computations show that M̃(t, ·∧σm) is a square integrable martingale, in particular,

E[M̃(t, t ∧ σm)] = 0. Indeed, we take the second term in the right hand side of

(3.2.46) for example. Note that

E
∫ r∧σm

0

N∑
k=1

∣∣(t− s)Im

∫
ξ · ∇X(s)X(s)φkdξ

∣∣2ds
≤CE

∫ r∧σm

0

(t− s)2V (X(s))|∇X(s)|22ds

≤mCE sup
s∈[0,σm]

V (X(s))

∫ r

0

(t− s)2ds, (3.2.47)

where C =
N∑

k=1

|φk|2L∞ < ∞. Then, using the arguments as in the proof of (3.3.57)

below, we deduce that the right hand side above is finite.

Now, since the fifth and sixth terms in the right hand side of (3.2.45) are non-

positive for α satisfying (3.1.2), taking the expectation in (3.2.45), we consequently

conclude that

EV (X(σm ∧ t)) ≤V (x) + 4G(x)(σm ∧ t) + 8H(x)(σm ∧ t)2

+ 4E
∫ σm∧t

0

(σm ∧ t− s)2

N∑
k=1

|∇φkX(s)|22ds, t <∞.

Then, letting m → ∞, using Fatou’s lemma, and noting that ∇φk = µk∇fk and

E|X(t)|22 = |x|22, we finally obtain (3.2.44) as claimed.

Let f(t) denote the right hand side of (3.2.44), namely,

f(t) = V (x) + 4G(x)t+ 8H(x)t2 + at3.
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We claim that if
N∑

k=1

|∇fk|L∞ is small enough, then there exists T > 0 such that

f(T ) < 0. Taking into account that EV (X(t)) ≥ 0 and the inequality (3.2.44), we

then come to the contradiction.

It remains to prove the claim. As

f ′(t) = 3at2 + 16H(x)t+ 4G(x),

for
N∑

k=1

|∇fk|L∞ small enough the discriminant is positive, that is

162(H(x))2 − 3 · 42aG(x) > 0.

This implies that f ′(t) has two roots with the largest one

t∗ =
2G(x)

−4H(x)−
√

16(H(x))2 − 3aG(x)
> 0.

Hence to prove the claim is equivalent to showing that f(t∗) < 0. By simple

computations and f ′(t∗) = 0, it follows that

f(t∗) =
8

3
H(x)t2∗ +

8

3
G(x)t∗ + V (x).

We denote the right hand side by g(t∗), where

g(t) =
8

3
H(x)t2 +

8

3
G(x)t+ V (x)

with the largest root

t̃∗ =
−G(x)−

√
(G(x))2 − 3

2
H(x)V (x)

2H(x)
.

Observe that showing f(t∗) < 0 is equivalent to proving that t̃∗ < t∗. This is

indeed the case, since t̃∗ is independent of a but t∗ →∞ as a→ 0.

Consequently we prove the claim and finish the proof of Theorem 3.2.3. �

3.3 Appendix.

Let us first show that the assumption lim
|ξ|→∞

ζ(ξ)|ej(ξ)| = 0 in Assumption (H2) can

be removed in the non-conservative case. Since the proofs for (1.2.29) and (1.2.30)



3.3. Appendix. 113

are similar to those in Section 2.3.3 in Chapter 2, we only need to check (1.2.31).

Let us take the term t2(∂jµ̂)2 in ĉ (3.1.15) for example. Since ∂jµ̂ = 2(Reµk)
2ek∂jfk,

by Assumption (H3)

lim
|ξ|→∞

ζ(ξ)[t2(∂jµ̂(ξ))2]

≤4(Reµk)
4t2|ek|2L∞(Rd)|∂jfk|L∞(Rd) lim

|ξ|→∞
(ζ(ξ)|∂jfk(ξ)|) = 0.

Similar arguments can also be applied to the other terms in b̂, ĉ in (3.1.14) and

(3.1.15) respectively. Therefore, Assumption (H3) suffices to yield (1.2.31).

Moreover, since we also need Proposition 2.3(a) in [59] to derive the Strichartz

estimates in Sobolev spaces, we shall also check (1.2.29)-(1.2.31) with ∂lb̂, ∂lĉ re-

placing b̂ and ĉ respectively. However, the proof is similar as above, hence we omit

the details here.

Now, for x ∈
∑

, we can use the arguments as in the proof of Theorem 2.2.5 to

obtain the maximal strong solution (z, (τn)n∈N, τ
∗(x)) of equation (3.1.12). Then by

transformations (1.1.5) and (3.1.11), we obtain the corresponding maximal strong

solution (X, (τn)n∈N, τ
∗(x)) of (3.1.1) in the sense of Definition 2.1.1, and X satisfies

P-a.s. for any Strichartz pair (ρ, γ)

X|[0,t] ∈ C([0, t];H1) ∩ Lγ(0, t;W 1,ρ), t < τ ∗(x). (3.3.48)

Now, we start to derive the evolution formula for the variance.

Lemma 3.3.1. For x ∈
∑

:= {u ∈ H1 :
∫
|ξ|2|u(ξ)|2dξ < ∞}, it holds that P-a.s.

for t < τ ∗(x)

V (X(t)) = V (x) + 4

∫ t

0

G(X(s))ds+M1(t), (3.3.49)

where G is defined as in (3.2.43) and

M1(t) = 2
N∑

k=1

∫ t

0

∫
|ξ|2|X(s)|2Reφkdξdβk(s)

with φk = µkek, 1 ≤ k ≤ N .

Proof. (3.3.49) follows heuristically by applying Itô’s formula to the integrands

in V (X(t)) with the space variable ξ fixed and then taking the integration over Rd.

To prove it rigourously we use the techniques as in Lemma 2.3.11 in Chapter 2 and

lemma 6.5.2 in [22].
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Denote ϕε = ϕ ∗ φε for any locally integrable function ϕ mollified by φε, where

φε = ε−dφ(x
ε
) and φ ∈ C∞

c (Rd) is a real-valued nonnegative function with unit

integral. Set Vη(u) =
∫
e−η|ξ|2|ξ|2|u(ξ)|2dξ and V (u) =

∫
|ξ|2|u(ξ)|2dξ, for any u ∈∑

.

As in (2.3.79), we have P-a.s. for every ξ ∈ Rd, t < τ ∗(x)

(X(t))ε(ξ) = xε(ξ) +

∫ t

0

[−i∆(X(s))ε(ξ)− (µX(s))ε(ξ)− i(g(X(s)))ε(ξ)] ds

+
N∑

k=1

∫ t

0

(X(s)φj)
ε(ξ)dβj(s), (3.3.50)

where g(X(s)) = |X(s)|α−1X(s). For simplicity, we set Xε(t) = (X(t))ε(ξ) and

correspondingly for the other arguments.

Applying the product rule yields P-a.s.

|Xε(t)|2 =|xε|2 − 2Re

∫ t

0

X
ε
(s)i∆Xε(s)ds− 2Re

∫ t

0

X
ε
(s)(µX(s))εds

− 2Re

∫ t

0

X
ε
(s)i[g(X(s))]εds+

N∑
k=1

∫ t

0

|(X(s)φk)
ε|2ds

+ 2
N∑

k=1

Re

∫ t

0

X
ε
(s)(X(s)φk)

εdβk(s), t < τ ∗(x).

Integration over Rd with e−η|ξ|2|ξ|2, interchanging the integrations and then in-

tegrating by parts, we have P-a.s. for t < τ ∗(x)

Vη(X
ε(t)) =Vη(x

ε) + 4Im

∫ t

0

∫
e−η|ξ|2(1− η|ξ|2)Xε(s)ξ · ∇Xε(s)dξds

− 2Re

∫ t

0

∫
e−η|ξ|2|ξ|2Xε

(s)(µX(s))εdξds

− 2Re

∫ t

0

∫
e−η|ξ|2|ξ|2Xε

(s)i[g(X(s))]εdξds

+
N∑

k=1

∫ t

0

∫
e−η|ξ|2|ξ|2|(X(s)φk)

ε|2dξds

+ 2
N∑

k=1

Re

∫ t

0

∫
e−η|ξ|2|ξ|2Xε

(s)(X(s)φk)
εdξdβk(s). (3.3.51)

As sup
ξ∈Rd

e−η|ξ|2 [|(1−η|ξ|2)ξ|+ |ξ|2] <∞, similar arguments in the proof of Lemma

2.3.11 could be applied to pass to the limit ε → 0 in (3.3.51). After that, in the
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right hand side of (3.3.51) the fourth term equals to 0 and the third term cancels

with the fifth term. We thus conclude that

Vη(X(t)) =Vη(x) + 4Im

∫ t

0

∫
e−η|ξ|2(1− η|ξ|2)X(s)ξ · ∇X(s)dξds

+ 2
N∑

k=1

∫ t

0

∫
e−η|ξ|2|ξ|2|X(s)|2Reφkdξdβk(s), t < τ ∗(x). (3.3.52)

In order to pass to the limit η → 0, we will prove that

sup
s∈[0,τn]

V (X(s)) ≤ C̃(n) <∞, P− a.s. (3.3.53)

Then by (3.3.52), (3.3.53), sup
η>0

sup
ξ∈Rd

|e−η|ξ|2(1−η|ξ|2)| = 1 and Lebesque’s dominated

theorem, we obtain (3.3.49) for t ≤ τn, n ∈ N. Since τn → τ ∗(x), as n → ∞, we

consequently conclude (3.3.49) for t < τ ∗(x).

In order to prove (3.3.53), for every n ∈ N, set σn,m = inf{s ∈ [0, τn] : |∇X(s)|22 >
m} ∧ τn. By Burkholder-Davis-Gundy’s inequality

E sup
s∈[0,t∧σn,m]

Vη(X(s)) ≤4E
∫ t∧σn,m

0

∫
e−η|ξ|2|1− η|ξ|2||X(s)ξ · ∇X(s)|dξds

+ cE

√√√√∫ t∧σn,m

0

N∑
k=1

(∫
e−η|ξ|2 |ξ|2|X(s)|2Reφkdξ

)2

ds

=J1 + J2, (3.3.54)

where c is independent of n, m and η.

While, since sup
η>0

sup
ξ∈Rd

|e−η|ξ|2(1− η|ξ|2)| = 1 and E sup
s∈[0,σn,m]

|∇X(s)|22 ≤ m <∞

J1 ≤4E
∫ t∧σn,m

0

√
V (X(s))|∇X(s)|2dξ

≤4

∫ t

0

E sup
r∈[0,s∧σn,m]

V (X(r))ds+ 4mT. (3.3.55)

Moreover, by Lemma 2.3.4 with Vη(X(s)) replacing Y (s)

J2 ≤CE

√∫ t∧σn,m

0

[Vη(X(s))]2ds
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≤εCE sup
s∈[0,t∧σn,m]

Vη(X(s)) + CCε

∫ t

0

E sup
r∈[0,s∧σn,m]

Vη(X(r))ds, (3.3.56)

where C depends on |φk|L∞ , 1 ≤ k ≤ N , and is independent of n,m and η.

Hence, plugging (3.3.55) and (3.3.56) into (3.3.54), taking ε small enough, and

noting that Vη(X) ≤ V (X), we derive that

E sup
s∈[0,t∧σn,m]

Vη(X(s)) ≤c1
∫ t

0

E sup
r∈[0,s∧σn,m]

V (X(r))ds+ c2(m,T ),

with c1 and c2(m,T ) independent of η. Then letting η → 0 and using Fatou’s lemma,

we have

E sup
s∈[0,t∧σn,m]

V (X(s)) ≤ c1

∫ t

0

E sup
r∈[0,s∧σn,m]

V (X(r))ds+ c2(m,T ), t ∈ [0, T ],

which implies by Gronwall’s lemma that

E sup
t∈[0,σn,m]

V (X(t)) ≤ C(m,T ) <∞, (3.3.57)

hence sup
t∈[0,σn,m]

V (X(t)) ≤ C̃(m,T ) < ∞, P-a.s. But, since sup
t∈[0,τn]

|∇X(t)|22 < ∞,

P-a.s, for P-a.e. ω ∈ Ω, ∃m(ω) < ∞ such that σn,m(ω)(ω) = τn(ω). Then

P
( ⋃

m∈N
{σn,m = τn}

)
= 1. This implies (3.3.53) and completes the proof of Lemma

3.3.1. �

Next, we derive the evolution formula for the momentum.

Lemma 3.3.2. For x ∈
∑

, it holds that P-a.s for t < τ ∗(x)

G(X(t)) =G(x) + 4

∫ t

0

P (X(s))ds

−
N∑

k=1

∫ t

0

Im

∫
ξ · ∇φk|X(s)|2φkdξds+M2(t), (3.3.58)

where

P (X) =
1

2
|∇X|22 −

d(α− 1)

4(α+ 1)
|X|α+1

Lα+1

=H(X) +
1

α+ 1
[1− d(α− 1)

4
]|X|α+1

Lα+1 ,
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φk = µkek, 1 ≤ k ≤ N , and

M2(t) =d
N∑

k=1

∫ t

0

∫
|X(s)|2Imφkdξdβk(s)

− 2
N∑

k=1

∫ t

0

Im

∫
ξ · ∇X(s)X(s)φkdξdβk(s).

Here, d is the dimension of the space.

Proof. (3.3.58) follows from a heuristic application of Itô’s formula. To prove it

rigourously, we use similar arguments as in Lemma 3.3.1. We also use summation

convention in the following calculations.

Set Gη(u) = Im
∫
e−η|ξ|2ξu(ξ) · ∇udξ for any u ∈

∑
and consider Xε as in

(3.3.50). Below we omit the arguments ξ for the sake of simplicity.

By the product rule

X
ε
(t)∂jX

ε(t) =xε∂jx
ε +

∫ t

0

∂jX
ε(s)dX

ε
(s) +

∫ t

0

X
ε
(s)d(∂jX

ε)(s)

+

∫ t

0

(X(s)φk)
ε∂j[(X(s)φk)

ε]ds, t < τ ∗(x), P− a.s.

Integrating over Rd with e−η|ξ|2ξj, we have P-a.s. for t < τ ∗(x)

−Gη(X
ε(t))

=−Gη(x
ε) + Im

∫
e−η|ξ|2ξjX

ε
(t)∂jX

ε
m(t)dξ

=−Gη(x
ε) + Im

∫ ∫ t

0

e−η|ξ|2ξj∂jX
ε(s)dX

ε
(s)dξ

+ Im

∫ ∫ t

0

e−η|ξ|2ξjX
ε
(s)d(∂jX

ε)(s)dξ

+ Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε∂j[(X(s)φk)
ε]dξds, (3.3.59)

where we used Fubini’s theorem for the last term.

Using integration by parts, we have that for the third term in the right hand

side of (3.3.59)

Im

∫ ∫ t

0

e−η|ξ|2ξjX
ε
(s)d(∂jX

ε)(s)dξ
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=− Im

∫ ∫ t

0

e−η|ξ|2(d− 2η|ξ|2)Xε
(s)dXε(s)dξ

+ Im

∫ ∫ t

0

e−η|ξ|2ξj∂jX
ε(s)dX

ε
(s)dξ. (3.3.60)

(This equality can be justifies rigorously as in the proof of Lemma 2.3.11. First, we

obtain the equation of ∂jX
ε from (3.3.50) on a set Ω̃ with full probability and in-

dependent of ξ ∈ Rd. Applying both deterministic and stochastic Fubini’s theorem,

we interchange the integrals. Then we use integration by parts to obtain (3.3.60).

Since these technical treatments are just used in this step, we omit them here for

the sake of simplicity.)

Moreover, for the fourth term in the right hand side of (3.3.59)

Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε∂j[(X(s)φk)
ε]dsdξ

=Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε[∂j(X(s)φk)]
εdsdξ

=Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε(∂jX(s)φk)
εdξds

+ Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε(X(s)∂jφk)
εdξds. (3.3.61)

Hence, plugging (3.3.60) and (3.3.61) into (3.3.59), we obtain P-a.s. for t < τ ∗(x)

−Gη(X
ε(t))

=−Gη(x
ε)− Im

∫ ∫ t

0

e−η|ξ|2(d− 2η|ξ|2)Xε
(s)dXε(s)dξ

+ 2Im

∫ ∫ t

0

e−η|ξ|2ξj∂jX
ε(s)dX

ε
(s)dξ

+ Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε(∂jX(s)φk)
εdξds

+ Im

∫ t

0

∫
e−η|ξ|2ξj(X(s)φk)

ε(X(s)∂jφk)
εdξds

=−Gη(x
ε) +K1 +K2 +K3 +K4. (3.3.62)

First, by (3.3.48) and (3.3.53), we can use Lebesque’s dominated theorem to

derive that P-a.s. for t < τ ∗(x)

lim
η→0

lim
ε→0

(K3 +K4)
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=2Im

∫ t

0

∫
ξµX(s) · ∇X(s)ds+ Im

∫ t

0

∫
ξjφk∂jφk|X(s)|2ds. (3.3.63)

For K1, we will show that P-a.s. for t < τ ∗(x)

lim
η→0

lim
ε→0

K1 =− d ·
∫ t

0

|∇X(s)|22ds+ d ·
∫ t

0

|X(s)|α+1
Lα+1ds

− d ·
∫ t

0

∫
|X(s)|2Imφkdξdβk(s), (3.3.64)

where d is the dimension of the space.

Indeed, it follows from equation (3.3.50) and Fubini’s theorem that

K1 =− Im

∫ t

0

∫
e−η|ξ|2(d− 2η|ξ|2)Xε

(s)

[
(−i)∆Xε(s)

+ (−1)(µX(s))ε + (−i)[g(X(s))]ε
]
dξds

− Im

∫ t

0

∫
e−η|ξ|2(d− 2η|ξ|2)Xε

(s)(X(s)φk)
εdξdβk(s)

=K11 +K12 +K13 +K14.

Using integration by parts, we have

K11 =− Im i

∫ t

0

∫
e−η|ξ|2(−2ηξ)(d− 2η|ξ|2)Xε

(s)∇Xε(s)dξds

− Im i

∫ t

0

∫
e−η|ξ|2(−4ηξ)X

ε
(s)∇Xε(s)dξds

−
∫ t

0

∫
e−η|ξ|2(d− 2η|ξ|2)|∇Xε(s)|2dξds.

Since for η > 0 fixed, e−η|ξ|2 is exponentially decay, we can use (3.3.48) to apply

Lebesque’s dominated theorem to take the limit ε→ 0. Then, as sup
η>0

sup
ξ∈Rd

|e−η|ξ|2(d−

2η|ξ|2)| < ∞, we can use (3.3.48) and (3.3.53) to pass to the limit η → 0. Hence,

we obtain P-a.s. for t < τ ∗(x)

lim
η→0

lim
ε→0

K11 = −d ·
∫ t

0

|∇X(s)|22ds, t < τ ∗(x), P− a.s. (3.3.65)

Similarly

lim
η→0

lim
ε→0

K12 = d · Im
∫ t

0

∫
µ|X(s)|2dξds = 0, t < τ ∗(x), P− a.s. (3.3.66)
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and

lim
η→0

lim
ε→0

K14 = −d ·
∫ t

0

∫
|X(s)|2Imφkdξdβk(s), t < τ ∗(x), P− a.s. (3.3.67)

We are also allowed to pass to the limits for K13. Indeed, for s < t < τ ∗(x)∫ ∣∣e−η|ξ|2(d− 2η|ξ|2)Xε
(s)[g(X(s))]ε

∣∣dξ
≤C|Xε(s)|Lα+1|[g(X(s))]ε|

L
α+1

α

≤C|X(s)|α+1
Lα+1

≤CDα+1 sup
s∈[0,t]

|X(s)|α+1
H1 <∞,

with C = sup
η>0

sup
ξ∈Rd

|e−η|ξ|2(d − 2η|ξ|2)| < ∞. Thus dominated convergence theorem

yields

lim
η→∞

lim
ε→0

K13 = d ·
∫ t

0

|X(s)|α+1
Lα+1ds, t < τ ∗(x), P− a.s. (3.3.68)

Therefore, (3.3.64) follows from (3.3.65)-(3.3.68).

K2 could be treated in a similar way, though the calculations are more compli-

cated. We will prove that P-a.s. for t < τ ∗(x)

lim
η→0

lim
ε→0

K2 =(d− 2)

∫ t

0

|∇X(s)|22ds−
2d

α+ 1

∫ t

0

|X(s)|α+1
Lα+1ds

− 2Im

∫ t

0

∫
ξj∂jX(s)µX(s)dξds

+ 2Im

∫ t

0

∫
ξj∂jX(s)X(s)φkdξdβk(s), (3.3.69)

where d is the dimension of the space.

Indeed, from equation (3.3.50), (3.3.62) and Fubini’s theorem it follows that

K2 =2Im

∫ t

0

∫
e−η|ξ|2ξj∂jX

ε(s)

[
i∆Xε(s) + (−1)(µX(s))ε + i[g(X(s))]ε

]
dξds

+ 2Im

∫ t

0

∫
e−η|ξ|2ξj∂jX

ε(s)(X(s)φk)
εdξdβk(s)

=K21 +K22 +K23 +K24. (3.3.70)
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It follows easily that P-a.s. for t < τ ∗(x)

lim
η→0

lim
ε→0

(K22 +K24)

=− 2Im

∫ t

0

∫
ξj∂jX(s)µX(s)dξds+ 2Im

∫ t

0

∫
ξj∂jX(s)X(s)φkdξdβk(s).

(3.3.71)

To pass to the limits inK23, since for η > 0 fixed, sup
ξ∈Rd

|e−η|ξ|2ξj| <∞, 1 ≤ j ≤ N ,

by (3.3.48) we can apply Lebesque’s dominated theorem to take the limit ε→ 0 and

obtain

lim
ε→0

K23 = 2Im i

∫ t

0

∫
e−η|ξ|2ξj∂jX(s)g(X(s))dξds, t < τ ∗(x), P− a.s.

Using Im iz = Rez, z ∈ C, and Re[(∂jX)g(X)] = 1
α+1

∂j(|X|α+1), we derive that

the right hand side above is equal to

2

∫ t

0

∫
e−η|ξ|2ξjRe(∂jX(s)g(X(s)))dξds

=
2

α+ 1

∫ t

0

∫
e−η|ξ|2ξj∂j(|X(s)|α+1)dξds

=− 2

α+ 1

∫ t

0

∫
e−η|ξ|2(d− 2η|ξ|2)|X(s)|α+1dξds.

Now, as sup
η>0

sup
ξ∈Rd

e−η|ξ|2|d − 2η|ξ|2| < ∞ and |X(s)|α+1
Lα+1 ≤ Dα+1 sup

s∈[0,t]

|X(s)|α+1
H1 <

∞, t < τ ∗(x), P− a.s., we can pass to the limit η → 0 and obtain

lim
η→0

lim
ε→0

K23 = − 2d

α+ 1

∫ t

0

|X(s)|α+1
Lα+1ds, t < τ ∗(x), P− a.s. (3.3.72)

We are now left to prove for K21 that

lim
η→0

lim
ε→0

K21 = (d− 2)

∫ t

0

|∇X(s)|22ds, t < τ ∗(x), P− a.s. (3.3.73)

Indeed, from integration by parts it follows that

K21 =2Im i

∫ t

0

∫
∆(e−η|ξ|2ξj∂jX

ε(s))X
ε
(s)dξds

=2Im i

∫ t

0

∫ [
∆e−η|ξ|2ξj∂jX

ε(s) + e−η|ξ|2ξj∂j∆X
ε(s) + 2e−η|ξ|2∆Xε(s)
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+ 2∇e−η|ξ|2∇ξj∂jX
ε(s) + 2∇e−η|ξ|2∇∂jX

ε(s)ξj

]
X

ε
(s)ds

=K211 +K212 +K213 +K214 +K215.

Notice that, ∆e−η|ξ|2 = 4η2|ξ|2e−η|ξ|2 + 2ηe−η|ξ|2 , hence sup
η>0

sup
ξ∈Rd

|∆e−η|ξ|2| < ∞

and lim
η→0

∆e−η|ξ|2 = 0. By (3.3.48) and (3.3.53) we can take the limits and obtain

lim
η→0

lim
ε→0

K211 = 0, t < τ ∗(x), P− a.s. (3.3.74)

Moreover, as∇e−η|ξ|2 = −2ηξe−η|ξ|2 , hence sup
η>0

sup
ξ∈Rd

|∇e−η|ξ|2| <∞ and lim
η→0

∇e−η|ξ|2 =

0. By (3.3.48) we get

lim
η→0

lim
ε→0

K214 = 0, t < τ ∗(x), P− a.s. (3.3.75)

Similarly, P-a.s. for t < τ ∗(x)

K213 =− 4Im i

∫ t

0

∫
∇(e−η|ξ|2X

ε
(s))∇Xε(s)dξds

=− 4Im i

∫ t

0

∫
[∇e−η|ξ|2X

ε
(s)∇Xε(s) + e−η|ξ|2 |∇Xε(s)|2]dξds

→− 4

∫ t

0

|∇X(s)|22ds, as ε→ 0, η → 0, (3.3.76)

and

K215 =− 4Im i

∫ t

0

∫
∂j(∇e−η|ξ|2ξjX

ε
(s))∇Xε(s) → 0. (3.3.77)

Finally, for K212 we notice that

K212 =− 2Im i

∫ t

0

∫
∂j(e

−η|ξ|2ξjX
ε
(s))∆Xε(s)

=− 2Im i

∫ t

0

∫
(∂je

−η|ξ|2ξjX
ε
(s)∆Xε(s) + e−η|ξ|2d ·Xε

(s)∆Xε(s)

+ e−η|ξ|2ξj∂jX
ε
(s)∆Xε(s)

=− 2Im i

∫ t

0

∫
∂je

−η|ξ|2ξjX
ε
(s)∆Xε(s)dξds− d

2
K213 −K21

=2Im i

∫ t

0

∫
∂k(∂je

−η|ξ|2ξjX
ε
(s))∂kX

ε(s)dξds− d

2
K213 −K21. (3.3.78)
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It is not difficult to check that P-a.s. for t < τ ∗(x)

lim
η→0

lim
ε→0

2Im i

∫ t

0

∫
∂k(∂je

−η|ξ|2ξjX
ε
(s))∂kX

ε(s)dξds = 0 (3.3.79)

Taking (3.3.74)-(3.3.79) together and passing to the limits, we consequently ob-

tain (3.3.73).

Therefore, (3.3.69) follows from (3.3.70)-(3.3.73). Plugging (3.3.63), (3.3.64) and

(3.3.69) into (3.3.62) we complete the proof of (3.3.58). �

3.4 Notes

The blowup phenomena studied here is in the H1 context, i.e. the initial data x

belongs to H1.

In the deterministic case, it is well-known that, initial data with negative Hamil-

tonian can cause the solutions blow up in finite time (see [40, 22, 58]). The proof is

based on the analyze of the variation.

In the deterministic focusing mass-critical case, i.e. λ = 1, α = 1 + 4
d
, M.

I. Weinstein [94] proved the global well-posedness for the initial data with |x|2 <
|Q|2, where Q is the so-called ground state which appears in the sharp Gagliardo-

Nirenberg inequality and satisfies the elliptic equation

∆Q−Q+ |Q|
4
dQ = 0.

Q is indeed the threshold for blowup in this case, in the sense that there exist blow

up solutions with initial data |x|2 = |Q|2. (see also [63] for a general type of nonlinear

Schrödinger equations). Later on, a major progress was obtained by F. Merle [62].

He proved that, up to symmetries, the only blowup solution with |x|2 = |Q|2 is the

solitary wave X = e−itQ. The proofs were based on the local virial analysis and the

variation characterization of the ground state. In the recent years, numerous works

focus on the L2 small supercritical mass case, i.e. |Q|2 ≤ |x|2 < |Q|2 + ε, for some

ε > 0 small enough. We refer the interested reader to a series of papers by F. Merle

and P. Raphaël [64, 65, 66, 67, 68]. See also [58] for a brief review.

For the further phenomena related with blowup, e.g. the L2-mass concentration

phenomena and the self-similarity, see [91, 89, 70, 95]. Recently, T. Hmidi and

S. Keraani [43] applied a new idea based on the profile decomposition to reprove

the classical results mentioned above. Moreover, this idea was also applied in [50]

to prove the existence of minimal mass blow-up solutions in the L2 context when

x ∈ L2, and it was also used in [49] to determine the threshold W for blowup in the
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focusing energy-critical case where λ = 1 and α = 1 + 4
d−2

, d ≥ 3 (see also Section

2.4 in Chapter 2).

In the stochastic case, the blowup phenomena were first mathematically stud-

ied by A. de Bouard and A. Debussche [13] in the conservative focusing mass-

supercritical case where λ = 1, α ∈ (1 + 4
d
,∞) if d = 1, 2 and α ∈ (7

3
, 5) if d = 3.

They proved that the spatially smooth noise can cause blowup immediately with

positive probability for any given smooth initial data. See also [11] for the additive

noise case. In contrast, different phenomena happen in the focusing mass-critical

case where λ = 1 and α = 1 + 4
d
. The numerical simulations in [14, 26, 27] suggest

that spatially smooth noise is able to delay the blowup, moreover, white noise can

even prevent blowup. We refer the interested reader to [34] for a comprehensive

review.
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Notations

For 1 ≤ p ≤ ∞, Lp = Lp(Rd) is the space of all p-integrable complex valued functions

with the norm | · |Lp . We use the notation Lq(0, T ;Lp) for all measurable functions

u : [0, T ] → Lp such that t→ |u(t)|Lp belongs to Lq(0, T ) and the norm denoted by

‖u‖Lq(0,T ;Lp) =

∫ T

0

(

∫
Rd

|u(t, ξ)|pdξ)
q
p

 1
q

.

C([0, T ];Lp) similarly denotes the continuous Lp-valued functions with the sup norm

in t.

W 1,p = W 1,p(Rd) is the classical Sobolev space, i.e. W 1,p = {u ∈ Lp : ∇u ∈ Lp}
equipped with the norm ‖u‖W 1,p = |u|Lp + |∇u|Lp . Here ∇ = ( ∂

∂x1
, ..., ∂

∂xd
) is the

gradient operator, and we set ∂k = ∂
∂xk

, 1 ≤ k ≤ d. We also set for multi-index

γ = (γ1, ..., γd) with γj nonnegative integrals

∂γ = ∂
γ1
1 · · · ∂γd

d .

The order of γ is |γ| = γ1 + · · · + γd. If |γ| = 0, ∂γf = f . Moreover, The spaces

Lq(0, T ;W 1,p) and C([0, T ];W 1,p) are understood similarly as above.

In the particular case p = 2, L2 is the Hilbert space endowed with the scalar

product

〈u, v〉 =

∫
Rd

u(ξ)v(ξ)dξ; u, v ∈ L2,

and we will set | · |2 = | · |L2 . For simplicity we also set Hk = W k,2 and denote by

H−k the dual space of Hk, k ∈ N. Their norms are denoted by | · |Hk , k ∈ Z.

For two Banach spaces X and Y , L(X, Y ) means the bounded operators from

X to Y . When X and Y are Hilbert spaces, we use the notations L2(X, Y ) for

the Hilbert-Schmidt operators from X to Y . For any Φ ∈ L2(X, Y ), ‖Φ‖L2(X,Y ) :=
∞∑

j=1

‖Φej‖2
Y , where {ej}∞j=1 is an orthonormal basis in X.



134 Notation

C∞
c (Rd) denotes the compactly supported smooth functions on Rd. S and S ′ de-

note the space of rapidly decreasing functions and the tempered distributions respec-

tively. Then for f ∈ S, f̂ means the Fourier transformation f̂(η) =
∫
f(ξ)e−iξ·ηdξ.

Moreover, for f ∈ S ′, and f∨ denotes the inversion Fourier transform of f , f∨(ξ) =
1

(2π)d

∫
f(η)eiξ·ηdη.

X̃[0,T ] is the local smoothing space constructed in [59] up to time T > 0. Precisely,

set B0 = {|ξ| ≤ 2}, Bj = {2j ≤ |ξ| ≤ 2j+1}, j = 1, ..., 2, and B<j = {|ξ| ≤ 2j}. Let

Aj = [0, T ]× Bj, j ≥ 0, A<j = [0, T ]× B<j, j ≥ 1. We consider a dyadic partition

of unity of frequency, i.e. 1 =
∞∑

k=−∞
Sk(D). We say a function f is localized at

frequency 2k, if f̂ is supported in {2k−1 < |ξ| < 2k+1}. The functions at frequency

2k are measured using the norm

‖u‖Xk(T ) =‖u‖L2(A0) + sup
j>0

‖ < ξ >− 1
2 u‖L2(Aj), k ≥ 0,

‖u‖Xk(T ) =2
k
2 ‖u‖L2(A<−k) + sup

j≥−k
‖(|ξ|+ 2−k)−

1
2u‖L2(Aj), k < 0,

where < ξ >=
√

1 + |ξ|2. Then the local smoothing space X̃[0,T ] defined by the

norm

‖u‖2eX[0,T ]
= ‖ < ξ >−1 u‖2

L2([0,T ]×Rd) +
∞∑

k=−∞

2k‖Sku‖2
Xk(T ), d 6= 2

‖u‖2eX[0,T ]
= ‖ < ξ >−1 (ln(2 + |ξ|))−1u‖2

L2([0,T ]×Rd) +
∞∑

k=−∞

2k‖Sku‖2
Xk(T ), d = 2.

In this thesis, C and C̃ will denote various constants, which may change from

line to line.
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