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1 Introduction

Central Limit Theorem and Law of the Iterated Logarithm

Discrepancy and Uniform Distribution

A sequence of vectors (zp)p>1 = (Tn,1,...,%n.d)n>1 of real numbers in [0, 1)4 is called
uniformly distributed modulo one if

1 N
lim — > 1a(zn) = A(A) (1.0.1)
n=1

N—ooo N

for any axis-parallel box A C [0,1)? where 14 denotes the indicator function on the
set A and A denotes the Lebesgue-measure on [0,1)¢. The discrepancy resp. the star
discrepancy of the first N elements of (z,,)n>1 is defined by

N
1
Dy(z1,...,x = sup|— 1a(xn) — AA)|,
~N(z1 N) sup NnZ::l (zr) — A(A)
(1.0.2)
N
N 1
Dy(z1,...,xny) = sup —ZIA(a:n)—)\(A),
Aep | N =

where B denotes the set of all axis-parallel boxes A = Hle[ai, B;) € [0,1)® and fur-
thermore B* denotes the set of all axis-parallel boxes A = ngl[(), B;) C [0,1)¢ with
one corner in 0. It is well-known that (1.0.1) is equivalent to Dy(x1,...,zx) — 0 resp.
Dy (x1,...,xn) = 0 for N — oo. By a classical result of Weyl [57] it is known that for
any increasing sequence (M, ),>1 of positive integers the sequence ((M,x))n>1, where (-)
denotes the fractional part, is uniformly distributed modulo one for almost all x € [0, 1).
This result naturally extends to the multidimensional case. Sequences with vanishing
star-discrepancy have applications in the theory of numerical integration. The connec-
tion is established by the Koksma-Hlawka inequality (see [23]) which states that for any
sequence of vectors (z,,)n>1 C [0,1)? we have

1N
LSt - [ f@)d
N ) /W (2) da

for any function f on [0,1)? where Vi i denotes the total variation in the sense of Hardy
and Krause. Thus the integral can be approximated by the mean of the values which
some points have under f where the approximation error is given by the total variation

< Di(a1,. .. xn) - Var(f) (1.0.3)
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of f and the star-discrepancy of the points. Although (1.0.3) is interesting form a
theoretical point of view, it is of little use in practice. In general the total variation is
more difficult to compute than the integral. But nevertheless, it becomes evident that
sequences of points with low discrepancy give small approximation errors. Therefore we
are not only interested in sequences such that the star-discrepancy tends to 0, but also in
the speed of convergence. For d = 1 Erdés and Koksma [25] and independently Cassels

[16] showed
log(N))5/2+¢
Dy(Miz, ..., Myz) =0 <(g(Nl)/)2> a.e.

for any sequence (My,),>1 of distinct integers and any € > 0 where for simplicity we write
Dn(Miz, ..., Myx) = Dn((Miz),...,(Myz)). Later Baker [9] improved the result by
replacing 5/2 by 3/2. By constructing a particular sequence Berkes and Philipp [13]
gave the lower bound

log(N))/?
Dn(Miz, ..., Myx) =Q ((gN(l/)2)> a.e.

Lacunary sequences

If the sequence (M,,),>1 is growing fast enough, better results can be achieved. Thus we
now introduce lacunary sequences, i.e. sequences which grow very rapidly. We already
give the definition for general dimension d > 1. Let (M,),>1 be a sequence of non-
singular integer-valued d x d-matrices satisfying a Hadamard gap type condition of the
form

1ML ille > a* 1M || (1.0.4)

for all j € Z\{0}, n € N, k > log,(||ji||sc) and some absolute constant ¢ > 1. Here
AT denotes the transpose of a matrix A. Since this extends the definition of lacunary
sequences for d = 1 to the multivariate case we call this system a multivariate lacunary
sequence satisfying a Hadamard gap condition. Now let (M,,),>1 be a sequence of d x d-
matrices such that M, ;; = 0 for all n € N and ¢,7" € {1,...,d} with i # ¢. If any
sequence (M, ;i)n>1 for i € {1,...,d} is an increasing sequence of integers and if

IME oo > ql|MT |00 (1.0.5)

for all n € N and some absolute constant ¢ > 1 we call the sequence (M,,),>1 a lacunary
sequence satisfying a weak Hadamard gap condition. The first function system related
to lacunary sequences which was investigated is the system of Rademacher functions
which are defined by
rn(x) = sgn(sin(2"7x))
for all n € N. Khintchine [40] showed the Law of the Iterated Logarithm for Rademacher
functions, i.e.
N
_1n(x
lim sup n=1"n(7)

=1 ae.
N—oo /2N log(log(N))




With f = r; and M,, = 2"~ ! for all n € N we have f(M,z) = r,(x) and thus Rademacher
functions form a lacunary function system. Since their behaviour is similar to that of
independent, identically distributed random variables, it is reasonable to study systems
(f(Myx))n>1 for general one-periodic functions f of mean zero. Of particular interest
are functions of the form 1.4({-)) — A(A) for some box A C [0,1)? because they are used
to define (1.0.2). For d = 1 and some sequence (My)n>1 satisfying (1.0.4) Salem and
Zygmund [49] proved that for any sequence of integers (a,)n>1 with

S 1/2
ay =0o(Ay) for Ay = 3 (Z a%)
n=1

we have

N
1
Jim P ( y nzl an cos(2m Myz) < t> d(t) (1.0.6)
where P denotes the probability measure induced by the Lebesgue measure on [0,1)?
and ® denotes the standard normal distribution, i.e. for all t € R we have

d() e 2¥’ dy.

vl

Furthermore Weiss [56] (see also Salem and Zygmund [50], Erdés and G4l [24]) showed
that

N
Jim sup Y ey G cos(2m My x)
N—roo \/ZA?V loglog(N)

oo )
N log(log(Ay)) )

With coefficients satisfying ay = o(A]lV_‘S) for some § > 0 Philipp and Stout [47] showed
that there exists a Brownian Motion {W (¢) : ¢ > 0} such that

=1 a.e. (1.0.7)

under the condition

an cos(2rMpz) = W(AnN) +(9(A1/2 %) ae.

M=

n=1

for some p > 0. Therefore for lacunary (M, ),>1 the sequence (a,, cos(2mMyx)),>1 shows
a behaviour typical for independent, identically distributed random variables. One could
ask whether this holds for other periodic functions as well. The answer is negative in
general. By a result of Erdds and Fortet (see [39]) for f(z) = cos(2mx) + cos(4mx) and
M, = 2™ — 1 we have

| P N M t| cos( 7rs)|/2 2d p .
i < u .0.
i Z x) <t \f/ / uds (1.0.8)
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and

N
lim sup 2= f(Mn7)
N—oo 1/ N log(log(N))

Thus neither the Central Limit Theorem nor the Law of the Iterated Logarithm is
satisfied. This result was later generalized by Conze and Le Borgne [18] (see also [4] for
further information). On the other hand Kac [38] showed that any one-periodic function
f : R — R of mean zero which is of bounded variation on [0, 1) or Lipschitz-continuous
satisfies

= 2cos(mzx) a.e. (1.0.9)

. 1 on
Jim P (m;f(z z) < ta) = ®(t) (1.0.10)
if -
o? =E[f] + 2> E[f(x)f(2"z)] #0. (1.0.11)
n=1
Furthermore Maruyama [43] and Izumi [37] proved

N
2’!1
lim sup 21 /(2') =0 ae. (1.0.12)

N—oo /2N log(log(N))

This illustrates that the behaviour of (f(M,x))n>1 does not only depend on the speed
of growth of (M,,),>1 but also on number theoretic properties of the sequence (My,)n>1.
Later on the Central Limit Theorem was shown for more general lacunary sequences.
By a result of Gaposhkin [30]

N
Jim P (; f(M,z) < taN> = &(t) (1.0.13)

holds for sequences (My,),>1 satisfying

1 N 2
0% = / (Z f(Mna:)> dz > CN, (1.0.14)
0 =1

for an absolute constant C' > 0 and one of the following conditions

o MML:leN, for all n €N,

e lim,, oo M]\}f =6, such that 6" irrational for all » € N.

Takahashi [53] showed (1.0.13) for M,,+1/M,, — oo and a-Lipschitz-continuous functions.
The connection between the Central Limit Theorem and the number of solutions of
certain Diophantine equations is due to Gaposhkin [31]. The Central Limit Theorem
holds for lacunary sequences (M,,),>1 satisfying (1.0.14), if for any fixed j,j’,v the
number of solutions of the Diophantine equation

M,j+Myj =v (1.0.15)



is bounded by an absolute constant Cj; > 0 which is independent of v. Observe that
“nice” periodic functions can be approximated by trigonometric polynomials very well.
Thus because of the product-to-sum identities of trigonometric functions the behaviour of
the moments of Y f(M,x) depends on the number of solutions of Diophantine equations
of certain length. Recently Aistleitner and Berkes [2] improved this result: For a lacunary
sequence (My,),>1 satisfying the Hadamard gap condition set

L(N,G,v) = [{1<j,li'| <G, 1<n,n <N:Myj+Myyj =v},
L*(N,G,v) = H1<|j,li'l <G, 1<n,n' < Nn#n':M,+jMyj =v}|,
L(N,G) = supL(N,G,v)
v#£0
(1.0.16)
for any G > 1, v € Z. Let f : R — R be some function of finite total variation which
is one-periodic and satisfies E[f] = 0 as well as (1.0.14) for some lacunary sequence

satisfying the Hadamard gap condition (1.0.4). Aistleitner and Berkes showed that if
L(N,G) =0o(N) for N — oo and any fixed G > 1 then (1.0.13) holds.

Law of the Iterated Logarithm for the discrepancy of lacunary point sets

The Law of the Iterated Logarithm for the discrepancy of an one-dimensional lacunary
point set was shown by Philipp [45]. He proved

1 NDyn(Mqz,..., M
—— < limsup N(Mz,.. ., Myz)

<(C a.e.
4/2 7 Nooo  y/2Nlog(log(N))

where the constant C' > 0 depends on g only. This corresponds to the Chung-Smirnov
Law of the Iterated Logarithm, that is

lim sup NDn(E - EN) _1 a.s. (1.0.17)

Nooo /2N log(log(V)) 2

for any sequence of independent, identically distributed non-degenerate random variables
(€1)n>1 in [0,1) with E[¢] = 0 and E[¢3] = 1. For sequences of type (Mp,)n>1 = (0™)n>1
for # > 0 the precise value of the Law of the Iterated Logarithm was determined by
Fukuyama [28], i.e. for a.e. z we have

\V42/9, if =2,
NDy(0'z,...,0Nz) w, if 8 > 4 is an even integer,
lim sup L = 2y/(0-1)
N—voo /2N log(log(N)) ;\(/9;%11)7 if # > 3 is an odd integer,
1/2, if 0" ¢ Q for all r € N.

Therefore the probabilistic analogy is not complete. The precise value depends sensi-
tively on number theoretic properties of the sequence (My,),>1, mainly on the number
of non-trivial solutions of the Diophantine equations M;{ y== Mg; j =0.
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Aistleitner [1] used the method applied in [2] to prove the Law of the Iterated Logarithm
for function systems (f(Myx))n>1 as well as for the discrepancy Dy (M, ..., Myx) for
point sets defined by a lacunary sequence (My),>1 satisfying the Hadamard gap condi-
tion (1.0.4) under the condition max(L(N,G), L*(N,G,0)) = O(N/(log(N))'*¢). Later
Aistleitner, Fukuyama and Furuya [5] improved this result by proving sufficiency of
L(N,G) = O(N/(log(N))'*¢) for the Law of the Iterated Logarithm for lacunary func-
tion systems and L*(N,G,0) = o(IN) in addition to the former condition for the Law of
the Iterated Logarithm for discrepancy of lacunary point sets.

Functions in several variables

The Central Limit Theorem for lacunary sequences (My,),>1 of d x d-matrices satisfying
(1.0.4) was proved by Conze, Le Borgne and Roger [19]. There it was shown that the
Central Limit Theorem holds if the sequence is satisfying a strong number theoretic
condition, i.e. there is an absolute constant C' such that for any integers G and N the
following condition holds: For 2s integers 1 <nj; <nj <ng <nh <---<ns<n, <N
with ngy1 > ny + Clog,(G) for k € {1,...,5 — 1} and vectors ji,j1,...,Js, Js with
17k loos |77 ||cc < G for k € {1,..., s} we have

S
M jo+MbLjL#£0 = ZM,Z;jHMg;j,g#o.
k=1

Such condition for example is satisfied in the product case, i.e. there exists a se-
quence of matrices (A,),>1 with M = AT ... AT for all n € N. Although it was
stated that the Central Limit Theorem is satisfied with a rate of convergence of order
O((log(N))?/>* N=1/20) with an implied constant independent of d, it was actually only
proved for some constant depending on d since it was only shown that

N 2
/ (Z f(Mnx)> dr < CN
[0,1) \n=1

for some constant C' > 0 depending on d.

Sublacunary sequences

The probabilistic behaviour becomes more complicated in the case of sequences (M, )n>1
with subexponential growth, i.e. [|MTI,]|oc/|[M]]|oc — 1. Although there are such se-
quences which show a similar probabilistic behaviour, there are others for which the
Central Limit Theorem or the Law of the Iterated Logarithm is not satisfied even for
f(z) = cos(2mz). Bobkov and Gotze [14] proved that any orthonormal system (X,,)n>1
where 1/ VN - 25:1 X, for some strictly increasing sequence of integers (M, ),>1 con-
verges weakly to some random variable ¢ satisfies E[¢?] < 1 — lim,, yoo n/M,. Thus
for systems like X,, = v/2 - cos(2rM,x) with some sublacunary integer-valued sequence



(M,,)n>1 the Central Limit Theorem does not hold in general. For further information
on the behaviour of sublacunary systems see e.g. [11].

One of the most interesting examples of sub-lacunary sequences which show the be-

haviour of independent random variables are so-called Hardy-Littlewood-Pdlya-sequences,
i.e. sequences which consist of elements of a semigroup generated by a finite number of
coprime integers sorted in increasing order. Philipp [46] showed the almost sure invari-

ance principle for (cos(2rMyx))n>1 for some Hardy-Littlewood-Pdlya sequence (M, )n>1

and furthermore the Law of the Iterated Logarithm for the discrepancy of (My)n>1.

Later on Fukuyama and Petit [29] showed the Central Limit Theorem for this kind of
sequences. This result was later extended to the multidimensional case. Let S be an

abelian semigroup of endomorphisms of the d-dimensional torus with finitely many gen-

erators Ay, ..., A,. For suitable periodic functions f of mean zero Cohen and Conze [17]

and Levin [42] proved

Ny N,
lim Py .. Zd f (A{“---Aﬁ,vdx) <ton,.n, | =®()  (1.0.18)

min(Ny,...,Ng)—o00 1 a1

where )

N Ny
Ao [ (S S () e
[0,1)2

’VL1:1 ndzl

Results of this thesis

The methods used in early results in this area are based on substantial use of Fourier
analysis such as bounding the size of Fourier coefficients, the tails of Fourier series etc.
In [2] a new method effectively reducing the use of Fourier analysis was introduced which
was used in [1] resp. [5] to show the Law of the Iterated Logarithm.

In chapter 3 we adopt this method to prove the Central Limit Theorem and the Law of
the Iterated Logarithm for lacunary sequences (My,),>1 satisfying a Hadamard gap con-
dition (1.0.4) under some weak conditions on the number of solutions of the Diophantine
equation M j + Mg;,j’ = v. We extend (1.0.16) to the multivariate case by setting

L(N,G,v) = |[{1<n,n<N:
35,5 € %1 < ||jlloo], |li']|oo < G, MLj £ ML = v},
L*(N,G,v) = |{1<n,n <Nn#n': (1.0.19)

35,5 € 21 < |[jllool, 15'|loe < G, M5+ ML = v},

L(N,G) = supL(N,G,v).
v#0

and for all N > 1 we assume

N 2
0]2\, = / (Z f(an)> de>C-N
[0,1)¢ \n=1
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for some absolute constant C' > 0. We prove that for L(N,G) = o(N) for all G > 1 we

have
N
P (Z f(Myz) < tUN) — O(t)
n=1

If furthermore there exists some 0 < 3 < 1 such that L(N,Gy) = o(N?) for any
sequences (Gn)n>1 we show an upper bound on the rate of convergence. Moreover if
XM, = limy_ o0 > 0 and L*(N,G) = L(N,G) = O(N/(log N)'*¢) for some € > 0
we prove the Law of the Iterated Logarithm, i.e.

lim =0.

N—oo

: | >0y f(My)]
lim sup = =+/2rnr, a.e.
N—oo /2N log(log(N)) /
If the sequence (M,,),>1 furthermore satisfies L(V, G,0) = o(NN) we obtain the Law of
the Iterated Logarithm for the star-discrepancy, i.e.
NDy(Mz,...,Myz) 1

lim sup =— a.e.
N—oo /2N log(log(N)) 2

We also prove similar results for lacunary sequences satisfying only a weak Hadamard
gap condition (1.0.5).

The main idea in the proof of the Central Limit Theorem is to apply a Theorem due to
Heyde and Brown [36] which ensures the Central Limit Theorem for martingale differ-
ences sequences satisfying certain moment conditions resp. a consequence of Strassen’s
almost sure invariance principle [52] for which we get the Law of the Iterated Logarithm
under similar moments conditions. The elements of the martingale differences are de-
fined by sums of the form > -\ ¢n(z) where ¢, (z) is a piecewise constant function
approximating f(Myz). The blocks Ay, form a sequence of growing blocks which decom-
poses the set of natural numbers except for small gaps between consecutive blocks. The
filtration is defined by a sequence of o-fields which are generated by a decomposition of
[0,1)¢ into “dyadic” blocks, i.e. their side lengths are negative powers of 2 where the
exponents depend on the magnitude of the “frequencies” M, in the corresponding block
in a certain manner. The Central Limit Theorem is ensured by a Berry-Esseen type
inequality which gives an upper bound on the mutual distance between the distribution
function of the normalized sums of the martingales and the distribution function of a
standard normal distributed random variable which only depends on second and fourth
moments conditions. In fact only for an upper bound of the conditional variances a
condition on the number of solutions of the Diophantine equations are necessary since
all other moments for which we need upper bounds can be estimated in a different way.

Double infinite matrices and the inverse of the discrepancy

Low-discrepancy sequences

Levin proved the Central Limit Theorem for the discrepancy of particular sequences
with small discrepancy which are constructed by ergodic transformations of [0,1)? or



sequences obtained from lattices (see [42] and the references therein for further infor-
mation). One class of this sequences which are obtained via ergodic transformations
is the class of Halton sequences which we introduce now. Halton sequences extend the
definition of Van der Corput sequences to the multidimensional case. For an integer
d > 1let (pi)1<i<a be a system of d pairwise coprime integers. Then for any integer n
and i € {1,...,d} let the p;-adic decomposition of n be given by

0 .
n=> a(jip]
j=0

with a(j,i) € {0,...,p; — 1} for all j > 0 where [{j € NU{0}: a(j,i) # 0}| < oo for all
neNandie{l,...,d}. Forne Nandiec{l,...,d} define

o)

Tni=Y_a(jip;? "
j=0
The sequence (2 )n>1 = (Tn,1,- - -, Tn,a)n>1 is called a Halton sequence in base (p1, ..., pq).

The discrepancy of a Halton sequence satisfies

log(N)?
N

with some constant Cy > 0 which depends on d (see [33]). Observe that the one-
dimensional projection can be represented as the orbit of a von Neumann-Kakutani
transformation. By using a randomly chosen starting point for this transformation Wang
and Hickernell [55] introduced the so-called randomized Halton sequences. Sequences
with a discrepancy satisfying (1.0.20) are called low-discrepancy sequences. Numerical
integration using deterministic low-discrepancy sequences is called Quasi-Monte Carlo
(QMC) integration in contrast to classical Monte Carlo integration which uses indepen-
dent randomly chosen points. Many examples of deterministic low-discrepancy sequences
can be found in the books of Dick and Pillichshammer [21] and also Niederreiter [44]. A
lower bound on the discrepancy was given by Roth [48] who proved

DN(xl,...,xN) S Cd (1020)

/2
Dy(x1,...,2N) > Cdlog(]]\\;)/
for infinitely many N, some constant Cy > 0 depending only on d and any sequence of
points (Tn)n>1-
Although low-discrepancy sequences have best known asymptotic bounds there are diffi-
culties in applying them in practice. There are many applications which demand evalu-
ation of high-dimensional integrals. For example a typical task in finance is to calculate
the expected payoff of a derivative which usually depends on the values of underlying
assets for a long period of time which basically means to evaluate an integral over some
d-dimensional domain where d mainly is the product of the number of time steps and
the number of underlying assets. Therefore dimensions d > 365 are not unlikely in prac-
tical applications. Another example is sampling from the stationary distribution of an
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aperiodic irreducible Markov Chain with a large state space. In the Glauber Dynamics
and also in other Markov Chains the probability of a single state is known only up to
some normalizing factor but the transition probabilities are precisely known. Therefore
it is reasonable to start with some fixed initial state and run the Markov Chain by using
a proposal function which depending on the current state and some random bits deter-
mines the next state of the Chain. Observe that for each step a new random variable is
needed. If the number of time steps is large enough and therefore the number of random
variables is large, the resulting empirical distribution gives a good approximation for the
stationary distribution.

The upper bound on the right-hand side of (1.0.20) only is vanishing if N > e and thus
such an upper bound is not feasible for high-dimensional integration in practice. There
are some particular low-discrepancy sequences which provide good results in some special
applications. For example, Atanassov [8] modified the definition of a Halton sequence
obtaining a constant Cy on the right-hand side of (1.0.20) vanishing exponentially in d.
But in general the situation is dissatisfying. Therefore randomized Quasi-Monte Carlo
methods were introduced which try to combine the advantages of Quasi-Monte Carlo
methods and classical Monte Carlo methods. Observe that the latter ones provide er-
ror bounds which are independent of the dimension while the former ones provide good
asymptotic error bounds. Randomized Halton sequences are one example. For further
example see the book of Lemieux [41] and the references therein.

Inverse of the discrepancy

Since low-discrepancy sequence only give good error bounds if the number of points is
large in comparison with the dimension, one could ask about sequences which have small
discrepancy in the special case of a “small” number of sample points in comparison with
the dimension. This led to the introduction of the “inverse of the star-discrepancy”

n(d,e) =min{N € N: 3zy,...,zy € [0,1)¢, Di(x1,...,2x5) < £}

which states the smallest number of points in [0,1)¢ having the upper bound ¢ on the
star-discrepancy. Heinrich, Novak, Wasilkowski and WoZniakowski [34] showed

n(d,e) = O(de™?) (1.0.21)
with some implied constant which is independent of d and €. Thus there is a sequence
of points in [0,1)¢ with

Vd

which for small N compared with d gives a better bound than (1.0.20). Furthermore
Hinrichs [35] proved
n(d,e) = Q(de™). (1.0.23)

Thus the dependence of d in (1.0.22) is optimal, only the precise order of ¢ is unknown.
In applications it often is desirable to have a sequence which is extendable not only

10



in the number of points but also in dimension. Therefore Dick [20] proved that there
exists a double infinite matrix (xy;)n>1,>1 with numbers z,; € [0,1) such that for any
pair of natural numbers N, d > 1 the projection (zy;)1<pn<n,1<i<q defines an N-element
sequence of points

{(3:171, ... ,a:l,d),. Cey (.TNJ, .. ,xN,d)} C [0, 1)d

with star-discrepancy
dlog(N)
VN
for some absolute constant C' > 0 independent of d. Observe that the logarithmic term
is due to the fact that Dick actually proved that any matrix generated by independent

uniformly distributed random variables satisfies the upper bound with positive proba-
bility. The result was later improved by Doerr, Gnewuch, Kritzer and Pillichshammer

[22] who showed
oV dlog\(/l]% N/d). (1.0.25)

Dy(z1,...,zn) < C (1.0.24)

D?\/(l’l)"'aliN) <

Aistleitner and Weimar [6] later obtained

< V/Cid + Cylog(log(N))
B VN

which is the best possible result because of the Chung-Smirnov Law of the Iterated
Logarithm (1.0.17).

To avoid the iterated logarithm term in the upper bound hybrid sequences which are
partly constructed by random numbers and partly by elements of a low-discrepancy se-
quence were introduced. Aistleitner [3] constructed a matrix where for large n compared
to ¢ the entries x,; are taken from a Halton sequence while for small n compared to 4
they are randomly chosen. He proved that there exists a matrix which satisfies (1.0.22)
uniformly in N and d. In order to prove the upper bound he defined for any dimension
d a system of subsets of [0,1)? such that each subset is a finite union of axis-parallel
boxes and any block A C B* can be approximated well enough by a disjoint union of
a subsystem of this subsets. Furthermore he used the maximal Bernstein inequality to
show that for any of this subsets A and any number N of points the relative number
of points inside A deviates from its Lebesgue measure by Cv/d/v/N - g(A) only with
very small probability. Here C' > 0 is some absolute constant and ¢g(.A) is some function
which decays fast enough for A(A) — 0.

Dy(x1,...,zN) (1.0.26)

Results of this thesis

In chapter 4 we consider a similar constructed double infinite matrix. We define a double
infinite matrix (2, ;)ni>1 where (21);>1 forms a family of independent uniformly in [0, 1)
distributed random variables. While for large n compared to i, i.e. 212% < n —1 or
i = 1, we define z,41; by taking elements of randomized Halton sequences, for small

11



1 Introduction

n compared to ¢ we take fractional parts of some lacunary sequences, i.e. we have
Tntli = <2(Uog2(1)+11)”x17i), instead of independent random numbers z, ;. We prove
that for any € > 0 we have

d
Di(z1,...,zy) < (2576 + 357log(6_1))£

VN

with probability at least 1 — . Observe that in this setup we can not directly use
the maximal Bernstein inequality any more since this inequality only holds for mar-
tingales like the sum of independent random variables of mean zero. Nevertheless, if
the system of subsets is chosen well enough, i.e. any subset has corners of the form
(2~ (Moga(+1Dhg, - 9=(Moga(d)+1Dhg ) for integers aq,...,aq and some small enough
integer h, the points defined by any subsequence n; = k - 2 + « for suitable integers
k,v > 1 depending on h are stochastically independent. Thus by decomposing the
sequence of points into such subsequences we may still apply the maximal Bernstein
inequality. The practical purpose of having points defined by such a lacunary sequence
instead of independent random points is reducing the number of digits which are neces-
sary to simulate those points. To simulate N random points in [0, 1)¢ with a precision of
H digits requires a simulation of dH N digits while by using points from such a lacunary
sequence this number may be reduced to O(dH + dlog(d)N).

Random Matrix ensembles with correlated entries

Previous results

Lacunary function systems also have applications in random matrix theory. Random
matrices are of particular interest in theoretic physics. Initially they were introduced by
Wigner [58] to describe properties of atoms with heavy nuclei. Consider an ensemble
Xy = (\/%Xn,n')lgmn’g ~ of symmetric random N x N matrices such that except for
the symmetry condition the entries X, ,» are independent random variables with mean
zero, unit variance and universally bounded moments. Wigner showed that the mean
empirical eigenvalue distribution converges weakly to the semicircle law as the size of

the matrix tends to infinity. Being more precise he proved

1 Ck /o = rgibes—, K even
lim E | LT (K } _ ) Ok = mprra : 1.0.27
N=ro0 [N (X) {0, K odd ( )

where the coefficients C'x denote the Catalan numbers. Note that many problems in
combinatorics have solutions which are related to Catalan numbers. For example, Cg /o
is the number of non-crossing pair partitions of {1,..., K} for some even K, i.e. there
exist precisely Ck /o pair partitions A such that there are no k1 < ko < k3 < kg with
ki1,ks € S and ks, ky € S’ for some S, S’ € A with S # §’. This fact plays an important
part in the proof that in the limit the mean expectation the values of the traces of X ]Ié
coincide with the moments of the semicircle law which has density 1/27-v4 — 22-1,244.

12



Having many other applications in physics, e.g. in quantum chaos or in telecommuni-
cations, in pure mathematics, e.g. in number theory, and further areas, random matrix
models have been studied intensively in the last decades. In recent years the ques-
tion arose whether the asymptotic behaviour still holds if the independence condition is
weakened. Besides investigations on some specific models so far there are only some few
attempts in this area. Schenker and Schulz-Baldes [51] defined an ensemble of random
matrices Xy where for any N there exists an equivalence relation ~py on the set of
entries of X such that entries from different equivalence classes are independent while
entries from the same class may be correlated. Observe that this model generalizes the
classical case where the equivalence classes are of the form {X,, v, X,,» ,}. They showed
that if the classes are not too large, i.e.

max _ |[{n/,m,m’ € {1,....N}: (n,n') ~n (m,m’)}| = o(N?)
ne{l...,N}

and
max H{m' e {1,...,N}: (n,n) ~y (m,m')}| =C
n,n’;me{l,...,.N}
for some absolute constant C' > 0, and if not too many different entries of the same class
lie on the same row resp. the same column, i.e.

{n,n/,m € {1,...,N}: (n,n) ~n (n,m),n #m'}| = o(N?),

then the mean empirical eigenvalue distribution converges weakly to the semicircle law.
They proved the result without any further condition on the correlation of two entries in
the same equivalence class. It is natural to consider random matrices such the correlation
decays with the distance of two entries. Therefore it is reasonable to study matrix models
where each entry has except for some small errors only a finite range of dependence. As
Anderson and Zeitouni [7] showed the converge to the semicircle law does not hold in
general under this assumption, but further conditions are necessary. Thus although the
conditions given by Schenker and Schulz-Baldes appear to be too strict they can not be
weakened without further constraints on the correlation of different entries. Friesen and
Lowe [27] studied random matrix ensembles with stochastically independent diagonals
but correlated entries on the diagonal. They showed convergence to the semicircle law
for
mn,g{l’i%’]v}E[Xn,n’Xn+t,n’+t] <Ct

for some absolute constants C' > 0 and € > 0. Although it seems to be more reasonable to
study ensembles with independent rows or columns rather than ensembles with indepen-
dent diagonals these ensembles provide some difficulties. Since the symmetry condition
is necessary to have real eigenvalues it implies that the columnwise independence and
rowwise dependence turns into rowwise independence and columnwise dependence by
crossing the main diagonal. This not only seems to be not natural from a stochastic
point of view, but also the mean empirical eigenvalue does not appear to converge to
the semicircle law in general as simulations show.

13
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Results of this thesis

In chapter 5 we introduce random matrix ensembles with
Xn,n’ = f(Mn+n’,1x17 M|nfn’\,2$2)

for two integer-valued lacunary sequences (Mp 1)n>2, (Mp2)n>0 and suitable functions
f- We prove weak convergence of the mean empirical eigenvalue distribution towards the
semicircle law under some further number theoretic properties of the sequence (M, 1)n>1-
To prove this result we show (1.0.27). Furthermore we give examples to show that even
in this particular class of random matrix ensembles the asymptotic behaviour of the
spectrum becomes delicate. We prove that the empirical spectral distribution does not
converge to the semicircle law in general even if the correlation of two entries decays
exponentially in the distance. For f(z1,29) = 1/v/2-(cos(27(x1 +x2))+cos(4n(z1 +12)))
and M, 1 = 2" we show that the mean empirical spectral distribution does not converge
to semicircle law while for any sequence (M, 1)n>1 With My41,1/My 1 — oo for n — oo
and any periodic function f of finite total variation in the sense of Hardy and Krause with
mean zero and unit variance the mean spectral distribution converges to the semicircle
law.
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2 Preliminaries

In this chapter we repeat some basic results on periodic functions of finite total variation
resp. lacunary sequences which are going to be used in the subsequent chapters.
For some integer d > 1 set I = {1,...,d}. We now introduce the total variation in
the sense of Hardy and Krause for periodic functions on R?. Let f : R — R be some
periodic function, i.e. f satisfies f(z + 2) = f(z) for all z € R? and z € Z. For some
subset J C I and points a,b € [0,1)//l with a; < b; for all i € J and some z € [0, 1)\
define

AJ(f7a7 b, Z) = Z (_1)Zie‘l6if(cé)

sef{0,1}171

where ¢5 = (¢51,...,¢s5,4) is defined by ¢5; = d;a; + (1 — 6;)b; for i € J and ¢; = z; for
i ¢ J. Afinite set Vi = {y1...,Um@} C [0,1) with 0 =31 < ... < yp) < 1 for some
positive integer m(i) is called a ladder. A multidimensional ladder on [0,1)¢ has the
form Y = Hie 7 YVi. For a multidimensional ladder ), a subset J C I and z € [0, 1)d set
Viz=1lies Vi x Iigj{z}. Fory € Y. define y; € [0, DIl x [Ti¢{z} such that y,;
is the successor of y; in Y; resp. 1 if y; is the largest element in );. Then we define the
variation of f over Yy by

Vy, () = D 1A(f 0, y4.2)]

yey],z

Denote the set of all ladders );, by Y ;.. Then the total variation of f over [0, 1)“] | is
defined by

Vi(f)= sup sup Vy, (f).
ZG[O,I)IH yJ,zeYJ,z

The total variation of f on [0,1)? in the sense of Hardy and Krause is
Vak(f)= Y Vi)
JCI,J#0

A function f is called to be of finite total variation if Vg (f) < oco.
The following Lemma was proved in [59]:

Lemma 2.0.1 Let f(x) = > ;cza\ oy @5 Co8(2m(j, 2))+b; sin(27(j, z)) be a periodic func-
tion of finite total variation in the sense of Hardy and Krause. Then we have

1
laj|, [bj] < C H il Viierjiz0y(f)-
i€l,j;#0 Ji

for some absolute constant C' > 0 and all j € Z9\{0}.
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2 Preliminaries

Observe that hereafter we always write C' for some absolute constant which may vary
from line to line. Furthermore we always assume that f : R? — R is a periodic function
of mean zero such that the Fourier series of f exists and converges to f.

Thus we have f(z) = > cza (o} @ c0s(2m(j, ¥)) + bj sin(27 (j, #)) with suitable numbers

aj,bj € R for all j € Z%\{0}. For I' € Nd we denote the I'th partial sum of f by
Yr(z) = Z aj cos(2m(j,x)) + bjsin(27(j, z)) (2.0.1)
JELZ,|5;|<Ty
and set pr(z) = f(z) —p(x). U T; = G for all i € I we simply write ¢g(x) resp. pg(x).
The Gth Fejér mean of f is defined by

bi) = o3 S )

+DT
ENg, I <G

— Z a’; cos(2m(j, x)) + by sin(27 (4, x))
J€Z4,|5;|<G

(2.0.2)

where

G+ 1— |5 G+1— |3
a_a]H G+1 bQ:J’Hi

for all j € Z¢ with ||j||c < G. Observe that
pa(o) = [ o+ OKa(0)d
[0,1)4

where Kq(t) = Kp(t) with IT'; = G for all i € I and Kr(t) = [[;c; Kr,(t:) = [L;e; Ka(ti)
is the d-dimensional Gth Fejér kernel and K (t;) is the one-dimensional Gth Fejér kernel
defined by

G l

Ka(t) = ZZ s(2m (ji, @

0 ji=—

B 1 sin(27(l + 1/2,t;))
- G+l zz: sin(2m(1/2,;))
1 (sin(2m((G + 1)/2,:)))>
G+1 2(sin(2m(1/2,t;)))?

> 0.
Therefore we have
@] = || e+ oKa() i
[0,1)4
< HfHoo/ Ko(t) dt
[0,1)4
< I flloo-
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Now we define rg(x) = f(z) — pc(x). Thus we have

ra(z) = Y ajcos(2m(j, x)) + b;sin(27(j, ) (2.0.3)
jez\{0}
where
d'_ Clj, ) ||]HOO>G7
T (- T (1= )+ il <€

and l;j is defined analogously.

Lemma 2.0.2 Let f(z) =} ;cza\ oy @5 €oS(2m(j, z)) + b; sin(2m(j, z)) be some periodic
function satisfying Vi (f) < 1. Then there exists some absolute constant C' > 0 such
that for any G > d the function rg as defined in (2.0.3) satisfies

lrall3 < CdG™.
Proof. We have
lrall= Y a+btt= Y  @++ Y a@+b. (2.0.4)
jeza\{0} 0<]|jllec <G [7]loc>G

(%) (%)

For some given nonempty J C I set

D(G,J) = {je€Z:1<|j| <GforieJj=0forid¢.J},
D'(G,J) = {jez?:j;#0foricJji=0fori¢ Jj¢ D(G,J)}.

To estimate (x) we first by Lemma 2.0.1 observe
1 YY)
]z
> j<2 20 2 (gmp) (-1I0 Vi(h)*
; L 2| G+l
0<H]||OO<G JCI,J#D jeD(G,J) \ieJ ieJ
By definition of Vi (f) it is enough to show
) 2 i 2
Ji 1
=2 — 1-— 1-— < 2.0.
V(G,J) | > <‘||2W|ji|) ( '||< G+1>> < CG (2.0.5)
JjED(G,J) \ieJ icJ

for some absolute constant C' > 0. By decomposing we have

B 1 ’]Z 1 |]2|
V(G,J) =2 Z Z HQW’jZ|G+1 H 27| 4] (1_G+1)

K,K'CJ,K,K'#0 j€D(G,J) icK i€J\K
1 | 1 i
11 273, G|JZ|1 11 273 <1_G|jz|1>'
ieK’ mljil G + i€J\K' il +
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2 Preliminaries

Thus we get

V(G D)=2 > WK K') WaK,K') Wa(K, K') - Wy(K, K')
K,K'CJ,K,K'#0

where

/ 1 S 1 1
wir k) = ] (%)2]2 s 1l i@

iEKNK' i=—G iEKNK'
G
G
CCEER (RS S U
e J\KNJ\K' Ji=—G 1€ J\KNJ\K"’

Since KN K' # (0 or KNJ\K' # 0 and J\K N K’ # () we conclude
V(G,J) < > O e (2.0.6)
K,K'CJ,K,K'#0

for some absolute constant C' > 0 and therefore (2.0.5) is verified. We now estimate
(¥%). By Lemma 2.0.1 we have

doai+b < > ) a+b

17]loe>G JCI,J#0 jeD'(G,J)
1 2
Il <2w|ji|>2> U

e r(0

JCI,J£0 jeD'(G,J

We furthermore for some nonempty J C I get

1 N D\ TS
jeD’Z(G,J) <EW> : Z;(l) 2;(2@)2 ' 2j§c::+1 (2mj)?
< 2(1) (5%)
< 3 (%)
< lozclzG—l
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for some absolute constant C > 0. Therefore we have

d @l +b<cda!
3l]00>G

and the Lemma is proved.
With L(N,G,v) as defined in (1.0.19) we have

Lemma 2.0.3 Let f : R — R be a periodic function satisfying Vir(f) < 1 and
let (My)n>0 be a lacunary sequence of matrices satisfying the Hadamard gap condition
(1.0.4). Then we have

N 2
/ (Z f(Mnx)> dz < C(log(d)||£I3 + |1 f1]2) N (2.0.7)
[0,) \n=1

where C' > 0 is an absolute constant depending only on q. If the sequence (Mpy)n>1
furthermore satisfies L(N,G,0) = o(N) for any fized G > 1 then we have

N 2
. 1
]\}Hn N/ ( f(Mnx)> dz = || f||3. (2.0.8)
oo [0,1)4 1

n—

Note that hereafter we write log(z) for max(1,log(z)).
Proof. For [|jl[oc; [|7'|lec < G and k > log,(G) we have
1My 5 lloo < 1M ool loo < @ 1M pillool 17 loo < |1 M7pd oo (2.0.9)

Therefore we obtain M, j’ # MnT+kj. Now let pg be the Gth Fejér mean of f. Then for
some k > log,(G) we have

Pa(Mn)pa(Mpsrt) = ay cos(2m{u, x)) + By sin(2m(u, z))

u

where any u is of the form M j + M, j’ for some 1 <||j]|oo; ||5'||cc < G- Therefore by
(2.0.9) we get

/[0 e pa(Myx)pa(Mpyipx)de =0 (2.0.10)

for k > log,(G). By Lemma 2.0.2 for any k£ > 1 there is a trigonometric polynomial gy,
with dg?* — 1 < deg(gx) < dg** such that

f — grll2 < Cq7*.
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2 Preliminaries

Therefore for k' > log,(dg®*) by (2.0.10) and Cauchy-Schwarz inequality we have

| 0 () da| < | [ (7 = 90 (M) {0y a00) d
0,1 [0,1)
-+ Mn Mn 1) d
/[omgk( =)0k (M) do (2.0.11)
n / (M) (f — gi) (M) i
[0,1)4
< 2C||fll2q”"
since ||gx|l2 < ||f||2. We obtain
N 2
[0,1) \n=1
N N-—n
<NIfE+2Y Y / o) f (M o) de
n=1k'=1

<N||fI]3 + 2N (log,(d) +2) ||f||2+22 Z

n=1k'=log, (d)+3

/ F(Mo) f (M o) dee
[0,1)

N oo
<N||f|3 + CNlog,(d) ||f||2+zz 1fll2g~"
n=1k=1
<C(log(d)||fI3 + |l fll2) N

Thus (2.0.7) is shown.
The proof of (2.0.8) is similar. For k' > log,(q%*) instead of (2.0.11) we get

‘/[0 1y f(Mn$)f(Mn+k$> dx| < CHfHZdl/Qq_k

and similarly

< C||f]|2d"?q7*

/ s1(Mypx)so(Myypx) dz
[0,1)

where for i € {1,2} the function s; is of the form pg, or rq, for some suitable number
G; > 0.
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For any G > 1 we obtain

1 N ’
] (Crana) a-ig
[0,1) \n=1

9 N N—-n
<2 [ S i)
n=1 k=1 |”[0,1)*
C N N-n
<SS 2 min(G2, g
n=1 k=1
N N—-n
*Z 3 / 6 (Mo)pe (M) d
N = 1 k=1 )

SCHszdl/QG_l/2

+(2G + 1)2dh(NN)

for some function A(N) with h(N)/N — 0. Observe that such a function exists by
assumption on L(N,G,0). Since the constant G > 1 can be chosen arbitrary, (2.0.8) is
shown.

Lemma 2.0.4 Let (My)p,>1 be some lacunary sequence satisfying the Hadamard gap
condition (1.0.4). For any n,n' € N and j € Z¢ with ||j||cc < G for some G > 2 there
exists at most one j' € Z¢ with ||j'||eo < G such that

HMT] iM 3 Moo < ‘|M$”|oo (2.0.12)
where n” < min(n,n’) — log,(G).

Here (2.0.12) has to be understood in the following sense: For n,n’,j there exists at
most one j' with ||[MIj + ML ||« < |[ML ||« and at most one possibly different j’
with [|M7] = MZ7o0 < || ML |-

Proof. Suppose that (2.0.12) is satisfied for some n,n’, j, 7. Now take some j” # j'. We
observe

1My 5 £ My lloc 1M (5" = " )loo = 1My 3 % Myl oo
GHMﬂHoo—IIMnnHoo

1Moo

v Vv IV

Therefore the Lemma is proved.
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2 Preliminaries

Lemma 2.0.5 Let p(z) = > czd o< ||j|| <G @ €OS(27(j, ) + bj sin(27(j, z)) with G > 2
be some trigonometric polynomial satisfying ||p|lec < 1 and Vg (p) < 1. Let (Mp)n>1

be a lacunary sequence satisfying the Hadamard gap condition (1.0.4). Then we have

N 4
/ (Z p(Mnx)> dz < CN? (2.0.13)
[0,1)4

n=1

for some constant C > 0 which depends on q and d. If furthermore N > max(Gd~*,d)

then we have
N 4
/ (Z p(Mnac)> dz < C(log(d))*3N? (2.0.14)
[0,1)4

n=1

for some absolute constant C > 0 depending only on q.

Proof. We only prove (2.0.14). The proof of (2.0.13) is essentially the same.
First we are going to show

N
P ( > p(Myz)
n=1

for some constant C' > 0 depending only on ¢. For some 0 < 8 < 1 set P = | N?| and
I = [N/2P]. Without loss of generality we may assume 3N* < ¢V ’~1. There exists
some Ny € N depending only on ¢ with 3N* < ¢V "1 for N > Ny. Therefore there is
some constant C; > 0 which depends only on ¢ and § such that (2.0.14) is satisfied with
Cy and any N < Np. Since N > G? we have log,(G) + log,(3G) < |NB]| for N > Np.
Now define

£3/2
> NN) < Cexp <—8010g(d)> (2.0.15)

min(P(m+1),N)

n=Pm+1

By Markov’s inequality and Cauchy-Schwarz inequality we obtain

N N
P < Zp(Mn:n) exp (/{N Zp(M,ﬂ)) dx
n=1 1)

n=1
where Ky > 0 and

>t\/]V> < 2exp(—/£Nt\/ﬁ)/

[0

< 2exp(—/{Nt\/N)I(/<N, l)l/QII(/QN, 1)1/2
(2.0.16)

-1

I(kn,l) = H exp (26 nUam () dz,
[0,1)¢ m=0
l
I'(kn,l) = / H exp (26 nUam—1(7)) dz.
[0,1)¢ m=1

Since I(kn,l) and I(kn,l) can be estimated similarly, we only estimate the first one.
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Using e/l < (1 + 2z + 22)el*l” we observe

-1 -1
I(kn,1) < exp (Z |/<;NU2m(:c)|3> [T+ snUam(z) + (55 Usm(2))?) dac
0.1)

m=0 4 m=0
(2.0.17)
For some m > 0 we have
Uz (x Z ajcos(2m(j, x)) + B sin(2m(j, x))
jezd

for suitable numbers «a;, §; for all j € Z%. Now set

Vom(z) = > o cos(2m(j, ) + B; sin(27 (j, z))

FELL|5]loo <[ M |loo

for m’ = |2Pm —log,(G)] and furthermore Wap,(z) = U3, (x) — Vam(z). To estimate
|Vam ()| observe that by Lemma 2.0.4 for any 1 < n,n/ < N and j € Z¢ with |[|j||cc < G
there is at most one j' € Z? with ||j'||cc < G such that |[Mj £ ML ||l < ||ML]|s
where 7" < min(n,n) —log,(G). For [|j]]ec, |[§'[lcc < 1/2- ¢! we have

IMEG+ ML |00 > q'”_” ML

Thus for |n — n/| > log,(2) we obtain |[|MIj + M j'||oc > [|ML/||s. Then by Lemma
2.0.1 and Cauchy-Schwarz inequality we have

N
Vam(z)| < ) > (laj + [bj1)(lajr| + [bje]) < Cllpll2N (2.0.18)
/=1 1< |jl]oo |15 loo <G,
1M GEM T 5 oo <IIM] ) oo
where the constant C' > 0 depends only on ¢. Since
0<1+ /inUQm(in) + (/{nUQm(l‘))?
by Lemma 2.0.3 we obtain

I(kn,1) < exp(cnf‘ N'*2)

H + C(log(d)|[pll3 + [pll2) P + kinUszm(z) + 63 Wam(x)) dz. (2.0.19)
[0,1)% m

Furthermore we get

kN U () 4+ K3 Wy ( Za] cos(2m(j, z)) + B;sin(2m (4, x))

for suitable aj, 8; and j € Z4 satisfying ||ML,||oo < ||jlleo < 2G||M P(2m+1 Hoo
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2 Preliminaries

Now for 0 < k < m let jor be any frequency vector of the trigonometric polynomial
1+ C(log(d)||p||3 + ||pll2) N + £nUsm () + 63 Wam (2). If jom # 0 then we get

m—1
[|72m]loo — Z 172k oo
k=0

m—1
> |[ME oo = 2G>~ (| Mpgag 1)1
k=0
m—1
> 3G||Mpam-1)rllec = 2G| Mp(2p—1yr|loo Z g" G =P Em=1) (2.0.20)
k=0

1
. <3 - zl_q_zp) GIM B g1y lloe

>0

where the second inequality follows by assumption on P > log,(G) + log,(3G) and the
fourth inequality follows by P > logq(\/g) which without loss of generality we may
assume. Therefore by (2.0.19) we have

-1
I(kn,1) < exp(CrYN'T2P) [T 1+ Cog(@)lpll3 + [Ipll2) P) da.
[0,1)? m=0

Plugging this into (2.0.16) yields

|

for some absolute constant Cp. Choose 8 = 1/4. Then for

N

Zp(Mnx)

n=1

> tﬁ) < 2exp (—KNt\/N—F Cor3y N2 4 log(d)fi?VN)

(2.0.21)

t
N 20 log(d) VN

and 0 < t < Cplog(d)? we observe

exp (—HNt\/N + Cor3I N 4 log(d)/f?VN)

¢ 3 ¢
= Colog(d)—5———= + C —
exp( olog( )403 log(d)?2 - 98C3log(d)®  2Cy log(d)>

- (‘ 4C, ig(d) (1 " 20, lzg(d)2)> (2022)

t2
< - .
—eXp< 8oolog(d)>
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A similar calculation for

oV
N9 JCoN

and t > Cylog(d)? yields

exp ( NtV N + Cory N8 1 Cplog(d) HNN

13/2 13/2
Co log +Co 3/2 o A1/2
400 8CE? 20y

= exp

| /\

£3/2
801/2

Combining (2.0.21), (2.0.22) and (2.0.23) we get (2.0.15). Therefore we have

N 4 oo N
/ (Zp(Mn:r)> de < / tN%lIP(
[0,1) \n=1 0

ZP(Mnx)

n=1

B °°Ct Ly (R
- o log(d) 8C log(d)
& 7JL/):%/z (t/):s/z
< N? ( - log(d))?/3 dt!
< /()Clog(d)exp SO (log(d))

where in the last line we substituted ¢ = t/(log(d))?/3. Thus we observe

N 4
/ (mex)) dz < C(log(d))?/* N?
[0,1) \n=1

> t1/4N1/2>

for some constant C' > 0 which only depends on g. Therefore the Lemma is proved.

£3/2 203/2
:eXp< 801/2< Y log(d) (2.0.23)
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3 Central Limit Theorem and Law of the
Iterated Logarithm

In this chapter we discuss the fundamental results on the probabilistic behaviour of
multivariate lacunary sequences satisfying the Hadamard gap condition (1.0.4). After
presenting the main theorems in section 3.1 we prove the Central Limit Theorem in
section 3.2. The Law of the Iterated Logarithm is shown in section 3.3. On this basis
we establish the Law of the Iterated Logarithm for lacunary point sets in section 3.4.
Furthermore in section 3.5 we demonstrate modifications of the theorems discussed so
far resp. their proofs for multivariate lacunary sequences satisfying the weak Hadamard
gap condition (1.0.5)

3.1 Main results
The Central Limit Theorem for multivariate lacunary systems reads as follows

Theorem 3.1.1 (Central Limit Theorem) Let (M,),>1 be a lacunary sequence of
non-singular d X d-matrices satisfying the Hadamard gap condition (1.0.4). Furthermore
assume that L(G,N) = o(N) for any fized G > 2. Let f : R — R be a bounded,
periodic function of finite total variation in the sense of Hardy and Krause. Assume
that the Fourier series of f exists and converges to f and assume that there exists some
absolute constant C > 0 such that

N 2
ok = / (Z f(Mnx)> dx > C - N. (3.1.1)
[0,1)¢

n=1

for any N > 1. Then for allt € R we have

N
P (Z f(Mpz) < tJN> — ®(t)
n=1

If furthermore for some 0 < B < 1 we have L(N,Gx) = O(NP) for any sequence
(GN)N>1 with Gy < dN for all N > 1 then for allt € R and sufficiently large N we get

N
P (Z f(Myz) < toN> — B(t)

n=1

lim
N—o0

= 0. (3.1.2)

- Cd1/5 log(N)3/5 + log(d) log(N)
= N min(1/8,(1-5)/5)

(3.1.3)

with some absolute constant C' > 0 which only depends only on q.

27



3 Central Limit Theorem and Law of the Iterated Logarithm

Under a slightly stronger condition on the number of solutions of the Diophantine equa-
tion we also obtain

Theorem 3.1.2 (Law of the Iterated Logarithm) Let (M,),>1 be a sequence of
non-singular d X d-matrices satisfying the Hadamard gap condition (1.0.4). Furthermore
assume that for any fized G > 1 and some € > 0 we have L(N,G) = O(N/(log N)1*¢).
Let f : RY — R be a bounded, periodic function of finite total variation in the sense
of Hardy and Krause. Assume that the Fourier series of f exists and converges to f.
Additionally, let f and (M,)n>1 be given such that for

N 2
‘712\7 = / (Z f(Mnx)> dx
[0,1) \n=1

there exists Xif p7,, > 0 with
2

lim UWN = S, (3.1.4)

N—oo
Then we have

, | Sy S (M)
lljl\flljélop \/2Nlog(10g(N))_\/2f’Mn a.e. (3.1.5)

We now state a version of the Law of the Iterated Logarithm for the discrepancy of point
sets defined by multivariate lacunary sequences with not too many non-trivial solutions
of the Diophantine equation:

Theorem 3.1.3 Let (My,)n>1 be a lacunary sequence of non-singular d x d-matrices sat-
isfying the Hadamard gap condition (1.0.4). Assume that L(N,G) = O(N/(log N)'*¢)
and furthermore L*(N,G,0) = o(N). Then the discrepancy of (Mpx)n>1 resp. the star
discrepancy satisfies the Law of the Iterated Logarithm, i.e.

NDy(Mz,..., Myx) NDy(Mx,...,Myz) 1

lim sup = lim sup =— a.e. 3.1.6
N—oo /2N log(log(N)) N—oo /2N log(log(N)) 2 ( )

3.2 Central Limit Theorem

The proof of Theorem 3.1.1 is essentially based on the following Theorem due to Heyde
and Brown [36] which is a consequence of Strassen’s almost sure invariance principle for
martingale differences sequences. We will use a generalized version stated in [2].

Theorem 3.2.1 ([2, Theorem B],[36]) Let (Xy, Fr,k > 1) be a martingale differ-
ences sequence with finite fourth moments. Set Vi = Eszl E[X?|Fr—1] and let (bx)x>1
be a sequence of positive numbers. Then we have

1 & K EXY+E[(Vk - b))
P(M;Xk<t>—@(t) gA( Lk . (3.2.1)

bic

sup
t
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3.2 Central Limit Theorem

where A is an absolute constant.

Proof of Theorem 3.1.1. First we are going to show (3.1.3). Therefore for some fixed
but large enough integer N > 1 set G = |[dmax(2, N%)]| for some 0 < o < 1 and
define p = pg and r = rg as in (2.0.2). Without loss of generality we may assume
[|fllo < 1 and Vg (f) < 1. Therefore it is easy to see that ||p|la < [|f]l2 < 1 and
2lloo < |1flloo <1 as well as [|7]loo < ||f]loo + |Pl|loo < 2. We now decompose the set

{1,..., N} into consecutive blocks Ay, A5, Ao, ..., A}, A, ... such that the blocks have
length

|A}] = [2(1 + 2n) log, (k) + Cac], |Aky:L1mfﬂcgj;kﬂ.

for some 0 < n < 1. The constant Cy ¢ is defined by
Cac = C(log(G) + log(d) + dlog(51og(G))) (3.2.2)

for some large enough C' depending only on ¢. It can easily be shown that A} | < [Ag]
for all £ > 1. In order to define a suitable martingale differences sequence we replace f
by its low-frequency part p which is a finite trigonometric polynomial. Furthermore we
will neglect the indices in A}. The purpose of this is having a fast enough decreasing
ratio
’|M(k_1)+||oo k72(1+2n)q70d,(;,
1Moo

where kT, k™ is the largest resp. the smallest integer in Aj. Later on it will be shown
that the asymptotic size of >.°_ #(M,z) and 3, ZneA; p(Mpz) can be neglected. We
now approximate p(M,z) by a piecewise constant function ¢, (x) which is necessary to
define the martingale differences sequence. Let

m(n) = [logy (|| M+ [[oc) + (1 + 217) log,(k) + Cg ]

where k = k), is defined by n € Ay, and CQ,G is a constant depending on ¢, d and G
such that

2(1 +n)logy(Ca,q) + logy(G) + logy(d) + (2d + 1) logy (5 log(G))
<Cyq

(3.2.3)
<logy(q)Cac — 2(1 +n)logy(Cac) — dlogy(5log(G)).

Observe that such a constant C/, . exists if Cy ¢ in (3.2.2) is chosen large enough. Let
Fi be the o-field generated all sets of the form

U1 v+ 1 « o Vd vg+ 1
om(k+)? om(k+) 7 [ om(kT)? 9m(kY)
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3 Central Limit Theorem and Law of the Iterated Logarithm

with some v; € {0,1,.. . omikT) 1} and i € {1,...,d}. With x,2’ € A for some atom
A = H;i:l Ap,i € Fi, we have

d
p(Maz) - p(Moz)| < 3 sup |2 p(Mny>‘ 2
i=1 yEAL %
< Cd||M]||5G (5 log(G))*27m™)
< C- C;é(1+n)k—(l+2n).

Here the second inequality follows by Lemma 2.0.1. The third inequality follows by
(3.2.3). Therefore on any atom of Fj, we easily can find some constant function, say @,
such that

p(Mz) — Gu(@)| < C - Cpa T E=(420), (3.2.4)
We have
p(Myx) = Z ay cos(2m (ML j, ) + v sin(2m(MZIj, z)).
1<]ljlloo<G

Thus for any atom A,_1 C Fir_1 we obtain
1

7)\@4]%1) /Ak_lp(Mn:L‘) dx

1
< - !
= AMAg-1) Z a3

1< [jlloo <G

cos(2m(MTj, x)) dx

k—1

/
+ |65

/ sin(2m (ML j, x)) da
Ap_1

where A denotes the Lebesgue-measure on [0, 1)¢. For fixed n and j choose i € {1,...,d}
such that [(ML'5);| = ||[M]I j||. Then we observe by angle sum and difference identities
of trigonometric functions that

/ cos(2m(MTj, x)) dx = / sin(2m (ML j,2)) dz = 0
By, By

for any box By such that By, = Ay for i # i and AN(By;) = v/||MTj||o for some
integer v. Thus we have

=il
A e p(M,x) dx
AMAg-1) |,
/ /
< Z ’a’+’b‘2 ((k—1)*)
H k 1)+HOO 1 ’
+2noC'
< > (el + 1D S, || ET212%e (39 5)
1)1l <G 4 k-fnog allee

< C - (5log(G)) q*C’d,Gk*(1+2n)20d,
<C- C (1+77)k—(1+2n).
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3.2 Central Limit Theorem

Now set
on(z) = Pn() — E[dn|Fr-1].
Then by (3.2.4) we have

Ip(Mpz) — pn(2)] < |p(Mpz) — @n(2)| + [Pn(z) — on()]
< C. C;é(1+n)kf_(1+2n)

(3.2.6)

for some absolute constant C' > 0 depending only on ¢q. Thus p(M,,z) can be approxi-
mated by a function ¢, (z), which is constant on any atom of Fj and satisfies:

L |p(Mpr) — pn(z)] < C- Cd_’é(l—'—n)k’(pﬂ") for all z € [0,1),
2. Elpn|Fr—1] =0 forall n € Ay.

We now define

K+1
Xi =Y enl@), Vip =Y EX{|Fil,
[ISTANA k=1

where K is given such that N € A/K+1 UAg41. It is easy to see that (X, Fy) is
a martingale differences sequence. We are going to approximate Zivzl f(M,x) by

Zszl X in order to apply Theorem 3.2.1. Therefore we need some more notations.
For k € {1,..., K 4+ 1} define

Y, = Z p(Mpx), Yk' = Z p(Myx).

neAy neA)
We observe
K+1 K+1
N < ST AL AR <237 (A < Oyt O K
k=1 k=1
and
K K
_ 1
N =S IAL 4+ (A = A = On ! Ch R,
k=1 k=1

There are constants C'1, Cy > 0 such that
Cln_l/(H”)CJ,éNl/(H”) <K< 0277—1/(1-5-77)0(;7%;]\71/(1-1-77)‘ (3.2.7)

By definition we have the following decomposition

N K+1 K+1 K+1 N
ST FMur) =D X+ Y (Ve = Xi) + DY+ Y r(Myw).
n=1 k=1 k=1 k=1 n=1
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3 Central Limit Theorem and Law of the Iterated Logarithm

Then standard estimates give

N K+1
P(Zf(Mn$)<tUN> < P <2Xk (t+¢) UN>+IP’<
n=1

HE»(

for some € > 0 as well as

N K+1 K+1
P(Zf(Mn.T)ZtO'N> > <ZXk t—E UN)—P( (Xk—Yk) >&‘3-N>
n=1 . . ]\1;:1 .
(Zyk ) P(;T(Mnx) >3>.

Since both inequalities can be estimated analogously we will only focus on the first one.
First we estimate the three latter terms before we estimate the first one by applying
Theorem 3.2.1. In order to estimate the second term by (3.2.6) we have

K+1 K+1
D (Xe=Yo)| = 1> | X eal@) = 3 p(Maz)
k=1 k=1 neAg neAy

K+1

IN

Z C|A| - C —2 1+77)k (1+2n)

< O —10 (1+77)

for some constant C' > 0 depending only on g. Therefore by Chebyshev’s inequality we
see that

K+1
P( > (X =V > ”) <o 20 FMe N (3.2.9)
k=1 3

To estimate the third term we use the definition of Y}/, Lemma 2.0.3 and (3.2.7) to get

K+1 2 K+1
SV < €Y 1AL log(d)
k=1 2 k=1

< Clog(d)NY 3+ Jog(N).
Thus by (3.1.1) and Chebyshev’s inequality we obtain

(2

K+1

ZYk

N w) < Clog(d)e2N-1/0+D Jog(N). (3.2.10)
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3.2 Central Limit Theorem

With another application of Chebyshev’s inequality, Lemma 2.0.2 and Lemma 2.0.3 we
get the following estimate for the fourth term

4

Thus by (3.2.8),(3.2.9),(3.2.10) and (3.2.11) we have

> 5?) < Clog(d)e2d"/?G™"/2, (3.2.11)

N
Z r(Myx)
n=1

N
P (Z f(Mpz) < taN>

K+1
<P (Z X < (t+ 5)0N> + Cn 2 log(d)e 2(N V4N Jog(N) + d/2G1/?).

k=1
(3.2.12)
Now for any integer k € {1,..., K + 1} define
N 2
52 = Z/ Z p(Myx) | dx.
=1 J[0,1]¢ \nea,
Thus by we obtain
N
P (Z f(Myz) < taN) — ®(t)
n=1
K+1 o .
<|P ZXk <sky1(t+e) M) - ((t+5) = )
1 SK+1 SK+1
(3.2.13)

SK+1
+ Cn 2 log(d)e 2(N V4N Jog(N) + d/2G~1/?).

+ ‘(I) <(t+£) oN ) —(I)(t)’

To apply Theorem 3.2.1 we need a sequence of positive numbers (bx)g>1. In [36] the
sequence was given by S5 | E [E[X?2|Fk—1]]. Here we take s% instead since later we
are going to estimate the conditional second moments of X} by those of Y. In order to
estimate the second term on the right-hand side of (3.2.13) we now show that for some
C > 0 we have

lon — sicq1] < (Cp~ YO+ 1og(d)(NY O+ 1og(N) + NdY/2G=1/2))1/2, (3.2.14)
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3 Central Limit Theorem and Law of the Iterated Logarithm

Therefore we use standard estimates and observe

2

S%{_H/ Z p(Myx) | dx
[0,1)¢

(3.2.15)

nEUi{:ll
K 2 2
< / Do 2 pMax) | = | Y p(Mya) | ] da
0,07 \ k=1 \neA, neUR AL
< Z / p(Myx)p(Myx) dx
n,n’EUkAk, [O’l)d
(n,n") AKX Ay
=0
since ||[Mj £ MLj'||so > 0if 1 < ||j]loc 5]l < G and |n —n'| > log,(G). We now
decompose
N N
S fMuz)y = > pMax)+ > p(Muz)+ Y r(Myx)
n=1 neup A neUp Ay, n=1

By (3.2.15) we have

Z p(MnLL‘) S SK+1-

nEUf:ﬁl Ay

Now with Lemma 2.0.3 and (3.2.7) we obtain

2

1/2
S p(Mua)|| < (cn—1/<1+ﬂ> log(d) N/ 1+ log(N))
neuf;llA;C 9

By Lemma 2.0.2 and 2.0.3 we observe

> s < (Clo@d e AN)

K+1
neU, Apg 9

Therefore we obtain (3.2.14). If we choose N € N large enough such that

N - 9C"n~1/ (4 Jog(d)
NY@+n) log(N) + d/2G-1/2N — C’

where the constant C’, C” > 0 are defined such that (3.1.1) is satisfied with C' =

(3.2.14) is satisfied C' = C” then we obtain

vC'N

— <
|UN 8K+1\_ 3
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3.2 Central Limit Theorem

Immediately we observe

2V C'N
SK+1 ZO’N— UN_SK-H‘ Z 3 . (3.2.20)
We furthermore get
IN__ 1‘ < (O~ YO+ 10g(d) (N~ O+ 1og(N) + d/2G~1/2))1/2 (3.2.21)
SK+1

Thus it can easily be shown that for a suitable constant C' > 0 depending only on ¢ and
some large enough N fulfilling (3.2.19) by Mean Value Theorem we have

’cp <(t+5) N ><I>(t)'

SK+1
ON ON L o2 ON
< e+ -1t sup{e t<u<(t+e¢ }
<SK+1 <3K+1 > ') V2 ( )3K+1 (3.2.22)

< (O™ log(d)) (e + (N log(N) + d2G1/2)1/2),

We plug this into (3.2.13) and get

N
P (Z f(Myz) < taN) — B(t)
n=1

K+1
P (Z X, < sK+1t) — D (t)

k=1
+ (Co 4 og(d)) V2(e + (V14D Log(N)  d 26121 2)

+ Cn2log(d)e 2(N~1FM 1og(N) 4 d/2G~1/?).

<

(3.2.23)

Therefore it remains to estimate

K+1
P (Z X, < 3K+1t> —(t)

k=1

for which we use Theorem 3.2.1. By Lemma 2.0.5 we easily see

K+1 K+1
STEXY < ST Clog(d)??Ax)? < Oy~ log(d) 3055 K, (3.2.24)
k=1 k=1

We define

Sk :/ Z p(Myx) | dx.
[0,1)¢

neAg
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3 Central Limit Theorem and Law of the Iterated Logarithm

By (3.2.4) we observe | X7 — Y?| < Cn~2k~! and therefore we obtain

K+1

Z E [Y? — k| Fr-1]

k=1

+ Cn%log(K). (3.2.25)
2

Vi1 — skpallz <

We now are going to decompose the terms Yk2 — ¢g. Therefore we set

Riw) = 3. S p(Ma)p(Mya),

neAy n'€Ayg,
[n—n'|<1+log, (G+1)

Qr(z) = Y;f—Rk(w)-

Furthermore we define

a'a abt,
TG, 5 n,n',z) = J2 os(2m(MLj + MLj' x)) + sz sin(2m(MLj + MLj', x))
b/a' b/ /
+ J2] sin(2m (M5 + M%Lj' x)) — j2] cos(2m (Ml j + ML 5 x)),
a-a’,
j

/ AN,
— / e T, ajbj T,
T (4,5 ,n,n',x) = 5 cos(2m (ML j — MLj' x)) + 5 sin(2m (ML j — MLj', x))

b/al b/ /
+ 32] sin(2m (M5 — M%Lj' x)) — j2] cos(2m(MLj — MLj' x)),

(3.2.26)
for 1 <||5lloos ||5']loc < G, n,n' € Nand x € [0,1)%. We set
Rk(l‘) = Z Z TJr(juj/ananlvx)
n,n' €A, 1< lo0, 13" [Joo <G,
|n— n’|<1+logq(1+G) |MT +MT/]'Hoo>||M(k 1)+||<x,
(3.2.27)
+ > > (.5’ \n,n’, x)
' €Ay, L loo |17l leo G,
|n— n|<1+logq(1+G)||MT] MT ]/HOQ>||M(Ic 1)+||oo
and
Sp(z) = > > T(.4"n.n' )
n,n' €A, 1<]1j]loc, 115" [le0 <G,
In— n/|<1+logq(1+G’)0<||MT]+M J/HOO<||M(I¢ 1y lloo
(3.2.28)
+ > > T=(j.5'\n,n’ ).

n,n/ €Ay, 1<HJH007HJ llo <G,

[n— n/|<1+logq(1+G)0<HMT] M7 ]/HOO<||M(I¢ 1)_,'_||oo

Thus we have Y,f — sk = Qk+ Ri + Sk. In order to estimate |E[Qg|Fi—1]| we first observe
that for |n’ —n| > 1 +10gq(G+ 1) and 1 < |[j]oos 17100 < G we get
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3.2 Central Limit Theorem

Therefore if Cy ¢ is large enough with a similar argumentation as in the proof of (3.2.6)
we get

EQdFa < Y >

nn/€{1,..N},  1<]|f]loo |50 <G
[n—n'|>1+log, (G+1)

. / T+(j,j’,n,n/,w)—l—T*(j,j/,n,n',a:)dx
A1

|MT Hookl+2?720é,c
< C(5108(G))™| AP
1M [loo
< 077—2(5 log(G))MC';,((l;n) k.277k1+21720"17G k—2(1+277)q—cd,G
< Ck!
for some constant C' > 0 depending only on ¢. Thus we have
K+1
> E[Qk|Fr—]|| < Clog(K). (3.2.29)
k=1 2

By Lemma 2.0.4 for 1 <n,n’ < N and ||j||cc < G there exists at most one ||j'||cc < G
such that ||[MIj £+ M7 || < ]\M£_1)+\|Oo. Hence with Cauchy-Schwarz inequality we

observe ||Sk|so, ||k |loo < (1+10gq(G+1))|Ak|HpH% < (1+log,(G+1))[Ag|. By definition

we get || Rillco < (1 +log, (G + 1))|Ag| and therefore we also have
1Rklloo < [[Rilloc + [1Sklloo + [lsklloo < C(1 +1logy (G +1))| Al.

Now we estimate ijll E[Ry|Fk—1] obtaining

K+1 2 K+1
E (Z E[Rk]}'k_l]> <9E | Y E[Ri|Fi 1]E[Ry|Fi_1]
k=1 k=1

For k = k' we have

K+1 K+1
STEARF) < Y IRIZ < Cp2C5 T (log(G)) 2K, (3.2.30)
k=1 k=1

We may assume k' > k now. Since E[Ry|Fy_1] is Fj_1-measurable we get

El Y E[RF]E[Ry|Fra]| Fra
1<k<k’'<K+1
< Y Bl B[R [ Fi]]
1<k<k'<K+1
< Cn ' Crek (1 + logy(G + 1))|E[Ryy | Fi—1]-
d,G q
1<k<k/'<K+1
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3 Central Limit Theorem and Law of the Iterated Logarithm

Furthermore Ry can be represented by

Ry (z) = 3 v cos(2(j, z)) + 8, sin(27 (j, )
jeze,

1M, <||J|\oo<2GHM oo

(k/ 1)+H<>0
where because of constraints on n,n’, 7, 7/ we have
11
D il #1651 < C(5log(@))* = Cy k" log(G)
J

for some constant C' > 0 depending only on q. Thus we have by using a similar argu-
mentation as above

B[Ry | Fr—]]
1 / . . :
< — v cos(2m(j, z)) + 0y sin(27(j, x)) dx
AM(Ak-1) A“; ’
[IME_ )4 l|ockt+ 2120 (3.2.31)
< C(51og(G))* M~ Cy ik log(G)
4G |‘M£/_1)+||m
< C(5log(@)*n ' ChEIk" log(G) k! 2120k g~ O Cad (1"

< Ck:1+377q (k'—1)"

for sufficiently large Cy . With (3.2.30) and (3.2.31) we conclude

K+1
Z E[Ry|Fr—1]
k=1 9
1/2
< CU_2C§((1;+n) log(G)2K1+277 + Z k;1+377q—(k'—1)"
, 1<k<k/<K+1 (3.2.32)

SC’n*lC;En log(G)K /247,
Finally we estimate S which can be written as

S, = Z v cos(2m(j, x)) + d;sin(27(j, x)),
0<lslloo<IIMT,_, Il

where > |v;] + 65 < Cn~ (5 log(G))decllEnk‘" log(G). The fluctuation of S on any
atom of Fj_q is at most

> (] + 18,27 G M,y lloo - 27 E7DDd < O~ (),

0<[ljlloo <IIME _ 4110
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3.2 Central Limit Theorem

where the inequality follows by definition of m((k — 1)) and (3.2.3). Therefore we get
E[Sk|Fre1] — Sel < Cyp~ =),

Thus we have

K+1 K+1
Z E[Sk‘f'kfl] < Z Skl + CT]_l (3.2.33)
k=1 2 k=1 2

for some constant depending C' > 0 only on gq. We write
K+1

S Sy = 3. Ajcos(2n(i,a)) + 8 sin(2r(j, ),
k=1

0<l3lloo <[1M g lloo

where by L(N,G) < CNP we have

B
lvjls 1051 < C (n‘lel*G”KH”) : (3.2.34)
We obtain
K+1 2
S| = Topes
k=1 2 J

IN

_ B
C (77 IC$E"K1+77> Z |’Y§’ + |5;|
J

1+8
< c(ptepgrt) T

By (3.2.33) we have

<~ 1 ol 1) 1A/ 1
N E[SulFl|| <C (vf CLEK *77) +ont. (3.2.35)
k=1 2
Using (3.2.25), (3.2.29), (3.2.32) and (3.2.35) we finally observe
E [(Vics1 — s%41)%] < Oy 2054 log(G)2 K HHtmax(ra(i4m), (3.2.36)

With Theorem 3.2.1 and (3.2.20), (3.2.24) and (3.2.36) we obtain

K+1
P (Z X < skt> —®(t)
k=1

sup
t
—2,~2(1+7) 271 1 1/5
Cn CdG log(G) K 1+n+max(n,B(1+m))
<A :
N2
—2~2(L+n) 2 (1) (k) (=1 g1/ (1) ) TR (A Vo
Cn~2Ch " " 1og(G) (Cn ney LN )
<A 2

<Cp~4/5 10g(G)2/5CCrlngl(n7(1fB)(1+n))/5Nmax(—1/(1+n),5—1)/5.
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3 Central Limit Theorem and Law of the Iterated Logarithm

Now we set o = 3/4, n = 3/5 and ¢ = N~1/8. Thus together with (3.2.23) we have

N
P (Z f(Myz) < tan) — ®(t)

k=1

<C (log(d) log(N) + 1og(G)2/5C;{§> N~ min(1/8,(1=5)/5)

for some C' > 0 which depends only on g. With (3.2.2) and N > Cd for some constant
which only depends on ¢ and the constant used in (3.1.1) we obtain

N
P (Z f(Myz) < t0n> — ®(t)

k=1

<C <d1/5 log(N)*/® 4 log(d) log(N)) N~ min(l/8,(1-8)/5),

Therefore (3.1.3) is proved.
We now show (3.1.2). Therefore we take some arbitrary large G € N and repeat the
proof of (3.1.3). Observe that because of L(N,G) = o(N) instead of (3.2.34) we get

11851 = o (n ' Clg 050

and instead of (3.2.35) we also have

K+1

> E[Sk|Fr-1]

k=1

=o0 (n_lC’CllE"KH") +Cn~ L.
2

With Lemma 3.2.1 and (3.2.20), (3.2.24), (3.2.25), (3.2.29), (3.2.32), (3.2.35) and (3.2.36)

we observe
K+1
P <Z X, < skt> — (1)
k=1

for some positive function h with limg s h(K) = 0. Take n = 3/5 and € = G~'/6 Then
together with (3.2.23) for sufficiently large N we observe

sup
t

< h(K)

< h(N)+CG™1/6 (3.2.37)

N
P (Z f(Myz) < m) — ®(t)
k=1

for some constant C' > 0 which depends only on ¢ and d. Since G can be chosen arbitrary,
we have shown (3.1.2) which concludes the proof of Theorem 3.1.1.
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3.3 Law of the Iterated Logarithm

3.3 Law of the Iterated Logarithm

The following Theorem due to Strassen plays an important part in the proof of Theorem
3.1.2.

Theorem 3.3.1 ([1, Lemma 2.1],[52, Corollary 4.5]) Let (X, Fk, k > 1) be a mar-
tingale differences sequence with finite fourth moments, set Vi = szl E[XZ|F] and
assume Vi > 0 and Vi — oo for K — co. Furthermore assume

o0
log (b )10
> 0 E[X%] < oo.
K=1 K
Then we have
K
X
lim sup 2 k=1 X =1 a.s.

Koo +/2bg log(log(bx))

We shall prove Theorem 3.1.2 by using this result which ensures the Law of the Iterated
Logarithm for a martingale differences sequence under certain conditions. Therefore we
define the martingale differences sequence in the same way as in the proof of Theorem
3.1.1, ie. X = >, ca, Pn(®) where the sums are taken over a certain long blocks
A with small gaps between two consecutive blocks. Furthermore the functions ¢, are
piecewise constant functions which are used to approximate the trigonometric polyno-
mials induced by the low-frequency part of f. Thus we need to give bounds for the
remaining parts, i.e. the small blocks between two consecutive long blocks as well as
the high-frequency part of f. Upper bounds shall be given by the following Lemma
which proof is mainly based on [54] and [45] where a similar result was obtained for the
one-dimensional case.

Lemma 3.3.2 Let (My,)n>1 be a lacunary sequence of non-singular matrices satisfying
the Hadamard gap condition (1.0.4) . Let f be a bounded periodic function of finite total
variation in the sense of Hardy and Krause satisfying E[f] =0 and 0 < ||f||2 < 1. Then
we have

(S0 F (M)
lim sup

<ClfI* ae.
N—oo /2N log(log(N)) ~ 1711

for an absolute constant C > 0 depending only on q.
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3 Central Limit Theorem and Law of the Iterated Logarithm

Proof. For some integers R, S € N set F(R, S, x) = Zfil‘is f(M,x)|. Furthermore for
m = max{l € N: 2/ < N} we have
F(0,N,x)
V2NI£115 log log(V))

_ F(0,2™, z) N EOF (27 4 a2, 62 2)

V2 2m |71 log(log(2m))  i=fmrs1 /2 - 2| 7|1}/ log(log(2m)
F (2™ + ppmyz 2™/, N*, z)
V2 271 £112 Tog(log(2m))

where y; € {0,...,2m~' — 1} and §; € {0 1} for all [ and the integer N* is given by
N*=N-2m— /.Ll’m/3‘|2(m/3—‘ Let ¢(K) = /2K log(log(K)). Now define the sets

(3.3.1)

D(m) = {IF(,2", )|>1601Hf||1/4( "},
Em,bmy) = {|PE" +p2t1,2'2)| > 160 - 2000 1)1 g2 |

for some absolute constant C7 > 0 to be specified later. We are now going to show that
for any € > 0 there exists some mg € N such that

_2ml11

Pl U U U Emlwn) | ] <e (3.3.2)

m2>mg =[m/3] mi+1=0

In order to show this inequality we apply the following inequality for suitable choices of

R, R, S, Z and «:
]P) (
4C !
B 4 e Z/ACI1I; P logllog(R) - (3.3.3)
Z2||f|| R/210g(log(R'))

where C3 is defined such that (2.0.7) is satisfied with C' = Cylog(d). Let 1)ra be the
R“th partial sum of f as defined in (2.0.1) and let pra = f — 1)ga. We obtain

g

R+S

> f(My)

n=1+S

> Z||flly* /2R log( 1og<R'>>>

R+S

> f(Mya)

n=1+S

R+S

> 7| £|1y* /2R log( 1og<R'>>>
D Ype(Myz)

<p<
n=1+5

R+S
P(

> §|\f||§/4Jleogaog(R')))

(3.3.4)
> i||fr|§/4¢2Rlog<1og<R'>>> .

Z pre (Mpz)

n=14+S5
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3.3 Law of the Iterated Logarithm

Using Lemma 2.0.2 and 2.0.3 and also Chebyshev’s inequality the second part can be
estimated by

28| (S5 s pne (M)

R+S
Z\ enl/4
P pra(Mnz)| > 2| £113 mmogaog(Rf))) <
( n;s 2 72/4-2||f|15/* Rlog(log(R"))
4Cblog(d)
= 22||f115% - Re/? log(log(RY))

(3.3.5)
In order to estimate the first term on the right-hand side of (3.3.4) we apply the tech-
niques used in the proof of Lemma 2.0.5. We shall show

R+S
/ exp (HR Z z/;Ra(Mnx)> dz < eCrrrllf112R (3.3.6)
[0,1)7

n=1+S
for large enough R, suitable kp and some absolute constant C; > 0. Therefore we set
1 2log(log(R"))
4C1 R

and P = |R'Y/| for some a > 1 as well as | = | R/2P]. Without loss of generality we
may assume krP < 1. Again we define

RR =

By Cauchy-Schwarz inequality we obtain

R+S
/ exp (/ﬁ;R Z wRa(Mn:c)> dr < I(kgr, )21 (kp,1)Y/?
[0,1)7

n=1+S5

where I(kg,l) and I'(kg,l) are defined similarly as in the proof of Lemma 2.0.5. Since
|krUom ()| < kP < 1 we estimate I(xkg,l) by using e* < 1+ z + 22 which holds for
|z| < 1. Thus we get

-1
I(kp,l) < [ + 5rUzm(z) + 6RU2m(2)?) da.
[0,1)¢ m=0
We define
(2m+1)P+S
Vam(z) = > > T, 5 n.n’, @)
nn/=2Pm+1+S5  1<]|j]|oos |7 ]|co <R,

M2 G+ M7, 7 l|oo< M7 | oo (3.3.7)

+ > (5,5 nn )

L<|3l[ o0, [[5"[loo <R,
1M 5= M7 5 |oo <ML lloo
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3 Central Limit Theorem and Law of the Iterated Logarithm

where 7" and T~ are defined similarly as in (3.2.26) and m’' = |2Pm — alog,(R)].
It is easy to see that because of Lemma 2.0.4 for any n, n’ and j there exists at most
one j' such that |[MIj + MZLj'||loo < ||MZL,||s. Furthermore for any n and n’ with
[13]1ocs [17'llc < 1/2 - g1 we have

. . 1, .
IME) 4+ MET oo > 50" WMyl loe > 1M 1

where the second inequality follows for some R large enough. We conclude that for
[|MLj+ ML oo < ||ML)|| we have max(||j]|oo, ||5']]0c) > 1/2 ¢"="'|. Therefore by
Cauchy-Schwarz inequality and Lemma 2.0.2 we observe
(2m+1)P+S
Vanl@)| C > |pallad2q V2 < a2 )P
n,n'=2Pm+1+S

for some constant C' > 0 which only depends on q. Define Wa,,(z) = U3, (x) — Vo (z).
Then we have

kRUam () + K Wam (x)
_ Z ajcos(2m(j, x)) + B sin(27(j, x))

1M, oo <l1llo0 2RO MG, 1 plloo

with suitable a;,3; for all j € Z?\{0}. Now for 0 < k < m let jo, be any frequency
vector of the trigonometric polynomial Cd'/2P + krUsk(z) + k% Wak(z). If R is large
enough such that P > log,(R®) + log,(3R*) then with a similar argumentation as in
(2.0.20) we get > ;" jor # O for jo, # 0. We observe

-1
I(kp,l) < / 11 (1 + Cd' k3| f1]2P + KRUsm (@) +K§W2m(x)) dw
[0,1

)4 m=0
g/ (14 Cd" 262\ f||2P) da.
[0,1)¢

Therefore (3.3.6) follows immediately with some constant C; > 1 which depends on ¢
and d. Then by Markov’s inequality we observe

g

R+S

Z YR (Mnl')

n=1+S5

> f||f||§/4¢2Rlog<1og<R'>>)
E [exp (KR Zgiii}{ YRa (Mnx)>:|
exp (knZ/2- ||f]l;* /2R 1og(log ()

Z
< 2exp (Cl”"%ﬂf”zR - HRQ”f||;/4\/2R10g(10g(R/))> (3.3.8)

Z log(log(R’
< sexp (- Zolntr)
4C1||fll5

<2
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3.3 Law of the Iterated Logarithm

where the last line follows by

Crr3||fll2R < HR—ufH y/*\/2Rlog(log(R'))

for ||f|]l2 <1and Z > 1. Now take R=R' =2" S =0, Z = 16C; and o = 2. Then we
have
P(D(m)) < s + o—Hog(log(2m)).
256C7||1,*2™ log(log(2™))
It is easy to see that for any € > 0 there is an mg € N such that

S PDm) < Y 27+ > (log(2) -m) Tt <

m>mg m>mg m>mg

To estimate P(E(m, [, ui41)) we take R =2/, R = 2™, S = 2™ 4 1,121 o = 2 and
Z = 160,2(m=0/3_ First observe

P (E(m, ) = P(F<2m+mﬂ2l“,2ﬁx>>Z|rf\é“%?-?llog(log(zm)))

(3.3.9)

DN ™

—1/2
CQHfH / 6—4-2(m_l)/3 log(log(2™))
= 256C722(m=1)/32l1og(log(2™)) '

We have
-1 2om-i-1_g -1/2
5 Z 5 Collf1l5 "
256C222(m=1/3211og(log(2™))

m>mg l=[m/3] pi4+1=0

m—1
<c Y 2By B oo N g yom Z (3.3.10)
m>mg I=[m/3] m>mo

for mg sufficiently large. Furthermore we obtain

_2ml11

Z Z Z exp( 4. 2m=0/3 log(log(Qm)))

m>mo l=[m/3] pi4+1=0

m—1
T 5 (R i)

m>mg l—fm/iﬂ

Z Z exp( 2. 20m= l)/3log(log(2m)))

m>mo 1=[m/3]

[2m/3] (3.3.11)

>3 e (<227 log(oz(2"))

m>mg v=1

IN

IN

C

< E E exp(—vlog(log(2™))) < C E (mlog(2)) ™% < —

m>mg V=2 m>mg mo
€
<-.
4
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3 Central Limit Theorem and Law of the Iterated Logarithm

Inequalities (3.3.9), (3.3.10) and (3.3.11) yield (3.3.2). With help of this inequality we
know that for any € > 0 there is an Ny € N such that by (3.3.1) for each N > Ny we
have

N F(M, s
Enlf( )| sy (10300 4 Wl
171154 /2N Tog (log (V) - N6

on a set of measure which is bounded from below by 1 — . Thus we obtain

lim sup

1/4
N—oo \/2N10g(log(N)) Cliflle™ ae

for some absolute constant C' which concludes the proof.

Proof of Theorem 3.1.2. In order to proof the Theorem we repeat the prove of (3.2.36).
But here we take some arbitrary fixed integer G which is sufficiently large and without
loss of generality we may assume N > d~'G. Observe that for fixed G the definition of
the blocks A} and Ay, and therefore also the definition of the random variables (Xp)x>1
does not depend on N. We use L(N, G) = O(N/(log(N))*¢) where the implied constant
may depend on G. Therefore instead of (3.2.36) we get

K1+n

2
Wi = skl < eqo ey mmare

where ¢ > 0 as in the remainder of this proof denotes a constant depending on ¢, d
and G which may vary from line to line. In the remainder of this proof we follow the
ideas used in [1] and [5]. Now we define a new probability space by taking the product
of [0, 1)? on which X}, is defined and another probability space on which independent
random variables &;,&,... with P(§, = —1) = P(§, = 1) = 1/2 for all n € N are

defined. For any k € N we put = = ZnEAk &. For m € N we define a martingale
differences sequence (X'mk, fk) by taking the o-field Fip = Fi % o(E1,...,Zk) and setting
Xk = X + Eg/m. We further put §K = s2 + Zk 1 |Agl/m?. With (3.2.4) we get
X =Yoo < 1XP =Yoo - || X7 + V2|00 < c|Ak[*E~0F27) < ¢|Ay|? for some constant

¢ > 0. By Lemma 2.0.5 we have E[X4 W < EVH 4+ |V — Xl + ek < oAkl
Furthermore we obtain E[X? k\}'k] [X,§|.7-"k] + |Ag|/m?. Thus we have

K K
~ ~ 1
Vi =) BIX P = Vi + — Z\Au > —5 D |
k=1

k=1
and "
. K1+n
_ 32 <
|V — 5%|]2 < C(log(K))(Hf)/Q' (3.3.12)
We now are going to show
Vg =3% 40 <§%< (log (5%{))_6/4> a.s. (3.3.13)
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3.3 Law of the Iterated Logarithm

Since ¢x = s% — 3%(71 < ¢K" we have ¢ K" < 5%( < ¢ K11 for constants ¢, co > 0
which depend on ¢, d and G. We also get s%, — s% < ca(K')"(K’ — K) and furthermore
52, — 5% < co(K')"(K'— K) for K’ > K. Set a = 1—¢/2+¢%/4 and define K, = |2!"].
Then we have

K, _ a—1)/a -
et = 1007 = 1+ O((log(K2) *~V/) = 1+ o{ (log(K) =/
resp.
|Ki41 — Ki| = o(K;(log(K;))~/*).
We obtain
0 < Sk, — 5k < K] (K — K1) = K7L, o (Ki(loa(Ky) /1)
= o (K/""(10g(K1) /") = o (¥, (og(1)) )
or 2
B =14 o ((tog(K) ).
5K
Since

> P (| - 5%,
=1

> 5%, (log () ~/*)

VKz Kl ’ - —1-¢/2
<22E <5K (log(K)- 8/4) <c ; log(K7)) < 00
by Borel-Cantelli-Lemma we have
“N/Kl - 5%1‘ =0 (E%(l (log(Kl))_5/4> a.s.
For K; < K < Kj+1 we have
(Vi = 5%) + (3% — 5k, ) < Vi = 5% < (Vi — 5k ) + (3, — %) -

Therefore we have proved (3.3.13). By Lemma 2.0.5 we get E [ank} < c|Ag|* < K.
Thus we have

oo ~ o0
(log(S%))m >4 (log(K))"
K=1 Sk K=1
Now we apply Theorem 3.3.1. Therefore we get
‘Zf:l Xm,k‘
lim sup =1 as. (3.3.15)

K—o0 \/25% log(log(5%))
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3 Central Limit Theorem and Law of the Iterated Logarithm

By Lemma 2.0.3 for any N € N we see that

1 N
— f(M,x) le’

N

75| [2rme)

< C(log(d)|[rl13 + [Irl[2)"/?
2

for some absolute constant C' > 0 which depends only on ¢q. Therefore we get

N 2
1
XM, — limsup/ p(Mpz) | dx
N—oo N [0,1)4 ;

1/2
<C (E}/ﬁ + (log(d)|Ir|]3 + Hrl\z)W) (log(d) |13 + [[7[]2) "
<Cd"?log(d)G1/?

for some absolute constant C' > 0 which only depends on ¢. A similar estimate holds for
liminf. We obtain

lim sup “ic log(108(35) < mm Sl.lpK'(N)Hoo skovy/N +1/m?
K(N)—oo 5% log(log(s%)) i inf g (v) o0 5%y /N
S ap, + CdY?log(d) G2 + 1 /m?
S, — CdY/2log(d)G=1/2

Hence by (3.3.15) we have

(3.3.16)

lim sup
K—roo \/2.9%( log(log(s2%-

Observe that there is a similar lower bound for the term on the left-hand side. By
definition of X,, ;. we get

‘Zlf—l Xk‘ ’Zf—l Xm k‘ < ‘Zf:l Ek‘
\/25 log(log(s%)) \/23 log(log(s2%)) - 7”:1\/2.9%< log(log(s%))
Therefore simple calculation shows that
‘ZkK—l Xk‘ ‘ZkK—l Xm k
lim sup — limsup

K(N)—o0 \/Zﬁ(log(log( %)) K@N)—oo \/25ﬁ<log(log(sK))

K =
‘Zk:l Xm,k’ O CdY/2log(d)G=1/2 4+ 1/m?
)) B Ef,Mn — Cd1/2 log(d)Gfl/Q

K =
> k=1 Sk
< limsup

(3.3.17)
K(N)—00 m\/QS%( log(log(s%))
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3.3 Law of the Iterated Logarithm

Since Zle = is the sum of independent random variables we have

) }25:1 Ek‘ \/EfM +C’d1/210g(d)G 1/2
lim sup

(3.3.18)
K(N)=00 m /252, log(log (s m\/sz — Cd\2log(d)G-1/2

Because this inequality holds for any integer m by (3.3.16), (3.3.17) and (3.3.18) we get

K
S, — Cd'/21og(d)G—1/2 ‘Ek‘—l Xk’
73 Y < lim sup
Ytm, +CdV/2log(d)G K(N)—o0 \/25% log(log(s%))

\/ St + Cdl/2 log(d)G—1/2

= ISy, - CdPlog(d)G-172
Observe that
N K K K N
> p(Muz)| < DX+ DXk =Y+ DY+ D p(Muz)|  (3.3.19)
n=1 k=1 k=1 k=1 n=N-+1

where K is defined such that N € A%, UAgy; and N = S8 AL+ | Al
using N — N < ¢N/ (47 we have |Z]kV=N+1 p(Myz)| < N+ By (3.2.6) we have
| Zle(Xk —Y%)| < c¢. To estimate | Z],y:l(Yk’ﬂ we apply Lemma 3.3.2 and obtain

K
DY

< Cllpl[/*\/ N0+ Log(N) log log (N'/(141) Log (V) < N/ @20 log (V).

k=1
(3.3.20)
Plugging these estimates into (3.3.19) gives
K
p(Mpz)| < ZXk + NV @) 166(N)2.
k=1
Since s%( > ¢N we have
N ‘ZK X‘ 2
SN pO e X dgV)
- (1=m)/(2+2n) "
\/25 log(log(s%)) \/25%10g(10g(s%()) N !
It follows that
N K X‘
M, ’Zk— k 2
lim sup | 2 n P(Mn2)| < hmsup : —i—limsupc%
N [k log(log(sh,)) K=o [2% log(log(sk))  Noee MU

a.e.

S, + Cd/21og(d)G—1/2
Y, — CdY/2log(d)G—1/2

49



3 Central Limit Theorem and Law of the Iterated Logarithm

Similar arguments yield

a.e.

lim sup

| Sons p(My) >¢ZMM—QW”%WW*”
N—o0 \/23%( log(log(s%)) B

XM, + Cdi/? log(d)G_1/2

By a similar argumentation as in (3.2.21) we have

2 2

_ 1/2 -1/2 o K i IN
g, = COFlog @GR < Jim T = i 5

< Sy, + CdY?log(d) G2

and we observe

XM, — Cd/? log(d)G*1/2 N | 271:7:1 p(Myz)|
\/Zf,Mn + CdY/?log(d)G—1/2 N—oo /2N log(log(N))
Sfoar, + CdY?log(d)G—1/?
VEfar, — Cdi/2 log(d)G-1/2

IN

(3.3.21)

a.e.

By Lemma 3.3.2 for almost any x we get

S ()| S p(Ma)| [ ()

lim su < limsu + lim sup
N—>oop V2N log(log(N)) N—>oop V2N log(log(N))  N—oo /2N log(log(N))
Y, + CdY?1og(d)G1/? 14
< DG4 ety

VS, — Cd121og(d) G112
St + CdY/2log(d)G—1/?
VS5, — CdY/2 log(d)G=1/2

+ C(dG~H/®

and also

. )25:1 f(Mnx)’ St o, — CdY?log(d)G—1/?
lim sup > o

> — C(dG~HVE,
N—oo /2N log(log(N)) \/Ef,Mn + CdY/2 log(d)G1/2

Since G can be chosen arbitrary large, we finally observe that

S )
N /2N log(log(N))

=2 Mm, ae. (3.3.22)

which concludes the proof.
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3.4 Law of the iterated Logarithm for the Discrepancy of Multivariate Lacunary Point Sets

3.4 Law of the iterated Logarithm for the Discrepancy of
Multivariate Lacunary Point Sets

The proof of this Theorem is mainly based on [45], [28] and [1]. We only show the Law
of the Iterated Logarithm for D3, the proof of the Law of the Iterated Logarithm for
Dy is essentially the same. For some integer h > 0 and § € [0, 1)d set B such that
Bri < Bi < Bni+1/hand By € B, = {B € [0,1)?:2"8, € {0,...,2" —1},i=1,...,d}.
Furthermore set [, 8) = [0, 8)\[0, a) for a, B € [0,1)? with oy < 3; for all i € {1,...,d}.
Let fg(z) = 1j0,8)(z) — A([0,3)) denote the centered indicator function on [0, 3) and

faplz) = 1[a—ﬁ)(m) — A([0,8)) the centered indicator function on [a, 3). Now choose
some arbitrary fixed integer L > 0. We have

N
M,
Bel0,1)¢ N
N N
< max > n—1 /3, (Mnx) + sup Y e fon.8(Myx)
" BLEBL N Bel0,1)d N .

(3.4.1)
Then, since L can be chosen arbitrary large, (3.1.6) is shown if we prove

N
| Sl fa ()|
limsup max =— ae. (3.4.2)

N—oo PL€BL /2N log(log(N)) 2

and

N
| S0 Fos (M)
limsup sup <

N—oo gefo1)d /2N log(log(N))
for some constant C' depending only on d. For fg, by the second part of Lemma 2.0.3 we
obtain limy e 04 /N = [|f5,.113 = A([0,8L)) — A([0, 81))? < 1/4 where equality holds
for \([0, 51)) = 1/2. By Theorem 3.1.2 we have

IS0 Fu (M) [0 £, (M)
lim sup max = max limsup
N—oo BLeBL /2N log(log(NV)) BLEBL N—oo /2N log(log(N)) (3.4.4)

27 L/8 e (3.4.3)

fopll2 = &
= max = — a.e.
BrLeBL, Arliz 2

Now we are going to prove (3.4.3). For some given N we set H = [m/2+1logy(d)]| where
m = max{l € Z : 2! < N}. Without loss of generality we may assume H > L. It is easy
to see that for any z € [0,1)? we have

Lio,5m) () < o) () < Lo, (@)

where for convenience we set 311 such that By.1,; = Bu;+1/H for alli € {1,...,d}".

Therefore we get
Lo,5) () = M0, 81)) —d - 277 < 1 5(2) = A([0, 8)

<
< 1 gur1m (@) — A0, Bu +1/H)) +d - 27
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3 Central Limit Theorem and Law of the Iterated Logarithm

Thus we obtain

N N
Z Ljo,5) — A([0, 8))| < Z Z Z win(x)| +d27 7N, (3.4.5)
n=1 JCI, he{L+1,..., H+1}7] In=1
T4
Here the sum is taken over all non-empty subsets J of I = {1,...,d} and ¢ denotes

the centered indicator function on the set

H [0, BL,i) X H[ﬁhi—l,i,ﬁhi,i)

ie\J ieJ

for any h € {L +1,...,H + 1}VI. Now with Fy, (R, S ) = Zfilis oyn(Mpx)| we
have

N m—1

> oin@)| < Fpp (0,2 2) + Y Fyy, (27 + w2t 2 ) + CNVEL (3.4.6)
n=1 I=[m/3]

As we shall later show the system of inequalities

F,,,(0,2™,2) < 16C1|[esnlls*v/2 - 27 log(log(2™)),

2™ + a2 2l 2) < 160,206 )13 /2 - 27 Tog (log (27))

IN

(3.4.7)

F

PJ,h

holds for all m > mg, I € {[m/3],...,m—1}, JC I, h e {L+1,...,H+ 1}I"l with
H = [m/2 +logy(d)] and B € [0,1)? on a set of measure which is bounded from below
by 1 — & where € > 0 can be chosen arbitrary and mg depends on the choice of . Simple
calculation shows

% IT c2 " T[27™ <lleanll3 < ] a2 " ]2 V. (3.4.8)

1eI\J eJ eI\J icJ

where ¢; = 2881, € {0,...,2F — 1} for all i € I\ J. Therefore we have

> > losnlly* < cy 3 IT (2 Vs 2"

JCI, he{L+1,...,H+1} V1 JCI, he{L+1,...H+1}VIieI\J ieJ
J#0 JAD

SEOVED S | O

JCI, he{L+1,...,H+1}1ie]
J#0

C Z 27[//8 < C - 2*L/8

JCI,
J#D

IN

(3.4.9)
where the constant C' > 0 depends only on d. Furthermore we have 1 + Z[’il 2-1/6 <C
for some absolute constant C' > 0. Combining (3.4.5), (3.4.6), (3.4.7) and (3.4.9) we
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3.4 Law of the iterated Logarithm for the Discrepancy of Multivariate Lacunary Point Sets

finally obtain (3.4.3). Thus it remains to show (3.4.7). To prove (3.4.7) we apply the
techniques used in the proof of Lemma 3.3.2. Since (3.4.7) shall hold for any function
¢ 5 we first encounter all possible choices for given J and h. We set h} = h; for h; < H
and h, = H for h; = H + 1. Therefore by definition ¢, is a centered indicator function
on a set of the form

H [OyQ_LCi) X H[Q_(hi_l)a’ia2_(hi_1)ai + 2_}%)

eI\J ieJ

with ¢ € {1,...,2E3\ and a € [],;{0,...,2"! — 1}. Thus each choice of ¢ and a
defines a function which we denote by goS h) We define the sets

D(m, J,h,c,a)

—{F 0,270 > 161 o2 |
J,h

E(m,l,,qu,J,h,c,a)

{F e (274 2120 ) > 160, - 20-m/9) e /g <2m>}

J}L

where ¢(K) = /2K log(log(K)). Now we are going to prove that for any € > 0 there
is some 1nteger mg such that the union of all these sets with m > mg has total measure
which is bounded from above by €. This shall be done by estimating the measure of each
set with the help of (3.3.3). We take the same choices for S, R, R’ and Z as in (3.3.9),
(3.3.10) and (3.3.11) but we take o = 4d + 6. It is enough to prove

Z Z Z Z o420

g;{a Re{L+1,.. . H+1}11 ce{1,... 2L 111 a€] ], ,{0,...,.27 1 -1}

/2 10g(log(2™))

S06_4‘2(m—l)/3log(log(Qm)) (3.4.10)

for some absolute constant C' > 0 depending only on d where the factor 20"=0/3 on the
right-hand side of the first line in the case of D(m, J, h,c,a) becomes 1 and

> 2 > > %

{]% he{L+1,..H+1}1| ce{1,... 2L} 1=l ae ], ,{0,....27—1 -1}

Gl < 029/8dm (3.4.11)

for some absolute constant C' > 0 depending only on d. Then the conclusion follows by
similar arguments as in (3.3.9), (3.3.10) and (3.3.11). Observe that with oo = 4d 4 6 we
get

72ml11

4Cy 5/8-d —dm/24 _ €
.C . 95/8dm < gmdm/24 <
)IED DY 256C% (21)*/2 log(log(2™)) <C 2 4

m>mg I=[m/3] Hi1+1=0 m>mo
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3 Central Limit Theorem and Law of the Iterated Logarithm

for mg sufficiently large and we get a similar replacement for the upper bounds on the
measure of the sets D(m, J, h,c,a). Without loss of generality we may assume L large
enough. Therefore for h; > L for all ¢ € I by (3.4.8) we have

—1/2

3 3 3 3 o~ 420770731015 1/2 log(log(2))
{]% Re{L+1,... H+1}1 ce{1,... 2L }I=171 a€]T, . ;{0,...,.27 ~1 -1}
<) 2% 3 og(2) ic y (him1) ,—420m=D/3 [T, 2hi/Hlog(log(2™))

JCI, he{L+1,...,H+1}]
J#D

<ol Y L 2 logllog(2n),

JCI, [J]
for he{L+1,...H+1} (3.4.12)

< C Z 2dL6—4-2(m*l)/3 Hz‘eJ oL/8 log(log(2™))

JCl,
J#0D

< Cre—4~2(m_l)/3 log(log(2™))

for some constant C' depending only on d and thus (3.4.10) is proved. Moreover we have

> X > > %5

{]% he{L+1,... H+1}V1 ce{1,... 2E}I=171 a€] T, . ;{0,..., 27 1 -1}

< Z Z 25/4'(|I|_|J|)LH25/4’hi

—-1/2
2

JCI, he{L+1,....H+1}VI ieJ
J#0
<> 2/ HUIEDEgS/ 4TI (3.4.13)
Jcl,
J#0
<C- 25/8-dm

for some constant C' > 0 depending only on d. Observe that the last line follows by
H < m/2 +logy(d) + 1. Thus (3.4.11) is proved which finally concludes the proof of
Theorem 3.1.3.

3.5 Weakly lacunary sequences

Let (My)n>1 be a sequence of non-singular d x d-matrices satisfying the weak Hadamard
gap condition (1.0.5). Under some stronger conditions the Central Limit Theorem and
the Law of the Iterated Logarithm hold for lacunary sequences which only satisfy the
weak Hadamard gap condition.
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3.5 Weakly lacunary sequences

Theorem 3.5.1 Let (My)n>1 be a lacunary sequence of non-singular d x d-matrices
satisfying the weak Hadamard gap condition (1.0.5). Assume that L(G,N) = o(N) for
any fited G > 1. Let f : R — R be a bounded, periodic function of finite total variation
in the sense of Hardy and Krause such that the Fourier series of f exists and converges
to f and is of the form

f@y= >  ajcos(2n(j,x)) + bjsin(2n(j, x)).
je(@\{0})*

Furthermore assume that there exists some absolute constant C > 0 such that

N 2
o%; ::/ (Z f(Mn:c)> dz>C - N. (3.5.1)
0,04 \n=1

for any N > 1. Then for all t € R we have

N
P <Z f(Myz) < taN> —d(t)
n=1

Theorem 3.5.2 Let (My,)n>1 be a sequence of non-singular d x d-matrices satisfying
the weak Hadamard gap condition (1.0.5). Assume that L(N,G) = O(N/(log N)'*¢) for
any fired G > 1 and some ¢ > 0. Let p: R — R be a trigonometric polynomial of order
G such that

— 0. (3.5.2)

lim
N—oo

p(z) = Z ajcos(2m(j, ) + b; sin(27(j, x)).

JE@Z\{0})?,
[17]lec <G

Assume that for

there exists Y pr,, > 0 with
lim 2N =% (3.5.3)
Then we have
S ()|
lim sup
N—oo /2N log(log(N))

=2y M, ae. (3.5.4)

The proofs of both Theorems are similar to those of Theorem 3.1.1 resp. Theorem
3.1.2. Therefore we only briefly discuss the differences. We have to restrict ourselves
to functions f(z) = > ez (o1 @) cos(2m(j, x)) + b; sin(2m (j, z)) with a;,b; = 0 for j €
7% with j; = 0 for at least one i € {1,...,d}. Consider f(x) = cos(27((1,0)7,x)).
Furthermore let (M;,),>1 be some lacunary sequence of 2 x 2-matrices satisfying the
weak Hadamard gap condition (1.0.5) such that ((M,)1,1)n>1 regarded as a sequence of
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3 Central Limit Theorem and Law of the Iterated Logarithm

integers does not satisfy (1.0.4). The system (f(M,x))n>1 easily translates into some
one-dimensional function system with some non-lacunary sequence (M,,),>1 and thus
the Central Limit Theorem does not hold in general. Besides, observe that Lemma 2.0.3
does not apply in the case of lacunary sequences which only satisfy the weak Hadamard
gap condition ( ref255) since |[M jllco > ¢¥||MJ||so for some k > log,(]|j]])sc and all
j € Z9\{0} is not necessarily satisfied. Instead we use the following

Lemma 3.5.3 Let (My)n>1 be a lacunary sequence of non-singular d x d-matrices sat-
isfying the weak Hadamard gap condition (1.0.5). Let f be a periodic functions of mean
zero with Vi (f) < 1. Assume that the Fourier series exists and converge to f. Then
there is some absolute constant C > 0 which only depends on q such that

N 2
/ (Z f(Mn:c)> dz| < CN
[0,1)¢ \n=1

Proof. For notational convenience we assume f(x) = 3.z (o) @j cos(27(j,x)). The
general case is similar. We have

N 2
/ (Z f(Mnx)> dx
[0,1)¢ \n=1

<y

3,3'€(Z\{0})4 n,n'=1

N
|CL'CL‘/|
D S s v
53" €(@\{0}) =1

ST S S A R
= 2] lji|= it ik |1

5,3/ €(Z\{0})? 1Sn<n/ <N - Ml

for all n € N.

N

/[0 1)d a; cos(2m(Mpj, x))ay (2n(M,j,x)) dx

By Lemma 2.0.1 we have |a;| < H?:1(27r\ji])*1. Therefore we conclude

N 2
[0,1)¢ \n=1

d
< y i)~1 |
<2 > > dagl ]l 1|ji|:<Mn,>m|W.

JAE@\0Y) 1SS EN . i=1 (Hin i

Since for any n € N there is some ¢ € {1,...,d} with (My41)i; > ¢(My)i; and
(Mp1)irir > (My)y i for i’ # i it is easy to see that

d d

. p— p— / . f—
H\Ji| t<gn HW\ '
i=1 i=1
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3.5 Weakly lacunary sequences

if |7;] = ((]\1\441/)):; |7i] for all ¢ € {1,...,d}. Thus we get

N 2 N / ) .
/[01) (Z f(Mn$)> dz| <2 Z Pk Z W\%‘/’HUZ{VI-
v i=1

n=1 L<n<W'SN je(z\{o})

With an application of Cauchy-Schwarz inequality we obtain

N 2
[0,1)¢ \n=1

N 1/2 1/2
o 1 S
<2 Y g > G| | 2
1<n<n/<N jre(@\{o})d jre(z\{o})*
<C|[fll2N

for some constant which only depends on ¢ and therefore the Lemma is proved.

Since we assume

f(z) = Z ajcos(2m(j,x)) + b;sin(27(j, x))
JE@\{0})?

we ensure that ||M!j||lsc > ||M!]||s for all j and therefore the conclusion of (3.2.5)
remains valid in the case of lacunary sequences satisfying only the weak Hadamard gap
condition. Furthermore Lemma 2.0.4 in general is not true for lacunary sequences which
satisfy only the weak Hadamard gap condition. This Lemma was used in the proof of
Lemma 2.0.5 to estimate |Vap,(x)| in (2.0.18). Since p is a trigonometric polynomial of
order G we see by Vi (p) <1 and Lemma 2.0.1 that 32, ;< la;| + [bj| < ¢ for some
absolute constant ¢ > 0 which depends on d and G. With L(N,G) < ¢N we easily
obtain |V, (z)| < ¢N for some constant which depends on ¢, d and G. Repeating the
further calculation we finally observe

N 4
/ (Z p(Mn:E)> dz < ¢N? (3.5.5)
[0,1)¢

n=1

for some constant ¢ > 0 which depends on ¢, d and G. Moreover we used Lemma 2.0.4
to estimate ||Rg||oo in (3.2.27) resp. ||Sk||oo in (3.2.28). With a similar argumentation
as above we see that || R ||, ||Sk|leo < c¢(1+410g, (G +1))[Ag]| for some absolute constant

¢ > 0 which only depends on ¢, d and G. Instead of (3.2.36) further calculation yield
E [(Vics1 — s3c41)?] < oI

where the implied constant only depends on ¢, d and G. Together with (3.5.5) we repeat
the further calculation and finally observe (3.2.37) which concludes the proof of Theorem
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3 Central Limit Theorem and Law of the Iterated Logarithm

3.5.1. To prove Theorem 3.5.2 we observe that a similar argumentation as above yields
K1+n

p— 2 S —
Wi = siclle < ez myy o

for some constant ¢ > 0 which depends on ¢, d and G. The remainder of this Theorem
remains the same except for (3.3.20) where we applied Lemma 3.3.2. Observe that for
proving Lemma 3.3.2 we need changes similar to those in the proof of Lemma 2.0.5,
i.e. we have to show |Van,(z)| < ¢||p||2P for some constant ¢ > 0 which only depends
on ¢, d and G where Vb, is defined in (3.3.7). By definition V5, is a trigonometric
polynomial such that any frequency vector u is of the form v = M!j + M ! with
[|MTj £ MLj'||oo < [|ML)||c. It is easy to see that for such u we have

Without loss of generality we assume n’ > n. Therefore for any i € {1,...,d} we get
e QLD | M
‘ (Mrj;)m (Mr?)m

Denote the number of I € {n + 1,...,n'} with (M;);; > q||ML |||cc BY Tinn. Assume
Tim' m = 1. For 7y, v > 1 and we have

(M)ii

1
(MI): "1 =

Ji £

and thus we obtain |j;| > ¢"imn'|jl] — 1. Since |j;| > 1 it is easy to see that there is
some constant C' > 0 such that |j;| > Cq¢"inn’ for alli € {1,...,d} with 74 ,,,, > 1. For
Tim/n = 0 using a similar argumentation we have |j;| > C’ Timn' =L > Clginn’ for some
constants C,C’ > 0 depending only on ¢. Furthermore there is some constant C' > 0 such
that H?:l 1ji| =t < o Hz 1177, By Lemma 2.0.1 and Cauchy-Schwarz inequality
we see

Vo (@) < D> lajap| + lajby| + [bjaz| + [b;by]

n7n/ j7j,
e
< O ¢y (gl + by D ] 5770
n<n/ g’ i=1 27|
= J5J 1=
o
< Czqn " (2G) Z(iagi+ib DHW
n<n’ =1 Ji
1/2 1/2
< oL reor (T ZHM
n<n’ rog=1 ‘7’
< Cllpll2P

for some constant C' > 0 which only depends on ¢, d and G and therefore Theorem 3.5.2
is proved.

o8



4 Double infinite matrices and the inverse
of the discrepancy

In this chapter we discuss a double infinite matrix such that each N X d-projection
defines a sequence of N points in [0,1)¢ which is constructed partly by a randomized
Halton sequence and partly by a certain lacunary sequence. We show that with large
probability the star-discrepancy of this sequences is bounded by C’\/a/ VN for some
universal constant C' independent of N and d which so far is up to some constant the
best known upper bound for the star-discrepancy of a point set such that the number
of points is “small” in comparison with the dimension. The main result is presented in
section 4.1. In section 4.2 we review some tools for proving the main theorem, especially
the maximal Bernstein inequality and J-bracketing covers. In section 4.3 we give an
upper bound on the star-discrepancy of a subsequence of a randomized Halton sequence
which is induced by a certain modulo class. Finally in section 4.4 we prove the main
theorem.

4.1 Main result

Let = (z1,...,24) € [0,1)%. For i € {1,...,d} and some integer p; > 2 we define the
pi-adic decomposition of x; by x; = 372, a(j, i)pi_j_1 where «(j,7) € {0,...,p; — 1} for
allie{1,...,d} and j > 0. Now set

a(m,i) +1 a(j, )
Tp,(w;) = 1t Z J+1
D; j>m i

where m = min{j : a(j,7) # p; — 1}. Furthermore for a collection of pairwise coprime
odd integers p = (p1, .. .,pa) set Tp(x) = (Tp, (z1), ..., Tp,(xq)). Observe that for z9 =0
the sequence (z,,)p>1 with z, = T)(z,—1) for n > 1 defines a Halton sequence. Therefore
for some uniformly distributed z € [0, l)d and pairwise coprime odd integers p1,...,pyg
we call this sequence a randomized Halton sequence.

Theorem 4.1.1 Let (z1,)i>1 be a sequence of independent random variables which are
uniformly distributed in [0,1) and let (p;)i>1 be the sequence of all odd prime numbers.
For all integers n > 1 and © > 1 define

(4.1.1)

Do), ifi=1o0r222 <p—1,
Tt T (ollosa( 1+, ) i > 2 and 2122 > - 1.
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4 Double infinite matrices and the inverse of the discrepancy

Then for any € > 0 the probability, that for any integers N > 1 and d > 1 the set of

points P = {(x11,--,T1.d)s-- > (TN1,- - TNa)} C[0,1)? satisfies
Vd
D (P) < (2576 + 357log(e 1)) —=, 4.1.2
W) < e (112

is at least 1 — €.

4.2 Auxiliary lemmata

Lemma 4.2.1 (Maximal Bernstein inequality, [26, Lemma 2.2]) For some inte-
ger N > 1 let Z1,...,ZnN be a sequence of i.i.d. random variables with mean zero and
variance 0 > 0 such that |Z1| < 1. Then for any t > 0 we have

M 2

t
P Z t] <2 —_— . 4.2.1
(Me%?.).(,zv} 2 Zn| > ) - eXp< 2N o2 +2t/3> (42.1)

n=1
For integers N > 1 and d > 1 and an N-element set of d-dimensional points

{(.%'171, .. .,de), ceey (x’NJ, e ,acN7d)}

denote the star-discrepancy by D% (z,;). Furthermore for an integer 0 < M < N write
D%J, N (zn;) for the star-discrepancy of the N — M-element point set

{@rv11, - om1d), -5 (@N - TN )

Lemma 4.2.2 ([21, Proposition 3.16]) Let 0 < M < N be integers. Then for points
Y1, yn € [0,1)% we have

MD$ (1, .-, ym) N (N = M)D3; N (Ynr41s- - yN)
N N

D?V(yh)yN) S

and

ND?V(ylv"-ayN) MD%(ylv"'ayM)

D?W,N(yM-i-l?"'ayN)S N — M + N — )

Let v,w € [0,1)%. We write v < w if v; < w; for all i € {1,...,d}. For some § > 0 a
set A of elements in [0,1)? x [0,1)? is called a §-bracketing cover if for every z € [0,1)?
there exists (v, w) € A with v <z < w and A(Jv,w)) < ¢ for [v,w) = [0,w)\[0,v). The
following Lemma gives an upper bound on the cardinality of a d-bracketing cover.

Lemma 4.2.3 ([32, Theorem 1.15]) For any d > 1 and § > 0 there exists some 6-
bracketing cover A with

Al < %(26)‘1(5_1 + 1)t
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4.3 Randomized Halton sequences

Corollary 4.2.4 For any integers d > 1 and h > 1 there exists some 2~ "-bracketing
cover A with

1
A< L@e)(@+2 4 1)
such that for any (v,w) € A and any i € {1,...,d} we have

v = o-(Mom@+D(A+1),

w; = 27 (og@I+1)(h+2)y,

)

for some integers a; € {0,1,...,2(0e@HDGADY 4nd b; € {0,1, ..., 2(Mog(OT+1(h+2)
Proof. Let A be some 2~ ("2 _bracketing cover of [0,1)?. By Lemma 4.2.3 we have
A < ()" 1)t
For (v,w) € A and i € {1,...,d} define
Yoi = max{2—(flogz(iﬂ+1)(h+1)ai <wvia€ Z} :
Zwi = min {2*(ﬂog2(m“)(h+2)bi >w; 1 b; € Z} .

For 4y = (Yu,i)ief1,...ay € [0,1)% we obtain

d d
Ao, 0) < 3 27 (om@HD (1) < 9=(ht1) §7j=(h+1) < 9= (D),
i=1 i=1

Analogously for z, = (2w,i)ieq1,....q} € [0, 1)? we have

Az, 20)) < 2702,

Thus we get

Mo z0)) < A[ye, v)) + Mo, w)) + M[w, 2)) < 27"
Set A = {(Yo, 2w) : (v,w) € A}. Since A is a 2~ ("2 _bracketing cover for any z € [0,1)¢

there exists (v,w) € A and (yy, z0) € A with y, < v < 2 < w < 2,. Therefore A is a
2~h_bracketing cover and the conclusion of the proof follows by |A| < |A].

4.3 Randomized Halton sequences

Note that we assume that the integers p1,...,pq are odd since we later need sequences
such that not only (z,)n>1 is a low-discrepancy sequence but also subsequences (xy,)i>1
where the elements n; belong to one particular modulo class with modulo 2% for some
integer « have sufficiently small discrepancy. This shall be ensured by the following
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4 Double infinite matrices and the inverse of the discrepancy

Lemma 4.3.1 For some integer d > 2 let (xy)n>1 be a randomized Halton sequence in
[0,1)¢ constructed by the first d odd primes. Let N > 2122 b the number of points. For
some integers 1 < k < logy(8logy(N)) and v € {0,...,2% — 1} set

Ney={n:ne{l,...,N},n=~ (mod 2")}
and define Py = {zn, : n € Ny ~}. Then the star-discrepancy of Py .~ satisfies

* * \/;i
Dy yen({xn :n € Nun}) = Diy,_|(PNs) £ —m= (4.3.1)

VINesl

Proof. The proof of this Lemma which is an application of the Chinese Remainder
Theorem is mainly based on the proofs of [44, Theorem 3.6] and [3, Corollary 1]. For
some g let the p;-adic decomposition of z,; = (TJZ (x0)): be given by

(e 9]

B . i1
Tni = E a(]72ax07n)pi
=0

for suitable integers a(j, 4, xo,n) € {0,1,...,p; — 1}. Observe that for any ¢ € {1,...,d}
there exists at most one N; € {1,..., N} such that
()é(j,i,.’ﬁo, 1) = a(jaiax(]aQ) == a(j7iaanNi)
7& a(]ala$07NZ+1) == a(jvi)x())N)

for all j > [log, (N)]. Let m : {1,...,d} — {1,...,d} be a permutation satisfying
N,

x(i) = Nx(jy if i > j and set 7(0) = 0 and 7(d + 1) = N. Therefore there exist
constants g, ; for any m € {1,...,d+ 1} and i € {1,...,d} such that
e.¢]
Z a(j, i, 20,n)pi 77! = gmy (4.3.2)

j=Tog,,, (N)]

for all n € {Nzm-1) +1,..., Nr(my}. Now fix some set N = {Ny(m—1) + 1, ., Nem) }
and define

Mog, (N)]—1 [og,,, (V)]-1
\I’l(‘rn) = \Ijl Z O[(julivx(%n)piijil +gm,z - O[(j,’i,.’]}‘(),ﬂ)pij.
7=0 7=0

Set n; = 2%(I—1)+ for any integer [ > 1 and some v € {0,...,2"—1}. By definition of T},
it is easy to see that for n,n+1 € N and i € {1,...,d} we have ¥;(xp+1) = V;(z,) + 1.
Thus we obtain W;(xy,,,) = Yi(zy,) + 2" for niy1,n € N. We now shall show the
following version of the Chinese Remainder Theorem:

Let B1,...,Bq and s1, ..., sq be positive numbers, then there exists some integer 3 such
that any solution of

Ui(zy,) = B (mod pi*)
(4.3.3)

Vi(wn,) = Ba  (mod py’)
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4.3 Randomized Halton sequences

satisfies

I = B (mod pi*p5?--- ). (4.3.4)
Observe that we have W;(xy,) = ¥i(z,,) (mod p;*) only if 27(I" —1) = 0 (mod pj*).
Since 2% and p;* are coprime we have (I’ —1)|p;". Now for any ¢ € {1,...,d} define the

map Z; : Z — Z/p;'Z with Z;(1) = ¥;(xy,) + p;*Z. Observe that Z; is periodic, i.e.
Zi(l) = Ei(l + ap;]?) for any integer «, and Bily,...psiy Is bijective, ie. Ei(l) # Ei(l") for
LU e{l,...,p]"} with [ # I'. Since the system (4.3.3) only has a solution if Z;(l) = f;
(mod p;*) for i € {1, ..., d} we see that are integers a1, ..., o such any solution satisfies
|l = oy (mod p]*) for i € {1,...,d}. By classical Chinese Remainder Theorem there
exists some integer /3 such for any solution [ we conclude (4.3.4). Thus among Hle p;
consecutive numbers of the sequence (n;),>1 there is exactly one [ such that ¥;(z,,) = a;
for any collection of numbers a; € {0,...,p;* —1} with i € {1,...,d}. Let B be any box

of the form .
B = H[aipfsi, (a; + 1)p; ™)
i=1

with a; € {0,...,p;" —1} and ¢ € {1,...,d}. Observe that x € B if for i € {1,...,d}
the first s; digits in the p;-adic decomposition of x; are uniquely defined, i.e. we have
Zji:_ol a(j,i)p; 7~ = a; for all

[e.9]
zi =Y _a(ji)p;’ " € Bi = laip; ¥, (ai + 1)p; ™).
i=0

By definition of the ¥; this is equivalent to ¥;(z) = Zjl:_ol a(jg, Z)pz (mod p;*) for all

i € {1,...,d}. Thus there is exactly one [ with z,, € B among Hle p;" consecutive
numbers of the sequence (zy,);>1. Therefore we obtain

d
{l:xmeB,le{L+1,...,L+pri}cNH=1. (4.3.5)
i=1

Now for i € {1,...,d} and integers r; > 0 let

Cl(m) = {[O,Cipi_”) 1C € {0, ... ,p? — 1}}

be a family of intervals. Furthermore set
Ai(ri) = {[aipi_si, (a; +1)p; ) 1 a; € {0,1...,p)" —1},s; € {0,. .. ,7“,;}}.

For integers r1,...,74 > 0 let

d
B(Tl,...,rd) = {B = HBl : B; € Cl(m) U.Ai(ﬁ') for any 1€ {1,... ,d}}

i=1

be a collection of boxes.
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4 Double infinite matrices and the inverse of the discrepancy

For any box B C [0,1)% and any set M of positive integers set

Du(B) = | 3 (1p(wa) — A(B)|.

nem

Furthermore for integers x,7y > 0 with v € {0,...,2% — 1} and any set A as defined
above let

Ney={neN:n=~ (mod 2%)}.
Now we shall show that for any set of integers r1,...,ry > 0 and any box
d
B = HBZ' S B(Tl,...,rd)
i=1

we have

pi — 1
Dy (B) < 11 ( 5 ri+1>. (4.3.6)
i€{1,...,d},
B¢ A;(r;)

We are going to prove this inequality by induction on the number k& of indices 7 such
that B; ¢ A;(r;). Thus we first assume k = 0. We have B = Hfil[aipi_si, (a; + 1)p; ™)

for suitable integers si,...,s4 and ay,...,aq. By (4.3.5) we obtain
d d
{Wm' 11> J < 3 1p(za) < {Wm\ 11 plﬂ .
i=1 nENi,~ i=1

Since },cn,.  AM(B) = INor  TIL, p; % we conclude Dy, (B) < 1 for k = 0. Now
assume that (4.3.6) has been proved for |[{i : B; ¢ A;(r;)}| = k — 1. Consider some
box B € B(ri,...,rq) with [{i : B; ¢ Ai(r;)}| = k. Without loss of generality we
may assume B; ¢ A;(r;) for i € {1,...,k} and B; € A;(r;) for i € {k+1,...,d}.
Then we have By = [0, ¢,p, *) for some integer ¢ with ¢ € {0,...,p* —1}. We get
ckpy F =00 ejp,:j for integers e; with e; € {0,...,pp — 1} for 1 < j < rj. Therefore
the interval By can be decomposed into e; intervals of length plzl, eo intervals of length
p,,” and so on. Set e = "%, ej. Then

[+
By, = U E;
t=1

for pairwise disjoint By € Ag(rg) with ¢t € {1,...,e}. Thus we obtain

e
B:U(le-~-><Bk,1><Et><Bk+1><---de).
t=1
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4.3 Randomized Halton sequences

By induction hypothesis we observe

[
Dy, (B) < ZDNM (By X -+ X Bp_1 X Ey X By1 X -+ X By)
t=1

k—1 p'—l
€H< 12 ri—i—l).

=1

(4.3.7)

IN

Furthermore set F' = [¢p,"*,1) = [0,1)\Bj. We have

Dn..(B) < D, (Bix -+ x B_1 x [0,1) X Bjy1 x -+ x By)
+DN~,7(Bl><"'XBk?—1XFXBk'—i-lX"'XBd),

Thus we get
k—1 9
Dy...(B) < (p’ e 1>
i=1
+DNN,’Y (Bl X o X Br_1 XFXBk+1 NEEE XBd).

Observe that I can be decomposed into 143> "%, p, —1—e; = (py —1)r, —e+1 intervals
in A (rg). Thus we get

k—1
Dy (B) < ((pr — Vr — e +2) H(
=1

y (4.3.7) we have

k—1
e+ (pr—Drp—e+2 b —1
Dy, (B) < 5 H1 Sritl).
1=

Hence (4.3.6) is proved for any k. Now let J = Hle[O, v;) C [0,1)¢ be some arbitrary
box. For any i € {1,...,d} set r; = [log,, (N)] and furthermore let ¢; be the integer

such that ¢;p; " < wv; < (¢; +1)p; ™. Take some
N,@%m = {n € {Nﬂ.(mfl) +1,..., Nﬂ.(m)}, n=+ (mod 21{)}.
By definition of Ny ., for any i € {1,...,d} we have ,; = 2,;p; ' + gm, for some

integer z,; depending on n E Neym and 0 < gm; < p; " independent of n. For
vi—cip; < gmiset vl = ¢;p; 7, otherwise set v} = (¢;+1)p; " and let By, szl[o, vl).

It is easy to see that
S o Ly@a) = ) 1p,(wn).

n€N,ym n€Ngym
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4 Double infinite matrices and the inverse of the discrepancy

Thus by (4.3.6) we get

d+1
Dy, (J) < Y Dw,n())
m=1

d+1
< S e - A)
m=1 |n€Ns,y,m
d+1 d+1
< DD Asu@n) = ABW)| + D Wyl - IMT) = A(Bum)|
m=1 |[n€ENy ,m m=1
d+1
<

d
Z DN (Bm) + |NH,'7| Zpi—n‘
m=1 =1

d d
;i — 1 o
< (d+1>H<pz2 Ti+1>+|NF»;7|§ P

i=1 i=1
Since r; = [log,, (N)] we observe
* DNK, (J)
DINH,WI(PNWW) = S%PW
d 1 (yit1 1 +1 (4.38)
v bi — bi
< =+ . log(N) + > )
N |Nkyl }_[1 i <210g(pi) N+
Next we shall show
i+1/ pi—1 pit+1 .
log(N < 1) log(N). 4.3.9
(s tog(0) + ) < 4 1) tog(V) (139

for all i € {1,...,d}. This is easy to see for i < 4. It is well-known that for i > 5 we
have i < p; <14 7/4-ilog(i) (see, e.g. [15, Theorem 8.8.4]). Therefore we get

41 i — 1 i+ 1 4+ 1 (7/4-1log(e
(oL 2t o DL (T st
i og(pi) 2 i 2log(i)

il <;ilog(N) +2i log(i))
1

< (i+1)log(N).

log(N) + 2i log(i)>

Thus (4.3.9) is proved. Together with (4.3.8) we have

d N (d+ 1)!(10g(N))d'

D‘Nm,ﬂ(PNw‘i»’Y) < N ‘NK,’Y|

(4.3.10)

It remains to show

Vd_ | (d+Dllog(N)! _ (4.3.11)

+ <
VN5 d| Ny |
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4.3 Randomized Halton sequences

Then the statement of the Lemma follows by (4.3.10) and

d (d+1)!(log(N))4
* P o <
Ml (Pnr) < Ry Voo

. Vd ( Vd +(d+1)!(log(N))d>

T VINeal \ VN, VA Nyl
Vid

< .

TV INky

In order to show (4.3.11) we estimate the second term and observe

(d+ D! log(N))? _ (d+1)!(log(N))* _ 4 (d+1)(log(N))*+'/2
VAN V27E—ldN 4/log(2) VAN
where we used k < logy(8logy(NN)) for the second inequality. Since for any fixed d the

derivative of (log(N))#t1/2/\/N is negative for N > e*4+1/2) it is enough to restrict
ourselves to the case N = 2122 > ¢2(d+1/2) Therefore we first shall show

< (4.3.12)

4 @+ 1(105_:;(z\f))d*1/2 (4.3.13)

Vieg(2) Vd ~2

resp. equivalently
8(d+1)! < 9—d/2.
124-1/2(log(2))4v/d
This shall be done by induction. It can easily be verified that (4.3.14) is true for d = 2.
Thus we may assume that (4.3.14) holds for some integer d > 2. We get

(4.3.14)

8((d+1) +1)!

_ 8(d +1)!
12(d+1)—1/2(10g(2))(d+1) /d+1 —

124-1/2(log(2))4/d
92d+1/2 8(d +1)!

124-1/2(log(2))4V/d
92d+1/2 2d2—d/2

(d+2)

IN

VARVAN

2(d+1)2—(d+1)/2
and therefore we have (4.3.13) for any integer d > 2. For d > 2 we get
(12- 2d)2d < 92d*+2logy(12)d < 26.2d < V'N.

Hence (log(N))??/v/N < 1 immediately follows. With v/d/\/[N,,| < 1/2 and (4.3.13)
we observe (4.3.11) which finally concludes the proof.
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4 Double infinite matrices and the inverse of the discrepancy

4.4 Proof of Theorem 4.1.1

The proof of this Theorem is mainly based on [3]. For some integers N > 1 and d > 1
we simply write

Df;iv(l‘nﬂ) = D;iv((l‘lyl, e ,$17d), ey (SCN,l, e ,SCN7d)).

For all integers m > 1 and d > 1 we define

Fm’d7€ - { max MD%(an) > Cm,d,a\/am}

Me{am1,... 2m+1}

with

_ J1819 4 252l0g(e7t), if 1227 > m,
ST 1821 + 25210g(eY), i 1224 < m.

We shall show that

Pl U U Fnac | <e (4.4.1)

d>1m>1

Therefore on the complement of Ug>1 Up>1 Fpyde which has measure bounded from
below by 1 — ¢ for any integer NV > 1 and d > 1 we have

ND% () < (1821 + 2521log (e 1))VdV2N < (2576 + 357 log(e 1)) VdVN

which concludes the proof. By (4.3.8) which also holds in the case d =1 and N > 3 it
is easy to see that for d =1 and m > 1 we observe

P(]:m,d,a) =0. (4.4.2)
Therefore we may assume d > 2. We now claim
Pl U Fnae ] =P U Frde | - (4.4.3)
d>2m>1 d>2me{l,...,12.24—1}

Let d > 2 be given and assume m > 12 - 2¢. Furthermore set u = 12 - 2¢. By Lemma
4.2.2 for M € {2™ +1,...,2™!} we obtain

MDS(2n) < 2"D3(2p;) + (M — 2#) DSy 1y (200). (4.4.4)
Now observe that since (zou1,...,%ou q) is uniformly distributed the points
{(@anqr,. s wouq1a)s -5 (@m1s - Tma)}
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4.4 Proof of Theorem 4.1.1

are elements of a randomized Halton sequence denoted by (¢, )n>1. Therefore by Lemma
4.3.1 and another application of Lemma 4.2.2 we have

2D, (ni) + MDG(an,i)

Dgﬂ,M(xn,i) = Dgu,M(qmi) <

M — 28
2Vd/V2 + MVd/VM (4.4.5)
- M — 20
_ 2\/@/2m+1
M —2#8

Together with (4.4.4) we get

Fmde\Fu-1.de C MDY (z,5) > (1821 4 2521og(e 1)) VdV 2m+1} \

max
Me{2m+1,..,2m+1}

{2D.(wn) > (1819 + 25210 (=) Va2 }

C { max (M — 2“)D5M7M($n’i) > 2Vdv 2m+1}

ME{Q”L+1,...,2”L+1}

=0.
Therefore for m > p we have P(Fy, 0.\ Fu—1,de) = 0 and (4.4.3) follows immediately.
Thus we may assume d > 2 and m € {1,...,12-2% — 1} now. Furthermore we may
assume
1
vd < = (4.4.6)
\/9m+1 64

since otherwise F, g = 0. Let k(m) = max{k > 1:12-2* < m} and for m > 48 set

L, = 912:2K(m) resp. for m < 48 set L,, = 0. Moreover we define the sets

o {LmD%m (zni) > (910 + 126 log(s_l))\/g\/Lm} . if Ly > 0,
m,d, =
: 0, if Ly =0,
Homae = { max (M = Lp)DE yp(@as) > (909 + 126 1og(e—1))\/&x/2m+1} .

Lin+1<M<2m+1

Now we claim

fm,d,s - gm,d,g U Hm,d,g (447)

for all d > 2 and m € {1,...,12-2% — 1}. Since this trivially holds for L,,, = 0 we may
assume L, > 1 and therefore we have m > 48 and k(m) > 2. By Lemma 4.2.2 for the
complement of G, g U Hypae We observe

max MD% (z,.) < max Ln,D?¢ (2p:)+ (M — L,,) D¢ T
. S v(Tni) < LMHSMQM( m DT, (Tni) + ( m) DL, 1 (Tn.i))

< (910 + 126log(e~1)Vd/Lyn
+(909 + 126 log(e 1)) Vdv2m+1
(1819 + 2521og(c~1))Vdv2m+1,

IN
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4 Double infinite matrices and the inverse of the discrepancy

Thus we have (4.4.7). Now for any d > 2 we shall show

U Fm,d,s c U Hm,d,e-

me{l,...,12.24—1} me{l,...,12-24—1}
For any k£ > 2 by definition of L,,, we have

912'2k,m,5 = g12~2k+1,m,€ == g12‘2’°+1—1,m,€'

Therefore by (4.4.7) we obtain

U Fm,de © U Giak g U U Hond,e-

me{l,...,12:24—1} ke{2,...,d—1} me{l,...,12:24}

For k = 2 we have m = 12- 22 = 48 and L,,, = 2*%. With L4 = 0 we get

(4.4.8)

(4.4.9)

Gisae C {2481)248(3;”@) > (910+12610g(5—1))\/8\/248}
C {Lir+ (@ = Lir)DY, yus (wn) > (910 + 126 log(e ™)) vVav/2™ }
- {(248 Lag) D gas(20) > (909+1261og(s—1))\/&\/248}
C Hurae

where the second line follows by Lemma 4.2.2. For k > 3 and m = 12 - 2¥ we have
k(m) = k and Ly, = 2122". Morecover we obtain k(m — 1) = k — 1 and furthermore

Ly—1= 9122t _ /T m. Thus we have

“)VAVIn

Omae S {LmDE, (wni) = (910 + 1261og(e™)Vay/ Ly |
C {Zmr+ (B = Ln1)DE, _, 1, (0) > (910 + 126 1og(=
C {(Em = Ln-1)DE, 1, (20) = (909 + 12610g(=~) VY L |
C H

m—1,d,e-

Together with (4.4.9) we observe (4.4.8). Thus by (4.4.1), (4.4.2) and (4.4.3) the Theorem

is proved if we show

Z Z P(Hm7d75) <e.

d>2me{1,...,12.24—-1}

Now we shall prove

€
]P)<Hm,d,5) < W

for all d > 2 and m € {1,...,12-2% — 1}. Then (4.4.10) follows by

S PO Y1220 S

d>2 me{l,...,12-24 -1} d>2
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4.4 Proof of Theorem 4.1.1

To prove (4.4.11) let d > 2 and m € {1,...,12-2% — 1} be fixed now. To estimate
D%m’ 1 (Tni) we define a finite system of subsets of [0,1)? with the help of d-bracketing

covers such that [0, ) for any z € [0,1)? can be approximated well enough by a union
of this sets. Set

1 1
o |ml_loes(d) ) (4.4.12)
2 2
As a consequence for any h € {0,..., H} we have
Vdy/am+1 < om=h, (4.4.13)

For any h € {1,...,H} let A}, be an 2~ "-bracketing cover of [0,1)?. By Corollary 4.2.4
we may assume

Al < (202 4 1) (4414

For any z € [0,1)? we now define a finite sequence of points 3y, (z) for h € {0,..., H+1}
in the following manner. Let (v,w) € Ap such that v < z < w. We set Sgy1(x) = w
and By (z) = v. The points S1(z),...,By—1(x) are defined by induction. Thus assume
that for some h € {1,..., H — 1} the point Sj41(x) is already defined. Let (v,w) € Ay,
with v < Bpy1(x) < w and set By (x) = v. Moreover set Sy(x) = 0. Therefore we observe

0=PFo(r) <Pi(z) < < Puz) <z < Bra(r) <1

For h € {0,..., H —1} we have (3;(x),w) € Ay, for some point w € [0,1)?. Furthermore
we have (B (x), Bu+1(z)) € Ag. Then by Corollary 4.2.4 for h € {0,...,H + 1} and
i €{1,...,d} there exist integers aj,; € {0,...,2(M8@+ING+DY sych that

(Bu(x)); = 2~ (om@HID(HD g (4.4.15)

For h € {0,...,H} set Kp(x) = [Br(x), Brt1(x)). Note that the sets Kp(x) are pairwise
disjoint and satisfy

H—-1 H
U En(z) € [0,2) € | Knl) (4.4.16)

h=0 h=0
By definition £y (x) < Bry1(x) < w for some w € [0,1)? with (B, (x),w) € Ay and hence
A(Ew(@)) <A (Bu(@),w)) <27 (4.4.17)

for any h € {0,..., H}. Now define

S = {Bu(@), Bua (@) @ € 0,17}

Observe that we may define the points 35 such that B, (x) = By, (y) for z,y € [0,1)? with
Bht1(z) = Br+1(y). Therefore by Corollary 4.2.4 we have

[Shl = Hﬂh+1(ﬂf) rx e [0, 1)dH <[Apga] < %(26)"[(\/5)(“3” (4.4.18)
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4 Double infinite matrices and the inverse of the discrepancy

for any integer h € {0,..., H}. For m > 48 we set s = k(m). Otherwise we set s = 1.
Let now n € {L,, +1,...,2™*"!} be an integer. For m < 48 we have s = 1 and therefore
we obtain , ; = T, (zn—1,) for i < s by definition while for i > s we get

n < omtl < 948 - 912:2"

Thus for ¢ > 2 we have z,,; = (2“0g2(m+1xn,17i>. Form > 48 and i < s = l;:(m) we get

n> L, = 912:2~(m) > 9122

and thus we obtain z,,; = T}, (xp—_1,). Furthermore for i > s = l%(m) we observe
n< gm+1 < 212-2i
and we obtain z, ; = <2f10g2(i)1+1xn_17i>' We see that in the sequence
{(mLWl, e TLd)s e (Tomar g, ,x2m+17d)}
the first s coordinates form a randomized Halton sequence while the sequence formed by
the remaining coordinates is a sequence of fractional parts of the product of some initial

value and elements of a lacunary sequence. Hence for any M € {2™ +1,...,2m"1} by
Lemma 4.2.2 and 4.3.1 we have

(M - Lm)Dzm,M(xn,i) < LmDim (ajnvl) + MD?V[(J;”’Z) (4 4 19)
< V5V L +v/sVM < 2/sV/M. -

For some h € {1,...,H 4+ 1} and a point y € [0,1)¢ the point 3;(y) can be written as
(un(y), vn(y)) for up(y) € [0,1)* and vy(y) € [0,1)%*. Moreover set Up(y) = [0, un(y))
and Vi, (y) = [0,vx(y)). Thus we have Up(y) x V3 (y) = [0, Bn(y)). Observe that any set
Kp(y) € S, may be written as

Kn(y) = [Brn(y): Br+1(y))
= ((Un+1(\Un(y)) X Vit1(y)) U (Un(y) x (Vas1(m)\Va(y)))-

For h = 0 we simply have Ky(y) = U1(y) x Vi(y). Furthermore set Uy(y) = Vo (y) = 0.
Thus by (4.4.17) we observe

AUn+1 (@) \Un(@))-AVar1(9) A UR () - AVag1 () \Va () < A(Kn(y)) < 27" (4.4.20)
for h € {0,...,H}. Now let y € [0, 1)¢ be some arbitrary fixed point. Note that hereafter

we skip the point y in the notation of the points §;, and the sets K}, resp. Uy and Vj, to
simplify notations. Furthermore let L,, + 1 < M < 2™*! be an integer. For simplicity
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4.4 Proof of Theorem 4.1.1

we write ¢, = (Tn,1,...,%Tn,s) and 7, = (Tps41,...,2n,q). Then by (4.4.16) we have
M M
D loyla) 2 Do Lay(an)
n=~Lm,+1 n=~Lm,+1
M
= Loy (gn) - Ly (n)
n=~Lm+1
M
= Z 1y, (gn) - v (rn)
n=Lm+1
H-1 M
+ Z (]'Uh+1\Uh (qn) ' 1Vh+1 (rn) + ]‘Uh (qn) : 1Vh+1\Vh (T'n)) .
h=1 n="Lm+1
(4.4.21)
Analogously we also get
M M
Y Toy@) < Y 1u(gn) - v ()
n=Lm+1 n—Lm+1

+ Z Z 1Uh+1\Uh qn) 1Vh+1 (Tn) + 1Uh (qn) : 1Vh+1\Vh (Tn)) .
h=1n=Lm+1

(4.4.22)
By using maximal Bernstein inequality we now shall give a lower bound on the proba-
bility that the system of inequalities

M
L > 0 @) Wi () = 1o, 0, () A Vi) | > 6, (4.4.23)
h=Lo+1
M
P S > 10, (@)l () = Loy, (@) AV \Va)| >, (4.4.24)
h=Lom+1
M
LmH?J\EZIXQWH h:LZ+11U1(qn)1V1(rn)—1U1(qn))\(V1) >t (4.4.25)

holds for all sets Uy, Up+1, Vi and Vj 41 with h € {1,..., H} and some ¢t > 0 to specified
later. Set k = kj, = [logy(h +2)]. By Lemma 4.3.1 and (4.4.19) for any h € {1,..., H}
we have

2m+1

M — L,
Z L0y 1\Un (n) < Z AMUp+1\Up) + /s - — +1
n=Lmy+1 ME{Lm+1,...,2m+1Y,
M=~ (mod 2%)
< (2R L) ANUpd\Un) + Vs - V/2mH—r 1

(4.4.26)
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4 Double infinite matrices and the inverse of the discrepancy

and
2'm+1
> 1o (gn) < @7 4 1) MUna \Un) + Vs - Vomtior 41, (4.4.27)
n=~Lm,+1

Now let h € {0,...,H} be fixed and set A, = V11\Vj resp. Ap = Vj4q1. Furthermore
define by fa,(z) = fa,(rn) = 14, () — AM(As) a real-valued function on [0,1)475. We

now shall show that for any system of indices nq,...,ng with nj1 —n; > h+ 2 for all
le{l,...,k— 1} the random variables f4, (r,) are stochastically independent, i.e.
k
P (fa,(rm) =1, fa, (o) = ) = [ [P (Fa,(rm) = ). (4.4.28)
=1

We only prove the case k = 2. The general case follows by induction. By (4.4.15) the
set Ay, is a union of axis-parallel boxes such that each corner of any box is of the form

(2—(ﬂog2(5+1)1+1)(h+2)as e 2—((1og2<d>1+1><h+2>ad) (4.4.29)

such that a; € {0,1,...,2(Nos2(DIFDR+2Y for any i € {s+ 1,...,d}. Furthermore let
n,n’ € {Ly,+1,..., M} be two indices with n’ —n > h 4 2. We define a decomposition
of [0,1)4=* by

d
5= { I [2—(f10g2(i)1+1)n’ai72—(ﬂog2(iﬂ+1)n’(ai n 1)) :
i=s+1

a; € {0, 1,... 2(Moga(]+1)n’ _ 1} de{s+l,... ,d}} .

Note that by (4.4.29) the function f4, is constant on any box B € ¥. For some ¢; € R
define
Yo ={B€X: fa,(rn) =c1 for all ri = (r1,641,...,71,4) € B}.

Since z,, ; = 21082 +DM' Vg - for all i € {s +1,...,d} we have fu, (rw) = fa, ()
where 1), = (2], o415, Thy g) With @7, = 2([og2 (D™ =1) g/ - is an instance of the
matrix for some initial value 7 = (2} 41, ..., 7] 4) with $/1,i = :Elyi+2_(“°g2(i)1+1)(”,_1)ai
and a; € {0,1,...,2Mee@I+DE'=D _ 1} for all i € {s+ 1,...,d}. Therefore for any
co € R and any B, B’ € ¥ we have

P(fa,(rw) =co|r1 € B) =P (fAh(rn’) = colr € B/) :
Hence for any c2 € R and any B € ¥ we get
P(fa,(rw) =c2) = Y _ P(fa,(rw)=colrs € B)P(ry € B)
B'ex

= P(fa,(rw) =calr1 €B) Y P(ri €B)
Bres
= P(fa,(rw) = c2|r1 € B).
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4.4 Proof of Theorem 4.1.1

Moreover for any c1,co € R we obtain

P (fa,(rn) = ca|fa, (rn) = c1)
P (fa,(rw) = c2, fa, () = c1)
a P(fa,(rn) = c1)
Y e P(fa,(r) = ca, fa, (rn) = c1|r1 € B)P(r1 € B)
a P(fa,(rn) = c1)

_ ) = colr ]P’(rleB)
_BEZECIP(fAh(n) 2|1€B)P(fAh(rn):cl)

=P (fa,(rn) = c2).

Thus (4.4.28) is proved. Furthermore set

Q(L’va?rY) = {n€{Lm‘l—l,...,M}anEU}H_l\Uh,TLE’Y (m0d2ﬁ)}a
Q(Lm,M,y) = {ne{lp+1,....,M}:q,€Up,n=v (mod 2")}.

Then for h € {1,..., H} by Lemma 4.2.1 we have

N
]P) (ME{LEI;?:)I{ ..... N} _;Jrl 1Uh+1\Uh (qn) : 1Vh+1 (Tn) - 1Uh+1\Uh (qn))\(Vh"Fl) > t>
2% +
SLF g | 2 M) AR >
7=1 TLGQ(Lm,M,’Y)

2" 2 192k
t°/2
§2§ exp | — / .
=1

2 (Cneqmatm 1) AV (1= AVis)) +2¢/(3 - 2%)

Thus by (4.4.26) we obtain

N
P (MG{LI}nIi)l(,,_.,N} n:LZ+1 1Uh+1\Uh (qn) - 1Vh+1(rn) - 1U,L+1\Uh (@) A (V1) | > t>

< 2 exp t2 /2150
~ X — .
23N (Up 1 \U)A(Vivg1) +2V2 - /5 - V2NV q) + 2t/3

Furthermore (4.4.13) and (4.4.20) yield

N
P (MG{LITInIi)l(,...,N} n_;_ﬂ 1Uh+1\Uh (qn) - 1Vh+1 (rn) — 1Uh+1\Uh (@) A(Vit1)| > t)

t2/21.5n
(8 +2v/2) - 2m~h 4 2¢/3

S 2f€+1 exp <_

> . (4.4.30)
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4 Double infinite matrices and the inverse of the discrepancy

Similarly using (4.4.27) we get

N
P 1 n) - 1 n) — 1 AV} Vi)l >t
(ME{LI:?-)l(,..‘,N} n;ﬂ U (@n) - Ly, \vi (Tn) = 10, (@) A (Vi 1\ Vi) )

t2/21.51@
(8 +2v/2) - 2m—h 4 2t/3

§2Ii+1 eXp (_

) . (4.4.31)

Now set t = C1V/dV2m+1V/h - 2155=h for some constant Cy > 0 to specified later. Ob-
serve that by (4.4.13) we have t < 2m~h+1Cy.
Therefore by (4.4.30) we get

N
F (Me{Lrgi)l(,...,N} n:LZJrl 10, 0\Us (qn) - 1Vh+1(r") — 1y, 0\, (@) A (Vht1)| > t>

2
<C1 Vdv2rti/p 21-5“_}1)
2155(8 + 21/2 4 2C)2m—h

<dexp (_ (20 _ 1> hd>
- 84 2v2 + 20

where the last line follows by (h + 2) < e for d > 2. Similarly using (4.4.31) we have

<4(h+2)exp | —
(4.4.32)

N
P 1 n) -1 n) — 1 n ) AV Vi) >t
(MG{Lrili)l(,...,N} n:LZ+1 Uy, (q ) V}Hrl\Vh (7’ ) Up, (q ) ( h+1\ h) >

20?2
<4 ——==L 1 )hd). (4.4.33
- eXp< <8+2\/§+ZC’1 ) ) ( )

For h = 0 set t = Cyv/dv/2™m+1! for some constant Cy > 0 to be specified later. Thus by
using a similar argumentation as above we get

M
P 1 n)1 n) — 1 n) AV t
(ME{LIEi)l(7..~,N} nLZ-H Ul(q ) " (r ) Ul(q ) ( 1) - >

t2/2 ) ( C3 )
< dexp (- < doxp (- d). (4.4.34
= eXp( 8+2v2)-2n12t/3) = TP\ 81 2v2+42/3-Cs (44.:34)

Define
ke L C3
$+2v2+201 1 8+2v2+2/3-Cy

Observe that by (4.4.18) and sufficiently large constants Cy, Cy resp. C3, Cy the system
of inequalities (4.4.23), (4.4.24) and (4.4.25) hold on a set of measure which is bounded

3 (4.4.35)
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4.4 Proof of Theorem 4.1.1

from below by

(4.4.36)

9
6. 220"

H
1_ %(2@)01(\/5)36[ . 4670451 o (2€)d Z(\/g)(h+3)d . 48*C3d > 1—
h=1

Now we shall find some constants C7 and Co such that (4.4.36) is true. It is easy to see
that for C3 > 2.7 we have

H
506 dZ h 1 d 703hd 50 d 7C3dz Cg h 1)d < 4 1(50€)d 703d
h=1

Therefore we can estimate the left-hand side of (4.4.36) by

H
Lo \d/. /e\3d Cad _ (26)d N7 (y/5)(HH8)  4o~Cod
1—5(2) (v/5)3 . 4e=C1 ) (V5 3
h=1
>1 — (2/(\/5)d + 4.1) (50¢) e min(Cs.Ca)d
>1 — 45 . e(1+log(50)—min(Cg,C4))d‘
Thus (4.4.36) holds if
—log(4.5) + (min(Cs, Cy) — 1 —log(50)) d > log(e 1) + log(6) + 2d.
By d > 2 it can easily be shown that (4.4.36) is true for

log(e™ 1)

min(Cs, Cy) > 7.947 + 5

(4.4.37)

y (4.4.35) this holds for

15.894 + log(e~ ! 15.894 + log(s—1)\ 2
Cy > +6 og(e”) + \/86.054+ (4 +V2)log(e!) + < +6 o8(e )>

and because of VA + B < VA + VB we may choose

Cy = 14.575 4 5.748 log(e 7 1). (4.4.38)
Similarly (4.4.37) holds for
17.894 + log(e ™! 17.894 + log(s~1)\ 2
C1 > +4 og(e”) | \/48.441 +2.708log(=—1) + ( +4 og(e )> .

Thus we may take
Cy = 15.907 4 2.146 log(e ™). (4.4.39)
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4 Double infinite matrices and the inverse of the discrepancy

Therefore for any M € {L,, +1,...,2™"!} by using (4.4.22), (4.4.32), (4.4.33), (4.4.34),
(4.4.35), (4.4.36), (4.4.38) and (4.4.39) we get

M

Y Lpy(a)

n=Lm+1

M
< Z 1U1(qn)'1V1(TTL)

n= Lm+1

+ Z Z 1Uh+1\Uh qn) 1Vh+1 (Tn) + 1Uh (qn) : 1Vh+1\Vh (Tn))

h=1n=Lp,+1
M
S AUrOAN Vi) + Y. AMVas) (Lugy, (gn) = MUs41))
n=Lm+1 n=Lm+1

H
+2(15.907 + 2.146 log(e 1)) Vav2m+1 Y~ V/h - 21501 +ogy (h+2)—h
h=1
+ (14.575 + 5.748 - log(e " 1))VdV2m+1

with probability at least 1 — /6 - 2724, Thus with

H
Z Vh - 215(1+logy (h+2)~h < 97,917

h=1
we obtain
M
> Loy (ea)
n=Lm+1
M
S AUr DA Vai) + Y. AMVai) (Lugy, () = MUs11))
n=~Lm,+1 n=Lm,+1

+ (902.726 + 125.568 log(e 1)) VdV2m+1,
By (4.4.12) and (4.4.19) we have

M

Y Lpy(a)

n=Lm+1
<(M — Ly)M[0, Brro1 () + 2V dV2m+1 4 (902.726 + 125.568 log (e 1)) Vdv/2m+1
<(M = L) (A0, ) + 271) 4 (904.726 + 125.568 log(e 1))V dV2m+1

<(M — L,)A([0,9)) + (908.726 + 125.568 log(e 1)) Vdv/2m+1
(4.4.40)
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4.4 Proof of Theorem 4.1.1

on a set with probability at least 1 — /6 - 2724, Similarly by using (4.4.21) instead of
(4.4.22) we obtain

M

Y Lpy(a)

n=Lm+1

(4.4.41)
=Lm
(M ) (10,)) — (908.726 + 125.568 log (")) Vdv/2m+T

on the same set of probability bounded from below by 1 —¢/6 - 2724, Therefore we have
proved (4.4.11) which finally concludes the proof of the Theorem.
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5 Random Matrix ensembles with
correlated entries

In this chapter we discuss a random matrix ensemble where the entries are taken from
a multivariate lacunary system and show that the mean spectral distribution of this
ensemble converges weakly to the semicircle law. In section 5.1 we present the main
result which is proved in section 5.2. Furthermore in section 5.3 we give examples.

5.1 Main result

Theorem 5.1.1 Let (M, 1)n>1 and (Mp 2)n>0 be two integer-valued lacunary sequences
satisfying the Hadamard gap condition (1.0.4) such that there exist C' > 0 and € > 0
with

s\ —1 o
Z Z (’]‘7 ) 1|jMn717j’Mn/’1|<1/2-q*CN1_EMn/’1 - O(N) (511)
n,n'€{1,....2N}, j,j'€{1,....NK}
n>n

for any K € N. Furthermore let f : R? — R be some function of finite total variation in
the sense of Hardy and Krause satisfying

flx+2) = f(x) for all 2 € [0,1)%, 2 € Z?, /
[0,1)

Additionally assume that f satisfies

f(x1,y2) dxy = f(y1,z2)dxg =0 (5.1.3)

[0,1) [0,1)
for any fized y1,y2 € [0,1). Let the Fourier series of f exist and converge to f. Now
define a symmetric random matriz ensemble (Xn)n>1 by setting Xy = (X n/)i<nnw<N

with
1

VN
for any n,n’ € {1,...,N} and N € N. Then the mean empirical distribution of the
etgenvalues converges almost surely weakly to the semicircle law, i.e.

Xn,n’ = f(Mn_;_n/’ll'l, M|n,n/|72x2) (5.1.4)

1 ___K! K even
lim E | LT (XK ] _ | w7 : 5.1.5
N—o0 [N () {o, K odd. (5.1.5)
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5 Random Matrix ensembles with correlated entries

5.2 Proof of Theorem 5.1.1

For K,N € N let p = pyx be the N¥th Fejér mean of f as defined in (2.0.2) and set
r=ryx = f —p. By Lemma 2.0.2 we have ||r|[5 < CN~X for some absolute constant
C > 0. We define the random matrix (X, v )1<nn/<n by

~ 1
Xn,n/ = ﬁp(Mn—i-n’,lxl, M\n—n’|,2x2) (521)
for any n,n’ € {1,..., N}. Now we claim
. 1 K . 1 S K
Jim E [N Tr (XN)] = lim E [N Tr (XN)} . (5.2.2)

It is easy to see that

1 1 N K
]E[Tr(X]{?)} = E|l= Y. J[Xun
N an,...,nK:I k=1 e

N K
1
S S SR | LV R

where n; = ng 1. By decomposing f = p + r we observe
E|LTr (XK)
N N

N K
1
T NE2 Z E [H p(M"kJF"kJrllel’Mlnk—nk+1|72x2)]

ni,...,ng=1 k=1
1 N
D VNP VI | U RS R
ni,...,ng=1JC{1,....K}, keJ
JA£D

: H p(Mnk+nk+1,1x17 M|nk—nk+1,2x2)] :
keJ
Since any set J is nonempty there exists some kj; € J for each J. Thus by Cauchy-
Schwarz inequality we get

E H T(Mnk+nk+1,1$la M|nk7nk+1|,2$2) H p(Mnk+nk+1,1xlv M|nknk+1|,2x2)] '
keJ k¢J

}1/2

2
SE |:T (MnkJ+nkJ+1,1$17 M‘nkjfnkJ+1|72x2)
1/2

2 2
: E H r (MNk+nk+171x17 M|nkfnk+1|,2x2) H p (Mnk+nk+171x17 M‘nk—nk+1|72x2)
ke\{ky} ki
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5.2 Proof of Theorem 5.1.1

and therefore we obtain

E H T(Mnk—l—nk_,_l,lxla M|nk7nk+1|,2x2) H p(Mnk+nk+1,1xlv M|nknk+1,2x2)] '
keJ k¢J
1/2 12
<CNEELTT Il (H HpHé)
keI\{ks} k¢J

<CNEP(fFIE
for some constant C' > 0 which only depends on K. Plugging this into (5.2.3) we have

N K
1 K 1
E [N Tr (XN):| - NE/2+1 Z E H P(Moy g 0,121, M”k_nk+1|72x2)]

ni,...,ng=1 k=1

N

1 —K/2|| ¢| K1

+ W E § CN / Hf”oo .
ni,...,ng=1 Jg{l,...,K},

T4

Hence (5.2.2) follows immediately. Thus it is enough to study the asymptotic behaviour
of E[1/N - Tr(X%)]. We have

fl@y=>_  ajcos(2n(j,x)) + b;sin(2n(j, z)) (5.2.4)
jE(\{0})?

for suitable numbers a;,b; where without loss of generality we may assume b; = 0 for
all j € (Z\{0})2. The general case is similar. Hence by definition we obtain

E HTr (Xﬁ)}

1
:NK/2+]_ Z E [H p(Mnk+nk+171x17M|nknk+1|,2$2)]
ni,...,ng€{l,....N} k=1

K
_ ]‘ 1 /
- Z Z Z 9K NK/2+1 H @jy,
81,00k €{0,1}K j1 i e(Z\{0})2, n1,...ng €{1,...N} k=1
7k ]loo | SN VE

K K
COs <27T (Z(_l)ékjk,ank+nk+1,1$1 + Z(_l)ékjk,ZMlnk—nk-‘.l|,2332>)] .

k=1 k=1

-E

(5.2.5)

Now we decompose the system of solutions for 25:1(—1)5kjk,1Mnk+nk+1,1 = 0 and

Zé{:l(_1)6kjk72M|nk*nk+1|,2 = 0 into different sets. Therefore we rearrange the sequence
(M tnpn)kefn,... k3 18P (Mn, —ny,)2)kef1,... k) in decreasing order. Let my and o
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5 Random Matrix ensembles with correlated entries

be permutations of {1,..., K} such that we have n, () + Mr, (k)41 = Moy (k) + oy ()41
reSp. [Ny (k) = Mg (k)1] = [Mry(kr) — Mo (o)1 for any k < &', For i € {1,2} we define
sequences (I i)1eq1,....xy Dy setting lg1 = Nz (k) + N (k)41 a0d Lk 2 = [Ty (k) — Ny (k)41
for any k € {1,..., K}. For any two sets Ji,Jo C {1,..., K} let the set Ay, j, consist

of any solution d1,...,0k,j1,...,JK,M1,...,nKk such that for any i € {1,2} we have
u 1
[ .
Z(—l) i) s k)i M | < §M1H,i,¢ (5.2.6)
k=1

if and only if H € J;. If H ¢ J; for some H € {1,..., K} then we have

K H

1
O . 5. .
Z (_1) ﬂl(k)]ﬂi(k:),iMlk‘i,i = Z(_l) ﬂ'l(k).]ﬂi(k:),iMlkyi,i Z §M1H,i,’i'
k=H+1 k=1
Thus we get
e 1
KN MlH+l iyt iMlH,’L:Z
Simple calculation shows
L — g1 < log,(2K) + Klog,(N). (5.2.7)
Now let H € J; for some H > 2. We have
H-1 H
Z (*1)6’*i(k>j7ri(k),¢Mlk,i,z‘ > o) Miy | — Z(*1)5“i(’“)jm(k),iMlk,,-,i
k=1 k=1
1
> §MZH,M"
Assume that there exists another solution 47, ... ,6}{,]'{71-, . ’j}Qi’ ny,....,n in Ay g,

with 54&(/’4) = 67ri(k)’j;ri(k),i = Jmi(kyq and U ; = lg; for k € {1,..., H — 1} where any [} ;
is defined analogously to [, ;. Without loss of generality we may assume that [z ; > l}“
Then similar calculation as above shows

I — Uy < log,(2K) 4 K log,(N). (5.2.8)

Now we are going to estimate

11 5
!/

Z 9K NK/2+1 H @i (5.2.9)

617""6K7j1»"'7jK7 k=1

i, Nk €A,

for any particular pair of sets Jy, Jo. Therefore at first we encounter all possible choices
for l1;,...,lk,; and ¢ € {1,2}. Observe that by (5.2.7) and (5.2.8) the number of choices
for Iy, ; is bounded by C'log(N) for some constant C' > 0 independent of N if k—1 ¢ J; or
k € J;, otherwise it is bounded by 2N. Now we assume that J; or J; is not {2,4,..., K}
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5.2 Proof of Theorem 5.1.1

for an even integer K. Then the total number of choices for l1,...,lx; is bounded by
CNLE/2I=1og(N)E/2141 for some constant C' > 0 independent of N. Furthermore there
are at most IV choices for n; and together with l1;, ...,k ; this uniquely determines any
ng for k € {2,..., K}. Thus the total number of choices for ni,...,ng is bounded by
CNLE/2 og(N)IE/21+1 ) By Lemma 2.0.1 we have

K

1
> ox 1] 9 < Clog(N)K (5.2.10)

S1vbre, k=1
JirmdK

for some constant C' > 0 independent of N. We conclude

K

11 ,
> 9K NK/2+1 [1 .| = o) (5:2.11)
15K i 1reesJ K » k=1
N1, N €A I,
if J; or Jo is not {2,4, ..., K} for an even integer K. Thus from now on we may assume
Ji=Jy=1{2,4,..., K} (5.2.12)

and we simply write Ajg 4
and € > 0 we have

K} = Ay 7. We further may assume that for any C' > 0

lpi > lpsq s + 20N2 5.2.13
b + b

for any k € {2,4,..., K — 2} and sufficiently large N where C' denotes the constant used
in (5.1.1) since repeating the above argumentation reveals that all other solutions may
be neglected. Observe that m; and 7 define decompositions A,, and A, of {1,..., K}
into pairs such that for ¢ € {1,2} any pair {k, &'} € Ay, satisfies m;(k) + 1 = m; (k') with
mi(k) odd. We now claim that all solutions 01, ...,0x, j1,.--,JK, 11, --,nK such that
Ay, # Ay, may be neglected. Therefore we define a decomposition A of {1,..., K}
such that for any k, k" in different subsets we have {k,k'} ¢ A, for any i € {1,2}.
Observe that for Ay, # Ay, there are at most K/2 — 1 subsets. Now we encounter
all solutions. The number of possibilities to decompose {1,..., K} into pairs in two
different ways is independent of N. Thus we may assume that A is fixed. We determine
the ng with k£ € {1,..., K} in increasing order of the index k. There are N choices for
ny. Furthermore any choice of n; and ng41 uniquely defines lW;1 (k)i for i € {1,2}. If
{1,...,k=1}NS # 0 with k € S for S € A then by (5.2.7) and (5.2.12) the number of
choices for nj1 is bounded by Cjlog(N)®? for some constants C;,Cy > 0 independent
of N. Otherwise the number of choices is bounded by N. Hence the total number of
choices for ny,...,nx is bounded by C;NIAH1 log(N)“2 for some constants Cy,Co > 0
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5 Random Matrix ensembles with correlated entries

independent of N. Together with (5.2.10) we obtain

| TS
k

015,03 J1 5 J K =1

Thus we restrict ourselves to the case Ar, = Ar,. Now we claim that pair partitions
which are not non-crossing may be neglected. Thus we encounter all pair partitions with
{k1,ks},{ka,ka} € A for some k1 < ky < k3 < k4. We begin by counting the choices for
Mgt 1s -+ MKy MK41 = N, ..., Ny By (5.2.7) the number of choices for I, 1 and lx, 2
is bounded by C'log(N) with some constant C' > 0 independent of N for any fixed ng,
and ny, 1. Consequently, the number of choices for ny, is bounded by Clog(N)? for
some constants C' > 0 independent of N. Therefore we now determine ny,_1,...,ng,41
in decreasing order and ng,41,...,nk, in increasing order. Thus I, and [, already are
uniquely defined by ny and (Ik,1)re(1,...K}\{ko,ks}- Lhen using a similar argumentation
as above we have

11 &,
Z 9K NK/2+1 H a5, = o(1) (5:2.15)
617"'76K7j17"'7jK7 k=1
N1, NK €A 4, K}
A¢D
where D denotes the set of all non-crossing pair partitions of {1,...,K}. In the final

step of the proof we further show that all solutions with l;_1 1 # I for even integers
k may be neglected as well. Therefore we first prove that for 01,02 € {0,1} and any
constant R € R we have

> > k11| k|t = O(N) (5.2.16)

0<|jk—1,11,ldk,1 | <SNK 0<l 1 <lp—1,1<2N

where the sum is taken over all solutions with
) ) 1
‘(_1)51]k~—1,1Mlk_171,1 + (—1)62]k71Mlk,171 — R‘ < §M1k71’1. (5.2.17)

With R = alk—l,lMlk—l,Ll this condition is equivalent to

<. (5.2.18)

By Lemma 2.0.4 for each choice of I;_1 1,51 and j,_1,1 there exists at most one choice
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5.2 Proof of Theorem 5.1.1

for jr1 = jr,1(Jr—1,1). Thus we estimate the left-hand side of (5.2.16) by

> > lk-1,11" ka1

0<lp,1 <lp—1,1<2N 0<jp—1,1],|dk,1 [SNE

< > > k=11 ke Ge-1,0)1 "

0=le,1=le—1,1S2N oy, | T+1<(=1)%1 1,1 SNK,
Jk—1,170
. 1 - . 1
+ E E ljk—1,11" " k1 (Gr—1,1)| (5.2.19)
0<lp,1<le—1,1<2N —NE<(=1)%1j 1 1 <|ay, | ,]-1, o
Jk—1,170

+ > > k-1,

0<lp,1<le—1,1<2N |ay, | I<(=1)%1jk—11<[ay, ;]

-1

ik Grer)

There exists at most two jx_11 such that [(—1)%jx 11 — a,_,,| < 1. Observe that in
this case we have Lalk7171’1J < (—1)51jk_171 < [alk71,171~|' Therefore in any other case we
have |(—1)%jx_11 — y,_, | = z for some z > 1. By (5.2.18) we get

761 (Jr—1,1)| > Inin(qu’“lvl_l’“v1 —-1/2,1) > min(ql’“*lvl_l’“1 +2z-3/2,1).

Therefore using Cauchy-Schwarz inequality we obtain

Z Z k111 |k

0<l,1<lk—1,1<2N 0<|jp—1,1],ldk,1 |<NK

-1

1/2
o
)
D > e
0<lp,1<lg—1,1<2N (—1)%1 jj, 1 =min(q'k—1.1""k1_1/2 1)
1/2 1/2
NE / |-o‘lk—1,1J_1 /
.9 -—2
> Ir=11 + > Ir=11
(=D)°tjk—11=oq,_, ,1+1 (=1)%1jj_11=—NK

(5.2.20)

+ Z Z k-1 ik Gr-1,)1 !

0<li 1 <le—11<2N |agy ,  J<S(~1)0 ko 1a<[ayy ]

< > C max(gh—117%1 —3/2 1)71/2
0<lp,1<lg—1,1<2N

+ Z Z k1] e Grer) |8

0<lp1<le—1,1<2N oy, | J<(=1)1 k1 1< ey, ]

Since the first term is bounded by C'N for some constant C' > 0 which only depends on
q it only remains to bound the second term. Let [;_1 1 bNe some fixed integer. Now let
lp—1,1 be the largest integer such that (5.2.18) holds with l;_1 1 = I ; for some arbitrary
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5 Random Matrix ensembles with correlated entries

Ik With [(=1)%5; 1| > 1 we get

‘(_1)61.7'1971,1 —Qap g, M~7 >

For some I}, 1 < l~k_1,1 —log,(2) — 1 we obtain

M- 7
S 1 lp—1,1,1 > qlk—l,l_lk,l
Mlk,171 2 Mlk,l»l B

‘<_1)51jk*171 O,

and therefore [jj 1| > 1/2- g"*-1171, Using a similar argumentation as above we have

Z Z k=111 e Gre1,0)]

0<lp,1<lp-1,1<2N |y, | J<(=1)%1jk11< e, ,]

2N 1
<2(log,(2) + )N + 1)+ C Y > "¢

=0 10'=0
<CN

for some constant C' > 0 which only depends on ¢g. Plugging this into (5.2.20) we get
(5.2.16). With Lemma 2.0.1 we get

K
1 1 /
> o iz 1 4
81 oS K 1K k=1
N1, N €A 4, K}

lg—1,17#lk,1 for some even k,
A€eD

< ) > ¢

617--'76}(6{071} nla--'7nKE{17“'7N}

K
Z H]jk71|‘11 H (_)°mih) :
I ke (C1) ) G oy a My al<1/2:My 00 (5.2.21)

0<|g1,1 ]l dr 1 [SNE k=1 if and only if H is even

K
Z H k2l o O ()
’ |3 2k=1 (=1 720 iy (), 2 My, 4 2| <1/2-Miy 5 2

0<[j1,2]5 sl 2| SNE k=1 if and only if H is even

for some constant C' > 0 independent of N. For any fixed 61,...,0x, n1,...,nx and
Jma(k),2 for ma(k) < ma(H — 2) there exists at most one jr, )2 for any jr,g—1)2 and
vice versa such that

H
1
5 )
Z(_l) 7r2(k)=77r2(’f)72]\4lk,272 < iMlH,QQ
k=1
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5.2 Proof of Theorem 5.1.1

holds. By Cauchy-Schwarz inequality we obtain

Z H ‘]k2’ ”2(k>Jw2(k) 2 Miy o 2|<1/2:Miy 5 2

0<|j1,2ls-ldrc,2| SNK k=1 if and only if H is even

- K/2
<[2) 7 <C (5.2.22)

for some constant C' > 0 independent of N. Let H be the smallest even positive integer
such that lg_11 # lg1. We use condition (5.1.1) and (5.2.13) for k = H and apply

(5.2.16) with R = S 72 (—1)5”1(m>jm(m),1Mlm,1,1 for any other even integer k. By

m=1

(5.2.21) and (5.2.22) we conclude

11 &,
k=1

01,0 K 3 J 15 J K 5
N1k €A 4 KYs
lg_11#lH 1,
AeD

since K- NK.¢q=20N""° <1 /2-q“N "% for sufficiently large N. Therefore we may assume
lk/71 = lk71 for any {k, k‘/} € A.

We now show that we may also assume Iy o = I 2 for {k,k'} € A. This immediately
follows by proving ngy1 = ng resp. ngy1 = ng for any S = {k, &'} € A which we are
going to show by induction. For K = 2 this is trivial. For K > 4 there exists some
{H —1,H} € A since A is non-crossing. Furthermore by lwfl(H—l)J = ZW;1(H)’1 we have

nE—1 =ng41. Setk=kfork e {1,...,H-1} and k=k—2fork € {H+1,...,K—1}.
Thus it may be reduced to the case K — 2 and the conclusion follows by induction
hypothesis. Observe that there are N choices for n; and for k € {2,..., K} the number
of choices for ny; is either 1, in the case {k’,k} € A for some k' € {1,...,k— 1}, or N
otherwise. Thus we have

#nq, ..., ng = NE/2HL (5.2.24)

Now let {k,k'} € A. With (5.2.6) it is easy to see that (—1)%jp; + (—=1)%ji; = 0 for
any i € {1,2} resp. jp = *ji. Hence we get

2 K .
N® +1 — [jrl
! _H X

a‘jk/ o NK + 1 [0 1)2

f(x) cos(2m (jj, x)) dz

_HNK"i_l_‘sz’

NE+1  Joope f(z) cos(2m(ji, x)) do = aj . (5.2.25)
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5 Random Matrix ensembles with correlated entries

Therefore we obtain

K/2
K
2 e 1Id.=m| > af (5.2.26)
2K NK/2+1 Jk T j . 2.
01,0 K, J1, 0 K k=1 Je@\{o})?2,
nl,..-,nKGA{zA AAAAA K} HjHoo<NK
lp—1,1=lK1VEe{2,4,... . K}, =
A€eD

By (5.1.2) and || f—p[[5 < ON"® wehave 1 > 3= jyy2 @F > 1-CN~K. With (5.2.2),
(5.2.5), (5.2.11), (5.2.14), (5.2.15) and (5.2.23) we get (5.1.5) which finally concludes the
proof.

5.3 Examples

5.3.1 Superlacunary sequences

Consider a random matrix ensemble where the first generating lacunary sequence is
superlacunary, i.e. let (M, 1)n,>1 be some sequence of positive integers such that

i = M1 o
= Ll
Mn,l

for n — oco. In order to prove weak convergence to the semicircle law we have to verify
(5.1.1). Repeating the proof of (5.2.16) with R = 0 we obtain by applying Cauchy-
Schwarz inequality

.-/ —11
Z Z (437°) M1 —5' My 1|<1/2-q-CNY "M,
n,n'e{1,....2N}, j,j'e{1,...,.NK}
n>n'

< > Yo ) Wt i<y

n,n'€{1,....2N}, 5,5/€{1,..,NK}

n>n'
1/2 1/2
00 00
2 =2
< 2 (X > W
n,?’LIE{l,...,QN}, J=1 j/:max(qnfn/_l/Qvl)
n>n' "

< Y Cuin ((qj;f"’ —3/2)71/2, 2)
n,n'€{l,....2N},
n>n'
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5.3 Examples

for some constants C' > 0 independent of N. With 7 = min{n : ¢, > 2} we have
(qn —3/2)" Y2 < 2(qyy)~ Y% < 2 for 0’ > f. Thus we get

s\ —1
Z Z (77) l\jMn,lfj’Mn/,l|<1/2-q*CN1_EMn/71
n,n'€{1,....2N}, j,j'€{1,....NK}
n>n
2N n—1
< Ci+ Cq, "2,
n=1 k=1

Since ¢, 1 — 0 for n — oo we easily verify (5.1.1).

5.3.2 The sequence 2"

We now are going to show that besides the Hadamard gap condition (1.0.4) further
conditions on the generating lacunary sequences are necessary. Therefore we prove that
for the sequences M, = M, 2 = 2" which do not satisfy (5.1.1) the mean empirical
eigenvalue distribution does not converge to the semicircle law in general. Here we
consider f(z1,29) = 1/v/2 - (cos(2m(z1 + x2)) + cos(4m(x1 + x2))). We restrict ourselves
to the case K = 4 and repeat the proof of Theorem 5.1.1 until (5.2.15). Observe that
there are precisely two non-crossing pair partitions of {1, 2, 3,4} which are {{1, 2}, {3,4}}
resp. {{1,4},{2,3}}. Thus E[1/N - X3] is the sum over solutions 81, ..., d4,j1,--.,ja
and nq,...,n4 such that

(=12 511 My mg 1 + (= 1)%22,1 My g1 = (—1)% 51 Mg g1 + (—1)% a1 My om0 = 0

or
(=12 11 My g+ (1) a1 Moy 1 = (—1)%2521 Mipy g1+ (—1)% 3.1 My 4ng 1 = 0.

Without loss of generality by (5.2.13) we may assume that both cases are distinct.
Hereafter we only focus on the first case. The second case is similar. We further get

(Jo1,d22) = (—1)H0z(gmi—naj, | glm=nal=lnz=nal; )
(Jai,jag) = (—1)%F0a(gna=nmijq, olna=nal=lna=mljy )
Therefore we have

N /N
o1, 2 e
lim SE[XN] = 3 > (ZE {f (2"3 mV0y,  gln=nal=ln1-n| a:g)

N—o0

ni1,n3=1 \n=1

f (27’L17’113V0x17 2|n1fn|f\n*n3|\/0w2):| ) 2 .

For ni = n3g we easily observe

5 N N 2
ﬁz (ZEL}ﬂ]) =2=0Cs.

ni=1 \n=1
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5 Random Matrix ensembles with correlated entries

Thus it is enough to show

N
ZE [f (2”3_711\/0.%'1, 2|n—n3|—\n1—n|\/0$2) f <2n1—n3\/0$1’ 2\n1—n|—|n—n3\V0x2>] 40
n=1

(5.3.1)
for some ny # nj3 in order to prove that the mean empirical eigenvalue distribution does
not converge to the semicircle law. Now choose some n; = n3 + 1 > 1. Then we have

1

—1, n>ni.

) n§n37

Im—nl—ln—nz,IZ{

Plugging this into the left-hand side of (5.3.1) and using the definition of f yields

ns N
2_Ela)f Qo 2m)]+ 3 Bl 202)f 2, 2] = 3 >0

n=ni

Therefore we obtain 1
lim —E[X4% # 2.

N—oo

By assumption on f we trivially have

lim %E[X?V] =E[f%] = 1.

N—o0

We conclude that the limiting mean empirical eigenvalue distribution does not have the
density 1/Rm - vV R? — 22 - 1,2 e for any R > 0 and hence it is not a semicircle law.
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