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Abstract
We study the properties of the surface states in three-dimensional topological
insulators in the presence of a ferromagnetic exchange field. We demonstrate
that for layered materials like Bi Se2 3 the surface states on the top surface behave
qualitatively different than the surface states at the side surfaces. We show that
the group velocity of the surface states can be tuned by the direction and strength
of the exchange field. If the exchange field becomes larger than the bulk gap of
the material, a phase transition into a topologically nontrivial semimetallic state
occurs. In particular, the material becomes a Weyl semimetal, if the exchange
field possesses a nonzero component perpendicular to the layers. Associated
with the Weyl semimetallic state we show that Fermi arcs appear at the surface.
Under certain circumstances either one-dimensional or even two-dimensional
surface flat bands can appear. We show that the appearance of these flat bands is
related to chiral symmetries of the system and can be understood in terms of
topological winding numbers. In contrast to previous systems that have been
suggested to possess surface flat bands, the present system has a much larger
energy scale, allowing the observation of surface flat bands at room temperature.
The flat bands are tunable in the sense that they can be turned on or off by
rotation of the ferromagnetic exchange field. Our findings are supported by both
numerical results on a finite system as well as approximate analytical results.
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1. Introduction

A topological insulator is a material with an insulating energy gap in its bulk, but possesses
conducting surface states due to significant spin–orbit coupling. The existence of these surface
states is guaranteed by a topological invariant making them particularly robust against time-
reversal invariant perturbations or disorder. Due to spin–orbit coupling the surface states are
spin-momentum coupled allowing for interesting potential spintronics applications. The
dispersion of the surface states forms a Dirac cone, i.e. the conduction electrons at the surface
are effectively massless. This peculiar state of matter has first been suggested theoretically [1, 2]
and afterwards confirmed experimentally [3–8]. The number of materials identified as three-
dimensional topological insulators (3DTI) is steadily increasing [5–12].

In this work we study 3DTI in the presence of a ferromagnetic exchange field.
Experimentally, it has been demonstrated that such fields can be introduced into topological
insulators either by doping with ferromagnetic dopants [15–17] or by proximity to
ferromagnetic materials [18]. As the ferromagnetic exchange field breaks time-reversal
symmetry, it allows for controlled modification or removal of the surface states and could lead
to interesting effects or devices [13–15, 19]. In previous work it has been pointed out that
depending on the relative orientation of the exchange field with respect to the surface of the
topological insulator, the surface states may open an energy gap or remain intact [20–23].
However, only small exchange splittings have been considered. In this work we are considering
exchange splittings up to the order of the gap of the topological insulator, which is up to 0.3 eV
for present materials. Exchange splittings of the order of 1 eV can be reached with
ferromagnetic materials.

In a recent work we studied a two-dimensional thin strip of a particle–hole symmetric
topological insulator and found that under exchange fields of such strength an edge state flat
band can appear [24]. Such flat bands are of particular interest, because the group velocity
vanishes allowing highly localized wave packets. Flat bands have been found previously in
other condensed matter systems like graphene, superfluid He3 , or unconventional super-
conductors [25–39]. In particular, the appearance of flat bands in d-wave superconductors as
surface Andreev bound states has been well studied in the past both theoretically and
experimentally [33–35, 40–47]. Such surface flat bands have been shown to lead to an enhanced
barrier for vortex entry [48, 49] or increased nonlinear electromagnetic reponse [50–52].
However, it remained an open question whether flat bands may also appear in three-dimensional
topological insulators under sufficiently strong ferromagnetic exchange fields.

In the present work, we will present a systematic investigation of the possible surface
states of 3DTI and their behavior under a ferromagnetic exchange field. We will show under
which circumstances surface flat bands appear. In particular, we identify a case in which a two-
dimensional flat band can be generated. We demonstrate that the appearance of our flat bands
can be understood in terms of a classification recently proposed by Matsuura et al [53] using a
topological invariant in the presence of a chiral symmetry. We will also show that the exchange
field can produce highly anisotropic Dirac cones, i.e. that the group velocity is different in
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different directions. In this case the velocity can be tuned by rotation of the exchange field, i.e.
rotation of the remanent magnetization of the ferromagnetism.

Recently the possibility of realizing a Weyl semimetallic state in pyrochlore iridates has
raised a lot of interest [54]. This state is a generalization of the two-dimensional Dirac electrons
in graphene to a three-dimensional bulk system. In a Weyl semimetal conduction band and
valence band touch each other only at a finite number of points. These so-called Weyl nodes are
exceptionally stable for topological reasons. Of particular interest are the surface states of a
Weyl semimetal which may form open Fermi ‘arcs’ [54–56]. In the present work we show that a
3DTI with a sufficiently strong ferromagnetic exchange field becomes a Weyl semimetal in
most cases. The surface flat bands are directly related to the appearance of surface Fermi arcs in
this system.

In contrast to previous proposals for surface flat bands in other systems like graphene,
superfluid He3 , or unconventional superconductors the present system has the advantage that
the relevant energy scale is much larger (∼0.3 eV). This allows observation of the flat bands at
room temperature, while for all other previous proposals cryogenic temperatures are necessary.
In addition, the surface states can be tuned by rotation of the exchange field. For example, the
flat band can be turned on and off by a rotation of the remanent magnetization of a ferromagnet.
We demonstrate that such behavior can be achieved for realistic material parameters leading to
new possible spintronic devices.

2. Models

As a starting point we consider the generic effective two-orbital Hamiltonian for a three-
dimensional topological insulator suggested already in several previous works [57–60]. To
facilitate numerical calculations we choose the lattice regularized version that has been
suggested by Li et al [57]:

 ∑ ∑ε Γ Γ= + +
α

α α×
= ∈

H m Vk k k( ) ( ) ( ) (1)
i

i
i

x y z
0 4 4

0

3

{ , , }

Here, ε = + − + − + −( ) ( )( )C D k D k D kk( ) 2 1 cos 2 1 cos 2 1 cosx y z0 2 2 1 , =m k( )0 −M B2 2

− − − − −( ) ( )( )k B k B k1 cos 2 1 cos 2 1 cos ,x y z2 1 =m A kk( ) 2 sin x1 2 , =m k( )2 A k2 sin ,y2

and =m A kk( ) 2 sin z3 1 . The Dirac Γ matrices are represented by Γ =0,1,2

 τ σ τ σ τ⊗ ⊗ ⊗×( ), ,x x z y z2 2 in the spin–orbit basis. Here, the Pauli matrices in orbital space

are denoted by τi and the ones in spin space by σi. As has been pointed out by Hao and Lee [61],

there exist the following two different choices for Γ3: Γ τ= ⊗×I y
3

2 2 and Γ σ τ= ⊗II z z
3 . These

correspond to two different types of spin–orbit coupling in z-direction. We follow the
convention of Hao and Lee and denote these two choices as model I and model II, respectively.
Note that if =k 0z there is no difference between the two models. Model I is isotropic within the
xy-plane, but the coupling in z-direction is different. Thus one has qualitatively different
behavior of surface states at a z-boundary than at an x- or y-boundary. For model II the
spin–orbit coupling is isotropic and it is sufficient to consider surface states at one selected
boundary, because the qualitative behavior is the same in all three spatial directions.
It has been discussed in [59] that in the absence of an exchange field model I and model II are
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related by a unitary transformation and a 90 degree rotation within the xy-plane. However, this
is not true anymore in the presence of an exchange field, because the spin operators are mapped
to pseudospin operators under the unitary transformation as has been pointed out in [62]. Thus,
for the purpose of the present work the two models become different in the presence of an
exchange field. Model I is appropriate for Bi Se2 3 and its relatives.

The components of the ferromagnetic exchange field in x, y, and z-direction are denoted by
Vx y z, , , respectively, and are modeled by Zeeman terms in the Hamiltonian equation (1). The

matrices for the exchange field components are given by Γ σ= ⊗α α ×2 2. The parameters A1, A2,
B1, B2, C, D1, D2, andM have been derived from bandstructure calculations for the Bi Se2 3 family
of materials in [58, 59]. In our numerical calculations we will consider the case ⩾ >A M 0i

and ⩾B Mi as is relevant for these materials.

3. Symmetry considerations

Let us first discuss certain symmetries of the Hamiltonian (1) that will be of particular
importance in this work. To begin with we focus on the particle–hole symmetric case

= = =C D D 01 2 , in which the effects become particularly clear and the topological invariant
proposed by Matsuura et al [53] can be used. In section 7 we will discuss the modifications that
appear when particle–hole symmetry is slightly broken, as is the case in the Bi Se2 3 family of
materials.

For = = =C D D 01 2 the four bulk bands for model I can be found by analytical
diagonalization of the ×4 4 matrices and are given by

= ± + ± + + +( )( )E m V m m V m V m Vk( ) 2 (2)i
I

x y
2 2

0
2

3
2 2

1 2

2

while for model II we have

= ± + ± + + +( )E m V m V m V m V m Vk( ) 2 (3)i
II

x y z
2 2

0
2 2

1 2 3

2

where = + +V V V Vx y z
2 2 2 2 and = + + +m m m m m2

0
2

1
2

2
2

3
2. As is clear from these expressions,

the bulk spectrum is fully symmetric around energy E = 0 for both models.
The Γ matrices introduced in the previous section respect the following commutation and

anti commutation relations

Γ Γ δ={ , } 2 , (4)i j
ij

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ= = = = =⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ } { }, , , , , 0, (5)x x I x II x x
0 3 3 1 2

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ= = = = =⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ } { }, , , , , 0, (6)y y I y II y y
0 3 3 2 1

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ= = = = =⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ { } { }, , , , , 0, (7)z z I z II z z
0 3 3 1 2

where δij is Kroneckerʼs delta symbol.

In the absence of an exchange field time reversal symmetry is respected. However,
application of an exchange field in any direction breaks time reversal symmetry. According to
the classification by Schnyder et al [63, 64] a system with broken time reversal symmetry may
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still be topologically nontrivial, if a chiral symmetry is present. Let Θ be a chiral symmetry
operator, which by definition anticommutes with the Hamiltonian, i.e.

Θ =H k{ ( ), } 0. (8)

If such a symmetry exists, the system falls into the AIII chiral symmetry class [63–65].
Let us consider the symmetry operator Θ σ τ= ⊗x z1 , which happens to be identical to the

operator Γ1.Θ1 anticommutes with Γ 0, Γ2, ΓI
3, ΓII

3, Γy, and Γz, but commutes with Γ1 and Γx. Thus,

for =k 0x and an exchange field within the yz-plane Hamiltonian (1) with = = =C D D 01 2

possesses the chiral symmetry Θ1.

Similarly, we can consider the symmetry operator Θ σ τ Γ= ⊗ =y z2
2. Θ2 anticommutes

with Γ 0, Γ1, ΓI
3, ΓII

3, Γx, and Γz, but commutes with Γ2 and Γy. Thus, for =k 0y and an exchange

field within the xz-plane Hamiltonian (1) with = = =C D D 01 2 possesses the chiral symmetry
Θ2.

Alternatively, we may also consider the symmetry operatorΘ σ τ= ⊗z z3 , which happens to

be identical to the operator ΓII
3. Θ3 anticommutes with Γ 0, Γ1, Γ2, ΓI

3, Γx, and Γy, but commutes

with ΓII
3 and Γz. Thus, for model I with exchange field within the xy-plane Hamiltonian (1) with

= = =C D D 01 2 possesses the chiral symmetry Θ3. For model II this symmetry is respected for
=k 0z .

From these considerations we see that Hamiltonian (1) under certain circumstances falls
into the AIII chiral symmetry class and we have identified three important symmetries.

4. Nonequivalent surface boundaries

Our aim is to calculate the energy dispersion of the surface states for both models, for all
possible nonequivalent surfaces perpendicular to x-, y- and z-directions, and for the
corresponding directions of the exchange field. In this way we will determine all possible
types of surface states that can appear in a 3DTI in a ferromagnetic exchange field.

For all cases we will present numerical calculations based on an exact diagonalization of
Hamiltonian (1) on a finite size lattice of dimension × ×500 500 200. Periodical boundary
conditions are employed parallel to the surface with 500 k-modes in both directions, while open
boundary conditions are used perpendicular to the surface on 200 real space points. Our
numerical results are compared with approximate analytical results for a continuous half space
using a small k expansion of Hamiltonian (1) near the Γ point k = 0. For the appearance of the
flat bands we will check our results using the topological winding number proposed by
Matsuura et al [53].

In total we find that we need to consider seven nonequivalent cases: for model II the
spin–orbit coupling in z-direction is of the same type as in x- and y-direction. For that reason it
is sufficient to study a single boundary direction, which we choose to be a y-boundary, i.e. a
boundary with =y const. As regards the direction of the exchange field we have to distinguish
two nonequivalent cases here: parallel and perpendicular to the surface, i.e. ≠V 0x and ≠V 0y .

In contrast, for model I we have five nonequivalent cases. For model I the spin–orbit coupling in
z-direction is of a different type than in x- and y-direction, but the in-plane coupling is still
isotropic. Therefore we need to distinguish a z-boundary and a y-boundary. For the z-boundary
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there are again two nonequivalent directions for the exchange field: ≠V 0x and ≠V 0z . For the
y-boundary, however, all field directions are nonequivalent and we have three cases here.

We will see that among these seven cases there are three in which flat surface
bands appear. One-dimensional flat bands are found for model II with y-boundary and exchange
field in x-direction as well as for model I with y-boundary and exchange field in z-direction.
A two-dimensional flat band is found for model I with y-boundary and exchange field in
x-direction.

5. Model I

In this section we discuss the five nonequivalent cases for the particle–hole symmetric model I.
We start with the more interesting case of a y-boundary.

5.1. Boundary perpendicular to the y-direction with finite V y

In this case with = =V V 0x z the bulk energy bands equation (2) simplify to the following
expression:

= ± + ± + +( )E m V m m mk( ) . (9)i
I

y1
2

0
2

2
2

3
2

2

In the absence of an exchange field this band structure usually possesses a gap, because m0, m1,
m2 and m3 do not become zero simultaneously. Thus, the system is insulating. However, the gap
closes when Vy reaches a critical value Vcr, which is derived in appendix A and is of the order of

M. The Fermi surface at zero energy is then defined by the two equations =m 01 and

= + +V m m my
2

0
2

2
2

3
2. These two equations define a line in three-dimensional ( )k k k, ,x y z space.

Therefore the Fermi surface is one dimensional and the system has entered a semimetallic state.
If one looks at the Γ point = = =k k k 0x y z , where = = =m m m 01 2 3 and =m M0 it is clear

that the semimetallic state is entered at =V My or closely below. Thus, the parameter >M 0
sets the scale for the exchange field, at least for the range of the parameters Ai and Bi considered
here. In appendix A we derive the ranges of the exchange field under which the system becomes
semimetallic.

To find approximate analytical solutions for the surface states we expand Hamiltonian (1)
up to second order in ky. If we assume a boundary in y-direction the momentum ky has to be

replaced by the momentum operator − ∂i y. To find the surface states we search for nontrivial

solutions of the Schrödinger equation that vanish both at y = 0 and for → ∞y . In this case the
Hamiltonian can be written as

= + ′H H Hk k k( ) ( ) ( ), (10)0

where

Γ Γ= ˜ + ∂ − ∂( )H m B i Ak k( ) ( ) 2 , (11)y y0 0 2
2 0

2
2

Γ Γ Γ′ = + +H m m Vk k k( ) ( ) ( ) . (12)I y y1
1

3
3
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Here, ˜ = − − − −( )( )m M B k B kk( ) 2 1 cos 2 1 cosx z0 2 1 and = ( )k k k,x z . ΓI
3 anticommutes

with H0. Γy commutes with both H0 and ΓI
3, and Γ1 anticommmutes with H0, ΓI

3, and Γy. In this

case the eigenstates of H k( ) are linear combinations of (up to four) eigenstates of H k( )0 (see
appendix B for a more detailed explanation). Surface states of H are superpositions of surface
states of H0. Following the general procedure from appendix B we will first determine the
surface states of H0 and then deduce the ones of H from them.

For a system of finite width in y-direction, the energy of the surface states of H0 behaves

like −e L as a function of the system size L in the y-direction. Let us consider a half infinite
system with a single boundary at y = 0. In this case the surface states of H0 have zero energy. To
find these zero energy eigenstates we can exploit that H0 commutes with the operator
Θ σ τ= ⊗x x4 . Then there exist simultaneous eigenstates of H0 and Θ4. The eigenstates of Θ4 are

(1, 0, 0, 1)T and (0, 1, 1, 0)T with eigenvalue +1 and −(1, 0, 0, 1)T and −(0, 1, 1, 0)T with
eigenvalue −1. We try the following two ansätze:

ψ =y C f y( ) (1, 0, 0, 1) ( ), (13)T
k k1,

ψ = −y C f y( ) (0, 1, 1, 0) ( ), (14)T
k k2,

where C is a normalization constant and f y( )
k

is solution of the equation

˜ + ∂ + ∂ =⎡⎣ ⎤⎦m B A f yk( ) 2 ( ) 0. (15)y y k0 2
2

2

The other two eigenstates of Θ4 lead to exponentially increasing functions with y and thus
cannot fulfil the boundary condition for → ∞y . Solving the differential equation (15) we find
that f y( )

k
is given by

= −
˜−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f y e

A

B

m

B
y

k
( ) sinh

( )
. (16)

A
B

y

k
2
2

2
2

0

2

2

2

This solution can only fulfil the boundary condition for → ∞y , if ˜ >m k( ) 00 . For those k
values where this condition is not fulfilled anymore, a surface state does not exist.

Having determined the surface states of H0 we can now infer the ones of H by noting that
′H just couples the two solutions equation (13) and (14) as

Ψ = −y u v v u f y( ) ( , , , ) ( ). (17)T
k k k k k k

Here, u and v are the components of the solution spinor ξ = u v( , )T
k k k of the following

eigenequation

σ σ ξ ξ− + =⎡⎣ ⎤⎦( )V m m Ek k( ) ( ) . (18)y y x k k3 1

The full surface state solutions are then given by

Ψ = ± ∓θ θ
± y

C
e e f y( )

2
(1, , , 1) ( ), (19)i i T

k k,
k k
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where

θ =
−

− +( )
V A k

V A k A k
sin

2 sin

2 sin 4 sin
,

y z

y z x

k
1

1

2

2
2 2

with the corresponding eigenenergies

= ± − +± ( )E V A k A kk( ) 2 sin 4 sin . (20)y z x1

2

2
2 2

These solutions show that we have surface states as long as ˜ >m k( ) 00 . For small momenta the
dispersion equation (20) shows that the presence of the exchange field in y-direction shifts the
surface Dirac cone in kz-direction. The Dirac cone remains ungapped and its velocity is
unchanged.

In figure 1 we show results obtained from numerical calculation of the eigenenergies of a
finite slab on a finite size lattice for the present case showing nice agreement with the analytical
result. Here and in the following we show results for the parameter choice

= = = = =A A B B M 11 2 1 2 and = = =C D D 01 2 . Results for parameters appropriate for
Bi Se2 3 are discussed in section 7. Figure 1(a) (for =k 0z ) and (c) (for =k 0x ) show the
dispersion in the insulating state for a small exchange field of =V M/ 0.2y . In figures 1(b) and

(d) the semimetallic state with =V M/ 2.0y is shown. In the present case no surface flat band

occurs. Note, that in figure 1(c) four surface state dispersions are seen. Only two of them
correspond to equation (20). The other two dispersions are localized on the opposite surface,
which is present in the numerical calculation. These states are related by parity to the ones
found analytically above. Their dispersion is thus obtained from equation (20) by changing

→ − −( ) ( )k k k k, ,x z x z , i.e.

= ± + +± ( )E V A k A kk( ) 2 sin 4 sin . (21)y z x,2 1

2

2
2 2

We note that the surface states equation (19) possess an interesting nontrivial spin texture.
To see this we evaluate the expectation value of the spin components in the two orbitals. For
orbital 1 the spin matrices can be written in the form

σ τˆ = ⊗ +×( )s
1
2

(22)i i z1, 2 2

where σi for ∈i x y z{ , , } are the spin Pauli matrices. For orbital 2 we have analogously

σ τˆ = ⊗ −×( )s
1
2

. (23)i i z2, 2 2

Using equation (19) we find the following expectation values in orbital 1:

Ψ Ψ θ

Ψ Ψ θ

Ψ Ψ

ˆ = ±

ˆ = ±

ˆ =

± ±

± ±

± ±

s

s

s

1
2

cos

1
2

sin

0

x

y

z

k k k

k k k

k k

, 1, ,

, 1, ,

, 1, ,
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and in orbital 2:

Ψ Ψ θ

Ψ Ψ θ

Ψ Ψ

ˆ = ∓

ˆ = ±

ˆ =

± ±

± ±

± ±

s

s

s

1
2

cos

1
2

sin

0.

x

y

z

k k k

k k k

k k

, 2, ,

, 2, ,

, 2, ,

From these expressions we see that the spin rotates within the xy-plane. The spin direction of the
two surface states is always opposite. The spin-x-component is opposite in the two orbitals,
while the spin-y-component is the same in the two orbitals. Therefore, the total spin points in y-
direction, perpendicular to the surface:
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have used = = = = =B B A A M 11 2 1 2 , and = = =C D D 01 2 .



Ψ Γ Ψ

Ψ Γ Ψ θ

Ψ Γ Ψ

=

= ±

=

± ±

± ±

± ±

0

sin

0.

x

y

z

k k

k k k

k k

, ,

, ,

, ,

Note, that while the total spin is perpendicular to the surface momentum, the partial spins in the
two orbitals are not.

5.2. Boundary perpendicular to the y-direction with finite V x

Let us consider next the case that both Vx and Vy are nonzero, but still =V 0z . It is useful to go

over to polar coordinates in this case and write = ϑV V cosx 0 and = ϑV V siny 0 . The bulk energy

bands equation (2) can then be brought into the following form:

= ± ϑ − ϑ +

+ ± + + ϑ + ϑ
⎫⎬⎭( )

{( )

( )

E m m

V m m m m

k( ) sin cos

cos sin . (24)

i
I

1 2

2

0 0
2

3
2

1 2

2
2 1/2

Compared with equation (9) this corresponds to a rotation of the exchange field within the xy-
plane. Again, the system is insulating in the absence of an exchange field and the gap closes,
when V0 reaches the critical value Vcr. In the semimetallic state the Fermi surface is defined by

the two equations ϑ − ϑ =m msin cos 01 2 and = + + ϑ + ϑ( )V m m m mcos sin0
2

0
2

3
2

1 2

2
.

Therefore, the Fermi surface is still one dimensional.
Determination of the surface states becomes more difficult now, because Γx neither

commutes nor anticommutes with H0 in equation (11). As a result, it affects the spatial part of
the surface states. We can, however, determine the surface states of the Hamiltonian

Γ′ = +H H Vk k( ) ( ) . (25)x x0 0

′H k( )0 still commutes with Θ σ τ= ⊗x x4 and we can thus look for zero energy states of ′H k( )0

using the same ansatz equations (13) and (14) as before. The surface state solutions of ′H0 (with
a boundary at y = 0 and a half infinite system as before) are then found to be

ψ = −
˜ +−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y C e

A

B

m V

B
y

k
( ) (1, 0, 0, 1) sinh

( )
, (26)T

A
B

y x
k1,

2
2

2
2

0

2

2

2

ψ = ′ − −
˜ −−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y C e

A

B

m V

B
y

k
( ) (0, 1, 1, 0) sinh

( )
, (27)T

A
B

y x
k2,

2
2

2
2

0

2

2

2

where C and ′C are normalization constants. It is clear that state 1 exists only if ˜ + >m Vk( ) 0x0

and state 2 exists only if ˜ − >m Vk( ) 0x0 .

The matrices Γ1, ΓI
3, or Γy neither commute nor anticommute with ′H0. Thus they affect the

spatial part of the surface states as well as the spin part. In this case we cannot separate the
Hamiltonian into parts. However, if | |k and Vy are small we can treat ′H equation (12) as a

perturbation using degenerate perturbation theory. We assume that the perturbation only
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couples the two surface states 1 and 2 to each other and neglect coupling to bulk states. This is a
reasonable assumption, as the surface states are well localized and in most cases well separated
in energy from the bulk states. In this case the overlap between the bulk states and the surface
states is very small. Also, due to the symmetric energy spectrum around E = 0 for each bulk
state with energy E there exists another one with energy −E . Thus, their contributions tend to
cancel each other in perturbation theory.

If both states 1 and 2 exist, the surface states for the full Hamiltonian H are then
approximately given by

Ψ ψ ψ= ± θ
± ( )y y e y( )

1

2
( ) ( ) , (28)i

k k k, 1, 2,
k

where

θ =
−

− +( )
A k V

A k V A k
sin

2 sin

2 sin 4 sin
.

z y

z y x

k
1

1

2

2
2 2

The surface state eigenenergies in this case are found to be

β= ± − +± ( )( )E V A k V A kk k( ) , 2 sin 4 sin , (29)x z y x1

2

2
2 2

where

∫β = ′ −
˜

−

× −
˜

+

=
˜ −

˜ +

∞
−

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥
⎥

( )V CC dy e
A

B

m

B

V

B
y

A

B

m

B

V

B
y

A m V

A m B V

k
k

k

k

k

, sinh
( )

sinh
( )

4 ( )

4 ( )
(30)

x

A
B

y x

x

x

x

0

2 2
2

2
2

0

2 2

2
2

2
2

0

2 2

2
2

0
2 2

2
2

0 2
2

2

2

is the spatial overlap of the two states equations (26) and (27). The dependence of β as a
function of Vx at k = 0 is shown in figure 2.

For small momenta the dispersion equation (29) shows that the presence of an exchange
field within the xy-plane does not affect the presence of the surface Dirac cone. The Dirac cone
is just shifted in kz-direction and remains ungapped. However, the velocity of the Dirac cone is

isotropically suppressed by the factor β ( )V k,x . Thus, the presence of an exchange field component
in x-direction allows tuning of the group velocity of the surface states, as shown in figure 2.

The spin texture of the surface states equation (28) turns out to be the same as in the
previous section, except for the fact that all spin components are suppressed by the factor
β ( )V k,x . Thus, the presence of the x-component of the exchange field Vx leads to a suppression
of the spin polarization of the surface states.

Figure 3 shows dispersions with exchange field ( )V , 0, 0x . One can see from the figure that

in this case kx- and kz-direction are equivalent. This is due to the fact that Γx commutes with both

Γ1 and ΓI
3. In figure 3(b) and (d) we see that a flat band appears, if >V Mx . This flat band is
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apparently two-dimensional, as it stays flat in both kx and kz direction. It still exists if we add a
finite Vy. The existence of this flat band goes beyond the perturbative treatment above. In the

next subsection we discuss the existence of this flat band in terms of a topological invariant
recently proposed by Matsuura et al [53].

5.3. Existence of a two-dimensional flat band

Matsuura et al [53] presented a general classification of the gapless topological phases like in
semimetals or nodal superconductors. They showed that a generalized bulk-boundary
correspondence exists that relates the topological properties of the Fermi surface to the
presence of protected flat bands at the surface of the system. In particular, it was found that the
dimension of the surface flat band is always given by the dimension of the Fermi surface plus 1,
if it exists (see table V in [53]).

In the present case the system is topologically nontrivial and belongs to class AIII as
discussed in section 3. The Fermi surface is one dimensional and we may thus expect the
appearance of a two-dimensional flat band.

The presence or absence of the flat band can be classified by a topological winding
number. To construct this winding number, we use the chiral symmetry Θ σ τ= ⊗z z3 that was
discussed in section 3 and is valid in the present case. Whenever a chiral symmetry is present,
the Hamiltonian anticommutes with the symmetry operator. In this case the bulk Hamiltonian
can be brought into off-diagonal block form by transforming to the eigenbasis of Θ3:

=
†⎛

⎝⎜
⎞
⎠⎟H

D
D

k
k

k
( )

0 ( )
( ) 0

,

where the block D k( ) is found to be

=
+ − + + −

+ + + −

⎛
⎝⎜

⎞
⎠⎟D

m im m im V iV

m im V iV m im
k

k k k k

k k k k
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
. (31)

x y

x y

0 3 1 2

1 2 0 3
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Figure 2. The parameter β equation (30) as a function of V M/x for two sets of
parameters: dashed red line for = = = = =A A B B M 11 2 1 2 , solid blue line for the
Bi Se2 3 set of parameters in section 7.



From the block D k( ) we can define a winding number [53, 66]

∫
∫
∫
∫

π

π

π

π

= ∂

= ∂

= ∂

= ∂

⊥
−

⊥

⊥

⊥
−

⊥

⊥

⊥

⊥

( )

( )

w dk D D

dk D

dk D

dk D D

k k

k

k

k k

1
2

Im Tr ( ) ( )

1
2

Im Tr ln ( )

1
2

Im ln det ( )

1
2

Im (det ( ) ) det ( ). (32)

k

k

k

k

1

1

Here, ⊥k is the momentum component perpendicular to the surface. The winding number w is
always an integer and depends on the momentum components parallel to the surface. It
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Figure 3. Numerical dispersions of bulk and surface states for model I with =V M/ 0.6x

for (a) and (c) and 2.0 for (b) and (d). In (a) and (b) =k 0z , and in (c) and (d) =k 0x .
The other parameters are same as in figure 1.



measures the phase change of the complex number D kdet ( ), when ⊥k runs through the

Brillouin zone. If =||( )w k 0, there exists no zero energy state for the momentum ||k at the

surface. If ||( )w k is nonzero, a zero energy surface state exists. In the present case, where we
consider a boundary in y-direction we have

∫π
= ∂

π

π

−
( )w k k dk D k,

1
2

Im ln det ( ). (33)x z y k y

Figure 4 shows the phase of D kdet ( ) for =k 0x as a function of ky and kz in a color coded

scale for the same set of parameters as in figures 3(b) and (d). Blue color corresponds to phase 0
and white to phase π± . From the figure one notices that there exist a momentum space vortex

and an anti vortex at the positions = ±( )k k, (0, 1.318)y z , around which the phase winds by π2 .

These positions are points on the bulk Fermi surface. Note that =D kdet ( ) 0 on the Fermi
surface and the phase becomes singular there. From figure 4 it becomes clear that the winding
number (33) becomes 1, when ∈ −k [ 1.318, 1.318]z and 0 outside. This is just the momentum
range of the flat band seen in figure 3(d). This example demonstrates that the winding number
(33) correctly predicts the presence of the flat band.

Using equation (33) we can derive an analytical condition for the existence of the flat band,

which is given in appendix C. In figures 5 and 6 we show the regions in ( )k k,x z -space in which

the two-dimensional flat band on the y = 0 surface appears for different sets of parameters.
These areas were calculated using the analytical condition from appendix C. Note, that the
boundaries of these areas are just the projections of the one-dimensional Fermi surface onto the

( )k k,x z -plane, as shown in appendix C.

Figure 5 illustrates the effect of a rotation of the exchange field within the xy-plane on the
flat band area. The flat band area is shown for exchange fields = ϑV V cosx 0 and = ϑV V siny 0

with =V M2.80 and four angles of rotation ϑ. When the direction of the field is rotated from the
x-direction into y-direction the size of the flat band area is reduced in x-direction but remains
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Figure 4. The phase of D kdet ( ) for =k 0x as a function of ky and kz in a color coded
scale. The parameters are the same as in figure 3(b) and (d).



unchanged in z-direction. When the exchange field points in y-direction, the flat band finally
disappears.

In appendix A we show that for <M A B2 /1
2

1 the minimal strength of the exchange field to
create a semimetallic state and thus a two-dimensional surface flat band for the present case is
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Figure 5. The flat band area within the ( )k k,x z -plane for different directions of the

exchange field. The field ( )V V,x y is given by ( )V , 0.00 (a), π πV (cos /8, sin /8)0 (b),

V / 2 (1, 1)0 (c), and π πV (sin /8, cos /8)0 (d), respectively. Here, =V M/ 2.80 ,
= = =B A M 1i i , and = = =C D D 01 2 . The size of the flat band area is reduced

when the exchange field is rotated towards the y-direction.



given by =V Mcr . However, if >M A B2 /1
2

1 (implicitly assuming ⩾B A and ⩾B M ), the
minimal exchange field strength is given by the more complicated expression

=
− −

−
V

A B M A M

B A

4 4
. (34)cr

1 1 1
2 2

1
2

1
2
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Figure 6. The flat band area within the ( )k k,x z -plane for different values of the exchange
field in x-direction. =V M/ 0.4x (a) , =V M/ 0.8x (b), =V M/ 1.0x (c), and =V M/ 2.8x

(d). Here, we have used the parameters = =V V 0y z , = =B M 1i , and =A 0.15i .



which is smaller than M. In this case we can have the situation that the flat band area is not
simply connected anymore as shown in figures 6(a) and (b). This case appears, when equation
(112) from appendix A possesses two solutions instead of just one.

5.4. Boundary perpendicular to the y-direction with finite V z

Next, we consider the case that Vz is nonzero and =V 0x . The component Vy will be treated

perturbatively like in section 5.2. The bulk energy bands equation (2) in this case simplify to

= ± + + ± +⎡⎣ ⎤⎦E m m V m mk( ) . (35)i
I

z1
2

2
2

0
2

3
2

2

Again, the system is insulating in the absence of an exchange field and the gap closes, when Vz

reaches the critical value Vcr. In the semimetallic state the Fermi surface is defined now by three

instead of two equations, = =m m 01 2 and = +V m mz
2

0
2

3
2. For this reason, the Fermi surface

becomes zero dimensional, i.e. there are point nodes.
In this case the chiral symmetry Θ3 does not hold anymore, because Θ3 commutes with Γz.

However, as discussed in section 3 for the special case =k 0x the system possesses the chiral
symmetry Θ1. For that reason we may expect a one-dimensional flat band with =k 0x in this
case.

To determine the surface states in second order in ky one first notices that Γz neither

commutes nor anticommutes with H0. Therefore, it affects the spatial part of the surface states.
However, similarly as in section 5.2, we can determine the zero energy surface states of the
Hamiltonian

Γ Γ Γ Γ″ = + = ˜ + ∂ − ∂ +( )H H V m B i A Vk k k( ) ( ) ( ) 2 . (36)z z y y z z0 0 0 2
2 0

2
2

This Hamiltonian commutes with the symmetry operator Θ σ τ= ⊗z x5 and it anticommutes with
Θ1. As both Θ1 and Θ5 commute with each other, it is useful to look for surface state solutions
among the common eigenstates of Θ1 and Θ5.

These eigenstates are −( 1, 1, 1, 1)T , −(1, 1, 1, 1)T , −(1, 1, 1, 1)T , and −(1, 1, 1, 1)T . We
thus try the following two ansätze:

ψ = −y f y( ) (1, 1, 1, 1) ( ), (37)T
k k1,

ψ = −y f y( ) (1, 1, 1, 1) ( ), (38)T
k k2,

(the other two eigenstates lead to exponentially increasing functions again). We find that f y( )
k

is solution of the equations

˜ + ∂ + ∂ ± =⎡⎣ ⎤⎦m B A V f yk( ) 2 ( ) 0, (39)y y z k0 2
2

2

where the plus sign holds for ψ
k1,
and the minus sign for ψ

k2,
.

Solving the differential equation (39) we find the solutions

ψ = − −
˜ +−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y C e

A

B

m V

B
y

k
( ) (1, 1, 1, 1) sinh

( )
, (40)T

A
B

y z

k1,
2
2

2
2

0

2

2

2
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ψ = ′ − −
˜ −−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y C e

A

B

m V

B
y

k
( ) (1, 1, 1, 1) sinh

( )
. (41)T

A
B

y z

k2,
2
2

2
2

0

2

2

2

It is clear that state 1 exists only if ˜ + >m Vk( ) 0z0 and state 2 exists only if ˜ − >m Vk( ) 0z0 .
Having determined the zero energy surface states of ″H 0 we can now try to obtain the ones

of Γ Γ Γ= ″ + + +H H m m VI y y0 1
1

3
3 from them. First, one notices that Γ Θ=1

1 anticommutes

with ″H 0 and the states (40) and (41) are already eigenstates of Γ1. Thus, these eigenstates are

also eigenstates of Γ″ +H m0 1
1 with energies ∓ A k2 sin x2 . The operators ΓI

3 and Γy neither

commute nor anticommute with Γ″ +H m0 1
1. However, if kz and Vy are small we can treat the

terms Γ Γ+m VI y y3
3 perturbatively, again. For the same reasons as in section 5.2, we may assume

that the perturbation only couples the two surface states 1 and 2 to each other. The surface states
for the full Hamiltonian are then found to be of the form

Ψ
θ

ψ
θ

ψ= ++ y i y y( ) sin
2

( ) cos
2

( ) (42)k
k

k
k

k, 1, 2,

Ψ
θ

ψ
θ

ψ= −− y i y y( ) cos
2

( ) sin
2

( ) (43)k
k

k
k

k, 1, 2,

where

θ =
−

− +( )
A k V

A k V A k
sin

2 sin

2 sin 4 sin
.

z y

z y x

k
1

1

2

2
2 2

The energies are given by

β= ± − +± ( )( )E V A k V A kk k( ) , 2 sin 4 sin . (44)z z y x

2

1

2

2
2 2

Here, the spatial overlap β ( )V k,z has the same functional form as in equation (30). For small

momenta this dispersion shows that the y-component of the exchange field shifts the surface
Dirac cone in kz-direction. The Dirac cone remains ungapped by the exchange field. The
velocity of the Dirac cone is suppressed by the z-component of the exchange field only in
kz-direction, but not in kx-direction. Thus, in the present case the exchange field can tune the
group velocity of the surface electrons in an anisotropical way.

To determine the spin texture of the surface states we evaluate the spin expectation values
in the two orbitals. For orbital 1 we find

Ψ Ψ θ

Ψ Ψ
β

θ

Ψ Ψ

ˆ = ±

ˆ = ∓

ˆ =

± ±

± ±

± ±

( )

s

s
V

s

k

1
2

cos

,

2
sin

0

x

y
z

z

k k k

k k k

k k

, 1, ,

, 1, ,

, 1, ,
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and in orbital 2:

Ψ Ψ θ

Ψ Ψ
β

θ

Ψ Ψ

ˆ = ∓

ˆ = ∓

ˆ =

± ±

± ±

± ±

( )

s

s
V

s

k

1
2

cos

,

2
sin

0.

x

y
z

z

k k k

k k k

k k

, 2, ,

, 2, ,

, 2, ,

As in the previous cases the spin rotates within the xy-plane. The spin direction of the two
surface states is always opposite. The spin-x-component is opposite in the two orbitals, while
the spin-y-component is identical. With increasingVz the spin-y-component is suppressed by the

β ( )V k,z factor. The total spin points in y-direction again, perpendicular to the surface

Ψ Γ Ψ

Ψ Γ Ψ β θ

Ψ Γ Ψ

=

= ∓

=

± ±

± ±

± ±

( )V k

0

, sin

0.

x

y z

z

k k

k k k

k k

, ,

, ,

, ,

Figure 7 shows results for the energy dispersions with finite Vz obtained from numerical
calculations on a finite size system. One can see from the figure that the directions kx and kz

differ. This is again due to the fact that Γz commutes with ΓI
3 but anticommutes with Γ1. We see

from the figure that a one-dimensional flat band appears in kz-direction if Vz exeeds M.

5.5. Existence of a one-dimensional flat band

Similarly as in the case with nonzeroVx the appearance of this one-dimensional flat band can be
understood using the classification of Matsuura et al [53]. For that purpose we consider the
Hamiltonian without the Γ1 term:

Γ Γ Γ Γ= + + +H m m m Vk k k k( ) ( ) ( ) ( ) . (45)I z z1 0
0

2
2

3
3

If one considers this Hamiltonian for =k 0x as a function of the two coordinates ky and kz, its

Fermi surface will be a point node in the two-dimensional Brillouin zone. However, one can
also consider this Hamiltonian as a function of the three coordinates kx, ky, and kz, keeping the kx

dependence in m k( )0 . Then, its Fermi surface will be a line node in the three-dimensional
Brillouin zone. In any case, H1 belongs to class AIII due to the chiral symmetry Θ1. Using the
chiral symmetry Θ1 we can bring H1 into off-diagonal block form, similarly as in section 5.3:

=
†⎛

⎝⎜
⎞
⎠⎟H

D

D
k

k
k

( )
0 ( )

( ) 0
,1

1

1

where the block D k( )1 is found to be

=
+ − −

− − −
⎛
⎝⎜

⎞
⎠⎟D

m im im V

im V m im
k

k k k

k k k
( )

( ) ( ) ( )

( ) ( ) ( )
. (46)z

z
1

0 3 2

2 0 3
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Using this block, we can again define the winding number

∫π
= ∂

π

π

−
( )w k k dk D k,

1
2

Im ln det ( ). (47)x z y k 1y

Following the method outlined in appendix C we can derive an analytical condition for the
existence of a flat band of H1 which reads

> ˜ + ( )V m A kk( ) 4 sin . (48)z z0
2

1
2 2

For =k 0x this yields a range of kz values for which a one-dimensional flat band exists,
consistent with the numerical result in figure 7. If we consider H1 as a function of three
coordinates kx, ky, and kz, this condition tells us that H1 actually possesses a two-dimensional

surface flat band within a certain area in ( )k k,x z -space. Now, Γ= +H H m1 1
1 and Γ1

anticommutes with H1. This means that the zero energy states of H1 are eigenstates of Γ Θ=1
1,
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Figure 7. Numerical dispersions of bulk and surface states for model I with =V M/ 0.6z

for (a) and (c) and 2.0 for (b) and (d). In (a) and (b) =k 0z , and in (c) and (d) =k 0x .
The other parameters are same as in figure 1.



too. As a result, the dispersion of the surface flat band of the full Hamiltonian H is given by

= ±± ( )E k k A k, 2 sin . (49)x z x2

Thus, the surface state dispersions become highly anisotropic, being flat in kz-direction, but
dispersive in kx-direction.

In figure 8 we illustrate an example of the general case, where all three components of the
exchange field are nonzero. One sees from the figure that at small fields the surface states are
splitted, similarly as in figures 1(a) and (c). However, when the magnitude of the exchange field
exceeds M, a one-dimensional flat band appears in kz direction, similarly as in figures 7(b) and
(d).

In order to understand the appearance of a flat band in this general case let us consider the
following partial bulk Hamiltonian:

Γ Γ Γ Γ Γ= + + + +H m m V V Vk k k( ) ( ) ( ) . (50)x x y y z z0 0
0

2
2

We first construct a symmetry operatorΘ13 that anticommutes with this H0. We first note that the

operator Θ1 anticommutes with Γ 0, Γ2, Γy, and Γz, but commutes with Γx, while the operator Θ3

anticommutes with Γ 0, Γ2, Γx, and Γy, but commutes with Γz. If we choose, however, the

following linear superposition of Θ1 and Θ3

Θ Θ Θ χ Θ χ Θ=
+

−
+

= −
V

V V

V

V V
sin cos (51)z

x z

x

x z

13 2 2 1 2 2 3 1 3

it is easy to see that Θ13 anticommutes with the four operators Γ 0, Γ2, Γy, and Γ Γ+V Vx x z z. Here,

we defined the angle χ via χ=V V cosx 0 and χ=V V sinz 0 with = +V V Vx z0
2 2 . Thus, the

partial Hamiltonian H0 possesses a chiral symmetry Θ13, which depends on the direction of the
exchange field. For =V 0z the symmetry operator reduces to Θ3, corresponding to the case in
section 5.3 and for =V 0x the symmetry reduces to the case discussed in section 5.5.

Using the chiral symmetry Θ13 we can bring H0 into off-diagonal block form by
transforming to the eigenbasis of Θ13. There are two eigenvectors of Θ13 with eigenvalue −1,

which are η = χ χ( )0, 0, sin , cos
T

1 2 2
and η = −χ χ( )cos , sin , 0, 0

T

2 2 2
and two eigenvectors with

eigenvalue +1, which are η = χ χ( )sin , cos , 0, 0
T

3 2 2
and η = −χ χ( )0, 0, cos , sin

T

4 2 2
. In this basis

H0 becomes block off-diagonal

=
†⎛

⎝⎜
⎞
⎠⎟H

D

D
k

k
k

( )
0 ( )

( ) 0
,0

2

2

where the block D k( )2 is

=
+ +

+ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
( )

D
m V i m V

V i m V m
k( ) (52)

y

y

2

0 0 2

0 2 0
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and its determinant

= + − − −D m m V V im Vkdet ( ) 2 . (53)y2 0
2

2
2

0
2 2

2 0

The Hamiltonian H0 possesses a two-dimensional zero energy surface flat band, if the
corresponding winding number becomes nonzero. Following appendix C we find the criterion
that

− ˜ − ˜ − <( )( ) ( )V m V m B4 0 (54)2
0
2 2

0 2

2

where ˜ = − − − −( )( )m M B k B kk( ) 2 1 cos 2 1 cosx z0 2 1 . In the vicinity of = =k k 0x z this

criterion can usually be fulfilled for >V M , if V does not become too large.
Having seen that the partial Hamiltonian H0 possesses a two-dimensional zero energy

surface flat band we can apply
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Figure 8. Numerical dispersions of bulk and surface states for model I with exchange

fields =( )V V V M, , 0.2 (1/2, 1/2, 1/ 2 )x y z for (a) and (c) and M2.0 (1/2, 1/2, 1/ 2 )
for (b) and (d). In (a) and (b) =k 0z , and in (c) and (d) =k 0x . The other parameters are
same as in figure 1.



Γ Γ′ = +H m mk k k( ) ( ) ( ) (55)I1
1

3
3

as a perturbation to find the approximate surface state dispersion for the full Hamiltonian. For
that purpose we need the surface state wave function ψ

s
. As the zero energy state is a common

eigenstate of H0 and Θ13, ψ
s
will be a superposition of two eigenvectors of Θ13 with the same

eigenvalue, like

ψ η η= +y f y f y( ) ( ) ( ) . (56)
s 1 1 2 2

The two functions f y( )
1

and f y( )
2

have to be determined from the differential equation

ψ→ − ∂ =( )H k i 0y y s0 and are found to be superpositions of three exponentially decaying

functions. An analogous superposition of the +1 eigenstates of Θ13 leads to exponentially
increasing functions, which cannot fulfil the boundary conditions. They correspond to solutions
localized at the opposite boundary. Both functions f y( )

1
and f y( )

2
fulfil

= = = =f y f y( 0) ( 0) 0
1 2

and are normalized such that

∫ ∫+ =
∞ ∞

dy f y dy f y( ) ( ) 1. (57)
0

1

2

0
2

2

The energy of the perturbed system is given by

ψ Γ Γ ψ= +E m m . (58)
s I s1

1
3

3

By direct calculation we find that

η Γ η = ∈i j0 for , {1, 2} (59)
i I j

3

and

η Γ η χδ δ= − = −
+

∈
V

V V
i jsin for , {1, 2}. (60)

i j ij
z

x z

ij
1

2 2

As a result we find for the energy of the surface states of the full Hamiltonian:

= −
+

= −
+

( )E k k m
V

V V

V

V V
A k, 2 sin . (61)x z

z

x z

z

x z

x1 2 2 2 2 2

From this expression we see that for ≠V 0z we always have a one-dimensional flat band in
kz-direction. The group velocity in x-direction can be tuned by rotating the exchange field within
the xz-plane and vanishes when Vz becomes zero. This expression shows how the one-
dimensional flat band develops into the two-dimensional flat band for exchange field within the
xy-plane.

5.6. Weyl semimetal

In this section we show that the semimetallic state of model I for an exchange field >V Vcr and
≠V 0z is actually a realization of a Weyl semimetal. The Weyl semimetallic phase can be

viewed as a three-dimensional generalization of the two-dimensional Dirac electrons in
graphene, as has been pointed out recently [54–56, 67]. In contrast to graphene, just two linearly
dispersing adjacent bands touch at a finite number of points in the three-dimensional Brillouin
zone. In the vicinity of these Weyl nodes, which have also been termed ‘diabolic’ points [68],
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the effective two-band Hamiltonian can be written in the form

 σ σ σ= + +( )H v k k kk( ) (62)F x x y y z z

where the Pauli matrices σi do not need to refer to the spin degree of freedom. Such a diabolic
point is exceptionally stable due to topology, as arbitrary perturbations cannot remove it unless
an annihilation with another diabolic point occurs. A recent theoretical work proposed the
appearance of a Weyl semimetallic phase in pyrochlore iridates [54]. It was shown that the
surface states of the Weyl semimetal may form open Fermi ‘arcs’, i.e. Fermi lines which
terminate at the projection of the diabolic points onto the surface Brillouin zone.

In appendix A we showed that for >V Vcr model I enters a semimetallic phase. If ≠V 0z

the bulk spectrum indeed possesses either two or four Fermi points on the kz-axis, where two
bands touch each other. We still need to show that around these points the Hamiltonian can be
written in a form like equation (62). In order to do so we use a similar technique as we have

used for determination of the dispersion of the surface states. Let = ( )kk 0, 0, z0 ,0 be the

position of a Fermi point. We first consider the partial bulk Hamiltonian at k0

Γ Γ Γ Γ Γ= + + + +( ) ( )H m m V V Vk k k( ) (63)I x x y y z z0 0 0
0

3 0
3

and construct a symmetry operatorΘ12 that anticommutes with it. The zero energy eigenstates of
H0 are then simultaneous eigenstates of Θ12. From the eigenstates of Θ12 we determine the two
zero energy eigenstates of H0 at the Fermi point. We then expand the full Hamiltonian to lowest
order in kx, ky, and −k kz z,0 around the Fermi points. This leads to a perturbation of the form

Γ Γ Γ

Γ

′ = − − + + +

+ −

( )
( )

H B k k k A k A k

A k k k

k( ) 2 sin 2 2

2 cos . (64)

z z z x y

z z z I

1 ,0 ,0
0

2
1

2
2

1 ,0 ,0
3

The effective low energy 2×2 Hamiltonian near the Fermi points is obtained by degenerate
perturbation theory within the subspace of the two said eigenstates.

To construct the symmetry operator Θ12 we first note that the operator Θ1 anticommutes

with Γ 0, ΓI
3, Γy, and Γz, but commutes with Γx, while the operator Θ2 anticommutes with Γ 0, ΓI

3,

Γx, and Γz, but commutes with Γy. If we choose the following linear superposition of Θ1 and Θ2

Θ Θ Θ φ Θ φ Θ=
+

−
+

= −
V

V V

V

V V
sin cos (65)

y

x y

x

x y

12 2 2 1 2 2 2 1 2

it is easy to see that Θ12 anticommutes with the four operators Γ 0, ΓI
3, Γz, and Γ Γ+V Vx x y y. There

are two eigenvectors of Θ12 with eigenvalue -1, which are η = φ−ie(0, 0, , 1)i T
1

and

η = − φ−ie( , 1, 0, 0)i T
2

and two eigenvectors with eigenvalue +1, which are

η = − φ−ie(0, 0, , 1)i T
3

and η = φ−ie( , 1, 0, 0)i T
4

. One of the two zero energy eigenstates of H0

is a linear combination of η
1
and η

2
, while the other one is a linear combination of η

3
and η

4
.

After a straightforward calculation which exploits the fact that at the Fermi points we have
+ = + +m m V V Vx y z0

2
3
2 2 2 2 (see appendix A), we find the following eigenstates of H0:
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ψ = − −φ χ φ χ− − −ϑ −ϑie e ie
1
2

( , 1, , ) (66)i i i T

1
( ) ( )

ψ = − −φ χ φ χ− +ϑ − ϑ −e ie ie e
1
2

( , , , ) (67)i i i i T

2
( ) ( )

where

=
+

+
=

+ +

+ +
χ ϑe

m im

m m
e

V V iV

V V V
and . (68)i i x y z

x y z

0 3

0
2

3
2

2 2

2 2 2

To find the effective low energy ×2 2 Hamiltonian near the Fermi points for convenience we
use the two basis states

ψ ψ ψ ψ ψ ψ′ = + ′ = −( )1

2
and

1

2
( ). (69)

1 1 2 2 1 2

In this basis the Hamiltonian ′H becomes

χ χ σ

φ σ φ σ

φ σ φ σ

′ = − + − +

+ − + ϑ

+ + ϑ

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )H B k A k k k

A k

A k

2 sin cos 2 cos sin

2 sin cos sin

2 cos sin sin . (70)

z z z z z

x x y

y x y

1 ,0 1 ,0 ,0

2

2

Apparently, this is an anisotropic Weyl-type Hamiltonian. For example for =V 0x this
expression simplifies to

χ χ σ
σ σ

′ = − + − +
− + ϑ

⎡⎣ ⎤⎦ ( )H B k A k k k

A k A k

2 sin cos 2 cos sin

2 2 sin . (71)
z z z z z

x x y y

1 ,0 1 ,0 ,0

2 2

Having seen that model I for >V Vcr and ≠V 0z is a Weyl semimetal we can see now that
the one-dimensional surface flat band from the previous section equation (49) is just a Fermi
‘arc’ in the sense of [54]. It exists only in a limited range of kz values given by equation (48).
The end points of the Fermi arc are just the projections of the Weyl nodes onto the surface

Brillouin zone ( )k k,x z , as one sees by setting =k 0x in equation (48) and comparison with

equations (108) and (111) in appendix A.

5.7. Boundary perpendicular to the z-direction

The case with a z-boundary is much easier to treat than the case with a y-boundary. In this case
we can decompose the Hamiltonian in the following way:

= + ′H H Hk k k( ) ( ) ( ),0

where

Γ Γ= ˜ + ∂ + ∂( )H m B Ak k( ) ( ) 2 , (72)z z I0 0 1
2 0

1
3

Γ Γ Γ Γ Γ′ = + + + +H m m V V Vk k k( ) ( ) ( ) . (73)x x y y z z1
1

2
2

Here, ˜ = − − − −( )( )m M B k B kk( ) 2 1 cos 2 1 cosx y0 2 2 and = ( )k k k,x y now.
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We are now in the lucky situation that Γx, Γy and Γz all commute with H0, and both Γ1 and

Γ2 anticommute with it. Thus, the surface states for an exchange field in arbitrary direction can
be found from the zero energy surface states of H0 using the method from appendix B.

We first determine the zero energy surface states of H0 by noting that H0 commutes with Γz

and anticommutes with the operator  τ⊗× z2 2 . The common eigenstates of these two operators

are just (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , and (0, 0, 0, 1)T . We try the following two
ansätze (the other two eigenstates leading to exponentially increasing functions again):

ψ =y f z( ) (1, 0, 0, 0) ( ), (74)T
k k1,

ψ =y f z( ) (0, 1, 0, 0) ( ), (75)T
k k2,

where f z( )
k

is solution of the equation

˜ + ∂ + ∂ =⎡⎣ ⎤⎦m B A f zk( ) 2 ( ) 0. (76)z z k0 1
2

1

Solving the differential equation (76) we find that f z( )
k

is given by

= −
˜−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f z e

A

B

m

B
z

k
( ) sinh

( )
. (77)

A
B

z

k
1
2

1
2

0

1

1

1

This solution can only fulfil the boundary condition for → ∞z , if ˜ >m k( ) 00 . For those k
values where this condition is not fulfilled anymore, a surface state does not exist. The form of
the solutions equation (74) and (75) means that the surface state only occupies orbital 1, leaving
orbital 2 empty. Correspondingly, the surface state at the opposite surface of the system is found
to occupy orbital 2 only.

To obtain the surface states of H from the ones of H0 we have to determine those linear
combinations of ψ

k1,
and ψ

k2,
that diagonalize ′H , i.e.

Ψ ψ ψ= +a z b zk k( ) ( ) ( ) ( ), (78)k k k1, 1 1, 1 2,

Ψ ψ ψ= +a z b zk k( ) ( ) ( ) ( ). (79)k k k2, 2 1, 2 2,

If we write ξ = ( )a bk k k( ) ( ), ( )i i i

T
the coefficients are determined from the equation

σ σ σ ξ ξ+ + + + =⎡⎣ ⎤⎦( )( )V m V m V Ek k k k k( ) ( ) ( ) ( ) ( ). (80)x x y y z z1 2 1 1 1

The eigenenergies are given by

= ± + + + +± ( )( )E V A k V A k Vk( ) 2 sin 2 sin . (81)z x x y y1,
2

2

2

2

2

This expression tells us that the components of the exchange field parallel to the surface (Vx and
Vy) for small momenta just shift and split the surface Dirac cone without opening a gap and

without changing the group velocity. The component Vz perpendicular to the surface opens a
gap, however. This behavior is in agreement with previous work [20]. A flat band does not
appear in this geometry. Even though the system is still a Weyl semimetal in the bulk, a surface
Fermi arc does not appear, because the Weyl nodes all sit on the kz-axis. Thus, their projection
onto the surface Brillouin zone is the single point = =k k 0x y and the Fermi arc is not present.
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The full surface state wave functions can be written in the form

Ψ
θ θ

= ϕ
+

−⎜ ⎟⎛
⎝

⎞
⎠y e f z( ) cos

2
, sin

2
, 0, 0 ( ) (82)i

T

k
k k

k,
k

Ψ
θ θ

= − ϕ
−

−⎜ ⎟⎛
⎝

⎞
⎠y e f z( ) sin

2
, cos

2
, 0, 0 ( ). (83)i

T

k
k k

k,
k

Here, we have introduced two spherical angles ϕ and θ that define the direction of the vector

+ +( )m V m V V, ,x y z1 2 :

ϕ θ

ϕ θ

θ

=
+

+ + + +

=
+

+ + + +

=
+ + + +

( )

( )

( )

( )

( )

( )

A k V

V A k V A k V

A k V

V A k V A k V

V

V A k V A k V

cos sin
2 sin

2 sin 2 sin

sin sin
2 sin

2 sin 2 sin

cos
2 sin 2 sin

.

x x

z x x y y

y y

z x x y y

z

z x x y y

k k

k k

k

2

2
2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

For the spin texture of these surface states we find

Ψ Ψ ϕ θ

Ψ Ψ ϕ θ

Ψ Ψ θ

ˆ = ±

ˆ = ±

ˆ = ±

± ±

± ±

± ±

s

s

s

cos sin

sin sin

cos .

x

y

z

k k k k

k k k k

k k k

, 1, ,

, 1, ,

, 1, ,

The spin in orbital 2 vanishes. This means that the spin is directed along the vector

+ +( )m V m V V, ,x y z1 2 . For =V 0z the spin-z component vanishes and the spin is oriented

within the plane of the surface, in contrast to the cases with the y-boundary.
Figure 9 shows numerical dispersions from a finite size system with finite Vx in agreement

with equation (81). For larger values of the exchange field >V Mx the bulk gap has closed. The
surface states then exist within the bulk bands.

Figure 10 shows numerical dispersions with finite Vz confirming the opening of a gap for
small values of Vz. Again, for larger values of the exchange field >V Mz the surface states only
exist within the bulk bands and no flat band appears.

6. Model II

In this section we discuss the two nonequivalent cases for the particle–hole symmetric model II.
Model II is distinguished from model I only in the coupling in kz-direction by the matrix

Γ σ τ= ⊗II z z
3 instead of ΓI

3. The other Γ-matrices are the same as in model I. The matrix ΓII
3 has

different commutation and anti commutation relations than ΓI
3. Model II is more symmetric in

the sense, that the three spatial directions possess equivalent couplings. Therefore, it does not
matter which direction of the boundary we consider. For convenience we choose a boundary in
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y-direction, because this allows us to build on the results from model I found in the previous
section.

6.1. Finite V x and Vy

The case with bothVx andVy nonzero, but =V 0z can be treated along the same lines as has been

discussed for model I in section 5.2. We can again go over to polar coordinates in this case and
write = ϑV V cosx 0 and = ϑV V siny 0 . The bulk energy bands equation (3) can then be brought

into the form:

New J. Phys. 16 (2014) 033019 T Paananen et al

28

Figure 9. Numerical dispersions of bulk and surface states for model I with boundary in
z-direction for =V M/ 0.2x in (a) and (c) and 2.0 in (b) and (d). In (a) and (b) =k 0y , and
in (c) and (d) =k 0x . The other parameters are same as in figure 1.



= ± ϑ − ϑ + +

+ ± + ϑ + ϑ
⎫⎬⎭( )

{( )

( )

E m m m

V m m m

k( ) sin cos

cos sin . (84)

i
II

1 2

2

3
2

0 0
2

1 2

2
2 1/2

Again, the system is insulating in the absence of an exchange field and the gap closes, when V0

reaches a critical value ∼V Mcr . In contrast to model I, in model II Vcr depends on the
direction of the exchange field as detailed in appendix A. In the semimetallic state the Fermi
surface is defined by three equations ϑ − ϑ =m msin cos 01 2 , =m 03 , and = +V m0

2
0
2

ϑ + ϑ( )m mcos sin1 2

2
now. Therefore, the Fermi surface is pointlike, i.e. zero dimensional.

Similarly as in section 5.6 it can be shown by linearization around the point nodes that the
system is a Weyl semimetal in this case, too.
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Figure 10. Numerical dispersions of bulk and surface states for model I with boundary
in z-direction for =V M/ 0.2z in (a) and (c) and 2.0 in (b) and (d). In (a) and (b) =k 0y ,
and in (c) and (d) =k 0x . The other parameters are same as in figure 1.



To determine the surface states, we can start from the same Hamiltonian ′H 0 in equation
(25) and its zero energy surface states in equations (26) and (27). We can then treat the terms

Γ Γ Γ′ = + +H m m Vk k k( ) ( ) ( ) , (85)II y y1
1

3
3

using degenerate perturbation theory again. In contrast to the matrix ΓI
3 the matrix ΓII

3 leads to a
diagonal coupling of the two surface states instead of an off-diagonal coupling. As a result the
dispersion of the surface states in kz-direction remains unaffected by the spatial overlap β ( )V k,x

equation (30). Consequently, we find the following surface state dispersions for the full
Hamiltonian within perturbation theory:

β= ± + +± ( )( )E V V A k A kk k( ) , 4 sin 4 sin . (86)x y x z

2 2
2
2 2

1
2 2

This dispersion shows that theVy component of the exchange field, which is perpendicular to the

surface, opens a gap in the surface state spectrum for small values of Vy. The component Vx

parallel to the surface leads to an anisotropic reduction of the dispersion in kx-direction, but not
in kz-direction. In figures 11 and 12 we show the corresponding numerical results on a finite
lattice for Vx nonzero and Vy nonzero, respectively, which agree with this behavior.

The surface state wave functions for this case can be written in the form

Ψ
θ

ψ
θ

ψ= +ϕ
+

−y e y y( ) cos
2

( ) sin
2

( ) (87)i
k

k
k

k
k, 1, 2,

k

Ψ
θ

ψ
θ

ψ= − +ϕ
−

−y e y y( ) sin
2

( ) cos
2

( ). (88)i
k

k
k

k
k, 1, 2,

k

Here, we have introduced two spherical angles ϕ
k
and θk that define the direction of the vector

β β( )m V m, ,y1 3 :

ϕ θ
β

β β

ϕ θ
β

β β

θ
β β

=
+ +

=
+ +

=
+ +

A k

V A k A k

V

V A k A k

A k

V A k A k

cos sin
2 sin

4 sin 4 sin

sin sin
4 sin 4 sin

cos
2 sin

4 sin 4 sin
.

x

y x z

y

y x z

z

y x z

k k

k k

k

2

2 2 2
2
2 2

1
2 2

2 2 2
2
2 2

1
2 2

1

2 2 2
2
2 2

1
2 2

For the spin texture of these surface states we find in orbital 1:

Ψ Ψ β ϕ θ

Ψ Ψ β ϕ θ

Ψ Ψ θ

ˆ = ±

ˆ = ±

ˆ = ±

± ±

± ±

± ±

s

s

s

2
cos sin

2
sin sin

1
2

cos .

x

y

z

k k k k

k k k k

k k k

, 1, ,

, 1, ,

, 1, ,
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In orbital 2 the x- and z-components of the spin turn out to be inverse:

Ψ Ψ β ϕ θ

Ψ Ψ β ϕ θ

Ψ Ψ θ

ˆ = ∓

ˆ = ±

ˆ = ∓

± ±

± ±

± ±

s

s

s

2
cos sin

2
sin sin

1
2

cos .

x

y

z

k k k k

k k k k

k k k

, 2, ,

, 2, ,

, 2, ,

Here, we see that in contrast to the corresponding case for model I the spin possesses
components in all three spatial directions. In the limit →V 0y , the angle ϕ

k
goes to zero and the

spin-y component vanishes. The spatial overlap factor β is seen to suppress only the x- and y-
components of the spin. For the total spin we find:
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Figure 11. Numerical dispersions of bulk and surface states for model II with
=V M/ 0.2x in (a) and (c) and 2.0 in (b) and (d). In (a) and (b) =k 0z , and in (c) and (d)

=k 0x . The other parameters are same as in figure 1.



Ψ Γ Ψ

Ψ Γ Ψ β ϕ θ

Ψ Γ Ψ

=

= ±

=

± ±

± ±

± ±

0

sin sin

0.

x

y

z

k k

k k k k

k k

, ,

, ,

, ,

The total spin is directed perpendicular to the surface. It vanishes in the limit →V 0y .

From the numerical results in figures 11(b) and (d) we see that a one-dimensional flat
band appears for nonzero >V Mx . Again, the appearance of this flat band can be understood
by a topological winding number. In the present case the system obeys the chiral symmetry Θ3

for =k 0z , as was discussed in section 3. The Fermi surface is zero dimensional, so we
may expect a one-dimensional flat band. As the Hamiltonians for model I and model II
are identical for =k 0z , the off-diagonal block form of the Hamiltonian is the same as in
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Figure 12. Numerical dispersions of bulk and surface states for model II with
=V M/ 0.2y in (a) and (c) and 2.0 in (b) and (d). In (a) and (b) =k 0z , and in (c) and (d)

=k 0x . The other parameters are same as in figure 1.



equation (31), i.e.

=
− + + −

+ + +

⎛
⎝⎜

⎞
⎠⎟D

m m im V iV

m im V iV m
k

k k k

k k k
( )

( ) ( ) ( )

( ) ( ) ( )
. (89)

x y

x y

0 1 2

1 2 0

The corresponding winding number is then given by

∫π
= ∂

π

π

−
( )w k dk D k

1
2

Im ln det ( ). (90)x y k y

The one-dimensional flat band in the present case thus corresponds to a =k 0z cut of the flat
band area shown in figure 5 (a). We can find the full dispersion of this flat band also for finite kz

by noting that the matrix ΓII
3 anticommutes with the Hamiltonian for =k 0z . As a result the zero

energy states for =k 0z are eigenstates of ΓII
3, too. Therefore, the dispersion of the surface flat

band for finite kz is given by

= ±±E A kk( ) 2 sin . (91)z1

As for model I, the zero energy surface of this one-dimensional flat band is a
Fermi arc, whose end points are the projections of the Weyl nodes onto the surface
Brillouin zone.

6.2. Finite V z and Vy

The case with both Vz and Vy nonzero, but =V 0x can be treated like the corresponding case for

model I in section 5.4. The Fermi surface turns out to be zero dimensional and the system
possesses the chiral symmetry Θ1 for =k 0x . For determination of the surface states we can start
from the zero energy surface states equations (40) and (41) of the Hamiltonian equation (36) and
treat Γ Γ Γ′ = + +H m m VII y y1

1
3

3 as a perturbation. The energies of the surface states are then found

to be

β= ± + +± ( )( )E V V A k A kk k( ) , 4 sin 4 sin . (92)z y z x

2 2
1
2 2

2
2 2

This is the same kind of dispersion as in equation (86) with the roles of the x- and z-coordinates
interchanged. The spin texture of the surface states in orbital 1 is found to be:

Ψ Ψ
β

Ψ Ψ
β

β

Ψ Ψ
β

β

ˆ = ±
+ +

ˆ = ±
+ +

ˆ = ±
+ +

± ±

± ±

± ±

( )
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and in orbital 2:
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For the total spin we find:
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The total spin is again directed perpendicular to the surface and vanishes in the limit →V 0y .

We find a one-dimensional flat band for finite >V Mz , that can be understood by a
topological winding number using the chiral symmetry Θ1 for =k 0x , analogously to the
previous case. As the matrix Γ1 anticommutes with the Hamiltonian for =k 0x we eventually
find the dispersion of the surface flat band in this case as

= ±±E A kk( ) 2 sin . (93)x2

Again, the zero energy surface of this one-dimensional flat band is a Fermi arc, whose end
points are the projections of the Weyl nodes onto the surface Brillouin zone.

7. Effect of broken particle–hole symmetry

So far we have studied the case = = =C D D 01 2 . When these parameters become nonzero,
the particle–hole symmetry of the system is broken. Also, the chiral symmetries discussed in
section 3 are not obeyed anymore. For this reason the topological winding numbers that we
used in the previous sections to determine the presence or absence of a surface flat
band cannot be used anymore. However, this does not mean that the surface bands
completely disappear. In the following we will demonstrate by both numerical and analytical
calculation that surface bands, which are energetically well separated from the bulk bands
still exist in the broken particle–hole case. We will see that the surface bands become
dispersive now with the dispersion increasing proportional to D1 and D2. Similar behavior has
been noted in other systems before as well [30, 32, 53]. For the numerical calculations we
use parameters that are realistic for Bi Se2 3 and have been given in [58]. The Hamiltonian is
now
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 ∑ ∑ε Γ Γ= + +
α

α α×
= ∈

H m Vk k k( ) ( ) ( ) (94)
i

i
i

x y z
0 4 4

0

3

{ , , }

with ε = + − + − + −( ) ( )( )C D k D k D kk( ) 2 1 cos 2 1 cos 2 1 cosx y z0 2 2 1 , = −m M Bk( ) 20 2

− − − − −( ) ( )( )k B k B k1 cos 2 1 cos 2 1 cosx y z2 1 , =m A kk( ) 2 sin x1 2 , =m A kk( ) 2 sin y2 2 ,

and =m A kk( ) 2 sin z3 1 . For Bi Se2 3 parameters derived from [58] are: =A 0.575 eV1 ,
=A 0.495 eV2 , =B 2.74 eV1 , =B 3.30 eV2 , = −C 0.0068 eV, =D 0.36 eV1 , =D 1.14 eV2 ,

and =M 0.28 eV. Here, we have used the lattice constants a = 4.14 Å and =c15 28.64 Å for
conversion into our lattice model. In the following, we use the same parameters for both model I
and II.

It is clear that the bulk energy bands are just shifted by ε k( )0 with respect to the
particle–hole symmetric cases studied in the previous sections. The former zero energy points,
at which two bulk bands touch each other, will then have energy ε k( )0 . For model I with =V 0z

and >V Vcr we had a one-dimensional Fermi surface, whose degeneracy will now be lifted.
Thus, these nodes will generally overlap with the two touching bulk bands. However, for the
particle–hole symmetric model I with ≠V 0z and >V M we have a Weyl semimetal with just
two Fermi points. As these two Weyl nodes sit at symmetry related momentum points, they are
shifted by the same amount ε k( )0 . Therefore, the particle–hole broken system remains a Weyl
semimetal unless the dispersion ε k( )0 becomes so large that the Weyl nodes start to overlap
with the bulk bands. This same argument also holds for model II with >V M . Thus, the Weyl
semimetallic phases in model I and II are preserved under not too large particle–hole symmetry
breaking and we may still expect the presence of surface Fermi arcs, as we will show explicitly
from our numerical calculations below. In the following we restrict the discussion to the
geometries in which we found surface flat bands for the particle–hole symmetric cases.

7.1. Model I with boundary perpendicular to the y-direction

In the absence of an exchange field the surface state dispersions can be found by replacing the
momentum ky by the momentum operator − ∂i y and solving the ×4 4 matrix Schrödinger

equation directly with an exponential ansatz following [60]. This way one finds

= + + − −

± − +

± ( )( )E C Mt D B t k

t A k A k

k( ) 2 1 cos

1 4 sin 4 sin , (95)

z

x z

2 1 1 2

2
2

2
2 2

1
2 2

where = ≈t D B/ 0.352 2 2 . If >t 12 surface states do not exist.
When an exchange field is turned on, the Schrödinger equation leads to 8th order

polynomials, whose zeroes cannot be given in closed form. However, analytical results can be
obtained for fields in high symmetry directions and small values of momentum kx and kz by
expansion.
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When the exchange field points into y-direction we find the following dispersions
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Here, β
3
is a spatial overlap factor of the form
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equation (96) tells us that the Dirac cone remains ungapped for an exchange field in y-direction
and is shifted in kz direction, like in the particle–hole symmetric case in section 5.1.

With exchange field in x-direction the following low field dispersions are found

β
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In contrast to equation (29) we now find the opening of a gap in the dispersion, which is of the
order of t Vx2 . Corresponding numerical results on a finite lattice for =V M0.2x are shown in
figures 13(a) and (c). If we increase Vx beyond M, we enter a state that corresponds to the two-
dimensional flat band state discussed in section 5.3. As one can see in figures 13(b) and (d) the
surface band becomes dispersive now. However, it still exists and remains well separated from
the two bulk bands. The dispersion of the surface band over the surface Brillouin zone is shown
in color coded scale in figure 14. The dispersion is much smaller along kx-direction than in
kz-direction. An approximate analytical expression valid for small kx and kz can be obtained
from equation (98), if one sets β = 0

4
. In the total density of states of this system the surface

band appears as a peak, similar to what was found for the edge states in a two-dimensional
system in our previous work (see figure 5 in [24]).

With exchange field in z-direction we find the dispersions
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is given by
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with ˜ = − − − −( )( )m M B k B k2 1 cos 2 1 cosx z0 2 1 . From this dispersion we see that the Dirac

cone remains ungapped for an exchange field in z-direction and is shifted in kx direction. The
numerical results shown in figures 15(a) and (c) confirm this behavior. In figures 15(b) and (d)
results are shown for >V Mz . From these figures we see that also the one-dimensional flat band
discussed in section 5.5 becomes dispersive now due to the broken particle–hole symmetry.
However, the system remains a Weyl semimetal, as was pointed out above. The projections of
the two Weyl nodes onto the surface Brillouin zone for =V M4z are found at

= ±( )k k, (0, 0.66)x z in figure 15(d). These are the points, where the surface band ends. In

figure 16 we show the lines of constant energy E = 0.144 eV for the states on the y = 0 surface
(solid line) and on the =y L surface (dashed line). Here, one can see that the line of constant
energy at the energy of the Weyl nodes becomes a curved and open Fermi arc, as expected in a
Weyl semimetal [54, 55]. In contrast, the Fermi arc was a straight line in the particle–hole
symmetric case discussed in section 5.6.
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Figure 13. Numerical dispersions of bulk and surface states for model I with
=V M/ 0.2x in (a) and (c) and 4.0 in (b) and (d). In (a) and (b) =k 0z , and in (c) and (d)

=k 0x . The other parameters are the ones for Bi Se2 3 as described in the text.



7.2. Model I with boundary perpendicular to the z-direction

In this case we find approximate surface state dispersions for small momenta kx and ky of the

form

= + + − − −

± + + − + + −

±

( ) ( )
( )( )E C Mt D B t k k

V V t A k V t A k

k( ) 2 2 cos cos

2 1 sin 2 1 sin , (102)
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2
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1
2

2
2

2

where =t D B/1 1 1. Here, the z-component of the exchange field opens a gap in the Dirac
dispersion, while both x- and y-components lead to a shift of the Dirac cone, leaving it intact. In
this geometry there appear no Fermi arcs at the surface, as in the corresponding particle–hole
symmetric case. This can be understood from the fact that both Weyl nodes sit on the kz-axis.
For that reason their projections onto a =kz const. plane fall on top of each other and the Fermi
arc shrinks to zero. It is interesting to see that the physics of the Weyl semimetal state cannot be
observed on a z-surface due to the structure of the Weyl state here. Experimentally one needs to
look at the side surfaces or at a surface having a finite angle with the z-surface to observe the
Fermi arc.

7.3. Model II with boundary perpendicular to the z-direction

In the absence of an exchange field the surface state dispersions are given by

= + + − − −

± − +

± ( )( )E C Mt D B t k k

t A k k

k( ) 2 2 cos cos

1 2 sin sin , (103)
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x y

1 2 2 1

1
2

2
2 2

where = ≈t D B/ 0.131 1 1 . If >t 11 surface states do not exist.
When the exchange field points into x-direction we find the following surface state

dispersions
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Figure 14. Dispersion of the surface band for model I with =V M/ 4.0x . Red color
indicates high energy values and blue color low values. The other parameters are the
same as in figure 13.



β

= + + − − −

± − + − −

±

( )
( )

( )

( )

( )

E C Mt D B t k k

V t A k t V t A k

k( ) 2 cos cos

4 1 sin 2 1 sin (104)

x y

x x x y

1 2 2 1

6
2

1
2

2
2 2

1 2
2

2

2

where β
6
is given by

β =
˜ − − + −

˜ + − + + −

− ( )
( )

( )V
A m V t A k V t A t k

A m B V t A t k B V t B A k V

4 sin 4 1 sin

4 4 1 sin 4 sin
(105)x

x t y x x

x y x y x

6

2
2

0
2 2 1

1 1
2

2
2 2

1 2 1
2

2
2

0
2

2 1 2 1
2

2
2

1
2

2 2
2 2 2

1
2

with ˜ = − − − −( )( )m M B k B k2 1 cos 2 1 cosx y0 2 2 . From this dispersion we see that the Dirac

cone remains ungapped for an exchange field in the x-direction and is shifted in the ky direction.

Corresponding numerical results are shown in figures 17(a) and (c) confirming this behavior. In
figures 17(b) and (d) we show results for >V Mx . Here, we see that again the corresponding
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Figure 15.Numerical dispersions of bulk and surface states for model I with =V M/ 0.2z

in (a) and (c) and 4.0 in (b) and (d). In (a) and (b) =k 0z , and in (c) and (d) =k 0x . The
other parameters are same as in figure 13.



one-dimensional flat band discussed in section 6.1 becomes dispersive now due to the broken
particle–hole symmetry. Again, this system remains a Weyl semimetal, however. As pointed
out in appendix A, in model II the Weyl nodes follow the direction of the exchange field and sit
on the kx-axis in the present case. The projections of the two Weyl nodes onto the surface

Brillouin zone for =V M4z are found at = ±( )k k, ( 0.623, 0)x y in figure 17(d). These are the

points, where the surface band ends. Similarly as in figure 16 the lines of constant energy
E = 0.421 eV become curved and open Fermi arcs (not shown).

When the exchange field points into z-direction we find the following surface state
dispersions

= + + − − −

± + − +

±

( )
( )

( )( )
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( )

E C Mt D B t k k

V t A k k

k( ) 2 2 cos cos

1 4 sin sin . (106)
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2
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Thus, the application of an exchange field perpendicular to the surface leads to a gap in the
Dirac dispersion. When Vz is increased beyond Vcr no flat band appears. This can be understood
from the fact that in model II the Weyl nodes follow the field direction. Thus, for fields
perpendicular to the surface their projections onto the surface Brillouin zone fall on top of each
other and the Fermi arc disappears.

8. Summary and conclusions

We have studied the modification of the surface states of a three-dimensional topological
insulator by a ferromagnetic exchange field using the two models that are presently discussed
for topological insulators.
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Figure 16. Surface Fermi arc for the set of parameters shown in figure 15(b) and (d).
The solid line shows the line of constant energy E = 0.144 eV for the states at the y = 0
surface, the dashed line for the opposite surface at y=L. The black dots at

= ±( )k k, (0, 0.66)x z are the projections of the Weyl nodes onto the surface Brillouin
zone. The Fermi arcs end there.



For model I, which is appropriate for the Bi Se2 3 class of layered materials the surface states
on a side surface behave qualitatively different than the ones on the top or bottom surface. For
exchange fields smaller than the bulk gap the velocity of the Dirac cone can be tuned down to
smaller values in an anisotropic way depending on the direction of the exchange field. For
exchange fields larger than a critical value of the order of the bulk gap the system, becomes a
topologically nontrivial semimetal. We have shown that, in a particle–hole symmetric system,
the Fermi surface of this semimetal is a line in momentum space, if the exchange field is
directed within the xy-plane. In this case a two-dimensional flat band appears at a side surface. If
the exchange field possesses a finite component in z-direction, there exist only single points in
the Brillouin zone, where the bulk gap vanishes. We have shown that in this general case the
system becomes a Weyl semimetal. Associated with this peculiar state of matter we find Fermi
arcs at the side surfaces and one-dimensional flat bands.
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Figure 17. Numerical dispersions of bulk and surface states for model II with
=V M/ 0.2x for (a) and (c) and 4.0 for (b) and (d). In (a) and (b) =k 0y , and in (c) and

(d) =k 0x . The other parameters are same as in figure 13.



If particle–hole symmetry is not obeyed, the flat bands become dispersive, but remain well
separated from the bulk bands. The Weyl semimetallic phase and the existence of a surface
Fermi arc is preserved also under broken particle–hole symmetry.

In model II, which is more isotropic than model I, the behavior on the top and side surfaces
is qualitatively the same. For small exchange fields, it is again possible to tune the velocity of
the Dirac cone by the exchange field anisotropically. For exchange fields larger than a critical
value of the order of the bulk gap model II always enters a Weyl semimetal state. Associated
with this we also find Fermi arcs and one-dimensional surface flat bands in this case. However,
in model II there is no case in which a two-dimensional surface flat band appears.

If particle–hole symmetry is not obeyed, the flat bands become again dispersive. The Weyl
semimetallic phase and the existence of a surface Fermi arc again is preserved under broken
particle–hole symmetry.

The Weyl nodes in model I sit on the kz-axis, while they move with the direction of the
exchange field in model II. As a consequence, in model I the Fermi arcs and flat bands do not
appear on the top and bottom surfaces, while in model II this is possible.

We have shown that the appearance of flat bands in our particle–hole symmetric cases
could always be classified by topological invariants that have recently been given by Matsuura
et al [53]. The invariants are related to different chiral symmetries in the different cases.

Surface flat bands have been proposed in systems like graphene, superfluid He3 , or
unconventional superconductors before. However, in these systems cryogenic temperatures are
required to observe the flat bands. In the materials discussed here, the energy scale is set by the
bulk gap, which is of the order of 0.3 eV in Bi Se2 3. Thus, flat bands could be observed already
at room temperature. The fact that one can turn on or off a surface flat band by rotation of the
magnetization of a ferromagnet makes the present system particularly interesting for
applications in spintronics.
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Appendix A

In this appendix we derive the ranges of the exchange field under which model I and II become
semimetallic, i.e. the gap vanishes. It is only in the semimetallic phase that the system possesses
surface flat bands. In particular it is of interest to know the critical value of the exchange field
that is necessary to drive the system from the insulating into the semimetallic phase.

For model I we start from the bulk bandstructure of the four bands given in equation (2).
We omit the diagonal term ε ×k( )0 4 4 in the Hamiltonian as it just shifts the four bands by ε k( )0

and thus does not affect the direct gap of the system. For large values of D1 and D2 this term can
lead to an indirect gap, however.
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As is clear from the symmetric spectrum equation (2) the gap closes when there exist
momenta k for which E k( )i

I becomes zero. To determine those momenta it is beneficial to write
the exchange field in spherical coordinates, i.e. φ= ϑV V cos cosx , φ= ϑV V sin cosy , and

= ϑV V sinz . If one exploits the fact that

φ φ φ φϑ − ϑ + ϑ + ϑ

= + − ϑ( )
( ) ( )m m m m

m m
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(1 sin ),
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equation (2) can be written in the form
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This expression can become zero only, if all squared expressions below the square-root become
zero simultaneously. For ≠V 0z this means = =m m 01 2 and = +V m m2

0
2

3
2. For a given value

of V the gap will close only in a single pair of bands. From = =m m 01 2 it follows that =k 0x

or π and =k 0y or π . The equation = +V m m2
0
2

3
2 can then only be fulfilled for selected values

of kz. Thus the system will have single Fermi points, when a solution exists. For the special case
ϑ = 0, i.e. when the exchange field lies within the xy-plane, there are just two equations to be

fulfilled, i.e. φ φ=m msin cos1 2 and φ φ= + + +( )V m m m mcos sin2
0
2

3
2

1 2

2
. In this case

the Fermi surface will be a line in momentum space.
To determine the ranges of the exchange field for which these solutions exist, we

determine the minimum and maximum value of +m m0
2

3
2. Let us set =c kcos z. Then we have

to minimize the function
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in the interval ∈ −c [ 1, 1]. Here, we have set
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The function f(c) is quadratic in c, so there can only be a single extremum within ∈ −c [ 1, 1] or
the extremum will be on the boundaries = ±c 1. On the boundaries we have

= = ′ = − = − ′( )f c M f c B M( 1) and ( 1) 4 .2
1

2

As we assume > >B M 01 and > >B M 02 , we have = − > =f c f c( 1) ( 1). To determine a
possible extremum inside the interval ∈ −c [ 1, 1] we take the derivative of f(c) yielding

= ′ − + −( )df
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M B B B A c4 8 8 8 .1 1

2
1
2
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2

New J. Phys. 16 (2014) 033019 T Paananen et al

43



This becomes zero, if
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− ′
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The second derivative of f(c) is
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As we assume >B A1 1, this is positive. We thus find that there exists a minimum inside the
interval ∈ −c [ 1, 1], if
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which is equivalent to the condition

′ ⩾M B A2 .1 1
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This condition can only be fulfilled for positive ′M , i.e. only for = =k k 0x y . Thus, in the case

⩾MB A21 1
2, the minimum for the exchange field can be found by introducing equation (109)

into equation (108). After some algebra one finds
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Thus we find that the minimum critical value Vcr for the magnitude of the exchange field, which
is necessary to bring the system into the semimetallic phase, is given by
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In total we find the following three ranges for the magnitude of the exchange field, in which the
system becomes semimetallic: −[ ]V B M, 4cr 1 , − + −[ ]B M B B M4 , 4 42 1 2 , and

− + −[ ]B M B B M8 , 4 82 1 2 . For ⩾B B2 1 these ranges overlap, while for <B B2 1 they are
separate. As B1 and B2 are usually of the order of one to several eV, we do not expect that large
enough exchange fields can be applied in practice to actually observe these different ranges.
However, the minimum critical field Vcr, which is of the order of M or less, is within
experimental reach.

The position of the Fermi points is found from the quadratic equation

=V f c( ). (111)2

For ∈ −[ ]V V B M, 4cr 1 the Fermi points sit on the kz-axis ( = =k k 0x y ). Their positions are

given by
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1 1
2 2

1
2

1
2

1
2

1
2

For the case ⩾MB A21 1
2 and <V M both solutions are within the interval ∈ −c [ 1, 1] and we

thus have a total of four Fermi points at the positions = ±k carccosz,1/2 1 and

= ±k carccosz,3/4 2. In the other case <MB A21 1
2 only solution c2 with the minus sign in

equation (112) is within −[ 1, 1] and we have just two Fermi points at = ±k carccosz,1/2 2.
For the special case =V 0z the minimum value of the exchange field to bring the system

into the semimetallic state remains the same. In this case the function

φ φ= + + +( )V m m m mcos sin2
0
2

3
2

1 2

2

has to be minimized. However, as the minimum of +m m0
2

3
2 occurs at = =k k 0x y and

= =m m 01 2 there, the minimum of V remains the same value Vcr equation (110). Also, for
>V Vcr the two (or four) points determined above still lie on the Fermi surface. However, as

pointed out above, the Fermi surface becomes a line (or two lines) now, which approximately
run within the plane perpendicular to the exchange field. (The precise condition is that the

vector = ( )m m A k k( , ) 2 sin , sinT
x y

T

1 2 2 should be perpendicular to the exchange field ( )V V,x y .)

Let us next look at model II. We again write the exchange field in spherical coordinates,
i.e. φ= ϑV V cos cosx , φ= ϑV V sin cosy , and = ϑV V sinz . This time equation (3) can be

written in the form

φ φ φ φ

φ φ

= ± − + ϑ + ϑ − ϑ +

+ ± + ϑ + ϑ + ϑ
⎫⎬⎭( )

{( ) ( )

( )

E m m m m m

V m m m m

k( ) sin cos cos sin sin sin cos

cos cos sin cos sin . (113)

i
II

1 2

2

1 2 3

2

0
2

1 2 3

2
2 1/2

This expression can become zero only, if all three squared expressions below the square-root
vanish simultaneously. This means that the system will have Fermi points, when a zero energy
solution exists. The first two expression become zero, if the vector m m m( , , )1 2 3 is parallel to

φ φϑ ϑ ϑ(cos cos , sin cos , sin ), i.e. parallel to the exchange field. The third equation can then
be written as

= + + +V m m m m .2
0
2

1
1

2
2

3
2

It is clear that the minimum critical value Vcr for the magnitude of the exchange field, which is
necessary to bring the system into the semimetallic phase fulfils ⩽V Mcr , because a zero energy
state can always be found for = = =k k k 0x y z and =V M . A general expression for Vcr can in

principle be obtained analytically for exchange field in any direction. However, the expressions
become quite complicated. Therefore, here we focus on the two cases that the exchange field
points either in x-direction or in z-direction.

For exchange field in x-direction we have = =m m 02 3 . The minimum can thus be found
on the kx-axis by minimizing the function f(c) equation (108) with =c kcos x and B1 and A1

being replaced by B2 and A2. Following the same calculation as for model I we then find for the
critical value Vcr x, in this case:
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=
<

− −
−

⩾

⎧
⎨⎪

⎩⎪
V

M MB A

A
B M M A

B A
MB A

for 2

4 4
for 2 .

(114)cr x,

2 2
2

2
2

2
2
2

2
2

2
2 2 2

2

Analogously to model I, for >V Vcr x, we have either two or four Fermi points lying on the
kx-axis. Their positions are found from

= ±
− + + −

−

( ) ( )
( )

c c
A M MB A V B A

B A

4 4

2
. (115)min1/2

2
2 2

2 2
2 2

2
2

2
2

2
2

2
2

For exchange field in z-direction we have = =m m 01 2 . The minimum can thus be found
on the kz-axis by minimizing the same function f(c) equation (108) as for model I. We thus find
for the critical value Vcr z, in this case:

=
<

− −
−

⩾

⎧
⎨⎪

⎩⎪
V

M MB A

A
B M M A

B A
MB A

for 2

4 4
for 2 .

(116)cr z,

1 1
2

1
1

2
1
2

1
2

1
2 1 1

2

From this expression we see that for model II in general the critical value Vcr depends on the
direction of the exchange field, in contrast to model I, where it was isotropic. The position of the
Fermi points in this case is given by equation (112) for >V Vcr z, . Again, one sees that the
position of the Fermi points in model II varies with the direction of the exchange field, in
contrast to model I.

Appendix B

During the course of this work we repeatedly encounter the situation that the Hamiltonian can
be written in the following form:

= + ′
′ = +

H H H

H f A g B

k k k
k k k

( ) ( ) ( )

( ) ( ) ( )
0

where f k( ) and g k( ) are complex functions. A is a momentum independent operator that
commutes with H k( )0 , while B anticommutes with H k( )0 . We would like to determine the
eigenstates and eigenvalues of H k( ) from the known eigenstates and eigenvalues of H k( )0 . Due
to the symmetries and the ×4 4 structure for each momentum k H k( )0 possesses at most two
degenerate states with energy E k( )0 and two degenerate states with energy −E k( )0 .

Let 1 be an eigenstate of H0 with energy E. Then A 1 will also be an eigenstate of H0

with energy E and B 1 will be an eigenstate of H0 with energy −E . Thus,

∑=
+

A a j1 (117)
j

j
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where the sum goes over all the eigenstates of H0 with energy E, and

∑=
−

B b n1 (118)
n

n

where the sum goes over all the eigenstates of H0 with energy −E. In total we have

∑ ∑′ = +
+ −

H f a j g b nk k1 ( ) ( ) . (119)
j

j
n

n

Thus, ′H can only couple the eigenstates of H0 with energies E and −E . This means that the
total Hamiltonian H in the basis of the eigenstates of H0 is reduced to (at most) ×4 4 blocks.
The problem of finding the eigenstates and eigenvalues of H k( ) thus reduces to ×4 4 matrices
within the ±E spaces of H0.

In the cases discussed in this paper we are interested in surface states localized on a single
side of the system. We construct H0 in such a way that its surface states have zero energy. We
then have to diagonalize ′H in the E = 0 subspace of H0. The eigenvalues and eigenstates of ′H
in this subspace are then the surface states of H and their energies that we look for. As the
number of localized states at one surface of the system is equal to the number of localized states
at the oppsite surface due to parity symmetry, we are only left to solve a ×2 2 problem. So the
general procedure, which we take in this paper, is to first determine the zero energy eigenstates
of H0 (if they exist) and then determine the eigenvalues and eigenstates of ′H in this subspace.

Appendix C

In this appendix we derive an analytical condition for the existence of the two-dimensional flat
band based on the winding number

∫π
= ∂

π

π

−

−( )w k k dk D Dk k,
1

2
Im (det ( ) ) det ( ). (120)x z y k

1

y

To evaluate this expression analytically it is useful to employ the residue theorem in the
following way [69]: for given kx and kz the quantity

γ = = + + + − − + −D m m m m V V im V im Vk k( ) det ( ) 2 2 (121)x y y x0
2

1
2

2
2

3
2 2 2

1 2

for π π∈ −k [ , ]y defines a closed path in the complex plane. Therefore, by transforming

=z D kdet ( ) the winding number can be expressed as the integral

∮π
γ= =

γ
( )w k k

dz

z
I,

1
2

Im ( , 0), (122)x z

where γI ( , 0) is the winding number of the curve γ around the origin. Thus, if the curve does
not enclose the origin, the winding number becomes zero and no zero energy surface state
exists. Now, the path γ crosses the real axis, when =D kIm det ( ) 0. This happens when

= ⟺ =m V m V k
V

V
ksin sin . (123)y x y

y

x
x1 2

For a given kx this equation has two solutions ky,1 and π= −k ky y,2 ,1, if ∈ −ksin ( 1, 1)
V

V x
y

x
. The

path encloses the origin only, if these two crossings possess different sign of the real part, i.e.
the criterion for the existence of the flat band becomes
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γ γ> ( ) ( )k k k k k k0 , , , , . (124)x y z x y z,1 ,2

The boundary of the flat band in kx-kz-space is then given by the criterion

γ γ= ( ) ( )k k k k k k0 , , , , . (125)x y z x y z,1 ,2

Now, as on the Fermi surface we have =D kdet ( ) 0, it follows that the boundary of the flat
band is just the projection of the (one dimensional) Fermi surface onto the kx-kz-plane.

In the general case, the analytical expression equation (124) becomes quite complicated.
However, the expression can be simplified in the case =V 0y , as then =k 0y,1 and π=ky,2 .

Then we have

γ

γ π

= ˜ + + −

= ˜ − + + −

( )
( ) [ ]
k k m A k A k V

k k m B A k A k V

k

k

, 0, ( ) 4 sin 4 sin

, , ( ) 4 4 sin 4 sin (126)

x z x z x

x z x z x

0
2

2
2 2

1
2 2 2

0 2

2

2
2 2

1
2 2 2

where ˜ = − − − −( )( )m M B k B kk( ) 2 1 cos 2 1 cosx z0 2 1 . If we look at = =k k 0x z , we see that

γ (0, 0, 0) becomes negative, when | | >V Mx . γ π(0, , 0) becomes negative, when
| | > −V B M4x 2 . As we assume >B M2 here, γ π(0, , 0) will change sign only at much larger
fields | |Vx . Therefore, a flat band will be present in the vicinity of = =k k 0x z for

− > | | >B M V M4 x2 .
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