
Data Collection of Development and Maintenance Effort

- Data Design and Experiences -

Thorsten Spitta

thSpitta@wiwi.uni-bielefeld.de

August 1998

Discussion Paper No. 401

Universität Bielefeld

Fakultät für Wirtschaftswissenschaften

Postfach 10 01 31

33501 Bielefeld

Spitta: Data Collection ... 1

Abstract: The knowledge of development and maintenance effort is a necessary precondition for all
types of software management, IS-controlling, guidance of quality and effort estimation. Data collect -
ing systems seem to be widely used, but the data is said to be unsafe and firm-specific. The paper
presents a revised concept for the collection of personnel effort and for events (e.g. faults) as a gener-
alized data model. Integrity constraints of that model may be fitted to individual circumstances. The
model was first published in 1989. This revised version is based on experience with the system used
by 40 developers in five locations for many years. Design and practical use of a system based on that
concept allow the collection of statistically valid effort data. This would only be possible if develop -
ers are sure to be not supervised by their data, and if they don’t need to decide upon classifications
during data-entry time. Examples show applications of the data for project management, quality con-
trol and IS resource management reporting from 6« years with overall 170 PYs.

Contents

Contents
1 INTRODUCTION...3

2 GOALS OF EFFORT COLLECTION..4

3 REQUIREMENTS..5

4 GENERALIZED DATA DESIGN...7
4.1 Object type structure...7
4.2 Object type model...7
4.3 Attribute type model..8
4.4 Operation conditions..10

5 FOR WHAT PURPOSES ARE THE DATA USEFUL?...11
5.1 Project management...11
5.2 Quality and reliability engineering...12
5.3 Information management and IS-controlling..13

6 CONCLUSION..15

The following discussion paper is an extended version of Spitta (1998) from ISSRE '98 which is
more result oriented. The extension of this paper is the generalized concept of the data model in sec -
tion 4 of the ISSRE paper.

Effort_WP-401

Spitta: Data Collection ...

1 Introduction

A great deal of software engineering techniques is based on the knowledge of effort data: Ef-
fort estimation, cost allocation, project management etc. ‘The Mythical Man Month’ [Broo75],
‘Software Engineering Economics’ [Boe81] are two examples of fundamental books which
intensively deal with the amounts and distribution of human effort in software development
and maintenance. Despite this great importance for software management there is no general-
ized concept, how to design and manage the effort collection process itself. The only paper
known to the author is by Basili and Weiss [BaWe84], which does not discuss effort collec-
tion but event collection about failures. The paper of Basili and Weiss deals with the collec-
tion of data during maintenance processes in the US navy, collecting and analyzing fault
events during the operation phase of software. An important issue of that paper is the reliabil-
ity and correctness of the collected data which is mainly organized by supervision of data en-
try forms. Also in [Boe81] there are some hints about effort collection but they are, according
to that time, also based on manual forms which have to be typed in to a batch process.

Because personnel effort comprehends at least 50% of IS-effort of any organization, it is im-
portant to know something about its distribution in detail. Only few management processes
can be be practiced seriously without knowledge of personal effort data.

This paper describes a general concept of effort and event collection during software develop-
ment and IS-system maintenance based on online collection of data. It has been developed
since 1987 in a medium sized company that had five locations developing and three locations
maintaining software with about 40 developers. This means 30,000 to 50,000 data entries per
year for those 40 persons. The data to be shown here is based on the experience of the first
6« years. At that time the database contained 271,077 hours of effort, distributed on 22 large,
248 small projects and 461 maintenance activities with accounted effort and 106 cancelled re-
quirements with no effort (see details in table 4, section 5). Including service, the database
contained 169.4 PY (person years)1 of effort.

As realized by recent empirical investigations of the author [Spit98a] there are still few orga-
nizations collecting such data. The main arguments against effort collection are the validity of
the data and the effort of its collection. In detail:
· The lines between development, maintenance and service are not sharp enough. There

would be false attachments of data. This is the classification problem.
· Data has to be collected by programmers. It does not only show effort but also human be-

havior; therefore it may be falsified. You have to motivate people to collect correct data.
This will be discussed as the motivation problem.

· The effort of collecting data is too high. It consumes a relatively large amount of program-
mer’s productive time. This is called the effort problem.

The following paper will show how to handle these problems in presenting a detailed data
model which can easily be implemented. The data collected with our empirically validated im-
plementation (more details see [Spit97]) show the applicability of such data for many manage-
rial purposes.

1 1 PY = 1,600 [h] with 200 working days of 8 [h].

Effort_WP-401

2

Spitta: Data Collection ... 3

Although the model will show the object types for planned data, the examples in Section 5
will not. The paper concentrates on the collection of real data because nobody is able to create
realistic planned data without knowledge of real data. Our model serves as a guideline how to
establish a correct ‘corporate memory’ about IS software and personal ressources as demand-
ed by Boehm 17 years ago [Boe81].

2 Goals of effort collection

An effort collection system has to support multidimensional goals to justify the effort of the
collection process. It must support the information resource management, which contains eco-
nomic and technical elements. The goals in detail are managerial overviews about:

· Capital invested in software resources [Nol79]
· Structure, cost and trends of maintenance effort [Lehm80], [BoPa88]
· Project management, especially controlling external developers [Page85]
· Cost allocation of user department’s requirements [Nol77]
· Plan-/expenditure variances and other topics of IS-controlling [Dué89], [SeGr96].

IS-controlling is not focussed on the fiscal year. Data has to be observed for much longer peri-
ods. Therefore the main classifications of effort data must be stable for a long time. The sys-
tem has to store events and times (effort) of all systems over all effort classes. Specific re-
quirements have to serve four purposes:

(1) Project management
· State of each project at any time
· Effort of each project per period
· Pending projects (they have no effort in a period)
· Support effort for new systems
· Fault-types in systems during introduction phase, etc.

(2) Maintenance and evolution management
· Number and distribution of user requirements in different departments
· Effort distribution of completed maintenance cases
· Effort of purchased systems, etc.

(3) Cost accounting
· Effort and cost per cost center
· Support effort per unser department
· External vs. internal personal effort, etc.

(4) Support
· PC-support effort per department
· Faults in network and PC-software, etc.

Because there are many more unplanned questions, the technical basis has to be a database
system, and the collection of data has to be online and timely.

Effort_WP-401

Spitta: Data Collection ...

3 Requirements

In this section the general classifications for the data design are discussed which will appear
there as object types, attributes or attribute domains in the next section.

We assume a dynamic life cycle model for software [Floy81] which since Lehman’s funda-
mental empirical results [Lehm80] and Boehm’s ‘spiral model’ [Boeh86] has been the gener-
ally accepted state of the art of software development and standard software implementation
(Figure 1). The implications of that model for data to be collected are:

· It describes the life cycle of a
system or part of a system
which has two states: devel-
opment and maintenance.

· Development is a sequence of
versions (or releases). The de-
velopment of a version is fol-
lowed by a period of operation
with maintenance activities.
During operation time new re-
quirements, based on the next
version, are collected. The
process to produce a first or
new version is a project,
which must be attached to a
system. While two versions al-
ways follow each other strictly

sequentially, it might be useful to divide a project into part-projects which can be pro-
cessed at the same time.

· The effort to be collected is working hours. In a project they can be attached to phases
which generally are (not in any detail!) sequential. There are two quite different attach-
ments to phases: phases of a whole project and phases of an activity. E.g. during the pro-
ject-phase introduction it might be necessary to specify some additional functions. Both
types of phases should be collected for project management purposes. The first type of
phase may only be booked by a project leader or manager while the developer decides
upon the second. This avoids classification errors in the area of phases.

· During phases there are types of methodological activities (functional/data design; coding,
testing etc.) which are performed simultanously. The coding of these activity types
would cause classification errors in the data (and raise the collecting effort!). Although
technically possible, activity types should not be coded. The phase is the most detailed
coded item in effort attachement (see table 1 next page). Coding of too much detail
bothers people with unsolvable classification problems, especially when coding effort,
and enlarges errors instead of improving precision. Details are written in free text,
which contains important information for project management, but not for classification.
During maintenance, phases must not be coded.

· A project or a system is attached to a cost center. Because of today’s dynamics of enter-
prise structures, the attachment to a system is more stable than to a cost center. An applica-
tion system classification should not be firm-specific, but generalized within the subject of
the specific type of software dealt with. Table 6 in section 5 is an example for an industrial

Effort_WP-401

problem

goals

requirements

introduction

exitmaintenance

development
new version

etc.

Fig. 1: Dynamic life cycle model for software
(exit = end of operation)

4

Spitta: Data Collection ... 5

environment. This is not only important for the comparison of data between firms, but also
for stability against changes in firms’ structures. A two-level hierarchy of such a classifica-
tion is necessary and sufficient. A more than two-level hierarchy makes the data difficult to
handle.

In addition to the life cycle of software with three effort classes (development, maintenance,
faults), there is a fourth effort class which is more dedicated to (personal) hardware than soft-
ware. This effort class is support which naturally has no phases and at first no cost centers
(but surely later!). Two other effort classes are useful for event and cost accounting: faults and
purchase. All effort classes are events until something is done with that event (correcting a
fault, working on a project, extending purchased software). Events are booked by managers
not by developers. Events have small frequencies and may be checked in every case for classi-
fication errors. Managers can be expected to be interested in correct classifications because
they are observed by users. This is the solution for the motivation problem with events.

The difference between sequential and parallel activities of lower staff is important for the po-
tential validity of data: It is relatively easy to discriminate sequential events, but nearly impos-
sible to distinguish parallel events clearly. Software developers work on at least two activities
(development, maintenance, fault correction, support) every day as shown in table 1. Even in
very large enterprises and very large projects the one-project-working day would be an excep-
tion. According to our data, a maintenance programmer works on up to twelve activities per
day with an average of five.

Table 1: Collection screen for a day-report after input before submission of the data

EFFORT-COLLECTION short
MeierC 05/22/89

Eff Sv Cost Phas Eff- Activity (short text)
Cls No Cent No Time .
 f 71 ___ _ 1.5_ fault search double book sales___
 f 71 ___ _ 0.5_ sort fault deliv. note___________
 m 70 ___ _ 1___ gen. probl.______________________
 s 72 812 _ 1___ div. probl. consignment note_____
 d 264 ___ 3 0.5_ discussion mobile order entry____
 m 315 ___ _ 0.5_ div. probl. inventury____________
 m 331 ___ _ 2.5_ tour-planning/customer data______
 _ ___ ___ _ __
 _ ___ ___ _ __

____--
 PF1= help PF3= back F12= end Return= NEXT
Legend: bold : Default data shown by the system. After ‘Return’ other default data (cost center and phase

number) are automatically filled in. The redundant input of effort class serves as a consistency
check if the correct service number is used.

Effort_WP-401

Spitta: Data Collection ...

Table 1 shows the online form of the normal case of effort collection for one working day
with authentic data. The reader can see that very few items have to be collected for one ac-
counting position. This design is one part of solving the motivation and also the effort prob-
lem. Programmers want the data entry to be efficient. Until now (1998) it cannot be recom-
mended to collect effort via a graphical user interface because this is ineffective.

It is self-evident that classifications of new staff have to be watched and that each manager
discusses faulty classifications with his people.

The classification problem focuses on the point that

➔ as few classifications as possible have to be made by the staff itself while col-
lecting data.

The next section shows the data model which fulfills our requirements.

4 Generalized data design

This section shows the data design of a generalized effort collection system as an object type
structure, object types with attributes and integrity constraints for the attributes. The model is
based on the experiences with the application of the system for more than 6 years. The origi-
nal design was made and published in 1989 [Spit9, ch. 12]. The design presented here had
only slightly to be revised in some details of object types’ hierarchy (ApplSystem and IsSer-
vice; see fig. 2) and in some attribute domains (purchase and support). On base of the rela-
tively detailed attribute-type model it will be easy to implement it upon an arbitrary database
system. The last topic is operation conditions, which promote a correct data collection with
the proposed design in supporting the motivation problem.

4.1 Object type structure

The object type structure is shown as an entity relationship model.

Appl-
System

IsService-
Account

ApplPart-
System

IsServiceIsService-
Plan

manager /
developer

CostCenter

(changed)
program

legend: 0,1 : N - relation <text> : relationship type,
to read with arrowshadowed: kernel of the system

IsServiceStructure

contains contains

concerns

creates

creates

contains

concerns

consists_of

demands

receives

creates

Fig. 2: Object type model for time and event collection

Effort_WP-401

6

Spitta: Data Collection ... 7

4.2 Object type model

The object type model with object types and their attributes is relationally expressed with only
the kernel of the system shown in figure 2. The end of the names of non-key attributes express
their types2, which are shown in section 4.3. ‘Effort’ is the data type Time.

Table 2: Object type model (relations with attributes)

IsService (IsService#, EffortCls, CostCenter#, ApplPartSystemCode#, Description,
estimatEffortTime, realEffortTime, PhaseNo, strategRelevance?,
EntryDate, desiredDate, promisedDate, CompletionDate)

IsServiceStructure (Upper.IsService#, Lower.IsService#)
PhaseProgress IsService#, BeginDate#, PhaseNo)
IsServiceAccount (IsService#, DeveloperName#, Date#, IsServAcct#A, CostCenter#,

PhaseNo, EffortTime, ActivityDesc,)
changedProgram (IsServAcct#, Program#)
IsServicePlan (IsService#, beginDate#, endDate#, EffortTime)

Syntax:

As discussed in section 3, there are two different roles of PhasNo: IsService.PhaseNo is an at-
tribute of a project, IsServiceAccount.PhaseNo is an attribute of an activity. The ‘redundant’
attribute CostCenter# also has a non-redundant semantic: As shown in table 1, IsServiceAc-
count.CostCenter# has only to be assigned by the developer if IsService.EffortCls has the val-
ue ‘support’. This concerns the motivation problem and to the effort problem too.

PhaseProgress is a derived relation which is automatically booked, realEffortTime is a de-
rived attribute with the constraint:

"i Î IsService

· i.realEffortTime = a EffortTime
a IsServiceAccount a IsService i IsService

.
| . # . #

It is obvious that the derived attribute realEffortTime cannot be booked manually. The hierar-
chy ApplSystem ® ApplPartSystem is part of the generic key of ApplPartSystemCode#.

4.3 Attribute type model

A precise attribute type model is very important for the validity of data. Every automatic con-
sistency check during data entry, made by the source of the mass data - the developer -, avoids
faults.

2 type abbreviations: Cls= class, No= number, Desc= description, ?= data type BOOL.

Effort_WP-401

<string># : primary key <string># : foreign key <string>#A : alternate key

Spitta: Data Collection ...

Table 3: Domains and constraints of attributes

Type constraint

EffortCls : (development, fault, maintenance, purchase, support)
where d, f, m : [time]3, f, p : [event].

ApplSystemCode# : (administration, information, logistics, production, sales& delivery)
ApplPartSystemCode# : array of <dynamic enumeration type in a database table>
PhaseNo : (0 .. 6, ‘+’, ‘c’, ‘*’)4

where (PhaseNo = (1..6) : development) xor
(PhaseNo = ‘+’ : maintenance) xor
(PhaseNo = ‘c’ : cancelled project) xor
(PhaseNo = ‘*’ : support) xor
(PhaseNo = 0 : registered requirement)

and "i Î IsService ·
it.PhaseNo ³ it-1.PhaseNo

and "i Î IsService-Rel5 · i.PhaseNo Î (0 , ‘c’ , ‘+’)
Þ Ø$a Î IsServiceAccount-Rel ·
i.IsService# = a.IsService#6

strategRelevance? : Bool
where "i Î IsService-Rel ·

i.strategRelevance? Þ i.EffortCls Î (d , p)7

CostCenter# : [CostCenter]
where "i Î IsService-Rel ·

(i.EffortCls = ‘s’ Þ i.CostCenter# = Null
and "a Î IsServiceAccount-Rel ·

i.IsService# = a.IsService# Þ k.CostCenter# ¹ Null) 8

Name : (a..z, A..Z, -)
DeveloperName : [UserID]
Description : Text · Description ¹ Null
Time : [hours] ·Time ³ Null9

Date : [calender date]10

Syntax:

While the data has to be specified rather exactly, the functional part need not be described in
detail because it is relatively trivial. The conditions for the operation phase of the collection
software are more important because they influence the correctness of the data significantly.

3 [] = problem specific base type
4 enumeration types are ordinal: (0 < 1 < .. < 6 < ‘+’ <‘c’ < ‘*’). Special characters serve for readability of reports;

see table 5
5 a relation, that is a subset of the type’s domain
6 PhaseNo may remain equal or may be raised, but never reduced. PhaseNo = 0 is an event without any account.

A finished or cancelled project cannot be accounted.
7 strategic relevant are only development projects and purchased software.
8 CostCenter is only booked by developers if effortCls = support
9 Null values temporarily permitted
10 booked automatically by system

Effort_WP-401

underlined: abbreviation; · : it holds; Null: null value;
bold: base type; index: state at a certain time

8

Spitta: Data Collection ... 9

4.4 Operation conditions

Because one main problem of data collection systems is validity, everything that can be for-
mally checked should be done by implemented integrity constraints. Errors within the normal
margins of error only cause a statistical variance. Because there are about 1000 accounted
records per PY, the law of the large numbers holds for that type of data. Merely individual dif-
ferences compensate each other, if more than five developers are booking.

The remaining point to be discussed is the motivation problem. What can be done to avoid
systematic falsification of the mass data (effort) by the developers?

It is evidently not useful and also virtually impossible to supervise each developer. The only
way to avoid falsification is to insure that no developer should have any motive to fake the
data. If supervision is not a solution then only a trusting working atmosphere can help. There
are four conditions to produce this climate that makes falsifications improbable. When start-
ing our system, checks were made which showed the effectiveness of these conditions.

1. Personal responsibility. Each person books his/her own data online. No other person can
create or change personal data. The database is locked against free SQL-updates and can
only be manipulated by the booking programs.

2. Transparency. Everyone of the staff booking is allowed to read (only online!) all account-
ings. This promotes an open atmosphere between developers, managers and teams. Not
only staff but also middle management collects his/her effort.

3. No supervision. Evaluation of programmers should by no means be conducted in this con-
text, neither their effectiveness nor their errors. This applies to employees. Because IS-
staff knows that this is technically possible this is a very important point in using an ef-
fort database. If the staff realizes that persons are measured by the data (e.g. by checking
the productive times per PY) they might fake it. By contrast, the system should be used
to protect the staff’s working places against questions like: ‘What are these many ex-
pensive people really doing?’ In this context plan-/expenditure comparisons might be
mentioned as problematic with respect to the correctness of the expenditure data. If peo-
ple are measured by the variances, they will try to reach good values.

4. Instruction and Information. New staff and new external developers have to be informed
about the goals and the rules of the system. This is best done with examples of reports as
shown in section 5 below. All booking persons have to be informed what is done with their
data.

The remaining two points are useful for the correctness and usability of the data too, but do
not influence motivation as strongly as the points above.

5. Completeness. A person should either collect data for all productive work or no data at all.
Developers, support staff and project managers belong to the first class; operators, net-
work specialists etc. to the second. This avoids a shifting of effort between activities or
effort classes or the omission of effort. It is a means to solve the classification problem.

6. Actuality. The latest day to collect data is the end of a week. Only recent data are useful
for project management and only they are not based on human memory.

Effort_WP-401

Spitta: Data Collection ...

The motivation problem summarizes that

➔a minimum of effort data items should be required of developers and middle
management

➔only a trustful atmosphere will avoid systematic falsification which is the only
dangerous point

➔sufficient information about the application of the data promotes this trust.

5 For what purposes are the data useful?

The following examples of original data show that an effort collection system is useful for
more than one purpose, that is project management (steering and reporting), quality and relia-
bility engineering (maintenance effort and system’s evolution) and information resource man-
agement. The multidimensional use of the data is the solution of the effort problem.

5.1 Project management

Table 4 shows three days of effort for a project. The project is in phase 5 (implementation),
while there are several activities in a phase < 5 (3= specification). Only one of the four devel-
opers (D) has worked on one day (2/4/92) exclusively for this project (light shadow). The re-
port gives the project leader hints - not more - that the additional specifications should be
checked. Are these activities a) necessary and b) agreed upon, or are they c) ‘subversive’? A
second glance shows that developer B obviously works on extensions, while the system is in
test (dark shadow).

Table 4: Booking of a project for several days

Project: P475 ApplSyst: L.LGB CostCtr: 800
Accounting from: 02/04/92 - 02/06/92

Date User
ID

Effort
[h]

Phas
No

Activity

02/04/92 A 1.0 3 discussion actitivities with PL (=Proj. leader)
B 1.0 3 disc. activities LGB 1.HY
B 2.5 5 programmg. automatic stock-change
C 1.0 5 maint. activity plan
C 5.0 5 date executive board
D 1.5 5 LGB2942P test listprint
D 3.0 5 LGB2105P (online) worked over
D 3.0 5 actualization list of listprints

02/05/92 B 1.0 5 extend. stock places
B 3.5 5 new progr. LG-withdraw-voucher
D 3.0 5 work over LGB2105P (online) and test

02/06/92 A 0.4 5 change prog QBE750A
B 1.1 3 extending autom. stock-change
B 1.5 5 extend print DelivNote foreign Order-No
D 3.0 5 tested LGB2105P and put in TEST
D 1.0 5 tested LGB2927P: charge missing

Effort_WP-401

10

Spitta: Data Collection ... 11

Figure 3 shows aggregated effort for external staff in large projects over six quarters. The
view of a financial accounting department would be focused on the cost structure: ‘External
costs are relatively constant (on a high level)’. From the project management view the situa-
tion is quite different: The sales&delivery projects are just before the introduction phase. A
rise in the last quarter (integration test) is normal. The production project has an ideal course:
It has been in the introduction phase since I/91. The effort is continuously decreasing. Howev-
er, the logistic project shows an alarmingly ascending course. The curve seems to be a demon-
stration of Brook’s ‘law’: Adding people to a late project makes it later.

Aufwand [Std] je Anwendungsgebiet
Quartal Projekte

AnwGebiet IV/90 I/91 II/91 III/91 IV/91 I/92 = fehlt in der Grafik

sales&deliv. 456 1557 1611 1682 1292 1745 Aufträge, Versand
logistics 2070 1787 1533 2258 2548 2786 Bestände, Artikeldaten
production 2511 2102 1916 1664 1362 839 PPS-System
information 421 441 227 97 195 136 90/91: PC-Vernetzung

** 5458 5887 5287 5701 5397 5506
Admin. 107 82 195 150 76 127 überw iegend SAP
Wartung* 90 29 78 12 50 180 *= ad hoc - Wartung

effort of large projects in quarters

0

500

1000

1500

2000

2500

3000

IV/90 I/91 II/91 III/91 IV/91 I/92

quarter

ex
te

rn
al

 e
ff

or
t

in
 [

h]

sales&deliv.

logistics

production

information

Fig. 3: External personal effort over 6 quarters for large projects

The second field of the database is quality and reliability engineering.

5.2 Quality and reliability engineering

Maintenance effort can tell more about quality than development effort. Figure 4 shows the
evolution of some systems and their cumulated maintenance efforts.

Aufwand [MT] /Version u. Wartung
Projekt Vs1 Vs2 Vs3 Vs4 Maint seit
SAP Finance 478 241 282 Okt 91 Wartung für RF und RA
sales info 165 218 0
bonus salesmen 276 39 Jul 89
tour plan 440 230 16 132 Dez 89
sales plan 72 96 158 65 0
MobileOrdEntry 97 62 Aug 87
SEDAS 16 210 Okt 87

maintenance and version effort

0 200 400 600 800 1000 1200

SAP Finance

sales info

bonus salesmen

tour plan

sales plan

MobileOrdEntry

SEDAS

A
pp

lS
ys

te
m

e ffort in [PD] (person days)

Maint

Vs4

Vs3

Vs2

Vs1

Fig. 4: Maintenance effort and effort of evolutionary versions of application systems

In order to interpret each effort value correctly it might be necessary to know the time distri-
bution of the projects and the organizational context of the data. There are only a few interpre-
tations of three of the systems in figure 4:

Effort_WP-401

Spitta: Data Collection ...

SEDAS is a preliminary national German version of the international standard EDIFACT. The
system was implemented under high pressure of an important customer in a ‘quick and dirty’
manner in 1987. The very large maintenance effort proves that there must be quality prob-
lems, although the system is a rather simple batch interface. On the other hand, MobileOrder-
Entry was a complex and ambitious project for 140 salesmen, introduced in 1988. The mainte-
nance effort of about 70% of the development effort within 5« years seems to be a sign of
good quality. Sales plan was evolutionarily developed. The four versions without stable main-
tenance can be an indicator for either a very ‘creative’ user department or a ‘creative’ develop-
er who follows each technical fashion11.

5.3 Information management and IS-controlling

The database also allows for a long range view on IS software resources. Table 5 shows a re-
porting of projects for the sales&delivery department. In this case an attribute strategicRele-
vant? is used to separate large and important from small projects. The reader can see that there
is a large ratio of abandoned small projects. The same report for maintenance or faults would
show the ‘pipeline’ of events with PhaseNo = 0.

The list of projects also shows some aspects of strategic information management. The strate-
gic projects should be planned and
well known in the whole enterprise as
part of an information strategy paper
[LePo97]. In addition to planned
projects new problems appear during
the analysis of strategic projects,
which should be handled as separate
part-projects. E.g. the base article
data are in a wrong state and have to
be renewed (ProjNo 323) and to be
re-specified (ProjNo 260), in order to
make the strategic project (No 371) a
success. On the other hand, there are
reactive projects like the ‘green
point’ (ProjNo 680) forced by a new
bill passed in Europe in 1991. Other
reactive projects are forced by impor-
tant customers.

In addition, reactive and strategic
projects are examples for special at-
tributes in the central relationship
type IsService. It is easy to extend the
database at that point, but it is nearly
impossible to extend the effort ac-
countings (relationship type IsSer-

viceAccount) because of the very large number of entries.

11 The technical base of the system was a PC. The 4th version was not yet finished at the time of extracting the
data.

Effort_WP-401

Table 5: Project status for one user department (sales&delivery)

date: 03/31/1992

strategic projects
IsServ

-Nr
Subject Effort

[h]
Phase

154 sales info article/salesman 714 +
281 tour planning 1,558 +
340 customer orders/delivery 11,300 5
348 integration old system food sales 6,477 +
579 accounting food sales new 1,259 +
680 ‘green point’ 69 3

*** sales&delivery 21,308
260 definition article structure 1,777 +
323 restoring article data 1,071 +
371 article/BOM/working schedules 19,031 6

*** base data 21,879
misc. projects

301 detachment accounting nonfood 65 +
335 contribution margins 97 !
355 shipment-change division B 158 +
361 gross demand 742 +
439 restoring accounting old system 140 !
518 change region-/district -key 18 !

*** sales&delivery 1,220
374 integration coding tables 280 +
405 color-bundle 3 pieces 21 !

*** base data 301
legend: underlined: additonal ~, italic: reactive project

12

Spitta: Data Collection ... 13

Table 6 shows an aggregation of the complete database for the first 6« years as a distribution
of IsService events over the application structure. The application system classification was
stable over long periods although in this case the firm’s organizational structure completely
changed twice, also causing a change of the cost center structure. Table 6 shows that already
the classification of IsService events is a good tool of information and project management,
without regarding effort values. Two facts in table 6 will be discussed: The large number of
cancelled and abandoned activities and the number of actual projects in work in different ap-
plication areas. The indicator function of such aggregated views for IS-controlling is evident.

Table 6: Total number of IsService events over 6« years

Number of IsService events in 6,5 years: 01/01/1987 - 06/30/1993
SvCls fault+supp+maint projects total Sum

Application c ! i.w. "+" c ! i.w. "+" c ! i.w. "+"
administration 12 4 6 64 4 4 8 25 16 8 14 89 127
information 5 0 9 48 4 2 5 23 9 2 14 71 96
logistics 7 1 7 48 11 15 19 24 18 16 26 72 132
production 3 1 6 26 6 2 31 19 9 3 37 45 94
sales&deliv. 31 20 19 202 23 14 28 51 54 34 47 253 388

total 58 26 47 388 48 37 91 142 106 63 138 530 837

details for IS-controlling: (las t half year)

production (+) (-) "1-6" "0" totl
maint. 3 3 3 6
project 4 3 25 3 31

total 7 3 28 6

legend: c: cancelled, ! : broken

sales&deliv. (+) (-) "1-6" "0" totl (+): f inished since 01/01/93

maint. 19 3 16 19 (-): in introduction

project 9 2 8 18 28 "1-6" in w ork (i.w .)

total 28 2 11 34 "0" registered ('pipeline')

Especially in medium-sized enterprises, there is a culture of very flexible reactions on the
market. This causes spontaneous requirements in the IS-area. If this dynamic process is not
guided, there could be a waste of IS-capacities and an erosion of strategic projects.

A close look on activities in work of the departments production and sales&delivery (shad-
owed) shows some interesting details. Production has 25 projects in work. This seems to be a
sign of a chaotic project management. It is highly probable that most of these ‘projects’ will
be broken with their effort lost without any benefit. By contrast to that, sales&delivery gives a
very disciplined image. 19 maintenance activities and 9 projects have been finished within the
last half year. There is also a long pipeline of 19 maintenance and 28 development activities.

While table 5 shows the phenomenon of large and small projects with a very wide variance of
effort, table 6 induces the important question to the classification problem:

What comprises the difference between a small project and maintenance?

This difference strongly depends on the size of an organization. In our case an effort limit of
5 PD (persond days) was set for a requirement to be classified as maintenance. Another crite-
rion is the number of persons involved. So the following definition can be given:

Maintenance is either fault correction or the work on a requirement which can be
done by one person in a limited time.

Effort_WP-401

Spitta: Data Collection ...

It is my impression that the popular development-maintenance ratios (see e.g. [Zelk79]) rather
often are not asked, which distinguishes maintenance from small projects. In our case the ef-
fort-ratio over the whole 6« years was development : maintenance = 66% : 34%. This was no
neccessary outcome but an effect of the firm’s strategic decision, aiming at better flexiblility
on the market, to renew most of the software systems. The 22 large projects (vs. 248 small)
had 60% of project effort (= 66 PY).

The effort problem can be answered from our data like this: 1.5 - 2% of the effort is collection
effort. Part of this effort is the online collection by the developers themselves. This is, as dis-
cussed in section 4.4, a good investment into the correctness of the data (responsibility and ac-
tuality). Moreover, it can be supposed that the effect of transparency and cost responsibility is
higher than the expenditures for the collection process.

The effort problem solves like this:

If effort data is used for several purposes its collection is worth it. If it is used
only for financial purposes, the effort is rather high. Technical and financial
views on the data have to be integrated.

6 Conclusion

It was shown how to specify a universal software for data collection which gains valid data
that is usable for managerial, technical and financial purposes. The technical design of the sys-
tem has to be combined with suitable operational conditions. These two parts of a data collect-
ing environment promote a climate of trust for the staff in order to obtain correct data. With
this data many IS management jobs can be done much better, as there are project manage-
ment, cost accounting, quality engineering and IS-resource management. This justifies the ef-
fort of the data collection itself.

Effort_WP-401

14

Spitta: Data Collection ... 15

References

[BaWe84] Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering Data. IEEE
Transactions on Software Engineering 10(1984) 6, 728-738.

[Boe81] Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs, 1981.
[Boe86] Boehm, B.W.: A spriral model of software development and enhancement. ACM Sigsoft Software Engi-

neering Notes 11(1986) 4, ???
[BoPa88] Boehm, B.W.; Papaccio, P.N.: Understanding and Controlling Software Costs. IEEE Transactions on

Software Engineering 14(1988) 10, 1462-1477.
[Broo75] Brooks, F.P.: The Mythical Man Month, Addison-Wesley, Reading/Mass. 1975.
[Dué89] Dué, R.T.: Determining Economic Feasibility: Four Cost/Benefit Analysis Methods. Journal of Informa-

tion Systems & Management 6(1989) 4, 14-19.
[Floy81] Floyd, C.: A Process-oriented Approach to Software Development. In: Systems Architecture, Proceed-

ings of the 6th European ACM Regional Conference, Westbury House 1981, 285-294.
[Lehm80] Lehmann, M.M.: Programs, Life Cycles and Laws of Software Evolution. IEEE Proceedings

68(1980) 9, 1060-1076.
[Nol77] Nolan, R.L.: Controlling the Costs of Data Service. Harvard Business Review 55(1977) 4, 114-124.
[Nol79] Nolan, R.L.: Managing the crisis in data processing. Harvard Business Review, March-April (1979),

115-126.
[LePo97] Levy, M.; Powell, P.: Assessing the value of information systems planning at Heath Springs. Interna-

tional Journal of Technology Management 4(1997), 426-442.
[Page85] Page-Jones, M.: Practical Project Management. Restoring Quality to DP-Projects and Systems. Dorset,

New York 1985.
[PfRo94] Pfleeger, Sh., L.; Rombach H. D.: Measurement Based Process Improvement. Editorial to: IEEE Soft-

ware, 11(1994) 4, 9-11.
[Putn91] Putnam, L.H.: Trends in Measurement, Estimation and Control. IEEE Software 8(1991) 2, 105-107.
[SeGr96] Segars, A.H.; Grover, V.: Designing Company-wide Information Systems: Risk Factors and Coping

Strategies. Long Range Planning 29(1996) 3, 381-392.
[Spit89] Spitta, Th.: Software Engineering und Prototyping. Springer, Berlin - Heidelberg et al. 1989 (in Ger-

man).
[Spit97] Spitta, Th.: Die Gewinnung korrekter Daten aus manuellen Aufschreibungen: Empirische Ermittlung

eines Erfassungssystems (How to Gain Correct Data from Individual Collection). In: Grün, O.; Heinrich, L.J.
(Eds): Empirische Forschung in der Wirtschaftsinformatik, Springer, Wien - New York 1997, 105-118 (in
German).

[Spit98a] Spitta, Th.: IV-Controlling in mittelständischen Industrieunternehmen - Ergebnisse einer empirischen
Studie. WIRTSCHAFTSINFORMATIK 40(1998) 5, 424-433 (‘IS-Controlling in SME’s - Results of an Em-
pirical Study’, in German).

[Spit98b] Spitta, Th.: Personnel IS-Effort Collection in Industrial Environments. 9th Intern. Symp. on Software
Reliability Engineering (ISSRE ‘98), Paderborn, Nov 1998, Industrial Practices, 111-120.

[Zelk79] Zelkowitz, M.V.; Shaw, A.C.; Gannon J.D.: Principles of Software Engineering and Design. Pren-
tice-Hall, Englewood Cliffs, 1979.

Effort_WP-401

	1 Introduction
	2 Goals of effort collection
	3 Requirements
	4 Generalized data design
	4.1 Object type structure
	4.2 Object type model
	4.3 Attribute type model
	4.4 Operation conditions

	5 For what purposes are the data useful?
	5.1 Project management
	5.2 Quality and reliability engineering
	5.3 Information management and IS-controlling

	6 Conclusion

