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1 Introduction and motivation

With the Standard Model (SM) of electroweak interactions being validated up to an energy
scale of several hundred GeV by the LHC experiments, and the knowledge that the SM com-
bined with the conventional Big Bang scenario can explain neither the baryon asymmetry of
the Universe, nor the existence of dark matter, it is appealing to search for an answer to these
cosmological questions from other than electroweak interactions. The physics associated with
right-handed (RH) neutrinos, which can also account for the observed left-handed neutrino
mass differences and mixing angles, is rich enough to conceivably solve both problems [1, 2].
In this paper we concentrate on the baryon asymmetry aspect, and refer to the scenario as
leptogenesis.

The original description of leptogenesis uses Boltzmann equations for the phase space
density of the participating particles as a starting point. These are then integrated over
momenta assuming kinetic equilibrium. The processes considered are the decays (1 → 2)
and inverse decays (2 → 1) of the heavy RH neutrinos. In addition, so-called spectator
processes, which proceed much faster than the expansion of the Universe, determine which
quantities are in thermal equilibrium. Frequently also additional scattering processes (2↔ 2)
and inverse decays have been included.

The 2 ↔ 2 processes are a part of the radiative corrections. To assess the theoretical
uncertainty of the analysis it would be desirable to compute the complete next-to-leading
order (NLO) radiative corrections. It is not clear how to do this consistently within a de-
scription based on Boltzmann equations. This has motivated several authors to search for a
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first principles description of leptogenesis, without already putting in the set of assumptions
and approximations which are implicit to the Boltzmann equations. Among the strategies
followed are Kadanoff-Baym and similar equations for Green’s functions (cf. refs. [3–5] for
recent work and references). Although the starting point is exact, it may be difficult to
perform systematic NLO calculations in these settings.

In this paper we propose a different route towards a first principles understanding of
leptogenesis. We first formulate a rather general non-equilibrium problem. We argue that
it can be described by a simple set of ordinary differential equations. The coefficients in
these effective equations are shown to be related to real-time correlation functions at finite
temperature. We then focus on one of the coefficients, the dissipation of lepton minus baryon
number nL−B,1 which in the absence of expansion is described by

dnL−B
dt

= −γL−B nL−B +O(n2
L−B) . (1.1)

We calculate the dissipation coefficient2 γL−B up to NLO in the SM couplings. It is shown, in
particular, that the dominant NLO corrections are only suppressed by a single power of the
gauge or top Yukawa couplings, and have a substantial relative influence even at temperatures
much below the mass of the lightest right-handed neutrino.

In section 2 we describe the physical picture behind baryogenesis through leptogenesis.
Section 3 contains a general analysis of the dissipation or washout rates of almost conserved
charges, and relations of these rates to real-time correlation functions at finite temperature.
We show that these rates factorize into a real-time spectral function and the inverse of a
susceptibility matrix. In section 4 we specialize to the washout of lepton minus baryon
number in extensions of the SM with right-handed neutrinos. We obtain a master formula,
and leading-order (LO) and NLO results for its two ingredients, the spectral function and
the susceptibility matrix. In section 5 we study the effect of the radiative corrections to the
washout rate on the lepton asymmetry for one particular set of parameters. We summarize
and conclude in section 6.

Notation. 4-vectors are denoted by lower-case italics and 3-vectors by boldface, and the
metric is such that p2 = (p0)2 − p2. For spatial integrals we use the notation

∫
x ≡

∫
d3x,

space-time integrals are denoted by
∫
x ≡

∫
d4x. Spatial momentum integrals are written as∫

k ≡
∫

d3k/(2π)3.

2 Physical picture

We start by outlining the physical picture for how our computation fits in a generic lepto-
genesis framework (a recent example can be found in ref. [6]). A key observation is that in
leptogenesis the system is almost in thermal equilibrium.3 Most physical quantities rapidly
fluctuate thermally around their equilibrium values. The corresponding reactions are often
referred to as “spectator processes” [7, 8]. Other quantities relax to equilibrium on time
scales much larger than the Hubble time, so that they can be considered conserved. A few
have relaxation times of the order of the Hubble time. Only these have to be taken into ac-
count as dynamical degrees of freedom, and we will refer to them as “slow”. What they are

1Or closely related quantities, depending on the temperature under consideration.
2Or, again depending on the temperature, the dissipation matrix.
3With the exception of leptogenesis during reheating, which is a process far from equilibrium.
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Figure 1. Examples of processes, up to O(g2), through which a net lepton number can be “washed
out”. Arrowed, dashed, and wiggly lines correspond to leptons, scalars, and gauge fields, whereas RH
neutrinos are denoted by a double line. Additional reactions (not shown) involve the generation of
antileptons or processes mediated by SM Yukawa or Higgs couplings.

depends on the Hubble rate and thus on the temperature. A non-equilibrium state is then
characterized by deviations of the slowly relaxing quantities from their equilibrium values
which are much larger than a typical thermal fluctuation.

One of the slowly relaxing quantities is L−B. It is violated by the Yukawa interactions
between Standard Model leptons and right-handed (gauge singlet or “sterile”) neutrinos NI ,
with Majorana masses MI . Therefore, if at some time in the evolution of the Universe L−B
is non-zero, these interactions tend to reduce it (examples of processes are shown in figure 1).
There can also be a source term for the lepton number if the number density of right-handed
neutrinos deviates from thermal equilibrium and if their interactions violate CP. This would
lead to baryogenesis through leptogenesis [1].

If the slow variables have only small deviations from equilibrium, we can linearize their
equations of motion. For example, assuming that the only slow degrees of freedom are
the lepton minus baryon number density nL−B and the right-handed neutrino phase space
distribution fN (momentum, spin and flavour indices are suppressed and it is assumed that
the entanglement of the right-handed neutrinos does not play a role), the evolution equations
are of the form

Dt fN = −γ(2)
N

[
fN − feq

]
− γ(4)

N,L−B nL−B + . . . ,

Dt nL−B = −γ(2)
L−B nL−B − γ

(4)
L−B,N

[
fN − feq

]
+ . . . , (2.1)

whereDt is the appropriate time derivative in an expanding background, feq is the equilibrium
distribution, and terms of higher orders in deviations from equilibrium and in time derivatives
have been neglected.4 Within this effective description, the coefficients γ are independent
of the values of the slow variables nL−B and fN − feq and of the Hubble rate appearing in
Dt. In particular, they can be determined arbitrarily close to equilibrium and with vanishing
Hubble rate, to any order in Standard Model couplings. This is the philosophy that underlies
Kubo relations [9].

The coefficients γ(2) in eq. (2.1) are of O(h2), where h denotes a generic neutrino Yukawa
coupling. The terms containing γ(4) violate CP, and must contain additional Yukawa cou-
plings with makes them O(h4). If the terms omitted from eq. (2.1) are suppressed by increas-
ingly high powers of h, and h is very small, we can make use of a perturbative expansion in h.

At leading order in h2, γ
(2)
N can be determined by setting fN = 0 because the contributions

from the omitted higher-order terms are of O(h4f2
eq). Then γ

(2)
N feq agrees with the right-

handed neutrino production rate of which a lot is known: it has been computed up to NLO
in SM couplings in the non-relativistic [10–12] and relativistic [13, 14] regimes, and to LO in
the ultrarelativistic regime [15, 16], which necessitates a resummation of the loop expansion.

4In situations where the deviation from thermal equilibrium is sizeable, e.g. in the weak washout regime,
non-linear terms could also play a role. One would expect the dominant non-linear contribution to Dt nL−B

to be of order h2[fN − feq]nL−B .
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With a similar philosophy, the CP-violating source term γ
(4)
L−B,Nfeq has been expressed in

terms of a Green’s function which could in principle be evaluated at NLO [17].

In the present paper, we are concerned with the coefficient γ
(2)
L−B, which may be called

the lepton minus baryon number washout or dissipation rate. Within the range of validity
of eq. (2.1), it can be computed in a system with fN = feq, Dt = ∂t, and assuming nL−B
to be close to its equilibrium value. If fN 6= feq, the rate Dt nL−B changes, but the change

originates from the other terms in eq. (2.1) rather than from a change of γ
(2)
L−B.

3 General analysis

3.1 Conserved and approximately conserved charges

As a first step one has to identify the spectator processes. These processes conserve some
charges, which by Noether’s theorem are associated with the symmetries that the correspond-
ing interactions respect. Some of these symmetries will be broken by the slow interactions,
and the corresponding charges will no longer be conserved. If some symmetries remain unbro-
ken, there are linearly independent charges Xā which are still conserved.5 In addition, there
are charges Xa which together with the Xā form a linearly independent set, such that the
original charges can be written as linear combinations of the Xa and Xā. By definition the
Xa are no longer conserved. Their values can now depend on time and one finds equations
of motion for them of the type in eq. (2.1). The choice of the non-conserved charges Xa is
not unique, because after adding a conserved charge they are still non-conserved. However,
we consider a state in which the strictly conserved charges vanish. Then this ambiguity is
irrelevant.

For computing the washout rates the expansion of the Universe can be ignored, as
well as the interactions which are much slower than the expansion. We assume that the
thermal expectation values of the Xa vanish, 〈Xa〉eq = 0. Now we consider a non-equilibrium
system in which the Xa start with some non-zero values, which we assume to be much larger
than their typical thermal fluctuation. The non-equilibrium state is completely specified
by the values of Xa. Thus, their time derivatives only depend on their values and on the
temperature. For sufficiently small values one can expand dXa/dt in powers of Xa, and keep
only the linear term,

dXa

dt
= −γabXb . (3.1)

It turns out that the coefficients γab can be factorized into two parts (cf. eq. (3.10)): to a
real-time “spectral function” ρac(ω), and to the inverse of a static “susceptibility matrix”,
denoted by Ξ−1

cb . The latter contains similar information as the flavour matrix A introduced
in ref. [18], or the coefficients c`, cϕ that appear widely in leptogenesis literature (cf. ref. [19]).
We define these two parts in turn.

3.2 Kubo relations for washout rates

To determine the coefficients γab we proceed similarly to the general method6 described in
ref. [21]. We work to leading order in the neutrino Yukawa interaction (see below), but, if
not stated otherwise, to all orders in other interactions.

5We choose this set to be complete in the sense that there are no additional charges which are linearly
independent of the Xā and which are conserved. In the actual analysis, it may be possible to choose the Xā

such that not all of them need to be included explicitly, cf. the discussion below eq. (3.18).
6For a recent application in relativistic field theory see ref. [20].
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Even in thermal equilibrium the values of the Xa are not constant in time, but instead
they fluctuate around their equilibrium values which we assume to be zero. For small fre-
quencies these fluctuations can be described by an effective classical theory with an equation
of motion similar to eq. (3.1). The only difference compared with eq. (3.1) is that on the
right-hand side there is an additional gaussian noise term. This equation of motion can be
solved to write the fluctuation of Xa at time t in terms of its value at time zero plus the
contribution from the noise. This can be used to compute the real-time correlation function

Cab(t) ≡ 〈Xa(t)Xb(0)〉 , (3.2)

where 〈· · · 〉 denotes the thermal average over an ensemble in which the strictly conserved
charges are zero and do not fluctuate. The effective description is classical, so the ordering
inside the average does not play a role. Since the noise is gaussian it drops out when taking
the noise average, and one obtains

Cab(t) =
(
e−γt

)
ac
〈XcXb〉 , t > 0 . (3.3)

Taking the one-sided Fourier (or Laplace) transform we obtain

C+
ab(ω) ≡

∫ ∞
0

dt eiωt Cab(t)

= − (iω − γ)−1
ac 〈XcXb〉 , (3.4)

where ω has a positive imaginary part.

The effective description of the correlation function in eq. (3.2) is valid when ω �
ωUV, where ωUV is a characteristic frequency of the fluctuations of other, “faster” relaxation
processes, the spectator processes. Now let ω be real and ω � γ, where γ denotes the
absolute value of the largest eigenvalue of γab. Then one can expand eq. (3.4) and finds

Re C+
ab(ω + i0+) =

1

ω2
γac〈XcXb〉+O

(
ω−4

)
. (3.5)

On the other hand, the correlation function in eq. (3.2) can also be computed in the
microscopic quantum field theory. By matching the results in the regime γ � ω � ωUV one
can then obtain the coefficients γab, together with a consistency check on the functional form
of the ω-dependence. In quantum field theory we define the correlation function as

Cab(t) ≡
〈 1

2
{Xa(t), Xb(0)}

〉
, (3.6)

where the angular brackets indicate an average over a thermal ensemble in which the values of
all strictly conserved charges are zero. Making use of text-book relations between frequency-
space correlators involving anticommutators and commutators,7 the one-sided Fourier trans-
form can now be expressed as

C+
ab(ω) =

∫
dω′

2π

i

ω − ω′

[
1

2
+ fB(ω′)

]
ρab(ω

′) , (3.7)

7For two-sided Fourier transforms, Cab(ω) = [1/2 + fB(ω)]ρab(ω), with ρab from eq. (3.8).
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where fB is the Bose distribution. Here the spectral function for bosonic operators Xa and
Xb is defined as

ρab(ω) ≡
∫

dt eiωt
〈

[Xa(t), Xb(0)]
〉
. (3.8)

If time reversal T is a symmetry, this spectral function is real (cf. appendix B of ref. [22]). If
one neglects the CP violation in the Standard Model and in the Yukawa interactions of the
RH neutrinos (the latter is of O(h4)), CP is a symmetry, and so is T. In this approximation
ρab is real. Then for real ω,

ReC+
ab(ω + i0+) =

1

2

[
1

2
+ fB(ω)

]
ρab(ω) . (3.9)

Let us now compare eqs. (3.5) and (3.9). We are interested in ω � ωUV
<∼ T , in

which case we can approximate the expression in square brackets by T/ω. Matching the two
expressions gives

γab =
1

2V
ωρac(ω)

(
Ξ−1

)
cb
, for γ � ω � ωUV . (3.10)

Here V is the spatial volume, and Ξ is a matrix of susceptibilities,

Ξab ≡
1

TV
〈XaXb〉 . (3.11)

As will be seen later on, Ξab is finite for V →∞, and the same is true for γab. A consistency
check is provided by whether ρac indeed has a 1/ω-tail at ω � ωUV.

The restriction on ω in eq. (3.10) limits the accuracy at which the γab can be defined.
The γab are of order h2Λ, where h is a RH neutrino Yukawa coupling to be defined below, and
Λ = max{πT,MI}.8 A rough estimate gives a relative accuracy γ/ωUV ∼ h2 modulo coupling
constants which characterize spectator processes. It is therefore probably not meaningful to
calculate the γab beyond leading order in h2. Of course, radiative corrections due to SM
interactions can be computed and can be important.

3.3 The susceptibility matrix

In order to make use of eq. (3.10) we need to determine the susceptibility matrix Ξ defined
in eq. (3.11), which turns out to require a little care (cf. ref. [23]). It is perhaps simplest to
think of the problem in an ensemble in which the values of the strictly conserved charges Xā

are zero and do not fluctuate.9 We write the Hamilton operator as

H = H0 +Hint (3.12)

where H0 describes all free particles as well as their Xa-conserving interactions and Hint is
the interaction which violates Xa-conservation. The susceptibilities are equal-time correlation
functions, for which Hint is a small perturbation. Since we only consider the leading order
in h, the susceptibilities can be computed using H0, which commutes with the Xa. In this

8Cf. eq. (4.17) for the way that mass and thermal scales can be compared with each other.
9This is equivalent to a “grand canonical” ensemble in which the charges Xā do fluctuate but their expec-

tation values are zero, cf. eq. (3.15).
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approximation the Xa are conserved, and the ordering of the operators in eq. (3.11) does not
matter.

To compute the susceptibilities start with a grand canonical partition function

exp (−Ω/T ) = tr exp [(µAXA −H0)/T ] , (3.13)

with chemical potentials µA for all charges XA ∈ {Xa, Xā}. Some of the Xā may be gauge
charges. In this case the role of µā is played by the zero-momentum mode of the time
component of the gauge field [23]. The thermodynamic potential Ω̃ corresponding to fixed
Xā = −∂Ω/∂µā is given by the Legendre transform Ω̃ = Ω + µāXā. We are interested in
Xā = 0, so we have Ω̃ = Ω with the µā determined by

∂Ω

∂µā
= 0 . (3.14)

The required susceptibilities are

Ξab = − 1

V

∂2Ω̃

∂µa∂µb

∣∣∣∣∣
µ=0

= − 1

V

∂2

∂µa∂µb

{
Ω|∂Ω/∂µā=0

}
µ=0

. (3.15)

In order to evaluate eq. (3.15) it is sufficient to expand Ω to second order,

Ω = Ω0 −
V

2
µAχABµB +O(µ4) , (3.16)

with the grand canonical susceptibilities

χAB ≡
1

TV
〈XAXB〉grand canonical = − 1

V

∂2Ω

∂µA∂µB

∣∣∣∣
µ=0

. (3.17)

Then eq. (3.14) reads

χā b̄ µb̄ = −χā bµb . (3.18)

Here we see which strictly conserved charges need to be included: the ones which are corre-
lated with strictly conserved charges which are correlated with one of the Xa. The remaining
ones need not be taken into consideration. This is the case, e.g., for non-abelian gauge charges
in the symmetric phase. Solving eq. (3.18) gives µā = −

(
ξ −1

)
āb̄
χ
b̄c
µc where the matrix ξ is

defined by

ξāb̄ ≡ χāb̄ . (3.19)

Inserting this into eq. (3.15) we find

Ξab = χab − χaā
(
ξ −1

)
āb̄
χb̄b . (3.20)

4 Lepton number washout rate

4.1 Master formula

So far the discussion was general and did not make any use of the specifics of the interaction
which breaks the Xa-symmetry. In the basic leptogenesis scenario the SM is extended by

– 7 –
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adding right-handed neutrino fields NI with Majorana masses MI (we employ a basis in
which the Majorana mass matrix is diagonal). In the simplest realization they interact with
the SM particles via a Yukawa coupling to ordinary, left-handed lepton doublets `i ≡ `Li and
the Higgs doublet ϕ as follows:

Lint = −N h ϕ̃† `+ h.c. . (4.1)

Here ϕ̃ ≡ iσ2ϕ∗ with the Pauli matrix σ2 is the isospin conjugate of ϕ, and the Yukawa
couplings are written as a matrix in flavour space, h = (hIj).

In the simplest case it is only the interaction in eq. (4.1) which is responsible for inducing
slowly evolving processes. In more complicated cases some SM Yukawa interactions proceed
at a similar rate, and these interactions have to be taken into account as well [24]. Here
we restrict ourselves to the first situation. What the relevant conserved and quasi-conserved
charges Xā and Xa are, depends on the expansion rate of the Universe and thus on the
temperature. One has to take into account all interactions which are much faster than the
expansion. The quasi-conserved charges may contain many different fields, for instance both
lepton and quark fields. For this reason it is convenient to compute the spectral function of
the time derivatives Ẋa of the charges rather than of the charges directly, and then use

ω2ρab(ω) =

∫
dt eiωt

〈[
Ẋa(t), Ẋb(0)

]〉
. (4.2)

The operators Ẋa only contain the fields which interact via Lint. Furthermore, Ẋa contains
h explicitly. Since we compute only to leading order in h, the thermal average on the right-
hand side of eq. (4.2) can be taken in an ensemble with h = 0. Therefore we can re-express
eq. (3.10) as

γab =
1

2V
lim
ω→0

1

ω

∫
dt eiωt

〈[
Ẋa(t), Ẋc(0)

]〉
0

(
Ξ−1

)
cb
, (4.3)

where the subscript 0 indicates that h = 0 in the average, so that h only appears in the
operators. Equation (4.3) has some similarity with Kubo formulas for transport coefficients [9,
22], in particular for flavour diffusion (cf. ref. [25]).

As already mentioned, the choice of the broken charges is not unique: adding some linear
combination of the conserved ones we again obtain a charge which is not conserved. It is
possible to choose the symmetries so that they only act on SM particles. Let the left-handed
leptons transform as

`i →
(
eiαaT `

a

)
ij
`j , (4.4)

with Hermitian matrices T `a . The interaction Lagrangian in eq. (4.1) is not invariant under
this transformation. Following the usual steps to derive Noether’s theorem one finds

Xa =

∫
x

[∑
i

`iγ
0T `a`i + (contributions from other fields)

]
, (4.5)

and

Ẋa = i

∫
x

[
N h ϕ̃† T `a `− ` T `a ϕ̃ h†N

]
. (4.6)

– 8 –
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Given that the thermal average in eq. (4.3) is performed with h = 0, we can integrate
out the RH neutrinos treating them as free fields. In a basis where the Majorana mass matrix
is diagonal, a straightforward calculation10 yields for eq. (4.3)

γab = −1

2

∑
I

∫
k

f ′F(EI)

2EI

× hIi tr

[
�k
(
T `a
[
ρ̃(k) + ρ̃(−k)

]
T `c + T `c

[
ρ̃(k) + ρ̃(−k)

]
T `a

)
ij

]
h∗Ij
(
Ξ−1

)
cb
, (4.7)

where the trace refers to the spinor indices, and k0 = EI ≡ (k2 + M2
I )1/2. The prime is a

derivative with respect to energy, and fF is the Fermi-Dirac distribution. We have introduced
the spectral function for the composite operator of the SM fields that appears in eq. (4.6),

ρ̃ijαβ(k) ≡
∫
x
eik·x

〈{
(ϕ̃†`iα)(x), (`jβ ϕ̃)(0)

}〉
0
, (4.8)

where α, β are Dirac spinor indices. Note that for fermionic operators the spectral function
is defined with anticommutators.

Equations (4.7), (4.8), together with the expression for the Ξ matrix in eq. (3.15) for
charges like those in eq. (4.5) constitute the main formal results of this paper. We stress
again that these expressions are valid to any order in SM couplings.

If charged lepton Yukawa interactions can be neglected, ρ̃ is invariant under U(3)` and
thus ρ̃ij ∝ δij . Writing ρ̃ijαβ(k) = δij ρ̃αβ(k), we can then re-express eq. (4.7) as

γab =
1

2

∑
I

hIi

{
T `a , T

`
c

}
ij
h∗Ij
(
Ξ−1

)
cb
W(MI) , (4.9)

W(MI) ≡ −
∫
k

f ′F(EI)

2EI
(�k)βα

[
ρ̃αβ(k) + ρ̃αβ(−k)

]
. (4.10)

4.2 Spectral function

We proceed to discussing how the real-time part of the washout rate, i.e. the weighted integral
over ρ̃ in eqs. (4.7) and (4.10), can be evaluated in practice.

4.2.1 Leading order in the non-relativistic regime

Consider first the LO contributions to ρ̃ in the symmetric phase in a regime MI � πT . In
this case one can neglect the thermal masses of the SM particles11 which can then be treated
as massless and free. For timelike k (k2 > 0) but with k0 of either sign one obtains

ρ̃αβ(k) = 2

∫
p

1

2p0
(PL �p)αβ

∫
q

1

2q0

[
1− fF

(
p0
)

+ fB

(
q0
) ]

× (2π)4
[
δ4(p+ q − k) + δ4(p+ q + k)

]
, (4.11)

10For instance, making use of the imaginary-time formalism, (4.3) contains a 2-point correlator of the right-
handed neutrino fields and of the composite operators to which they couple according to (4.6). The former is of
the familiar form (/k+MI)/(k2−M2

I ), with k0 → ikn; the mass in the numerator is projected out by the Dirac
trace. The latter can be expressed in a spectral representation as Σ(pn,p) =

∫
dp0/(2π) ρ̃(p0,p)/(p0 − ipn),

where ρ̃ is from (4.8). Matsubara sums can be carried out, and generate Fermi-Dirac distributions. A
subsequent analytic continuation yields a retarded real-time correlator, and its cut yields the spectral function
needed in (4.3). This contains structures like fF(EI +ω)−fF(EI), which after taking the limit limω→0(. . .)/ω
leave over f ′F(EI).

11Thermal masses have to be taken into account for MI <∼
√
gT [14].
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where p0 ≡ |p|, q0 ≡ |q|, and the left chiral projector is defined as PL ≡ (1 − γ5)/2. For
eq. (4.10) we get

W(MI) =− 4

∫
k

1

2EI

∫
p

1

2p0

∫
q

1

2q0

× 2p · k f ′F(EI)
[
1− fF

(
p0
)

+ fB

(
q0
) ]

(2π)4δ4(p+ q − k) . (4.12)

When MI � πT , the Bose and Fermi distributions in the square brackets are exponentially
suppressed with exp(−MI/T ) and can be neglected. Omitting terms of order exp(−MI/T )
also in f ′F(EI), it is straightforward to perform the integrals, yielding

γab =
1

16π3

∑
I

M3
I K1(MI/T )hIi

{
T `a , T

`
c

}
ij
h∗Ij
(
Ξ−1

)
cb
, πT �MI . (4.13)

Here K1 is a modified Bessel function of the second kind. Once a LO susceptibility from
section 4.3.1 is inserted, this reduces to a standard result, cf. eq. (4.26).

4.2.2 Next-to-leading order

In general the spectral function in eq. (4.8) contains two independent Dirac structures at
finite temperature [26]. However the Dirac trace in eq. (4.7) is exactly the same as appears
in the right-handed neutrino production rate, projecting out a particular linear combination
of the Dirac structures. Assuming as before that ρ̃ijαβ(k) = δij ρ̃αβ(k), the production rate
of flavour I reads

γ+
I =

∑
i

|hIi|2 P(MI) , (4.14)

P(MI) ≡
∫
k

fF(EI)

2EI
(�k)βα

[
ρ̃αβ(k) + ρ̃αβ(−k)

]
. (4.15)

Comparing with eq. (4.10), it is seen that W differs from P only through a weight, −f ′F(EI)
versus fF(EI).

12 Therefore, W can be extracted from known results for P.
The extraction of W is particularly simple in the non-relativistic regime πT � MI ,

where f ′F(EI) = −fF(EI)/T . Displaying contributions involving the UY (1), SUL(2) and
SU(3) gauge couplings g1, g2 and g3, the Higgs self-coupling λ, with the tree-level value
λ = g2

2m
2
H/(8m

2
W ), as well as the top Yukawa coupling ht, the Dirac trace reads [11]

(�k)βα
[
ρ̃αβ(k) + ρ̃αβ(−k)

]
=
M2
I

2π

[
1 + c1 +

c2 k
2

M2
I

+O

(
k4

M4
I

)]
, (4.16)

where

c1 = −λT
2

M2
I

(
1− 3mϕ

πT

)
− |ht|2

[
3

(4π)2

(
ln

µ̄2

M2
I

+
7

2

)
+

7π2T 4

60M4
I

]
+ (g2

1 + 3g2
2)

[
3

4(4π)2

(
ln

µ̄2

M2
I

+
29

6

)
− π2T 4

80M4
I

]
+O

(
g4,

g2T 6

M6
I

)
, (4.17)

c2 = − |ht|2
7π2T 4

45M4
I

− (g2
1 + 3g2

2)
π2T 4

60M4
I

+O

(
g4T 4

M4
I

,
g2T 6

M6
I

)
. (4.18)

12An intuitive reason for the difference is that in the production rate the combination ∼ fF(EI + µ) +
fF(EI − µ) appears whereas in the dissipation rate it is the difference ∼ fF(EI + µ)− fF(EI − µ) that plays
a role. Here µ is a chemical potential induced by the Yukawa interaction.
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Figure 2. The washout rate expressed through W as defined in eq. (4.10). Shown are the LO
result (dotted line); the relativistic NLO result (solid line, from ref. [14]); the NLO result in the
non-relativistic approximation (dashed line, from eq. (4.20)); and the LPM-resummed result valid in
the ultrarelativistic regime MI <∼ gT (dash-dotted line, from ref. [16]).

Here µ̄ is the MS renormalization scale related to the neutrino Yukawa couplings appearing
in eq. (4.9), and mϕ is the thermal Higgs mass parameter,

m2
ϕ ≡ m2

0 +
T 2

16

(
g2

1 + 3g2
2 + 4|ht|2 + 8λ

)
, (4.19)

where m2
0 < 0 is the vacuum value, and we assume m2

ϕ > 0. Integrating over the momenta
in eq. (4.10) yields corrections to eq. (4.13):

γab =
1

16π3

∑
I

M3
I

[
(1 + c1)K1

(
MI

T

)
+

3c2T

MI
K2

(
MI

T

)
+O

(
T 17/2e−MI/T

M
17/2
I

)]
×hIi

{
T `a , T

`
c

}
ij
h∗Ij
(
Ξ−1

)
cb
, πT �MI . (4.20)

If the temperature is increased to T >∼MI/4, which may be relevant e.g. for setting
the initial conditions for leptogenesis, we leave the non-relativistic regime [14]. The NLO
production rate in the relativistic regime (πT ∼ MI) and the LO production rate in the
ultrarelativistic regime (gT >∼MI) are also known but only in numerical form [14, 16].13 The
results of refs. [14, 16] for P(MI)/T

4 are plotted in figure 5 of ref. [14]. The results of refs. [14,
16] for W(MI)/T

3, obtained by changing the weight from fF(EI) to −f ′F(EI), are shown in
figure 2. It is seen how the perturbative expansion breaks down and resummations are
necessary for T >∼MI , and how the subsequent washout rate is strongly enhanced compared
with a naive tree-level analysis (“LO” in the plot). It is also clear that the non-relativistic

13For gT >∼MI , multiple gauge interactions need to be resummed to obtain the correct LO result; the
resummation can be expressed as a solution of an inhomogeneous differential equation [15, 16].
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expansion of eq. (4.20) breaks down for T >∼MI/4. (To be more precise, the non-relativistic
expansion shows convergence only for T <∼MI/15, but the smallness of any loop corrections
allows it to be used in practice up to somewhat higher temperatures [14].)

4.3 Susceptibility matrix

The susceptibilities as given by eq. (3.11) or eq. (3.15) measure the correlations in fluctuations
of the slowly varying charges Xa when the other charges Xā are constrained to vanish. The
susceptibility matrix influences the lepton number washout rate as indicated in eq. (3.10),
(4.7) and (4.9). Here we show how the susceptibilities can be computed in practice, first at
leading order and then including corrections of O(g) and O(g2). We consider the Standard
Model with left-handed quarks (q ≡ qL) and leptons (` ≡ `L); as well as right-handed up-type
quarks (u ≡ uR), down-type quarks (d ≡ dR), and charged leptons (e ≡ eR).

4.3.1 Leading order

The susceptibilities defined by eq. (3.11) are, at LO, determined by free field theory. It turns
out that at NLO it is helpful to first evaluate the grand canonical potential Ω, and then
extract the answer directly from the second relation in eq. (3.15). However, we start by
showing how at LO the results can also be obtained from the 2-point correlators in eq. (3.17)
through eq. (3.20).

For eq. (3.17) one has to compute fluctuations of charges, which for free fields are in
one-to-one correspondence with particle number fluctuations. Start with the fluctuation 〈Q2〉
where Q is the difference of particle and antiparticle number of a single fermion species. By
a single fermion species we mean either one chiral fermion or a single spin state of a Dirac
fermion. For only one fermionic degree of freedom, we have the particle number fluctuation
〈(∆N)2〉 = V T 3/12. The fluctuations of particles and antiparticles are uncorrelated which
implies 〈Q2〉 = V T 3/6.

The fluctuations of the charges

Qa =

∫
x
ψγ0Taψ =

∫
x
ψ†Taψ (4.21)

of a set of left-chiral fermion fields ψi, ψi = PLψi, are given by

〈QaQb〉 = V

∫
x

〈(
ψ†Taψ

)
(x)
(
ψ†Tbψ

)
(0)
〉
. (4.22)

The free propagators are flavour diagonal which directly implies 〈QaQb〉 = V Tχab with the
susceptibilities

χab = tr (TaTb)
T 2

6
. (4.23)

We also need the fluctuation of the weak hypercharge Yϕ of the Higgs field. For a single
scalar particle species (including the antiparticle) of unit charge the charge fluctuation is
〈Q2〉 = V T 3/3. Therefore, counting both isospin states,

〈Y 2
ϕ 〉 = V T × 2

3
y2
ϕT

2 , (4.24)

with the Higgs hypercharge yϕ = 1/2.
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Consider now the simplest realistic case, with only one right-handed neutrino N1 at a
temperature T � 1013 GeV. Then only top Yukawa and gauge interactions are in equilibrium.
All other SM Yukawa interactions, as well as strong and weak sphalerons can be neglected.
It is then sufficient to consider only the left-handed leptons `, the Higgs, the 3rd family quark
doublet q3 and the right-handed top t. Without Hint we have a U(3)` symmetry as well as
two U(1) symmetries, generated by the baryon number Bq3t carried by q3 and t, and by the
hypercharge Yq3tϕ carried by q3, t, and ϕ (we denote XAB ··· ≡ XA + XB + · · · ).14 Using a
U(3)` transformation we choose the fields such that N1 only couples to the ` of one family,
which we denote by `N1 . Without Hint the corresponding lepton number LN1 is conserved.
It is broken by Hint, together with Yq3tϕ, leaving Yq3tϕ Ǹ1

unbroken. Thus the only Xa can

be chosen as LN1 , and the set of Xā consists of Yq3tϕ Ǹ1
and Bq3t.

15 If we arrange the charges
in this order we obtain at LO

χ =

 1/3 −1/6 0
−1/6 1/2 1/6

0 1/6 1/6

T 2 . (4.25)

Then from eq. (3.20) Ξ is just a number, Ξ = T 2/4. In this scenario hIi{Ta, Tc}ijh∗Ij = 2|h11|2.
Undoing the U(3)` rotation, eq. (4.13) subsequently gives the LO result [6] (it corresponds
to c` = 1, cϕ = 2/3 in the notation of ref. [19])

γLN1
=
∑
i

|h1i|2

2π3

M3
1

T 2
K1

(
M1

T

)
. (4.26)

4.3.2 Next-to-leading order

We now include Standard Model interactions. The up-type, down-type, and charged lepton
Yukawa couplings are denoted by huij , hdij , heij , respectively, where i, j ∈ {1, 2, 3} label
families.

In order to determine the susceptibilities, it is convenient to first compute the pres-
sure [27], P (T, µ), as a function of the temperature and the chemical potentials associated
with all charges XA. The pressure determines the grand canonical potential through

Ω = −P (T, µ)V . (4.27)

One should include only interactions which are in thermal equilibrium (see the general dis-
cussion in sections 2 and 3). We assume this is the case for the gauge interactions, and,
depending on the Hubble rate and thus on the temperature, some Standard Model Yukawa
interactions.

If one collects all fermion fields in one big spinor ψ, the fermionic contribution to the
conserved charges can be written as

XA =

∫
x
ψγ0TAψ , (4.28)

with hermitian matrices TA. Including the chemical potentials corresponds to adding a term
ψγ0µψ with µ ≡ µATA to the Lagrangian. For simplicity we carry out the computation in

14In principle one could have chosen the total hypercharge Y as one of the Xā. However, this would be
rather inconvenient because there are a lot of conserved charges which are correlated with Y and which would
then all have to be included in the set of XA. Note also that when employing (4.23) one has to keep in
mind that the Ta may contain unit matrices in colour or weak isospin space which would contribute factors
of Ncolour or Nweak isospin to the trace (cf. section 4.3.2).

15Without Hint the charges corresponding to the off-diagonal generators which mix `N1 with the other
families are conserved as well, and they are also broken by Hint. Here we consider only the dissipation of LN1 ;
the evolution of diagonal and off-diagonal charges decouples at leading order.
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Figure 3. 1- and 2-loop graphs contributing to the pressure P (T, µ), from which the lepton number
susceptibilities can be extracted according to eq. (4.35). Solid, dashed, and wiggly lines correspond
to fermions, scalars, and gauge fields, respectively.

the symmetric phase of the electroweak theory. In this situation the TA commute with weak
isospin rotations in addition to colour rotations. They are thus block diagonal and can be
written as TA = T qA⊗1colour ⊗1weak isospin +T uA⊗1colour + · · · . Correspondingly, the chemical
potential matrix takes the form µ = µq ⊗ 1colour ⊗ 1weak isospin + µu ⊗ 1colour + · · · , where
µq, µu, . . . are matrices in family space. Then the fermion propagators are matrices in family
space as well.

The dependence of P (T, µ) on the chemical potentials is needed only up to quadratic
order (cf. eq. (3.17)). The results of section 4.3.1 correspond to (unresummed) 1-loop con-
tributions to the pressure. The Standard Model interactions enter at two loops. All 1- and
2-loop Feynman diagrams are displayed in figure 3. Since gauge interactions are flavour blind,
the chemical potentials can be diagonalized. In the Lagrangian

LSM-Yukawa = −uhu ϕ̃† q − d hd ϕ† q − e he ϕ† `+ h.c. (4.29)

we include only Yukawa interactions which are in equilibrium. The terms included have to be
invariant under the symmetry transformations generated by the XA. This implies relations
between the TA and the in-equilibrium Yukawa couplings,

−T uAhu + huT
ϕ
A + huT

q
A = 0 ,

−T dAhd − hdT
ϕ
A + hdT

q
A = 0 ,

−T eAhe − heT
ϕ
A + heT

`
A = 0 , (4.30)

where TϕA is simply a number. Multiplying by µA one finds relations between the chemical
potentials,

−µuhu + hu(µq + µϕ) = 0 ,

−µdhd + hd(µq − µϕ) = 0 ,

−µehe + he(µ` − µϕ) = 0 . (4.31)

Yukawa couplings mediating reactions not in equilibrium have to be omitted.
By making use of eqs. (4.31) and their hermitian conjugates, as well as substitutions of

sum-integration variables, the 2-loop computation can be reduced to products of the following
1-loop sum-integrals:

T
∑
pn

∫
p

1

(pn − iµ)2 + p2 +m2
ϕ

=

∫
p

1 + fB(Eϕ − µ) + fB(Eϕ + µ)

2Eϕ

=
T 2

12

(
1− 3mϕ

πT

)
+

µ2

8π2

(
πT

mϕ
− 1

)
+ . . . , (4.32)

T
∑
{pn}

∫
p

1

(pn − iµ)2 + p2
=

∫
p

1− fF(|p| − µ)− fF(|p|+ µ)

2|p|

= −T
2

24
− µ2

8π2
. (4.33)
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Here pn denotes bosonic and {pn} fermionic Matsubara frequencies. The parameter m2
ϕ is

the thermal Higgs mass given by eq. (4.19), Eϕ ≡ (p2 +m2
ϕ)1/2, and we assume µ2 � m2

ϕ �
(πT )2. The bosonic result in eq. (4.32) is an expansion with higher orders omitted, whereas
the fermionic result in eq. (4.33) is exact (in dimensional regularization). It is important to
keep in mind that the divergent 1/mϕ terms, appearing through (4.32), need to be “daisy
resummed” (or “thermal mass resummed”) in order to obtain a consistent weak-coupling
expansion [28].

A straightforward computation making use of eqs. (4.32), (4.33) and implementing the
appropriate resummation yields16

12[P (T, µ)−P (T, 0)]

T 2
= 6

[
1− 3

8π2

(
g2

1

36
+

3g2
2

4
+

4g2
3

3

)]
tr(µ2

q)+3

[
1− 3

8π2

(
4g2

1

9
+

4g2
3

3

)]
tr(µ2

u)

+3

[
1− 3

8π2

(
g2

1

9
+

4g2
3

3

)]
tr(µ2

d)

+2

[
1− 3

8π2

(
g2

1

4
+

3g2
2

4

)]
tr(µ2

` )+

[
1− 3

8π2
g2

1

]
tr(µ2

e)

+4

[
1− 3mϕ

2πT
+

3

4π2

(
2λ+

g2
1 +3g2

2

8

)]
µ2
ϕ

+3

[
1

4π2
tr(huh

†
u)µ2

ϕ−
3

8π2
tr
(
h†uhuµ

2
q+huh

†
uµ

2
u

)]
+3

[
1

4π2
tr(hdh

†
d)µ

2
ϕ−

3

8π2
tr
(
h†dhdµ

2
q+hdh

†
dµ

2
d

)]
+

[
1

4π2
tr(heh

†
e)µ

2
ϕ−

3

8π2
tr
(
h†eheµ

2
`+heh

†
eµ

2
e

)]
+O(µ4) . (4.34)

The leading correction is the term proportional to mϕ/(πT ) ∼ g/π. It is the leading contri-
bution of soft (k ∼ mϕ) Higgs bosons, from the thermal mass resummed [28] 1-loop diagram.
Thus, whereas NLO corrections to the spectral function are of O(g2) in the relativistic and
non-relativistic regimes, corrections to susceptibilities already start at O(g). Numerically,
mϕ<∼ 0.6T everywhere in the symmetric phase, so the correction is less than 30%. The
terms of O(g2) in eq. (4.34) contribute to the susceptibilities at next-to-next-to-leading order
(NNLO). We expect that additional contributions of the same order appear at two loops when
also the gauge boson thermal masses are resummed, but we have not calculated these terms.

According to eq. (3.15), the desired matrix is obtained from

Ξab =
∂2

∂µa∂µb

{
P (T, µ)|∂P/∂µā=0

}
. (4.35)

Relevant for us is the inverse Ξ−1, cf. eqs. (4.7), (4.9). Let us give a few examples:

(i) Very high temperatures (T >∼ 1013 GeV). This case was already discussed at leading
order in section 4.3.1. Here only the top Yukawa interaction, the gauge interactions,
and the Higgs self-coupling have to be included (huij → ht δi3δj3, hdij → 0, heij → 0).
Denoting by µY , µB, and µL the chemical potentials of Yq3tϕ Ǹ1

, Bq3t, and LN1 , the
chemical potentials in eq. (4.34) are

µq3 =
µY
6

+
µB
3
, µu3

=
2µY

3
+
µB
3
, µ`1 = −µY

2
+ µL, µϕ =

µY
2

; (4.36)

16Higher orders could be worked out with the same techniques as employed in ref. [29].
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all other chemical potentials vanish. From eqs. (4.34), (4.35) we obtain for the inverse
of the susceptibility

Ξ−1 =
4

T 2

{
1 +

1

16π2

[
4(πT +mϕ)mϕ

T 2
+

37g2
1

36
+

11g2
2

4
+

2g2
3

3
− |ht|

2

12
− 4λ

]}
. (4.37)

The leading term here agrees with that obtained from eq. (4.25). The correction rep-
resents, numerically, an increase of the washout rate of about 4%.

(ii) As a second example, we consider the same temperature as above (T >∼ 1013 GeV),
but allow for three right-handed neutrinos, and consider the evolution of three lepton
densities. For a basis in which the matrix h is diagonal we have (T `a)ij = δaiδaj and

µq3 =
µY
6

+
µB
3
, µu3 =

2µY
3

+
µB
3
, µ`i = −µY

2
+ µLi µϕ =

µY
2
, (4.38)

with all other chemical potentials set to zero. The same exercise now leads to

Ξ−1 =
3

T 2

{
1 +

3(g2
1 + 3g2

2)

32π2

} 1 0 0
0 1 0
0 0 1


+

1

T 2

{
1 +

1

16π2

[
16(πT +mϕ)mϕ

T 2

− 7g2
1

18
− 5g2

2

2
+

8g2
3

3
− |ht|

2

3
− 16λ

]} 1 1 1
1 1 1
1 1 1

 . (4.39)

The diagonal components of this matrix agree with eq. (4.37). The dissipation matrix
of eq. (4.9) becomes γab = |haa|2W(Ma) Ξ−1

ab . This is non-symmetric and non-diagonal;
the non-diagonal components determine how the lepton numbers Lb, b 6= a, influence
the evolution of La (cf. eq. (3.1)).

(iii) The final example is a “low” temperature (102 GeV <∼T <∼ 105 GeV), such that all Stan-
dard Model interactions are in equilibrium. Among them are strong sphalerons, but
they have no particular effect since the chirality flipping processes are also mediated by
the quark Yukawa interactions. The electroweak sphalerons violate lepton and baryon
numbers. The SM interactions conserve the charges Xi = Li−B/3 and the hypercharge
Y . Unless some of the neutrino Yukawa couplings vanish, Hint breaks allXi-symmetries,
leaving only Y conserved. Then,

µqi =
µY
6

+
µ

3
, µui =

2µY
3

+
µ

3
, µdi = −µY

3
+
µ

3
,

µ`i = −µY
2
− µXi , µei = −µY − µXi , µϕ =

µY
2

, (4.40)

where µ ≡ 1
3

∑
i µXi , and i = 1, 2, 3. The extremization in eq. (4.35) takes place with

– 16 –



J
C
A
P
0
5
(
2
0
1
4
)
0
4
1

respect to µY , which then leads to

Ξ−1 =
2

T 2

{
1 +

3(g2
1 + g2

2)

(4π)2

} 1 0 0
0 1 0
0 0 1


+

40

237T 2

{
1 +

27

790π2

[
16πmϕ

T
+

312m2
ϕ

79T 2

− 3749g2
1

288
− 1813g2

2

288
+

121g2
3

3
− 11|ht|2

24
− 16λ

]} 1 1 1
1 1 1
1 1 1

 . (4.41)

Numerically, the correction appearing in the second structure of eq. (4.41) is 23%, and
it is dominated by the term proportional to g2

3. Close to the electroweak crossover,
where mϕ ∼ g2T/π, the perturbative expansion associated with the Matsubara zero
modes breaks down, and non-perturbative methods are needed for determining Ξ.

For T <∼ 130 GeV, the sphaleron processes violating B + L are so slow that B is
effectively conserved [30]. Then Ξ is a different 3×3 matrix from the above. In a narrow
temperature range around T ∼ 130 GeV, both B and Li need to be treated as separate
slow variables, and Ξ is a 4 × 4 matrix. For practical purposes it may be sufficient
to solve separate 3-variable non-equilibrium problems in the regimes T >∼ 130 GeV and
T <∼ 130 GeV and just match the solutions at T ∼ 130 GeV by requiring continuity.

5 Lepton asymmetry

To get an idea on the numerical effect of radiative corrections we have computed the lepton
asymmetry in a scenario with M1 = 1014 GeV, and MI � M1 for I 6= 1. This corresponds
to the example in section 4.3.1 and example (i) in section 4.3.2. For the washout factor

K ≡ Γ0

H

∣∣∣∣
T=M1

, (5.1)

where

Γ0 =
M1

8π

∑
i

|h1i|2 (5.2)

is the tree-level decay rate of N1, we have used K = 7. We have started the evolution with
zero initial asymmetry and thermal N1-number density at T = M1. We have used the non-
relativistic approximation [6], and solved the evolution equations until T = M1/10, below
which the asymmetry hardly changes any more.

We find that the effect of the O(g) corrections to Ξ on the asymmetry is about 3%. The
order O(g2) corrections to Ξ and to ρ̃ are 1.3% and 1%, and the total effect of the corrections
on the final asymmetry is ∼ 5%.

If, in contrast, a scenario like in ref. [2] is considered, in which temperatures around the
weak scale play a role and the dynamics takes place in the ultrarelativistic regime (MI � T ),
then it is clear from figure 2 and from the discussion below eq. (4.41) that effects of order
100% are to be expected. We have not carried out numerics for this scenario, however.

– 17 –



J
C
A
P
0
5
(
2
0
1
4
)
0
4
1

6 Summary and conclusions

In this paper we have obtained a relation, eq. (4.7), between the lepton number washout
rate relevant for leptogenesis, and finite temperature equilibrium correlation functions. The
washout rate factorizes into a real-time spectral function, and an inverse susceptibility matrix
which is determined by equilibrium thermodynamics (cf. eq. (3.15)). This relation does not
make use of any particle approximation, and is valid to all orders in Standard Model couplings
and at any temperature. The main approximation made is that we have worked to order
h2 in neutrino Yukawa couplings, which should be a good approximation in many popular
leptogenesis scenarios.

We have computed explicitly the spectral function and the susceptibility matrix to next-
to-leading order (NLO) in Standard Model couplings for temperatures above the electroweak
crossover temperature but below the mass M1 of the lightest right-handed neutrino, i.e., when
the right-handed neutrinos are non-relativistic (150 GeV<∼ πT � M1). This is particularly
relevant for leptogenesis in the strong washout regime.

We find that even in the non-relativistic regime there are corrections only suppressed by
O(g). They originate from Higgs effects on the susceptibility matrix, cf. eqs. (4.37), (4.39),
(4.41). In contrast, NLO corrections to the spectral function are of O(g2) in this regime, cf.
eq. (4.17). Numerically, the O(g) corrections are a few percent, except for temperatures close
to the electroweak crossover, where they can be substantially larger.

In the relativistic regime M1 <∼ πT , the susceptibilities remain unmodified since they
are insensitive to M1. In contrast, the spectral functions become increasingly sensitive to
infrared corrections, and extensive resummations are needed for obtaining even the complete
leading-order results for M1 <∼ gT . We have shown that fortunately, the results can be
inferred, after minor modifications, from existing computations of the right-handed neutrino
production rate [14, 16]. Numerical results are shown in figure 2. The lepton number washout
rate of the relativistic regime plays a role at the initial stage of the classic leptogenesis process,
erasing some of the lepton asymmetry that is being generated when right-handed neutrinos
are produced from the Standard Model plasma, and would also be relevant for scenarios in
which the right-handed neutrino masses are at or below the weak scale ([2] and references
therein).
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