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Abstract

We investigate the relationship between certain subsets of the core for TU market

games and competitive payoff vectors of certain markets linked to that game. This

can be considered as the case in between the two extreme cases of Shapley and

Shubik (1975). They remark already that their result can be extended to any closed

convex subset of the core, but they omit the details of the proof which we present

here. This more general case is in particular interesting, as the two theorems of

Shapley and Shubik (1975) are included as special cases.
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vard de l’Hôpital, 75647 Paris Cedex 13, France; sonja.brangewitz@wiwi.uni-bielefeld.de and jan-
philip.gamp@wiwi.uni-bielefeld.de

1



1 Introduction

The idea to consider cooperative games as economies or markets goes back to Shapley

and Shubik (1969). They look at TU market games. These are cooperative games with

transferable utility (TU) that are in a certain sense linked to economies or markets. More

precisely, a market is said to represent a game if the set of utility allocations a coalition

can reach in the market coincides with the set of utility allocations a coalition obtains

according to the coalitional function of the game. If there exists a market that represents

a game, then this game is called a market game. Shapley and Shubik (1969) prove the

identity of the class of totally balanced TU games with the class of TU market games.

Furthermore, Shapley and Shubik (1975) show that starting with a TU market game

every payoff vector in the core of that game is competitive in a certain market, called

direct market, and that for any given point in the core there exists at least one market

that has this payoff vector as its unique competitive payoff vector. Moreover, they claim

that an analogous result holds also for closed convex subsets of the core. Shapley and

Shubik (1975) give a hint how this can be shown but they omit the details of the proof.

By following this remark of Shapley and Shubik (1975) we give a detailed proof how

their two main results can be extended to any closed convex subset of the core. This

more general case is in particular interesting, as the two theorems of Shapley and Shubik

(1975) are included as special cases.

Similarly to the approach of Shapley and Shubik (1969, 1975), Inoue (2010) uses coali-

tion production economies as in Sun et al. (2008) instead of markets. Inoue (2010) shows

that every TU game can be represented by a coalition production economy. Moreover, he

proves that there exists a coalition production economy whose set of competitive payoff

vectors coincides with the core of the balanced cover of the original TU game.

A different extension of Shapley and Shubik (1969, 1975) is Garratt and Qin (2000).

They consider time-constrained market games, where the agents are supposed to supply

one unit of time to the market. Their main result is that a TU game is a time-constrained

market game if and only if it is superadditive. This result of Garratt and Qin (2000) was

again extended by Bejan and Gómez (2011) introducing additionally location and free

disposal constraints. They show that in this sense the entire class of TU games can be

considered as market games.

For NTU market games Brangewitz and Gamp (2011) extend the NTU analogue

to Shapley and Shubik (1975), namely Qin (1993), to closed subsets of the inner core.

Hereby, the techniques used to show the results in the TU and the NTU case are notably

different.
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2 TU market games

In this section we state the main definitions and results on TU market games. The

following introduction for TU market games is mainly based on Shapley and Shubik

(1969) and Shapley and Shubik (1975).

Let N = {1, 2..., n} be a set of players. The set of all non-empty coalitions is given by

N = {S ⊆ N |S 6= ∅}. Thus, a coalition is a non-empty subset of players. A cooperative

game with transferable utility (TU) is given by the pair (N, v) where N is the player set

and v : N → R is the characteristic or coalitional function.1 A subgame (T, vT ) of a

TU game (N, v) is a subset of players T ∈ N and the characteristic function vT with

vT (S) = v(S) for S ⊆ T , S 6= ∅. A payoff vector for a TU game (N, v) is a vector x ∈ R
n.

The payoff of a coalition S ∈ N is given by x(S) =
∑

i∈S xi. The core C(v) of a TU

game (N, v) is the set of payoff vectors where the value v(N), the grand coalition N can

achieve, is distributed and no coalition can improve upon,

C(v) = {x ∈ R
n|x(N) = v(N), x(S) ≥ v(S) ∀S ∈ N}.

Given a set of players N = {1, 2..., n}, a family B ⊆ N is a balanced family if there

exist weights {γS}S∈B, with γS ≥ 0, such that for all i ∈ N we have

∑

S∈B, S∋i

γS = 1.

The weights γS do not depend on the individual players but on the coalition S ∈ N . The

above condition can be as well written as

∑

S∈N

γSe
S = eN

where eS ∈ R
n is the vector with eSi = 1 if i ∈ S and eSi = 0 if i /∈ S. Let the set of

weights be denoted by Γ(eN ). The balancing weights can be interpreted as the intensity

with which player i participates in a coalition or the fraction of time he spends to be in

this coalition.

A TU game (N, v) is balanced if for every balanced family B with weights {γS}S∈B

we have
∑

S∈B

γSv(S) ≤ v(N).

1Shapley and Shubik (1969) define the characteristic function as well for the empty set with v(∅) = 0.
Others, for example Billera and Bixby (1974), exclude the empty set from this definition.
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A TU game (N, v) is totally balanced if all its subgames are balanced. The totally

balanced cover of a TU game (N, v) is the smallest TU game (N, v̄) that is totally balanced

and contains the game (N, v).

Shapley and Shubik (1969) recall the following result of Shapley (1965):

Theorem (Shapley and Shubik (1969)). A game has a non-empty core if and only if it

is balanced.

In oder to define a TU market game we first need to introduce the notion of a market.

For the TU case it is sufficient to consider markets without production.

Definition (market). Let N = {1, 2..., n} be the set of agents (or players). A market is

given by E = (Xi, ωi, ui)i∈N where for every individual i ∈ N

- Xi ⊆ R
ℓ
+ is a non-empty, closed and convex set, the consumption set, where ℓ ≥ 1,

ℓ ∈ N is the number of commodities,

- ωi ∈ Xi is the initial endowment vector,

- ui : Xi → R is a continuous and concave function, the utility function.

Note that in the case with non-transferable utility (NTU) usually markets with pro-

duction are considered, see for example Billera and Bixby (1974) or Qin (1993).

Let S ∈ N be a coalition. The set of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

xi =
∑

i∈S

ωi

}

.

Elements of F (S) are often denoted for short by xS . The feasible S-allocations are those

allocations the coalition S can achieve by redistributing their initial endowments within

the coalition.

Now we define a TU market game in the following way:

Definition (TU market game). A TU game (N, v) that is representable by a market is

a TU market game. This means there exists a market E such that (N, vE) = (N, v) with

vE(S) = max
xS∈F (S)

∑

i∈S

ui(xi) for all S ∈ N .

For a TU market game there exists a market such that the value a coalition S can

reach according to the coalitional function coincides with the joint utility that is generated

by feasible S-allocations in the market.

4



Given a TU game we can generate a market from this game in a “natural” way.

Shapley and Shubik (1969) call this market a direct market.

Definition (direct market). A TU game (N, v) generates a direct market Dv = (Xi, ωi, ui)i∈N

with for each individual i ∈ N

- the consumption set Xi = R
n
+,

- the initial endowment ωi = e{i} with e
{i}
i = 1 and e

{i}
j = 0 for j 6= i,

- the utility function ui(x) = max

{

∑

S∈N
γSv(S)

∣

∣

∣

∣

γS ≥ 0∀S ∈ N ,
∑

S∈N
γSe

S = x

}

.

The utility function ui(·) of the direct market Dv is identical for every individual

i ∈ N and is homogeneous of degree 1, concave and continuous. Note that in a direct

market every consumer owns initially his own (private) good or interpreted differently

every player “is” himself a good. Using the direct market Dv, Shapley and Shubik (1969)

obtain the following characterization of TU market games.

Theorem (Shapley and Shubik (1969)). A game is a market game if and only if it is

totally balanced.

This means that in order to consider TU market games it is sufficient to consider

just those TU games that are totally balanced. To obtain the above result Shapley and

Shubik (1969) start by looking at an arbitrary TU game and its direct market. Hereafter,

they consider the TU game of the direct market and show that it is equal to the totally

balanced cover of the TU game they started with.

In a second paper Shapley and Shubik (1975) investigate the relationship between

competitive payoffs, that arise from a competitive solution in the market, and the core

of TU market games.

Definition (competitive solution). A competitive solution is an ordered pair (p∗, (x∗i)i∈N ),

where p∗ is an arbitrary n-vector of prices and x∗N is a feasible N -allocation, such that

ui(x∗i)− p∗ · x∗i = max
xi∈R

l

+

[ui(xi)− p · xi] for all i ∈ N.

We are in a setting with transferable utility. Thus, there is implicitly the additional

commodity money, that makes the transfer of utility possible. Suppose ξi0 are the initial

money holdings of agent i. Then his “true” maximization problem is

max
xi∈R

l

+

[ui(xi) + ξi0 − p ·
(

xi − ωi
)

].
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Since the solution of the maximization problem is independent of the initial money hold-

ings and the initial endowment, it is equivalent to solve the in the definition above stated

maximization problem.

Definition (competitive payoff vector). A vector α∗ is a competitive payoff vector if it

arises from a competitive solution (p∗, (x∗i)i∈N ) such that

α∗i = ui(x∗i)− p∗ · (x∗i − ωi).

Shapley and Shubik (1975) show the following two relationships between the core and

competitive payoff vectors.

Theorem (1, Shapley and Shubik (1975)). Every payoff vector in the core of a TU

market game is competitive in the direct market of that game.

Theorem (2, Shapley and Shubik (1975)). Among the markets that generate a given

totally balanced TU game, there exists a market having any given core point as its unique

competitive payoff vector.

These two theorems represent the two extreme cases where on the one hand the whole

core equals the set of competitive payoff vectors of the direct market and one the other

hand a given core point is the unique competitive payoff vector of a certain other market.

The main ideas to prove the above two theorems are the following: For the first result

Shapley and Shubik (1975) use the direct market to show that its competitive payoff

vectors coincide with the core of the TU market game. To prove the second theorem

they introduce a second game with a modified coalitional function for the grand coalition

N . Afterwards they look at the direct market of the original game with a modified utility

function depending on a given core point. Finally they show that this market represents

the original TU game and has a given core point as its unique competitive payoff vector.

3 Results on TU market games

Shapley and Shubik (1975) already remark that for TU market games a extension of their

proof for their second theorem leads to the following result.

Theorem. Let (N, v) be a totally balanced TU game and let A be a closed, convex subset

of the core. Then there exists a market such that this market represents the game (N, v)

and such that the set of competitive payoff vectors of this market is the set A.

Shapley and Shubik (1975) omit the details of the proof. We elaborate on them here.

They remark that it is enough to change the definition of the utility function.
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In the following we first define the according market and show afterwards in two steps

that this market satisfies the properties we require.

Let (N, v) be a totally balanced TU game with N = {1, ..., n} the set of players and

the coalitional function v. Let Dv be its direct market as defined before. For d ∈ R++

define the TU game (N, vd) by

vd(S) = v(S) for all S ⊂ N

and

vd(N) = v(N) + d.

Since d > 0 the game (N, vd) is totally balanced. Analogously let Dvd
be the direct

market of (N, vd). Let (u
i
d)i∈N denote the utility functions of Dvd

, i.e.

ui
d(x) = max

{

∑

S∈N

γSvd(S)

∣

∣

∣

∣

γS ≥ 0∀S ∈ N ,
∑

S∈N

γSe
S = x

}

.

As the utility functions ui
d in the direct market Dvd

are identical for every individual

i ∈ N , we write for short ud.

Let A be a any non-empty closed convex subset of the core. For α ∈ A let ud,α be

defined as

ud,α(x) = min(ud(x), α · x).

Then define the function ud,A by

ud,A(x) = min
α∈A

ud,α(x).

Since ud,A is continuous and concave we can define a market by

Evd
=
(

R
n
+, e

{i}, ui
d,A

)

i∈N
.

with ui
d,A = ud,A for all i ∈ N . It is easy to see that ud,A is homogeneous of degree 1.

Next, we show first that the market game of this market is (N, v) and second that

the set of competitive payoff vectors of the market Evd
is exactly the set A.

Proposition 1. The market Evd
represents the game (N, v).
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Proof. Recall that for the market Evd
the set

F (S) =

{

xS ∈ R
n·S
+ |

∑

i∈S

xi =
∑

i∈S

e{i}

}

is the set of feasible allocations for a coalition S ∈ N .

Looking at the market game generated by the market Evd
we obtain

vEvd
(S) = max

xS∈F (S)

∑

i∈S

ui
d,A(x

i)

= |S| max
xS∈F (S)

∑

i∈S

1

|S|
ud,A(x

i)

(1)
= |S| max

xS∈F (S)
ud,A

(

eS

|S|

)

= |S|ud,A

(

eS

|S|

)

(2)
= ud,A(e

S)

= min
α∈A

ud,α(e
S)

= min
α∈A

(min(ud(e
S), α · eS))

(3)
= min

α∈A
(min(vd(S), α · eS))

= min
α∈A

(vd(S), α · eS)

(4)
= v(S)

The detailed arguments are the following:

(1) First observe that
∑

i∈S
1
|S|ud,A(x

i) ≤ ud,A

(

∑

i∈S
xi

|S|

)

= ud,A

(

eS

|S|

)

from the con-

cavity of ud,A and the market clearing condition. We take the maximum on both

sides over the feasible S-allocations F (S) and we observe that x̄i = 1
|S|e

S for all

i ∈ S is a feasible S-allocation. Therefore, we obtain that setting
(

x̄i
)

i∈S
maximizes

the expression on the left side and hence we get equality.

(2) The equality follows from the homogeneity of degree 1 of ud,A.

(3) Using the totally balancedness of the game (N, vd) we obtain

ud(e
S) = max

{

∑

T∈N

γT vd(T )

∣

∣

∣

∣

(γT ) ≥ 0,
∑

T∈N

γT e
T = eS

}

= vd(S).
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(4) For S ⊂ N this minimum is equal to v(S), since α is in the core of the TU game

(N, v) and therefore α · eS ≥ v(S) = vd(S). For S = N the minimum is equal to

α′ · eN for some α′ ∈ A and since α′ is in the core of (N, v) we have α′ · eN = v(N).

As d > 0 we have v(N) < vd(N).

Thus vEvd
= v and hence the market Evd

generates the game (N, v).

Proposition 2. The set of competitive payoff vectors of the market Evd
are coincides

with the set A.

Proof. The proof is divided into five parts:

1. First, suppose
(

(x∗i)i∈N , p∗
)

is a competitive solution in the market Evd
, then

competitive payoffs are of the form
(

p∗ · e{i}
)

i∈N
.

From the definition of a competitive solution it follows that (x∗i)i∈N clears the

markets,
n
∑

i=1

x∗i =

n
∑

i=1

e{i} = eN

and maximizes for each trader i his trading profit given by

ud,A(x
i)− p · xi.

Moreover, we have from the existence of a maximum and the fact that the trading

profit as a function of the consumption bundle is homogeneous of degree 1 that

ud,A

(

x∗i
)

− p∗ · x∗i = 0.

Looking at the competitive payoffs of competitive solutions we observe

ud,A

(

x∗i
)

− p∗ · x∗i + p∗ · e{i} = p∗ · e{i}.

2. Second, suppose
(

(x∗i)i∈N , p∗
)

is a competitive solution in the market Evd
, then

(

(

1
n
eN
)

i∈N
, p∗
)

is as well a competitive solution in the market Evd
. In addition

the competitive payoffs coincide.
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From the fact that the trading profit equals zero we obtain

ud,A

(

1

n
eN
)

− p∗ ·
1

n
eN = ud,A

(

1

n

n
∑

i=1

x∗i

)

− p∗ ·
1

n

n
∑

i=1

x∗i

(1)
=

1

n

n
∑

i=1

ud,A

(

x∗i
)

− p∗ ·
1

n

n
∑

i=1

x∗i

=
1

n

(

n
∑

i=1

ud,A

(

x∗i
)

− p∗ ·
n
∑

i=1

x∗i

)

=
1

n

(

n
∑

i=1

(

ud,A

(

x∗i
)

− p∗ · x∗i
)

)

= 0.

The detailed argument is the following:

(1) Using the concavity of ud,A gives us “≥” and from maximality of x∗i we obtain

the equality.

As already seen in 1., looking at the competitive payoffs of these competitive solu-

tions we observe

ud,A

(

x∗i
)

− p∗ · x∗i + p∗ · e{i} = ud,A

(

1

N
eN
)

− p∗ ·

(

1

N
eN
)

+ p∗ · e{i} = p∗ · e{i}.

To summarize these results mean that looking for competitive solutions and their

competitive payoffs we can focus on possible equilibrium prices of the allocation
(

1
N
eN
)

i∈N
. Then those competitive solutions give us all possible competitive pay-

offs.

3. Third, as in the proof of Proposition 1, equality (3)

ud

(

1

N
eN
)

=
1

N
vd(N) >

1

N
v(N) = ud,A

(

1

N
eN
)

and furthermore

ud,A

(

1

N
eN
)

= α′ ·

(

1

N
eN
)

for all α′ ∈ A. Because of the continuity of ud(·) it follows for all α′ ∈ A that

ud(x) > α′ · x for x in a small neighborhood of 1
N
eN . Thus, in a neighborhood of

1
N
eN , ud,A(x) = minα′∈A (α′ · x).
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4. Forth, it remains to check for which prices p∗ the pair
(

(

1
N
eN
)

i∈N
, p∗
)

is a com-

petitive solution. In a first step we show that each p∗ ∈ A can be chosen as an

equilibrium price vector, in a second step we show that any p∗ /∈ A cannot be

an equilibrium price vector. For the second step it is enough to concentrate on

p∗ ∈ C(v) \ A as we have seen in 1. that the equilibrium price vector determines

the competitive payoff vector, which are necessarily in the core.

Step 1: Suppose p∗ ∈ A. Then for all xi ∈ R
n
+ we have

min
α′∈A

(

α′ · xi
)

− p∗ · xi ≤ p∗ · xi − p∗ · xi = 0

and furthermore

min
α′∈A

(

α′ ·

(

1

N
eN
))

− p∗ ·

(

1

N
eN
)

= 0.

Hence, xi = 1
N
eN maximizes the trading profit of agent i. Furthermore, the

markets clear, as
∑

i∈N

1
N
eN = eN .

So, the pair
(

(

1
N
eN
)

i∈N
, p∗
)

is a competitive solution.

Step 2: Suppose p∗ ∈ C(v) \ A. Recall that the set A is compact and convex.

Hence, we can apply the separating hyperplane theorem2 and obtain that there

exists x̄ ∈ R
n
+ such that for all α ∈ A

α · x̄− p∗ · x̄ > 0.

Therefore we conclude that

min
α′∈A

α′ · x̄− p∗ · x̄ > 0.

Now, for sufficiently small ε > 0 we have that 1
N
eN + εx̄ is in a neighborhood

of 1
N
eN where we have ud,A(x) = minα′∈A (α′ · x). But

min
α′∈A

(

α′ ·

(

1

N
eN + εx̄

))

− p∗ ·

(

1

N
eN + εx̄

)

= ε

(

min
α′∈A

α′ · x̄− p∗ · x̄

)

> 0.

This implies that 1
N
eN does not maximize agent i’s trading profit for p∗ /∈ A.

5. To summarize the line of argument:

2See for example Mas-Colell et al. (1995, Theorem M.G.2, p.948).
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If
(

(x∗i)i∈N , p∗
)

is a competitive solution in the market Evd
, then by 2. we have

that
(

(

1
n
eN
)

i∈N
, p∗
)

is a competitive solution. By 4. we show that p∗ ∈ A and by

1. we know that its competitive payoff vector is equal to p∗.

On the other hand if p∗ ∈ A then by 4. we have that
(

(

1
n
eN
)

i∈N
, p∗
)

is a compet-

itive solution. The competitive payoff vector is equal to p∗.

4 Concluding Remarks

Shapley and Shubik (1975) investigate the relationship between competitive payoffs of

markets that represent a cooperative game and their relation to solution concepts for

cooperative games. We presented the details of the proof of Shapley and Shubik (1975),

that extends their two main results to closed, convex subsets of the core. This shows also

the two theorems of Shapley and Shubik (1975). In a further contribution (Brangewitz

and Gamp, 2011) we establish an analogue result for NTU market games.
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