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Abstract

This paper provides an in-depth study of the (most) refined best reply correspondence
introduced by Balkenborg, Hofbauer, and Kuzmics (2012). An example demonstrates that
this correspondence can be very different from the standard best reply correspondence. In
two-player games, however, the refined best reply correspondence of a given game is the same
as the best reply correspondence of a slightly modified game. The modified game is derived
from the original game by reducing the payoff by a small amount for all pure strategies that
are weakly inferior. Weakly inferior strategies, for two-player games, are pure strategies that
are either weakly dominated or are equivalent to a proper mixture of other pure strategies.
Fixed points of the refined best reply correspondence are not equivalent to any known Nash
equilibrium refinement. A class of simple communication games demonstrates the usefulness
and intuitive appeal of the refined best reply correspondence.
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1 Introduction

The minimal refined best reply correspondence was introduced by Balkenborg, Hofbauer, and
Kuzmics (2012) in an effort to find the smallest face of the polyhedron of mixed strategy pro-
files that can be termed evolutionary stable under some reasonable dynamic learning process.
Balkenborg, Hofbauer, and Kuzmics (2012) demonstrate that these faces are such that they are
minimally asymptotically stable under a particular “smallest” deterministic dynamical system,
which is a differential inclusion based on the, so-termed, (most) refined best reply correspon-
dence. If the best reply dynamics, introduced by Gilboa and Matsui (1991), Matsui (1992), and
Hofbauer (1995), can be described as a gradual process in which agents who revise their strategy
always switch to a best reply, the refined best reply dynamics can be described as a gradual
process in which revising agents always switch to a best reply that is also a unique best reply
against a strategy profile arbitrarily close to the current one.

The lattice theorem of Balkenborg, Hofbauer, and Kuzmics (2012, Theorem 1) implies that
of all best-reply-like dynamics the refined best reply dynamics has the fewest stationary points,
as the refined best reply correspondence has the fewest fixed points of all best-reply-like corre-
spondences.1 It furthermore implies that the refined best reply dynamics has the most (asymp-
totically) stable points (all of course fixed points of the refined best reply correspondence, and
thus Nash equilibria) of all best-reply-like dynamics as it has the fewest solution trajectories
of all best-reply-like dynamics. Of all best-reply-like dynamics the refined best reply dynamics
is the one that makes the most Nash equilibria (yet, only Nash equilibria) stable. The refined
best reply dynamics, of all best-reply-like dynamics, therefore provides the closest justification,
based on learning dynamics, of the general practice of using Nash equilibrium as the solution
concept for games, while at the same time it allows us to identify Nash equilibria that can never
be made stable under any best-reply-like dynamics.

The objective of this paper is to study properties of the refined best reply correspondence
and its fixed points (as they are stationary points of the refined best reply dynamics) in detail
for all normal form games that satisfy a mild restriction.

We show by example that the refined best reply correspondence, while, by definition, it shares
many properties with the best reply correspondence, such as being upper-hemi continuous,
closed- and convex-valued, and having a product structure, is not generally like a best reply
correspondence. There are games with a refined best reply correspondence, for which there is
no game that has this refined best reply correspondence as its best reply correspondence. Thus,
suppose you have studied the best reply correspondence for all games, you have not automatically
covered all refined best reply correspondences.

The example that demonstrates this fundamental difference between refined best reply and
best reply correspondence is a three-player game. For two-player games we show that refined
best reply correspondences are like best reply correspondences. For every two-player game with
its refined best reply correspondence, there is another such game with a best reply correspon-
dence that coincides with the given refined best reply correspondence. This result is shown
by characterizing strategies that are never refined best replies in terms of a local form of weak
dominance, which we call weak inferiority. In two-player games a strategy is never a refined
best reply if and only if it is weakly inferior. We then characterize weakly inferior strategies for
two-player games, as those and only those pure strategies that are either weakly dominated or

1What we here call a best-reply-like dynamics or correspondence is what in Balkenborg, Hofbauer, and Kuzmics
(2012) is formally defined and termed a generalized best reply dynamics or correspondence.
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equivalent to a proper mixture of other pure strategies.
While there are refined best reply correspondences that are unlike any best reply corre-

spondence in three or more player games, we can show that for all generic normal form games,
refined best reply and best reply correspondences are identical, nevertheless. This tells us that
the refined best reply correspondence is of interest only in non-generic games. Of course, many
games of interest, such as extensive form games or cheap-talk games, have non-generic reduced
normal form representations, in which the refined best reply correspondence would typically not
be identical to the best reply correspondence.

We then proceed to partially characterize fixed points of the refined best reply correspondence
and show by means of examples that there is no systematic relationship between these fixed
points and known refinements of Nash equilibrium. A fixed point of the refined best reply
correspondence does not have to be perfect (Selten 1975), persistent (Kalai and Samet 1984),
proper (Myerson 1978), or strategically stable (Kohlberg and Mertens 1986). Conversely, a
strategy profile that is perfect, persistent, proper, or strategically stable need not be a fixed point
of the refined best reply correspondence. Finally, we apply the refined best reply correspondence
in a class of simple communication games, that perhaps best demonstrates its intuitive appeal
and usefulness.

The paper proceeds as follows. Section 2 defines the very general class of games we study
and defines the minimal refined best reply correspondence. Section 3 analyzes the differences
between best reply and refined best reply correspondences. Section 4 analyzes fixed-points of
the best reply correspondence. Section 5 provides a simple direct proof of the statement that
every persistent retract (Kalai and Samet 1984) contains a strategically stable set in the sense of
Kohlberg and Mertens (1986). Section 6 further illustrates the differences between the refined
best reply and best reply correspondences, and in particular the usefulness and intuitive appeal
of the refined best reply correspondence, for a class of games of independent economic interest,
namely simple games of cheap-talk communication. Section 7 concludes.

2 Preliminaries

Let Γ = (I, S, u) be a finite n-player normal form game, where I = {1, ..., n} is the set of players,
S = ×i∈ISi is the set of pure strategy profiles, and u : S → IRn the payoff function2. Let
Θi = ∆(Si) denote the set of player i’s mixed strategies, and let Θ = ×i∈IΘi denote the set of
all mixed strategy profiles. Let int(Θ) = {x ∈ Θ : xis > 0 ∀s ∈ Si ∀i ∈ I} denote the set of all
completely mixed strategy profiles.

For x ∈ Θ let Bi(x) ⊂ Si denote the set of pure-strategy best replies to x for player i. Let
B(x) = ×i∈IBi(x). Let βi(x) = ∆(Bi(x)) ⊂ Θi denote the set of mixed-strategy best replies to
x for player i. Let β(x) = ×i∈Iβi(x).

As in Balkenborg, Hofbauer, and Kuzmics (2012) we shall restrict attention to games with
a normal form in which the set of mixed-strategy profiles Ψ = {x ∈ Θ| B(x) is a singleton} is
dense in Θ. In other words Ψ has Lebesgue measure 1. We denote this class by G∗. A game in G∗
is, therefore, such that to almost all strategy profiles all players have a unique best response. As
shown in Balkenborg, Hofbauer, and Kuzmics (2012) if a game is not in this class G∗ it must be
such that at least one player has two own-payoff equivalent strategies. Two strategies xi, yi ∈ Θi

2The function u will also denote the expected utility function in the mixed extension of the game Γ.
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are own-payoff equivalent (for player i) if ui(xi, x−i) = ui(yi, x−i) for all x−i ∈ Θ−i = ×j 6=iΘj

(see Kalai and Samet (1984)).
For games in G∗ let σ : Θ ⇒ Θ be the refined best reply correspondence as defined in

Balkenborg, Hofbauer, and Kuzmics (2012) and as follows. For x ∈ Θ let the set of pure refined
best replies be given by

Si(x) = {si ∈ Si| ∃{xt}∞t=1 ∈ Ψ : xt → x ∧ Bi(xt) = {si} ∀t}.

Then σi(x) = ∆ (Si(x)) and σ(x) = ×i∈Iσi(x) ∀ x ∈ Θ.
For x ∈ Θ a strategy si ∈ Si(x) is thus a best reply against x that is also a best reply for an

open subset of any neighborhood of x.3

3 The difference between the best reply and the refined best
reply correspondence

This section defines and discusses notions of strict and weak local dominance, that will be useful
in understanding the difference between the best reply and the refined best reply correspon-
dences. We term these notions strict and weak inferiority.4 They are such that, naturally,
every strictly dominated strategy is strictly inferior, every weakly dominated strategy is weakly
inferior, and every strictly inferior strategy is weakly inferior.

Definition 1 A strategy si ∈ Si is strictly inferior if for every x ∈ Θ there is a ti ∈ Si such
that ui(si, x−i) < ui(ti, x−i). A strategy wi ∈ Si is weakly inferior if for every x ∈ Θ there is a
ti ∈ Si, ti 6= wi such that ui(wi, x−i) ≤ ui(ti, x−i) and ui(wi, y−i) < ui(ti, y−i) for some y ∈ Θ.

A strictly inferior strategy is, thus, defined as a strategy that for every strategy profile
x ∈ Θ is locally strictly dominated by some other pure strategy, but not necessarily uniformly
dominated by a single strategy. A weakly inferior strategy is such that for every strategy profile
x ∈ Θ it is either locally strictly dominated or if it is a best response then there is another best
response to x that is better than the weakly inferior strategy against some other strategy profile
y ∈ Θ.

One can express inferior strategies in terms of the best response correspondence as follows.
A strictly inferior strategy si is such that si 6∈ Bi(x) for any x ∈ Θ. That is, a strictly inferior
strategy is never a best response. A weakly inferior strategy wi is such that if wi ∈ Bi(x) then
Bi(x) is not a singleton. That is, a weakly inferior strategy is never the only best response.

For games in the class G∗ another alternative characterization of weakly inferior strategies
can be given. For such games a weakly inferior strategy is never best on an open set of strategy
profiles. This result is given in Proposition 1 below. In order to prove it, the following lemma,
due to Kalai and Samet (1984), is useful.

3Balkenborg (1992) calls strategies si ∈ Si(x) semi-robust best replies. This is inspired by Okada (1983) who
calls a strategy a robust best reply to strategy profile x if it is a best reply for an open neighborhood of x. One
could call a strategy robust if it is a robust best reply against some strategy profiles. Any pure strategy that is
either a robust best reply or a semi-robust best reply against some strategy profile x is, thus, a robust strategy.
Note that, while every strategy profile x ∈ Θ has a semi-robust best reply for all players, it may not have a robust
best reply.

4Our notions of strict and weak inferiority are motivated by, but not identical to, the notion of inferior choices
in Harsanyi and Selten (1988).
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Lemma 1 Let U be a non-empty open subset of Θ. Then two strategies xi, yi ∈ Θi are own-
payoff equivalent (for player i) if and only if ui(xi, z−i) = ui(yi, z−i) for all z ∈ U .

Proposition 1 Let Γ = (I, S, u) ∈ G∗. A strategy si ∈ Si is not weakly inferior if and only if it
is a best reply for an open subset of strategy profiles.

Proof: If si ∈ Si is not weakly inferior, then there exists an x−i ∈ Θ−i such that, for all ti ∈ Si,
ui (si, x−i) > ui (ti, x−i) or ui (si, y−i) ≥ ui (ti, y−i) holds for all y−i ∈ Θ−i. In the latter case
ti is weakly dominated by si. By continuity si is a best reply in an open neighborhood of x−i.
Conversely, suppose si ∈ Si is a best reply on a non-empty open set in Θ. Any strategy that
is not own-payoff equivalent to si can, by Lemma 1, be a best reply jointly with si only on a
closed, nowhere dense set. There are only finitely many pure strategies to consider and any
mixed strategy is a best reply only against strategy profiles against which all pure strategies
in its support are also best replies. Thus, there exists a non-empty open set in Θi such that a
strategy of player i is a best response against a strategy profile in this set if and only if it is
own-payoff equivalent to si. Hence si is not weakly inferior. QED

Note that every game in G∗ has at least one strategy for each player that is not weakly
inferior.

We now turn to the question as to how these notions of inferiority, especially of the weak
variety, help us to understand the distinction between the best reply and refined best reply
correspondences.

It is immediate to see that a strictly inferior strategy is a strategy that is never a best
response, i.e. not in Bi(x) for any x ∈ Θ and vice versa. We now ask the question whether a
weakly inferior strategy is a strategy that is never a refined best-response, i.e. not in Si(x) for any
x ∈ Θ, and vice versa. It is immediate from Proposition 1 that one direction is true: a weakly
inferior strategy is a never a refined best-response. This result we state as Proposition 2 below.
However, the other direction, somewhat surprisingly, is not generally true as we demonstrate by
example below. In two-player games, however, one can show that both directions hold, which
we state as Theorem 1.

As an immediate consequence of Proposition 1 we have:

Proposition 2 Let wi ∈ Si be weakly inferior for player i. Then wi 6∈ Si(x) (i.e., wi is not a
refined best reply) for any x ∈ Θ.

In two-player games the following converse statement can be established. Its proof can be
found in appendix B.

Theorem 1 In a two-player game a strategy is a pure refined best reply, si ∈ Si(x), if and only
if it is a best reply, si ∈ Bi(x), and is not weakly inferior.

Theorem 1 implies the following Theorem.

Theorem 2 Let Γ = (I, S, u) ∈ G∗ be a two-player game with minimal refined best reply corre-
spondence σ(Γ). Then there is a game Γ′ = (I ′, S′, u′) ∈ G∗ with I ′ = I, S′ = S, and a payoff
function u′ : S → IR2 such that its best reply correspondence β(Γ′) ≡ σ(Γ).
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Proof: Let Γ′ be such that, for every i ∈ I, every s−i ∈ S−i, and every weakly inferior wi ∈ Si,
u′i(wi, s−i) = ui(wi, s−i)− δ for some δ > 0. Then, for this game Γ′ no weakly inferior strategy
is ever a best reply. Thus, by Theorem 1, σ(Γ) ≡ σ(Γ′) ≡ β(Γ′). QED

Theorem 2 is useful as it tells us that in two-player games, the structure of fixed points of σ is
the same as the structure of Nash equilibria. In particular, it implies that, in two-player games,
there are only finitely many components of fixed points of σ. More precisely, applying the results
in Jansen, Jurg, and Vermeulen (2002) we have the following.

Corollary 1 Let Γ = (I, S, u) ∈ G∗ be a two-player game with refined best reply correspondence
σ. Then the set of fixed points of σ is the union of finitely many polytopes and hence the union
of finitely many connected components.

E F

C D
A 0 0
B 0 0

C D
A 1 -1
B -1 0

Prob(D)

Prob(B)

F best reply

E best reply

F best reply

Game 1 and Figure 1: A game where the refined best reply correspondence is not the best reply correspondence

of a modified game. Payoffs are given only for player 3 who chooses matrix. In Figure 1 the regions where

strategies E and F of player 3 are best replies in this game are indicated in the square of strategy profiles of

players 1 and 2. The probability with which player 1 chooses B is indicated vertically downwards in the graph

while the probability of player 2 choosing D is indicated horizontally. In the shaded area between the two

branches of the hyperbola E is the best reply for player 3, outside it is F . The lower branch of the hyperbola

intersects the square only in the point (B,D), indicating that F is a best reply against (B,D), but not a refined

best reply.

The 3-player game, given above as Game 1, demonstrates that neither Theorem 1 nor The-
orem 2 holds generally for games with more than two players. Here and in the following games,
player 1 chooses the row, player 2 the column and player 3 the matrix. In this example we spec-
ify the payoffs of player 3 only. As indicated in Figure 1, note that against opponent strategy
profiles (1/2A+ 1/2B,C), (A, 1/2C + 1/2D), and (2/3A+ 1/3B, 2/3C + 1/3D) (among oth-
ers) both E and F are refined best replies. However, against (A,C) F is the only best reply
and against (B,D) E is the only refined best reply. Nearby the latter strategy profile there is
no open set in the square of the opponents’ mixed strategy profiles where F is a best response.
Thus, strategy F while it is a best reply and not weakly inferior is nevertheless not a refined
best reply. This demonstrates that Theorem 1 does not extend to 3 or more player games.

Now assume there exists another game with the same strategies for which the best response
mapping for player 3 is identical to the minimal refined best response correspondence of the given
game. This implies that player 3 must remain indifferent between E and F against the strategy
profiles (1/2A+ 1/2B,C) (A, 1/2C + 1/2D), and (2/3A+ 1/3B, 2/3C + 1/3D). Moreover, F
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must be a best response against (A,C), but not against (B,D). This implies

1

2
(u3 (A,C,E)− u3 (A,C, F ))− 1

2
(u3 (B,C,E)− u3 (B,C, F )) = 0

1

2
(u3 (A,C,E)− u3 (A,C, F ))− 1

2
(u3 (A,D,E)− u3 (A,D,F )) = 0

4

9
(u3 (A,C,E)− u3 (A,C, F ))− 2

9
(u3 (B,C,E)− u3 (B,C, F ))

−2

9
(u3 (A,D,E)− u3 (A,D,F )) +

1

9
(u3 (B,D,E)− u3 (B,D,F )) = 0

We conclude that u3 (B,D,E)−u3 (B,D,F ) = 0, and, thus F is a best response against (B,D),
a contradiction.

The fact that Theorem 2 does not extend to 3 or more player games is quite remarkable.
It implies that, although the refined best reply correspondence σ satisfies many properties that
the best reply correspondence satisfies, such as being upper hemi continuity, closed- and convex-
valued, and having a product structure, it is nevertheless, at least in some cases, not like any
best reply correspondence. Thus knowing that the best reply correspondence satisfies a certain
property does not immediately imply that the refined best reply correspondence does satisfy
this property as well.

Nevertheless, and given the above example perhaps a little surprisingly, we can show that in
almost all games (whether two players or more) the refined best reply correspondence is equal to
the best reply correspondence. Remember, however, that many games of interest in G∗ (derived
for instance from an extensive form) are not among these generic normal form games.

Theorem 3 For generic normal form games a pure strategy is a refined best reply if and only
if it is a best reply (i.e., si ∈ Si (x) ⇔ si ∈ Bi (x)). That is we have σ ≡ β for generic normal
form games.

For the proof see appendix A.
Theorem 3 was originally established in Balkenborg (1992). Given that persistent retracts

are minimal CURB sets based on the refined best reply correspondence σ, see Balkenborg,
Hofbauer, and Kuzmics (2012, Lemma 3), also originally shown in Balkenborg (1992), Theorem
3 implies that generically persistent retracts coincide with minimal CURB sets. This fact has
been used by Voorneveld (2005) to show that generically persistent retracts coincide with his
minimal prep sets.

Having established that, for two-player games, weakly inferior strategies are exactly those
strategies that are never refined best replies, we now provide a complete characterization of
weakly inferior strategies.

Theorem 4 Let Γ = (I, S, u) ∈ G∗ be a two-player normal form game. A pure strategy is weakly
inferior if and only if it is weakly dominated or equivalent to a proper mixture of pure strategies.

While the proof of Theorem 4 is given in Appendix B, we here provide an intuitive sketch
of the argument. The result is, of course, similar to Pearce’s (1984) results, also to be found in
Myerson (1991, Theorems 1.6 and 1.7), that in two-player games strictly dominated strategies
are exactly those strategies that are never best replies, and that weakly dominated strategies are
exactly those that are never a best reply to a properly mixed strategy. The proof of Theorem

7



4 in Appendix B, however, does not follow the proof given by Pearce (1984), which is based on
the minmax theorem for zero-sum games, but on the sketch of the proof based on the separating
hyperplane theorem as given, for instance, by Fudenberg and Tirole (1991, pp. 50-52).

F G
A 3 1
B 1 3
C 2 2
D 3 0
E 0 3

Game 2 and Figure 2: A two-player game to illustrate the proof of Theorem 4. Payoffs are given only for player

1, who chooses the row. The figure plots player 1’s strategies in the space of payoffs against the two opponent

strategies. The x-axis is the payoff against pure strategy F, while the y-axis is the payoff against pure strategy

G. Dots represent the five pure strategies, while the solid lines represent not strictly dominated payoff-tuples

that can be achieved by appropriate mixtures of player 1’s pure strategies.

Consider the two-player game given as Game 2, which are simple variations of the game and
picture in Fudenberg and Tirole (1991, p. 50, Figure 2.2). Clearly pure strategies A and B
are unique best responses against some opponent strategies. Thus, both strategies are refined
best replies. Refined best replies must be best responses against an open set of opponent mixed
strategies. A mixed strategy of player 2 can be identified in the Figure 2 by the orthogonal
vector to a downward sloping straight line, such as the two dashed lines. In fact, as there is
an open set of straight lines going through point B, there is an open set of opponent strategy
profiles against which strategy B is a (unique) best reply.

Now turn to the weakly dominated strategy D. The only downward sloping straight line
through point D in the picture that does not properly run through the convex hull of payoff
tuples is the line with infinite slope. Infinite slope reflects the fact that in order to make strategy
D a best response the opponent must not play strategy G with a positive probability. Thus,
the fact that there is no open set of downward sloping lines that go through point D and are
tangential to the convex hull of payoff tuples, implies that there is no open set opponent strategy
profiles that makes strategy D a best reply.

Now turn to strategy C, which is equivalent to an equal mix of pure strategies A and B. Note
that, just as in the case of weakly dominated strategies, there is only a single line through point
C in the picture that is also tangential to the convex hull of payoff tuples. The difference to
weakly dominated strategies is that this single line does not have infinite slope. Yet, rotate the
line in any way, while keeping it fixed at point C, and it will properly run through the convex
hull of payoff tuples. So also in this case there is no open set of opponent strategy profiles that
would make strategy C a best reply.

4 Nash equilibrium versus best reply refinements

This section provides a few results relating fixed points of the (minimal) refined best reply
correspondence to (refinements of) Nash equilibria.

Proposition 3 Let Γ be a finite two-player game in G∗. Let x ∈ Θ be a fixed point of the refined
best reply correspondence σ. Then xiwi = 0 for every weakly inferior wi ∈ Si.

8



Proof: Immediate from Proposition 2: Let x ∈ σ(x). By Proposition 2 wi 6∈ Si(x) for any
weakly inferior wi ∈ Si. But then no y ∈ Θ with yiwi > 0 can be in σ(x). QED

Selten (1975) introduced the concept of a (trembling-hand normal form) perfect (Nash) equi-
librium. One way to define perfect equilibrium in normal form games is given in the following
definition, which is also due to Selten (1975) (see also Proposition 6.1 in Ritzberger (2002) for
a textbook treatment).

Definition 2 A (possibly mixed) strategy profile x ∈ Θ is a (trembling-hand normal form)
perfect (Nash) equilibrium if there is a sequence {xt}∞t=1 of completely mixed strategy profiles
(i.e., each xt ∈ int(Θ)) such that xt converges to x and x ∈ β(xt) for all t.

Not every fixed point of σ is necessarily a perfect equilibrium, even in 2-player games. To see
this consider Game 3, taken from Hendon, Jacobson, and Sloth (1996). For this game σ and β
are identical. The mixed strategy profile x∗ = ((0, 1/2, 1/2); (1/2, 0, 1/2)) is a Nash equilibrium,
hence a fixed point of β, hence of σ, that, as Hendon, Jacobson, and Sloth (1996) point out is
not perfect. Indeed, while the two pure strategies in the support of x∗2, i.e., strategies D and
F are not weakly dominated, the mixture x∗2 is weakly dominated by the pure strategy E. As
weakly dominated strategies in a 2-player game cannot be perfect (see e.g., Theorem 3.2.2 in
van Damme (1991)), x∗ is not perfect.

D E F
A 0,0 0,1 0,0
B 2,0 2,1 0,2
C 0,2 0,1 2,0

D E F
A 2,2 1,2 1,2
B 2,1 2,2 0,0
C 2,1 0,0 2,2

Game 3: A game in which a fixed point of σ

is not perfect.

Game 4: A game in which a perfect equilib-

rium (and, in fact, KM-stable equilibrium) is

not a fixed point of σ.

Proposition 4 Let Γ be a 2-player game in G∗. Then every pure fixed-point, s ∈ S, of the
refined best reply correspondence, σ, is a perfect equilibrium.

Proof: Every pure fixed point of σ is undominated by Proposition 3. In two-player games every
undominated Nash equilibrium is perfect. QED

The converse of Proposition 4 is not true. Consider Game 4. In this game strategy A (and
similarly D) is equivalent to the mixture of pure strategies B and C (E and F respectively).
However, A is a best reply only on a thin set of mixed-strategy profiles. In fact, A is best
against any x ∈ Θ in which x2E = x2F , the set of which is a thin set. Thus, this game is in
G∗. In this game (A,D) constitutes a perfect equilibrium. In fact every mixed strategy profile
((α, 1−α

2 , 1−α
2 ); (α, 1−α

2 , 1−α
2 )) is a strictly perfect equilibrium, and hence, constitutes a singleton

KM-stable set, where KM-stable is (strategically) stable in the sense of Kohlberg and Mertens
(1986) (a minimal set satisfying their Property S). See next section for a definition. But none
of these equilibria, except the one with α = 0, are fixed points of σ, due to the fact that A (and
D) is only best on a thin set (it is a weakly inferior strategy).

Proposition 4 cannot be generalized to general n-player games. To see this consider the
following immediate characterization of fixed points of σ. For xi ∈ Θi let C(xi) = {si ∈
Si|xisi > 0} denote the carrier (or support) of xi.
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Proposition 5 Strategy profile x ∈ Θ satisfies x ∈ σ(x) if and only if for all i ∈ I and for all
si ∈ C(xi) there is an open set U si ⊂ Θ, with x in the closure of U si, such that si ∈ Bi(y) for
all y ∈ U si.

Suppose x ∈ σ(x). Consider player i. Then for all si ∈ C(xi) let U si denote this open set
in which si is best. Now if

⋂
i∈I
⋂
si∈C(xi)

U si 6= ∅, then x is also perfect. However, this is
not necessarily the case. We already saw this for the 2-player Game 3. In the fixed point of σ,
x∗ = ((0, 1/2, 1/2); (1/2, 0, 1/2)), player 2 uses his pure strategies D and F only. D is best in the
open set UD = {x ∈ Θ|x1C >

1
2}, while F is best in the open set UF = {x ∈ Θ|x1B > 1

2}. There
are no bigger open set with the same property. Yet the two sets have an empty intersection.
Hence, x∗ is not perfect.

Balkenborg, Hofbauer, and Kuzmics (2012) prove that CURB sets (Basu and Weibull (1991))
based on σ give rise to absorbing retracts (Kalai and Samet (1984)) and minimal such sets give
rise to persistent retracts. One might think that fixed points of σ will have some relation to
persistent equilibria (Nash equilibria in a persistent retract, Kalai and Samet (1984)). This is not
true, though. Note first that the mixed equilibrium in the coordination game is not persistent
and is a fixed point of σ. Even for pure strategy fixed points of σ this is not true. Consider
Game 5 taken from Kalai and Samet (1984). The equilibrium (B,D,E) is perfect and proper
but not persistent as Kalai and Samet (1984) point out. It is also a fixed point of σ. To see
this, note that E is weakly dominant for player 3 and that B and D are best (for players 1 and
2, respectively) against all nearby strategy profiles in which player 2 chooses strategy C with
smaller probability than player 3 chooses F and player 1 chooses A with smaller probability
than player 3 chooses F .

E F

C D
A 1,1,1 0,0,0
B 0,0,0 0,0,0

C D
A 0,0,0 0,0,0
B 0,0,0 1,1,0

Game 5: A game in which a pure fixed point of σ is not persistent.

Game 6, taken from Kalai and Samet (1984), demonstrates that there are persistent equilibria
that are not fixed points of σ. The strategy profile (A,C,E) is persistent (see Kalai and Samet
(1984)) but is not a fixed point of σ. To see this note that player 1’s strategy A is never best for
nearby strategy profiles. The one pure strategy combination (of players 2 and 3) against which
A is better than B is (D,F ) which for nearby (to (A,C,E)) strategy profiles will always have
lower probability than the outcomes (C,F ) and (D,E) against which B is better than A.

E F

C D
A 0,0,0 0,0,1
B 0,1,0 1,0,1

C D
A 0,1,0 1,0,0
B 1,0,1 0,1,0

Game 6: A game in which a pure persistent equilibrium is not a fixed point of σ.
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5 σ-CURB sets and strategic stability

As already mentioned Balkenborg, Hofbauer, and Kuzmics (2012) prove that CURB sets (Basu
and Weibull (1991)) based on σ give rise to absorbing retracts (Kalai and Samet (1984)) and
minimal such sets give rise to persistent retracts. This equivalence allows us to provide a
relatively simple proof of the fact that every persistent retract contains a KM-stable set.

A set R ⊂ S is a strategy selection if R = ×i∈IRi and Ri ⊂ Si, Ri 6= ∅ for all i. For
a strategy selection R let Θ(R) = ×i∈I∆(Ri) denote set of independent strategy mixtures of
the pure strategies in R. A set Ψ ⊂ Θ is a face if there is a strategy selection R such that
Ψ = Θ(R). Note that Θ = Θ(S). Note also that β(x) = Θ(B(x)) and σ(x) = Θ(S(x)).

A strategy selection R is a σ-CURB set if S(Θ(R)) ⊂ R. It is a tight σ-CURB set if, in
addition S(Θ(R)) ⊃ R, and, hence, S(Θ(R)) = R. It is a minimal σ-CURB set if it does not
properly contain another σ-CURB set.

Definition 3 Let Γ = (I, S, u) be a normal form game. For i ∈ I let ηi : Si → IR be such that

ηi(si) > 0 ∀si ∈ Si

and ∑
si∈Si

ηi(si) < 1.

Then η = (η1, ..., ηn) is a tremble. Let Θi(η) = {x ∈ Θi|xi(si) ≥ ηi(si) ∀si ∈ Si}. Then
Γ(η) = (I,Θ(η), u) is the η-perturbed game.

The following defines property S of Kohlberg and Mertens (1986) without the requirement
of being a subset of the set of Nash equilibria, before defining Kohlberg and Mertens’s (1986)
concept of strategic stability.

Definition 4 Let Γ be a finite normal form game. Let Q ⊂ Θ be a closed subset of the set of
mixed strategy profiles. Q is prestable if for all ε > 0 there is a δ > 0 such that for all trembles
η with ηi(si) < δ for all si ∈ Si and for all i ∈ I there is a Nash equilibrium, xη, of the perturbed
game Γ(η) such that ||xη−x|| < ε for some x ∈ Q. Such a set Q is KM-stable if it is prestable
and does not properly contain another prestable set.

Note that minimality requires that a KM-stable set consists exclusively of perfect equilibria.

Proposition 6 Let Γ = (I, S, u) be a normal form game. Every σ-CURB set of Γ contains a
KM-stable set.

Proof: It is sufficient to show that a σ-CURB set is prestable. Let R be a σ-CURB set. Fix
a tremble η and the associated perturbed game Γ(η) with the set of restricted strategy profiles
Θ(η). Define Θ∗(R) = {x ∈ Θ(η)|xis = ηis if s 6∈ Ri}, a compact and convex subset of Θ(η). For
x ∈ Θ∗(R) let σ∗(x) = {y ∈ Θ(η)|yis = ηis if s 6∈ Si(x)}. Thus, σ∗ is an upper hemi-continuous
correspondence defined on a convex compact set. By Kakutani’s fixed point theorem σ∗ has a
fixed point. By the assumption that R is a σ-CURB set and the fact that σ is upper hemi-
continuous, we have that there is a neighborhood U of Θ(R) such that σ(U) ⊂ Θ(R). Thus,
as long as η is sufficiently close to zero, such that Θ∗(R) ⊂ U , this fixed point of σ∗ is a Nash
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equilibrium of the perturbed game. Thus, every sufficiently close perturbed game has a Nash
equilibrium close to the σ-CURB set. QED

Given the interpretation of Balkenborg, Hofbauer, and Kuzmics (2012) that σ-Curb sets are
asymptotically stable sets under the refined best reply dynamics, this result is reminiscent to
the result of Swinkels (1993) that every convex asymptotically stable set of states under some
reasonable deterministic dynamics, in which every Nash equilibrium is stationary, contains a
hyper-stable set. Of course, not every Nash equilibrium is stationary under the refined best
reply dynamics.

Jansen, Jurg, and Borm (1994) have shown that persistent retracts contain a KM-stable set
for all 2-player games. Balkenborg (1992) has shown that every persistent retract contains a
strategically stable set in the sense of Hillas (1990). We here provide a simple direct proof for
the original concept of Kohlberg and Mertens (1986).

6 A cheap-talk example

This section presents a very simple, perhaps the simplest, class of cheap-talk games, or sender-
receiver games.5 All games (in particular also generic games) within this class are non-generic
in the space of normal form games.

Suppose there are two states of the world A and B. State A realizes with probability
ρ ∈ (0, 1). Player 1 (the sender) is informed about the state of the world, player 2 (the receiver)
is not. Player 1 can, in each state, send one of two messages m or n. Player 2 upon observing
the message sent must choose one of two actions A or B. Thus, both players have four pure
strategies. Player 1’s strategy space is S1 = {(mA,mB), (mA, nB), (nA,mB), (nA, nB)}, where
strategy (mA, nB), for instance, stands for “send message m in state A and message n in state
B”. Player 2’s strategy space is S2 = {(Am, An), (Am, Bn), (Bm, An), (Bm, Bn)}, where strategy
(Am, Bn), for instance, stands for “choose action A when message m is received and action B
when message n is received”.

There are only four possible outcomes: action A is chosen when the state is A, action A is
chosen when the state is B, action B is chosen when the state is A, and action B is chosen when
the state is B. Denote the set of these four outcomes by X = {AA,AB,BA,BB}. The two
players have preferences over these four outcomes given by utility levels uix for all x ∈ X and i ∈
{1, 2}. Let these games be called simple communication games. As a particular simple example
consider the pure common interest game, for which uiAA = uiBB = 1 and uiAB = uiBA = −1 for
both i ∈ {1, 2}. For the special case of ρ = 1

2 the game can be represented in matrix form as
follows.

Am, An Am, Bn Bm, An Bm, Bn
mA,mB 0,0 0,0 0,0 0,0
mA, nB 0,0 1,1 -1,-1 0,0
nA,mB 0,0 -1,-1 1,1 0,0
nA, nB 0,0 0,0 0,0 0,0

Game 7: A simple communication game with common interest.6

5The games here are much simpler than those of Crawford and Sobel (1982). For a discussion of communication
in simple games see Farrell and Rabin (1996). See Gordon (2006) for a discussion of persistent retracts in the
cheap-talk games of Crawford and Sobel (1982).
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Note that Game 7 is a symmetric game. Note that it has no weakly dominated strategies.
Player 1’s pure strategies (mA, nB) and (nA,mB) are (in fact unique) best replies against ap-
propriate pure strategies of the opponent, (Am, Bn) and (Bm, An), respectively. Player 1’s pure
strategies (mA,mB) and (nA, nB) are best against any proper mixture of all opponent strategies,
in which pure strategies (mA, nB) and (nA,mB) receive equal weight. By symmetry, the same
arguments apply to player 2’s strategies. Thus, any strategy profile (x1, x2, x3, x4), (y1, y2, y3, y4)
with x2 = x3 and y2 = y3 is a Nash equilibrium of this game. Every Nash equilibrium of this
sort is a singleton strategically stable set in the sense of Kohlberg and Mertens (1986). To see
this note that any completely mixed Nash equilibrium is always a singleton KM-stable set as
such an equilibrium is also an equilibrium of a sufficiently lightly perturbed game. To see that
even (1, 0, 0, 0) for both players is a KM-stable set, note that arbitrarily close to it there is a
completely mixed Nash equilibrium: for instance, when both players choose (1 − 3ε, ε, ε, ε). In
addition to this continuum of Nash equilibria, there are two additional ones: (0, 1, 0, 0) for both
players and (0, 0, 1, 0) for both players. These are also singleton KM-stable sets.

Yet, player 1’s pure strategies (mA,mB) and (nA, nB) are both equivalent to (each other and
to) an even mixture of pure strategies (mA, nB) and (nA,mB). Thus, by Theorem 4 player 1’s
pure strategies (mA,mB) and (nA, nB) are weakly inferior and, thus by Theorem 1 never refined
best replies. This game has only three fixed points of the refined best reply correspondence:
the two pure informative equilibria (mA, nB), (Am, Bn) and (nA,mB), (Bm, An) and the mixed
equilibrium (0, 1

2 ,
1
2 , 0) for both players.

We leave it to the reader to verify that the following statements are true for all simple com-
munication games. None of these games has weakly dominated strategies. All 4 uninformative
pure equilibria of Game 7 are also Nash equilibria in every simple communication game. In fact
all are singleton strategically stable sets in the sense of Kohlberg and Mertens (1986). In fact,
all these games have a continuum of singleton strategically stable sets. Yet, in all these games
player 1’s pure strategies (mA,mB) and (nA, nB) are each equivalent to some mixture of pure
strategies (mA, nB) and (nA,mB). Similarly, player 2’s pure strategies (Am, An) and (Bm, Bn)
are each equivalent to some mixture of pure strategies (Am, Bn) and (Bm, An). The only fixed
points of the refined best reply correspondence, in each of these games, are the (possibly mixed)
Nash equilibria of the reduced game with strategies (mA, nB) and (nA,mB) only for player 1
and strategies (Am, Bn) and (Bm, An) only for player 2.

7 Conclusion

We studied the refined best reply correspondence in normal form games as introduced by Balken-
borg, Hofbauer, and Kuzmics (2012) as the basis for a dynamic learning model. We show by
example that the refined best reply correspondence can be unlike any best reply correspondence.
In two-player games, however, the refined best reply correspondence coincides with the best re-
ply correspondence of a slightly modified game. The modification is such that all pure weakly
inferior strategies, as we define them, receive a uniform payoff reduction. In two-player games
we show that pure weakly inferior strategies are those and only those strategies that are either
weakly dominated or equivalent to a proper mixture of other pure strategies. While in general
n-player games, we cannot provide such a simple characterization, we show that for generic
normal form games refined best reply and best reply correspondences coincide. Of course, many
interesting games, such as cheap talk games or extensive form games, are non-generic in the
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space of all normal form games.
The fixed points of the refined best reply correspondence are the stationary points of the

refined best reply dynamics of Balkenborg, Hofbauer, and Kuzmics (2012). They are therefore
the only candidates for convergence points of this dynamic process as well as the only candi-
dates for (Lyapunov or asymptotically) stable points under this dynamic process. We show by
examples that the set of fixed points of the refined best reply correspondence is neither a subset
nor a superset of the set of perfect equilibria (Selten 1975), proper equilibria (Myerson 1978),
persistent equilibria (Kalai and Samet 1984), or strategically stable equilibria (Kohlberg and
Mertens 1986).

We demonstrated the usefulness and intuitive appeal of the refined best reply correspondence
over the ordinary best reply correspondence in a simple class of communication games.

There are still many open questions. We have, for instance, refrained in this paper from
discussing refined rationalizable strategies. That is, strategies which do survive the iterated
elimination of never refined best replies. These would be of interest, as the refined best reply
dynamics converges to the set of refined rationalizable strategies in every game (Balkenborg,
Hofbauer, and Kuzmics 2012). It is fairly easy to see that the set of refined rationalizable
strategies must be a sometimes proper subset of the set of strategies which survive the S∞W -
procedure of one round of elimination of all weakly dominated strategies and then the iterated
elimination of strictly dominated strategies.7 On the other hand iterated admissibility, for which
an epistemic derivation has been given by Brandenburger, Friedenberg, and Keisler (2008), is
sometimes a subset and sometimes a superset of the set of refined rationalizable strategies. We
would find it of interest, to understand better the differences between the various concepts of
rationalizability and especially the reasons behind these differences.

Taking our class of simple communication games as a starting point we would also find it
of interest to study other classes of games, in which the set of outcomes is much smaller than
the set of strategy profiles. We believe that the study of the refined best reply correspondence
could be fruitful in many such cases. One example of such a class is, of course, the class of
extensive form games. Another would be the class of communication games with more states
and strategies. These are topics we endeavor to address in future work.

A On the generic equivalence of best responses and refined best
responses

This appendix provides a proof of Theorem 3. Note first that generic normal form games are in
the class G∗ where all refined responses are pure strategies. The proof of Theorem 3 is organized
in a number of steps: We will first fix some notations for the mappings and various submanifolds
to be considered. Step 1 argues that the embedding of the uncorrelated strategy combinations
into the set of beliefs has nice differentiability properties. Step 2 invokes the transversality
theorem (see Guillemin and Pollack (1974)) to show that for generic payoff functions we obtain
the needed transversality conditions.8 Step 3 argues that we can restrict attention to completely

7For this procedure see e.g. Dekel and Fudenberg (1990), Börgers (1994), and Ben Porath (1997).
8This transversality theorem is a straightforward consequence of Sard’s theorem. If one assumes an algebraic

map and uses in its proof in Guillemin and Pollack (1974) the algebraic version of Sard’s theorem in Bochnak,
Coste, and Roy (1998) one obtains a stronger version of the transversality theorem where the conclusion of the
theorem holds outside a lower dimensional semi-algebraic set.
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mixed strategy combinations of the opponents. If the player is indifferent between several of
his strategies against a given completely mixed strategy combination, step 4 shows how we can
construct an arbitrarily nearby strategy combination, against which the player strictly prefers a
given one among these strategies. Step 5 completes the argument.

For any finite set M let IRM be the vector space of all mappings y : M → IR. The dimension
of IRM is the number of elements in M .

Let qi :
∏
j 6=i IRSj → IRS−i be the mapping defined by

(qi (x−i)) (s−i) :=
∏
j 6=i

xj (sj) .

qi describes the first step in the computation mentioned above.
While x−i denotes the usual strategy combination of the opponents, we define χ−i to describe

a “correlated strategy of the opponents”, i.e., a belief over S−i.
Let Li be the vector space of all linear mappings

vi : IRS−i → IRSi .

If χ−i ∈ IRS−i is a belief and si ∈ Si a pure strategy of player i, then (vi (χ−i)) (si) is the
expected payoff for player i. vi describes for every si the second step in the computation of the
expected payoff. Any vi ∈ Li corresponds uniquely to a payoff function

ui : S → IR

in the standard notation (and this relation is a homeomorphism).
For Ti ⊆ Si set Zi (Ti) = {z ∈ IRSi | ∀si, ti ∈ Ti : z (si) = z (ti)}. Let Xj := {xj ∈ IRSj |∑
sj∈Sj

xj (sj) = 1} for j 6= i and X−i :=
∏
j 6=iXj .

For Tj ⊆ Sj (j 6= i) and T−i :=
∏
j 6=i Tj set

Xj (Tj) := {xj ∈ Xj | ∀sj ∈ Tj : xj (sj) = 0}

and
X−i (T−i) :=

∏
j 6=i

Xj (Tj) .

The sets Θ−i ∩X−i (T−i) describe the various faces of the polyhedron Θ−i.

Step 1: For all T−i the mapping qi : X−i (T−i)→ IRS−i \ {0} is a diffeomorphism onto its image
(in particular qi (X−i (T−i)) is a closed submanifold of IRS−i \ {0}).

Proof : X−i (T−i) is a closed affine submanifold in
∏
j 6=i
(
IRSj \ {0}

)
. It is straightforward to

check that
qi|X−i(T−i) : X−i (T−i)→ IRS−i \ {0}

is well defined, is one-to-one, maps X−i (T−i) to a closed set, and has a derivative dqi|x−i with
maximal rank everywhere.9

9The result is well known, e.g., in algebraic geometry: qi defines the so-called Segre-embedding. The result
is needed in algebraic geometry to show that the product of projective spaces can itself be embedded into a
projective space, i.e., is projective-algebraic.
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Step 2: Let Z ⊆ IRSi and X ⊆ IRS−i \ {0} be submanifolds. Then for almost every vi ∈ Li the
mapping vi|X : X → IRS−i \ {0} is transversal to Z.

Proof : The family of linear maps Li defines a mapping

Vi : Li × IRS−i → IRSi (1)

(vi, χ−i) 7→ vi (χ−i) . (2)

The derivative of Vi at (vi, χ−i) can be computed as

dVi|(vi,χ−i) : TviLi × Tχ−iIR
S−i ∼= Li × IRS−i → IRSi (3)

(νi, ξ−i) 7→ νi (χ−i) + vi (ξ−i) . (4)

If χ−i 6= 0 we can find for every ζi ∈ IRSi some νi ∈ Li with νi (χ−i) = ζi. Then
dVi|(vi,χ−i) (νi, 0) = ζi.

Because for χ−i ∈ X the tangent space Tχ−iX ⊆ IRS−i contains the 0-vector, dVi|(vi,χ−i) :

TviLi × Tχ−iX → IRSi is surjective. Thus Vi : Li ×X → IRSi is transversal to Z and our claim
follows from the transversality theorem.

By step 1 and step 2 almost every vi ∈ Li satisfies:

⊗ For all subsets Ti ⊆ Si (1 ≤ i ≤ n) the mapping (vi ◦ qi) |X−i(T−i) is
transversal to Zi (Ti).

For given vi define Y (Ti) = {x−i ∈ X−i | (vi ◦ qi) (x−i) ∈ Z (Ti)}. Y (Ti) ∩Θ−i is the set of
strategy combinations of the opponents such that player i is indifferent between the strategies
in Ti (i.e., they give the same payoff).

Step 3: Suppose vi satisfies ⊗. For Ti ⊆ Si let x−i ∈ Y (Ti)∩Θ−i and let O−i be a neighborhood
of x−i. Then O−i ∩ Y (Ti) contains a point in the interior of Θ−i.

Proof : Suppose x−i is in the boundary of Θ−i. For each j 6= i define Tj := {sj ∈ Sj | xj (sj) = 0}.
If Tj = ∅, xj is in the relative interior of Θj . By assumption Tj is not empty for at least one
opponent j. Fix j∗ 6= i with Tj∗ 6= ∅ and tj∗ ∈ Tj∗. Set T̃j := Tj for i 6= j 6= j∗ and

T̃j∗ := Tj∗ \ {tj∗}. We show that O−i ∩ Y (Ti) contains some y−i ∈ Θ−i ∩ X
(
T̃−i

)
such that

T̃j = {sj ∈ Sj | yj (sj) = 0} for all j 6= i. In other words: y−i is in the relative interior of the

face Θ−i ∩X
(
T̃−i

)
. The claim then follows by induction.

The transversality conditions imply that the submanifolds X−i (T−i) and Y (Ti)∩X−i
(
T̃−i

)
meet transversely in X−i

(
T̃−i

)
(see (Guillemin and Pollack 1974, Exercise 2.3.7)). Since

X−i (T−i) has codimension 1 in X−i

(
T̃−i

)
it follows that X−i

(
T̃−i

)
∩Y (Ti)∩{y−i | yj∗ (tj∗) >

0} ∩O−i intersects the relative interior of X−i

(
T̃−i

)
∩Θ−i.

Step 4: Suppose vi satisfies⊗. For Ti ⊆ Si with #Ti ≥ 2 let x−i ∈ Y (Ti) be in the interior of Θ−i
and let O−i be a neighborhood of x−i. Then we can find for every si ∈ Ti some y−i ∈ O−i ∩Θ−i
such that

(vi ◦ qi) (y−i) (si) > (vi ◦ qi) (y−i) (ti) for all ti ∈ Ti \ {si}.

16



Proof : Because vi ◦ qi : X−i → IRSi is transversal to both Z (Ti) and Z (Ti \ {si}) it follows
that vi ◦ qi : Y (Ti \ {si}) → Z (Ti \ {si}) is transversal to Z (Ti). From this we can deduce the
existence of a tangent vector ξ ∈ Tx−i (Y (Ti \ {si})) with dλ|x−i

(ξ) = 1, where λ is the function

λ : Yi (Ti \ {si}) ∩X−i → IR (5)

y−i → (vi ◦ qi) (y−i) (si)− (vi ◦ qi) (y−i) (ti) (6)

defined for arbitrary but fixed ti ∈ Ti \ {si}. We can therefore select a differentiable curve

c : (−ε, ε)→ Yi (Ti \ {si})

with c (0) = x−i and (λ ◦ c)′ (0) = 1. For sufficiently small 0 < γ < ε y−i := c (γ) has the
required properties.

Step 5: Suppose si is a pure best response against x−i. For every neighborhood O−i of x−i
the continuity of the payoff function and the two steps above can be used to find y−i ∈ O−i
such that si ∈ Ti is the unique best response against y−i. Shrinking the open sets we can find a
sequence of such y−i’s converging to x−i. Continuity yields an open set around each element in
the sequence, where si is the unique best response. si is the unique best response on the union
of these sets, which is again open. Thus si is a refined best response against x−i. QED

B Refined best replies in two-player games

This appendix provides proofs of Theorems 1 and 4. In the case of two player games the payoff
function is bilinear and hence linear in the mixed strategy choice of the opponent. This allows
the use of convex analysis (see Rockafellar (1970)) to study the best reply correspondence of a
player. The most direct consequence is the convexity of the region where a strategy is a best
reply. From this Theorem 1 follows immediately, the arguments are given after Lemma 2 below.
More work is needed to obtain Theorem 4. We use conjugate functions and provide the proof
after Lemma 3.

We will restrict attention to the best replies of player 1. Suppose player 2 has K ≥ 2
strategies s1

2, · · · , sK2 . It will be convenient to identify the mixed strategies x2 ∈ Θ2 with the
vectors

x2 =
(
x1

2, x
2
2, · · · , xK−1

2

)
∈ IRK−1 (7)

for which xk2 ≥ 0 for all 1 ≤ k ≤ K− 1 and xK2 := 1−
∑K−1

k=1 xk2 ≤ 0. Notice that the zero vector
corresponds to pure strategy sK2 .

We define the function f : IRK−1 → IR by

f (x2) =

{
maxs1∈S1 u1 (s1, x2) for x2 ∈ Θ2

+∞ else
(8)

Because u1 is linear in x2, f is, in the terminology of Rockafellar (1970) a proper convex
polyhedral function. Each strategy x1 ∈ Θ1 defines an affine function a : IRK−1 → IR
by a (x2) = u1 (x1, x2), which, for all x2 ∈ Θ2, satisfies the inequality a (x2) ≤ f (x2) and
a (x2) = f (x2) holds if and only if x1 ∈ β1 (x2).
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For a strategy x1 ∈ Θ1 we define the set

G (x1) = {(x2, α) ∈ Θ2 × IR | x1 ∈ β (x2) and α = u1 (x1, x2)} (9)

and the set H (x1) = {x2 ∈ Θ2 | x1 ∈ β (x2)}, the projection of G (x1) onto Θ2. H (x1) is the
region where x1 is a best reply.

Lemma 2 The region H (x1) is a convex polyhedron.

Proof: H (x1) is the image of convex polyhedron G (x1) under the linear projection mapping
and hence also a convex polyhedron. QED

Clearly x1 is robust if and only if the convex polyhedron H (x1) has non-empty interior
H◦ (x1). Moreover, H (x1) is the closure of H◦ (x1) if H◦ (x1) is not empty. Therefore, if x1 is
robust and a best reply against x2, then x2 is in the closure of the open set H◦ (x1) and so x1

is a robust best reply against x2. Using Proposition 1 this implies immediately Theorem 1.
The remainder of this section aims at proving Theorem 4. We consider next the epigraph

F =
{

(x2, α) ∈ IRK−1 × IR | f (x2) ≤ α
}

(10)

of the map f defined above. We notice that F is a polyhedral convex set whose compact faces
are precisely the sets G (x1) with x1 ∈ Θ1. The non-compact faces are of the form F ∩(Θ′1 × IR),
where Θ′1 is a face of Θ1.

The conjugate function f∗ : IRK−1 → IR of f is defined by

f∗ (x∗2) = sup
x2∈IR

K−1

{x∗2 • x2 − f (x2)} = max
x2∈Θ2

{x∗2 • x2 − f (x2)} <∞, (11)

where x∗2•x2 denotes the usual scalar product
∑K−1

k=1
x∗k2 x

k
2. As shown for any convex polyhedral

function in Rockafellar (1970), the conjugate is again a convex polyhedral function and one has
f∗∗ (x2) = f (x2).

Any two strategies x1, x
′
1 ∈ Θ1 define the same affine function if and only if the two strategies

are own-payoff equivalent. Without loss of generality we can thus identify Θ1 up to own-payoff
equivalence with a subset of the affine functions on IRK−1.

Any vector (x∗2, α) with x∗2 ∈ IRK−1 and α ∈ IR defines one and only one affine function on
IRK−1 by

a (x2) = −α+
K−1∑
k=1

x∗k2 x
k
2 (12)

We will identify affine functions with such vectors. For instance, e = (1, . . . , 1) corresponds to
the function −xK+

2 = −1 +
∑K−1

k=1 xk2 that assigns 0 to the first K − 1 pure strategies and −1 to
the last pure strategy of player 2.

Let F ∗ be the epigraph of f∗.

Lemma 3 F ∗ is a polyhedral convex set generated by extreme points x1 that are robust best
replies in Θ1 and the directions

−ek =
(
−e1

k, . . . ,−eKk
)
∈ IRK with elk =

{
−1 for k = l
0 else

(13)

for k = 1, . . . ,K − 1 and
e = (1, . . . , 1) ∈ IRK (14)
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Proof: By definition (x∗2, α
∗) ∈ F ∗ if and only if α∗ ≥ x∗2 • x2 − f∗ (x2) for all x2 ∈ Θ2. v ∈ IRK

is a direction in F ∗ if and only if there exists (x∗2, α
∗) ∈ F ∗ such that all vectors (x∗2, α

∗) + λv
with λ ≥ 0 are in F ∗. We can write v = −

∑K−1
k=1 ρkek + ρKe with ρ1, . . . , ρK ∈ IR since

−e1, . . . ,−eK−1, e form a vector basis of IRK . We must show that v is a direction in F ∗ if and
only if all ρi are non-negative. Suppose that v is a direction in F ∗. Let x2 = (0, . . . , 0) ∈ Θ2.
The condition that (x∗2, α

∗) + λv ∈ F ∗ for all λ ≥ 0 yields for this x2 that α∗ + λρK ≥ −f (x2)
holds for all λ ≥ 0. This can be true only if ρK ≥ 0. For ek ∈ Θ2 (1 ≤ k ≤ K − 1) we obtain
similarly α∗+λρK ≥ x∗k2 −λρk +λρK −f (ek) for all λ ≥ 0, which can hold only if ρk ≥ 0. Thus
only positive combinations of −e1, . . . ,−eK−1, e can be directions in F ∗. For every combination
v = −

∑K−1
k=1 ρkek+ρKe with ρ1, . . . , ρK ≥ 0, every λ ≥ 0, every (x∗2, α

∗) ∈ F ∗ and every x2 ∈ Θ2

we have conversely

α∗ + λρK ≥ x∗′2 x2 −
K−1∑
k=1

λρkx
k
2 + λρK − f (x2) (15)

which proves that v is a direction in F ∗.
We have characterized the directions of F ∗ and must now determine the extremal points

of F ∗. Suppose (x̂∗2, α̂
∗) is an extremal point. Because F ∗ has only finitely many extremal

points, these are exposed points by Straszewick’s theorem (Theorem 18.6 in Rockafellar (1970)).
Therefore we can find x2 ∈ Θ2 such that the hyperplane {x∗2 • x2 = f (x2)} is a supporting
hyperplane that meets F ∗ only in (x̂∗2, f

∗ (x̂∗2)). Because F ∗ has only finitely many extreme
points and directions there exists an open neighborhood U of x2 in Θ2 for which the hyper-
planes {x∗2 • y2 = f (y2)} are for all y2 ∈ U supporting hyperplanes that intersect F ∗ only in
(x̂∗2, f

∗ (x̂∗2)). This implies that the graph of the affine function (x̂∗2, f
∗ (x̂∗2)) intersects F in a

K − 1 dimensional face. It is therefore identical to a affine function defined by a strategy x1 in
Θ1 for which H (x1) is full dimensional. Given our identification, (x̂∗2, f

∗ (x̂∗2)) is consequently a
robust strategy in Θ1, which was to be shown. QED

Proof of Theorem 4:
The lemma implies that all extreme points and hence all the points in the compact faces of

F ∗ are in Θ1.
However, no points on the compact faces of F ∗ apart from the extreme points are robust

strategies. To see this, notice that a proper mixture x1 =
∑L

l=1 ρlx1k (L > 2, ρl > 0,
∑L

l=1 ρl = 1)
of non-equivalent robust strategies in Θ1 is not robust. Otherwise there would be an open set in
Θ2 on which x1 and hence all strategies x1k were best replies. They would yield identical payoffs
on an open set and were hence (by Lemma 1) all equivalent, contradicting the assumption. Per
construction such a mixture is own-payoff equivalent to a proper mixture of strategies that are
pairwise not own-payoff equivalent.

It remains to consider strategies in Θ1 that are not on a compact face of F ∗. Such a strategy
can be written as x′1 = x1−

∑K
k=1 ρkek+ρKe where x1 is on one of the compact faces of F ∗ and,

hence, in Θ1, and the ρk are all non-negative and at least some of them are strictly positive. We
obtain

u1

(
x′1, x2

)
= u1 (x1, x2)−

K−1∑
k=1

ρkx
k
2 − ρK

(
1−

K−1∑
k=1

xk2

)
≤ u1 (x1, x2) , (16)

where this inequality holds as a strict one for the k-th pure strategy of player 2 whenever ρk > 0.
Thus x′1 is weakly dominated. It is not a robust strategy because it is a best reply only on a
proper face of Θ1 (see Pearce (1984)).
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In summary, the only robust strategies in Θ1 are the extreme point of F ∗. All other strategies
are proper mixtures of not own-payoff equivalent robust strategies or are weakly dominated and
therefore not robust. QED
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