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l i g h t s

n of readiness potential onset represents a preconscious measure for end-of-turn anticipation in a language dialogue.
t is a language task it can be applied equally well to both verbal and finger movement responses.
ast to behavioural reaction time tasks the EEG-measurement produces more reliable data for the anticipation performance in end-of-turn-
n.
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Background: Even though research in turn-taking in spoken dialogues is now abundant, a typical EEG-
signature associated with the anticipation of turn-ends has not yet been identified until now.
New method: The purpose of this study was to examine if readiness potentials (RP) can be used to study the
anticipation of turn-ends by using it in a motoric finger movement and articulatory movement task. The
goal was to determine the preconscious onset of turn-end anticipation in early, preconscious turn-end
anticipation processes by the simultaneous registration of EEG measures (RP) and behavioural measures
(anticipation timing accuracy, ATA). For our behavioural measures, we used both button-press and verbal
response (“yes”). In the experiment, 30 subjects were asked to listen to auditorily presented utterances
and press a button or utter a brief verbal response when they expected the end of the turn. During the
task, a 32-channel-EEG signal was recorded.
Results: The results showed that the RPs during verbal- and button-press-responses developed similarly
and had an almost identical time course: the RP signals started to develop 1170 vs. 1190 ms before the
behavioural responses.
Comparison with existing methods: Until now, turn-end anticipation is usually studied using behavioural

methods, for instance by measuring the anticipation timing accuracy, which is a measurement that
reflects conscious behavioural processes and is insensitive to preconscious anticipation processes.
Conclusion: The similar time course of the recorded RP signals for both verbal- and button-press responses
provide evidence for the validity of using RPs as an online marker for response preparation in turn-taking
and spoken dialogue research.

© 2014 Elsevier B.V. All rights reserved.
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ication processes, for example in sound discrimination
eption, semantic-pragmatic analysis or meaning consti-
riederici, 2004; Indefrey and Levelt, 2004; Müller, 2006).
ple, the transfer of meaning in natural utterances can be
already about 120 ms after articulation has started (Müller
s, 1996). Considering, however, the amount of sequen-

mation included in the acoustic signal (at the level of
s, syllables, words, phrases, utterances, etc.), it is obvi-
the auditory system needs more processing time than
ct, the processing time required by the auditory system is
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 long or even longer than the time needed for articulation.
tion why we can nevertheless communicate so quickly
ently is a puzzle that has been the centre of much the-
nd experimental research (see e.g., Levinson, 2000; Ford
pson, 1996). This high efficiency of communication and,
, the time course of the different parallel and sequential

 language processing has been a main topic of research
ast couple of years. Results show that cognitive parsing of
ived utterances follow the acoustic speech signal within a
s of a second (see e.g., Friederici, 2004; Indefrey and Levelt,
ller, 2006). To achieve such a short timeframe in a spo-

gue, the prediction and anticipation of one interlocutor’s
 is required (De Ruiter et al., 2006).

stic time frames for turn-end-detection

Sacks et al. (1974) developed their turn-taking model of
tion, several studies have examined key aspects of con-

 (De Ruiter et al. 2006), and found that listeners must
everal tasks simultaneously during conversation. Besides
gs, a listener must comprehend the speaker’s turn, while
ating a reply and pre-planning the onset of its articula-
latter process requires quite precise timing, to minimize

 overlaps (Stivers et al., 2009; Magyari and De Ruiter,
2). These studies found, among other things, that gaps

aps are usually shorter than 250 ms.  As it is not possible
tially listen to a turn, comprehend it, prepare a response,
te this response within such a short time window (espe-
ase of overlaps), the authors assume that interlocutors use
tal and possibly overlapping processes to be able to time
priate response sufficiently accurate. Further evidence
ssumption comes from the famous shadowing task by
Wilson (1973, 1985), in which people were able to repeat
speaker’s sentences with a time delay of only 250 ms.
ulvermüller resumes that early indexes of lexical, syn-

 semantic processes have been found after 100–250 ms
 and spoken language processing which reflects almost

rocesses (Pulvermüller, 2005; Pulvermüller et al., 2009).
avioural studies (Marslen-Wilson, 1985) as well as the
f the underlying functional neuroanatomical studies
fore roughly comparable to the observed behavioural

 delays of about 120–250 ms.  However, the frequently
 precise or even premature initiation of subsequent
g., De Ruiter et al., 2006) can only be explained by
on.
e course of language processing is often estimated on the

he observation of behavioural output. As neurocognitive
 reveals, though, language processes are faster and start
lier than behavioural data might suggest. Müller and Kutas
r example, showed that the initial 100–120 ms  of words
rovide enough information in order to decide whether

is the beginning of a noun or a name. In another study
r et al. (2012) investigated the crucial point of word recog-
spoken words versus pseudowords. They wanted to find
t the point in time when the acoustic information allows
ognition. Results showed that this crucial point occurs

 after presentation (McGregor et al., 2012). In a word read-
at compared different semantic word classes with similar
ppearance by using textual characters (Chinese), electri-
activation differed significantly for each semantic word

 these visually presented Chinese characters, the earliest
nature appeared 80 ms  after stimulus onset (Skrandies
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4). Dell’Acqua et al. (2010) achieved similar results when
ied the activation time of semantic and phonological rep-
on. The obtained ERP results showed a primary component
r, distinct component. This has lead to the assumption of
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l distribution of scalp activity for the semantic effects. The
omponent was characterized by a fast onset with a sharp

during the first 50 ms  past stimulus onset and a decrease
 ms  (Dell’Acqua et al., 2010). Although this working group
cuses on a variety of components, their results correspond

se from the previously mentioned studies regarding the
 processing. Irrespective of the specific nature of the lan-
ocessing task, all examples show that processing starts
50 and 200 ms  post stimulus onset. Therefore, it is rea-
o suspect that turn-end anticipation follows a similar time

trast to the aforementioned findings about the time course
ge comprehension, the results of word production exper-
veal that much more time is needed for processing. For

 Indefrey and Levelt (2004) found that it takes the produc-
m 600–1200 ms  to get from an intention to speak to the

ticulation of words. During natural language processing,
 in interactive situations like dialogue, there are a number

aneous processes required, for example comprehension
uction processes. Almost all of these processes are very
overlap in time, which is presumably possible because of
ive, fine-grained parallelism in the neural computations
in.
bject of our investigation is the time course of the precon-

ocessing that takes place before the behavioural response.
rtant to define the latter carefully, because even though
easure the behavioural response well, in anticipation pro-
e exact start of the associated “stimulus” is unknown. This
at the behavioural responses we  are interested in do not
d with reaction times as found in psycholinguistic tasks
xical decision or picture naming. Therefore, our primary
ral dependent measure is the Anticipation Timing Accu-
), which is defined as the point in time at which the

 is recorded, minus the point in time that the stimulus (the
 turn) actually ends. So if a participant’s timing is perfect,

is 0, if the participant responds too early (i.e., before the
e turn), it is negative, and if they respond too late (after
f the turn), it is positive. This dependent measure is the
hat De Ruiter et al. (2006) termed BIAS.

ious EEG studies

G-study by Magyari et al. (2011) used a spectral analytic
e for analysing EEG-recordings in a behavioural task of
ion processes in turn-taking. They presented conversa-
rns with an average duration of 2.9 s that varied in the
ility of their ending while recording EEG data. ATA was

 by a button-press at the turn-end and were indeed found
e precise for the turns with more predictable endings. Fur-
, they identified a beta power decrease in the predictable

 1700 ms  before the actual button-press as well as a beta
rease during the same time interval. These results support
ption that the accuracy of turn-end anticipation is related

curacy of predictions about upcoming words. In another
y (Galgano and Froud, 2008) event-related potentials in
on for voice onset as well as exhalation were analyzed in
s-induced voluntary movement task. The results showed
creasingly negative cortical potential in the time window
g the onset of phonation. These results reveal the benefits

 a slow negative-going cortical potential correlated with
aration of voluntary movements, especially with voice-
itiation (Galgano and Froud, 2008). Since the discovery of
Bereitschaftspotential”) in 1965 (Kornhuber and Deecke,
veral studies have provided evidence for a RP preced-
h-related volitional motor acts (e.g., Galgano and Froud,
erefore, the RP is defined as an ERP-component, which
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).

 1
iptive statistics for all sentences (n, number of involved items; ATA, anticipa-
iming accuracy; Min, lowest RT; Max, highest RT; SD, standard deviation).
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 to selective response activation processes. Many stud-
e insights into temporal aspects in language processing
alysis (e.g., Swaab et al., 2012) or spectralanalytic tech-

.g., Schack et al., 2003) but only a few are using a RP in this
e.g. Brunia et al., 2012; McArdle et al., 2009). However,

 is possible to investigate RPs in an auditory experimen-
g it is still unclear if it could be evaluated in a natural

 production task including articulator movement. Conse-
his study examines turn anticipation using the RPs of the

A-responses in an auditory task as correlative for verbal
 responses. The RPs serve as our dependent measure, in
to the recorded behavioural data.

 considerations permit us to specify our main research
: (A) Can we use RPs to detect the early onset of precon-
ticipation processes in a language comprehension task?
does this work at least equally well for button-press and
TA) responses?

ds

cipants

dents (17 women, 13 men) of Bielefeld University par-
 in the experiment. They were native German speakers
19 and 35 years of age (24.5 ± 3.5 years). The subjects were
ded with a lateralization quotient of 93.5 according to The

 Handedness Inventory (Oldfield, 1971). We  conducted
ce-to-face interview to assess the participants’ hearing
l faculty. Participants who used antipsychotic medication
hotic drugs, any psychotropic medication or beta blocker)
luded from the study. The participants were paid for their
tion.

uli

perimental materials (88 stimuli) were spoken by a pro-
female speaker with natural intonation and recorded in a
dio. The sentences were acoustically presented via loud-
he mean stimulus intensity ranged between 55 and 60 dB
fore corresponded with that of a normal face to face con-
.
perimental material contained 45 basic questions and 43
e sentences. The 88 sentences had a duration that varied

1300 ms  and 6643 ms  (Ø 4038 ms). The number of words
tences ranged from 3 to 22 (Ø 12.11). The subjects were
ive a short verbal answer (“Ja” or “Nein”) in the first exper-
lock. In a second block, they were asked to signal their
on of the turn-end by pressing a button (motor-response)
d of each sentence as quickly as possible. To contrast the
ponses with the button-press responses consistently, we

 responses that took more than 250 ms.  All stimuli includ-
ation cross were presented by a customized, Linux-based
ion programme (Sculptor).

edure

ipants were comfortably seated in front of a computer
 USB-button-box with an internal clock was positioned
their right hand. They were instructed to sit still while
t the fixation cross on the screen in front of them. The sen-
rted 1000–2500 ms  (randomized) after the fixation cross

 on the screen. The fixation cross disappeared 1000 ms
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vestigated the temporal aspects in turn anticipation by
g finger movement (button-press) of the right index fin-

articulator-movement (verbal response). The voice key

Condition

1. Verbal 

2. Button
 232 (2014) 24–29

red manually. We  were able to specify the exact begin-
he articulation according to the recorded microphone

l of 88 auditorily presented stimuli were used includ-
estions and 20 declarative sentences demanding a verbal

 and 43 declarative sentences which required button-
ponses by using a bounce-free pushbutton.

recordings

EG recordings were conducted in a soundproof and elec-
tically shielded booth. EEGs were recorded from 32

alp electrodes embedded in a cap (ActiCap, Brain Prod-
o electrodes were fixed on the left and right canthi, one

 vertically (supra-orbitally) below the right eye, and 2
 the mastoids bilaterally. Signals were sampled at 1000 Hz
ified with a 50 Hz notch filter and a bandpass of 0.16–80 Hz
p, Brain Products). Impedance was kept below 5 k� for

els. Motoric responses (button-press) were recorded using
tton-box. Verbal responses were recorded by microphone
d to the EEG recording as a separate channel.

 analysis

ded EEG data was screened for artefacts via visual inspec-
g the Brain Vision Analyzer 2.0 (Brain Products). The
g and end of each critical and control sentence were

 and marked for each of the 30 participants. The ver-
nses and button-presses were also marked. For statistical
a marker-table was  exported such that the relevant epochs
ilable. For each condition, the minimum and maximum

 times were recorded and the mean RT and SD were calcu-
le 1). All reaction times exceeding 250 ms were excluded

 5% in each case). All analyses and calculations were done
version 20, IBM) under Mac  OS X.
o analysis, data were re-referenced to the average of the

 all channels at each time point. Every trial was inspected
matically by using the Brain Vision Analyzer 2.0 software
pleted by a visual inspection for artefacts (rejected seg-
5%). As a first step of displaying the ERP data all verbal

s were averaged and displayed followed by the ERP of all
sponses. For RP detection, the average for all epochs was
d separately for both conditions. The RPs of all 30 par-

 were evaluated among the grand average of all data. All
yses were done with BrainVision Analyzer 2.0. To eval-
onsets of RPs, a combination of regression analyses and
as done to define the RP onset as a deviation from the
(SPSS 20). The applied method corresponds to that of
nau et al. (1998) and defines the LRP onset as a kind

 point” between the two intersecting straight lines that
ed to the RP waveform. This means that one line is fit-
e baseline – equivalent to a “pre-onset” line – (by t-test)
ther line is fitted to the segment that rises to the peak
 n ATA (ms) Min  (ms) Max  (ms) SD

response 450 85.7 −857.0 250.0 141.7
-press response 653 50.8 −1179.0 250.0 181.9
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Fig. 1. Comparison of Grand Averages (30 participants) of RP waveforms of button-press responses at the elctrodes C3 and C4 including each of 43 responses including a
regression-  index
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onses we calculated the mean response duration (verbal

s: 85.7; button-press responses: 50.8 ms), minimal and
response time (verbal responses: −857.0 to 250.0 ms;
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 revealed a significant (p < 0.01) difference between the
on timing accuracy of the two conditions. Subjects reacted
ter in the button-press condition compared to the verbal
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parison of Grand Averages (30 participants) of RP waveforms for button-press (n = 653
th RPs are quite similar.
 finger was used. The RP has its estimated onset at about -1100 ms.

on-press condition

shows the RPs of all button-press responses from elec-
 and C4. For both electrodes the RP onset was determined
line-deviation by t-test at −1100 ms.

al response condition

aluation of the verbal responses, we  also focused on the
ode in order to allow for a direct comparison. Fig. 2 gives
ew of verbal- and button-press responses at Cz.

 next step the button-press responses were contrasted
 verbal responses. After determining the RP onset by
e regression (t-test) (verbal: −1190 ms,  button-press:

s), a regression analysis was done as well. The results
e correlation between the amplitude of the two differ-

nse forms over time and illustrate the increase of the RPs

) and verbal responses (n = 450) at the electrode position Cz. The time
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Fig. 3. Grand averages (N = 30) of RP waveforms to anticipated end-of-turn detection of (a) button-press responses (finger-movement, n = 653) and (b) verbal responses
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 ATA-analysis exhibited in Table 1, which revealed more 
responses in the motor-response-condition (Table 1). 
ults were evaluated by comparing the point at which the 
started to the corresponding point in the baseline 

e (Fig. 2).
picted RPs reflect the calculated grand averages for each
. 3 shows the waveforms of the RPs for verbal- and button-

ponses supplemented by regression lines.
nset of RPs in the verbal condition was determined by 
deviation via a t-test. Afterwards we made use of the 
n model by Mordkoff et al. (Fig. 2). Therefore we fitted 
ines close by the waveform. One line was fitted across the 
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e RP rises to its peak (Mordkoff and Gianaros, 2000). The 
P response started developing at −1190 ms and the 
ress RP at −1170 ms, which on this time scale is 
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st and primary research question was weather the readi-

A
cond
butt
4038
1170
indic
turn
hear

O
antic
sugg
end 
RP-o
prod
relat
prio

A
diffe
resp
is sm
the 
case
antic
al., 2
mor
ntial (RP), which reflects early, preconscious processing,
more reliable assessment of the timing of the neuronal
underlying turn-anticipation than the conscious ATA
ent does.

be includ
the RP 
features 
This high
processin
egression-based RP onset detection.
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ress responses. Given that the presented turns were
long on average and consisted of 12.11 words, the

90 ms duration corresponds with roughly 3.5 words. This
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ords before its appearance, which means after they have
out of 12.11 words of a turn.

nding supports the assumption that the process of turn 
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 was also confirmed in a Doppler imaging study of speech 
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he onset of speech.
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g time necessary
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Table 2
Descriptive statistics for the difference between verbal and button-press RPs 
(n, number of involved items; ATA, anticipation timing accuracy; SD, standard 
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rehension of natural sentences is much shorter than the 
ded for motor articulation of the physical utterance of a 
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