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Abstract

Recent extensions of learning vector quantization (LVQ) to general
(dis-)similarity data have paved the way towards LVQ classifiers for pos-
sibly discrete, structured objects such as sequences addressed by classical
alignment. In this contribution, we propose a metric learning scheme
based on this framework which allows for autonomous learning of the un-
derlying scoring matrix according to a given discriminative task. Besides
facilitating the often crucial and problematic choice of the scoring matrix
in applications, this extension offers an increased interpretability of the
results by pointing out structural invariances for the given task.

1 Introduction

Because of the intuitive representation of models in terms of prototypical repre-
sentatives, prototype-based methods such as learning vector quantization (LVQ)
enjoy a wide popularity in application domains, particularly if human inspec-
tion and interaction are necessary or life-long model adaptation is considered
[11, 7, 6]. Modern LVQ schemes are accompanied by mathematical guarantees
about their convergence behavior and generalization ability [12, 13]. One suc-
cess story of LVQ is connected to powerful metric adaptation schemes which
enable an autonomous identification of relevant dimensions and their correla-
tions. This not only enhances their representational power but also facilitates
interpretability by means of an attention focus regarding the input features [12].

Most classical LVQ approaches can process vectorial data only, limiting the
suitability of these methods in the context of complex data structures such as
sequences, trees or graph structures, for which a direct vectorial representation
is often not available. Recent developments offer possible extensions of LVQ
towards more general data which are represented in terms of (dis)similarities
only: kernel LVQ, relational LVQ, or generalizations thereof [4]. Although this
opens the way towards complex data structures, it is not clear how to transfer
powerful metric adaptation to this setting.

∗Funding by the DFG priority programme 1527 “autonomous learning” under grant num-
ber HA 2719/6-1, and by the CITEC centre of excellence is gratefully acknowledged.

1



Preprint of the publication [9], as provided by the authors. 2

In this contribution, we focus on classification tasks for sequence data. Align-
ment plays a major role in this context which can efficiently be computed based
on dynamic programming. Alignment similarities heavily depend on the under-
lying scoring function which assigns scores to local (symbolic) comparisons. In
bioinformatics, these scores are typically inferred from evolutionary models [14].
However, if semantic information is missing, scoring choices are often ad hoc.
A few promising approaches for inverse alignment, i.e. to infer local scores from
example alignments, have been proposed [3, 15, 1, 2]. None of them, however,
addresses the problem to infer scores directly from a classification task, i.e. to
simultaneously build a classification model, data alignments, and an underlying
scoring matrix from labeled training data only. We propose an extension of
LVQ schemes which enables the autonomous inference in classification tasks.

2 Sequence alignment

Assume an alphabet Σ is given together with a pairwise dissimilarity measure
dλ(xi, xj) = λij . We denote sequences over Σ as ā = (a1, . . . , aI , . . . , a|ā|) with

length |ā|. A (global) alignment of sequences ā and b̄ consists of extensions
(ā∗, b̄∗) ∈ (Σ ∪ {−})2 of the sequences by gaps such that the results have equal
length. Extending the dissimilarity dλ to gap costs, we can define alignment

costs as

d∗(ā, b̄) = min







|ā∗|
∑

i=1

dλ(a
∗
i , b

∗
i )

∣

∣ (ā∗, b̄∗) is alignment of (ā, b̄)







We assume the normalization dλ(ai, ai) = 0 and dλ(ai, bj) ≥ 0 for ai 6= bj ∈
Σ ∪ {−}. Alignment of gaps is forbidden, which can be realized by setting
dλ(−,−) = ∞. Denoting ā(I) = (a1, . . . , aI) and b̄(J) = (b, . . . , bJ ), alignment
costs can be computed by dynamic programming based on the Bellman equation

d∗(ā(0), b̄(0)) = 0
d∗(ā(I + 1), b̄(J + 1)) = min{d∗(ā(I), b̄(J)) + dλ(aI+1, bJ+1),

d∗(ā(I + 1), b̄(J)) + dλ(−, bJ+1),
d∗(ā(I), b̄(J + 1)) + dλ(aI+1,−)}

To obtain a differentiable dissimilarity we approximate min by the function
softmin(x1, . . . , xn) =

∑

i xi · exp(−βxi)
/
∑

j exp(−βxj) for β → ∞ with the

derivative softmin′(xi) = (1− β · (xi − softmin)) · exp(−βxi)/
∑

j exp(−βxj).

3 Learning vector quantization for dissimilari-

ties

Generalized LVQ (GLVQ) represents vectors ~ai by typical prototypes ~wj with
labels c(~wj) [12]. Classification uses a winner-takes-all rule, i.e. a data point is
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mapped to the class of its closest prototype. Training optimizes the costs

N
∑

i=1

Φ

(

d+(~ai)− d−(~ai)

d+(~ai) + d−(~ai)

)

provided labeled data (~ai, c(~ai)) are given. Φ is monotonic, e.g. the sigmoidal,
d+ refers to the squared distance of ~ai to the closest prototype with a matching
label, d− refers to the closest prototype with a non-matching label.

For non-vectorial data described by a symmetric matrix D of pairwise dis-
similarities, an extension of LVQ schemes to so-called relational LVQ is possible
[10, 4]: a pseudo-euclidean vector space with a bilinear form exists where (un-
known) vectors ~ai give rise to the dissimilarities d [10]. Prototypes are implicitly

represented as convex combinations ~wj =
∑

i α
j
i~a

i with
∑

i α
j
i = 1 inducing

d(~ai, ~wj) =
∑

l

αj
l dil − 0.5

∑

ll′

αj
lα

j
l′dll′

which can be computed based on the coefficients ~αj and the dissimilarities D
only [4]. This allows for an adaptation of the coefficients ~α+ or ~α− of the
closest correct or incorrect prototype, given a sequence index i, without an
explicit reference to the implicit embedding ~ai:

∆α+
l ∼ − Φ′ · 2d−(~ai)

(d+(~ai)+d−(~ai))2 ·
(

dil −
∑

l′ α
+
l dll′

)

∆~α−
l ∼ +Φ′ · 2d+(~ai)

(d+(~ai)+d−(~ai))2 ·
(

dil −
∑

l′ α
−
l dll′

)

If D holds pairwise alignment distances d∗(ā, b̄), this yields LVQ for sequences.

4 Adaptive scoring for alignments

Since sequence alignment crucially depends on a correct choice of the scoring
matrix λ, it seems beneficial to adjust the alignment parameters λ together with
the prototypes. The LVQ framework enables a simple learning scheme: we can
adapt scoring parameters (including gap costs) by gradient techniques. The
derivative of the GLVQ costs for a sequence āi with respect to λkm yields

Φ′ ·
2d−(āi)

(d+(āi) + d−(āi))2
∂d+(āi)/∂λkm − Φ′ ·

2d+(āi)

(d+(āi) + d−(āi))2
∂d−(āi)/∂λkm

with

∂d(āi, w̄j)/∂λkm =
∑

l

αj
l ∂dil/∂λkm − 0.5

∑

ll′

αj
lα

j
l′∂dll′/∂λkm

where the derivative can be computed based on the same dynamic programming
scheme as the alignment itself. Denote the three possible alignment choices as

A1 = d∗(ā(I), b̄(J)) + dλ(aI+1, bJ+1)
A2 = d∗(ā(I + 1), b̄(J)) + dλ(−, bJ+1)
A3 = d∗(ā(I), b̄(J + 1)) + dλ(aI+1,−)
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Then

∂d∗(ā(I+1),b̄(J+1))
∂λkm

= softmin′(A1) ·
(

∂d∗(ā(I),b̄(J))
∂λkm

+ δk(aI+1)δm(bJ+1)
)

+ softmin′(A2) ·
(

∂d∗(ā(I+1),b̄(J))
∂λkm

+ δk(−)δm(bJ+1)
)

+ softmin′(A3) ·
(

∂d∗(ā(I),b̄(J+1))
∂λkm

+ δk(aI+1)δm(−)
)

where δk(ai) tests whether the symbol ai is element k in Σ. For β → ∞, i.e.
when the softmin function behaves like a crisp minimum, the derivative with
respect to λkm converges to the number of times symbols ak and am are paired
in the actual alignment. If we assume that prototypes are close to a data point,
one entry αj

l dominates ~αj , and we can approximate the prototype ~wj by the
corresponding sequence āl. Then, ∂d(āi, w̄j)/∂λkm becomes ∂dil/∂λkm. We
arrive at an update which (i) decreases costs λkm according to the number
of times the pairing (k,m) ∈ (Σ ∪ {−})2 is observed in an alignment of the
sequence āi to the closest prototype sequence with the same label, and (ii)
increases λkm according to the number of times (k,m) appears in an alignment
of āi and the closest prototype sequence with an incorrect labeling. Thus, the
adaptation of the scoring matrix strongly resembles a standard Hebb rule. This
approximation also reduces the computational complexity for ∂d(āi, w̄j)/∂λkm

from O(N2 · |ā| · |b̄| · |Σ|2) to O(|ā| · |b̄|), N being the number of sequences.

5 Experiments

We compare the performance of relational LVQ for pairwise sequence align-
ments D based on a fixed scoring matrix λ vs. the novel scheme as introduced
above, incorporating adaptive alignment costs1. We use 3 data sets. The class
structures in two artificial data sets are designed to demonstrate the abilities
to adequately adapt (i) replacement costs and (ii) gap costs. Both sets contain
random sequences which follow deliberate structural patterns, allowing class
separation for correctly parameterized scoring, but weak separation for other
scoring.

Replacement data: Strings have 12 symbols, which are randomly generated
from the 4-letter alphabet Σ = {A,B,C,D} according to the regular expressions
(A|B)5 (A|B) (C|D) (C|D)5 for the first class, and (A|B)5 (C|D) (A|B) (C|D)5 for
the second. Hence, replacements of A or B by C or D are discriminative, while
replacements A with B, and C with D are not. We expect positive gap costs,
since gaps could circumvent the alignment of the discriminative middle parts.

Gap data: The second data set focuses on gap scoring. Strings in the first
class are random sequences āk ∈ Σ10 of length 10, whereas strings āl ∈ Σ12

in the second class have length 12. Therefore, replacements of letters are not
discriminative, while the introduction of gaps hinders discrimination. Thus, gap
costs should be high, while symbol replacements should cost less.

1The implementation of the alignment was kindly provided by http://gapc.eu.

http://gapc.eu
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(a) Accuracies on Replacement data set
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(b) Accuracies on Gap data set

Figure 1: Classification performance over 10 epochs of training with relational
LVQ on the artificial data sets, comparing the use of a fixed choice of a scoring
matrix λ with the adaptation of λ between prototype updates in every 3rd
epoch.

For both data sets, we create 100 training and test data each. The training
and test accuracy is evaluated over 10 epochs of relational LVQ training with one
prototype per class. The learning rate for the adaptation of λkm is ηrep = 0.003
for replacement scores and ηgap = ηrep · |Σ| for gap scores, to ensure the same
adaptation rate for all parameters. As initialization, we use a standard choice of
λkm = 1/(|Σ|−1) ∀ (k,m) ∈ Σ2, k 6= m, and accordingly, λk = λ k = 1/(2(|Σ|−
1)) ∀ k ∈ Σ, adding some noise to break ties in the initial alignments. All self-
replacement scores remain fixed λkk = 0. During the adaptation, negative values
in λ are reset to 0 to keep D non-negative. The experimental results in Fig. 1
show that the classification accuracy is close to random for the initial λ, whereas
the adaptation of λ leads to a perfect training and test set accuracy after a few
learning epochs. In Fig. 2, the learned λ display ideal scoring matrices.

Chromosomes data: The sequences in the set represent band patterns from
the Copenhagen Chromosomes database [8]. Every sequence encodes the dif-
ferential succession of density levels observed in gray-scale images of a human
chromosome. Since 7 levels of density are distinguished, a 13-letter alphabet
Σ = {a, . . . , f,=,A, . . . ,F} represents a difference coding of successive positions,
where upper and lower case letters mark positive and negative changes respec-
tively, and “=” represents no change2. Here we restrict to a 3-class problem,
using 165 sequences for each of these three chromosomes. (To account for the
complexity of the full data set, a local scoring matrix λc for every class c would
be necessary. This could be handled in a similiar way and is subject of ongo-
ing work.) The meta-parameters and initial setup are the same as described
above. The results shown in Fig. 3 demonstrate a clear improvement of the test
accuracy by 5% after adaptation of the scoring matrix. Interestingly, λ shows
a semantically meaningful pattern, with rather low values in the 1st and 2nd
off-diagonals, which resembles the fact that density differences on neighboring
scales are exchangeable within classes3.

2See details about the data here: http://algoval.essex.ac.uk/data/sequence/copchrom/
3Note that the symbol F did not occur in our selection and was therefore not considered.

http://algoval.essex.ac.uk/data/sequence/copchrom/
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Figure 2: Visualizations of the scoring matrix λ, where color/intensity encodes
the values. On the left is the standard choice (also initial state before adapta-
tion), the middle and right show the final state of λ after adaptation for two
data sets.
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Figure 3: Results for the Chromosomes data set, where the (semantically sound)
adaptation of λ (right) yield an improvement of 5% in test accuracy (left).

6 Discussion

We have introduced a generic scheme for supervised metric adaptation in se-
quence alignments to facilitate prototype-based classifier training for struc-
tures, and we have presented first promising experiments of the technique which
demonstrate that relevance learning of scoring parameters for structural met-
rics is possible. Note that, unlike [5], we do not assume differentiability of the
dissimilarity with respect to the data structures itself but differentiability with
respect to the adaptive metric parameters only. Thus this approach opens the
way towards efficient metric adaptation schemes for distance based approached
in discrete structure spaces such as sequences or, as a generalization, trees or
graph structures. Besides an improved classification accuracy and generaliza-
tion ability of the models, this method can enhance the interpretability of the
resulting classifiers by pointing out the relevance of structural edit operations.

So far, we have considered an approximation of the exact gradients by Hebb
terms due to the greatly reduced computational complexity; investigating the
robustness and accuracy of learning rules based on the exact formulas and better
approximations thereof are the subject of ongoing work. First tests using cross-
validation on the above data sets confirm the promising results presented here.
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