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Abstract. In this paper we derive a new handy integral equation for the free boundary
of infinite time horizon, continuous time, stochastic, irreversible investment problems with un-
certainty modeled as a one-dimensional, regular diffusion X0,x. The new integral equation
allows to explicitly find the free boundary b(·) in some so far unsolved cases, as when X0,x is a
three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic
arguments. Indeed, we first show that b(X0,x(t)) = l∗(t), with l∗(t) unique optional solution of
a representation problem in the spirit of Bank-El Karoui [4]; then, thanks to such identification
and the fact that l∗ uniquely solves a backward stochastic equation, we find the integral problem
for the free boundary.
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Theorem, base capacity.

MSC2010 subsject classification: 91B70, 93E20, 60G40, 60H25.

JEL classification: C02, E22, D92, G31.

1 Introduction

In this paper we find a new integral equation for the free boundary b(·) arising in infinite time
horizon, continuous time, stochastic, irreversible investment problems of the form

sup
ν

E
{∫ ∞

0
e−rt π(X0,x(t), y + ν(t))dt−

∫ ∞
0

e−rtdν(t)

}
, (1.1)

with X0,x regular, one-dimensional diffusion modeling market’s uncertainty. The integral prob-
lem for b(·) is derived by means of purely probabilistic arguments. After having completely
characterized the solution of singular control problem (1.1) by some first order conditions for
optimality and in terms of the base capacity process l∗, unique optional solution of a representa-
tion problem à la Bank-El Karoui [4], we show that l∗(t) = b(X0,x(t)). Such identification, strong
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Markov property and a beautiful result in [15] on the joint law of a regular, one-dimensional
diffusion and its running supremum both stopped at an independent exponentially distributed
random time, lead to the integral equation for b(·)

ψr(x)

∫ x

x

(∫ z

x
πc(y, b(z))ψr(y)m(dy)

)
s(dz)

ψ2
r (z)

= 1. (1.2)

Here πc(x, c) is the instantaneous marginal profit function, x and x the endpoints of the domain of
X0,x, r the discount factor, G the infinitesimal generator associated to X0,x, ψr(x) the increasing
solution to the equation Gu = ru, and m(dx) and s(dx) the speed measure and the scale
function measure of X0,x, respectively. The rather simple structure of equation (1.2) allows to
explicitly find the free boundary even in some non-trivial settings; that is, for example, the case
of X0,x given by a three-dimensional Bessel process in which (for a Cobb-Douglas operating
profit function)

b(x) =

[(
α+ β

2β

)
x2
ψ′r(x)

g(x)

]− 1
1−β

, x > 0, (1.3)

with ψ′r(x) the first derivative of the increasing function ψr(x) = sinh (
√
2rx)

x , and g(x) :=∫ x
0 y

α+1 sinh (
√

2ry)dy. Such result appears here for the first time.
The connection between irreversible investment problems under uncertainty, optimal stop-

ping and free boundary problems is well known in the economic and mathematical literature
(cf., e.g., the monography by Dixit and Pyndick [18]). From the mathematical point of view,
a problem of optimal irreversible investment may be modeled as a ‘monotone follower’ prob-
lem; that is, a problem in which investment strategies are nondecreasing stochastic processes,
not necessarily absolutely continuous with respect to the Lebesgue measure. Work on ‘mono-
tone follower’ problems and their application to Economics started with the pioneering papers
by Karatzas, Karatzas and Shreve, El Karoui and Karatzas (cf. [24], [25] and [19]), among
others. These Authors studied the problem of optimally minimizing expected costs when the
controlled diffusion is a Brownian motion tracked by a nondecreasing process, i.e. the monotone
follower. They showed that one may associate to such a singular stochastic control problem a
suitable optimal stopping problem whose value function v is related to the value function V of
the original control problem by v = ∂

∂xV . Moreover, the optimal stopping time τ∗ is such that
τ∗ = inf{t ≥ 0 : ν∗(t) > 0}, with ν∗ the optimal singular control. Later on, this kind of link has
been established also for more complicated dynamics of the controlled diffusion; that is the case,
for example, of a Geometric Brownian motion [1], or of a quite general controlled Ito diffusion
(see [6] and [8], among others).

Usually (see [10] and [11], [27], [28], [31] and [32], among others) the optimal irreversible
investment policy consists in waiting until the shadow value of installed capital is below the
marginal cost of investment; on the other hand, the times at which the shadow value of in-
stalled capital equals the marginal cost of investment are optimal times to invest. It follows
that from the mathematical point of view one must find the region in which it is profitable to
invest immediately (the so called ‘stopping region’) and the region in which it is optimal to
wait (the so called ‘continuation region’). The boundary between these two regions is the free
boundary of the optimal stopping problem naturally associated to the singular control one. The
optimal investment is then the least effort to keep the controlled process inside the closure of
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the ‘continuation region’; that is, in a diffusive setting, the local time of the optimal controlled
diffusion at the free boundary.

In the last decade many papers addressed singular stochastic control problems by means of a
first order conditions approach (cf., e.g., [2], [5], [12], [13], [32] and [34]), not necessarily relying on
any Markovian or diffusive structure. The solution of the optimization problem is indeed related
to that of a representation problem for optional processes (cf. [4]): the optimal policy consists
in keeping the state variable always above the lower bound l∗(t), unique optional solution of a
stochastic backward equation à la Bank-El Karoui [4]. Clearly such policy acts like the optimal
control of singular stochastic control problems as the original monotone follower problem (e.g.,
cf. [24] and [25]) or, more generally, irreversible investment problems (cf. [1], [11], [27] and [28],
among others). Therefore, in a diffusive setting, the signal process l∗ and the free boundary b(·)
arising in singular stochastic control problems must be linked. In [12] the Authors studied a
continuous time, singular stochastic irreversible investment problem over a finite time horizon
and they showed that for a production capacity given by a controlled Geometric Brownian
motion with deterministic, time-dependent coefficients one has l∗(t) = b(t).

In this paper we aim to understand the meaning of process l∗ for the whole class of infinite
time horizon, irreversible investment problems of type (1.1). By means of a first order conditions
approach we first find the optimal investment policy in terms of the ‘base capacity’ process l∗(t)
(cf. [32], Definition 3.2), unique solution of a representation problem in the spirit of Bank-
El Karoui [4]. That completely solves control problem (1.1). Invest just enough to keep the
production capacity above l∗(t) turns out to be the optimal investment startegy at time t. The
base capacity process defines therefore a desirable value of capacity that the controller aims to
maintain. We show indeed that l∗(t) = b(X0,x(t)), where b(·) is the free boundary of the optimal
stopping problem

inf
τ≥0

E
{∫ τ

0
e−rsπc(X

0,x(s), y)ds+ e−rτ
}

(1.4)

associated to (1.1) (cf., e.g., [1], Lemma 2). Such identification, together with the fact that l∗

uniquely solves a backward stochastic equation (see (3.3) below), yields a new integral equation
for the free boundary (cf. (1.2) and also our Theorem 3.8 below). That equation does not
rely on Ito’s formula and does not require any smooth-fit property or a priori continuity of b(·)
to be applied. In this sense it distinguishes from that of Pedersen and Peskir [29] (used in
the context of stochastic, irreversible investment problems in [11]) which is instead based on a
local time space calculus for semimartingales on continuous surfaces [30]. Moreover, our result
differs also from that of Federico and Pham [20] obtained via a viscosity solution approach for
nondegenerate diffusions and a quadratic cost functional.

The paper is organized as follows. Section 2 introduces the optimal control problem. In
Section 3 we find the optimal investment strategy, we identify the link between the ‘base capacity’
process and the free boundary and we derive the integral equation for the latter one. Finally, in
Section 4 we discuss some relevant examples, as the case in which the economic shock X0,x is a
Geometric Brownian motion, a three-dimensional Bessel process or a CEV process.
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2 The Optimal Investment Problem

On a complete filtered probability space (Ω,F ,P), with {Ft, t ≥ 0} the filtration generated by an
exogenous Brownian motion {W (t), t ≥ 0} and augmented by P-null sets, consider the optimal
irreversible investment problem of a firm. The uncertain status of the economy is represented
by the one-dimensional, time-homogeneous diffusion {X0,x(t), t ≥ 0} with state space I ⊆ R,
unique pathwise solution of the stochastic differential equation{

dX0,x(t) = µ(X0,x(t))dt+ σ(X0,x(t))dW (t)
X0,x(0) = x,

(2.1)

for some Borel functions µ : I 7→ R and σ : I 7→ (0,+∞) such that∫ x+ε

x−ε

1 + |µ(y)|
σ2(y)

dy < +∞, for some ε > 0, (2.2)

for every x ∈ int(I). Local integrability condition (2.2) implies that the diffusion process X0,x

is regular in I, i.e. X0,x reaches y with positive probability starting at x, for any x and y in I.
Hence the state space I cannot be decomposed into smaller sets from which X0,x could not exit
(see, e.g., [33], Chapter VII). We shall denote by m(dx), s(dx), G and Px the speed measure,
the scale function measure, the infinitesimal generator and the probability distribution of X0,x,
respectively. Notice that, under (2.2), m(dx) and s(dx) are well defined, and there always exist
two linearly independent, positive solutions of the ordinary differential equation Gu = βu, β > 0
(cf. [21]). These functions are uniquely defined up to multiplication, if one of them is required
to be strictly increasing and the other to be strictly decreasing. Finally, throughout this paper
we assume that I is an interval with endpoints −∞ ≤ x < x ≤ +∞.

The firm’s manager aims to increase the production capacity Cy,ν(t) by optimally choosing
an irreversible investment plan ν ∈ So, where

So := {ν : Ω× R+ 7→ R+, nondecreasing, left-continuous, adapted s.t. ν(0) = 0, P− a.s.}

is the non empty, convex set of irreversible investment processes. We suppose that

Cy,ν(t) = y + ν(t), Cy,ν(0) = y ≥ 0, (2.3)

that the firm makes profit at rate π(x, c) when its own capacity is c and the status of economy
is x, and that the firm’s manager discounts revenues and costs at constant rate r ≥ 0. As for
the operating profit function π : R× R+ 7→ R+ we make the following

Assumption 2.1.

1. The mapping c 7→ π(x, c) is strictly increasing and strictly concave with continuous deriva-
tive πc(x, c) := ∂

∂cπ(x, c) satisfying the Inada conditions

lim
c→0

πc(x, c) =∞, lim
c→∞

πc(x, c) = 0.

2. The process (ω, t) 7→ π(X0,x(ω, t), Cy,ν(ω, t)) is P⊗ e−rtdt integrable for any ν ∈ So.
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The optimal investment problem is then

V (x, y) := sup
ν∈So
Jx,y(ν), (2.4)

where the profit functional Jx,y(ν), net of investment costs, is defined as

Jx,y(ν) = E
{∫ ∞

0
e−rt π(X0,x(t), Cy,ν(t))dt−

∫ ∞
0

e−rtdν(t)

}
. (2.5)

Since π(x, ·) is strictly concave, So is convex and Cy,ν is affine in ν, then, if an optimal solution
ν∗ to (2.4) does exist, it is unique. Under further minor assumptions the existence of a solution
to (2.4) is a well known result (see, e.g., [32], Theorem 2.3, for an existence proof in a not
necessarily Markovian framework).

3 The Optimal Solution and the Integral Equation for the Free
Boundary

A problem similar to (2.4) (with depreciation in the capacity dynamics) has been completely
solved by Riedel and Su in [32], or (in the case of a time-dependent, stochastic finite fuel) by
Bank in [5]. By means of a first order conditions approach and without relying on any Markovian
or diffusive assumption, these Authors show that it is optimal to keep the production capacity
always above a desirable lower value of capacity, the base capacity process (see [32], Definition
3.1), which is the unique optional solution of a stochastic backward equation in the spirit of
Bank-El Karoui [4]. In this Section we aim to understand the meaning of the base capacity
process l∗ in our setting.

Following [5], [13] or [32] (among others), we start by deriving first order conditions for
optimality and by finding the solution to (2.4) in terms of a base capacity process. Then, as a
main new result, we identify the link between l∗ and the free boundary of the optimal stopping
problem naturally associated to the original singular control one (cf. (2.4)) and we determine
an integral equation for the latter one.

Let T denote the set of all Ft-stopping times τ ≥ 0 a.s. and notice that we may associate to
Jx,y(ν) its supergradient as the unique optional process defined by

∇Jx,y(ν)(τ) := E
{∫ ∞

τ
e−rsπc(X

0,x(s), Cy,ν(s))ds
∣∣∣Fτ}− e−rτ , (3.1)

for any τ ∈ T .

Theorem 3.1. Under Assumption 2.1, a process ν∗(t) ∈ So is the unique optimal investment
strategy for problem (2.4) if and only if the following first order conditions for optimality

∇Jx,y(ν∗)(τ) ≤ 0,

E
{∫ ∞

0
∇Jx,y(ν∗)(t)dν∗(t)

}
= 0,

(3.2)

hold true for any τ ∈ T .
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Proof. Sufficiency follows from concavity of π(x, ·) (see, e.g., [5]), whereas for necessity see [34],
Proposition 3.2.

Even if first order conditions (3.2) completely characterize the optimal investment plan ν∗,
they are not binding at any time and thus they cannot be directly applied to determine ν∗.
Nevertheless, the optimal control may be obtained in terms of the solution of a suitable Bank-El
Karoui’s representation problem [4] directly related to (3.2).

For a fixed T ≤ +∞, the Bank-El Karoui Representation Theorem (cf. [4], Theorem 3)
states that, given

• an optional process Y = {Y (t), t ∈ [0, T ]} of class (D), lower-semicontinuous in expectation
with Y (T ) = 0,

• a nonnegative optional random Borel measure µ(ω, dt),

• f(ω, t, y) : Ω × [0, T ] × R 7→ R such that f(ω, t, ·) : R 7→ R is continuous in y, strictly
decreasing from +∞ to −∞, and the stochastic process f(·, ·, y) : Ω × [0, T ] 7→ R is
progressively measurable and integrable with respect to dP⊗ µ(ω, dt),

then there exists a unique optional process ξ = {ξ(t), t ∈ [0, T ]} such that for all τ ∈ T

f(t, sup
τ≤u≤t

ξ(u))1[τ,T )(t) ∈ L1 (dP⊗ µ(ω, dt))

and

E
{ ∫ T

τ
f(s, sup

τ≤u≤s
ξ(u))µ(ds)

∣∣∣Fτ } = Y (τ).

Proposition 3.2. Under Assumption 2.1 there exists a unique strictly positive optional solution
l∗ to the backward stochastic equation

E
{∫ ∞

τ
e−rsπc(X

0,x(s), sup
τ≤u≤s

l∗(u))ds
∣∣∣Fτ} = e−rτ , τ ∈ T . (3.3)

Moreover, the process l∗ has upper semi right-continuous paths, i.e. l∗(t) ≥ lim sups↓t l
∗(s).

Proof. We apply the Bank-El Karoui Representation Theorem with T = +∞ to

Y (ω, t) := e−rt, µ(ω, dt) := e−rtdt (3.4)

and

f(ω, t, y) :=


πc

(
X(ω, t),− 1

y

)
, for y < 0,

−y , for y ≥ 0.

(3.5)

Then there exists a unique optional process ξ∗ such that, for all τ ∈ T

E
{ ∫ ∞

τ
e−rsf(s, sup

τ≤u≤s
ξ∗(u)) ds

∣∣∣Fτ } = e−rτ . (3.6)
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If now ξ∗ has upper semi right-continuous paths and it is strictly negative, then the strictly
positive, upper semi right-continuous process l∗(t) = − 1

ξ∗(t) solves

e−rτ = E
{ ∫ ∞

τ
e−rsπc

(
X0,x(s),

1

− supτ≤u≤s(− 1
l∗(u))

)
ds
∣∣∣Fτ }

= E
{ ∫ ∞

τ
e−rsπc

(
X0,x(s),

1

infτ≤u≤s(
1

l∗(u))

)
ds
∣∣∣Fτ }

= E
{ ∫ ∞

τ
e−rsπc(X

0,x(s), sup
τ≤u≤s

l∗(u)) ds
∣∣∣Fτ },

thanks to (3.5) and (3.6).
To conlude the proof, we must show that ξ∗(t) is indeed upper semi right-continuous and

strictly negative. We start by proving upper semi right-continuity of ξ∗ following the ideas
in [7], Theorem 1. By [16], Proposition 2, it suffices to show that limn→∞ ξ

∗(τn) ≤ ξ∗(τ),
for any sequence of stopping times {τn}n≥1 such that τn ↓ τ and for which there exists a.s.
ζ := limn→∞ ξ

∗(τn). For Y , µ and f as in (3.4) and (3.5), set

Ξl(t) := ess inf
τ≥t

E
{∫ τ

t
f(s, l)µ(ds) + Y (τ)

∣∣∣Ft}, l ∈ R, t ≥ 0,

and recall that ξ∗(t) = sup{l ∈ R : Ξl(t) = Y (t)} (cf. [4]). Now, given ε > 0, for such sequence
of stopping times we have

Ξζ−ε(τ) = lim
n→∞

Ξζ−ε(τn) = Y (τ),

where we have used right-continuity of t 7→ Ξl(t), the fact that l 7→ Ξl(t) is a continuous,
decreasing mapping (cf. [4], Lemma 4.12) and the threshold representation of ξ∗. Hence ζ− ε ≤
ξ∗(τ) and upper semi right-continuity of ξ∗ follows by arbitraryness of ε. Finally, we now show
that ξ∗ is strictly negative. Define

σ := inf{t ≥ 0 : ξ∗(t) ≥ 0},

then for ω ∈ {ω : σ(ω) < +∞}, the upper semi right-continuity of ξ∗ implies ξ∗(σ) ≥ 0 and
therefore supσ≤u≤s ξ

∗(u) ≥ 0 for all s ≥ σ. Therefore, (3.6) with τ = σ, i.e.

e−rσ = −E
{ ∫ ∞

σ
e−rs sup

σ≤u≤s
ξ∗(u) ds

∣∣∣Fσ }, (3.7)

is not possible for ω ∈ {ω : σ(ω) < +∞} since the right-hand side of (3.7) is nonpositive, whereas
the left-hand side is always strictly positive. It follows that σ = +∞ a.s. and hence ξ∗(t) < 0
for all t ≥ 0 a.s.

Proposition 3.3. Under Assumption 2.1, the unique optimal irreversible investment process
for problem (2.4) is given by

ν∗(t) = ( sup
0≤s≤t

l∗(s)− y) ∨ 0, (3.8)

where l∗(t) is the unique optional upper semi right-continuous solution to (3.3).
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Proof. See, e.g., [32], Theorem 3.2.

In the literature on stochastic, irreversible investment problems (cf. [1], [10], [11] and [12],
among others), or more generally on singular stochastic control problems of monotone follower
type (see, e.g., [5], [19], [25]), it is well known that to a monotone control problem one may
associate a suitable optimal stopping problem whose optimal solution, τ∗, is related to the
optimal control, ν∗, by the simple relation τ∗ = inf{t ≥ 0 : ν∗(t) > 0}. Economically, it means
that a firm’s manager has to decide how to optimally invest or, equivalently, when to profitably
exercise the investment option. Indeed, if we introduce the level passage times τν(q) := inf{t ≥
0 : ν(t) > q}, q ≥ 0, then for any ν ∈ So and y ≥ 0 we may write (cf., e.g., [1], Lemma 2)

Jx,y(ν)− Jx,y(0) =

∫ ∞
y

E
{∫ ∞

τν(z−y)
e−rsπc(X

0,x(s), z)ds− e−rτν(z−y)
}
dz

≤
∫ ∞
y

sup
τ≥0

E
{∫ ∞

τ
e−rsπc(X

0,x(s), z)ds− e−rτ
}
dz

=

∫ ∞
y

E
{∫ ∞

0
e−rsπc(X

0,x(s), z)ds

}
dz

−
∫ ∞
y

inf
τ≥0

E
{∫ τ

0
e−rsπc(X

0,x(s), z)ds+ e−rτ
}
dz.

Therefore, if a process ν∗ ∈ So is such that its level passage times are optimal for the previous
optimal stopping problems, then ν∗ must be optimal for problem (2.4). Hence

v(x, y) := inf
τ≥0

E
{∫ τ

0
e−rsπc(X

0,x(s), y)ds+ e−rτ
}

(3.9)

is the optimal timing problem naturally associated to optimal investment problem (2.4). Notice
that v(x, y) ≤ 1, for all x ∈ I and y > 0, and that the mapping y 7→ v(x, y) is strictly decreasing
for any x ∈ I, being π(x, ·) strictly concave. We may now define the continuation region

C := {(x, y) ∈ I × (0,∞) : v(x, y) < 1} (3.10)

and the stopping region

S := {(x, y) ∈ I × (0,∞) : v(x, y) = 1}. (3.11)

Intuitively S is the region in which it is optimal to invest immediately, whereas C is the region
in which it is profitable to delay the investment option. The decreasing property of y 7→ v(x, y)
implies that S is below C and therefore that

b(x) := sup{y > 0 : v(x, y) = 1}, x ∈ I, (3.12)

is the boundary between these two regions, i.e. the free boundary.
The next Theorem gives us a new representation for the base capacity l∗ in our setting.
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Theorem 3.4. Under Assumption 2.1 one has

l∗(t) = sup{y > 0 : v(X0,x(t), y) = 1}, (3.13)

with l∗(t) the unique optional solution to (3.3) and v(x, y) being defined as in (3.9).

Proof. Recall that process ξ∗ of (3.6) admits the representation (cf. [4], formula (23) on page
1049)

ξ∗(t) = sup

{
l < 0 : ess inf

τ≥t
E
{∫ τ

t
e−rsπc(X

0,x(s),−1

l
)ds+ e−rτ

∣∣∣Ft} = e−rt
}
. (3.14)

To take care of the previous conditional expectation, let now (Ω,P) be the canonical probability
space where P is the measure induced by X0,x on C(R+), the space of continuous functions on
R+. Moreover, let θt : Ω 7→ Ω, t ≥ 0, be the shift operator (cf., e.g., [26], page 77) such that if
X is the coordinate mapping process X(ω, t) = ω(t), then ω(s) ◦ θt = ω(s + t), s ≥ 0. Hence,
for any τ ∈ T ,

E
{∫ τ

t
e−rsπc(X

0,x(s),−1

l
)ds+ e−rτ

∣∣∣Ft}
= e−rtE

{∫ τ−t

0
e−ruπc(X

0,x(u+ t),−1

l
)du+ e−r(τ−t)

∣∣∣Ft}
= e−rtE

{(∫ τ

0
e−ruπc(X

0,x(u),−1

l
)du+ e−rτ

)
◦ θt

∣∣∣Ft}
= e−rtE

{∫ τ

0
e−ruπc(X

0,z(u),−1

l
)du+ e−rτ

}
z=X0,x(t)

,

by Markov property, and therefore

ξ∗(t) = sup

{
l < 0 : ess inf

τ≥t
E
{∫ τ

t
e−rsπc(X

0,x(s),−1

l
)ds+ e−rτ

∣∣∣Ft} = e−rt
}

= sup

{
l < 0 : v(X0,x(t),−1

l
) = 1

}
,

with v as in (3.9).
Finally, since l∗(t) = − 1

ξ∗(t) (cf. proof of Proposition 3.2), we may write for y > 0

l∗(t) = − 1

sup

{
l < 0 : v(X0,x(t),−1

l ) = 1

} =
1

− sup

{
− 1

y < 0 : v(X0,x(t), y) = 1

}
=

1

inf

{
1
y > 0 : v(X0,x(t), y) = 1

} = sup

{
y > 0 : v(X0,x(t), y) = 1

}
. (3.15)
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Theorem 3.5. Under Assumption 2.1 one has

l∗(t) = b(X0,x(t)). (3.16)

Proof. Theorem 3.4 and (3.12) immediately yield the result.

Theorem 3.5 clarifies why in the literature (cf. [2], [13] or [32], among others) one usually
refers to l∗ as a ‘desirable value of capacity’ that the controller aims to maintain in a ‘minimal
way’. Indeed, as in the classical monotone follower problems (see, e.g., [19] and [25]), the
optimal investment policy ν∗ (cf. Proposition 3.3) is the solution of a Skorohod problem being
the least effort needed to reflect the production capacity at the moving (random) boundary
l∗(t) = b(X0,x(t)); that is,

ν∗(t) = sup
0≤s≤t

(b(X0,x(s))− y) ∨ 0.

In Theorem 3.8 below, we shall show that relation (3.16) allows to find by (3.3), and by
exploiting purely probabilistic arguments, an integral equation for the free boundary. For that
we also need to prove nondecreasing property of b(·) which is a direct consequence of the following
result.

Proposition 3.6. If x 7→ πc(x, c) is a nondecreasing mapping, then, under Assumption 2.1,
x 7→ v(x, y) is nondecreasing for any y > 0.

Proof. For y > 0, take x1 > x2, x1, x2 ∈ I, let τ∗ be optimal for (x1, y) and θ ∈ T be a generic
stopping time. Then

v(x1, y)− v(x2, y) ≥ E
{∫ τ∗

0
e−rsπc(X

0,x1(s), y)ds+ e−rτ
∗ −

∫ θ

0
πc(X

0,x2(s), y)ds− e−rθ
}
,

for any θ ∈ T . Take now θ ≡ τ∗ to obtain

v(x1, y)− v(x2, y) ≥ E
{∫ τ∗

0
e−rs[πc(X

0,x1(s), y)− πc(X0,x2(s), y)]ds

}
≥ 0,

being x 7→ X0,x(t) a.s. increasing for any t ≥ 0.

Corollary 3.7. Assume that x 7→ πc(x, c) is a nondecreasing mapping. Then, under Assumption
2.1 the free boundary b(x) between the continuation region and the stopping region is nondecreas-
ing for any x ∈ I.

Proof. Use the result of Proposition 3.6 and arguments similar to those in [22], proof of Propo-
sition 2.2.

We may now state the main result of this paper.

Theorem 3.8. Assume x 7→ πc(x, c) nondecreasing and let Assumption 2.1 hold. Denote by
G the infinitesimal generator associated to X0,x, and by ψr(x) the increasing solution to the
equation Gu = ru. Moreover, let m(dx) and s(dx) be the speed measure and the scale function
measure, respectively, associated to the diffusion X0,x. Then, the free boundary b(x) between the
continuation region and the stopping region is the unique nondecreasing solution to the integral
equation

ψr(x)

∫ x

x

(∫ z

x
πc(y, b(z))ψr(y)m(dy)

)
s(dz)

ψ2
r (z)

= 1. (3.17)



Irreversible Investment: An Integral Equation for the Free Boundary 11

Proof. Since l∗ uniquely solves (3.3) and l∗(t) = b(X0,x(t)) (cf. Theorem 3.5), then, for any
τ ∈ T ,

r = E
{∫ ∞

τ
re−r(s−τ)πc(X

0,x(s), sup
τ≤u≤s

b(X0,x(u)))ds
∣∣∣Fτ}

= E
{∫ ∞

0
re−rtπc(X

0,x(t+ τ), b( sup
0≤u≤t

X0,x(u+ τ)))dt
∣∣∣Fτ}, (3.18)

where in the second equality we have used the fact that b(·) is nondecreasing by Corollary 3.7.
Now, by strong Markov property, (3.18) amounts to find b(·) such that

Ex
{∫ ∞

0
re−rtπc(X

0,x(t), b( sup
0≤u≤t

X0,x(u)))dt

}
= r;

that is, such that

Ex
{
πc(X

0,x(τr), b(M
0,x(τr)))

}
= r,

where M0,x(t) := sup0≤s≤tX
0,x(s) and τr denotes an independent exponentially distributed

random time with parameter r. Integral equation (3.17) now follows since for a one-dimensional
regular diffusion X0,x (cf. [15], page 185) one has

Px(X0,x(τr) ∈ dy,M0,x(τr) ∈ dz) = r
ψr(x)ψr(y)

ψ2
r (z)

m(dy)s(dz), y ≤ z, x ≤ z.

Notice that the arguments used in the proof of Theorem 3.8 resemble those of [3], proof of
Lemma 3.2. However, in [3] the Authors studied a representation problem of a different form
(their equation (34)) and did not point out any connection between its solution and the free
boundary of the associated optimal stopping problem. Our integral equation (3.17) distinguishes
also from that of Pedersen and Peskir in [29] based on a local time space calculus formula for
semimartingales on continuous surfaces [30], or from the result of Federico and Pham [20] for
nondegenerate diffusions and quadratic costs. Indeed, thanks to (3.16) and strong Markov
property, (3.17) follows immediately from backward equation (3.3) for l∗(t) = b(X0,x(t)), and
therefore it does not require any regularity of the value function, smooth-fit property or a priori
continuity of b(·) itself to be applied. It thus represents an extremely useful tool to determine
the free boundary of the whole class of infinite time horizon, singular, stochastic irreversible
investment problems of type (2.4). As we shall see in the next Section, equation (3.17) may be
analitically solved in some non-trivial cases.

Remark 3.9. The result of Theorem 3.5 still holds if one introduces depreciation in the pro-
duction capacity dynamics as in [32]; that is, if

Cy,ν(t) = −ρCy,ν(t)dt+ dν(t), Cy,ν(0) = y ≥ 0,

for some ρ > 0. Moreover, in this case one has (cf. [32], Theorem 3.2)

ν∗(t) =

∫
[0,t)

e−ρsdν∗(s), with ν∗(t) = sup
0≤s≤t

(b(X0,x(s))− ye−ρs

e−ρs

)
∨ 0.
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4 Explicit Results

In this Section we aim to explicitly solve integral equation (3.17) when the economic shock
X0,x is a Geometric Brownian motion, a three-dimensional Bessel process and a CEV (constant
elasticity of volatility) process. We shall find the free boundary b(·) of optimal stopping problem

(3.9) for Cobb-Douglas and logarithmic operating profit functions; that is, for π(x, c) = xαcβ

α+β
with α, β ∈ (0, 1), and π(x, c) = α ln(x) + β ln(c), α, β > 0, respectively.

To the best of our knowledge, this is the first time that the free boundary of a singular
stochastic control problem of type (2.4) (and of the optimal stopping problem associated) is
explicitly determined for underlying given by a three-dimensional Bessel process or by a CEV
process.

4.1 Geometric Brownian Motion and Cobb-Douglas Operating Profit

Let X0,x(t) = xe(µ−
1
2
σ2)t+σW (t), x > 0, with σ2 > 0 and µ ∈ R, and let the operating profit

function be of Cobb-Douglas type; that is, π(x, c) = xαcβ

α+β for α, β ∈ (0, 1). If we denote by

δ := µ
σ2 − 1

2 , then it is well known (cf., e.g., [9]) that

m(dx) =
2

σ2
x2δ−1dx

and

s(dx) :=


x−2δ−1dx, δ 6= 0,

1
xdx, δ = 0.

Finally, the ordinary differential equation Gu = ru, i.e. 1
2σ

2x2u′′(x) + µxu′(x) = ru, admits the
increasing solution

ψr(x) = xγ1 ,

where γ1 is the positive root of the equation 1
2σ

2γ(γ − 1) + µγ = r.

Proposition 4.1. For any δ ∈ R and x > 0, one has

b(x) = Kδx
α

1−β , (4.1)

with Kδ :=
[
σ2γ1(α+ γ1 + 2δ)

(
α+β
2β

) ]− 1
1−β

.

Proof. Let us start with the case δ 6= 0. For any x > 0 by (3.17) we have∫ ∞
x

(∫ z

0
yα+γ1+2δ−1dy

)
bβ−1(z)z−2δ−1−2γ1dz = x−γ1

(
α+ β

2β

)
σ2;

that is, ∫ ∞
x

bβ−1(z)zα−γ−1dz = σ2(α+ γ1 + 2δ)

(
α+ β

2β

)
x−γ1 .

Take now b(x) = (Aδz)
α

1−β , for some constant Aδ, to obtain

A−αδ

∫ ∞
x

z−γ1−1dz =
A−αδ
γ1

x−γ1 = σ2(α+ γ1 + 2δ)

(
α+ β

2β

)
x−γ1 ,
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which is satisfied by Aδ :=
[
σ2γ1(α + γ1 + 2δ)

(
α+β
2β

) ]− 1
α

. Hence b(x) = Kδx
α

1−β with Kδ :=

A
α

1−β . Similar calculations also apply to the case δ = 0 to have b(x) = K0x
α

1−β .

4.2 Geometric Brownian Motion and Logarithmic Operating Profit

In the same setting of Section 4.1, assume now that π(x, c) = α ln(x) + β ln(c), α, β > 0. Then

Proposition 4.2. For any δ ∈ R and x > 0 one has

b(x) =
2β

σ2γ1(2δ + γ1)
. (4.2)

Proof. For δ 6= 0 and x > 0 we may write from (3.17)

xγ1
∫ ∞
x

(∫ z

0

β

b(z)
yγ1

2

σ2
y2δ−1dy

)
z−2δ−1

z2γ1
dz = 1;

that is, ∫ ∞
x

(∫ z

0
yγ1+2δ−1dy

)
z−2δ−1−2γ1

b(z)
dz =

σ2

2β
x−γ1 .

By integrating one easily obtains∫ ∞
x

z−γ1−1

b(z)
dz =

σ2(2δ + γ1)

2β
x−γ1 ,

which is solved by b(x) = 2β
σ2γ1(2δ+γ1)

. Similar arguments apply to the case δ = 0 to obtain

b(x) = 2β
σ2γ21

.

4.3 Three-Dimensional Bessel Process and Logarithmic Operating Profit

Let now X0,x(t) be a three-dimensional Bessel process; that is, the strong solution of

dX0,x(t) =
1

X0,x(t)
dt+ dW (t), X0,x(0) = x > 0.

It is a diffusion with state space (0,∞), generator G := 1
2

d
dx2

+ 1
x
d
dx and scale and speed measures

given by s(dx) = x−2dx and m(dx) = 2x2dx, respectively (cf. [23], Chapter VI). Further, since
X0,x(t) may be characterized as a killed Brownian motion at zero, conditioned never to hit
zero, the three-dimensional Bessel process may be viewed as an excessive transform of a killed
Brownian motion with excessive function h(x) = x; that is, the scale function of the Brownian

motion. Therefore ψr(x) = sinh (
√
2rx)

x (cf. [23], Chapter VI or [15], Section 6.2, among others).
Moreover, assume that the operating profit function is of logarithmic type, i.e. π(x, c) =

α ln(x) + β ln(c), α, β > 0. Then

Proposition 4.3. For any x > 0, one has

b(x) =
β

r
. (4.3)
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Proof. In this case (3.17) becomes

1

2β

x

sinh (
√

2rx)
=

∫ ∞
x

(∫ z

0
y sinh (

√
2ry)dy

)
dz

b(z) sinh2 (
√

2rz)
=

∫ ∞
x

g(z)
dz

b(z) sinh2 (
√

2rz)
,

with g(x) :=
∫ x
0 y sinh (

√
2ry)dy = 1

2r [
√

2rx cosh (
√

2rx)−sinh (
√

2rx)], thanks to an integration

by parts. Take now b(x) := β
r and the result follows since∫

g(x)

sinh2 (
√

2rz)
= − 1

2r

x

sinh (
√

2rx)
+ const.

4.4 Three-Dimensional Bessel Process and Cobb-Douglas Operating Profit

In the same setting of Section 4.3, suppose now that the operating profit is of Cobb-Douglas
type; that is, π(x, c) = xαcβ

α+β for α, β ∈ (0, 1). The following result holds.

Proposition 4.4. For any x > 0 one has

b(x) =

[(
α+ β

2β

)
x2
ψ′r(x)

g(x)

]− 1
1−β

, (4.4)

where ψ′r(x) denotes the first derivative of the increasing function ψr(x) = sinh (
√
2rx)

x , and g(x) :=∫ x
0 y

α+1 sinh (
√

2ry)dy.

Proof. From integral equation (3.17) we may write(
α+ β

2β

)
x

sinh (
√

2rx)
=

∫ ∞
x

(∫ z

0
yα+1 sinh (

√
2ry)dy

)
bβ−1(z)

sinh2 (
√

2rz)
dz

=

∫ ∞
x

g(z)
bβ−1(z)

sinh2 (
√

2rz)
dz,

with g(x) :=
∫ x
0 y

α+1 sinh (
√

2ry)dy. By differentiating, one obtains

bβ−1(x) =

(
α+ β

2β

)
[x
√

2r cosh (
√

2rx)− sinh (
√

2rx)]

g(x)
=

(
α+ β

2β

)
x2
ψ′r(x)

g(x)
, (4.5)

i.e.

b(x) =

[(
α+ β

2β

)
x2
ψ′r(x)

g(x)

]− 1
1−β

.

Notice that b(·) is positive since ψr(·) is increasing and g(·) is positive.
To conclude the proof it suffices now to check that the mapping x 7→ b(x) is actually nonde-

creasing as suggested by Proposition 3.7; that is, x 7→ bβ−1(x) is nonincreasing. From (4.5) we
have

d

dx
bβ−1(x) =

(
α+ β

2βg2(x)

)[
g(x)(2xψ′r(x) + x2ψ

′′
r (x))− g′(x)x2ψ′r(x)

]
=

(
x2(α+ β)

2βg2(x)

)[
2rg(x)ψr(x)− g′(x)ψ′r(x)

]
, (4.6)
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since ψr(x) solves 1
2ψ
′′
r (x) + 1

xψ
′
r(x) = rψr(x). Recall now that ψr(x) = sinh (

√
2rx)

x , g′(x) =

xα+1 sinh (
√

2rx) and notice that, by an integration by parts,

g(x) =

∫ x

0
yα+1 sinh (

√
2ry)dy =

1√
2r
xα+1 cosh (

√
2rx)− α+ 1√

2r
I(x),

with I(x) :=
∫ x
0 y

α cosh (
√

2ry)dy. Therefore from (4.6) we may write

d

dx
bβ−1(x) =

(
x2(α+ β)

2βg2(x)

)
sinh (

√
2rx)

x

[
− (α+ 1)

√
2rI(x) + sinh (

√
2rx)xα]

=:

(
x2(α+ β)

2βg2(x)

)
sinh (

√
2rx)

x
T (x). (4.7)

Since T (0) = 0 and T ′(x) = αxα−1[sinh (
√

2rx)−x
√

2r cosh (
√

2rx)] = −αxα+1ψ′r(x) < 0, being
x 7→ ψr(x) increasing, it follows that x 7→ T (x) is negative for any x > 0. The decreasing
property of x 7→ bβ−1(x) is therefore proved.

4.5 CEV Process and Cobb-Douglas Operating Profit

Let now the diffusion X0,x be of CEV (Constant Elasticity of Variance) type; that is,

dX0,x(t) = rX0,x(t)dt+ σ(X0,x)1−γ(t)dW (t), X0,x(0) = x > 0, (4.8)

for some r > 0, σ > 0 and γ ∈ (0, 1). CEV process was introduced in the financial literature
by John Cox in 1975 [14] in order to capture the stylized fact of a negative link between equity
volatility and equity price (the so called ‘leverage effect’). In this case we have

m(dx) =
2

σ2x2(1−γ)
e

r
γσ2

x2γ
dx, s(dx) = e

− r
γσ2

x2γ
dx,

and ψr(x) = x (cf., e.g., [17], Section 6.2). Moreover, assume that π(x, c) = xαcβ

α+β , for α, β ∈
(0, 1).

Proposition 4.5. For any x > 0 one has

b(x) =

[
2β

σ2(α+ β)
g(x)e

− r
γσ2

x2γ
] 1

1−β
, (4.9)

with g(x) :=
∫ x
0 y

2γ+α−1e
r
γσ2

y2γ
dy.

Proof. From (3.17) one has∫ ∞
x

(∫ z

0
y2γ+α−1e

r
γσ2

y2γ
dy

)
bβ−1(z)

z2
e
− r
γσ2

z2γ
dz =

σ2

x

(
α+ β

2β

)
,

i.e. ∫ ∞
x

g(z)
bβ−1(z)

z2
e
− r
γσ2

z2γ
dz =

σ2

x

(
α+ β

2β

)
,
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with g(x) :=
∫ x
0 y

2γ+α−1e
r
γσ2

y2γ
dy. Take now

bβ−1(x) =
σ2

g(x)

(
α+ β

2β

)
e

r
γσ2

x2γ

to obtain the sought result.
To conclude the proof we shall now show that b(x) as in (4.9) is nondecreasing, or, equiva-

lently, that x 7→ bβ−1(x) is nonincreasing. Indeed we have

d

dx
bβ−1(x) =

σ2

g2(x)

(
α+ β

2β

)
x2γ−1e

r
γσ2

x2γ
[2r

σ2
g(x)− xαe

r
γσ2

x2γ
]

= − ασ2

g2(x)

(
α+ β

2β

)
x2γ−1e

r
γσ2

x2γ
∫ x

0
yα−1e

r
γσ2

y2γ
dy < 0, (4.10)

being g(x) = σ2

2r [e
r
γσ2

x2γ
xα − α

∫ x
0 y

α−1e
r
γσ2

y2γ
dy], thanks to an integration by parts.

4.6 CEV Process and Logarithmic Operating Profit

In the same setting of Section 4.5, suppose now that the operating profit is of logarithmic type;
that is π(x, c) = α ln(x) + β ln(c), for some α, β > 0. Then

Proposition 4.6. For any x > 0 one has

b(x) =
βσ2

r

(
1− e−

r
γσ2

x2γ
)
. (4.11)

Proof. From (3.17) we may write∫ ∞
x

(∫ z

0
y2γ−1e

r
γσ2

y2γ
dy

)
1

b(z)z2
e
− r
γσ2

z2γ
dz =

1

2βx
;

that is, ∫ ∞
x

1

b(z)z2

(
1− e−

r
γσ2

z2γ
)
dz =

r

xβσ2
,

which is obviously satisfied if b(x) is as in (4.11).

Acknowledgments. I thank Maria B. Chiarolla and Frank Riedel for their pertinent and
useful suggestions.
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abilités XVI, in: Lecture Notes in Mathematics (920), Springer 1982, pp. 298− 313.

[17] S. Dayanik, I. Karatzas, On the Optimal Stopping Problem for One-dimensional Diffusions,
Stochastic Processes and Their Applications 170(2) (2003), pp. 173− 212.



Irreversible Investment: An Integral Equation for the Free Boundary 18

[18] A.K. Dixit, R.S. Pindyck, Investment under Uncertainty, Princeton University Press,
Princeton 1994.

[19] N. El Karoui, I. Karatzas, A New Approach to the Skorohod Problem and its Applications,
Stochastics and Stochastics Reports 34 (1991), pp. 57− 82.

[20] S. Federico, H. Pham, Smooth-Fit Principle for a Degenerate Two-Dimensional Singular
Stochastic Control Problem Arising in Irreversible Investment, preprint (2012).

[21] K. Ito, H. P. McKean Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag,
Berlin, 1974.

[22] S. Jacka, Optimal Stopping and the American Put, Mathematical Finance 1 (1991), pp.
1− 14.

[23] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets, Springer
2009.

[24] I. Karatzas, The Monotone Follower Problem in Stochastic Decision Theory, Applied
Mathematics and Optimization 7 (1981), pp. 175− 189.

[25] I. Karatzas, S.E. Shreve, Connections between Optimal Stopping and Singular Stochastic
Control I. Monotone Follower Problems, SIAM Journal on Control and Optimization 22
(1984), pp. 856− 877.

[26] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New
York 1988.

[27] T.O. Kobila, A Class of Solvable Stochastic Investment Problems Involving Singular Con-
trols, Stochatics and Stochastics Reports 43 (1993), pp. 29− 63.

[28] A. Oksendal, Irreversible Investment Problems, Finance and Stochastics 4 (2000), pp.
223− 250.

[29] J.L. Pedersen, G. Peskir, On Nonlinear Integral Equations Arising in Problems of Optimal
Stopping, Proc. Funct. Anal. VII (Dubrovnik 2001), Variouos Publ. Serv. 46 (2002), pp.
159− 175.

[30] G. Peskir, A Change-of-Variable Formula with Local Time on Surfaces, Sém. de Probab.
XL, Lecture Notes in Math. Vol. 1899, Springer (2002), pp. 69− 96.

[31] H. Pham, Explicit Solution to an Irreversible Investment Model with a Stochastic Pro-
duction Capacity, in ‘From Stochastic Analysis to Mathematical Finance, Festschrift for
Albert Shiryaev’ (Y. Kabanov and R. Liptser eds.), Springer 2006.

[32] F. Riedel, X. Su, On Irreversible Investment, Finance and Stochastics 15(4) (2011), pp.
607− 633.

[33] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales, Volume 2: Ito
Calculus, Cambridge University Press, 2000.



Irreversible Investment: An Integral Equation for the Free Boundary 19

[34] J.H. Steg, Irreversible Investment in Oligopoly, Finance and Stochastics 16(2) (2012), pp.
207− 224.


	deckbl471
	Free_Boundary_and_Base_Capacity_2012

