
Institute of

Mathematical

Economics

Working Papers

474
January 2013

The Foster-Hart Measure of Riskiness for

General Gambles

Frank Riedel and Tobias Hellmann

IMW · Bielefeld University
Postfach 100131
33501 Bielefeld · Germany

email: imw@wiwi.uni-bielefeld.de
http://www.imw.uni-bielefeld.de/research/wp474.php
ISSN: 0931-6558



The Foster–Hart Measure of Riskiness for
General Gambles

Frank Riedel∗ Tobias Hellmann †

January 3, 2013

Abstract

Foster and Hart proposed an operational measure of riskiness for dis-
crete random variables. We show that their defining equation has no
solution for many common continuous distributions including many
uniform distributions, e.g. We show how to extend consistently the
definition of riskiness to continuous random variables. For many con-
tinuous random variables, the risk measure is equal to the worst–case
risk measure, i.e. the maximal possible loss incurred by that gamble.
We also extend the Foster–Hart risk measure to dynamic environments
for general distributions and probability spaces, and we show that the
extended measure avoids bankruptcy in infinitely repeated gambles.
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1 Introduction

Foster and Hart (2009) introduce a notion of riskiness, or critical wealth level,
for gambles with known distribution. The measure is objective in so far as it
depends only on the distribution of the outcome; in decision–theoretic terms,
it is probabilistically sophisticated, in the language of the finance literature on
risk measures, it is law–invariant. The concept admits a simple operational
interpretation because an agent avoids bankruptcy in the long run almost
surely provided he accepts a gamble only if his current wealth exceeds the
critical value.

Foster and Hart (2009) study only gambles with finitely many outcomes;
as many financial applications involve distributions with simple densities like
the uniform or lognormal distribution, it seems natural and important to
generalize the concept of critical wealth level to such cases. To our surprise,
we realized that even for the most simple case of a uniform distribution, the
defining equation of Foster and Hart does not always have a finite solution.
The non–finite value of infinity is always a possible solution for the defining
equation, but it would seem most counterintuitive and implausible to reject
a uniformly distributed gamble on, say, the interval [−100, 200] at arbitrary
wealth levels.

We thus set out to study the concept of riskiness for distributions with
densities. We show that there are two classes of gambles. For some of them,
the defining equation of Foster and Hart has a finite solution, and one can
use this number as its riskiness. For others, like the uniform one described
above, the defining equation has no solution. We show that in this case, the
right notion of riskiness is the maximal loss of the gamble. This might seem
surprising at first sight, as for finite gambles, the Foster–Hart riskiness is
always strictly larger than the maximal loss. But we show that it is the only
rational way to extend the concept to arbitrary gambles.

We approach the problem by approximating non–finite gambles by finite
ones. We show that the corresponding sequence of critical wealth levels con-
verges. For the uniform distribution above, the approximation involves a
sequence of uniformly distributed finite gambles on a grid. As the grid be-
comes finer and finer, we show that the riskiness values converge indeed to the
maximal loss. This result carries over to gambles with arbitrary distributions
with a strictly positive density on their support.

For gambles with a density where the Foster–Hart equation does have a
solution, we also show that the riskiness values converge to that value. This
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is important as it provides a justification for using finite gambles with many
outcomes as an approximation to non–finite gambles with a density.

We also provide another justification of our extended definition of riski-
ness by extending the no–bankruptcy result of Foster and Hart. Indeed, an
investor who accepts gambles only if his wealth exceeds the critical wealth
level will never go bankrupt. This implies, in particular, that an investor who
accepts the above uniform gamble on [−100, 200] when his wealth exceeds
100$ will not go bankrupt.

In order to prove the no–bankruptcy result in a formally correct way,
we introduce the notion of the dynamic Foster–Hart riskiness which is the
dynamic extension of the static Foster–Hart riskiness. Dynamic measurement
of risk plays an important role in the recent literature 1 since it allows, in
contrast to the static case, to measure risk of financial positions over time.
The arrival of new information can thus be taken into account. This is
important for many situations; for instance, if one faces a gamble that has
its payments in, say, one month, there may arrive more information in two
weeks from now and the risk assessment can then be determined in a more
precise way. Thus, this extension provides an important tool for the purpose
of application of the Foster–Hart riskiness in a dynamic framework.

Our paper provides also a new and more general proof of the no–
bankruptcy theorem. In particular, we remove the artificial assumption that
all gambles are multiples of a finite number of basic gambles.

The paper is set up as follows. In the next section, we illustrate the moti-
vating problem with the Foster–Hart equation. In Section 3, we approximate
gambles with densities by discrete gambles. This allows us to use the original
Foster–Hart definition of riskiness, and we study the limit behavior for the
approximating sequences. Section 4 contains the conditional version of the
riskiness concept, and proves the no bankruptcy theorem. Section 5 contains
examples.

1See, among others, Detlefsen and Scandolo (2005) and Föllmer and Schied (2011),
Chapter 11 for a detailed introduction to dynamic risk measures.
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2 The Foster–Hart Riskiness and a Motivat-

ing Example

For a random variable X on some probability space (Ω,F , P ) that satisfies
EX > 0 and P (X < 0) > 0, the Foster–Hart riskiness is given by R(X) = 1

λ
,

where λ is the unique positive solution of the equation

E log (1 + λX) = 0 . (1)

Note that for discrete random variables this equation is defined for all
nonnegative values of λ up to, but strictly smaller than λ∗(X) = 1/L(X),
where L(X) = maxω∈Ω(−X(ω)) is the maximal loss of the gamble. For
discrete random variables with positive expectation and possible losses, such
a strictly positive solution always exists. For example, if X is a Bernoulli
random variable with

P (X = 200) = P (X = −100) =
1

2
,

one can easily verify that 0 = 1
2

log (1 + 200λ) + 1
2

log (1− 100λ) leads to
λ = 1/2000 or R(X) = 2000.

The starting point of our analysis is the following simple observation that
struck us when we wanted to apply the measure of riskiness to more general,
continuous distributions. Let X be uniformly distributed on [−100, 200], say.
X has a positive expectation of 50 and incurs losses with positive probability,
so it qualifies as a gamble in the sense of Foster and Hart. Nevertheless, the
equation (1) has no positive solution!

Example 2.1 Let X be uniformly distributed over [−100, 200]. X has pos-
itive expectation and positive probability of losses. We plot the function
φ(λ) = E log (1 + λX) over the interval [0, 1/100] in Figure 1. We see that no
solution for λ > 0 to (1) exists. To prove this, note that with λ∗(X) = 1/100
we have

E log (1 + λ∗(X)X) =

∫ 200

−100

1

300
log
(

1 +
x

100

)
dx = log 3− 1 ' 0.0986 > 0 .

As φ is concave and strictly increasing in 0, we conclude that φ(λ) > 0 for
all λ ∈ (0, λ∗(X)].
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Figure 1: The function λ 7→ E log (1 + λX) for the uniform distribution over
[−100, 200] has no zero.

How can we assign a riskiness to this simple gamble if the defining equa-
tion of Foster and Hart has no solution? One could take λ = 0, of course,
resulting in a riskiness measure of ∞. Does this mean that one should never
accept uniformly distributed gambles? Then an investor with a wealth of,
say, a billion dollars would reject the above uniform gamble on [−100, 200].
Given that such a gamble has a nice expected gain of 50 and a maximal loss
of 100, this would seem quite counterintuitive.

In this note, we set out to extend the notion of riskiness for continuous
random variables like the uniform above by approximating them via discrete
random variables. We show that the limit of the riskiness coefficients exists.
If the expectation E log(1+λ∗(X)X) is negative (including negative infinity),
one can use the equation (1) to define the riskiness of X. (This also shows
that our notion is the continuous extension of the discrete approach). For
continuous random variables with E log(1+λ∗(X)X) ≥ 0 such as our uniform
random variable above, we use the limit of the riskiness coefficient of the
approximating discrete random variables. This limit turns out to be equal
to the maximal loss L(X).

Whereas the riskiness measure is quite conservative for Bernoulli random
variables as it prescribes a high value of 2000 for the wealth for a Bernoulli
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random variable with maximal loss of 100, it does accept the uniform random
variable over [−100, 200], which has the same maximal loss of 100, even if
one has just 100 $.

How can one explain this stark difference? The point is that the Bernoulli
random variable above is quite far away from the uniform random variable
over the whole interval [−100, 200]. For the Bernoulli case, a loss of 100 $ has
a high probability of 50 %. For the uniformly distributed random variable,
a loss of close to 100 $ occurs with a very small probability and the loss of
exactly 100 $ even with probability zero; as the defining aim of the opera-
tional measure of riskiness is to avoid bankruptcy, this is a crucial difference.
Indeed, our analysis below shows that the riskiness decreases if we spread the
Bernoulli random variable more uniformly over the interval [−100, 200], say
by using a uniform grid. For discrete random variables uniformly distributed
over a fine grid, the riskiness is close to the maximal loss of 100.

3 Foster–Hart Riskiness for General Contin-

uous Distributions

In the remaining part of this note, we call a gamble a random variable X
on some probability space (Ω,F , P ) with EX > 0 and P (X < 0) > 0 that
has either a finite support or admits a strictly positive density on its support
which can either be the compact interval [−L,M ] or [−L,∞).

For a gamble X let us study the function

φ(λ) = E log (1 + λX)

which is well–defined for all λ ∈ [0, L(X)), where we remind the reader that
we defined the maximal loss L(X) = max(−X) whenever X is a discrete
random variable and we define L(X) = ess sup(−X) 2 if X is continuous.

The function φ(λ) is continuous and strictly concave, with strictly positive
slope in 0 as EX > 0 (see the argument in Foster and Hart (2009)). If X is
discrete, its distribution places a strictly positive weight on the event {X =
−L(X)}, where X achieves the maximal possible loss. As a consequence,
the expression log (1− λL(X)) tends to minus infinity as λ approaches the
value λ∗(X) = 1/L(X). The expectation that defines φ then also converges

2We define as usual ess sup(−X) := inf{x ∈ R|P (−X > x) = 0}.
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to negative infinity for λ → λ∗(X), and the function φ has a unique zero in
(0, λ∗(X)).

For continuous random variables X, as the uniform one, the event X =
−L(X) has probability zero. The expectation E log (1 + λX) is then well–
defined even for λ = λ∗(X), possibly with a value of negative infinity. When
this last expression is positive, however, equation (1) has no positive solution.
This is indeed the case for suitable uniform distributions as we showed above.

In the following we extend the riskiness in a rational way such that we can
apply it to such continuous random variables. For this purpose we approxi-
mate them by discrete random variables and study the asymptotic behavior
of their riskiness number.

Let us describe our strategy more formally. We approximate X from
below by an increasing sequence of discrete random variables Xn ↑ X. For
each Xn, there is a unique positive number 0 < λn < λ∗(X) that solves the
defining equation

E log (1 + λnXn) = 0 .

The sequence (λn) is increasing and bounded, thus the limit λ∞ = limn→∞ λn
exists and is bounded by λ∗(X). We then show that for random variables X
with φ(λ∗(X)) = E log (1 + λ∗(X)X) < 0, λ∞ is the unique positive solution
of the defining equation (1). For random variables like the uniform one,
where φ(λ∗(X)) = E log (1 + λ∗(X)X) ≥ 0, we have λ∞ = λ∗(X).

Without loss of generality, we take L = 1 and thus λ∗(X) = 1. We
consider two different sequences of partitions of the support of the continuous
random variables. On the one hand, if the support of X is the compact
interval [−1,M ], we define

xnk = −1 +
k

2n
(M + 1), k = 0, . . . , 2n − 1

and set

Xn =
2n−1∑
k=0

xnk1{xnk≤X<xnk+1} .

On the other hand, if the support of X is the infinite interval [−1,∞),
we define

xnk = −1 +
k

2n
, k = 0, . . . , n2n − 1
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and set for n ≥ 1

Xn =
n2n−1∑
k=0

xnk1{xnk≤X<xnk+1} + (−1 + n)1{X≥(−1+n)}.

For both cases the next Lemma holds true.

Lemma 3.1 The sequence (Xn) is increasing and limXn = X a.s.

This is a well–known measure–theoretic construction. The proof is re-
ported in the appendix.

As we have −1 ≤ Xn ≤ X ∈ L1,3 we conclude, using Lebesgue dominated
convergence theorem, that limEXn = E limXn = EX > 0. Hence, for n
sufficiently large, we have EXn > 0. From now on, we always look at such
large n only. As the density of X is strictly positive on its support, we also
have P (Xn < 0) ≥ P (Xn = −1) > 0. Therefore, the Foster–Hart riskiness is
well–defined for Xn. Let λn ∈ (0, 1) be the unique positive solution of

E log(1 + λnXn) = 0 .

The next Lemma follows directly by Lemma 3.1 and by the monotonicity of
the Foster–Hart measure of riskiness, see Proposition 2 in Foster and Hart
(2009).

Lemma 3.2 The sequence (λn) is increasing and bounded by L(X) = 1. As
a consequence,

λ∞ = limλn

exists and is less or equal to L(X) = 1.

We can now state our main theorem. The limit λ∞ identified in the
previous lemma is the right tool to define riskiness for general gambles.

Theorem 3.3 1. If E log(1 +X) < 0, then λ∞ < 1 and λ∞ is the unique
positive solution of (1).

2. If E log(1 +X) ≥ 0, then λ∞ = L(X) = 1.

3We denote by L1 the space of all random variables X with EX <∞.
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Proof: It is easier to prove the converse of the two statements. Let us
start with assuming λ∞ < 1. In that case, the sequence

Zn = log (1 + λnXn)

is uniformly bounded. Indeed,

−∞ < log(1− λ∞) ≤ Zn ≤ log(1 + |X|) ≤ |X| ∈ L1 .

As we have Zn → log(1 + λ∞X) a.s., we can then invoke Lebesgue’s domi-
nated convergence theorem to conclude

0 = limEZn = E limZn = E log(1 + λ∞X) .

In particular, the equation (1) has a positive solution λ∞ < 1. As φ is
strictly concave and strictly positive on (0, λ∞), we conclude that we must
have φ(1) = E log(1 +X) < 0. This proves the second claim.

Now let us assume λ∞ = 1. In that case, we cannot use Lebesgue’s
theorem. However, the sequence

Z ′n = − log (1 + λnXn)

is bounded from below by − log(1 + |X|) ≥ −|X| ∈ L1. We can then apply
Fatou’s lemma to conclude

−E log(1 +X) = E limZ ′n ≤ lim inf −E log (1 + λnXn) = 0 ,

or
E log(1 +X) ≥ 0 .

This proves the first claim. �

After stating our main theorem, we are eventually able to define our
extended Foster–Hart measure of riskiness.

Definition 3.4 Let X be a gamble with maximal loss L. If E log(1+X/L) <
0, we define the extended Foster–Hart measure of riskiness ρ(X) as the unique
positive solution of the equation

E log

(
1 +

X

ρ(X)

)
= 0 .

If E log(1 +X/L) ≥ 0, we define ρ(X) as the maximal loss of X,

ρ(X) = L .
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4 Conditional Riskiness and No Bankruptcy

4.1 Learning and Conditional Riskiness

So far we discussed the riskiness in a static framework as it is done in Foster
and Hart (2009). However, in many situations it is more useful to measure
risk in a dynamic way. If there is, for instance, more information about an
asset available, this should be visible in the assigned risk of this position. A
dynamic framework allows to take such updating information into account.
The purpose of this section is to embed our extended Foster–Hart riskiness
into a dynamic framework.

In the following, let (Ω,F , (Ft)t∈N, P ) be a filtered probability space,
where the filtration (Ft)t∈N represents the information structure given at
the respective time t. We denote by At the set of all Ft−measurable random
variables and consider a sequence of random variables (Xt) that is adapted
to the filtration (Ft)t∈N. In order to be able to measure the risk of Xt in
every time period s < t, Xt has to satisfy all the conditions which define a
gamble given the respective information structure (Fs).

Definition 4.1 We call a random variable X on (Ω,F , P ) a gamble for
the σ–field Fs ⊂ F if X is bounded and satisfies E[X|Fs] > 0 a.s. and
P (Xt < 0|Fs) > 0 a.s..

In the following, we assume that for t > s, Xt is a gamble for Fs.
As time goes by, we learn something about the realization of the random

variable and are therefore able to quantify the risk more precisely. Measuring
the risk of Xt in every single time period s < t yields a family of conditional
risk measures (ρs(Xt))s=1...t−1, where every ρs(Xt) is a Fs−measurable ran-
dom variable that is either the solution of the equation

E

[
log

(
1 +

Xt

ρs(Xt)

)
|Fs
]

= 0 (2)

or ρs(Xt) = Ls(Xt), where we define

Ls(Xt) := ess inf{Z ∈ As|P (−Xt > Z|Fs) = 0 a.s.}.

This means, Ls(Xt) is the maximal loss of Xt given the information at time
s. As we have done for our extended measure of riskiness in the static case,
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we set ρs(Xt) = Ls(Xt) on the set

B :=

{
E

[
log

(
1 +

Xt

Ls(Xt)

)
|Fs
]
≥ 0

}
and define ρs(Xt) as the solution of equation (2) on Bc. We call the so defined
family of conditional risk measures (ρs(Xt))s=1...t−1 the dynamic extended
Foster–Hart riskiness of Xt.

The next Lemma shows that the dynamic extended Foster–Hart riskiness
is indeed well defined.

Lemma 4.2 There exists one and only one Fs–measurable random variable
ρs(Xt) ≥ Ls(Xt) that solves equation (2) on Bc and satisfies ρs(Xt) = Ls(Xt)
on B.

The proof is given in the appendix.

Remark 4.3 An important question that arises in a dynamic framework is
how the conditional risks at different times are interrelated. This question
leads to the important notion of time–consistency. A dynamic risk measure
(ρs)s=1...t−1 is called time–consistent if for any gamble X1

t , X
2
t and for all

t = 1, ..., t− 2 it holds that

ρs+1(X1
t ) ≥ ρs+1(X2

t ) a.s. =⇒ ρs(X
1
t ) ≥ ρs(X

2
t ) a.s.

That means, in particular, that if we know that tomorrow in every state of
the world gamble X1

t is assigned to have a higher risk than gamble X2
t , this

should also hold true today.
This desirable property is not satisfied by the dynamic extended Foster–

Hart riskiness. A detailed example which illustrates that is given in the ap-
pendix.

4.2 No Bankruptcy

We conclude our investigation by checking that our extended definition of
riskiness avoids bankruptcy.

Theorem 4.4 Let (Xn) be a sequence of gambles that are uniformly bounded
above by some integrable random variable Y > 0 and satisfy some minimal
possible loss requirement, i.e. there exists ε > 0 such that a.s.

Ln−1(Xn) ≥ ε > 0

11



for all n. Let W0 > 0 be the initial wealth and define recursively

Wt+1 = Wt +Xt+1

if E
[
log
(

1 + Xt+1

Wt

)
|Ft
]
≥ 0 and

Wt+1 = Wt

else. We then insure no bankruptcy, i.e.

P [limWt = 0] = 0 .

Proof: Note first that Wt > 0 a.s.. This can be shown by induc-
tion. We have W0 > 0. We have either Wt+1 = Wt which is positive by
induction hypothesis, or Wt+1 = Wt + Xt+1. In this case, the condition

E
[
log
(

1 + Xt+1

Wt

)
|Ft
]
≥ 0 implies that a.s.

Wt ≥ ρt(Xt+1) ≥ Lt(Xt+1).

Thus, Wt − Lt(Xt+1) ≥ 0 a.s.. If ρt(Xt+1) = Lt(Xt+1), then we have
P (Xt+1 = Lt(Xt+1)|Ft) = 0. Hence, a.s. it holds that

Wt+1 > Wt − Lt(Xt+1) ≥ 0.

We can thus define St = logWt. We claim that S is a submartingale. Indeed,
on the set

A :=

{
E

[
log

(
1 +

Xt+1

Wt

)
|Ft
]
< 0

}
which belongs to Ft, there is nothing to show. On the set Ac, we have

E [St+1|Ft] = E [logWt+1|Ft]

= logWt + E

[
log

Wt+1

Wt

|Ft
]

= logWt + E

[
log

(
1 +

Xt+1

Wt

)
|Ft
]

≥ logWt = St .

S is thus a submartingale. We apply a theorem on submartingale con-
vergence to complete our proof. We will use Theorem 1 in Shirjaev (1984),
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Chapter VII. For a > 0, let τa = inf {t ≥ o : Xt > a}. A stochastic sequence
belongs to class C+ if for every a > 0 we have

E (Xτa −Xτa−1)+ 1{τa<∞} <∞.

Let us check that our sequence S is of class C+. Indeed, we have

(Sτa − Sτa−1)+ = log

(
1 +

Xτa

Wτa−1

)
1{Xτa≥0}

and in that case Wτa−1 ≥ ρτa−1(Xτa) ≥ ε > 0 a.s, so we conclude

E (Sτa − Sτa−1)+ ≤ E log

(
1 +

Y

ρτa−1(Xτa)

)
≤ E log

(
1 +

Y

ε

)
≤ E

Y

ε
<∞

where Y is the uniform integrable upper bound for our gambles and ε is
the minimal possible loss lower bound. By Theorem 1 in Shirjaev (1984),
Chapter VII, we conclude that the set {St → −∞} is a null set. (Indeed, on
the set {St → −∞}, S is bounded above. The theorem then states that the
limit of S exists and is finite (almost surely), and thus cannot be negative
infinity.) �

5 A List of Examples

In order to gain further inside into the behavior of our generalized measure of
riskiness, we consider in this section different continuous distributed gambles
and compute their riskiness.

5.1 Uniform Distribution

Firstly, we consider as in Example 2.1 an uniform distributed random variable
over the interval [−100, b]. In order to get a positive expectation, we must
have b > 100. In Figure 2 the graph of the riskiness ρ (Figure 2(a)) as well
as the solution λ of equation (1) (Figure 2(b)), which is the reciprocal of the
riskiness, is plotted against the maximal gain b of the gambles. Example 2.1
already shows that not for all values b there exists a positive solution of the
defining equation (1). Indeed, the critical value for which E log (1 + λ∗X) =
0 is bc ≈ 171.83. For values of b which are greater than bc there is no
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1
ρ

Figure 2: ρ and λ for uniform distributed gambles over [−100, b].

positive solution of equation (1) and we take in this case ρ = L(X) = 100 as
the riskiness.

As a result the graph of the riskiness yields a continuous function; the
riskiness tends to the maximal loss L = 100 as we approach the critical value
bc and converges to infinity as the expectation of the gamble goes to 0 (i.e.
b ↓ 100).

5.2 Beta Distribution

Next, we consider beta distributed gambles. The density of random variable
X that is beta distributed over the compact interval [−a, b] is, for instance,
given in Johnson et al. (1995) as

ϕ(x;α, β, a, b) =
1

B(α, β)

(x− a)α−1(b− x)β−1

(b− a)α+β−1
, x ∈ [−a, b], α, β > 0,

where B(α, β) denotes the Betafunction defined as

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

The mean of X is given by

E[X] =
αb+ βa

α + β
.
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1
ρ

Figure 3: ρ and λ for beta distributed gambles over [−100, 200] with α = 2.

In our example we fix the interval as [−100, 200] and choose α = 2. We
compute the riskiness as a function of the parameter β. Again, in order to
be able to do the computation, the mean has to be greater than zero which
implies β < 4. We let the value for β run up to 4, i.e. the expectation goes
to zero.

Figure 3 shows the graph of the riskiness and of λ = 1
ρ

against the values

of β. The defining equation (1) has a positive solution for all β greater than
βc ≈ 3.05. For β < βc, where no positive solution exists, the maximal loss
L = 100 is used to determine the riskiness. Again a continuous function is
plotted that goes to infinity as the expectation tends to zero.

5.3 Lognormal Distribution

The lognormal distribution is used in many financial applications, for in-
stance in the widely used Black–Scholes options pricing model. Therefore, it
seems to be important to be able to apply the measure of riskiness for this
distribution.

A random variable X is said to be lognormally distributed if its density
ϕ is

ϕ(x;µ, σ, θ) =
1

(x− θ)
√

2πσ
exp(−1

2

(log(x− θ)− µ)2

σ2
), x > θ, 4

4See Johnson et al. (1995).
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1
ρ

Figure 4: ρ and λ for lognormally distributed gambles over (θ,∞) with µ = 1
and σ = 2.

where µ and σ are the expected value, respectively the standard deviation,
of the normally distributed random variable XN = log(X − θ) and −θ is the
maximal loss of X.

We fix µ = 1 and σ = 2 and let θ run through the interval [−20.08, 0).
(We have to take θ ≥ −20.08 in order to make sure that the expectation is
positive). The critical value for which there exists no zero for the defining
equation is θ ≈ −2.72. For any θ ≥ −2.72 we take therefore the maximal
loss −θ as the riskiness.

We plot the graph of the riskiness in Figure 4. Figure 4(b) shows the
graph of λ = 1

ρ
as well as of 1

−θ , against the maximal loss L(X) = −θ. The

upper curve shows 1
−θ . If −θ < 2.72, both lines coincides and for −θ ≥ 2.72,

i.e. where a solution of the defining equation exists, we always have that
λ < L(X). As the expectation goes to zero, i.e. the maximal loss gets closer
to 20.08, the riskiness tends to infinity or in other words λ converges to zero.

As in the examples before, the figure yields a continuous riskiness func-
tion. This illustrates that our generalized Foster–Hart measure of riskiness
provides a continuous extension of Foster and Hart (2009), which allows to
apply the measure for many more classes of random variables, without losing
the operational interpretation of avoiding bankruptcy in the long run.
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6 Conclusion

For many continuous distributed gambles the equation which defines the
measure of riskiness proposed by Foster and Hart (2009) does not have a
finite solution. We extended their defintion by using the maximal loss of
the gamble as its riskiness, whenever the defining equation does not have
a solution. Our extension allows to apply the measure of riskiness also for
continuous distributed gambles which have a strictly positive density on their
support and which are bounded from below. We have justified our extension
by showing both that it is indeed a consistent extension of the Foster–Hart
measure of riskiness and that the no-bankruptcy result of Foster and Hart
(2009) carries over to the extended measure of riskiness.

Finally, as it is important for many financial applications to measure risk
dynamically, i.e. taking updating information into account, we defined the
extended riskiness also in a dynamic framework.
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A Appendix

The appendix contains some technical details and proofs.

Approximation by Discrete Random Variables

Proof of Lemma 3.1:
Suppose the support of X is [−L,M ]. Obviously we have xnk < xnk+1.
Further,

xnk = −1 +
k

2n
(M + 1) = −1 +

2k

2n+1
(M + 1) = xn+1

2k

and therefore

Xn =
2n−1∑
k=0

xnk1{xnk≤X<xnk+1} =
2n−1∑
k=0

xn+1
2k 1{

xn+1
2k ≤X<x

n+1
2(k+1)

}.
The last expression is smaller than Xn+1 since we have on each interval
[xn+1

2k , xn+1
2(k+1)) 6= ∅ that

Xn = xn+1
2k

and
Xn+1 ≥ xn+1

2k

with Xn+1 > xn+1
2k on ∅ 6= [xn+1

2k+1, x
n+1
2(k+1)) ⊂ [xn+1

2k , xn+1
2(k+1)). Hence, (Xn) is an

increasing sequence.
Analogously, we can prove the statement for the support [−1,∞), just

by replacing xnk by −1 + k
2n

and Xn by

n2n−1∑
k=0

xnk1{xnk≤X<xnk+1} + (−1 + n)1{X≥(−1+m)}.

Finally, we have limXn = X a.s. by construction of the sequence (Xn).
�
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Time–Consistency

Consider two discrete gambles X1
2 and X2

2 that have their payments in two
periods (t = 2) from now. They are distributed according to the binomial
trees given below. In t = 1 two states of the world are possible which occur
with equal probability 1

2
. We compute the riskiness today (t = 0) and in

each state in t = 1.
Gamble X1

2 has the following structure:

ρ(X1
2 ) ≈

219.426

ρ2
1(X1

2 ) =
250

−2001
2

1000
1
2

1
2

ρ1
1(X1

2 ) =
120

−1001
2

600
1
2

1
2

Hence, X1
2 has the payoffs {600,−100, 1000,−200} occurring each with

equal probability. The riskiness computed in t = 1 in state one is ρ1
1(X1

2 ) =
120 and in state two ρ2

1(X1
2 ) = 250. The riskiness today is ρ(X1

2 ) ≈ 219.426.
The second gamble X2

2 is distributed according to the following tree:

ρ(X2
2 ) ≈

243.76

ρ2
1(X2

2 ) =
250

−2401
2

6000
1
2

1
2

ρ1
1(X2

2 ) =
120

−1051
2

840
1
2

1
2

Although the payoffs of X2
2 differ from the payoffs of X1

2 , the riskiness
numbers at time t = 1 coincides. Today, however, the risk of X2

2 is strictly
higher than the risk of X1

2 . That contradicts the time–consistency condi-
tion. Therefore, the dynamic extended Foster–Hart riskiness is not time–
consistent.
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Existence of Conditional Riskiness

Proof of Lemma 4.2: Let Xt be a gamble for the σ–field Fs. Without
loss of generality, we can assume Ls(Xt) = 1 almost surely (else replace Xt

by Xt/Ls(Xt)).
We write G = Fs and X = Xt in the following for shorter notation. We

fix a regular version P (ω, dx) for the conditional probability distribution of
X given G (which exists as X takes values in a Polish space). Whenever we
write conditional expectations or probabilities in the following, we have this
regular version in mind.

For our construction, we need that there are wealth levels W for which we
accept the gamble X given G. We thus start with the following observation.

Lemma A.1 There exist G–measurable random variables W ≥ 1 such that

E[log(W +X)|G] ≥ logW .

In particular, this holds true for all W with

W ≥ 2E[X2|G]

E[X|G]

and ∣∣∣∣XW
∣∣∣∣ ≤ 1

2
.

Proof: We use the estimate

log(1 + x) ≥ x− 2x2 (3)

for |x| ≤ 1/2 (which one can obtain from a Taylor–expansion and the La-
grange version of the error term). Take an G–measurable W with

W ≥ 2E[X2|G]

E[X|G]

and ∣∣∣∣XW
∣∣∣∣ ≤ 1

2
.

Such W exists because X has finite variance. We can simply take

W = 2 max

{
E[X2|G]

E[X|G]
, 2|X|

}
.
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As |X/W | ≤ 1/2, log(1 +X/W ) is everywhere defined. By the estimate (3),
we obtain

E

[
log

(
1 +

X

W

)
|G
]
≥ E

[
X

W
− 2X2

W 2
|G
]

=
1

W

(
E [X|G]− E [2X2|G]

W

)
,

and now we can use the fact that W ≥ 2E[X2|G]
E[X|G]

to conclude that

E

[
log

(
1 +

X

W

)
|G
]
≥ 0 .

�

As a consequence of the preceding lemma, the set

Λ = {λ G −measurable| 0 < λ ≤ 1, E [log(1 + λX) |G] ≥ 0}

is not empty. Let λ0 be the G–essential supremum of λ. By definition, λ0

is G–measurable and λ0 ≥ λ for all λ ∈ Λ. Moreover, λ0 is the smallest
G–measurable random variable with these properties.

The set Λ is upwards directed: take λ1, λ2 ∈ Λ. Then we have for λ3 =
max{λ1, λ2}

E [log(1 + λ3X)|G] = 1{λ1≥λ2}E [log(1 + λ1X)|G]

+ 1{λ1<λ2}E [log(1 + λ2X)|G] ≥ 0 .

The other properties being obvious, we conclude λ3 ∈ Λ. Hence, Λ is upwards
directed; as a consequence, there exists a sequence (λn) ⊂ Λ with λn ↑ λ0.

Our next claim is E [log(1 + λ0X)|G] ≥ 0. The sequence

Zn = − log (1 + λnX)

is bounded from below by − log(1 + |X|) ≥ −|X| ∈ L1. We can then apply
Fatou’s lemma to conclude

−E [log(1 + λ0X)|G] = E [limZn|G] ≤ lim inf −E [log (1 + λnXn) |G] ≤ 0 ,

or
E [log(1 + λ0X)|G] ≥ 0 .
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We claim now that we have

E [log (1 + λ0X) |G] = 0 (4)

on the set {λ0 < 1}. This will conclude the proof of our lemma.
It is enough to establish the claim on all sets

Γn =

{
λ0 ≤ 1− 1

n

}
for all n ∈ N. From now on, we work on this set only without stating it
explicitly. Let

Am,n =

{
E [log (1 + λ0X) |G] ≥ 1

m

}
∩ Γn .

We will show that Am,n is a null set for all m,n ∈ N.
Let ε = 1

1+mn
and set λ1 = (1 − ε)λ0 + ε. Then we have λ1 > λ0 and

λ1 ≤ (1− ε)(1− 1/n) + ε = 1− 1/n+ ε/n < 1. We also note

λ1 − λ0 = ε(1− λ0) ≤ ε. (5)

We have

1 + λ1X ≥ 1− λ1 ≥
1− ε
n

> 0 . (6)

log(1 + λ1X) is thus finite (on Γn where we work).
We now want to show

E [log (1 + λ1X) |G] ≥ 0

on Am,n. If Am,n was not a null set, this would contradict the definition of
λ0 as the G–essential supremum of Λ.

In order to establish the desired inequality, it is enough to show

E [log (1 + λ1X) |G]− E [log (1 + λ0X) |G] ≥ − 1

m

because of the definition of Am,n. Now, on the set {X ≥ 0} we have
log (1 + λ1X) ≥ log (1 + λ0X).

We need a uniform estimate for log (1 + λ1X)− log (1 + λ0X) on the set
{X < 0}. With the help of the mean value theorem, we obtain on {X < 0}

log

(
1 + λ1X

1 + λ0X

)
≥ − n

1− ε
(λ1 − λ0) ≥ − nε

1− ε
.
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(How can one see this: by the mean value theorem and (5), we have

log (1 + λ1X)− log (1 + λ0X) =
1

ξ
(λ1 − λ0)X

for some ξ in between 1 + λ1X and 1 + λ0X. By (6) 1 + λ1X ≥ (1 − ε)/n.
Hence, we have 0 < 1/ξ ≤ n

1−ε .)
By the definition of ε, we thus have

log

(
1 + λ1X

1 + λ0X

)
≥ − nε

1− ε
= − 1

m

uniformly on {X < 0} as desired. It follows

E [log (1 + λ1X) |G]− E [log (1 + λ0X) |G]

≥ E

[
log

(
1 + λ1X

1 + λ0X

)
1{X<0}|G

]
≥ − 1

m
.

�
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