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A Stochastic Reversible Investment Problem

on a Finite-Time Horizon: Free Boundary Analysis∗

Tiziano De Angelis† Giorgio Ferrari‡
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Abstract. We study a continuous-time, finite horizon optimal stochastic reversible invest-
ment problem for a firm producing a single good. The production capacity is modeled as a one-
dimensional, time-homogeneous, linear diffusion controlled by a bounded variation process which
represents the cumulative investment-disinvestment strategy. We associate to the investment-
disinvestment problem a zero-sum optimal stopping game and characterize its value function
through a free boundary problem with two moving boundaries. These are continuous, bounded
and monotone curves that solve a system of non-linear integral equations of Volterra type. The
optimal investment-disinvestment strategy is then shown to be a diffusion reflected at the two
boundaries.
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games; free boundary problems; Skorokhod reflection problem.
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1 Introduction

A firm represents the productive sector of a stochastic economy over a finite time horizon and
it adjusts its production capacity C by investing and disinvesting. The firm aims to maximizing
its total net expected profit. In mathematical terms, following for instance [31], this amounts to
solving

sup
(ν+,ν−)

E
{∫ T

0
e−µF tR(Cy,ν(t))dt− c+

∫ T

0
e−µF tdν+(t) + c−

∫ T

0
e−µF tdν−(t)

+ e−µFTG(Cy,ν(T ))

}
, (1.1)

where the optimization is taken over all the nondecreasing processes ν+ and ν− representing the
investment and disinvestment strategy, respectively. Here µF is the firm’s manager discount factor,
c+ is the istantaneous cost of investment, c− is the benefit from disinvestment, R the operating
profit function and G a terminal gain, often referred to as a scrap function. We assume that the
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production capacity Cy,ν follows a time-homogeneous, linear controlled dynamics with ν := ν+−ν−
(cf. (2.1) below).

In this work we prove existence and uniqueness of the optimal solution pair (ν∗+, ν
∗
−) to problem

(1.1). Moreover, we provide a semi-explicit representation of this couple in terms of two continuous,
bounded and monotone free boundaries which are characterized through a system of non-linear
integral equations of Volterra type. To the best of our knowledge, integral equations for the free
boundaries of zero-sum optimal stopping games on finite time-horizon have not received significant
attention so far.

Theory of investment under uncertainty has received increasing attention in the last years in
Economics as well as in Mathematics (see, for example, the extensive review in Dixit and Pindyck
[22]). Several Authors studied the firm’s optimal problem of capacity irreversible expansion via
a number of different approaches. These include dynamic programming techniques (see [17], [36],
[44], [49] and [56], among others), stochastic first-order conditions and the Bank-El Karoui’s Rep-
resentation Theorem [4] (see, e.g., [5], [18], [20], [26] and [59]), connections with optimal switching
problems (cf. [32], among others). Models involving both expansion and reduction of a project’s
capacity level (i.e., reversible investment problems) have been recently considered by [1], [9], [31],
[35], [45] and [47], among others. In [47], for example, an infinite time horizon problem of deter-
mining the optimal investment-disinvestment strategy that a firm should adopt in the presence of
random price and/or demand fluctuations is considered. On the other hand, in [31] the Authors
address a one-dimensional, infinite time horizon partially reversible investment model with entry
decisions and a general running payoff function. They study the problem via a dynamic program-
ming approach and characterize the optimal policy as a diffusion reflected along two (constant in
time) boundaries. Here we consider the model of [31] without entry decision but with a finite-time
horizon.

From the mathematical point of view our problem (1.1) falls within the class of bounded varia-
tion follower problems with finite horizon. These are singular stochastic control problems in which
control processes are singular (as functions of time) with respect to the Lebesgue measure. The
link existing between singular stochastic control, optimal stopping and free boundary problems has
been thoroughly studied. Early papers by El Karoui and Karatzas [25], Karatzas [40] and Karatzas
and Shreve [41] showed that the optimal control problem for a Brownian motion tracked by a non-
decreasing process (i.e., the monotone follower control problem) is closely related to an auxiliary
optimal stopping problem. In fact, the value function V of the control problem is linked to the
value function v of the optimal stopping problem via Vy = v, where Vy is the derivative of V with
respect to the space variable y. Later on, this link has been extended to more general controlled
dynamics (see, e.g., [3], [12]). Recently, bounded variation control problems were brought into
contact with optimal stopping games in a similar way (cf., for instance, Boetius [13], Chiarolla and
Haussmann [15] and [16] and Karatzas and Wang [43]). In fact, in this setting one has Vy = v,
with v the saddle point of a Dynkin game, i.e. of a zero-sum optimal stopping game.

The analytical theory of stochastic differential games with stopping times has been developed
by Bensoussan and Friedman [6], [7] and Friedman [28], among others. In a Markovian setting
these Authors studied the saddle point of such games via the theory of partial differential equa-
tions (PDE), variational inequalities and free-boundary problems (see also the monographies by
Bensoussan and Lions [8] and Friedman [30]). On the other hand, many papers tackled stochastic
games of timing via probabilistic techniques: martingale approach was used for instance in [2], [11],
[23] and [48]; Markovian structures were considered in [24] and [60], among others; a connection
with stochastic backward differential equations may be found for example in [21], [33] and [34].

In this paper we use the link between bounded variation follower problems and zero-sum optimal
stopping games to study problem (1.1). That is, we study the zero-sum optimal stopping game
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(Dynkin game) with value function

v(t, y) := inf
σ∈[0,T−t]

sup
τ∈[0,T−t]

E
{
c+

fC
e−µF σC0(σ)1{σ≤τ}1{σ<T−t} +

c−
fC
e−µF τC0(τ)1{τ<σ} (1.2)

+

∫ τ∧σ

0
e−µF sC0(s)Rc(yC

0(s))ds+ e−µF (T−t)C0(T − t)Gc(yC0(T − t))1{τ=σ=T−t}

}
,

which is naturally associated to (1.1). Our analysis is carried out in several steps by means of
arguments borrowed from probability and PDE theory. Setting G(C) = c−

fC
C in (1.1) we have

Gc(C) = c−
fC

in (1.2) and we meet usual conditions in the literature on variational methods applied
to stochastic games (cf., e.g., [30], Chapter 16, Section 9).

We show that v is a bounded, continuous function on [0, T ] × (0,∞) and that the state space
(t, y) ∈ [0, T ]× (0,∞) splits into three regions defined via two continuous, bounded and monotone
free boundaries ŷ+ and ŷ−. The triple (v, ŷ+, ŷ−) solves a free boundary problem on [0, T ]× (0,∞)
and v fulfills the so-called smooth-fit property along the free boundaries (cf., e.g., [53]). We use
local time-space calculus (cf. [52]) to show that (v, ŷ+, ŷ−) uniquely solves a system of non-linear
integral equations of Volterra type under suitable boundary conditions (see Theorem 3.14 and
Theorem 3.15 below).

The optimal control ν∗ := ν∗+ − ν∗− for problem (1.1) turns out to be the minimal effort needed
to keep the optimally controlled diffusion inside the closure of the region between the two free
boundaries. Indeed, an applications of results in [14] allows us to prove that the optimally con-
trolled capacity Cy,ν

∗
uniquely solves a Skorokhod reflection problem in the time-dependent interval

[ŷ+(t), ŷ−(t)], t < T . Finally, we obtain a semi–explicit expression of the optimal control ν∗.
The paper is organized as follows. In Section 2 we introduce the reversible investment problem

and we prove existence and uniqueness of the optimal control. In Section 3 we study the associated
zero–sum optimal stopping game by means of a probabilistic approach to free boundary problems.
In particular in this Section we obtain the system of integral equations for (v, ŷ+, ŷ−) mentioned
above. Finally, in Section 4 we find the optimal control strategy and Appendix A contains some
technical proofs.

2 The Reversible Investment Problem

A firm represents the productive sector of a stochastic economy on a complete probability space
(Ω,F ,P). We consider an exogeneous Brownian motion W := {W (t), t ≥ 0} and denote by
F := {Ft, t ≥ 0} its natural filtration augmented by P-null sets. Our setting is similar to the one
in [31] but with finite time-horizon and no entry decision. The firm produces at rate R(C) when
its own capacity is C. We assume that the firm can either invest or disinvest in the market and
we denote by ν+(t) (ν−(t)) the cumulative investment (disinvestment) up to time t. Both ν+ and
ν− are left-continuous, a.s. finite, nondecreasing processes. Once the firm’s manager adopts an
investment-disinvestment strategy ν := ν+− ν−, then the production capacity evolves according to

dCy,ν(t) = Cy,ν(t)[−µCdt+ σCdW (t)] + fCdν(t), t ≥ 0,

Cy,ν(0) = y > 0,
(2.1)

where µC , σC and fC are given positive constants. The parameter fC is a conversion factor: any
unit of investment is converted into fC units of production capacity.

Notice that if

C0(t) := C1,0(t), ν(t) :=

∫ t

0

fC
C0(s)

dν(s), (2.2)
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then we may write
Cy,ν(t) = C0(t)[y + ν(t)]. (2.3)

Moreover, C0 represents the decay of a unit of initial capital without investment and we have

C0(t) = e−µCtM0(t), (2.4)

with M0 being the exponential martingale

M0(t) := e−
1
2
σ2
Ct+σCW (t), t ≥ 0. (2.5)

The production function of the firm is a nonnegative, measurable function R : R+ 7→ R+ of the
production capacity and it satisfies the following assumption.

Assumption 2.1. The mapping C 7→ R(C) is nondecreasing with R(0) = 0 and strictly concave. It
is twice continuously differentiable on (0,∞) and it has first derivative Rc(C) := ∂

∂CR(C) satisfying
the Inada conditions

lim
C→0

Rc(C) =∞, lim
C→∞

Rc(C) = 0.

Denote by

S :={ν : Ω× R+ 7→ R+, of bounded variation, left-continuous, adapted s.t. ν(0) = 0, P− a.s.}

the nonempty, convex set of investment-disinvestment processes and from now on let ν+ − ν− be
the minimal decomposition of any admissible ν ∈ S into the difference of two left-continuous,
nondecreasing, adapted processes such that ν±(0) = 0 a.s.

We assume that the optimization runs over a finite–time horizon [0, T ]. Starting at time zero
and following an investment–disinvestment strategy ν ∈ S, the firm receives at terminal time T a
(discounted) payoff given by e−µFTG(Cy,ν(T )). G is the so–called scrap value of the control prob-
lem. We assume that G : R+ 7→ R+ is a strictly concave, nondecreasing, continuously differentiable
function with first order derivative such that

c−
fC
≤ Gc(C) ≤ c+

fC
. (2.6)

Here c+ > c− > 0 are the cost of investment and the benefit from disinvestment, respectively.
Then, the firm’s total expected profit, net of the costs, is given by

J0,y(ν) = E
{∫ T

0
e−µF tR(Cy,ν(t))dt− c+

∫ T

0
e−µF tdν+(t) + c−

∫ T

0
e−µF tdν−(t)

+e−µFTG(Cy,ν(T ))

}
, (2.7)

where µF > 0 is the firm’s manager discount factor. The value V of the optimal investment-
disinvestment problem is

V (0, y) := sup
ν∈S
J0,y(ν). (2.8)

Notice that the strict concavity of R and the affine nature of Cy,ν in ν imply that J0,y(ν) is strictly
concave on S. Hence, if a solution ν∗ of (2.8) exists, it is unique.

Proposition 2.2. Let Assumption 2.1 hold. Then, there exists K := K(T, y) > 0, depending on
T and y, such that 0 ≤ V (0, y) ≤ K.
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Proof. Nonnegativity of V (0, y) follows by taking ν+(t) = ν−(t) ≡ 0, for t ≥ 0. To show that V is
bounded from above, recall that C0(t) = e−µF tM0(t) (cf. (2.4)) and that for any ε > 0 there exists
κε such that R(C) ≤ κε + εC, by Inada conditions (cf. Assumption 2.1). Also there exists κG ≥ 0
s.t. G(C) ≤ κG + c+

fC
C by (2.6). Hence, setting µ̄ := µF + µC , for ν ∈ S and ν as in (2.2), we may

write

J0,y(ν) ≤ E
{∫ T

0
e−µF t[κε + εCy,ν(t)]dt− c+

fC

∫ T

0
e−µ̄tE{M0(T )|Ft}dν+(t)

+
c−
fC

∫ T

0
e−µ̄tE{M0(T )|Ft}dν−(t) + κG +

c+

fC
e−µ̄TM0(T )[y + ν+(T )− ν−(T )]

}
≤ κεT +

c+

fC
y + κG + εyE

{∫ T

0
e−µ̄tM0(t)dt

}
+ εE

{∫ T

0
e−µ̄tM0(t)ν+(t)dt

}
(2.9)

−εE
{∫ T

0
e−µ̄tM0(t)ν−(t)dt

}
− c+

fC
E
{∫ T

0
e−µ̄tE{M0(T )|Ft}dν+(t)

}
+
c−
fC

E
{∫ T

0
e−µ̄tE{M0(T )|Ft}dν−(t)

}
+
c+

fC
E
{
e−µ̄TM0(T )[ν+(T )− ν−(T )]

}
.

Notice now that E{
∫

[0,T ) e
−µ̄tE{M0(T )|Ft}dν±(t)} = E{M0(T )

∫
[0,T ) e

−µ̄tdν±(t)}, by [38], Theo-

rem 1.33, and introduce the new probability measure P̃ defined by

dP̃
dP

∣∣∣
Ft

:=M0(t) = e−
1
2
σ2
Ct+σCW (t), t ≥ 0. (2.10)

Then, integrating by parts the integrals with respect to dν±, we obtain from (2.9) that

J0,y(ν) ≤ (κεT +
c+

fC
y + κG + εyT ) + εẼ

{∫ T

0
e−µ̄tν+(t)dt

}
− εẼ

{∫ T

0
e−µ̄tν−(t)dt

}
−c+µ̄

fC
Ẽ
{∫ T

0
e−µ̄tν+(t)dt

}
+
c−µ̄

fC
Ẽ
{∫ T

0
e−µ̄tν−(t)dt

}
+
c−
fC

Ẽ
{
e−µ̄T ν−(T )

}
− c+

fC
Ẽ
{
e−µ̄T ν−(T )

}
(2.11)

≤ (κεT +
c+

fC
y + κG + εyT ) +

(
ε− c+µ̄

fC

)
Ẽ
{∫ T

0
e−µ̄tν+(t)dt

}

+

(
c−µ̄

fC
− ε
)
Ẽ
{∫ T

0
e−µ̄tν−(t)dt

}
+

(
c−
fC
− c+

fC

)
Ẽ
{
e−µ̄T ν−(T )

}
≤ K +

(
ε− c+µ̄

fC

)
Ẽ
{∫ T

0
e−µ̄tν+(t)dt

}
+

(
c−µ̄

fC
− ε
)
Ẽ
{∫ T

0
e−µ̄tν−(t)dt

}
,

with Ẽ{·} denoting the expectation under P̃ and K a positive constant independent of ν± but
depending on y, T, ε, c+, c−, fC , κG. Taking ε = c+µ̄

fC
, it follows

J0,y(ν) ≤ K for all ν ∈ S, (2.12)

since c+ > c− and ν−(t) ≥ 0 a.s. for every t ≥ 0.

Corollary 2.3. There exist K+ := K+(T, y) > 0 and K− := K−(T, y) > 0, depending on T and
y, such that Ẽ{ν+(T )} ≤ K+ and Ẽ{ν−(T )} ≤ K−.
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Proof. Recall (2.10), then from (2.7), (2.8) and (2.12) we have

K ≥ V (0, y) ≥ J0,y(ν) ≥ Ẽ
{
− c+

fC

∫ T

0
e−µ̄tdν+(t) +

c−
fC

∫ T

0
e−µ̄tdν−(t)

}
(2.13)

for any ν+ and ν− left-continuous, adapted, nondecreasing such that ν±(0) = 0 a.s., as R and G
are positive. Therefore, taking ν− := fC( c++1

c−
)ν+ for any ν+ we find

K ≥ Ẽ
{∫ T

0
e−µ̄tdν+(t)

}
, (2.14)

and taking ν+ ≡ 0 for arbitrary ν− we find

K ≥ Ẽ
{
c−
fC

∫ T

0
e−µ̄tdν−(t)

}
. (2.15)

Thus, it finally follows from (2.14) and (2.15) that

Ẽ{ν+(T )} ≤ Keµ̄T , Ẽ{ν−(T )} ≤ KfC
c−

eµ̄T . (2.16)

The next Theorem shows the existence of a unique optimal solution pair (ν∗+, ν
∗
−) to problem

(2.8).

Theorem 2.4. Under Assumption 2.1 there exists a unique admissible investment-disinvestment
strategy ν∗ which is optimal for problem (2.8).

Proof. Note that the mapping ν 7→ ν is one to one and onto. Let (νn)n∈N ⊂ S be a maximiz-
ing sequence. The associated sequence (νn)n∈N ⊂ S is maximizing as well; that is, such that
limn→∞ J0,y(ν

n) = V (0, y). From Corollary 2.3 we have that the sequences (Ẽ{νn±(T )})n∈N are
uniformly bounded and hence by a version of Komlòs’ Theorem for optional random measures on
[0, T ] (cf. [39], Lemma 3.5) there exist two subsequences (νnk± )k∈N that converge weakly a.s. in the
Cesàro sense to some optional measures ν∗±; i.e., if we define

θj±(t) :=
1

j + 1

j∑
k=0

νnk± (t), (2.17)

then

lim
j→∞

∫ T

0
f(t) dθj±(t) =

∫ T

0
f(t) dν∗±(t), P̃− a.s., (2.18)

for every continuous and bounded function f(·) (see, e.g., [10]). Moreover, a.s. weak convergence
of θj± to ν∗± (cf. (2.18)) is equivalent to having limj→∞ θ

j
±(t) = ν∗±(t) P̃-a.s. for every point of

continuity of ν∗±(·) and for t = T (cf. [10]). Hence, limj→∞ θ
j
±(t) = ν∗±(t) also dP̃ ⊗ dt-a.e., as ν∗±

are left-continuous and nondecreasing.
Since (νn)n∈N is a maximizing sequence, then (θj)j∈N, θj := θj+ − θ

j
−, is maximizing as well by

concavity of the profit functional. Now, if we could use (reverse) Fatou’s Lemma, we would obtain

V (0, y) ≤ lim sup
j→∞

J0,y(θ
j) ≤ J0,y(ν

∗), (2.19)

thus the optimality of ν∗±(t) :=
∫ t

0
C0(s)
fC

dν∗±(s). Uniqueness follows as usual from strict concavity
of J0,y and convexity of S.
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It remains to show that (reverse) Fatou’s Lemma can be applied. Under the measure P̃ we may
write the net profit functional J0,y in (2.7) for any ν ∈ S as

J0,y(ν) = Ẽ
{∫ T

0
e−µF t

1

M0(t)
R(Cy,ν(t))dt− c+

fC

∫ T

0
e−µ̄tdν+(t) +

c−
fC

∫ T

0
e−µ̄tdν−(t)

+e−µFT
1

M0(T )
G(Cy,ν(T ))

}
= Ẽ

{∫ T

0

[
e−µF t

1

M0(t)
R(Cy,ν(t))− e−µ̄t

(c+µ̄

fC
ν+(t)− c−µ̄

fC
ν−(t)

)]
dt

−e−µ̄T
( c+

fC
ν+(T )− c−

fC
ν−(T )

)
+ e−µFT

1

M0(T )
G(Cy,ν(T ))

}
=: Ẽ

{∫ T

0
Φy,ν(t) dt+ Ĝy,ν(T )

}
,

where we have performed an integration by parts to obtain the second equality, µ̄ = µC + µF and

Φy,ν(t) := e−µF t
1

M0(t)
R(Cy,ν(t))− e−µ̄t

(c+µ̄

fC
ν+(t)− c−µ̄

fC
ν−(t)

)
Ĝy,ν(T ) := e−µFT

1

M0(T )
G(Cy,ν(T ))− e−µ̄T

( c+

fC
ν+(T )− c−

fC
ν−(T )

)
.

Recall (2.3) and c+ > c−. Since for every ε > 0 there exists κε > 0 such that R(C) ≤ κε + εC (cf.
Assumption 2.1), then we obtain

Φy,ν(t) ≤ κεe
−µF t

M0(t)
+ εye−µ̄t + e−µ̄tν+(t)

(
ε− c+µ̄

fC

)
+ e−µ̄tν−(t)

(
c−µ̄

fC
− ε
)
, ν ∈ S.

We now take ε = µ̄c−
fC

and we find

Φy,ν(t) ≤ K̂
(

1 +
1

M0(t)

)
, (2.20)

for some K̂ > 0, and the right-hand side of (2.20) is dP̃⊗dt-integrable and independent of ν. Again,
G(C) ≤ c+

fC
C + κG, for some κG ≥ 0 (cf. (2.6)), and hence

Ĝy,ν(T ) ≤ κGe
−µFT

M0(T )
+
c+y

fC
e−µ̄T . (2.21)

Note that the right-hand side of (2.21) is independent of ν and P̃-integrable. Therefore we can
apply Fatou’s Lemma to justify (2.19).

3 The Zero-Sum Optimal Stopping Game

In order to characterize the optimal control policy we shall associate to problem (2.8) a suitable
zero-sum optimal stopping game, in the spirit of [23] and [43], among others. Then, we will
show that the value function solves a free boundary problem with two free boundaries which are
continuous, bounded and monotone solutions of a system of non-linear integral equations.

As usual in the literature of dynamic programming, we let the optimization in (2.8) start
at arbitrary time t ∈ [0, T ]. Since the solution of (2.1) and the net profit functional are time-
homogeneous, then we may simply set a time horizon [0, T − t] in (2.7) and write

Jt,y(ν) = E
{∫ T−t

0
e−µF sR(Cy,ν(s))ds− c+

∫ T−t

0
e−µF sdν+(s) + c−

∫ T−t

0
e−µF sdν−(s)

+e−µF (T−t)G(Cy,ν(T − t))
}
. (3.1)
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It follows that the firm’s investment-disinvestment problem now reads

V (t, y) := sup
ν∈S
Jt,y(ν). (3.2)

From (2.2) and (2.3), we may write the value function V (t, y) of the optimal control problem (3.2)
in terms of a maximization over the controls ν ∈ S; that is,

V (t, y) = sup
ν∈S

E
{∫ T−t

0
e−µF sR(C0(s)[y + ν(s)])ds− c+

fC

∫ T−t

0
e−µF sC0(s)dν+(s)

+
c−
fC

∫ T−t

0
e−µF tC0(s)dν−(s) + e−µF (T−t)G

(
C0(T − t)[y + ν(T − t)]

)}
.

In order to employ results by [43], take ω ∈ Ω, s ∈ [0, T − t], y ∈ (0,∞) and set

ξ±(ω, s) := ν±(ω, s),

X(ω, s) := y + ν(ω, s) = y + ξ+(ω, s)− ξ−(ω, s),

H(ω, s, y) := −e−µF sR(yC0(ω, s)),

γ(ω, s) := c+
fC
e−µF sC0(ω, s)1{s<T−t}, ν(ω, s) := − c−

fC
e−µF sC0(ω, s)1{s<T−t},

G(ω, y) := −e−µF (T−t)G(yC0(ω, T − t)).

(3.3)

Notice that Hy(ω, s, y) is dP ⊗ dt-integrable for any y > 0, thanks to concavity of R, whereas
Gy(ω, y) is dP-integrable by (2.6). Moreover E{sup0≤s≤T−t |γ(s)|+ sup0≤s≤T−t |ν(s)|} <∞. Then,
thanks to [43], Theorem 2.3, we fit into [43], Theorem 3.2, (with time horizon T − t) and the
following result holds.

Proposition 3.1. Under Assumption 2.1, the value function V (t, y) of the control problem (3.2)
satisfies

∂

∂y
V (t, y) = v(t, y), (t, y) ∈ [0, T ]× (0,∞), (3.4)

where

v(t, y) := inf
σ∈[0,T−t]

sup
τ∈[0,T−t]

E
{
c+

fC
e−µF σC0(σ)1{σ≤τ}1{σ<T−t} +

c−
fC
e−µF τC0(τ)1{τ<σ}

+

∫ τ∧σ

0
e−µF sC0(s)Rc(yC

0(s))ds+ e−µF (T−t)C0(T − t)Gc(yC0(T − t))1{τ=σ=T−t}

}
= sup

τ∈[0,T−t]
inf

σ∈[0,T−t]
E
{
c+

fC
e−µF σC0(σ)1{σ≤τ}1{σ<T−t} +

c−
fC
e−µF τC0(τ)1{τ<σ} (3.5)

+

∫ τ∧σ

0
e−µF sC0(s)Rc(yC

0(s))ds+ e−µF (T−t)C0(T − t)Gc(yC0(T − t))1{τ=σ=T−t}

}
.

Here v(t, y) is the value function of a zero-sum optimal stopping game (Dynkin game). Consider
two players, P1 and P2, starting playing at time t ∈ [0, T ]. Player P1 can choose the stopping time
σ, whereas player P2 the stopping time τ . The game ends as soon as one of the two players decides
to stop, i.e. at the stopping time σ ∧ τ . As long as the game is in progress, P1 keeps paying P2 at
the (random) rate e−µF tC0(t)Rc(yC

0(t)) per unit of time. When the game ends before T − t, P1

pays c+
fC
e−µF σC0(σ) if she/he decides to stop earlier than P2; otherwise P1 pays c−

fC
e−µF τC0(τ). If
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no one decides to stop the game (i.e. the game ends at T − t), P1 pays P2 the (random) amount
e−µF (T−t)C0(T − t)Gc(yC0(T − t)). It follows that the (random) total payment from P1 to P2 is

c+

fC
e−µF σC0(σ)1{σ≤τ}1{σ<T−t} +

c−
fC
e−µF τC0(τ)1{τ<σ} (3.6)

+

∫ τ∧σ

0
e−µF sC0(s)Rc(yC

0(s)) ds+ e−µF (T−t)C0(T − t)Gc(yC0(T − t))1{τ=σ=T−t}.

Hence, as it is natural, P1 tries to minimize the expected value of (3.6), whereas P2 tries to maximize
it.

Remark 3.2. Notice that in [43], Theorem 3.2, the instantaneous cost functions γ and ν are both
positive. This is not true in our setting, however reading carefully the proof of [43], Theorem 3.2,
one can see that such condition is not necessary.

Recall now P̃ defined in (2.10) and set W̃ (t) := W (t)−σCt, t ≥ 0. This process is a P̃-Brownian
motion and

C0(t) = eµ̂Ct+σCW̃ (t), (3.7)

with µ̂C := −µC + 1
2σ

2
C , under the new measure. Then Girsanov Theorem allows us to rewrite

v(t, y) of (3.5) under P̃ as

v(t, y) := inf
σ∈[0,T−t]

sup
τ∈[0,T−t]

Ψ(t, y;σ, τ) = sup
τ∈[0,T−t]

inf
σ∈[0,T−t]

Ψ(t, y;σ, τ), (3.8)

with

Ψ(t, y;σ, τ) := Ẽ
{
c+

fC
e−µ̄σ1{σ≤τ}1{σ<T−t} +

c−
fC
e−µ̄τ1{τ<σ}

+ e−µ̄(T−t)Gc(yC
0(T − t))1{τ=σ=T−t} +

∫ τ∧σ

0
e−µ̄sRc(yC

0(s))ds

}
(3.9)

and, again, µ̄ := µC + µF . Notice that

c−
fC
≤ v(t, y) ≤ c+

fC
(3.10)

for all (t, y) ∈ [0, T ]× (0,∞).
From now on, our aim will be to characterize the optimal control ν∗ for problem (3.2) in terms

of the optimal strategy of the zero-sum game (3.8). We expect the latter to be given by the first
exit times (σ∗, τ∗) of the process {yC0(s), s ≥ 0} from the region bounded between two moving
boundaries denoted by ŷ+ and ŷ−, respectively. A characterization of the free-boundaries is hard to
find in general. However, that can be accomplished when the marginal scrap value Gc coincide with
either c+

fC
or c−

fC
. That is a common assumption when addressing zero-sum optimal stopping games

with variational methods (cf., e.g., [30], Chapter 16, Section 9). We observe that if Gc(C) = c+
fC

, the

player who aims to maximize Ψ will choose a ‘no-action strategy’ for t > [T − 1
µ̄ ln( c+c− )]+ regardless

of the initial state y. In fact, an immediate stopping would get her/him a reward equal to c−
fC

,

whereas doing nothing would guarantee a payoff larger than c+
fC
e−µ̄(T−t). Somehow this introduces

an advantage for the ‘sup-player’ as her/his strategy is known on a whole time interval before the
end of the game. To avoid such a situation we make the following

Assumption 3.3. G(C) = c−
fC
C.

Theorem 3.4. Under Assumptions 2.1 and 3.3 the value function v(t, y) defined in (3.8) is con-
tinuous on [0, T ]× (0,∞).



Reversible Investment and Free Boundaries 10

The full proof of this Theorem is quite technical and it is contained in Appendix A, Section
A.1. It follows by adapting to the present setting arguments developed in [61]. Continuity of v(t, y)
on [0, T ] × (0,∞) is indeed obtained by introducing suitable penalized problems, by showing that
their solutions uε, ε > 0, are continuous and that they converge uniformly to v as ε ↓ 0 on compact
subsets of [0, T ]× (0,∞).

Theorem 3.5. Under Assumptions 2.1 and 3.3 the stopping times
σ∗(t, y) := inf{s ∈ [0, T − t) : v(t+ s, yC0(s)) ≥ c+

fC
} ∧ (T − t),

τ∗(t, y) := inf{s ∈ [0, T − t) : v(t+ s, yC0(s)) ≤ c−
fC
} ∧ (T − t),

(3.11)

are a saddle point for the zero-sum game (3.8).

Theorem 3.5 is proved in Appendix A, Section A.2. As a natural byproduct of its proof we
obtain the following

Proposition 3.6. Take (t, y) ∈ [0, T ] × (0,∞) arbitrary but fixed and let ρ ∈ [0, T − t] be any
stopping time. Then under Assumptions 2.1 and 3.3 the value function v satisfies

i) v(t, y) ≤ Ẽ
{
e−µ̄(ρ∧τ∗)v(t+ ρ ∧ τ∗, yC0(ρ ∧ τ∗)) +

∫ ρ∧τ∗

0
e−µ̄sRc(yC

0(s)) ds

}
(3.12)

ii) v(t, y) ≥ Ẽ
{
e−µ̄(σ∗∧ρ)v(t+ σ∗ ∧ ρ, yC0(σ∗ ∧ ρ)) +

∫ σ∗∧ρ

0
e−µ̄sRc(yC

0(s)) ds

}
(3.13)

iii) v(t, y) = Ẽ
{
e−µ̄(ρ∧σ∗∧τ∗)v(t+ ρ ∧ σ∗ ∧ τ∗, yC0(ρ ∧ σ∗ ∧ τ∗))

+

∫ ρ∧σ∗∧τ∗

0
e−µ̄sRc(yC

0(s)) ds

}
(3.14)

Proof. Inequalities i) and ii) are direct consequences of (A-51) and (A-53), respectively. Equality
iii) follows by exactly the same arguments as in (A-45)–(A-47).

The above characterization of the value function was also found via purely probabilistic methods
in [55] and, in that paper, properties i), ii) and iii) were referred to as semi-harmonic characteri-
zation of v.

Proposition 3.7. Under Assumptions 2.1 and 3.3 the value function v(t, y) is

1. decreasing in y for each t ∈ [0, T ];

2. decreasing in t for each y ∈ (0,∞).

Proof. 1. Fix t ∈ [0, T ] and y1 > y2 > 0. Let (σ∗1, τ
∗
1 ) be optimal for (t, y1) and (σ∗2, τ

∗
2 ) be

optimal for (t, y2). By definition of v(t, y) (cf. (3.8)) we have

v(t, y1)− v(t, y2) ≤ Ẽ
{
c+

fC
e−µ̄σ1{σ≤τ∗1 }1{σ<T−t} +

c−
fC
e−µ̄τ

∗
1 1{τ∗1<σ}

+

∫ τ∗1∧σ

0
e−µ̄sRc(y1C

0(s))ds+ e−µ̄(T−t) c−
fC
1{τ∗1 =σ=T−t}

}
− Ẽ

{
c+

fC
e−µ̄σ

∗
21{σ∗2≤τ}1{σ∗2<T−t} +

c−
fC
e−µ̄τ1{τ<σ∗2} +

∫ σ∗2∧τ

0
e−µ̄sRc(y2C

0(s))ds

+ e−µ̄(T−t) c−
fC
1{σ∗2=τ=T−t}

}
,
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for any σ and τ in [0, T − t]. If we now set σ := σ∗2 and τ := τ∗1 , then we have

v(t, y1)− v(t, y2) ≤ Ẽ
{∫ τ∗1∧σ∗2

0
e−µ̄s

[
Rc(y1C

0(s))−Rc(y2C
0(s))

]
ds

}
≤ 0

as Rc(·) is decreasing.

2. Given (t, y) ∈ [0, T ] × (0,∞), for fixed θ ∈ [0, T − t] we define the ‘θ-shifted’ value function
as vθ(t, y) := v(t+ θ, y). Introduce the stopping time

τ∗θ := inf{s ∈ [0, T − t− θ) : vθ(t+ s, yC0(s)) ≤ c−
fC
} ∧ (T − t− θ), (3.15)

and note that it is optimal for the sup-problem in vθ. Recalling (3.11) and setting ρθ := σ∗∧τ∗θ ,
then we obtain

Ẽ
{
e−µ̄ρθ

[
vθ(t+ ρθ, yC

0(ρθ))− v(t+ ρθ, yC
0(ρθ))

]}
≥ vθ(t, y)− v(t, y), (3.16)

by (3.12) and (3.13). In order to show that the left-hand side of (3.16) is negative, notice
that

• on {ρθ = T − t− θ} : vθ(T − θ, yC0(T − t− θ)) = v(T, yC0(T − t− θ)) = c−
fC

and, on the

other hand, v(T − θ, yC0(T − t− θ)) ≥ c−
fC

.

• on {ρθ = τ∗θ }
⋂
{ρθ < T − t− θ} : vθ(t+ τ∗θ , yC

0(τ∗θ )) = c−
fC

and v(t+ τ∗θ , yC
0(τ∗θ ) ≥ c−

fC
.

• on {ρθ = σ∗}
⋂
{ρθ < T − t− θ} : vθ(t+σ∗, yC0(σ∗)) ≤ c+

fC
and v(t+σ∗, yC0(σ∗)) = c+

fC
.

It thus follows that v(t+ θ, y) ≤ v(t, y) for any θ ∈ [0, T − t] by (3.16).

We now define the continuation region

C :=
{

(t, y) ∈ [0, T ]× (0,∞) :
c−
fC

< v(t, y) <
c+

fC

}
,

and the two stopping regions

S+ :=
{

(t, y) ∈ [0, T ]× (0,∞) : v(t, y) =
c+

fC

}
,

S− :=
{

(t, y) ∈ [0, T ]× (0,∞) : v(t, y) =
c−
fC

}
.

Notice that C is an open subset of [0, T ]× (0,∞) and S+,S− are closed ones, due to continuity of
v (cf. Theorem 3.4) Moreover, for t ∈ [0, T ] fixed, denote by Ct := {y ∈ (0,∞) : c−fC < v(t, y) < c+

fC
}

the t-section of the continuation region. Analogously, we introduce the t-sections S+,t, S−,t of the
two stopping regions.

Proposition 3.8. Let Assumptions 2.1 and 3.3 hold. Then, for any t ∈ [0, T ], there exist ŷ+(t) <
ŷ−(t) such that Ct = (ŷ+(t), ŷ−(t)) ⊂ [0,∞], S+,t = [0, ŷ+(t)] and S−,t = [ŷ−(t),∞].

Proof. The result follows by 1. of Proposition 3.7 and recalling that C is open.
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Since y 7→ v(t, y) is decreasing (cf. Proposition 3.7), then S+ lies below C, and C lies below S−.
From Proposition 3.8 it is natural to define the two free boundaries as

ŷ+(t) := sup
{
y > 0 : v(t, y) =

c+

fC

}
(3.17)

and
ŷ−(t) := inf

{
y > 0 : v(t, y) =

c−
fC

}
. (3.18)

Remark 3.9. It is easy to see that the optimal stopping times τ∗ and σ∗ of (3.11) may be written
in terms of the free boundaries ŷ+ and ŷ− of (3.17) and (3.18), respectively, as

τ∗(t, y) := inf{s ∈ [0, T − t) :
(
ŷ−(t+ s)− yC0(s)

)+
= 0} ∧ (T − t),

σ∗(t, y) := inf{s ∈ [0, T − t) :
(
yC0(s)− ŷ+(t+ s)

)+
= 0} ∧ (T − t).

(3.19)

Recalling now Theorem 3.4, Theorem 3.5, Proposition 3.6, Proposition 3.8, Remark 3.9 and
by using standard arguments based on the strong Markov property (cf. [53]) we may show that v
solves the free-boundary problem

(
∂t + L − µ̄

)
v(t, y) = −Rc(y) for ŷ+(t) < y < ŷ−(t), t ∈ [0, T )(

∂t + L − µ̄
)
v(t, y) ≤ −Rc(y) for y > ŷ+(t), t ∈ [0, T )(

∂t + L − µ̄
)
v(t, y) ≥ −Rc(y) for y < ŷ−(t), t ∈ [0, T )

c−
fC
≤ v(t, y) ≤ c+

fC
in [0, T ]× (0,∞)

v(t, ŷ±(t)) = c±
fC

t ∈ [0, T )

v(T, y) = c−
fC

y > 0

(3.20)

with Lf := 1
2σ

2
Cy

2f
′′

+ µ̂Cyf
′

for f ∈ C2
b ((0,∞)), and µ̂C := −µC + 1

2σ
2
C . Moreover v ∈ C1,2 inside

the continuation region C.

Proposition 3.10. Under Assumptions 2.1 and 3.3 one has

1. ŷ+(t) and ŷ−(t) are decreasing;

2. ŷ+(t) is left-continuous and ŷ−(t) is right-continuous;

3. 0 < ŷ+(t) ≤ R−1
c ( µ̄c+fC ), for t ∈ [0, T );

4. limt↑T ŷ+(t) =: ŷ+(T ) = 0;

5. 0 < R−1
c ( µ̄c−fC ) ≤ ŷ−(t) < +∞, for t ∈ [0, T );

6. limt↑T ŷ−(t) =: ŷ−(T−) = R−1
c ( µ̄c−fC ).

Proof. 1. We borrow arguments from [37]. Fix t ∈ [0, T ] and take s ∈ [0, T − t]. Then for any
ε > 0 one has

v(t+ s, ŷ+(t) + ε) ≤ v(t, ŷ+(t) + ε) <
c+

fC
,

being v(·, y) decreasing by Proposition 3.7 and since ŷ+(t) + ε ∈ Ct. Then ŷ+(t) + ε ∈ Ct+s
and therefore

ŷ+(t) + ε ≥ ŷ+(t+ s),

i.e. ŷ+(t) is decreasing. Similar arguments apply to show that ŷ−(t) is decreasing as well.
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2. Fix t ∈ [0, T ] and notice that for every ε ∈ [0, t] we have ŷ+(t) ≤ ŷ+(t − ε). It follows that
ŷ+(t) ≤ limε↓0 ŷ+(t − ε) =: ŷ+(t−), which exists since ŷ+(·) is monotone. Consider now
the family

(
t − ε, ŷ+(t − ε)

)
ε>0
∈ S+; one has (t − ε, ŷ+(t − ε)) → (t, ŷ+(t−)) as ε ↓ 0 and

(t, ŷ+(t−)) ∈ S+, since S+ is closed. Recalling S+,t of Proposition 3.8, one has ŷ+(t−) ≤ ŷ+(t)
and thus ŷ+(t−) = ŷ+(t). Right-continuity of ŷ−(·) follows by similar arguments.

3. To show that ŷ+(t) > 0 for any t < T we argue by contradiction and we assume that ŷ+(t) = 0
for some t ∈ [0, T ). From monotonicity of ŷ+(·) we have ŷ+(t+ s) = 0 for every s ∈ [0, T − t).
Take now y ∈ Ct and notice that yC0(s) > 0, s ∈ [0, T − t). It follows that σ∗ = T − t,

v(t, y) = sup
τ∈[0,T−t]

Ẽ
{
c−
fC
e−µ̄τ +

∫ τ∧(T−t)

0
e−µ̄sRc(yC

0(s)) ds

}
> Ẽ

{∫ T−t

0
e−µ̄sRc(yC

0(s)) ds

}
,

and

v(t, y)− c+

fC
> Ẽ

{∫ T−t

0
e−µ̄sRc(yC

0(s)) ds

}
− c+

fC
. (3.21)

The right-hand side of (3.21) may be taken strictly positive by monotone convergence and
Inada conditions (cf. Assumption 2.1) for y sufficiently small. Such a contradiction proves
that ŷ+(t) > 0 for any t < T .

Given that S+,t is connected (cf. Proposition 3.8), ŷ+ is positive and decreasing, then S+ is
connected, with non-empty interior intS+. Taking v = c+/fC in the third equation of (3.20)
one has intS+ ⊆

{
(t, y) ∈ [0, T )× (0,∞) : Rc(y) ≥ µ̄c+

fC

}
. Therefore, setting y+ := R−1

c ( µ̄c+fC )
one finds ŷ+(t) ≤ y+ for all t ∈ [0, T ).

4. If ŷ+(T ) > 0 then we would have limy↓ŷ+(T ) v(T, y) = c−
fC

and limt↑T v(t, ŷ+(t)) = c+
fC

, but this
contradicts the continuity of v on [0, T ]× (0,∞) (cf. Theorem 3.4).

5. We shall first show that ŷ−(t) < +∞. To accomplsh that we introduce an auxiliary optimal
stopping problem with free boundary b(t) such that ŷ−(t) ≤ b(t) and b(t) < +∞. Notice that
for any (t, y) ∈ [0, T ]× (0,∞) one has

v(t, y) ≤ ṽ(t, y), (3.22)

with

ṽ(t, y) := sup
τ∈[0,T−t]

Ẽ
{
c−
fC
e−µ̄τ +

∫ τ

0
e−µ̄sRc(yC

0(s)) ds

}
, (3.23)

by simply taking σ = T − t in (3.8). It is not hard to see that ṽ(t, y) ≥ c−
fC

for any (t, y) ∈
[0, T ]×(0,∞), y 7→ ṽ(t, y) is decreasing for any t ∈ [0, T ] due to the concavity of R, t 7→ ṽ(t, y)
is decreasing and continuous for any y ∈ (0,∞), and y 7→ ṽ(t, y) is continuous uniformly in t.
Then (t, y) 7→ ṽ(t, y) is continuous on [0, T ]× (0,∞) and the stopping time

τ̃∗(t, y) := inf
{
s ∈ [0, T − t) : ṽ(t+ s, yC0(s)) ≤ c−

fC

}
∧ (T − t)

is optimal (cf. for instance [53]). Moreover, there exists a unique monotone decreasing free
boundary

b(t) := inf
{
y ∈ (0,∞) : ṽ(t, y) =

c−
fC

}
, t < T, (3.24)

such that the continuation region C̃ is the open set

C̃ := {y ∈ (0,∞) : y < b(t), t < T}.
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Since v(t, y) ≤ ṽ(t, y), then it is not hard to show that ŷ−(t) ≤ b(t). We will now prove that
b(t) < ∞ for all t ∈ [0, T ] adapting arguments by [51]. Assume there exists 0 < to < T such
that b(to) = +∞, then τ̃∗(0, y) ≥ to for any y > 0 and

ṽ(0, y) =
c−
fC

+ Ẽ
{∫ τ̃∗(0,y)

0
e−µ̄s

(
Rc(yC

0(s))− µ̄c−
fC

)
ds

}
,

since for any stopping time τ ∈ [0, T ]

e−µ̄τ
c−
fC

=
c−
fC
−
∫ τ

0
e−µ̄s

µ̄c−
fC

ds.

Fix ε > 0, set y− := R−1
c ( µ̄c−fC ) and define the stopping time

τ εy−(0, y) := inf{s ∈ [0, T ) : yC0(s) ≤ y− + ε} ∧ T.

Observe that there exists qε > 0 such that Rc(y)− µ̄c−
fC

< −qε for all y ≥ y− + ε, by (3.20).

From now on we write τ̃∗ ≡ τ̃∗(0, y) and τ εy− ≡ τ
ε
y−

(0, y) to simplify notation. We then have

ṽ(0, y)− c−
fC

= Ẽ
{
1{τ̃∗≤τεy−}

∫ τ̃∗

0
e−µ̄s

(
Rc(yC

0(s))− µ̄c−
fC

)
ds

}
+ Ẽ

{
1{τ̃∗>τεy−}

∫ τ̃∗

0
e−µ̄s

(
Rc(yC

0(s))− µ̄c−
fC

)
ds

}
(3.25)

≤− qε Ẽ
{
τ̃∗1{τ̃∗≤τεy−}

}
+ P̃(τ̃∗ > τ εy−)

1
2 Ẽ
{∣∣∣ ∫ T

0
e−µ̄s

(
Rc(yC

0(s))− µ̄c−
fC

)
ds
∣∣∣2} 1

2

≤− qε to P̃(τ̃∗ ≤ τ εy−) + c(y)P̃(τ̃∗ > τ εy−)
1
2 ,

where we have used Hölder inequality and set c(y) := Ẽ{|
∫ T

0 e−µ̄s[Rc(yC
0(s))− µ̄c−

fC
] ds|2}

1
2 <

∞ (which is bounded by some positive constant κ̄ as y ↑ ∞ by Lemma A.1 in Appendix). If
now

lim
y↑∞

P̃(τ̃∗(0, y) > τ εy−(0, y)) = 0, (3.26)

then we have ṽ(0, y)− c−
fC

< 0 for y sufficiently large, thus reaching a contradiction.

To verify that, take now y > y− + ε and notice that{
τ εy−(0, y) < τ̃∗(0, y)

}
⊆
{

inf
0≤s≤T

yC0(s) ≤ y− + ε
}

=
{

inf
0≤s≤T

σCW̃ (s) + µ̂Cs ≤ − ln

(
y

y− + ε

)}
⊆
{

sup
0≤s≤T

|σCW̃ (s) + µ̂Cs| ≥ ln

(
y

y− + ε

)}
,

with µ̂C as in (3.7). Then we obtain

P̃(τ̃∗(0, y) > τ εy−(0, y)) ≤ P̃
(

sup
0≤s≤T

|σCW̃ (s) + µ̂Cs| ≥ ln

(
y

y− + ε

))
≤
[

ln

(
y

y− + ε

)]−1
Ẽ
{

sup
0≤s≤T

|σCW̃ (s) + µ̂Cs|
}
≤ CT

[
ln

(
y

y− + ε

)]−1
,

where we used Markov inequality and standard estimates on the solutions of stochastic dif-
ferential equations (cf. [29], Chapter 5). It follows (3.26) and that b(to) < +∞.
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It remains now to exclude the case to = 0 as well. Assume b(0) = +∞, take δ > 0, 0 < t < δ
and define

ṽδ(t, y) := sup
τ∈[0,T+δ−t]

Ẽ
{
c−
fC
e−µ̄τ +

∫ τ

0
e−µ̄sRc(yC

0(s)) ds

}
. (3.27)

Hence ṽδ(t, y) ≥ ṽ(t, y) and ṽδ(t + δ, y) = ṽ(t, y). If we now denote by bδ the free-boundary
of problem (3.27), we easily find b(0) = bδ(δ). We may thus repeat same arguments as those
employed in the case to > 0 to obtain a contradiction and conclude that b(0) < +∞. Finally,
we may proceed as in the second part of the proof of 3. to show that ŷ−(t) ≥ y− for all
t ∈ [0, T ].

6. Define b̂−(t) := ŷ−(t) − y−, with y− := R−1
c ( µ̄c−fC ). This curve is nonnegative thanks to

5. and b̂−(t) < ŷ−(t) for all t ≤ T ; that is, (t, b̂−(t)) ∈ S+ ∪ C and v(t, b̂−(t)) > c−
fC

for all

t ≤ T . If now b̂−(T−) > 0 then limy↑b̂−(T−) v(T, y) = c−
fC

and limt↑T v(t, b̂−(t)) > c−
fC

, but

this is not possible being v(t, y) continuous on [0, T ]× (0,∞) by Theorem 3.4. It then follows
b̂−(T−) = 0, i.e. ŷ−(T−) = y−.

Theorem 3.11. The free-boundaries t 7→ ŷ+(t) and t 7→ ŷ−(t) are continuous on [0, T ].

Proof. A proof of continuity by standard use of Newton-Leibnitz formula (cf. [53] for a list of
examples) seems rather hard to implement for the lower free-boundary ŷ+. In fact, inequalities
that one would normally try to use cannot be obtained in that case. For this reason we abandon
that approach and proceed via arguments inspired by PDE theory.

1. We start by considering the upper free-boundary, ŷ−(t), which is right-continuous (cf. Propo-
sition 3.10). Let us argue by contradiction and assume that there exists to ∈ (0, T ) where a
discontinuity of ŷ−( · ) occurs; that is, to is such that ŷ−(to−) > ŷ−(to). Fix t′ ∈ (0, to), y1 and y2

such that ŷ−(to) < y1 < y2 < ŷ−(to−) and define a domain R ⊂ C by R := (t′, to) × (y1, y2). Its
parabolic boundary ∂PR is clearly formed by the horizontal lines [t′, to)×{yi}, i = 1, 2 and by the
vertical line {to}× [y1, y2]. From the first equation in (3.20) and the definition of R we obtain that
v (uniquely) solves the Dirichlet-Cauchy problem(

∂t + L − µ̄
)
u(t, y) = −Rc(y) in R

u(t, y1) = v(t, y1) t ∈ [t′, t0)

u(t, y2) = v(t, y2) t ∈ [t′, t0)

u(t0, y) = c−
fC

y ∈ [y1, y2].

(3.28)

We denote by C∞c ([y1, y2]) the set of functions with infinitely many continuous derivatives and
compact support in [y1, y2]. Take ψ ≥ 0 arbitrary in C∞c ([y1, y2]) and such that

∫ y2
y1
ψ(y)dy = 1.

Multiply the first equation in (3.28) (with v instead of u) by ψ and integrate over [y1, y2]. It gives∫ y2

y1

∂tv(t, y)ψ(y)dy = −
∫ y2

y1

[(
L − µ̄

)
v(t, y) +Rc(y)

]
ψ(y)dy for all t ∈ [t′, to). (3.29)

We now integrate by parts twice the term on the right hand side of (3.29) and obtain∫ y2

y1

∂tv(t, y)ψ(y)dy = −
∫ y2

y1

[
v(t, y)

(
L∗ − µ̄

)
+Rc(y)

]
ψ(y)dy for all t ∈ [t′, to), (3.30)
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where L∗ is the adjoint of L and, in this particular case, it reads

L∗ψ(y) :=
1

2
σ2
Cy

2ψ′′(y) +
(
2σ2

C − µ̂C
)
yψ′(y) +

(
σ2
C − µ̂C

)
ψ(y). (3.31)

Recall that ∂tv is negative by 3. of Proposition 3.7. Take the limit as t → to in (3.30), use
dominated convergence, Theorem 3.4 and the last equation in (3.28) to obtain

0 ≥ lim
t↑to

∫ y2

y1

∂tv(t, y)ψ(y)dy = −
∫ y2

y1

[
v(to, y)

(
L∗ − µ̄

)
+Rc(y)

]
ψ(y)dy

=−
∫ y2

y1

[ c−
fC

(
L∗ − µ̄

)
+Rc(y)

]
ψ(y)dy = −

∫ y2

y1

[
Rc(y)− µ̄c−

fC

]
ψ(y)dy. (3.32)

Notice that y 7→ Rc(y)− µ̄c−
fC

is continuous and strictly negative for y ∈ [y1, y2], by 5. of Proposition
3.10 as y1 > y− and Rc(·) is strictly decreasing. Hence, there exists a positive constant ` := `(y1, y2)

such that supy∈[y1,y2]

[
Rc(y)− µ̄c−

fC

]
≤ −` and from the last term of (3.32) we find

0 ≥ −
∫ y2

y1

[
Rc(y)− µ̄c−

fC

]
ψ(y)dy ≥ `

∫ y2

y1

ψ(y)dy = ` > 0, (3.33)

by using that
∫ y2
y1
ψ(y)dy = 1. Therefore, we reach a contradiction and ŷ−(to−) = ŷ−(to).

2. We will now prove continuity of the lower boundary ŷ+(·). Again we argue by contradiction
and assume that there exists to ∈ (0, T ) where a discontinuity of ŷ+(·) occurs. Then to is such that
ŷ+(to) > ŷ+(to+). As before we define an open bounded domain R ⊂ C with parabolic boundary
∂PR formed by the horizontal lines [to, t

′) × {yi}, i = 1, 2 and by the vertical line {t′} × [y1, y2]
with y1 and y2 such that ŷ+(to+) < y1 < y2 < ŷ+(to) and arbitrary t′ ∈ (to, T ). We have that
u := c+

fC
− v solves (

∂t + L − µ̄
)
u(t, y) = Rc(y)− µ̄c+

fC
, (t, y) ∈ R, (3.34)

by (3.20) and additionally u(to, y) ≡ 0 for y ∈ [y1, y2]. Regularity of Rc and of the coefficients
in L imply that uyyy and uty exist and are continuous in R (cf. [27], Theorem 10, Chapter 3).
Differentiating (3.34) with respect to y and defining ū := uy we easily obtain

ūt(t, y)+
1

2
σ2
Cy

2ūyy(t, y)+(σ2
C+µ̂C)yūy(t, y)+(µ̂C−µ̄)ū(t, y) = Rcc(y) < 0, (t, y) ∈ R, (3.35)

as R is strictly concave. It will be useful in what follows to define the second order differential
operator

Gf(y) :=
1

2
σ2
Cy

2f ′′(y) + (σ2
C + µ̂C)yf ′(y) + (µ̂C − µ̄)f(y) for f ∈ C2

b (R). (3.36)

Again we consider a test function ψ ∈ C∞c ([y1, y2]) such that ψ ≥ 0 and
∫ y2
y1
ψ(y)dy = 1. We

define a function Fψ : (to, T )→ R by

Fψ(t) :=

∫ y2

y1

ūt(t, y)ψ(y)dy, t ∈ (to, T ). (3.37)

Now, denoting by G∗ the formal adjoint of G in (3.36), (3.35) gives

Fψ(t) =

∫ y2

y1

[
Rcc(y)− Gū(t, y)

]
ψ(y)dy =

∫ y2

y1

[
Rcc(y)ψ(y)− ū(t, y)G∗ψ(y)

]
dy

=

∫ y2

y1

[
Rcc(y)ψ(y) + u(t, y)

∂

∂y

(
G∗ψ

)
(y)
]
dy. (3.38)
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The map t 7→ Fψ(t) is clearly continuous on (to, T ), its right-limit at to is well defined thanks
to dominated convergence and it is equal to

Fψ(to+) := lim
t↓to

Fψ(t) =

∫ y2

y1

Rcc(y)ψ(y)dy, (3.39)

by recalling that u(to, y) ≡ 0 for y ∈ [y1, y2]. From strict concavity of R, there exists ` > 0 such
that Rcc(y) < −` in [y1, y2] and hence Fψ(to+) < −`. It follows that there exists ε > 0 such that
Fψ(t) < −`/2 for all t ∈ (to, to + ε] by continuity of Fψ. Now, take 0 < δ < ε arbitrary, then (3.37)
and Fubini’s theorem give

− `
2

(ε− δ) >
∫ ε

δ
Fψ(to + s)ds =

∫ y2

y1

[
ū(to + ε, y)− ū(to + δ, y)

]
ψ(y)dy

=

∫ y2

y1

uy(to + ε, y)ψ(y)dy +

∫ y2

y1

u(to + δ, y)ψ′(y)dy. (3.40)

Taking limits as δ → 0 we obtain

− `
2
ε ≥

∫ y2

y1

uy(to + ε, y)ψ(y)dy = −
∫ y2

y1

vy(to + ε, y)ψ(y)dy ≥ 0 (3.41)

since y 7→ v(t, y) is decreasing (cf. Proposition 3.7). Therefore we reach a contradiction and ŷ+

must be continuous on (0, T ).
3. It remains only to prove continuity at T . Since ŷ+ is left-continuous (cf. 2. of Proposition

3.10) then it is continuous on [0, T ]. On the other hand, ŷ− is right-continuous and decreasing
with ŷ−(T−) = R−1

c

( µ̄c+
fC

)
(see 6. of Proposition 3.10). Then, it must be continuous on [0, T ] since

ŷ−(t) ≥ R−1
c

( µ̄c+
fC

)
for all t ∈ [0, T ].

Recall that R ∈ C2((0,∞)) and it is strictly concave. We now make the following

Assumption 3.12. For any yo > 0 there exists δo := δo(yo) such that

Ẽ
{∫ T

0
e−µ̄s inf

{y:|y−yo|≤δo}
Rcc(yC

0(s)) ds

}
> −∞. (3.42)

It is easy to see that Assumption 3.12 is fulfilled by Cobb-Douglas and logarithmic production
function.

Proposition 3.13. Let Assumption 2.1, 3.3 and 3.12 hold. Then the smooth-fit property holds at
the free boundaries ŷ+ and ŷ−. That is,

vy(t, ŷ−(t)−) = 0, t ∈ [0, T ), (3.43)

vy(t, ŷ+(t)+) = 0, t ∈ [0, T ). (3.44)

Proof. We start by proving (3.43). Fix ε > 0 and to ∈ [0, T ) and let (σ∗−ε, τ
∗
−ε) be optimal in

v(to, ŷ−(to)− ε) in the sense of (3.11). Since the free-boundary ŷ− is monotone decreasing, it is not
hard to show that

lim
ε→0

τ∗−ε = 0, P-a.s. (3.45)

by the law of iterated logarithm at zero for Brownian motion.
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Take σ∗ := σ∗(to, ŷ−(to)) as in (3.11) and adopt the sub-optimal stopping strategy (σ∗, τ∗−ε) in
both the optimization problems with value functions v(to, ŷ−(to)) and v(to, ŷ−(to)−ε). Then, using
that y 7→ v(t, y) is decreasing (cf. Proposition 3.7) we obtain

0 ≤ v(to, ŷ−(to)− ε)− v(to, ŷ−(to))

≤ Ẽ
{∫ σ∗∧τ∗−ε

0
e−µ̄s

[
Rc
(
(ŷ−(to)− ε)C0(s)

)
−Rc

(
ŷ−(to)C

0(s)
)]
ds

}
(3.46)

and an application of the mean value theorem gives

0 ≤ v(to, ŷ−(to)− ε)− v(to, ŷ−(to)) ≤ −εẼ
{∫ σ∗∧τ∗−ε

0
e−µ̄sRcc

(
ξεC

0(s)
)
ds

}
(3.47)

for some ξε ∈ [ŷ−(to) − ε, ŷ−(to)]. Thanks to Assumption 3.12, fixed yo := ŷ−(to), we can always
find δo > ε, such that (3.42) holds. Then, dividing (3.47) by ε we have

0 ≤v(to, yo − ε)− v(to, yo)

ε
≤ Ẽ

{
−
∫ σ∗∧τ∗−ε

0
e−µ̄s inf

y∈[yo−δo,yo]
Rcc
(
yC0(s)

)
ds

}
, (3.48)

for all ε < δo. The family (Zε)ε∈(0,δo) defined by

Zε := −
∫ σ∗∧τ∗−ε

0
e−µ̄s inf

y∈[yo−δo,yo]
Rcc
(
yC0(s)

)
ds (3.49)

is uniformly bounded from above by

H := −
∫ T

0
e−µ̄s inf

y∈[yo−δo,yo]
Rcc
(
yC0(s)

)
ds (3.50)

and H is P̃–integrable by Assumption 3.12. Therefore, Fatou’s lemma, (3.45) and (3.48) imply

0 ≤ lim
ε→0

v(to, ŷ−(to)− ε)− v(to, ŷ−(to))

ε
≤ 0 (3.51)

and hence (3.43).
We now prove (3.44). Unfortunately arguments as in (3.43) seem not to be applicable in this

context. In fact, fixed to ∈ [0, T ), if we define by (σ∗+ε, τ
∗
+ε) optimal stopping times for v(to, ŷ+(to)+

ε), then we would like to have limε→0 σ
∗
+ε = 0 a.s. However, that does not seem obvious since ŷ+ is

only proved to be continuous and decreasing. In fact, roughly speaking, we cannot exclude the case
that ŷ

′
+(to) = −∞ at countably many points to. To avoid this difficulty, we shall adopt a different

argument inspired by [54].
Let h be a C2 solution on (0,∞) of the second-order ordinary differential equation Lh(y) =

Rc(y). Fix (to, y) ∈ [0, T )× (0,∞) and let ρ be a stopping time. Then, from i) of Proposition 3.6
one has

v(to, y) ≤ Ẽ
{
e−µ̄(ρ∧τ∗)v(to + ρ ∧ τ∗, yC0(ρ ∧ τ∗)) +

∫ ρ∧τ∗

0
e−µ̄sRc(yC

0(s))ds

}
≤ Ẽ

{
v(to + ρ ∧ τ∗, yC0(ρ ∧ τ∗)) +

∫ ρ

0
Rc(yC

0(s))ds

}
(3.52)

= Ẽ
{
v(to + ρ ∧ τ∗, yC0(ρ ∧ τ∗)) + h(yC0(ρ))

}
− h(y),

by Dynkin formula and the definition of h. Therefore

v(to, y) + h(y) ≤ Ẽ
{
v(to + ρ ∧ τ∗, yC0(ρ ∧ τ∗)) + h(yC0(ρ))

}
. (3.53)



Reversible Investment and Free Boundaries 19

For any α > 0 we define the hitting time τα := inf{s ≥ 0 : yC0(s) = α}. Take 0 < c < y < d < y−
and set ρ := τc ∧ τd. Then ρ ∧ τ∗ = ρ ∧ (T − to) and (3.53) becomes

v(to, y) + h(y) ≤ Ẽ
{
v(to + ρ, yC0(ρ))1{ρ<T−to}

}
+
c−
fC

Ẽ
{
1{ρ≥T−to}

}
+ h(c)P̃(τc < τd) + h(d)P̃(τd < τc) (3.54)

= Ẽ
{
v(to + τc, c)1{ρ<T−to}1{τc<τd} + v(to + τd, d)1{ρ<T−to}1{τd<τc}

}
+
c−
fC

Ẽ
{
1{ρ≥T−to}

}
+ h(c)P̃(τc < τd) + h(d)P̃(τd < τc).

Recall now that t 7→ v(t, y) is decreasing (cf. Proposition 3.7), that v(to, y) ≥ c−
fC

for any y ∈ (0,∞),
and that v(T, c) = v(T, d) = c−/fC . Hence (3.54) implies

v(to, y) + h(y) ≤ v(to, c)Ẽ
{
1{ρ<T−to}1{τc<τd}

}
+ v(to, d)Ẽ

{
1{ρ<T−to}1{τd<τc}

}
+
c−
fC

Ẽ
{
1{ρ≥T−to}

}
+ h(c)P̃(τc < τd) + h(d)P̃(τd < τc)

≤ v(to, c)Ẽ
{
1{ρ<T−to}1{τc<τd}

}
+ v(to, d)Ẽ

{
1{ρ<T−to}1{τd<τc}

}
(3.55)

+ v(to, c)Ẽ
{
1{ρ≥T−to}1{τc<τd}

}
+ v(to, d)Ẽ

{
1{ρ≥T−to}1{τd<τc}

}
+h(c)P̃(τc < τd) + h(d)P̃(τd < τc)

= [v(to, c) + h(c)]P̃(τc < τd) + [v(to, d) + h(d)]P̃(τd < τc)

= [v(to, c) + h(c)]
S(d)− S(y)

S(d)− S(c)
+ [v(to, d) + h(d)]

S(y)− S(c)

S(d)− S(c)
,

where S is the scale function (see, e.g., [42], Chapter 5) of C0. It follows that, for fixed to ∈ [0, T ),
the function y 7→ u(to, y), defined by u(to, y) := v(to, y) + h(y), is S-convex (see, e.g., [58], p. 546).
Therefore

y 7→ u(to, y)− u(to, x)

S(y)− S(x)

is increasing on [c, d], for every x ∈ (c, d).
Notice now that the scale function S of a geometric Brownian motion admits first order deriva-

tive at any y ∈ (0,∞) and recall that h ∈ C2((0,∞)). Then, for arbitrary but fixed to ∈ [0, T ), we
can apply arguments as in [54], Theorem 2.3, and obtain

uy(to, ŷ+(to)+) = h′(ŷ+(to)).

Hence
vy(to, ŷ+(to)+) = 0 to ∈ [0, T ),

by definition of u.

In the next Theorem we will find non-linear integral equations that characterise the free bound-
aries and the value function v of our zero-sum optimal stopping game.

Theorem 3.14. Under Assumption 2.1, 3.3 and 3.12, the value function v of problem (3.8) has
the following representation

v(t, y) = e−µ̄(T−t) c−
fC

+

∫ T−t

0
e−µ̄sẼ

{
Rc(yC

0(s))1{ŷ+(t+s)<yC0(s)<ŷ−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
yC0(s) < ŷ+(t+ s)

)
+ c−P̃

(
yC0(s) > ŷ−(t+ s)

)]
ds, (3.56)
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where ŷ+ and ŷ− are continuous, decreasing curves solving the coupled integral equations

c−
fC

= e−µ̄(T−t) c−
fC

+

∫ T−t

0
e−µ̄sẼ

{
Rc(ŷ−(t)C0(s))1{ŷ+(t+s)<ŷ−(t)C0(s)<ŷ−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
ŷ−(t)C0(s) < ŷ+(t+ s)

)
+ c−P̃

(
ŷ−(t)C0(s) > ŷ−(t+ s)

)]
ds (3.57)

and

c+

fC
= e−µ̄(T−t) c−

fC
+

∫ T−t

0
e−µ̄sẼ

{
Rc(ŷ+(t)C0(s))1{ŷ+(t+s)<ŷ+(t)C0(s)<ŷ−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
ŷ+(t)C0(s) < ŷ+(t+ s)

)
+ c−P̃

(
ŷ+(t)C0(s) > ŷ−(t+ s)

)]
ds, (3.58)

with boundary conditions

ŷ−(T ) = R−1
c

( µ̄c−
fC

)
& ŷ+(T ) = 0 (3.59)

and such that

R−1
c

( µ̄c−
fC

)
≤ ŷ−(t) < +∞ & 0 ≤ ŷ+(t) ≤ R−1

c

( µ̄c+

fC

)
for all t ∈ [0, T ]. (3.60)

Proof. We aim to apply local time-space formula by [52], Theorem 3.1. In order to do so we will
verify that v fulfils suitable sufficient conditions. That is, for η > 0 arbitrary but fixed(

∂t + L − µ̄
)
v is bounded on any compact K in [0, T − η]× (0,+∞) (3.61)

t 7→ vy(t, ŷ±(t)±) = 0 is continuous on [0, T − η], (3.62)

t 7→ v(t, ŷ±(t)±) is of bounded variation on [0, T − η]. (3.63)

Conditions (3.61) and (3.62) follow from (3.20) and the smooth-fit property (cf. Proposition 3.13).
To verify (3.63) we need a bit more work. There exists δη := δ(η) > 0 such that ŷ+(t) > δη for all

t ∈ [0, T − η], by 3. of Proposition 3.10 and Theorem 3.11. Also, there exist: Lη := L(δη) > 0 such
that

∣∣vy(t, y)
∣∣ ≤ Lη for all y ∈ [ŷ+(t)− δη, ŷ+(t) + δη], t ∈ [0, T − η] by (3.62) and Rη := R(δη) > 0

such that Rc(y) ≤ Rη on y ≥ ŷ+(T − η) − δη. From these bounds, 2. of Proposition 3.7, and the
first equation in (3.20) we find

σ2
C

2
y2vyy ≥ −Rη −

∣∣µ̂C∣∣Lηy + µ̄
c−
fC
, y ∈ [ŷ+(t)− δη, ŷ+(t) + δη], t ∈ [0, T − η]. (3.64)

Now, divide both sides of (3.64) by
σ2
C
2 y

2 to obtain

vyy ≥ −
(2Rη
σ2
C

) 1

y2
−
(2
∣∣µ̂C∣∣Lη
σ2
C

)1

y
, y ∈ [ŷ+(t)− δη, ŷ+(t) + δη], t ∈ [0, T − η], (3.65)

and recall that ŷ+(T − η) ≤ ŷ+(t) for t ∈ [0, T − η]. If we define

F (y) := −
∫ y

ŷ+(T−η)−δη

∫ z

ŷ+(T−η)−δη

[(2Rη
σ2
C

) 1

r2
+
(2
∣∣µ̂C∣∣Lη
σ2
C

)1

r

]
dr dz, (3.66)
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then y 7→ Λ(t, y) := [v − F ](t, y) is convex on [ŷ+(t), ŷ+(t) + δη] and on [ŷ+(t) − δη, ŷ+(t)] for
all t ∈ [0, T − η]. Also, it is easily verified that t 7→ Λy(t, ŷ±(t)±) is continuous on [0, T − η]
by (3.62) and (3.66). From (3.61) and (3.66) we obtain that ∂tΛ + LΛ − µ̄Λ is bounded on any
compact K ⊂ [0, T − η] × (0,+∞). It follows that t 7→ Λ(t, ŷ±(t)±) is of bounded variation on
[0, T − η], by [52], Remark 3.2 (see in particular eqs. (3.35)–(3.36) therein). Therefore (3.63) holds
as t 7→ F (ŷ±(t)±) is of bounded variation and hence v has to be such as well.

The local time-space formula may now be employed on [0, T − η] × (0,+∞). For any (t, y) ∈
[0, T − η]× (0,+∞) and arbitrary s ≤ T − η − t, we have

e−µ̄sv(t+ s, yC0(s))

= v(t, y) +

∫ s

0
e−µ̄u

(
∂tv + Lv − µ̄v

)
(t+ u, yC0(u))1{ŷ+(t+u)<yC0(u)<ŷ−(t+u)}du

− µ̄

fC

∫ s

0
e−µ̄u

[
c+1{yC0(u)<ŷ+(t+u)} + c−1{yC0(u)>ŷ−(t+u)}

]
du+M(s), (3.67)

by (3.43) and (3.44) and with M := {M(s), s ∈ [0, T − η − t]} a local martingale. We can take
expectations in (3.67) and use standard localization arguments to cancel the local martingale term.
Then, setting s = T − η − t we obtain

v(t, y) = Ẽ
{
e−µ̄(T−t−η)v(T − η, yC0(T − t− η))

}
+

∫ T−t−η

0
e−µ̄uẼ

{
Rc(yC

0(u))1{ŷ+(t+u)<yC0(u)<ŷ−(t+u)}

}
du (3.68)

+
µ̄

fC

∫ T−t−η

0
e−µ̄u

[
c+P̃

(
yC0(u) < ŷ+(t+ u)

)
+ c−P̃

(
yC0(u) > ŷ−(t+ u)

)]
du

by (3.20) and after rearranging terms. Since (3.68) holds for any η > 0, in the limit as η ↓ 0 we
find (3.56) by dominated convergence and continuity of v.

If we now take y = ŷ+(t) (or y = ŷ−(t)) in both sides of (3.56) we easily obtain (3.58) (or
(3.57)) by recalling that v(t, ŷ±(t)) = c±/fC .

It is now natural to ask whether the couple (ŷ+, ŷ−) is the unique solution of problem (3.57)–
(3.60). In many optimal stopping problems it is possible to show that the free-boundary, denoted
for instance by b(t), is in fact the unique solution of a (single) non-linear integral equation of
Volterra type similar to (3.57) and (3.58) (see for instance [50]). The proof goes as follows: one
assumes that another solution c(t) exists and associates to that a suitable function, often denoted
by U c; then martingale arguments and properties of U c lead to a number of contradictions thus
implying uniqueness. From a careful reading of such proof one evinces that it is crucial to show
that the value function V of a sup (inf) problem is always larger (smaller) than U c.

In our zero-sum optimal stopping game a further complication arises from the fact that v is a
saddle point. Assuming that (α+, α−) is another solution of (3.57)–(3.60) and trying to argue as
in [50], we define a function uα : [0, T ]× (0,∞) 7→ R by

uα(t, y) := e−µ̄(T−t) c−
fC

+

∫ T−t

0
e−µ̄sẼ

{
Rc(yC

0(s))1{α+(t+s)<yC0(s)<α−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
yC0(s) < α+(t+ s)

)
+ c−P̃

(
yC0(s) > α−(t+ s)

)]
ds. (3.69)

It seems rather hard to prove that uα of (3.69) is either larger or smaller than v. However, this
issue may be overcome by further restricting the set of couples (α+, α−) solving (3.57)–(3.60) to
those which also guarantee c−/fC ≤ uα ≤ c+/fC . This is to some extent equivalent to proving the
existence of a unique triple (v, ŷ+, ŷ−) solving the free-boundary problem (3.20).
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Theorem 3.15. The couple (ŷ+(t), ŷ−(t)) is the unique solution of (3.57) and (3.58) in the class
of continuous, decreasing functions such that (3.59), (3.60) hold and such that uα in (3.69) (with
α+ ≡ ŷ+ and α− ≡ ŷ−) satisfies

c−
fC
≤ uα(t, y) ≤ c+

fC
for all (t, y) ∈ [0, T ]× (0,+∞). (3.70)

Proof. Set Y y(s) := yC0(s), under P̃ to simplify notation. Assume there exist two continuous
functions α− and α+ solving (3.57)–(3.60) and such that uα as in (3.69) fulfils (3.70). The map
(t, y) 7→ uα(t, y) is continuous and uα(t, α±(t)) = c±/fC for t ∈ [0, T ), by (3.57) and (3.58). It is
not hard to verify that the process U t,yα := {U t,yα (s), s ∈ [0, T − t]}, defined by

U t,yα (s) := e−µ̄suα(t+ s, Y y(s)) +

∫ s

0
e−µ̄uRc(Y

y(u))1{α+(t+u)<Y y(u)<α−(t+u)}du

+
µ̄

fC

∫ s

0
e−µ̄u

[
c+1{Y y(u)<α+(t+u)} + c−1{Y y(u)>α−(t+u)}

]
du

(3.71)

is a P̃-martingale.
Take t ∈ [0, T ) arbitrary and y > α−(t). Define the stopping time

τα−(t, y) := inf
{
s ∈ [0, T − t) : Y y(s) ≤ α−(t+ s)

}
∧ (T − t) (3.72)

and for simplicity set τα− := τα−(t, y). From the martingale property of U t,yα in (3.71) we easily
find

uα(t, y) = Ẽ
{
e−µ̄τα−uα(t+ τα− , Y

y(τα−)) + µ̄
c−
fC

∫ τα−

0
e−µ̄sds

}
. (3.73)

Continuity of the process Y y implies that Y y(τα−) = α−(t + τα−) on the set {τα− < T − t}.
From (3.69), (3.72) and the continuity of uα we observe that uα(t+ τα− , Y

y(τα−)) = c−/fC , P̃-a.s.,
therefore

uα(t, y) = Ẽ
{
e−µ̄τα−

c−
fC

+ µ̄
c−
fC

∫ τα−

0
e−µ̄sds

}
=
c−
fC

for all y > α−(t) and t ∈ [0, T ). (3.74)

Similarly, consider y < α+(t) for a given t ∈ [0, T ), define the stopping time

τα+(t, y) := inf
{
s ∈ [0, T − t) : Y y(s) ≥ α+(t+ s)

}
∧ (T − t). (3.75)

and as usual set τα+ := τα+(t, y), to simplify notation. We may now use same arguments as in
(3.73) to obtain

uα(t, y) = Ẽ
{
e−µ̄τα+uα(t+ τα+ , Y

y(τα+)) + µ̄
c+

fC

∫ τα+

0
e−µ̄sds

}
. (3.76)

Note that on the set {τα+ < T − t} one has Y y(τα+) = α+(t + τα+), by continuity of Y y and α+.
On the other hand, {τα+ = T − t} ⊂ {Y y(T − t) = 0}, since α+ is continuous and α+(T ) = 0;

however, {Y y(T − t) = 0} is a P̃-null set and hence we conclude that uα(t+τα+ , Y
y(τα+)) = c+/fC ,

P̃-a.s. Then, from (3.76) we obtain

uα(t, y) = Ẽ
{
e−µ̄τα+

c+

fC
+ µ̄

c+

fC

∫ τα+

0
e−µ̄sds

}
=
c+

fC
for all y < α+(t) and t ∈ [0, T ). (3.77)
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We shall now prove that α+ ≡ ŷ+ and α− ≡ ŷ−. Initially we show that

α+(t) ≤ ŷ+(t) and α−(t) ≥ ŷ−(t) for all t ∈ [0, T ). (3.78)

Full details are only provided for the first of (3.78) as the ones for the second can be obtained
analogously. Assume that there exists to ∈ [0, T ) such that ŷ+(to) < α+(to). Then, take yo ∈
(ŷ+(to), α+(to)) and define the stopping time

ρα−(to, yo) := inf{s ∈ [0, T − to) : Y yo(s) ≥ α−(to + s)} ∧ (T − to). (3.79)

Let σ∗(to, yo) be as in (3.11) (or equivalently as in (3.19)) and set ρα− := ρα−(to, yo) and σ∗ :=

σ∗(to, yo) for simplicity. From the martingale property of U to,yoα in (3.71) we obtain

uα(to, yo) = Ẽ
{
e−µ̄σ

∗∧ρα−uα(to + σ∗ ∧ ρα− , Y yo(σ∗ ∧ ρα−))

+

∫ σ∗∧ρα−

0
e−µ̄s

[
Rc(Y

yo(s))1{Y yo (s)>α+(to+s)} + µ̄
c+

fC
1{Y yo (s)<α+(to+s)}

]
ds

}
.

(3.80)

The first term in the expectation of (3.80) is such that

uα(t+ σ∗ ∧ ρα− , Y yo(σ∗ ∧ ρα−)) ≤ c−
fC
1{ρα−≤σ∗}1{σ∗<T−t} +

c+

fC
1{ρα−>σ∗} +

c−
fC
1{ρα−=σ∗=T−t}

(3.81)

by (3.69) and (3.70). Observe that all (continuous) sample paths starting from yo spend a strictly
positive amount of time under the curve {α+(to+s), s ∈ [0, T −to)} by continuity of α+. Moreover,
from (3.60) we have

µ̄
c+

fC
< Rc(Y

yo(s)) on the set {Y yo(s) < α+(to + s).} (3.82)

Recall (3.9) and note that σ∗ ∧ ρα−(ω) > 0 for P̃-a.e. ω ∈ Ω, by continuity of t 7→ Y yo(t). Then,
using (3.81) and (3.82) inside (3.80), we find

uα(to, yo) < Ẽ
{
e−µ̄ρα−

c−
fC
1{ρα−≤σ∗}1{σ∗<T−to} + e−µ̄σ

∗ c+

fC
1{ρα−>σ∗}

+ e−µ̄(T−to) c−
fC
1{ρα−=σ∗=T−to} +

∫ σ∗∧ρα−

0
e−µ̄sRc(Y

yo(s))ds

}
= Ψ(to, yo;σ

∗, ρα−). (3.83)

It follows that uα(to, yo) < v(to, yo). However, uα(to, y) = c+/fC for all y ∈ (0, α+(t)) by (3.77) and
hence v(to, yo) > c+/fC . This is a contradiction as (to, yo) ∈ C. Similarly, one can find analogous
contradiction by assuming that there exists to ∈ [0, T ) such that α−(to) < ŷ−(to).

We show now that it must in fact be α+ ≡ ŷ+ and α− ≡ ŷ−. Again, we provide full details
only for α+ as the other case follows by straightforward modifications. Assume that there exists
to ∈ [0, T ) such that α+(to) < ŷ+(to). Take yo ∈ (α+(to), ŷ+(to)), set τ∗(to, yo) as in (3.11) and
define

ρα+(to, yo) := inf{s ∈ [0, T − to) : Y yo(s) ≤ α+(to + s)} ∧ (T − to). (3.84)

Denote τ∗ := τ∗(to, yo) and ρα+ := ρα+(to, yo) for simplicity. We now set s := τ∗∧ρα+ ∧(T − to−η)
in (3.67), take the expectation on both sides, then pass to the limit as η → 0 and rearrange terms
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to obtain

v(to, yo) =Ẽ
{
e−µ̄τ

∗∧ρα+v(to + τ∗ ∧ ρα+ , Y
yo(τ∗ ∧ ρα+))

+

∫ τ∗∧ρα+

0
e−µ̄s

[
Rc(Y

yo(s))1{ŷ+(to+s)<Y yo (s)} +
µ̄c+

fC
1{Y yo (s)<ŷ+(to+s)}

]
ds
}
. (3.85)

Since α+(t) ≤ ŷ+(t) for t ∈ [0, T ) (cf. (3.78)), it is not hard to see that v(to + ρα+ , Y
yo(ρα+)) = c+

fC

on {ρα+ < τ∗}. Again we notice that τ∗ ∧ ρα+(ω) > 0 for P̃-a.e. ω ∈ Ω, by continuity of the sample
paths of Y yo and that from (3.60)

µ̄
c+

fC
< Rc(Y

yo(s)) on the set {Y yo(s) < ŷ+(to + s)}. (3.86)

Since all sample paths starting from yo spend a strictly positive amount of time below {ŷ+(to +
s), s ∈ [0, T − to)} by continuity of ŷ+, we obtain

v(to, yo) < Ẽ
{
e−µ̄τ

∗ c−
fC
1{τ∗≤ρα+}1{ρα+<T−to} + e−µ̄ρα+

c+

fC
1{τ∗>ρα+}

+ e−µ̄(T−to) c−
fC
1{ρα+=τ∗=T−to} +

∫ τ∗∧ρα+

0
e−µ̄sRc(Y

yo(s))ds

}
, (3.87)

by (3.86).
On the other hand, recalling (3.70), (3.78) and using the martingale property of U to,yoα as in

(3.80) we obtain

uα(to, yo) ≥ Ẽ
{
e−µ̄τ

∗ c−
fC
1{τ∗≤ρα+}1{ρα+<T−to} + e−µ̄ρα+

c+

fC
1{τ∗>ρα+}

+ e−µ̄(T−to) c−
fC
1{ρα+=τ∗=T−to} +

∫ τ∗∧ρα+

0
e−µ̄sRc(Y

yo(s))ds

}
. (3.88)

It follows from (3.87) and (3.88) that uα(to, yo) > v(to, yo). However, v(to, yo) = c+/fC for yo ∈
(α+(to), ŷ+(to)) by (3.20) and hence uα(to, yo) > c+/fC , contradicting (3.70). Therefore α+ ≡ ŷ+

and by obvious extensions of arguments above one also finds α− ≡ ŷ−.

4 The Optimal Control Strategy

In Theorem 2.4 we proved existence and uniqueness of the optimal control process ν∗, but we
provided no information about its nature. In this Section we characterize the optimal control in
terms of the two free boundaries ŷ+ and ŷ− (cf. (3.17) and (3.18)) of the zero–sum optimal stopping
game (3.8). We shall see that the optimal investment-disinvestment strategy for problem (3.2)
consists in keeping the optimally controlled diffusion Cy,ν

∗
inside the closure of the continuation

region, with the optimal controls behaving as the local times of Cy,ν
∗

at ŷ+ and ŷ−. To accomplish
that we will rely on results in [14] on the pathwise construction of a process in a space-time region
defined by two moving boundaries.

Recall (2.1) and (2.2) and introduce the following Skorokhod problem in a time-dependent
interval.

Problem 4.1. Let t ∈ [0, T ] and y > 0 be arbitrary but fixed. Given the two free boundaries ŷ+

and ŷ− of (3.17) and (3.18), respectively, we seek a left-continuous adapted process Cy,ν
∗

and a
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process of bounded variation ν∗ = ν∗+ − ν∗− ∈ S such that

Cy,ν
∗
(s) = C0(s)[y + ν∗+(s)− ν∗−(s)], s ∈ [0, T − t),

Cy,ν
∗
(0) = y,

ŷ+(t+ s) ≤ Cy,ν∗(s) ≤ ŷ−(t+ s), a.e. s ∈ [0, T − t],∫ T−t

0
1{Cy,ν∗ (s)<ŷ−(t+s)}dν

∗
−(s) = 0,

∫ T−t

0
1{Cy,ν∗ (s)>ŷ+(t+s)}dν

∗
+(s) = 0

(4.1)

hold P̃-a.s. Moreover, if y ∈ [ŷ+(t), ŷ−(t)] then ν∗+(ω, ·) and ν∗−(ω, ·) are continuous. When y <
ŷ+(t), then ν∗+(ω, 0+) = ŷ+(t)− y, ν∗−(ω, 0+) = 0 and Cy,ν

∗
(ω, 0+) = ŷ+(t); when y > ŷ−(t), then

ν∗−(ω, 0+) = y − ŷ−(t), ν∗+(ω, 0+) = 0 and Cy,ν
∗
(ω, 0+) = ŷ−(t).

Proposition 4.2. There exists a unique solution of Problem 4.1 given by

Cy,ν
∗
(s) = C0(s)[y + ν∗(s)],

ν∗(s+) = −max
{[(

y − ŷ−(t)
)+ ∧ inf

u∈[0,s]

(
yC0(u)− ŷ+(t+ u)

C0(u)

)]
,

sup
r∈[0,s]

[(yC0(r)− ŷ−(t+ r)

C0(r)

)
∧ inf
u∈[r,s]

(
yC0(u)− ŷ+(t+ u)

C0(u)

)]}
,

(4.2)

for every s ∈ [0, T − t).

Proof. Take t ∈ [0, T ] and s ∈ [0, T − t] arbitrary but fixed and set

φ(s) :=
Cy,ν

∗
(s+)

C0(s)
, ψ(s) := y,

η(s) = η`(s)− ηr(s) := ν∗+(s+)− ν∗−(s+),

`(s) :=
ŷ+(t+ s)

C0(s)
, r(s) :=

ŷ−(t+ s)

C0(s)
.

Notice that infs∈[0,T−t][r(s) − `(s)] > 0, by Proposition 3.10. Hence, we can apply [14], Corollary
2.4 and Theorem 2.6 to obtain existence and uniqueness of the solution of Problem 4.1. Moreover,
equations (2.6) and (2.7), give

Cy,ν
∗
(s+) = yC0(s)− C0(s) max

{[(
y − ŷ−(t)

)+ ∧ inf
u∈[0,s]

(
yC0(u)− ŷ+(t+ u)

C0(u)

)]
,

sup
r∈[0,s]

[(yC0(r)− ŷ−(t+ r)

C0(r)

)
∧ inf
u∈[r,s]

(
yC0(u)− ŷ+(t+ u)

C0(u)

)]}
,

and the second equation in (4.2) follows from (2.3) since Cy,ν
∗
(s+) = C0(s)[y + ν∗(s+)].
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In order to prove that Cy,ν
∗

is optimal for the control problem (3.2) it is useful to observe that
Vt, Vy, Vyy belong to L∞((0, T ) × (0,K)), for arbitrary K > 0, by (3.4), (3.20) and Proposition
3.13. Therefore, we can apply Itô’s formula for semimartingales (cf. [57], Theorem 32, p. 79, among
others) in the generalized sense of [8], Lemma 8.1 and Theorem 8.5, pp. 183–186, to obtain the
following

Theorem 4.3. Let (Cy,ν
∗
, ν∗) denote the unique solution of Problem 4.1. Then Cy,ν

∗
is the opti-

mally controlled production capacity for problem (3.2) with ν∗ := ν∗+ − ν∗− and

ν∗+(s) :=

∫ s

0

C0(u)

fC
dν∗+(u), ν∗−(s) :=

∫ s

0

C0(u)

fC
dν∗−(u),

for every s ∈ [0, T − t).

As expected (cf. [43], Theorem 3.1), the optimal time to invest (disinvest) coincides with the
first time at which the uncontrolled diffusion hits the moving boundary ŷ+ (ŷ−).

A Appendix

A.1 Proof of Theorem 3.4

In this Section we show that the value function of the zero-sum optimal stopping game (3.8) is
continuous on [0, T ]×(0,∞). To do so we shall follow arguments similar to those used in [61]. Note
that analogous techniques had been also employed by Menaldi, among others, in an earlier paper
(cf. [46]) where he studied an optimal stopping problem for degenerate diffusions. However,we
cannot directly apply [61], Theorem 1, since our marginal production function Rc is not bounded
as it is there required.

We now prove preliminary results and we introduce some new definitions that will be useful in
the rest of this Appendix. Recall that

Ẽ
{(

1

C0(s)

)α}
= e(αµC− 1

2
α2σ2

C)s, (A-1)

for any α ≥ 1 and s ∈ [0, T ].

Lemma A.1. Under Assumption 2.1, for any α ≥ 1 one has

Ẽ
{∫ T

0
Rαc (yC0(s))ds

}
≤ κ

(
1 +

1

yα

)
, (A-2)

where κ > 0 is a suitable constant independent of t and y.

Proof. Since R(0) = 0 (cf. Assumption 2.1), for any y > 0 we have Rc(y) ≤ y−1R(y), by concavity
of R. Also, Inada conditions imply that there exist κ1 > 0 and κ2 > 0 such that R(y) ≤ κ1 + κ2y
for all y ∈ (0,∞). Hence we have

Ẽ
{∫ T

0
Rαc (yC0(s))ds

}
≤ Ẽ

{∫ T

0

(
1

yC0(s)

)α
[κ1 + κ2yC

0(s)]α ds

}
≤ E

{∫ T

0

(
1

yC0(s)

)α
2α−1[κα1 + κα2 (yC0(s))α] ds

}
≤ 2α−1

[
κα1
yα

Ẽ
{∫ T

0

(
1

C0(s)

)α
ds

}
+ Tκα2

]
≤ κ

(
1 +

1

yα

)
,

where κ > 0 is a suitable constant independent of t and y (cf. (A-1)).
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From now on and throughout this Appendix, we will define Y y(s) := yC0(s) (cf. (2.2)) under
the measure P̃; also we denote by L the infinitesimal generator associated to Y , i.e.

(Lf)(y) :=
1

2
σ2
Cy

2f ′′(y) + µ̂Cyf
′(y), f ∈ C2

b (R),

where µ̂C := −µC + 1
2σ

2
C and C2

b (R) is the space of functions which are twice-continuously differ-
entiable on (0,∞) and bounded with their first two derivatives.

Inspired by Stroock and Varadhan [62] we adopt the following

Definition A.2. Take measurable functions h : [0, T ] × (0,∞) 7→ R and u : [0, T ] × (0,∞) 7→ R
such that

Ẽ
{∫ s

0
e−µ̄r|h(t+ r, Y y(r))| dr

}
<∞, s ≥ 0,

Ẽ
{
e−µ̄s|u(t+ s, Y y(s))|

}
<∞, s ≥ 0,

for any (t, y) ∈ [0, T ]× (0,∞) arbitrary but fixed. We say that u solves

(∂t + L − µ̄)u(t, y) = h(t, y), (t, y) ∈ [0, T ]× (0,∞),

in the martingale sense if and only if the process

M :=

{
e−µ̄su(t+ s, Y y(s))−

∫ s

0
e−µ̄rh(t+ r, Y y(r))dr, s ≥ 0

}
(A-3)

is a P̃-martingale.

Remark A.3. For any adapted, bounded process Z := {Z(s), s ≥ 0}, if u and h are as in Definition
A.2 and M of (A-3) is a P̃-martingale, then the process

N :=

{
e−µ̄s−

∫ s
0 Z(t+r)dru(t+ s, Y y(s))

−
∫ s

0
e−µ̄r−

∫ r
0 Z(t+v)dv

[
h(t+ r, Y y(r)) + Z(t+ r)u(t+ r, Y y(r))

]
dr, s ≥ 0

}
is a P̃-martingale as well (cf. for instance [46], Remark 1.3).

Denote by C∞b the space of functions which are differentiable infinitely many times and which
are bounded with all their derivatives. In order to set our problem in a suitable space we define a
real valued function w by

w(y) :=
y

1 + y
y ≥ 0. (A-4)

This is a positive, increasing, C∞b -function on [0,+∞) and it is not hard to see that

Ẽ
{∫ T

0
e−ρs

1

w
(
Y y(s)

)ds} < 1

ρ
+

1

y

[
1

ρ+ µF + 1
2σ

2
C − µ̄

]
(A-5)

for any ρ > 0 and ρ 6= µ̄− µF − 1
2σ

2
C , by (A-1).

Definition A.4. For w as in (A-4) we write

||f ||w,∞ := sup
(t,y)∈[0,T ]×[0,∞)

|w(y)f(t, y)| (A-6)

and define

Cwb ([0, T ]× [0,∞)) := {f : f ∈ C([0, T ]× (0,∞)) and ||f ||w,∞ <∞}. (A-7)
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It easily follows that || · ||w,∞ is a norm and that Cwb ([0, T ] × [0,∞)) is a Banach space. Now we
study a penalized problem.

Proposition A.5. For any given ε > 0 there exists a unique uε ∈ Cwb ([0, T ]× [0,∞)) that solves
(∂t + L − µ̄)uε(t, y) = −Rc(y)− 1

ε

(
c−
fC
− uε(t, y)

)+

+
1

ε

(
uε(t, y)− c+

fC

)+

uε(T, y) =
c−
fC

(A-8)

in the martingale sense of Definition A.2.

Proof. Fix ε > 0 and note that

−1

ε

(
c−
fC
− uε

)+

=
1

ε
uε − 1

ε

(
c−
fC
∨ uε

)
,

1

ε

(
uε − c+

fC

)+

=
1

ε
uε − 1

ε

(
c+

fC
∧ uε

)
.

From Remark A.3, with u := uε, h := −Rc− 1
ε (
c−
fC
− uε)+ + 1

ε (u
ε− c+

fC
)+ and Z = 1

ε , it follows that
(A-8) may be rewritten as

(
∂t + L −

(
µ̄+

2

ε

))
uε(t, y) = −Rc(y)− 1

ε

(
c−
fC
∨ uε(t, y)

)
− 1

ε

(
uε(t, y) ∧ c+

fC

)

uε(T, y) =
c−
fC
,

(A-9)

and the solution of (A-9) in the martingale sense (cf. Definition A.2), if it exists, is given by

uε(t, y) = Ẽ
{
c−
fC
e−µ̄(T−t) +

∫ T−t

0
e−(µ̄+ 2

ε
)s
[
Rc(Y

y(s)) +
1

ε

(
c−
fC
∨ uε(t+ s, Y y(s))

)
+

1

ε

(
c+

fC
∧ uε(t+ s, Y y(s))

)
ds

}
. (A-10)

We now show that (A-10) admits a unique solution in Cwb ([0, T ]× [0,∞)) by a fixed point argument.
For g ∈ Cwb ([0, T ]× [0,∞)) we define the operator T ε by

(T εg)(t, y) = Ẽ
{
c−
fC
e−µ̄(T−t) +

∫ T−t

0
e−(µ̄+ 2

ε
)s
[
Rc(Y

y(s)) +
1

ε

(
c−
fC
∨ g(t+ s, Y y(s))

)
+

1

ε

(
c+

fC
∧ g(t+ s, Y y(s))

)]
ds

}
(A-11)

that maps Cwb ([0, T ]× [0,∞)) into itself. In order to prove that (t, y) 7→ T εg(t, y) is indeed continu-
ous, take (t1, y1) and (t2, y2) in [0, T ]× (0,∞) (without loss of generality we may take, t2 > t1 and
y2 > y1 > δ for some δ > 0) and notice that

|(T εg)(t1, y1)− (T εg)(t2, y2)| ≤ |(T εg)(t1, y1)− (T εg)(t2, y1)|+ |(T εg)(t2, y1)− (T εg)(t2, y2)|
=: (I) + (II).
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Then, for (I) we have

(I) ≤
∣∣∣ c−
fC

(
e−µ̄(T−t1) − e−µ̄(T−t2)

) ∣∣∣
+
∣∣∣Ẽ{∫ T−t1

0
e−(µ̄+ 2

ε
)sRc(Y

y1(s)) ds−
∫ T−t2

0
e−(µ̄+ 2

ε
)sRc(Y

y1(s)) ds

}∣∣∣
+
∣∣∣Ẽ{∫ T−t1

0
e−(µ̄+ 2

ε
)s 1

ε

(
c−
fC
∨ g(t1 + s, Y y1(s))

)
ds

−
∫ T−t2

0
e−(µ̄+ 2

ε
)s 1

ε

(
c−
fC
∨ g(t2 + s, Y y1(s))

)
ds

}∣∣∣ (A-12)

+
∣∣∣Ẽ{∫ T−t1

0
e−(µ̄+ 2

ε
)s 1

ε

(
c+

fC
∧ g(t1 + s, Y y1(s))

)
ds

−
∫ T−t2

0
e−(µ̄+ 2

ε
)s 1

ε

(
c+

fC
∧ g(t2 + s, Y y1(s))

)
ds

}∣∣∣.
The second term on the right-hand side of (A-12) reads∣∣∣Ẽ{∫ T−t1

0
e−(µ̄+ 2

ε
)sRc(Y

y1(s)) ds−
∫ T−t2

0
e−(µ̄+ 2

ε
)sRc(Y

y1(s)) ds

}∣∣∣
= Ẽ

{∫ T−t1

T−t2
e−(µ̄+ 2

ε
)sRc(Y

y1(s)) ds

}
. (A-13)

From Lemma A.1 and dominated convergence we obtain that the right-hand side of (A-13) converges
to zero as soon as t1 → t2.

On the other hand, we shall use dominated convergence to show that the third and the fourth
terms on the right-hand side of (A-12) converge to zero as t1 → t2. We will provide full details only
for the third term as the same arguments apply to the fourth one. Observe that∣∣∣∣ ∫ T−t1

0
e−(µ̄+ 2

ε
)s 1

ε

(
c−
fC
∨ g(t1 + s, Y y1(s))

)
ds−

∫ T−t2

0
e−(µ̄+ 2

ε
)s 1

ε

(
c−
fC
∨ g(t2 + s, Y y1(s))

)
ds

∣∣∣∣
≤
∫ T

0
e−(µ̄+ 2

ε
)sw(Y y1(s))

w(Y y1(s))

[∣∣∣ c−
fC
∨ g(t1 + s, Y y1(s))

∣∣∣+
∣∣∣ c−
fC
∨ g(t2 + s, Y y1(s))

∣∣∣] ds
≤ 2 || c−

fC
∨ g||w,∞

∫ T

0
e−(µ̄+ 2

ε
)s 1

w(Y y1(s))
ds. (A-14)

Using (A-5) with ρ = µ̄ + 2/ε and recalling that y2 > y1 > δ, one may easily verify that the last
expression in (A-14) is independent of t1, t2, y1, y2 and it is P̃-integrable. Therefore, from (A-14)
and dominated convergence

lim
t1→t2

|(T εg)(t1, y1)− (T εg)(t2, y1)| = 0.

Analogously (II) has three terms and it reads

(II) ≤
∣∣∣∣Ẽ{∫ T−t2

0
e−(µ̄+ 2

ε
)s
[
Rc(Y

y1(s))−Rc(Y y2(s))
]
ds

}
(A-15)

+
1

ε
Ẽ
{∫ T−t2

0
e−(µ̄+ 2

ε
)s
[( c−

fC
∨ g(t2 + s, Y y1(s))

)
−
(
c−
fC
∨ g(t2 + s, Y y2(s))

)]
ds

}
+

1

ε
Ẽ
{∫ T−t2

0
e−(µ̄+ 2

ε
)s
[( c+

fC
∧ g(t2 + s, Y y1(s))

)
−
(
c+

fC
∧ g(t2 + s, Y y2(s))

)]
ds

}∣∣∣∣.
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Concavity of R implies that

lim
y1→y2

Ẽ
{∫ T−t2

0
e−(µ̄+ 2

ε
)s
∣∣∣Rc(Y y1(s))−Rc(Y y2(s))

∣∣∣ ds} = 0,

by monotone convergence theorem.
It is not too hard to see that we can use estimates as the ones that led to (A-14) and dominated

convergence to show that the second and the third terms in (A-15) go to zero as y1 → y2. Since the
lower bound δ on y1 and y2 is arbitrary, we conclude that (t, y) 7→ (T εg)(t, y) ∈ C([0, T ]× (0,∞))
for all g ∈ Cwb ([0, T ]× [0,∞)).

Our next step is proving that ||T εg||w,∞ <∞. Consider again g ∈ Cwb ([0, T ]× [0,∞)) and notice
that

|w(y)(T εg)(t, y)| ≤w(y) Ẽ
{∫ T−t

0
e−(µ̄+ 2

ε
)sRc(Y

y(s)) ds

}
+ w(y)

c−
fC

(A-16)

+
1

ε
w(y)Ẽ

{∫ T−t

0
e−(µ̄+ 2

ε
)sw(Y y(s))

w(Y y(s))

[( c−
fC
∨ g
)

+
( c+

fC
∧ g
)]

(t+ s, Y y(s)) ds

}
≤κw(y)

(
1 +

1

y

)
+ w(y)

c−
fC

+
w(y)

ε
Ẽ
{∫ T

0
e−(µ̄+ 2

ε
)s ds

w(Y y(s))

}[
|| c−
fC
∨ g||w,∞ + || c−

fC
∧ g||w,∞

]
,

where we have used Lemma A.1 to find the first term in the last expression above and the same
arguments as in (A-14) for the third one. Finally, recalling (A-5) and taking the supremum for
(t, y) ∈ [0, T ]× [0,∞) we conclude that

∥∥T εg∥∥
w,∞ <∞.

To complete the proof we have now to show that T ε is a contraction. Take g1, g2 ∈ Cwb ([0, T ]×
[0,∞)). Then, arguments as those employed to obtain (A-16) and (A-5) with ρ = µ̄+ 2/ε give

|w(y)(T εg1 − T εg2)(t, y)|

≤w(y)
∣∣∣Ẽ{∫ T−t

0
e−(µ̄+ 2

ε
)s
[1

ε

( c−
fC
∨ g1

)
− 1

ε

( c−
fC
∨ g2

)]
(t+ s, Y y(s)) ds

}∣∣∣
+ w(y)

∣∣∣Ẽ{∫ T−t

0
e−(µ̄+ 2

ε
)s
[1

ε

( c+

fC
∧ g1

)
− 1

ε

( c+

fC
∧ g2

)]
(t+ s, Y y(s)) ds

}∣∣∣ (A-17)

≤ 2
w(y)

ε
||g1 − g2||w,∞

[
1

y

(
ε

2 + (µF + 1
2σ

2
C)ε

)
+

ε

2 + µ̄ε

]

=w(y) ||g1 − g2||w,∞

[
1

y

(
1

1 + (µF + 1
2σ

2
C) ε2

)
+

1

1 + µ̄ε
2

]
.

Set c1 := 1/(1 + (µF + 1
2σ

2
C) ε2) and c2 := 1/(1 + µ̄ε

2 ). Then,

w(y)
[c1

y
+ c2

]
≤ c1 ∨ c2 < 1

and T ε is a contraction. Hence, there exists a unique solution of the penalized problem (A-8) in
Cwb ([0, T ]× [0,∞)), by Banach fixed point theorem.

From Definition A.2 and Proposition A.5 it follows

Corollary A.6. For any (t, y) ∈ [0, T ]× (0,∞) the process Ht,y := {Ht,y(s), s ≥ 0} defined by

Ht,y(s) :=e−µ̄suε(t+ s, Y y(s)) (A-18)

+

∫ s

0
e−µ̄r

[
Rc(Y

y(r)) +
1

ε

( c−
fC
− uε(t+ r, Y y(r))

)+
− 1

ε

(
uε(t+ r, Y y(r))− c+

fC

)+]
dr
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is a continuous P̃-martingale.

Proposition A.7. Define A := {ν : Ω×[0, T ] 7→ [0, 1], adapted }. Then, the solution of the penalized
problem (A-8) may be written as

uε(t, y) = sup
ν1∈A

inf
ν2∈A

Ξε(t, y; ν1, ν2) = inf
ν2∈A

sup
ν1∈A

Ξε(t, y; ν1, ν2), (A-19)

where

Ξε(t, y; ν1, ν2) := Ẽ
{∫ T−t

0
e−µ̄r−

1
ε

∫ r
0 (ν1(α)+ν2(α))dα

[
Rc(Y

y(r)) +
1

ε
ν1(r)

c−
fC

+
1

ε
ν2(r)

c+

fC

]
dr

+
c−
fC
e−µ̄(T−t)− 1

ε

∫ T−t
0 (ν1(α)+ν2(α))dα

}
. (A-20)

Proof. For any ν1, ν2 ∈ A and s ≤ T − t, we may write

uε(t, y) = Ẽ
{
e−µ̄s−

1
ε

∫ s
0 (ν1(α)+ν2(α))dαuε(t+ s, Y y(s)) (A-21)

+

∫ s

0
e−µ̄r−

1
ε

∫ r
0 (ν1(α)+ν2(α))dα

[
Rc(Y

y(r)) +
1

ε

(
c−
fC
− uε(t+ r, Y y(r))

)+

− 1

ε

(
uε(t+ r, Y y(r))− c+

fC

)+

+
1

ε
(ν1(r) + ν2(r))uε(t+ r, Y y(r))

]
dr

}
,

by Corollary A.6 and Remark A.3, with u := uε, h := −Rc − 1
ε

( c−
fC
− uε

)+
+ 1

ε

(
uε − c+

fC

)+
and

Z(s) := 1
ε

[
ν1(s) + ν2(s)

]
. Notice now that

−1

ε

(
uε − c+

fC

)+

+
1

ε
ν2u

ε =


−1
ε

(
uε − c+

fC

)
+ 1

εν2u
ε on {uε ≥ c+

fC
}

1
εν2u

ε on {uε < c+
fC
}

(A-22)

implies −1
ε

(
uε − c+

fC

)+
+ 1

εν2u
ε ≤ 1

εν2
c+
fC

with equality if and only if we take

ν∗2 :=


1 on {uε ≥ c+

fC
}

0 on {uε < c+
fC
}.

(A-23)

Similarly,

1

ε

(
c−
fC
− uε

)+

+
1

ε
ν1u

ε =


1
ε

(
c−
fC
− uε

)
+ 1

εν1u
ε on {uε ≤ c−

fC
}

1
εν1u

ε on {uε > c−
fC
}

(A-24)

implies 1
ε

(
c−
fC
− uε

)+
+ 1

εν1u
ε ≥ 1

εν1
c−
fC

with equality if and only if we take

ν∗1 :=


1 on {uε ≤ c−

fC
}

0 on {uε > c−
fC
}.

(A-25)

In particular, (A-21) evaluated at s = T − t, together with (A-22) and (A-25) give

uε(t, y) ≤ Ξε(t, y; ν∗1 , ν2) for all ν2 ∈ A

and
uε(t, y) ≥ Ξε(t, y; ν1, ν

∗
2) for all ν2 ∈ A.

Then (A-19) follows.
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Since Ξε(t, y; ν1, ν2) ≥ 0 for all ν1, ν2 ∈ A (cf. (A-20)), then

uε(t, y) ≥ 0 for all (t, y) ∈ [0, T ]× (0,∞) (A-26)

by (A-19).

Proposition A.8. One has

lim
ε↓0

∣∣∣∣∣∣ (uε − c+

fC

)+ ∣∣∣∣∣∣
w,∞

= 0 (A-27)

and

lim
ε↓0

∣∣∣∣∣∣ ( c−
fC
− uε

)+ ∣∣∣∣∣∣
w,∞

= 0. (A-28)

Proof. For any ν1, ν2 ∈ A we may write

c+

fC
=
c+

fC
e−µ̄(T−t)− 1

ε

∫ T−t
0 (ν1(α)+ν2(α))dα

+

∫ T−t

0
e−µ̄r−

1
ε

∫ r
0 (ν1(α)+ν2(α))dα c+

fC

(
µ̄+

1

ε
[ν1(r) + ν2(r)]

)
dr, (A-29)

by an integration by parts. Then from (A-19) and (A-20) it follows

uε(t, y)− c+

fC
≤ inf

ν2∈A
sup
ν1∈A

Ẽ
{∫ T−t

0
e−µ̄r−

1
ε

∫ r
0 (ν1(α)+ν2(α))dα

[
Rc(Y

y(r))− µ̄ c+

fC

]
dr

}
≤ Ẽ

{∫ T−t

0
e−µ̄r−

1
ε
rRc(Y

y(r)) dr

}
≤ Ẽ

{∫ T−t

0
e−2(µ̄+ 1

ε
)r dr

} 1
2

Ẽ
{∫ T−t

0
R2
c(Y

y(r)) dr

} 1
2

(A-30)

≤
[

ε

2(1 + µ̄ε)

] 1
2
[
κ

(
1 +

1

y2

)] 1
2

,

where the third expression follows by Hölder inequality and Lemma A.1 implies the last one.
Similarly,

uε(t, y)− c−
fC
≥ inf

ν2∈A
sup
ν1∈A

Ẽ
{∫ T−t

0
e−µ̄r−

1
ε

∫ r
0 (ν1(α)+ν2(α))dα

[
Rc(Y

y(r))− µ̄ c−
fC

]
dr

}
≥ −Ẽ

{∫ T−t

0
e−µ̄r−

1
ε
r
[
Rc(Y

y(r)) + µ̄
c−
fC

]
dr

}
≥ −

[
ε

2(1 + µ̄ε)

] 1
2
[
κ

(
1 +

1

y2

)] 1
2

− µ̄c−
fC

[
ε

1 + µ̄ε

]
. (A-31)

Hence, (A-28) and (A-27) follow from Definition A.4.

Before proving Theorem 3.4 we shall make further observations on uε. Take σ and τ arbitrary
stopping times in [0, T − t]. From Corollary A.6, with s replaced by σ ∧ τ , we find

uε(t, y) = E
{
e−µ̄(τ∧σ)uε(t+ τ ∧ σ, Y y(τ ∧ σ))

+

∫ τ∧σ

0
e−µ̄r

[
Rc(Y

y(r)) +
1

ε

(
c−
fC
− uε(t+ r, Y y(r))

)+

− 1

ε

(
uε(t+ r, Y y(r))− c+

fC

)+ ]
dr

}
. (A-32)
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Now, recalling that uε(T, y) = c−
fC

and noting that uε ≤ c+
fC

+ (uε− c+
fC

)+ and uε ≥ c−
fC
− ( c−fC − u

ε)+,
we have

uε(t, y) ≤ E
{
e−µ̄τuε(t+ τ, Y y(τ))1{τ<σ} +

c+

fC
e−µ̄σ1{σ≤τ}1{σ<T−t}

+ e−µ̄σ
(
uε(t+ σ, Y y(σ))− c+

fC

)+

1{σ≤τ}1{σ<T−t} +
c−
fC
e−µ̄(T−t)1{τ=σ=T−t}

+

∫ τ∧σ

0
e−µ̄s

[
Rc(Y

y(r)) +
1

ε

(
c−
fC
− uε(t+ r, Y y(r))

)+ ]
dr

}
(A-33)

and

uε(t, y) ≥ E
{
e−µ̄σuε(t+ σ, Y y(σ))1{σ≤τ}1{σ<T−t} +

c−
fC
e−µ̄τ1{τ<σ}

− e−µ̄τ
(
c−
fC
− uε(t+ τ, Y y(τ))

)+

1{τ<σ} +
c−
fC
e−µ̄(T−t)1{τ=σ=T−t}

+

∫ τ∧σ

0
e−µ̄r

[
Rc(Y

y(r))− 1

ε

(
uε(t+ r, Y y(r))− c+

fC

)+ ]
dr

}
. (A-34)

We are now able to prove Theorem 3.4.

Proof of Theorem 3.4. From (3.8) and (A-33) we find

uε(t, y)− v(t, y) ≤ inf
τ∈[0,T−t]

sup
σ∈[0,T−t]

Ẽ
{
e−µ̄τ

(
uε(t+ τ, Y y(τ))− c−

fC

)
I{τ<σ}

+ e−µ̄σ
(
uε(t+ σ, Y y(σ))− c+

fC

)+
I{σ≤τ}I{σ<T−t}

+
1

ε

∫ σ∧τ

0
e−µ̄r

( c−
fC
− uε(t+ r, Y y(r))

)+
dr

}
. (A-35)

Take τ = τ ε := inf
{
s ∈ [0, T − t) : uε(t+ s, Y y(s)) ≤ c−/fC

}
∧ (T − t) in (A-35) to obtain

uε(t, y)− v(t, y) ≤ sup
σ∈[0,T−t]

Ẽ
{
e−µ̄σ

(
uε(t+ σ, Y y(σ))− c+

fC

)+
}

≤ sup
σ∈[0,T−t]

Ẽ
{

1

w
(
Y y(σ)

)}∥∥∥(uε − c+

fC

)+∥∥∥
w,∞

≤

[
1 +

1

y
Ẽ
{

sup
0≤s≤T−t

1

C0(s)

}]∥∥∥(uε − c+

fC

)+∥∥∥
w,∞

. (A-36)

Arguing in a similar way and using (A-34) we also obtain

uε(t, y)− v(t, y) ≥−

[
1 +

1

y
Ẽ
{

sup
0≤s≤T−t

1

C0(s)

}]∥∥∥( c−
fC
− uε

)+∥∥∥
w,∞

. (A-37)

Therefore (cf. Definition A.4)∥∥uε − v∥∥
w,∞ ≤ κ

(∥∥∥(uε − c+

fC

)+∥∥∥
w,∞

+
∥∥∥( c−
fC
− uε

)+∥∥∥
w,∞

)
(A-38)

for a suitable constant κ > 0 depending only on σ̂C , µ̂C and T > 0. Now, the right-hand side of
(A-38) goes to zero as ε→ 0 and w v ∈ C([0, T ]× [0,∞)), thus implying v ∈ C([0, T ]× (0,∞)).

Remark A.9. Note that for any δ > 0, one has ‖uε− v‖w,∞ ≥ δ/(1 + δ) sup[0,T ]×[δ,∞) |uε− v|(t, y)
and hence uε → v uniformly on [0, T ]× [δ,∞) as ε→ 0.
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A.2 Proof of Theorem 3.5

For ε > 0 set 
τ ε(t, y) := inf{s ∈ [0, T − t) : uε(t+ s, Y y(s)) ≤ c−

fC
} ∧ (T − t),

σε(t, y) := inf{s ∈ [0, T − t) : uε(t+ s, Y y(s)) ≥ c+
fC
} ∧ (T − t).

(A-39)

Take δ > 0 arbitrary but fixed and define the first exit time of Y from the half-plane (δ,∞) by

τδ(y) := inf{s ≥ 0 : Y y(s) ≤ δ}. (A-40)

Note that for all y > 0, one finds

τδ(y) ↑ ∞ as δ ↓ 0, P̃-a.s. (A-41)

as {0} is a non-attainable boundary point for the process Y . For simplicity we set τ ε ≡ τ ε(t, y),
σε ≡ σε(t, y) and τδ ≡ τδ(y).

From Remark A.9 uε → v uniformly on [0, T ] × [δ,∞) as ε ↓ 0. Then, following the same
arguments as in the proof of [19], Lemma 6.2, we find that

lim
ε→0

τ∗ ∧ τ ε ∧ τδ = τ∗ ∧ τδ P̃-a.s., (A-42)

lim
ε→0

σ∗ ∧ σε ∧ τδ = σ∗ ∧ τδ P̃-a.s., (A-43)

for all (t, y) ∈ [0, T ]× (0,∞) and with τ∗ and σ∗ as in (3.11). Therefore, we also have

lim
ε→∞

σ∗ ∧ σε ∧ τ∗ ∧ τ ε ∧ τδ = σ∗ ∧ τ∗ ∧ τδ P̃-a.s., (A-44)

for all (t, y) ∈ [0, T ]× (0,∞).
Again, to simplify notation we set ρδ,ε := σ∗ ∧ σε ∧ τ∗ ∧ τ ε ∧ τδ and we obtain

uε(t, y) = Ẽ
{
e−µ̄ρδ,εuε(t+ ρδ,ε, Y

y(ρδ,ε)) +

∫ ρδ,ε

0
e−µ̄sRc(Y

y(s)) ds

}
, (A-45)

by (A-32). Taking limits as ε → 0 in (A-45), the left-hand side converges to v by uniform con-
vergence. On the other hand, we employ dominated convergence in the right-hand side. Thus we
obtain

v(t, y) = Ẽ
{
e−µ̄σ

∗∧τ∗∧τδv(t+ σ∗ ∧ τ∗ ∧ τδ, Y y(σ∗ ∧ τ∗ ∧ τδ)) +

∫ σ∗∧τ∗∧τδ

0
e−µ̄sRc(Y

y(s)) ds

}
,

(A-46)

by Remark A.9, (A-44) and continuity of v. Similarly, when δ → 0 in (A-46) one has

v(t, y) = Ẽ
{
e−µ̄σ

∗∧τ∗v(t+ σ∗ ∧ τ∗, Y y(σ∗ ∧ τ∗)) +

∫ σ∗∧τ∗

0
e−µ̄sRc(Y

y(s)) ds

}
, (A-47)

by monotone convergence and (A-41) for the integral term, and by dominated convergence, (A-41)
and continuity of v for the other one.

Note that

e−µ̄σ
∗∧τ∗v(t+ σ∗ ∧ τ∗, Y y(σ∗ ∧ τ∗))

= e−µ̄τ
∗ c−
fC
1{τ∗<σ∗} + e−µ̄σ

∗ c+

fC
1{σ∗≤τ∗}1{σ∗<T−t} + e−µ̄(T−t) c−

fC
1{σ∗=τ∗=T−t} P̃-a.s. (A-48)
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and therefore

v(t, y) = Ẽ
{
e−µ̄τ

∗ c−
fC
1{τ∗<σ∗} + e−µ̄σ

∗ c+

fC
1{σ∗≤τ∗}1{σ∗<T−t} + e−µ̄(T−t) c−

fC
1{σ∗=τ∗=T−t}

+

∫ τ∗∧σ∗

0
e−µ̄sRc(Y

y(r)) dr

}
. (A-49)

It remains now to show that (τ∗, σ∗) is indeed a saddle point for the functional Ψ of (3.9). Take
an arbitrary stopping time σ ∈ [0, T − t], define τδ,ε := τ∗ ∧ τ ε ∧ τδ and replace τ ∧ σ in (A-32) by
σ ∧ τδ,ε. It gives

uε(t, y) ≤ Ẽ
{
e−µ̄(σ∧τδ,ε)uε(t+ σ ∧ τδ,ε, Y y(σ ∧ τδ,ε)) +

∫ σ∧τδ,ε

0
e−µ̄sRc(Y

y(s)) ds

}
. (A-50)

First we let ε go to zero and then take limits as δ ↓ 0; using arguments as in (A-45)–(A-47) we
obtain

v(t, y) ≤ Ẽ
{
e−µ̄(σ∧τ∗)v(t+ σ ∧ τ∗, Y y(σ ∧ τ∗)) +

∫ σ∧τ∗

0
e−µ̄sRc(Y

y(s)) ds

}
. (A-51)

From (3.11), (A-48) and the fact that v ≤ c+
fC

we find

v(t, y) ≤ Ẽ
{
e−µ̄τ

∗ c−
fC
1{τ∗<σ} + e−µ̄σ

c+

fC
1{σ≤τ∗}1{σ<T−t} + e−µ̄(T−t) c−

fC
1{σ=τ∗=T−t}

+

∫ τ∗∧σ

0
e−µ̄sRc(Y

y(s)) ds

}
. (A-52)

Analogously, take an arbitrary stopping time τ ∈ [0, T − t], define σδ,ε := σ∗ ∧ σε ∧ τδ and set
τ ∧ σ := τ ∧ σδ,ε in (A-32). Same arguments as in (A-50) and (A-51) give

v(t, y) ≥ Ẽ
{
e−µ̄(σ∗∧τ)v(t+ σ∗ ∧ τ, Y y(σ∗ ∧ τ)) +

∫ σ∗∧τ

0
e−µ̄sRc(Y

y(s)) ds

}
, (A-53)

and hence

v(t, y) ≥ Ẽ
{
e−µ̄τ

c−
fC
1{τ<σ∗} + e−µ̄σ

∗ c+

fC
1{σ∗≤τ}1{σ∗<T−t} + e−µ̄(T−t) c−

fC
1{σ∗=τ=T−t}

+

∫ τ∧σ∗

0
e−µ̄sRc(Y

y(s)) ds

}
, (A-54)

by (3.11) and the bound v ≥ c−
fC

.
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