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Abstract. We develop a modification of the connections model by Jackson and Wolinsky (1996)
that takes into account negative externalities arising from the connectivity of direct and indirect
neighbors, thus combining aspects of the connections model and the co-author model. We consider
a general functional form for agents’ utility that incorporates both the effects of distance and of
neighbors’ degree. Consequently, we introduce a framework that can be seen as a degree-distance-
based connections model with both negative and positive externalities. Our analysis shows how
the introduction of negative externalities modifies certain results about stability and efficiency
compared to the original connections model. In particular, we see the emergence of new stable
structures, such as a star with links between peripheral nodes. We also identify structures, for
example, certain disconnected networks, that are efficient in our model but which could not be
efficient in the original connections model. While our results are proved for the general utility
function, some of them are illustrated by using a specific functional form of the degree-distance-
based utility.
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1 Introduction

1.1 Motivation of the paper

In the seminal paper of Jackson and Wolinsky (1996) the so called connections model was
introduced. It is an example of social communication between individuals where benefits
and costs for each individual are determined by the direct and indirect connections among
them. In the model, only direct connections are costly, but (discounted) benefits spill over
from more distant partners. Jackson and Wolinsky (1996) focus on the identification of
pairwise stable networks (those where no agent wants to sever a link and no two agents
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both want to add a link) and (strongly) efficient networks (those which maximize the
total utility of all agents).

One of the particularly appealing features of networks is the fact that they allow us
to capture the externalities that ‘occur when the utility of or payoff to an individual
is affected by the actions of others, although those actions do not directly involve the
individual in question’ (Jackson (2008), p. 162). Naturally, the nature of the externalities
that operate in a network are important for determining which types of networks can
form and can be maintained.

In the Jackson and Wolinsky model, network externalities are positive. A link formed
by some pair of individuals only has (weakly) positive effects for everybody else. A natural
interpretation of the Jackson and Wolinsky model is that benefits result from the access to
a valuable resource that flows throughout the network, such as information or knowledge
provided by indirect contacts. Increased connectivity is then beneficial to all agents in
the network because it gives access to new indirect contacts from whom information
is obtained or because information arrives more rapidly when paths are shorter. These
positive aspects of increased connectivity are certainly important. However, in many
situations, it is likely that increased connectivity also has negative side effects. Studying
such cases is what motivates our extensions. In this paper, we introduce and analyze a
model in which agents benefit from indirect contacts as in the original connections model
but which also takes into account that there may be negative externalities arising from
the connectivity of direct and indirect neighbors.

Indeed, there are several aspects of increased connectivity that could affect agents
negatively. On the one hand, information received from indirect contacts is valuable but
on the other hand it may be less valuable when it is too widely shared. For example,
learning of a job opening through an indirect contact may be less useful if the same
information has been communicated to many others. In many situations of interest, it is
thus natural to assume that the benefits of having indirect contacts are reduced when
the latter have a large number of connections. In our model, the form of the negative
externality is such that the utility an agent derives from an indirect contact, viewed as
the initial sender of an information, is reduced when the latter has a high degree and
thus sends the information to many others. While we do not take into account the full
effect of all other indirect contacts of the sender, our model could thus be viewed as a
simplified or approximate description of the negative effects of connectivity when there
is competition for information.

Another type of negative effect from increased connectivity that is well represented
by our model is related to the fact that the busyness of agents reduces their availability
or productivity for their other direct and indirect partners. The model of Jackson and
Wolinsky (1996) could also be interpreted as follows: nodes can generate some output
by themselves and forward output from other nodes. Output that is generated by other
nodes arrives at distant nodes with some decay depending on the length of the path it
has to wander through. Now consider this as a situation in which people are involved
in projects and generate some kind of knowledge by themselves and receive some from
others. Then, a natural perception would be to say that if a person is involved in many
projects, she will have less time to generate output by herself. On the other hand, the
more well connected she is, the more knowledge she will receive from others which she can
then forward to her neighborhood. A provocative way to state this fact is to say that “well
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connected people are often great talkers, but networking is time consuming and reduces
the own productive time such that the main work is done by others”. Nevertheless, the
role of such well connected agents is very important: not in the sense that they contribute
a lot by their own results, but because they provide access to the output of many other
people.

The original connections model captures information overspill from indirect neighbors
but does not take into account that the busyness of the agents may have a negative
effect on the own productivity and hence to all other agents that receive this (reduced
amount of) agent specific output. By integrating this aspect, on a first sight, our model
looks similar to the well-known co-author model of Jackson and Wolinsky (1996), where
depending on the number of projects a co-author is already involved in, the amount of time
that he can devote to a single connection is decreasing. Indeed, the nature of the negative
externality is similar but a major difference is that in our adjusted version, information
spills over from indirect connections. The co-author model only takes into account the
benefit of direct scientific collaborations and consequently conveys negative effects solely
through the busyness of direct co-authors. Increased connectivity of a neighbor is then
only a bad thing since there are no spillovers from indirect neighbors.

Hence, our model combines different aspects of the connections model and the co-
author model, and can be seen as a degree and distance-based model in which the ex-
ternalities resulting from additional links in the network are both positive and negative:
they allow other agents to reach new indirect partners or to reach existing ones in fewer
steps, however they also reduce the productivity of the agents that are reached by making
them more busy and thus less valuable per se although more efficient as intermediaries.
Exploring the tradeoff of these effects is the object of this analysis.

1.2 Related literature

There are numerous extensions of the connections model in the literature on networks.
A certain variation of the connections model is presented in Jackson and Rogers (2005),
where geographic costs of forming links are assumed. Players are grouped on the so
called islands, and the connection costs are low within an island and high across islands.
Other variations of the connections model with geographic costs are investigated, e.g.,
in Johnson and Gilles (2000), Carayol and Roux (2005, 2009). Bloch and Jackson (2007)
generalize the symmetric connections model by introducing the distance-based utility
model, in which agents obtain utility from their direct and indirect connections, and
the utility decreases with the distance between the agents. Extensions of the Jackson-
Wolinsky connections model to a dynamic framework are presented, e.g., in Jackson and
Watts (2002), Watts (2001, 2002).

While several related works in the literature similarly deal with network formation in
the presence of negative externalities, the form of the externality considered in those does
not allow us to account for situations such as the one mentioned previously in Section
1.1. For example, Morrill (2011) introduces a degree-based utility and implements the
idea of a negative externality that comes from the connectivity of direct neighbors. The
more connections a direct neighbor has, the less utility is provided through the link. A
simple example for this is the co-author model by Jackson and Wolinsky (1996).

Another related work in the area by Goyal and Joshi (2006) distinguishes in a quite
general framework negative externalities resulting from the connectivity of direct neigh-

3



bors, indirect neighbors and agents to whom one is not linked. The authors investigate
two specific models and assume that the externalities are either positive or negative. One
of them is a playing the field game in which the payoff of an agent depends on the num-
ber of his links and the aggregate number of links of the remaining agents. Their second
model is a local spillovers game in which the payoff of an agent depends on the distri-
bution of links of all agents and the identity of neighbors. Billand et al. (2012a) provide
existence results for a game with local spillovers, where the payoff function satisfies both
the convexity and the strategic substitutes property. They characterize the architecture of
a pairwise stable network and of a pairwise equilibrium network. While Goyal and Joshi
(2006) deal with undirected networks, Billand et al. (2012b) focus on directed networks.
They also examine the model with global spillovers and the model with local spillovers,
but they use the notion of Nash equilibrium to characterize the equilibrium networks.

Currarini (2007) also considers the impact of both positive and negative external-
ities on network formation. He investigates a game theoretic model of cooperation, in
which critical structural features of an organization (which is represented by a connected
network) depend on the sign of spillovers.

As already shown in Jackson and Wolinsky (1996) strongly efficient networks may not
be stable. This potential conflict between stability and efficiency of networks is further
analyzed in Dutta and Mutuswami (1997), and for directed communication networks
in Dutta and Jackson (2000); see also Bala and Goyal (2000a) for the directed con-
nections and hybrid connections models, and Jackson (2005) for a survey. Buechel and
Hellmann (2012) analyze the role of positive and negative externalities of link forma-
tion, and relate inefficient outcomes to the externalities. They introduce the notion of
over-connected (under-connected) networks – those which can be socially improved by
the deletion (addition) of links. The authors prove that for positive externalities there
is no stable network that is over-connected. Situations with negative externalities tend
to induce over-connected networks, but for negative externalities no stable network can
be under-connected only when some other conditions hold. Hellmann (2012) shows how
externalities between links affect the existence and uniqueness of pairwise stable net-
works. He focuses on the properties of ordinal convexity/concavity and ordinal strategic
complements/substitutes of utility functions on networks.

Bala and Goyal (2000a) formulate the network formation process as a non-cooperative
game and examine Nash and strict Nash networks (no agent has an incentive to unilater-
ally add, remove or replace a link). Hojman and Szeidl (2008) analyze a decay model for
Nash networks with a general benefit function, where the benefits depends on the net-
work distance and agents who are farther away than a certain communication threshold
yield no benefit. They show that Nash networks tend to have a core-periphery structure.
Billand et al. (2012c) study the role of heterogeneity in the Jackson-Wolinsky framework
by introducing two different benefit formulations: a model with the homogeneous decay
parameter and heterogeneous players, and a model with heterogeneous links. They ex-
amine the existence and characterization of Nash networks and strict Nash networks in
these models.

Haller and Sarangi (2005) develop a generalization of a non-cooperative model of net-
work formation by Bala and Goyal (2000b) by introducing heterogeneity in the model.
While Bala and Goyal (2000b) permit links to fail with a certain common probability,
in Haller and Sarangi (2005) this probability of link failure can differ across links. The
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authors focus on Nash networks, also for some alternative model specifications. In par-
ticular, they consider endogeneous link probabilities and show examples in which some
novel Nash networks may arise due to negative link externalities. Haller (2012) considers
a model of strategic network formation in which the endogeneously formed network is
built around a pre-existing network. He uses a non-cooperative approach by Bala and
Goyal (2000a), where a player’s decision of adding or deleting a link is an unilateral de-
cision. After introducing a benchmark model à la Galeotti et al. (2006), where the worth
of information received by an agent from another agent depends only on the two agents
involved, Haller (2012) studies network formation under internal constraints and Nash
networks. He also considers two examples with negative network externalities, in which
the values of information are endogeneously determined and depend on the network. This
is in line with the idea that it is harder to access the information from an agent which
has more direct neighbors.

1.3 The present paper

We investigate a model in which the benefits but also the negative externality resulting
from an indirect neighbor’s connectivity depend on exact network distance, and which
thus differs from the settings studied both by Morrill (2011) and by Goyal and Joshi
(2006). While Morrill (2011) considers “busyness” of only direct neighbors, Goyal and
Joshi (2006) take into account degrees of all other agents, but they neither distinguish
between indirect connections of different distances nor between indirect neighbors and
agents that are never reached. In this sense, we remain close to the original connections
model. In the latter, benefits depend on network distance and it seems natural that
the same should be true for the negative externalities resulting from the connectivity
of indirect neighbors. We thus consider a network formation game whose payoffs have
a functional form close to the generalization of the connections model by Bloch and
Jackson (2007) – the distance-based utility model, so as to facilitate comparison with the
latter, but involves a penalty resulting from the degree of direct and indirect contacts.
In our degree-distance-based connections model, we assume a two-variable (instead of
one-variable) benefit function which depends on distances to and degrees of (direct and
indirect) neighbors. We analyze pairwise stability and efficiency in order to understand
how the negative externality modifies the results of the original connections model. There
are natural assumptions with a straightforward economic interpretation, namely that
decay is independent of degree and some conditions related to concavity/convexity of the
benefit function with respect to degree, that would ensure that many of our results hold.
However, since these conditions are not necessary we give weaker sufficient conditions on
the benefit function.

Our way of expressing negative externalities is similar to the one advanced in examples
given by Haller (2012). While his examples are presented in a non-cooperative approach
with the analysis of Nash networks, we investigate an extension of the original connections
model by Jackson and Wolinsky (1996) and study efficiency and pairwise stability, in
which adding a link in a network is a bilateral decision by the two agents involved.

As it is typically the case in many network formation games including the original
connections model, there is multiplicity of the pairwise stable structures. We do not give
a complete characterization of the pairwise stable networks but focus on cases which
allow us to compare outcomes with the original connections model. The complete graph,
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the star and the empty network which were the pairwise stable networks identified in
Jackson and Wolinsky (1996) are also stable for some parameter ranges in our model,
but we also find new pairwise stable structures which could not arise in the original
connections model.

For example, we find a variety of stable structures in which the distance between any
pair of agents is at most two. In particular, there is a parameter range where neither the
star nor the complete graph is stable but for which we find stable graphs in between the
two (in the sense of link inclusion), which is not possible in the original connections model.
These graphs, while stable, are never efficient. Structurally, these networks contain two
types of nodes, highly connected ones which must provide much indirect benefits to all
their direct neighbors due to the high degree penalty and nodes which may provide little
indirect benefit but which are acceptable because the degree penalty is low. We can also
exhibit examples of stable networks with short distances and even degree distribution.
Indeed, it can be noted that to some extent, our model favors degree homogeneity in
stable networks. Since high degrees are penalizing, agents who provide similar indirect
benefits to their neighbors must have similar degrees. However, this observation needs
to be tempered, since it remains possible for a node which is an efficient intermediary
to have a considerably higher degree and remain attractive, as is the case in the star
network.

Furthermore, in our setting, contrary to the Jackson and Wolinsky model, a pairwise
stable network may have more than one component. This occurs only when decay is large
so that indirect benefits have little value. Disconnected components may then be stable if
all agents already have a degree high enough to make direct benefits from an additional
link low. For all network sizes, such stable disconnected networks exist for some costs but
the cost range becomes very small as the network size grows. Our results on stability and
efficiency of disconnected structures are coherent with those of the co-author model, with
which our model shares some features when decay is large.

In terms of tension between efficiency and stability, the Jackson and Wolinsky model
always had agreement between the two in the low cost range where the complete network
is uniquely pairwise stable, and potentially in an intermediate cost range where the star
is efficient and pairwise stable, although not uniquely so. In our model, stability and
efficiency are opposed precisely in the parameter range which is a stability basin for the
star and the complete network. Indeed, in our setting, in contrast with the results in
Jackson and Wolinsky, the complete graph is not necessarily efficient when it is stable.
When the network is large this problem is generic. We also have the appearance of
stable graphs between the star and the complete network which are never efficient when
the number of agents is large. This is coherent with the general results of Buechel and
Hellmann (2012) who show that in the presence of negative externalities a pairwise stable
network can be overconnected in the sense that it strictly contains the efficient network.
We note, however, that our model does not exhibit purely negative externalities, as defined
by Buechel and Hellmann (2012) but combines both negative and positive externalities.
These inefficiency results can be established even without characterizing the efficient
network.

In terms of positive results about efficiency, we show, under an additional condition
on the nature of the degree penalties, that the star is efficient when decay and connection
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cost are not too great. The hypothesis about the degree penalty is related to the fact that
marginal utility loss is greater for small degrees.

Besides the star, the complete, and the empty network, we also establish the efficiency
of some structures that could never be efficient in the original connections model. Indeed,
some of the disconnected structures shown to be pairwise stable in some parameter ranges
can also be efficient in subsets of these.

The rest of the paper is structured as follows. In Section 2 we recapitulate some
basic preliminaries on networks, the Jackson-Wolinsky connections model and some of
its established extensions. In Section 3 we present our degree-distance-based modification
of the connections model. Pairwise stability and efficiency in the model are studied in
Sections 4 and 5, respectively. In our analysis of stability and efficiency, we begin by
providing some illustrating examples in networks of small size, we then turn to the analysis
of stability and efficiency in networks of any size and for different levels of decay and link
cost. In Section 6 we mention some possible extensions.

2 The connections model and its modifications

In this section we first present the preliminaries on networks (see, e.g., Jackson and
Wolinsky (1996); Jackson (2008)) and then briefly recapitulate some models related to
our work: the connections model and the co-author model of Jackson and Wolinsky
(1996), the distance-based model by Bloch and Jackson (2007), the model with degree-
based utility functions by Morrill (2011), playing the field games and the local spillovers
games by Goyal and Joshi (2006).

2.1 Definitions

Let N = {1, 2, . . . , n} denote the set of players (agents). A network g is a set of pairs
{i, j} denoted for convenience by ij, with i, j ∈ N , i 6= j,1 where ij indicates the presence
of a pairwise relationship and is referred to as a link between players i and j. Nodes i
and j are directly connected if and only if ij ∈ g.

A degree ηi(g) of agent i counts the number of links i has in g, i.e.,

ηi(g) = |{j ∈ N | ij ∈ g}|

We can identify two particular network relationships among players in N : the empty
network g∅ without any link between players, and the complete network gN which is the
set of all subsets of N of size 2. The set of all possible networks g on N is G := {g|g ⊆ gN}.

By g + ij (g − ij, respectively) we denote the network obtained by adding link ij
to g (deleting link ij from g, respectively). Furthermore, by g−i we denote the network
obtained by deleting player i and all his links from the network g.

Let N(g) (n(g), respectively) denote the set (the number, respectively) of players in
N with at least one link, i.e., N(g) = {i | ∃j s.t. ij ∈ g} and n(g) = |N(g)|.

A path in g connecting i1 and iK is a set of distinct nodes {i1, i2 . . . , iK} ⊆ N(g) such
that {i1i2, i2i3, . . . , iK−1iK} ⊆ g.

A network g is connected if there is a path between any two nodes in g.

1 Loop ii is not a possibility in this setting.
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The network g′ ⊆ g is a component of g if for all i ∈ N(g′) and j ∈ N(g′), i 6= j, there
exists a path in g′ connecting i and j, and for any i ∈ N(g′) and j ∈ N(g), ij ∈ g implies
that ij ∈ g′.

A star g∗ is a connected network in which there exists some node i (referred to as the
center of the star) such that every link in the network involves node i.

The value of a graph is represented by v : G → R. By V we denote the set of all such
functions. In what follows we will assume that the value of a graph is an aggregate of
individual utilities, i.e., v(g) =

∑
i∈N ui(g), where ui : G → R.

A network g ⊆ gN is strongly efficient (SE) if v(g) ≥ v(g′) for all g′ ⊆ gN .

An allocation rule Y : G × V → R
N describes how the value of a network is distributed

among the players. We will examine the allocation rule Yi(g) = ui(g), which might cor-
respond to models without side payment.

A network g ∈ G is pairwise stable (PS) if:

(i) ∀ ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij) and
(ii) ∀ ij /∈ g, if ui(g) < ui(g + ij) then uj(g) > uj(g + ij).

2.2 The connections and co-author models

In the symmetric connections model by Jackson and Wolinsky (1996), the utility of each
player i from network g is defined as

uJW
i (g) =

∑

j 6=i

δlij(g) − cηi(g) (1)

where 0 < δ < 1 denotes the undiscounted valuation of a connection, lij(g) denotes the
distance between i and j in terms of the number of links in the shortest path between
them in g (with lij(g) = ∞, if there is no path connecting i and j in g) and c > 0
determines the costs for a direct connection. Hence, the first sum determines the benefits
agent i receives via direct and indirect connections, while the overall utility has to be
reduced by the costs for the direct connections.

Jackson and Wolinsky (1996) (Proposition 1) show that the complete, the empty or
the star graph can be uniquely strongly efficient (depending on c and δ). More precisely,
they prove that the unique SE network in the symmetric connections model is:

(i) the complete network gN if c < δ − δ2

(ii) a star g∗ if δ − δ2 < c < δ + (n−2)δ2

2

(iii) no links if δ + (n−2)δ2

2
< c.

Furthermore they examine pairwise stability in the symmetric connection model with-
out side payments. By virtue of Jackson and Wolinsky (1996) (Proposition 2), in the
symmetric connections model with Yi(g) = uJW

i (g):

(i) A pairwise stable graph has at most one (non-empty) component.
(ii) For c < δ − δ2, the unique PS network is the complete graph gN .
(iii) For δ − δ2 < c < δ, a star g∗ encompassing all players is PS, but not necessarily the

unique PS graph.
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(iv) For δ < c, any PS network which is non-empty is such that every player has at least
two links (and thus is inefficient).

Jackson and Wolinsky (1996) also present the co-author model, in which nodes are
interpreted as researchers and a link represents a collaboration between two researchers.
The utility function of each player i in network g is given by

uco
i (g) =

∑

j:ij∈g
wi(ni, j, nj)− c(ni) (2)

where wi(ni, j, nj) is the utility of i derived from a link with j when i and j are involved
in ni and nj projects, respectively, and c(ni) is the cost to i of maintaining ni links. They
analyze a specific version of this model where utility of i is given by

uco
i (g) =

∑

j:ij∈g

[
1

ni

+
1

nj

+
1

ninj

]
(3)

for ni > 0, and uco
i (g) = 0 for ni = 0.

Jackson and Wolinsky (1996) (Proposition 4) show that in the co-author model:

(i) If n is even, then the strongly efficient network is a graph consisting of n
2
separate

pairs.
(ii) A pairwise stable network can be partitioned into fully intraconnected components,

each of which has a different number of members. If m is the number of members of
one such component and n is the next largest in size, then m > n2.

2.3 Some established modifications of the connections model

Bloch and Jackson (2007) introduce an extension of the original connections model – the
distance-based model, where the utility of agent i is given by

udist
i (g) =

∑

j 6=i

f(lij(g))− cηi(g) (4)

with f nonincreasing in lij(g); see also Jackson (2008) for the presentation of this distance-
based model.

Morrill (2011) models situations in which any new relationship causes negative exter-
nalities on the rest of the network. In his model, a payoff of each player from a link is a
decreasing function of the number of links maintained by his partner. A utility function
is degree-based if there exists a decreasing function φ such that

udeg
i (g) =

∑

j:ij∈g
φ(ηj(g))− cηi(g) (5)

Goyal and Joshi (2006) introduce two specific models of network formation. In the
first one, called a playing the field game, the aggregate payoff of an agent depends only
on the number of his links and the aggregate number of links of the remaining agents.
More precisely, the gross payoff of each player i is given by

πpfg
i (g) = Φ(ηi(g), L(g−i)) (6)
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and its net payoff is given by

upfg
i (g) = Φ(ηi(g), L(g−i))− cηi(g) (7)

where L(g−i) =
∑

j 6=i ηj(g−i). It is assumed that for all L(g−i), Φ(k, L(g−i)) is strictly
increasing in own links k.

The second game investigated in Goyal and Joshi (2006) is called a local spillovers
game. In that game, the aggregate payoff of an agent depends on the distribution of links
of all players and the identity of neighbors. More precisely, the aggregate gross payoff of
each player i is given by

πlsg
i (g) = Ψ1(ηi(g)) +

∑

j:ij∈g
Ψ2(ηj(g)) +

∑

j:ij /∈g
Ψ3(ηj(g)). (8)

3 A degree-distance-based connections model

In the original connections model, forming an additional connection may only induce
a positive externality on other players as it eventually shortens the distance to other
agents. In contrast to this approach, we suggest a modification that generates also negative
externalities by increasing connectivity. In this model, similar as in Jackson and Wolinsky
(1996) every agent benefits from his direct and indirect connections, but it is additionally
assumed that the higher degree of a direct or indirect partner, the less valuable this
connection is to the agent. While any information received from indirect contacts is
valuable, it may be less valuable when it is shared with many other individuals.

In order to conserve the close relation to the original connections model, we follow
existing generalizations of Jackson and Wolinsky (1996), by considering the utility of
agent i given by

ũi(g) =
∑

j 6=i

b(lij(g), ηj(g))− cηi(g) (9)

where b : {1, ..., n − 1}2 → R
+ is the net benefit that an agent receives from the direct

and indirect connections. It is assumed that for all lij(g), b(lij(g), k) is nonincreasing in
degree k, and for all ηj(g), b(l, ηj(g)) is nonincreasing in distance l. Moreover, if there is
no path connecting i and j in g, i.e., if lij(g) = ∞, then we set b(∞, ηj) = 0 for every
ηj ∈ {0, 1, ..., n− 1}. In particular, ũi(g

∅) = 0 for every i ∈ N .
In the original connections model the benefit term is covered by a single parameter δ.

If we expressed the benefit function in our model using parameters that regulate decay
with distance and utility loss due to degree, we could write

b(l + 1, ηj(g)) = δl,ηj(g)b(l, ηj(g)), b(l, ηj(g) + 1) = cl,ηj(g)b(l, ηj(g))

where δl,ηj(g) ∈ (0, 1) expresses the decay between distance l and (l+1) for a fixed degree
ηj(g), and cl,ηj(g) ∈ (0, 1) expresses the utility loss due to an additional link increasing
the degree from ηj(g) to (ηj(g) + 1) for a fixed distance l. This gives much versatility, in
particular, decay does not need to be constant with distance.

Since in the paper we aim to analyze negative externalities resulting from the connec-
tivity of direct and indirect neighbors, we will be assuming that the benefit function b
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is decreasing in degree (and in distance), except when mentioning explicitly the original
connections model as a particular case of the degree-distance-based model.

In our model, the dispersion of information is negatively influenced by the number
of direct links a (distant) neighbor has, that is, the busyness of a potential neighbor
influences the valuation to form a link with him. Consider a co-author relationship. On the
one hand, the more co-authors an author has, the more knowledge may spill over from the
projects he is involved in. On the other hand, the more connections the author maintains,
the busier he is so that he may not be able to dedicate enough time to every co-author to
transfer all information. Hence, the model incorporates positive and negative externalities
of link formation. Morrill (2011) introduced a model which applies this perception to
direct neighbors. Our framework generalizes the degree-based model by Morrill (2011),
as it covers in addition externalities from indirect connections. We can write

φ(ηj(g)) = b(1, ηj(g)), for all ηj(g) ∈ {1, ..., n− 1} (10)

The generalized model defined by (9) also extends the distance-based model considered
in Bloch and Jackson (2007) and recapitulated in (4). In other words, we consider a two-
variable (instead of one-variable) benefit function.

Concerning the relation of our model with the model (8) of Goyal and Joshi (2006),
we observe that neither model is generalized by the other. However, in the particular case
when b(l, ηj(g)) = 0 for all l > 1, we have

b(1, ηj(g)) =: Ψ2(ηj(g)) for every ηj(g)

Furthermore, without decay, i.e., if b(l, ηj(g)) = b(l′, ηj(g)) for all l, l′ < ∞, we have

ũi(g) =
∑

j:ij∈g
b(l, ηj(g)) +

∑

j:ij /∈g,l<∞
b(l, ηj(g))

which is similar to the model (8), except that we do not take into account own degree,
but we do distinguish between agents who are in our own connected component and those
who are not.

In some of our examples, we will use a specific form of the degree-distance-based
utility, which is very close to the definition of the original connections model, except of
incorporating an additional information on the degree of direct and indirect neighbors.
More precisely, in order to illustrate some of our results, the following utility of agent i
will be used:

ui(g) =
∑

j 6=i

1

1 + ηj(g)
δlij(g) − cηi(g) (11)

that is, we will set b(lij(g), ηj(g)) =
1

1+ηj(g)
δlij(g).

4 Pairwise stability in the model

4.1 Stability of the star, the complete graph and the empty graph

Next, we examine pairwise stability (PS) in the model. In order to compare results in
our model with those of Jackson and Wolinsky (1996), we start by analyzing the stability
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of the architectures which were prominent there: the empty network, the star and the
complete graph. Furthermore, we check if a non-empty PS network must be connected.
In the connections model of Jackson and Wolinsky (1996), any pairwise stable graph has
at most one (non-empty) component. We will show that it is not necessarily the case in
our model. After establishing the stability conditions for g∅, g∗ and gN , we will look for
other PS structures. We will begin by considering networks in which all agents are at
distance at most 2 from each other. In such a network, the benefit of adding a link to an
agent of degree k − 1 is

f̃(k) := b(1, k)− b(2, k − 1) for k ∈ {2, ..., n− 1}, and f̃(1) := b(1, 1) (12)

Note that in the original connections model f̃(k) = δ − δ2 for each k.

Let us show that whether the function f̃ is increasing or decreasing can be related
to some fairly weak and natural assumptions about decay and the nature of the degree
penalty.

Proposition 1 Assume that the decay is defined by b(l+1,k)
b(l,k)

:= δl for every k, that is,
decay may depend on the distance l but not on the degree k. Then:

– f̃(k) is decreasing whenever b(l, k) is concave in the degree k.
– If b(l, k) is convex in the degree k, then there exists a level of decay 0 < δm < 1 such

that f̃(k) is decreasing whenever δ1 ≤ δm, and there exists a 0 < δM < 1 such that

f̃(k) is increasing whenever δ1 ≥ δM .

Proof: Consider f̃(k) − f̃(k + 1) = b(1, k) − b(2, k − 1) − (b(1, k + 1)− b(2, k)) =
b(1, k) − b(1, k + 1) − δ1 (b(1, k − 1)− b(1, k)). This quantity is positive if and only if
b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k)

≥ δ1. If b is concave in degree, then b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k)

≥ 1 ≥ δ1, so that f̃(k) will

always be decreasing. Now, if b is convex, then 0 < b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k)

< 1 for all k ∈ 1, ..., n− 1.

Define δM =: maxk
b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k)

and δm =: mink
b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k)

, then f̃(k) is decreasing for
δ1 ≤ δm and increasing when δ1 ≥ δM . �

Consequently, the conditions in Propositions 3, 4 and 5 are verified in particular under
the assumptions stated in Proposition 1, although these conditions are not necessary. We
note that some results, such as the existence of simultaneous stability of the star and the
complete network (see Proposition 2) are compatible with a b convex in degree, for which

the function f̃ exhibits a wider range of behaviors.
We have the following results on pairwise stability of the three prominent architec-

tures.

Proposition 2 In the degree-distance-based connections model defined by (9):

(i) The empty network g∅ is PS if and only if f̃(1) ≤ c.
(ii) The star g∗ with n ≥ 3 encompassing all players is PS if and only if

f̃(2) ≤ c ≤ min
(
f̃(1), b(1, n− 1) + (n− 2)b(2, 1)

)
(13)
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(iii) The complete network gN with n ≥ 3 is PS if and only if

c ≤ f̃(n− 1) (14)

(iv) The unique PS network is the complete network gN if

c < min
1≤ηk≤n−2

f̃(ηk + 1) (15)

(v) g∗ and gN are simultaneously PS if and only if f̃(2) ≤ c ≤ f̃(n − 1). Whenever

f̃(n− 1) < c < f̃(2), neither the complete graph nor the star is PS.
(vi) A PS network may have more than one (non-empty) component.

Proof: (i) Consider any two agents i, j ∈ g∅. ũi(g
∅+ ij)− ũi(g

∅) = ũj(g
∅+ ij)− ũj(g

∅) =

b(1, 1) − c = f̃(1) − c. Hence, if f̃(1) > c, then both players profit from establishing

the link, and therefore g∅ is not PS. If f̃(1) ≤ c, then ũi(g
∅ + ij) − ũi(g

∅) ≤ 0 and
ũj(g

∅ + ij)− ũj(g
∅) ≤ 0 which means that g∅ is PS.

(ii) Consider the star g∗ with n ≥ 3 agents. Take the center of the star i, and two arbitrary
agents j, k, where j 6= i, k 6= i, and j 6= k. This means that ij ∈ g∗ but jk /∈ g∗. For
stability the following conditions must hold:
(A) ũi(g

∗)−ũi(g
∗\ij) ≥ 0 and (B) ũj(g

∗)−ũj(g
∗\ij) ≥ 0 and (C) ũj(g

∗+jk)−ũj(g
∗) ≤ 0.

(A): ũi(g
∗)− ũi(g

∗ \ ij) = b(1, 1)− c = f̃(1)− c. Hence, (A) holds iff f̃(1) ≥ c.
(B): ũj(g

∗) − ũj(g
∗ \ ij) = b(1, n − 1) + (n − 2)b(2, 1) − c. Hence, (B) holds iff b(1, n −

1) + (n− 2)b(2, 1) ≥ c.

(C): ũj(g
∗ + jk)− ũj(g

∗) = b(1, 2)− b(2, 1)− c = f̃(2)− c. Hence, (C) holds iff f̃(2) ≤ c.

(iii) Let n ≥ 3. Consider any two agents i, j ∈ gN . We have ũi(g
N) − ũi(g

N − ij) =

ũj(g
N)− ũj(g

N − ij) = b(1, n− 1)− b(2, n− 2)− c = f̃(n− 1)− c.

(iv) Consider two arbitrary agents i and j, j 6= i such that ij /∈ g, ηi > 0 and ηj >

0. Then we have ũi(g + ij) − ũi(g) ≥ b(1, ηj + 1) − b(2, ηj) − c = f̃(ηj + 1) − c and

ũj(g + ij) − ũj(g) ≥ f̃(ηi + 1) − c. If ηiηj = 0, then ũi(g + ij) − ũi(g) ≥ b(1, ηj + 1) − c

and ũj(g + ij) − ũj(g) ≥ b(1, ηi + 1) − c. Hence, if c < min1≤ηk≤n−2 f̃(ηk + 1), then any
two agents who are not directly connected benefit from forming a link.

(v) This comes immediately from results (ii) and (iii).

(vi) The general existence of pairwise stable disconnected structures is given in Propo-
sition 6. In small networks we can also find other types of architectures. Consider for
example g given in Figure 1.

g

1

3

2 4

5

Fig. 1. A PS network with two components in the degree-distance-based connections model
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Consider the utility function given by (11). Network g is PS if 1
4
δ + 2

3
δ2 < c ≤ 1

3
δ − 1

2
δ2,

e.g., for δ = 1
15

and c = 107
5400

. Since we have two groups of symmetric agents (1, 2, 3 and
4, 5), we only need to calculate the following:
u2(g)− u2(g \ 23) =

2
3
δ − 2c−

(
1
3
δ + 1

2
δ2 − c

)
= 1

3
δ − 1

2
δ2 − c ≥ 0

u4(g)− u4(g \ 45) =
1
2
δ − c ≥ 0

u2(g + 24)− u2(g) =
1
3
δ + 1

2
δ2 − c

u4(g + 24)− u4(g) =
1
4
δ + 2

3
δ2 − c

Note that if 1
3
δ − 1

2
δ2 − c ≥ 0, then 1

2
δ − c > 0 and 1

3
δ + 1

2
δ2 − c > 0. Hence, g will be PS

if 1
3
δ − 1

2
δ2 ≥ c and 1

4
δ + 2

3
δ2 < c.

�

Note that Proposition 2 confirms, in particular, the results on pairwise stability of gN ,
g∗ and g∅ for the Jackson and Wolinsky model. Assume now that the benefit function b is
strictly decreasing in degree – for simplicity, take the degree-distance-based model given
by (11). Naturally, since δ− δ2 > δ

n
− δ2

n−1
for any n ≥ 2, if gN is PS in our model, then it

is also PS in the Jackson and Wolinsky framework under the same parameters. Moreover,
if g∅ is PS in the original connections model, then it is also PS in our framework. Roughly
speaking, the costs under which the star g∗ is PS in our model are rather lower than the
costs under which g∗ is PS in the Jackson and Wolinsky model under the same δ and n.
For δ < 1

2
, g∗ cannot be PS in both frameworks in the same time. For δ ≥ 1

2
and n > 3

such an overlap of costs under which the star is PS is non-empty.
Proposition 2(v) shows the existence of a region where the star and the complete graph

are simultaneously PS. This could never occur in the original connections model where the
regions of stability for these two structures were disjoint. However, we should note that, for
instance, for the degree-distance-based utility given by (11), limn→∞ f̃(n− 1) = 0 so that
the possible cost range for which the complete network and the star are simultaneously
PS is very small in large networks.

Figure 2 illustrates the pairwise stability regions for the three simple architectures for
the model given by (11) with n = 9, δ ∈ (0, 1) and c ∈ (0, 0.5]. In this figure, the green
area indicates the stability region of g∅, the red area the one for gN and the yellow area
the one for g∗. The overlapping (quite small) orange area indicates the parameter region
in which gN and g∗ are simultaneously PS, and the white area in which none of the three
simple structures are PS.

4.2 Other pairwise stable structures in the degree-distance-based model:

examples and illustration

Next, we will be interested in PS architectures, other than those analyzed in the previous
section that can exist in the degree-distance-based connections model. An example of a
PS structure that can occur in the white area in Figure 2 is the “windmill or flower”
structure shown in Figure 3.

To get a more precise feeling for the range of parameters in which such “windmill or
flower” structure is stable, consider Figure 4. Compared to Figure 2, Figure 4 is zoomed
in and shows an additional blue area in which the “windmill or flower” structure is PS.
The green, yellow, red and white areas have the same meaning as before.
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Fig. 2. PS regions in the degree-distance-based connections model given by (11) (n = 9): only g∅ (green area),
only g∗ (yellow area), only gN (red area), g∗ and gN simultaneously (orange area), none of these three (white
area)

Fig. 3. “Windmill or flower” as an example of a PS network in the degree-distance-based connections model

Consider a very simple example of network formation. Imagine a call for scientific
proposals of 2-person projects opened by a research agency. Suppose the call does not
require submitting only one project by researcher, but two researchers can submit together
only one project. Usually preparing an application for research grants is time and energy
consuming, and working on two applications in the same time can considerably decrease
the effort that a person can put on one project. The amount of funding proposed by
the research agency depends on the quality of the application. Consider a small team of
3 researchers who decide how many applications to prepare. The example is obviously
very simple and does not stress that much the issue of negative externalities coming from
indirect connections, but it does show the intuition and flavor of situations where our
model can be useful. Figure 5 presents all PS networks with the corresponding parameters
for such a collaboration formation modeled by (11). Note that a network with one link
can be PS in our framework (with b being strictly decreasing in degree), contrary to
the Jackson and Wolinsky model. It is possible that under relatively high costs and low
valuation of a connection, two researchers prefer to work on a project, and while each
of them would be also interested in preparing a second project with another person, the
latter will prefer to save his time and energy and not to work on the project at all.
The involvement in a project with a very busy colleague who already works on another
application could mean that the costs finally exceed the benefits, despite the fact that
the researcher could also benefit a bit from the ‘indirect project’. Figure 5 confirms nicely
Proposition 2(v). In particular, g∗ and gN are simultaneously PS only for c = δ

3
− δ2

2
.

15



Fig. 4. PS regions in the degree-distance-based connections model given by (11) (n = 9): “windmill or flower”
(blue region), other regions indicate the same PS networks as in Figure 2

Fig. 5. PS networks in the degree-distance-based connections model given by (11) (from left to right): (i) δ ≤ 2c,

(ii) 0 < δ < 1

3
and δ

3
+ δ2

2
< c ≤ δ

2
, (iii) (0 < δ < 1

3
, δ

3
−

δ2

2
≤ c ≤ δ

3
+ δ2

2
) or ( 1

3
≤ δ < 1, δ

3
−

δ2

2
≤ c ≤ δ

2
), (iv)

0 < c ≤ δ
3
−

δ2

2

Let us now illustrate, for some small network sizes, examples of other PS structures
that can appear. In some cases, these architectures are not stable in the original connec-
tions model which make them interesting per se. Many of the architectures that we see
in these examples can also be shown to exist in a network of arbitrary size n in some
parameter range, as will be shown in a later section. Figures 6 and 7 show some examples
of different PS structures for n = 5 and n = 6, respectively, for the model given by (11)
with δ = 1

15
and c = 107

5400
. From among these examples, only the two regular networks

(with the degree ηi = 2 for every i ∈ N) can be PS under some parameters in the original
connections model. The remaining networks which are PS in our framework could be
never PS in the original connections model. Note that four of these networks contain two
components. In Figure 6 these are the first network (on the left) that has been used in
the proof of Proposition 2(vi), and the second network with one isolated player and four
players, each having the degree equal to 2. In Figure 7 these are the first and the second
network, both having two non-empty components.

Fig. 6. Some PS networks in the degree-distance-based connections model given by (11) for n = 5, δ = 1

15
and

c = 107

5400
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Fig. 7. Some PS networks in the degree-distance-based connections model given by (11) for n = 6, δ = 1

15
and

c = 107

5400

4.3 Stability analysis for intermediate levels of decay

These examples of networks of small size that can be PS in our framework illustrate some
of the general results about architectures that can be PS for arbitrarily large networks
and for some values of the decay and cost parameters. In contrast, most of them can
never be PS in the original connections model, We have already seen that there exist
PS structures other than the star and the complete graph, in particular, ones that are
intermediary between these two in the sense of link inclusion. That is, there exists g PS
such that g∗ ⊂ g ⊂ gN . This also indicates a difference with Jackson and Wolinsky (1996)
where no intermediary network between the star and the complete graph could possibly
be stable. In Figure 3 we have already shown “Windmill or flower” which is an example
of a PS structure that contains a star but which also comprises links between the nodes
in the periphery. We prove the following result.

Proposition 3 Assume that the benefit b and the cost c are such that there exists an
ηm ∈ N such that f̃(ηm + 1) < c ≤ f̃(ηm). Assume that moreover, n is such that f̃(n −
1) + (n− 1− ηm − (ηm − 1)2) (b(2, ηm)− b(3, ηm)) > c. Then any graph satisfying the
following property is PS. One node i, the center, is linked to all other nodes. Every node
other than the center, j 6= i, has the same degree ηm.

Proof: Let us show that under the conditions stated the described structure is pairwise
stable. Every peripheral node has degree ηm. Breaking the link to another peripheral node
does not modify the benefits from nodes that can be reached at distance 2. Only direct
benefits are lost. None of those peripheral nodes wants to break a local link with another
peripheral agent of degree ηm because ũj(g)− ũj(g − lj) = b(1, ηm)− b(2, ηm − 1)− c =

f̃(ηm)− c ≥ 0 by assumption.
No agent wants to add a link to a peripheral agent whose degree in g is ηm because doing
this would decrease the utility, as ũj(g + jm) − ũj(g) = b(1, ηm + 1) − b(2, ηm) − c =

f̃(ηm + 1)− c < 0 by assumption.
Every peripheral node has an incentive to maintain a link to the center due to the following
fact: without a link to the center, each agent can reach at most (ηm−1)2 nodes at distance
2. By breaking with the center, n−1−ηm−(ηm−1)2 nodes would move to distance 3. Thus
ũj(g)−ũj(g−ij) ≥ b(1, n−1)−b(2, n−2)+(n− 1− ηm − (ηm − 1)2) (b(2, ηm)− b(3, ηm))−

c = f̃(n− 1) + (n− 1− ηm − (ηm − 1)2) (b(2, ηm)− b(3, ηm))− c.
We show that for given b and c, we can find n such that

f̃(n− 1) +
(
n− 1− ηm − (ηm − 1)2

)
(b(2, ηm)− b(3, ηm))− c > 0 (16)
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Note that b(2, ηm) > b(3, ηm). Moreover, b(1, k) ≥ 0 for all k, and therefore from (12) we

have f̃(n− 1) ≥ −b(2, n− 2) ≥ −b(2, 1). Hence, c− f̃(n− 1) ≤ c+ b(2, 1) and then every

n such that n > c+b(2,1)
b(2,ηm)−b(3,ηm)

+ 1 + ηm + (ηm − 1)2 satisfies (16). �

Note that for the original connections model, where f̃ is constant, the first assumption
of Proposition 3 is never satisfied.

The stable structure with inhomogeneous degrees given in Proposition 3 illustrates
the fact that in the degree-distance based model, a node can be attractive either because
it is not too “busy” with other neighbors or because it is highly connected and it provides
indirect benefits.

We also have examples of stable structures where the degree distribution is essentially
homogeneous.

Proposition 4 Let g be a network such that lij(g) ≤ 2 for all i, j, and there are at least
(n − 1) nodes with identical degree k and at most one node j such that ηj < k. Then g

is PS in the cost range f̃(k + 1) < c < f̃(k) and f̃(ηj − 1) > c. In particular, for the

utility function given by (11), this cost range is non empty if and only if k > δ+
√
δ

1−δ
and

f̃(ηj − 1) > c.

Proof: No agent wants to add a link to an agent with degree k since f̃(k + 1) < c.
Moreover, no agent wants to delete a link to an agent with degree k since the loss of
utility is at least f̃(k) which exceeds the saving of c. Note that there may be a single
agent j such that ηj < k. This agent does not want to form a link to any other agent since

all other agents have degree k. No agent wants to drop a link to agent j since f̃(ηj−1) > c.

For the utility function given by (11), there exists a cost c such that f̃(k+1) < c < f̃(k)

if k belongs to the interval where f̃(k) is decreasing, i.e., on [ δ+
√
δ

1−δ
, n− 1]. �

Structures satisfying the properties stated in the above proposition clearly exist. We
can give some (non exhaustive) examples.

Proposition 5 Pairwise stable networks with equal degree: let n = M2. Then there exists
a pairwise stable network g such that lij(g) ≤ 2 for all i, j and all nodes have identical

degree equal to k = 2M − 2 in the cost range f̃(k) < c < f̃(k − 1).

Proof: It is sufficient to show that there exists a network g such that lij(g) ≤ 2 for all
i, j, and lij(g − lm) = lij(g) for all i, j, l,m. Divide n = M2 into M disjoint sets of size
M . Let each agent be linked to all agents in own group and to exactly one agent in every
other group in such a way that each agent has exactly (M − 1) links outside his group.

�

The above results concerned stability for intermediate levels of decay (moderately
high values of δ in the model given by (11)), for which indirect contacts are of interest
for agents.
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4.4 Pairwise stability for extreme values of the decay parameter

We will now consider pairwise stability in the two extreme cases where decay is very
large (i.e., δ is very small for the model given by (11)), or where decay is very small
(i.e., δ is close to one for the model defined by (11)). We will show that in both these
cases, the degree-distance-based model can exhibit a very large number of different PS
architectures, which are only restricted by the fact that (most) nodes must have the
same degree. In the case where decay is large, the pairwise stable architectures include a
number of disconnected structures.

The case of the benefit function where decay is very large can be expressed by the
condition b(1, k) >>> b(2, k) for every k.

Proposition 6 Let n be a fixed network size. Let ǫ > 0. Then there exists b > 0 such that
for any function b with b(2, 1) < b and any cost such that b(1, r+1)+ ǫ < c < b(1, r)− ǫ,
a network g satisfying the following properties is pairwise stable: in g, n−k nodes, where
k ≤ r, have an identical degree r. The remaining k nodes are all linked to each other.

Proof: Fix ǫ > 0. Consider the maximal indirect benefit an agent can gain from a link.
This benefit is bounded by (n − 2)b(2, 1). Let b = ǫ

n−2
. For any 0 < b(2, 1) < b, the

benefit of indirect links is inferior to ǫ. Basically, we can now neglect utility from indirect
contacts. Let us establish that no pair of agents i, j in g can establish a mutually beneficial
link. Let i be a node of degree ηi = r. Then ũj(g + ij)− ũj(g) < b(1,m+ 1) + ǫ− c < 0.
Therefore no agent wishes to form a link to an agent who already has degree r. Let ij ∈ g
with ηi ≤ r and ηj ≤ r. Neither i nor j wishes to break this link: ũj(g − ij) − ũj(g) <
c+ ǫ− b(1, ηi) ≤ c+ ǫ− b(1, r) < 0. �

We note that the family of PS networks described in Proposition 6 is very large and
includes in particular all structures where agents have identical degrees, such as the circle
or a generalized circle with agents linked to their m nearest neighbors. We note that
there is also an abundance of disconnected structures that satisfy the condition stated in
Proposition 6.

Corollary 1 Under the conditions stated in Proposition 6, there exist disconnected PS
networks.

There is a large number of such disconnected structures. One example is that of a
number of disconnected “islands” of identical size.

Corollary 2 Consider a network of size n. Let m be a divisor of n. The network consist-
ing of n/m completely connected components of size m is PS under the conditions stated
in Proposition 6.

The class of PS networks described in Proposition 6 exists for some decay values
and for some cost range for every network size. However, in order for these structures to
appear, decay must be large, and all the more so when n is large, as we have (n−2)b(2, 1) <
ǫ < b(1,m) ≤ b(1, 1). The possible values of the cost for which these structures exist shrink
the larger n and m are. In practice, the most likely decay is very large so that indirect
benefits are almost negligible. The larger the size of the components, the smaller is the
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possible cost range. Among the possible structures, the one that we are most likely to
see emerge in practice is thus that in which all agents have degree one or two, and the
network size is not too large.

Let us now consider the other extreme case where decay is very small so that δ is close
to one in the model defined by (11). In other words, we consider the benefit functions
such that b(l, k) ≈ b(l′, k) for all k, l, l′ 6= ∞.

Proposition 7 Let n be a fixed network size. Let c > 0. Then there exist ǫ > 0 and b such
that |b(l, k) − b(l′, k)| ≤ ǫ for all k, l, l′ 6= ∞, and any network g satisfying the following
properties is pairwise stable: g is minimally connected and satisfies minj∈N b(1, ηj(g)) ≥
c > (n− 1)ǫ.

Proof: Fix c > 0. What is the maximal benefit an agent can derive from an addi-
tional link in an already connected structure? This benefit is bounded above by (n −
2)max1≤x≤n−1 (b(1, x)− b(n− 1, x)) ≤ (n − 2)ǫ. Since g is connected, any additional
link provides a utility ũi(g + ij) − ũi(g) ≤ b(1, ηj + 1) − b(n − 1, ηj) + (n − 2)ǫ − c ≤
(n−2)ǫ+b(1, ηj+1)−b(n−1, ηj+1)+b(n−1, ηj+1)−b(n−1, ηj)−c ≤ (n−1)ǫ−c < 0.
Let us establish that no agent wants to remove a link. If ij ∈ g, then neither i nor j
wishes to break this link. Indeed, because g is minimally connected, i and j are not in
the same connected component in g − ij. Therefore ũi(g − ij)− ũi(g) < c− b(1, ηj) < 0.

�

When the decay is very small, minimally connected networks, i. e. those with a tree-
structure are thus pairwise stable.

5 Efficiency in the model

Next, we analyze strong efficiency (SE) in the model, also sometimes referred to as ef-
ficiency in the paper. One of the crucial differences between our model and the original
connections model is the enlargement of the possible types of SE architectures in the
degree-distance-based model with respect to the Jackson and Wolinsky model. While in
the latter, only g∅, g∗ and gN can be SE, in our model additional structures can be SE
under specific parameters. To see this immediately, let us come back to the 3-researcher
example concerning formation of collaboration to prepare 2-person applications for a
grant. Figure 8 presents all strongly efficient networks in this collaboration formation
modeled by (11).

Fig. 8. Unique SE networks in the degree-distance-based connections model given by (11) (from left to right): (i)
(0 < δ < 1

3
and 2c > δ) or ( 1

3
≤ δ < 1 and 2c > 1

2
δ2 + 5

6
δ), (ii) 0 < δ < 1

3
and δ2 + 2

3
δ < 2c < δ, (iii) (0 < δ < 1

3
,

1

3
δ − δ2 < 2c < δ2 + 2

3
δ) or ( 1

3
≤ δ < 1, 0 < 2c < 1

2
δ2 + 5

6
δ), (iv) 0 < δ < 1

3
and 0 < 2c < 1

3
δ − δ2
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As we can see from Figure 8, it is possible that preparing only one 2-person project and
leaving the third researcher “free” is the best collective option (under some restrictions
on the parameters), i.e., it gives the highest aggregate of individual utilities. Indeed, it
confirms the intuition that if preparing an application requires a lot of energy and time,
and the benefit from a project that a researcher is not personally involved in so far is
not attractive to that researcher, it would be better for the overall welfare of the team to
submit only one (but one of a higher quality) research project.

Note that already in this simple 3-player example we can see an additional difference
between our model and the original connections model. While in the latter, the cost
ranges of PS and SE for the complete network coincide, in the degree-distance-based
model defined by (11), gN can be PS but not efficient: for n = 3 it is the case for
1
3
δ − δ2 < 2c < 2

3
δ − δ2 and δ < 2

3
. Similarly to Jackson and Wolinsky, we exhibit

the contradiction between stability and efficiency in the higher cost ranges: the empty
network is PS but not SE for δ < 2c < 1

2
δ2 + 5

6
δ and 1

3
< δ < 1. The structure which

could be neither PS nor SE in the original connections model – the network containing
one link and one isolated player – is PS and SE in our model in the same cost range.

Another interesting observation in the model given by (11) and n = 4 is for instance

that the line is the unique SE network if 0 < δ < 4−
√
13

6
and 1

3
δ − 1

3
δ2 − δ3 < 2c <

1
3
δ + 5

3
δ2 + δ3.

After presenting the examples, we turn to the theoretical analysis.
We have seen that contrary to the original connections model, disconnected networks

may be pairwise stable. Let us show that they can also be efficient.

Proposition 8 Let n be even and fixed, and ǫ > 0. There exists b > 0 such that for
any function b with b(2, 1) < b, the network described in Proposition 6, consisting of n/2
disjoint completely connected components with m = 2 is uniquely efficient in the cost
range b(1,1)+b(1,2)

2
+ ǫ < c < b(1, 1)− ǫ.

Proof: Fix ǫ > 0. Consider the maximal indirect benefit an agent can gain from a link.
This benefit is bounded by (n−2)b(2, 1). Thus the total social utility from indirect links is
bounded by n(n−2)b(2, 1). Let b = ǫ

n(n−2)
. For any 0 < b(2, 1) < b, the total social utility

of indirect links is inferior to ǫ. Basically, we can now neglect utility from indirect contacts.
Note then that if there are at least two nodes with no link, forming a link between them
increases total utility since c < b(1, 1). Assume now that a network contains some node
i such that ηi = k ≥ 2. Let ij belong to the network. Let us show that removing ij is
efficiency improving. Let ηj ≥ 1. Since indirect benefits are negligible, only i and j lose
by removing the link ij. This loss is b(1, ηi) + b(1, ηj) ≤ b(1, 2) + b(1, 1) < 2c. Therefore
removing the link of an agent with degree greater than one is efficiency improving. This
shows that in this parameter range, an efficient network is such that each agent has
exactly degree 1. This is achieved uniquely by the network consisting of disjoint completely
connected components of size two. �

When decay is very large, benefits from indirect contacts are negligible and the nega-
tive impact of an increased degree dominates. Thus it is not socially desirable to connect
two components.
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Proposition 9 shows that when network size is large, the complete network is not
strongly efficient when it is stable.

Proposition 9 Whenever (n − 1) (b(1, n− 2)− b(1, n− 1)) > b(1, n − 2) − b(2, n − 2),
the complete network is not strongly efficient for any cost c > 0. For the model defined by
(11), gN is not SE whenever n > 1

δ
. In particular, the complete network is not strongly

efficient when it is uniquely PS.

Proof: We note that the total link cost is always greater in gN than in gN − ij when
c > 0. Assume c = 0. Let us consider the difference in total utility between gN and
gN − ij, that is

∑n
i=1

(
ui(g

N)− ui(g
N − ij)

)
. For agents i, j the utility loss is b(1, n −

1)− b(2, n− 2). The remaining n− 2 agents gain from the connectivity decrease of their
direct neighbors i and j, 2(n− 2) (b(1, n− 2)− b(1, n− 1)). In total, the change in social
utility is

∑n
i=1

(
ui(g

N − ij)− ui(g
N)

)
= 2(n − 2) (b(1, n− 2)− b(1, n− 1)) − 2b(1, n −

1) + 2b(2, n− 2) = 2(n− 1) (b(1, n− 2)− b(1, n− 1)) + 2 (b(2, n− 2)− b(1, n− 2)). This
quantity is positive whenever (n− 1) (b(1, n− 2)− b(1, n− 1)) > b(1, n− 2)− b(2, n− 2)
meaning that the complete network gN is not strongly efficient. Except for very large
decay (when b(1, n− 2) >>> b(2, n− 2)), the complete network is inefficient even when
n is rather small. Solving (n− 1) (b(1, n− 2)− b(1, n− 1)) > b(1, n− 2)− b(2, n− 2) for
the model defined by (11) leads equivalently to the condition n > 1

δ
. �

Proposition 10 says that a pairwise stable network comprised strictly between the
star and the complete network cannot be SE. We show this without characterizing the
efficient network.

Proposition 10 Let g be a network in which lij(g) ≤ 2 for all i, j. Let g∗ ⊂ g ⊂ gN .
Then g is never efficient for sufficiently large n. In particular, for the model defined by
(11), g is never efficient when n > 2

δ
, even in the cost range where it is pairwise stable.

Proof: A stable network g containing the star is such that all nodes except the center
and possibly one more node have the same degree. Suppose that g is a network containing
the star. Consider two nodes i, j, both different from the center which are linked in g.
They are such that 1 < ηi = ηj ≤ n − 1. Let us show that social utility increases when
this link is removed. First consider the change in utility for i and j:
ui(g)− ui(g − ij) + uj(g)− uj(g − ij) = 2 (b(1, ηi)− b(2, ηi − 1)− c).
Now, both i and j have degree ηi. Thus there are (2ηi − 2) links to other agents in the
network. It does not matter here whether the neighbors of i and j are the same and
gain both from the decrease in degree of i and j or two different neighbors one of whom
gains from the decrease in degree of i and the other one from the decrease in degree
of j. The total benefit to the neighbors of i and j, in g − ij compared to g is (2ηi −
2) (b(1, ηi − 1)− b(1, ηi)). All agents who are no immediate neighbors of i or j are at dis-
tance 2 from i and j. This concerns at least M ≥ n−2−2ηi agents. The total gain of these
agents in g−ij compared to g isM (b(2, ηi − 1)− b(2, ηi)). We can now compare the social
utility of g and g−ij. It is

∑n
l=1 (ul(g)− ul(g − ij)) = 2 (b(1, ηi)− b(2, ηi − 1)− c)−(2ηi−

2) (b(1, ηi − 1)− b(1, ηi))−M (b(2, ηi − 1)− b(2, ηi)) ≤ 2 (b(1, ηi)− b(2, ηi − 1)− c)−(2ηi−
2) (b(1, ηi − 1)− b(1, ηi))− (n− 2− 2ηi) (b(2, ηi − 1)− b(2, ηi)). This quantity is negative
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for sufficiently large n. In particular, for the model defined by (11), this quantity is nega-
tive if 2(ηi−δ(ηi+1))−(2ηi−2)−Mδ < −2δ(ηi+1)+2−(n−2−2ηi)δ < 0 ⇐⇒ nδ > 2.
Thus, whenever n > 2

δ
the network g is not efficient. �

Next, we focus on the conditions for efficiency of the star.

Lemma 1 Let g be a minimally connected network of size n > 3. Let J1 be the set of
nodes of degree 1 and j1 the number of elements in this set. Then, whenever j1 > 2,
there exists a set S containing 1 ≤ m ≤ j1 nodes such that for all i ∈ S, ηi ≥ 3 and∑

i∈S αi = j1 − 2, with αi = ηi − 2.

Proof: We prove this by induction on the network size. Note that any minimally con-
nected structure can be obtained from a minimally connected structure of size n − 1
by adding one node and one link. The induction hypothesis is verified for n = 3. The
only minimally connected structure is a line. There are two elements of degree 1, thus
j1 = 2. The set S = ∅ and all remaining nodes in N − J1 have degree 2. Assume that the
induction hypothesis is verified for all minimally connected structures of size n. Let gn
be a minimally connected network of size n, thus verifying the induction hypothesis. Any
minimally connected structure of size n + 1 can be obtained by adding one node n + 1
and one link between n + 1 and i < n + 1 to some minimally connected network of size
n. There are several possible cases. Either the link from n+1 goes to a node j such that
ηj(gn) = 1. Then the number of nodes with degree one does not change. The number
of nodes in S does not change and ηj(gn+1) = 2. The induction hypothesis is verified. If
n + 1 links to j such that ηj(gn) ≥ 2 then j1(gn+1) = j1(gn) + 1 and j ∈ S(gn+1). Thus∑

i∈S ηi(gn+1) =
∑

i∈S ηi(gn) + 1 = j1(gn) + 1 = j1(gn+1). �

Let us define the function

h(m) = mb(1,m) + (n− 1−m)b(2,m) (17)

which is the maximal social utility that an agent with degree m provides to others. For
the model defined by (11), we have h(m) = m δ

1+m
+ (n− 1−m) δ2

1+m
.

Lemma 2 Let g be a network with degree sequence (ηi(g))
i=n
i=1 . Then the value of g is

v(g) ≤
∑i=n

i=1 h(ηi(g)).

Proof: The ηi(g) immediate neighbors of i derive the utility b(1, ηi(g)) from the link to
i. The remaining n − 1 − ηi(g) nodes are at distance at least 2 from i and therefore the
utility obtained from i is bounded by b(2, ηi(g)). �

Let us assume the following conditions:

Condition 1 Function h defined by (17) is decreasing.

Condition 2 For any k > 2, let a + b = k and a
′

+ b
′

= k. Then if |a − b| ≥ |a
′

− b
′

|
then h(a) + h(b) ≥ h(a

′

) + h(b
′

).
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Condition 2 means that when keeping fixed the sum of degrees of two agents, the total
maximal social utility provided by the two agents is greater the larger is the difference
between the degrees of the agents. Note that Condition 2 is satisfied for the model defined
by (11), when n ≥ 1

δ
.

Proposition 11 Let g be a connected structure. Whenever h given by (17) satisfies Con-
ditions 1 and 2, we have v(g) ≤ v(g∗).

Proof: We will prove this proposition in two steps.

Step 1: First we show that v(g) ≤ v(g∗) for any minimally connected structure g.

Let g be a minimally connected structure. It is thus characterized by m, J1 and S in
Lemma 1, the degrees of the nodes in S and the distances between all pairs of nodes.
By Lemma 1, all nodes in J1 have degree one. There are m nodes in S whose degrees
are (2 + αi)

i=m
i=1 (without loss of generality we let the m nodes in S be 1, 2, ...m). The

remaining n− j1 −m nodes have degree 2. Therefore by Lemma 2, we have
v(g) ≤

∑i=n
i=1 h(ηi(g)) = j1h(1) +

∑i=m
i=1 h(2 + αi) + (n− j1 −m)h(2).

We apply Lemma 2 to obtain h(αi+αj +2)+h(2) ≥ h(αi+2)+h(αj +2). Thus we have∑i=m
i=1 h(αi+2)+(n−m− j1)h(2) =

∑i=m−2
i=1 h(αi+2)+(n−m− j1)h(2)+h(αm−1+2)+

h(αm+2) ≤
∑i=m−2

i=1 h(αi+2)+(n−m−j1)h(2)+h(αm−1+αm)+h(2) =
∑i=m−2

i=1 h(αi+

2) + h(αm−1 + αm) + (n−m− j1 + 1)h(2) ≤ .... ≤ h(
∑i=n

i=1 αi + 2) + (n− j1 − 1)h(2).

Then, applying again repeatedly Lemma 2, v(g) ≤ j1h(1) + h(
∑i=n

i=1 αi + 2) + (n − j1 −
1)h(2) = j1h(1) + h(j1) + (n− j1 − 1)h(2) = j1h(1) + (n− j1 − 2)h(2) + h(2) + h(j1) ≤
j1g(1)+ (n− j1− 2)h(2)+h(1)+h(j1+1) = (j1+1)h(1)+h(j1+1)+ (n− j1− 2)h(2) ≤
... ≤ (n− 1)h(1) + h(n− 1) = v(g∗).

Step 2: Next, we prove that v(g) ≤ v(g∗) for any connected structure g.

As we have shown, any minimally connected structure g has a degree sequence (ηi)
i=n
i=1

such that v(g) ≤
∑i=n

i=1 h(ηi) ≤ v(g∗). Any connected structure gK is a superset of a
minimally connected network g. Let g ⊂ gK and let µi = ηi(gK)− ηi(g) ≥ 0. By Lemma
2 we have v(gK) ≤

∑i=n
i=1 h(ηi(gK)). We will show that

∑i=n
i=1 h(ηi(gK)) ≤

∑i=n
i=1 h(ηi(g)).

Let us consider h being decreasing. For the model given by (11), we verify that for all
m > 1, h(m+ 1)− h(m) ≤ 0 ⇐⇒ δ ≥ 1

n
. We use this now to show successively that:∑i=n

i=1 h(ηi(gK)) =
∑i=n

i=1 h(ηi(g) + µi) ≤
∑i=n

i=1 h(ηi(g) + (µi − 1)) ≤
∑i=n

i=1 h(ηi(g) +

(µi − 2)) ≤ .... ≤
∑i=n

i=1 h(ηi(g)). Since
∑i=n

i=1 h(ηi) ≤ v(g∗), we conclude that v(gK) ≤∑i=n
i=1 h(ηi) ≤ v(g∗). �

It can be proved that for the model defined by (11), v(g) ≤ v(g∗) whenever n ≥ 1
δ
.

We now show that under some fairly weak assumptions on the payoffs, we will also
have v(g∗) ≥ v(g) for any disconnected network g. Under these conditions, the star will
then be efficient.

Proposition 12 Let g∗1 and g∗2 be two disjoint stars with centers i and j. Whenever
(nk − 1)[b(1, nk) + b(2, 1) − b(1, nk − 1)] ≥ c for k = 1, 2 (sufficient but not necessary
condition), v(g∗1∪g∗2+ij) ≥ v(g∗1∪g∗2). In particular, this cost range exists when b(1, nk)+
b(2, 1) > b(1, nk − 1).
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Proof: Under the assumptions in Proposition 11, the value of a star is not smaller than
the value of any connected structure. Let g be a disconnected network. Then v(g) is
maximized when g is the union of star components. Let us show that under some weak
conditions, social utility is increased by connecting two stars.

Indeed, let i and j be the centers of two stars of size n1 and n2, with 2 ≤ n1 ≤ n
and 2 ≤ n2 ≤ n. If we add a link between the centers, then the change in utility is
(n1 − 1)[b(2, n2) + (n2 − 1)b(3, 1) + b(1, n1) − b(1, n1 − 1)] + b(1, n2) + (n2 − 1)b(2, 1) +
(n2−1)[b(2, n1)+(n1−1)b(3, 1)+ b(1, n2)− b(1, n2−1)]+ b(1, n1)+(n1−1)b(2, 1)−2c ≥
(n1 − 1)[b(2, n2) + b(1, n1) + b(2, 1)− b(1, n1 − 1)] + (n2 − 1)[b(2, n1) + b(1, n2) + b(2, 1)−
b(1, n2 − 1)]− 2c

This quantity is positive under a fairly weak condition: it is sufficient that decay with
distance is not too great and utility decrease with respect to the neighbor’s degree is not
too great: (nk − 1)[b(1, nk) + b(2, 1)− b(1, nk − 1)] ≥ c for k = 1, 2.

If connecting two disjoint stars is efficiency improving, the efficient network cannot
be disconnected and so under Conditions 1 and 2, the star is efficient. �

The condition in the above proposition is sufficient but not necessary and could easily
be improved. However, the star is not uniquely efficient. The complete graph, the empty
one, and also the line or a disconnected graph with connected components of size two
can all be efficient for some choices of b. The results we have are sufficient to show that
the star is uniquely stable under conditions which are compatible with the (in some cases
unique) pairwise stability of other structures than the star.

From Propositions 11 and 12, and adding condition that b(1, 1) > c (which ensures
that the empty network is not efficient), we obtain the following.

Proposition 13 Let the benefit function b satisfy Conditions 1 and 2, (ñ− 1)[b(1, ñ) +
b(2, 1) − b(1, ñ − 1)] ≥ c for all 2 ≤ ñ ≤ n and let b(1, 1) > c, then the star is uniquely
efficient.

Having established the efficiency of the star under some conditions, we can now com-
pare with the pairwise stable structures characterized in the previous section. The con-
ditions for efficiency of the star can be compatible with the stability conditions of the
complete network or with that of the windmill network (Propositions 2(iv) and 3). This
is most readily verified by checking the respective conditions for the function (10). This
implies the existence of benefit functions and cost ranges verifying our general assump-
tions for which the star is efficient but not pairwise stable and the pairwise stable or even
uniquely pairwise stable network is not efficient. We have already seen that for large n
the windmill or complete network are not efficient in their stability region. The result
about the efficiency of the star also show the existence of benefit functions for which the
efficient network is strictly contained in a (or the, in the case of uniqueness) pairwise sta-
ble network. This implies that our model can give rise to overconnectivity in the strong
sense defined by Buechel and Hellmann (2012), which could never occur in the original
connections model.
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6 Conclusion

Negative externalities in networks are an important and interesting issue which has many
aspects that remain to be explored. In this paper, we analyzed a model of network forma-
tion that combined on one hand the presence of indirect benefits and on the other hand,
a penalty resulting from the connectivity of direct and indirect neighbors. In order to
show the consequences of modifying the Jackson and Wolinsky model by implementing
negative externalities from the degree of indirect contacts, we defined the degree-distance-
based utility close to the distance-based utility model by Bloch and Jackson (2007), but
assumed a two-variable (instead of one-variable) benefit function which depends on dis-
tances to and degrees of direct or indirect neighbors. Indeed our obtained results show
that new strategic considerations induced by the presence of a trade off between gains
from increased spillovers and penalties from increased busyness of indirect contacts leads
to different outcomes than in the original connections model. This applies to both parts
of the analysis, stability and efficiency. Thus, this initial study confirms that it is indeed
relevant to take into account the effects of negative externalities which do alter agents’
strategic behavior and the social efficiency of various outcomes.

There are several issues in our agenda for the follow-up research on the connections
model. Other possible extensions of the present work concern the types of negative ex-
ternalities that we want our model to capture. As we discussed in the introduction the
model we proposed here is a good fit for a situation that we could see as a “generalized”
co-author model where knowledge spills over from more distant parts of the network.
We can also think of situations where benefits could spill over from distant neighbors
but be reduced by overall connectivity. One might see a link as a consumer good whose
value is based on its rarity and which thus decreases the more common or widespread
it is. Moreover, we note that as in many network formation games, our model exhibits
a high multiplicity of equilibria, suggesting that the use of stronger stability concepts,
e.g., strongly stable networks (those which are stable against changes in links by any
coalition of individuals; see Jackson and van den Nouweland (2005)) could be helpful for
equilibrium selection. We could also gear this general model more specifically towards
some of the interesting social and economic problems on which the proposed framework
can shed some light, notably the competition for information.
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