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THE VON NEUMANN/MORGENSTERN APPROACH TO AMBIGUITY

MARTIN DUMAV, MAXWELL B. STINCHCOMBE

Abstract. A choice problem is risky (respectively ambiguous) if the decision maker is choos-
ing between probability distributions (respectively sets of probability distributions) over util-

ity relevant consequences. We provide an axiomatic foundation for and a representation of

continuous linear preferences over sets of probabilities on consequences. The representation
theory delivers: first and second order dominance for ambiguous problems; a utility inter-

val based dominance relation that distinguishes between sources of uncertainty; a complete

theory of updating convex sets of priors; a Bayesian theory of the value of ambiguous in-
formation structures; complete separations of attitudes toward risk and ambiguity; and new

classes of preferences that allow decreasing relative ambiguity aversion and thereby rational-
ize recent challenges to many of the extant multiple prior models of ambiguity aversion. We

also characterize a property of sets of priors, descriptive completeness, that resolves several

open problems and allows multiple prior models to model as large a class of problems as the
continuous linear preferences presented here.

Roughly, risk refers to situations where the likelihood of relevant events can
be represented by a probability measure, while ambiguity refers to situations
where there is insufficient information available for the decision maker to assign
probabilities to events. (Epstein and Zhang [22])

1. Introduction

This paper takes Epstein and Zhang’s rough distinction as the defining difference between
risky choice problems and ambiguous choice problems, and takes the “relevant events” to be
sets of consequences. A risky decision problem is one in which the decision maker (DM) knows
the probability distributions associated with their choices. An ambiguous decision problem is
one in which the DM knows only partial descriptions of the probability distributions associated
with their choices.

We identify a partial description of the probabilities with the set of probabilities satisfying
the partial description. Under study are ambiguous decision problems in which the DM’s
preferences are continuous linear functionals on the class of compact sets of distributions over
consequences.

1.1. Comparison with Multiple Prior Models. For the modeling of risky decisions, there
are two main approaches: preferences over mappings from a state space to consequences, as
in Savage [46]; or preferences over distributions over consequences, as in von Neumann and
Morgenstern (vNM) [56]. The choice between the two is a question of convenience, but only
if the prior is non-atomic. This follows from a change of variables and the result that for any
non-atomic prior, p, and any distribution, µ, on a wide class of spaces, there is a measurable
function such that µ = f(p). As to convenience, analyses of risky problems are essentially
always taught and carried out in the space of distributions over consequences.

For multiple prior models of choice under ambiguity, descriptive completeness provides a
condition analogous to a single prior being non-atomic — a set, S, of priors is descriptively
complete if for any (relevant) set, A, of distributions over consequences, there is a measurable f
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such that A = f(S). Combining a descriptively complete set of priors with the same change of
variables, one can model the same class of ambiguous problems either in the space of measurable
functions or in the space of sets of distributions over consequences. The extant preferences
over measurable functions, when expressed as preferences over sets of distributions, are either
continuous and linear or are locally linear, leading to our focus on representing continuous linear
functionals. The relative convenience of analyses in the space of distributions over consequences
carries over to ambiguous problems, and the class of preferences studied here nests those studied
in most of the multiple prior models.

1.2. The Benefits of a Good Representation Theory. As well as giving the set analogue
of non-atomic priors, we give the representation theory for continuous linear preferences over
sets of probabilities. The representation provides a number of results: the continuous lin-
ear preferences extend most of the previously studied multiple prior preferences; continuous
linear preferences include those with decreasing (or increasing) relative ambiguity aversion, di-
rectly answering Machina’s [38] challenges to many extant preferences-over-functions models
of ambiguous choice; the form of the preferences generate new hypotheses about choice in the
face of ambiguity; the representation yields characterizations of domains of problems on which
α-minmax EU preferences are, and are not, ambiguity averse when α > 1

2 ; it allows for general-
izations of first and second order stochastic dominance rankings to ambiguous decision problem;
delivers a complete theory of updating convex sets of priors, and through this a Bayesian the-
ory of the value of ambiguous information structures; complete separations between attitudes
toward risk and attitudes toward ambiguity; and finally, with a representation theory for linear
functionals in hand, we can begin the systematic study of the recently proposed preferences
over sets of distributions that are non-linear but can be locally approximated by continuous
linear functionals.

1.3. Change of Variables in Risky Decision Problems. Decision theory in the face of risk
has two main models, related by change of variables. Both models use a space of consequences,
X, and one of them also has a measure space1 of states, (Ω,F). In applications, X is often a
compact subset of R, and essentially always a Polish (complete separable metric) space. For
this introductory section, we assume that X is compact as the more general case requires some
details that impede acquiring an overview.

A preference ordering, %, on ∆(X) is a complete transitive binary relation on ∆(X). von
Neumann and Morgenstern (vNM) [56] gave a short axiomatic foundation for preferences over
distributions on X. Preferences satisfying their axioms have the property that µ % µ′ iff

vNM (µ) :=

∫
X
u(x) dµ(x) ≥ vNM (µ′) :=

∫
X
u(x) dµ′(x) (1)

where u ∈ C(X), the continuous functions on X. Here, u is unique up to positive affine
transformation.

By contrast, Savage’s [46] work provides an axiomatic foundation for preferences over mea-
surable functions from a state space, (Ω,F), to X. The preferences over measurable functions
f, f ′ : Ω→ X can be represented by f % f ′ iff

Sav(f) :=

∫
Ω

u(f(ω)) dp(ω) ≥ Sav(f ′) :=

∫
Ω

u(f ′(ω)) dp(ω). (2)

Here, the prior, p, a probability on (Ω,F), is uniquely determined, and u is, as before, unique
up to positive affine transformation.

The approaches are directly related by change of variables, taking µ = f(p) (defined by
f(p)(E) = p(f−1(E)) for E ⊂ X) and µ′ = f ′(p), the integrals on each side of the inequalities
(1) and (2) are the same. The vNM approach specifies preferences over all of ∆(X), but,
depending on the prior, p, this may or may not be true for Savage’s approach. What is required
for the class of models to be the same in (1) and (2) is that the prior, p, be descriptively

1A measure space is a non-empty set and a σ-field of subsets.
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complete, that is, it is necessary that every µ ∈ ∆(X) is of the form f(p) for some measurable
f : Ω→ X. For a single prior, descriptive completeness is equivalent to non-atomicity: the first
part of Skorohod’s representation theorem [52] implies that any non-atomic p is descriptively
complete; if p has atoms and X = [0,M ], then the set of µ ∈ ∆(X) that are of the form f(p)
fails to contain a set with non-empty interior as well as a dense convex subset of ∆(X); and if X
is finite and non-trivial, then the set fails to contain a subset of ∆(X) with non-empty interior.

1.4. Change of Variables in Ambiguous Decision Problems. The most widely used
models of ambiguous decision problems involve a set, S ⊂ ∆(Ω), of priors to describe preferences
over measurable functions from Ω to X. The same change of variables that relates (1) and (2)
means that these preferences can be re-written as preferences over the descriptive range of
S, denoted R(S) and defined as the class of A ⊂ ∆(X) that are of the form f(S) for some
f : Ω → X. Such preferences are, mostly, the restrictions of continuous linear functions on
the subsets of ∆(X) to R(S). We say that the set S is descriptively complete if its descriptive
range is the class of all (relevant) subsets of ∆(X). If S is descriptively complete, models of
preferences over functions from Ω to X and preferences over subsets of ∆(X) cover the same
class of problems.

The first of the multiple prior models of preferences over functions f : Ω → X is due to
Gilboa and Schmeidler [26]. Preferences satisfying their weakening of Savage’s [46] axioms can
be represented by f % f ′ iff

GS (f) := min
p∈S

∫
Ω

u(f(ω)) dp(ω) ≥ GS (f ′) := min
p∈S

∫
Ω

u(f ′(ω)) dp(ω) (3)

for S a weakly closed, convex set of prior probabilities on Ω. If we let A = f(S) and B = f ′(S),
then change of variables (cov) delivers A % B iff

GS cov(A) := min
µ∈A

∫
X
u(x) dµ(x) ≥ GS cov(B) := min

µ∈B

∫
X
u(x) dµ(x). (4)

The function A 7→ GS cov(A) is a continuous, linear functional on the class of closed subsets of
∆(X). For continuous linear preferences, every closed set is indifferent to its closed convex hull,
so there is no loss in restricting attention to K∆(X), the set of closed convex subsets of ∆(X).
GS cov(·) specifies preferences over all of K∆(X), and the GS (·) preferences are the restriction of
GS cov(·) to the descriptive range of S, R(S).

There are three quite general subsequent versions of the multiple priors preferences. The
first is the α-minmax EU preferences Ghirardato, Maccheroni, and Marinacci (GMM) [25],
represented by f % f ′ iff

αMEU(f) := αf ·min
p∈S

∫
Ω

u(f(ω)) dp(ω) + (1− αf ) ·max
q∈S

∫
Ω

u(f(ω)) dq(ω) ≥ (5)

αMEU(f ′) := αf ′ ·min
p∈S

∫
Ω

u(f ′(ω)) dp(ω) + (1− αf ′) ·max
q∈S

∫
Ω

u(f ′(ω)) dq(ω)

where S is again a weakly closed, convex set of probabilities on Ω.
If f 7→ αf is constant, then setting A = f(S) and B = f ′(S), the change of variables delivers

Olszewski’s [42] preferences, A % B iff

αMEUcov(A) := α ·min
µ∈A

∫
X
u(x) dµ(x) + (1− α) ·max

ν∈A

∫
X
u(x) dν(a) ≥ (6)

αMEUcov(B) := α ·min
µ∈B

∫
X
u(x) dµ(x) + (1− α) ·max

ν∈B

∫
X
u(x) dν(a).

Once again, A 7→ αMEUcov(A) is a continuous linear functional on the closed subsets of ∆(X),
so there is no loss in restricting attention to K∆(X). The set of problems that can be modeled
in (5) and (6) is the same if S is descriptively complete. Further, Proposition 1 shows that
unless the α-MEU preferences violate state independence, descriptive completeness implies that
f 7→ αf must be constant in GMM’s axiomatization.
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A direct generalization of the α-MEU preferences are the Monotonic, Bernoullian, and
Archimedean (MBA) preferences of Cerreia-Vioglio et al. [14]. They are also representable
by the formula in (5), what differs are the restrictions on how αf depends on f : αf must be
equal to αf ′ if p 7→

∫
u(f) dp is a positive affine function of p 7→

∫
u(f ′) dp on S for α-MEU

preferences, while they must be equal if the two functions are equal for MBA preferences.
Proposition 2 shows that for MBA preferences, αf = αf ′ if the minimum and maximum values
of
∫
u(f) dp and

∫
u(f ′) dp are the same on S.2 If the mapping f 7→ αf is non-constant but

well-behaved, Example 4 shows that the cov version of MBA preferences may be smooth, i.e.
locally approximatable by the continuous linear preferences under study here.

These observations lead us to two topics: a representation theorem for continuous linear
functionals on K∆(X); and the structure of descriptively complete sets of priors.

1.5. The Representation Theorem. The Riesz representation theorem tells us that ∆(X),
the domain of the vNM preferences, is a subset of the dual space of C(X), the finite signed
measures. The Hahn-Jordan decomposition of the dual space tells us that ∆(X) is a spanning
subset. Therefore all weak∗ continuous linear functionals U : ∆(X) → R have an integral
representation, U(µ) =

∫
X u(x) dµ(x) for some u ∈ C(X). This result is crucial to the study

of choice in the presence of risk: monotonicity of u is equivalent to the preferences respect-
ing first order dominance; monotonicity and concavity of u is equivalent to the preferences
respecting second order dominance; for decision problems with actions a ∈ A and a realiza-
tion, x, of a random variable, the necessarily convex upper envelope of the linear functions
{µ 7→

∫
u(a, x) dµ(x) : a ∈ A}, is at the center of Blackwell’s development of the value of in-

formation [9], [10]; log supermodularity of u(a, x) in an action a and a realization of a random
variable x is a key ingredient in monotone comparative statics results [6].

Continuous linear functions on K∆(X) have an integral representation that reduces to the
vNM representation, (1), for risky problems, and contains the change of variables version of
the Gilboa-Schmeidler and the GMM preferences, (4) and (6), as special cases. Theorem 1
shows that, modulo an infinitesimal caveat, continuous linear preferences on K∆(X) are given
by A % B iff

U(A) :=

∫
U1

0

min
µ∈A
〈u, µ〉 dηmin(u) +

∫
U1

0

max
ν∈A
〈v, ν〉 dηmax(v) ≥ (7)

U(B) :=

∫
U1

0

min
µ∈B
〈u, µ〉 dηmin(u) +

∫
U1

0

max
ν∈B
〈v, ν〉 dηmax(v),

where: U1
0 is the set of continuous functions with minx∈X u(x) = 0, maxx∈X u(x) = 1; ηmin

and ηmax are non-negative, countably additive measures with (ηmin + ηmax) normalized to be
a probability; and 〈f, µ〉 :=

∫
X f(x) dµ(x). This nests the previously discussed preferences as

follows.

a. If A = {µ} and B = {µ′} are singleton sets, as they would be for risky decision problems,
then (7) reduces to µ % µ′ iff

∫
X u(x) dµ(x) ≥

∫
X u(x) dµ′(x) where u is the resultant of

(ηmin + ηmax), i.e. u(x) =
∫
U1

0
u(x) d(ηmin + ηmax)(u).

b. For general A,B ∈ K∆(X), then taking ηmin and ηmax to be the scaled point masses on the
function u, ηmin = αδu and ηmax = (1− α)δu, (7) delivers the GMM preferences (6).

c. Taking α = 1 yields the Gilboa-Schmeidler preferences given in (4).

The integral representation has many consequences: Corollaries 1.1 and 1.2 use it to charac-
terize respect for first and/or second order stochastic dominance in ambiguous choice problems
in terms of the support sets for ηmin and ηmax; Corollary 1.3 uses it and first order dominance
to bound the utility effects of ambiguity; Corollary 1.4 uses the integral representation to give
the basic ordering result for ambiguous information structures; §5, especially Proposition 3,

2Amarante [2] gives the most general class of preferences satisfying the GMM axioms, those representable

by the Choquet integral with respect to a capacity ξ, U(f) =
∫
S u(f(P )) dξ(P ).
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uses it to provide complete separations of attitudes toward risk and attitudes toward ambiguity
in two broad classes of problems.

1.6. Descriptively Complete Sets of Priors. There are several reasons that favor the use of
descriptively complete sets of priors in economic models, though, with the exceptions Klibanoff
[34] and Epstein and Ji [20], the sets of priors that have been used in the literature fail to be
descriptively complete. First, without descriptive completeness, there are often severe limits
to the set of problems that can be modeled. Second, these limits substantively affect the
analyses. Third, the focus on sets of prior models rather than on sets of distributions over
consequences has impeded our understanding of many issues, most especially comparisons of
and non-constancy/constancy of degrees of ambiguity aversion.

Modeling with a set of priors that is not descriptively complete means that one is modeling
a decision maker who cannot conceive of many, perhaps most, partially described sets of prob-
abilities. Example 1 shows that a decision maker modeled as having any instance of commonly
used class, S, of multiple priors can only conceive of a negligible set of problems when there
are finitely many outcomes. The substantive effect of this limitation in the two outcome case
is that all monotonic preferences, whether ambiguity loving, ambiguity averse, or neither, have
exactly the same implications for everything in the descriptive range of S. For three or more
outcomes, the negligibility of R(S) has arguably worse consequences. The general result in
this direction is Theorem 3, which shows that if e.g. X = [0,M ] and S fails to be descriptively
complete, then R(S) misses at least a dense subset of K∆(X).

The inability to distinguish behavioral differences between ambiguity loving or ambiguity
averse behavior on the descriptive range of a set of priors is an example of the observation that
properties of axioms restricted to small domains can be very different than their properties
on larger domains. A second example is provided by Proposition 1, which shows that if the
descriptive range of the set of priors, S, is all of K∆(X) in GMM’s α-MEU setting, then the
mapping f 7→ αf in their representation must be constant. A third example is provided by
Proposition 2, which shows that, under the same descriptive completeness condition applied to
the set S in the MBA variant of α-MEU preferences, the mapping f 7→ αf can only depend on
the upper and lower bounds of expected utility under S.

A further lesson contained in Example 1 is that enlarging the set of priors can shrink its
descriptive range. This counter-intuitive result provides part of the explanation of why focus
on multiple priors models rather than on sets of distributions over consequences has impeded
our understanding. Another example of this kind of difficulty is apparent in Epstein [21], which
shows that convexity of a capacity, hence non-emptiness of its core, S, is neither necessary nor
sufficient for preferences over random variables to be ambiguity averse. In general, trying to
identify degrees of ambiguity aversion by studying properties of sets of priors has not proved
very fruitful. However, if one works with a descriptively complete set of priors, then change of
variables delivers the same functional forms for the preferences, but now they are applied to
K∆(X) or to subclasses of K∆(X). This allows us to demonstrate one source of the difficulties:
Proposition 5 gives a class of sets, denoted Ksym∆(X), encompassing many of the extant analyses,

and shows that α-MEU preferences are ambiguity averse relative to this class of sets provided
α > 1

2 ; it also shows that α-MEU preferences with α < 1 cannot be ambiguity averse relative
to any class A ⊂ K∆(X) if A contains the triangular sets of distributions over consequences.

1.7. Nonlinear Functionals. Machina [37] introduced the study of smooth preferences over
distributions. These are locally linear, which means that vNM preferences provide local ap-
proximations, and the properties of the linear approximations determine the properties of the
smooth preferences.3 Many of the recently studied preferences for choice under ambiguity are
not representable by linear functionals on sets of probabilities, but are representable as locally
linear functionals. For example, variational preferences (e.g. [5], [36], or the tutorial [47]), are
concave on K∆(X), hence locally linear at most points in their domain.

3See [15] for a further development of the local approximation approach to smooth utility functions on
probabilities.
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1.8. Outline. The next section covers most of the main results of the paper in the case that
there are just two consequences, #X = 2: representation; first order dominance; separation
of risk and ambiguity attitudes; descriptive completeness and incompleteness; and local linear
approximations to non-linear preferences. The subsequent section covers the representation
theorem for continuous linear preferences. This leads to a theory of first and second order
stochastic dominance for ambiguous problems as well as a theory of the value of ambiguous
information. Section 4 gives the sufficient, and up to inessential duplications, necessary, con-
dition for a set of priors to be descriptively complete. We show that: descriptively complete
sets of priors have lower envelopes that mimic any concave or any convex capacity on finite
sub-fields, providing further evidence that convexity of a capacity is not particularly related
to ambiguity aversion outside of the two consequence case; and, combined with state inde-
pendence, descriptive completeness implies the constancy of the α in the α-MEU preferences.
Section 5 investigates the classes of problems for which there are good representations of the
decomposition of preferences into attitudes toward risk and attitudes toward ambiguity.

The penultimate section shows how the continuous linear preferences discussed here resolve
several puzzles and provide new classes of preferences. The first puzzle is whether or not α-
MEU preferences can be ambiguity averse. We give a broadly useful class of problems for which
α-MEU preferences with α ∈ ( 1

2 , 1] are ambiguity averse, as well as a large class of problems
where ambiguity aversion is only present when α = 1. The second topic is the constancy of rel-
ative ambiguity aversion that is built into multiple prior preferences over random variables that
satisfy a rank-dependence axiom — for any vNM utility function for risky problems, we give an
associated infinite dimensional class of linear-in-sets preferences with decreasing (or increasing)
relative ambiguity aversion. The third puzzle is how to update convex sets of probabilities, and
the theory developed here leads to a Bayesian theory of the value of ambiguous information.
Linear-in-sets preferences with decreasing (or increasing) relative ambiguity aversion are new.
Also new are the class of preferences we give that respect a novel dominance relation for am-
biguous problems, one that can distinguish between sources of uncertainty. The last section
summarizes and indicates future directions.

Throughout, we reserve “Theorem” for results about the class of vNM preferences as a whole,
and “Proposition” for results about subclasses of the vNM preferences.

2. Two Consequences

Urn problems are a particularly clear and compelling way to explain the intuitions for pref-
erences in the presence of ambiguity, and that is where we begin.

2.1. Urns and Interval Sets of Probabilities. An urn is known to contain 90 balls, 30 of
which are known to be Red, each of the remaining 60 can be either Green or Blue. The DM is
faced with the urn, the description just given, and two pairs of choice situations.

(1) Choices between single tickets:
(a) The choice between the Red ticket or the Green ticket.
(b) The choice between the Red ticket or the Blue ticket.

(2) Choices between pairs of tickets:
(a) The choice of the R&B or the G&B pair.
(b) The choice of the R&G or the B&G pair.

In each situation, after the DM makes her choice, one of the 90 balls will be picked at
random. If the ball’s color matches the color of (one of) the chosen ticket(s), the DM gets
$1, 000, otherwise they get nothing, a two-point set of consequences. Modal preferences in
experiments are

R � G and R � B, as well as

R&B ≺ G&B and R&G ≺ B&G.
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People with these preferences cannot be assigning probabilities to these events if they prefer
higher probabilities of better outcomes, for, if they did we would have

Pr(R) > Pr(G) and Pr(R) > Pr(B), as well as

Pr(R) + Pr(B) < Pr(G) + Pr(B) and Pr(R) + Pr(G) < Pr(B) + Pr(G).

The probability that the Red ticket wins is 1
3 . That is, the action “choose Red” is risky,

with the known probability 1
3 . The actions “choose Blue” and “choose Green” are ambiguous,

leading to the interval of probabilities [0, 2
3 ]. Choosing the B&G pair is risky, 2

3 , choosing

the other two pairs is ambiguous, [ 1
3 , 1]. The preferences R � G and R � B correspond to

{ 1
3} � [0, 2

3 ], while the preferences R&B ≺ G&B and R&G ≺ B&G correspond to [ 1
3 , 1] ≺ { 2

3}.
A summary of this Ellsberg paradox is that people prefer knowing a probability p determines
the chance that they win to knowing that the probability belongs to an interval with p at its
center.

2.2. Representation and Dominance. In this urn problem, X = {0, 1}, and ∆(X) ⊂ R{0,1}
can be represented by [0, 1] where q ∈ [0, 1] corresponds to the probability of receiving the
better outcome. Let K∆(X) be the class of non-empty closed, convex subsets of the probabilities
[0, 1], that is, K∆(X) = {[a, b] : 0 ≤ a ≤ b ≤ 1}. In this case, continuous linear functionals on
the convex sets of probabilities must be of the form U([a, b]) = u1a+ u2b, u1, u2 ∈ R.

An interval [a, b] first order stochastically dominates [a′, b′] if every expected utility who likes
$1,000 better than $0 prefers the worst probability in [a, b] to the worst in [a′, b′] and prefers the
best probability in [a, b] to the best in [a′, b′]. This is equivalent to a ≥ a′ and b ≥ b′. For the
utility function U(·) to respect first order dominance,4 we must have u1, u2 ≥ 0. Non-triviality
of the preferences requires at least one inequality strict, and we normalize with u1 + u2 = 1.

Restricted to singleton sets of probabilities, U is a vNM utility function on {0, 1}. Since
intervals with no width correspond to risky choices, the normalization gives U([p, p]) = u1p +
u2p = p, e.g. U([0, 0]) = 0 and U([1, 1]) = 1. From this, the vNM utility function on X = {0, 1}
is u(0) = 0 and u(1) = 1, which leads to GMM’s α-minmax EU preferences by setting u1 = α,
u2 = (1− α), and re-writing as

U([a, b]) = α ·
(

min
µ∈[a,b]

∫
X
u(x) dµ(x)

)
+ (1− α) ·

(
max
ν∈[a,b]

∫
X
u(x) dν(x)

)
. (8)

2.3. Separation of Risk and Ambiguity Attitudes. In GMM’s α-minmax EU preferences,
α > 1

2 , that is, u1 > u2, is often interpreted as ambiguity aversion. A change of basis in

K∆(X) allows us to see why this should be true in the two consequence case.5 Rewriting [a, b] as
[p−r, p+r], where p = (a+b)/2 and r = (b−a)/2, yields U([p−r, p+r]) = (u1+u2)p−(u1−u2)r,
conveniently re-written as U([p−r, p+r]) = p−vr with v = (u1−u2). Having α > 1

2 corresponds
to v > 0, that is, to disliking expansions of the set of probabilities [p− r, p+ r] about the center
p, capturing the modal preferencess.

In the utility function U([p− r, p+ r]) = p− vr, we see an example of a complete separation
between the attitude toward risk and the attitude toward ambiguity. The v measures the the
tradeoff between risk and ambiguity, and any v can be combined with the expected utility
part of the functional. Further, v can be elicited by giving people a choice between risky and
ambiguous urns.

2.4. Descriptive (In)Completeness. For most modeling of random variables, one can take
the probability space to be the unit interval with the uniform distribution, λ. This is because
every probability distribution, µ, on a wide class of spaces (including every complete separable
metric space) is the image measure, fµ(λ), for an appropriately chosen random variable, fµ.
This is a domain equivalence result, it means that one can study random phenomena by studying
distributions or by studying random variables, the choice is a matter of convenience. Further,

4With only two consequences, we cannot treat second order dominance here.
5Problems in which α > 1

2
can, and cannot, be regarded as ambiguity aversion for X having more than 2

elements are described in Proposition 5.
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the unit interval can be replaced by any probability space that supports a countably additive
non-atomic distribution.

More than non-atomicity is needed for modeling preferences under ambiguity.

Example 1. Let (Ω,F) be ([0, 1],B), the unit interval with the usual Borel σ-field, and let λ
denote Lebesgue measure. Consider the set of priors Sc,d = {p ∈ ∆(Ω) : c ≤ dp/dλ ≤ d},
0 ≤ c < 1 < d ≤ ∞. Each set Sc,d is weakly closed, convex, and has uncountably many linearly
independent extreme points. Suppose the consequence space is X = {0, 1}. The measurable
functions f : Ω → X are of the form f(ω) = 1E(ω), E ∈ F . Let R(Sc,d) denote the set
of A ∈ K∆(X) that are of the form f(Sc,d) for some measurable f : Ω → X. The possible
lower bounds for the sets [a, b] ∈ R(Sc,d) is given by the increasing, onto convex function
ϕ(r) := max{cr, 1−d(1−r)} from [0, 1] to itself, and the upper bound is 1−ϕ(1−r), both given in
Figure 1(a). Figure 1(b) gives the intervals [a, b] ∈ R(Sc,d) as points in {(a, b) : 0 ≤ a ≤ b ≤ 1}.

 k = 1 K c
d K c            r 2 [0, 1]  k' = d K 1

d K c    

   f = 1E ,  l E  = r

, ,

Graph of  f Sc, d ,

slope = c g

slope = d g

slope = d g

slope = c g

0

1

1

slope = d
c g

 _ slope = c
d

d 1 K c
d K c a

a, b : a % b

(0,1) (1,1)

(0,0)

There are several lessons to be drawn from Example 1.
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a. A preference ordering of the intervals [a, b] that respects first order stochastic dominance
must be increasing in both a and b. Restricted to the set R(Sc,d) given in Figure 1(b), any
increasing (a, b) 7→ U(a, b), ambiguity averse, ambiguity loving, or neither, and many non-
monotonic (a, b) 7→ U(a, b) give the same ordering. The class of problems that a decision
maker with priors Sc,d can conceive of is so small that very different preferences have the
same implications.

b. For 0 < c < c′ and/or d > d′ > 1, Sc,d is a strict superset of Sc′,d′ , but the sets R(Sc,d)
and R(Sc′,d′) have only two points in common, certainty about the worst outcome, [0, 0],
and certainty about the best outcome, [1, 1]. Comparing attitudes toward ambiguity for two
decision makers by comparison of the sets Sc,d and Sc′,d′ is not possible in any meaningful
sense because the only risky problems decision makers have in common are those involving
certainty of the outcome.

c. The class of problems that a decision maker can conceive of can disappear discontinuously.
For example, as c ↓ 0 and d ↑ ∞, each R(Sc,d) is uncountable, but in the limit, R(S0,∞) is
the three point set {[0, 0], [0, 1], [1, 1]} ⊂ K∆(X).

d. The class of problems a decision maker can contemplate can be larger for a smaller set of
priors. Consider the one-dimensional set of priors S = {pθ : θ ∈ [0, 2]} ⊂ S0,2 where each
pθ ∈ ∆([0, 1]) has a density with respect to Lebesgue measure equal to 2 − θ on [0, 1

2 ] and

equal to θ on ( 1
2 , 1]. To see that R(S) = K∆(X), note that for any A = [a, b] ∈ K∆(X), we can

take fa,b(ω) = 1[0,a/2)(ω)+1[ 1
2 ,

1
2 +b/2)(ω) so that fa,b(p0) puts mass a on the better outcome,

1, while fa,b(p2) puts mass b on the better outcome.
e. Looking briefly ahead to problems involving more than two consequences, let ϕ : [0, 1]→ [0, 1]

be increasing, onto, and convex. For a non-atomic P , define the capacity C by C(E) =
ϕ(P (E)), and let Π = {p : (∀E ∈ F)[p(E) ≥ C(E)]} be the core of C.

Given the convexity of ϕ, the rank-dependent expected utility (RDU) of, equivalently, the
Choquet expected utility of, a measurable f : Ω→ X is

RDU(f) = minp∈Π

∫
Ω
u(f(ω)) dp(ω).

The set of ambiguous outcomes that the decision maker can conceive of is the range set,
R(Π) = {[ϕ(r), 1 − ϕ(1 − r)] : r ∈ [0, 1]}, a negligible subset of the problems modeled
using K∆(X). As ϕ is onto, all minima are available in R(Π) when #X = 2. Because RDU
preferences only refer to the minimal utility, one might hope that the negligibility of the set
of problems that the decision maker can consider is not problematic.

However, when #X ≥ 3, R(Π) will not, in any generality, contain the minima. To see
why, let x1, x2, x3 ∈ X with x1 ≺ x2 ≺ x3, let A ∈ K∆(X) be the set {µ ∈ ∆({x1, x2, x3}) :

µ(x1) = µ(x2), µ(x3 ≥ 1
3}. A monotonic ur having minimum 0 and maximum 1 is of

the form ur = (ur(x1), ur(x2), ur(x3)) = (0, r, 1) for some r ∈ [0, 1]. For any such ur,
minµ∈A〈ur, µ〉 = 1

3r + 1
3 . If ϕ is moderately convex, then for e.g. r = 1

2 , there exists no

f : Ω→ {x1, x2, x3} such that RDU(f) = 1
3r + 1

3 .
For this kind of Choquet expected utility model to apply to different problems with more

than two consequences, it may be necessary to choose a different function ϕ, and through
it, a different set of priors for each decision problem. Such adjustment of preferences for
different problems makes it difficult to convincingly examine how changes in circumstances
change decisions [53].

2.5. Nonlinearities. There are interesting nonlinear preferences over the class of closed, not
necessarily convex subsets of ∆(X), and interesting (quasi-)concave and strictly quasi-concave
preferences over the class of closed convex subsets of ∆(X).

2.5.1. All closed sets. Continuity and linearity of preferences means that there is no loss in
restricting preferences to the closed convex subsets of ∆({0, 1}), and this argument generalizes
to more general spaces of consequences.

• Continuity means that if the (Hausdorff) distance between two sets is 0, then they are
indifferent, and the distance between a set and its closure is 0.

9



• Linearity means that, taking A to be any closed subset of ∆({0, 1}), U( 1
2A + 1

2A) =

U(A) = U(
∑
i≤n

1
nA). Since

∑
i≤n

1
nA → co(A) where co(A) is the convex hull of A,

we have U(A) = U(co(A)).
• Strict concavity or quasi-concavity of the preferences over all subsets of ∆({0, 1}) would

lead to co(A) � A when A is not convex.

2.5.2. Quasi-Concavity and Decreasing Ambiguity Aversion. The intervals [a, b] can be rep-
resented as points in the triangle {(a, b) ∈ R2 : 0 ≤ a ≤ b ≤ 1} as in Figure 1(b). The
linear utility functions U([a, b]) = u1a + u2b have parallel, straight line indifference curves,
and represent ambiguity averse perference that respect first order dominance iff u1 ≥ u2 ≥ 0.
Geometrically, this corresponds to the slopes of the indifference curves belonging to [−∞,−1],
with steeper/shallower curves corresponding to higher/lower degrees of ambiguity aversion.

Example 2 (Decreasing ambiguity aversion). In a fashion similar to Dekel’s “fanning out”
preferences [17] on ∆(X), specify monotonic preferences with non-parallel, straight-line indif-
ference curves by joining the degenerate intervals [p, p] to a point c◦ = (−x, 2 + y) for y > x
(see Figure 2). This yields a two-parameter class of preferences that are quasi-concave, not con-
cavifiable, and which demonstrate decreasing ambiguity aversion as the choice set approaches
certainty of the best outcome.

(0,0)

(1,1)(0,1)

Figure 2. Decreasing ambiguity aversion

It is worth emphasizing that the decreasing ambiguity aversion preferences just specified are
not linear-in-sets. With X = [0,M ], we give linear-in-sets preferences with ambiguity aversion
that is decreasing in wealth in §6.2.2.

2.5.3. Concavity: Variational and MBA Preferences. Preferences over K∆(X) are quasi-concave
if [A ∼ B]⇒ [αA+ (1− α)B] % A. Provided the set of priors is descriptively complete so that
the domain of the preferences is the convex set K∆(X), variational preferences ([5], [36], [47])
and Monotonic, Bernoullian, Archimedean (MBA, [14]) preferences are often concave, hence
quasi-concave.

Example 3 (Variational). Variational preferences on K∆(X) can be represented by V (A) =

minµ∈A
∫
X u(x) dµ(x) + cA(µ) where each cA as a convex function mapping ∆(X) to R+. A

tractable parametrized version of these preferences for the two consequence case is given by
V ([p − r, p + r]) = minq∈[p−r,p+r]{q + 1

θr (p − q)α} for α ∈ (1, 2) and θ > 0. Solving and

evaluating yields V ([p− r, p+ r]) = p−κr
1

α−1 for a parameter κ > 0. If α ∈ (1, 2), then V (·) is
smooth and concave, the linear approximations at [p− r, p+ r] are ambiguity neutral at r = 0,
and become more ambiguity averse as r ↑.

Proposition 2 shows that what matters for MBA preferences are the worst and the best
expected utility in a set.
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Example 4 (MBA). In the two outcome case, MBA preferences are given by MBA([a, b]) =
αa,ba+ (1− αa,b)b with αa,a ≡ 1

2 . A tractable parametrized version of these preferences for the

two outcome case is given by αa,b = 1
2 + κ(b− a)2 so that MBA([a, b]) = 1

2 (a+ b)− κ(b− a)3,
which is strictly concave on K∆(X) = {[a, b] : 0 ≤ a ≤ b ≤ 1} if κ > 0, strictly convex if κ < 0,
and both linear and ambiguity neutral if κ = 0. At any [a, b], the slope of the indifference curve
is −( 1

2 + 3κ(b− a)2)/( 1
2 − 3κ(b− a)2). This indicates that the preferences are ambiguity neutral

in a neigborhood of the risky problems where a = b, and that, for κ > 0, the preferences become
more ambiguity averse as r = (b− a)/2 ↑.

The pattern of using information from the expected utility functionals that are the tangent
approximations to non-linear preferences over ∆(X) comes from Machina [37]. In the same
fashion, the vNM preferences studied in this paper are the tangent approximations to (almost
everywhere) smooth nonlinear preferences. As such, properties of the non-linear preferences are
often inherited from their linear approximations (see also [15]).

3. Representation Theory

We assume that the space of consequences, denoted X, is Polish, that is, that it is a separable
metric space with a topology that can be given by a metric making it complete. This section
gives the representation theory for continuous linear preferences on the class of compact convex
subsets of ∆(X), the set of countably additive Borel probabilities on (the Borel σ-field of subsets
of) X.
Cb(X) denotes the set of bounded, continuous functions on X with the supnorm topology,

and ∆(X) is a weak∗ closed and separable, convex subset of the dual space of Cb(X). There
are many metrics, e.g. the Prokhorov metric, that make ∆(X) complete, so that ∆(X) is also
Polish. Because they induce the weak∗ topology, they have the property that µn → µ iff∫
u dµn →

∫
u dµ for all u ∈ Cb(X). K∆(X) denotes the set of non-empty, compact, convex

subsets of ∆(X) with the Hausdorff metric. It is well-known that K∆(X) is compact (Polish) iff
∆(X) is compact (Polish) iff X is compact (Polish).

Let U1
0 ⊂ Cb(X) denote the set {f ∈ Cb(X) : infx∈X f(x) = 0, supx∈X f(x) = 1}. X is finite

iff U1
0 is compact, and X is compact iff U1

0 is separable. Further, every g ∈ Cb(X) has a unique
representation of the form rh + s for some h ∈ U1

0, r ≥ 0, and s ∈ R. Ms =Ms(U1
0) denotes

the set of countably additive, finite, signed measures on U1
0 with a separable support.

We identify a partial description of the probability distribution over X associated with a
choice by the decision maker with the set of µ ∈ ∆(X) that satisfy the partial description.

a. Because we study continuous linear preferences, there is no loss in assuming that each set is
closed and convex.

b. When X is not compact, the assumption that the partially described sets are compact does
entail a loss of generality.

c. By the Hahn-Banach theorem (in its supporting hyperplane form), a closed convex set, A,
of probabilities can always be described as the set of µ given someone with expected utility
function u at least utility rAu := minν∈A〈u, ν〉 where we let u range across U1

0.
d. For A,B ∈ K∆(X) and β ∈ (0, 1), the partial description corresponding to the set βA +

(1 − β)B is the set of µ given each expected utility maximizer u ∈ U1
0 at least utility

βrAu + (1− β)rBu .
e. If both A and B can be defined using only finitely many u ∈ U1

0, then the same is true for
βA+ (1− β)B.

3.1. Representation of Preferences. A weak∗ continuous rational preference relation on
K∆(X) is a complete, transitive relation, %, such that for all B ∈ K∆(X), the sets {A : A � B}
and {A : B � A} are open. We will always assume that preferences on K∆(X) are continuous
and non-trivial. The continuous linear preferences are the ones that satisfy the following.

Axiom 1 (Independence). For all A,B,C ∈ K∆(X) and all β ∈ (0, 1), A % B if and only if
βA+ (1− β)C % βB + (1− β)C.
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An easy adaptation of standard arguments shows that a continuous rational preference re-
lation on K∆(X) satisfies the Axiom 1 if and only if it can be represented by a continuous

linear functional. For η◦ ∈ Ms(U1
0) and A ∈ K∆(X), define Lη◦(A) =

∫
U1

0
minµ∈A〈u, µ〉 dη◦(u),

let L◦ = {Lη◦ : η◦ ∈ Ms(U1
0)}, and let L be the completion of L◦ in the metric d(L,L′) =

supA∈K∆(X)
|L(A)− L′(A)|.

Theorem 1. L : K∆(X) → R is continuous and linear if and only if L ∈ L.

Comments.

a. If X is finite or countable and discrete, then L = L◦, but if e.g. X = [0,M ], then from
[27, Theorem 3.11] one can show that L \ L◦ 6= ∅. However, for the purposes of analyzing
properties expressed using weak inequalities, such as ambiguity aversion or first/second order
dominance, it is sufficient to analyze the dense subset, L◦.

b. The measure η◦ in Lη◦ has a Hahn-Jordan decomposition η◦ = η+ − η− where η+ and
η− are non-negative measures with disjoint carriers, E+ and E−. Denote η+ by ηmin, and
let ηmax denote the image of η− under the mapping f 7→ (1 − f) from U1

0 to itself. Since
maxµ∈A〈µ, g〉 = −minµ∈A〈µ,−g〉 for all g ∈ U1

0, up to the constant ‖η−‖, any Lη◦ can be
written as

Lη(A) =

∫
U1

0

min
µ∈A
〈u, µ〉 dηmin(u) +

∫
U1

0

max
ν∈A
〈v, ν〉 dηmax(v). (9)

The carriers of ηmin and ηmax may overlap because E+ ∩ (1 − E−) 6= ∅ is possible, but
Emin ∩ (1−Emax) must be empty for carriers Emin and Emax of ηmin and ηmax. This means
that, subject to the carrier restriction just given, every element of L◦ is, up to a positive
affine transformation, of the form given in (9).

c. As ηmin and ηmax are both non-negative and at least one of them is non-null when L is
non-trivial, the normalization (ηmin +ηmax)(U1

0) = 1 is harmless, agrees with the u1 +u2 = 1
normalization in the two outcome case, and is maintained from now on. For notational
simplicity, we will often denote a pair (ηmin, ηmax) by η.

d. Every L ∈ L◦ has a resultant given by u(x) =
∫
U1

0
u(x) d(ηmin + ηmax)(u). Every L ∈ L has

a resultant because, restricted to the closed convex space of singleton sets, L is continuous
and linear, and the Riesz representation theorem guarantees the existence of a resultant.

e. If the set A is replaced by a larger, more ambiguous one in (9), then the minimum term
decreases and the maximum term increases. This suggests that the ‘pessimistic’ part of
the preferences, ηmin, being larger than the ‘optimistic’ part, ηmax, should correspond to
ambiguity aversion, that is, to a dislike of expansions of the sets of probabilities around its
center. This is partially true.

(i) Proposition 4 shows that ηmin(E) ≥ ηmax(E) for all E implies ambiguity aversion for
the class of problems with decisions leading to centrally symmetric sets of probabilities.

(ii) If (ηmin, ηmax) = (α · δu, (1 − α) · δu), Proposition 5 shows that ηmax = 0, i.e. α = 1,
is necessary for the preferences to be ambiguity averse for any class of problems that
includes the triangular sets of probability distributions.

(iii) ηmin and ηmax having different support sets can mean that the preferences are not
ambiguity averse relative to the simplest class of ambiguous problems. For example, if
η = (α ·δu, (1−α) ·δv) for u 6= v and α ∈ (0, 1), then Lη is neither ambiguity averse nor
ambiguity loving relative to the class of line segments A = Jµ, νK = {(1 − α)µ + αν :
α ∈ [0, 1]}.

The argument for Theorem 1 when X is a finite is much easier and directly shows that L = L◦
in this case. The more involved proof for the general Polish case is in the Appendix.

Proof of Theorem 1 when X is finite. The linearity of Lη◦ is immediate, its continuity follows
from the theorem of the maximum and dominated convergence.

Now suppose that L : K∆(X) → R is continuous and linear. For each A ∈ K∆(X) and f in the

finite dimensional, compact set U1
0, define the support function ψA(f) = minµ∈A〈f, µ〉. Each

support function belongs to C(U1
0), the set of continuous functions on U1

0 with the sup norm.
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Because dH(A,B) = sup{|ψA(f) − ψB(f)| : ‖f‖∞ = 1}, A ↔ ψA is an isometric isomorphism
between K∆(X) and the support functions. From Hörmander [28, Theorem 9], the span of the

set of support function is a vector lattice of functions separating points in U1
0 to arbitrary values.

Because X is finite, U1
0 is compact, and the Stone-Weierstrass theorem implies that the span is

dense in C(U1
0). Continuous functionals are determined by their values on dense subspaces. By

the Riesz representation theorem, a weak∗-continuous linear functional on C(U1
0) has a unique

representation as an integral against an η◦ ∈Ms(U1
0). �

3.2. First and Second Order Dominance. In expected utility analysis, the concepts of first
and second order stochastic dominance play a central role. Theorem 1 allows us to extend these
concepts to ambiguous choice problems. We let ND denote the set of non-decreasing functions
in U1

0 and NDC ⊂ ND the set of non-decreasing concave functions.

Definition 1. For µ, ν ∈ ∆([0,M ]): µ first order dominates ν, written µ %F ν, if for
all u ∈ ND, 〈u, µ〉 ≥ 〈u, ν〉; and µ second order dominates ν, written µ %S ν, if for all
u ∈ NDC, 〈u, µ〉 ≥ 〈u, ν〉.

Thus, µ %F ν iff every expected utility maximizer with monotonic preferences over certain
outcomes prefers µ to ν, and µ %S ν if every risk-averse expected utility maximizer with
monotonic concave preferences prefers µ to ν.

Definition 2. For sets A,B ∈ K∆([0,M ]), we say that A first (resp. second) order dom-
inates B, written A %F B (resp. A %S B), if for all u ∈ ND (resp. all u ∈ NDC),
minµA∈A〈u, µA〉 ≥ minµB∈B〈u, µB〉, and maxνA∈A〈u, νA〉 ≥ maxνB∈B〈u, νB〉.

Associated with each A ∈ K∆(X) are the two support functions, the concave ψA(u) =

minµ∈A〈u, µ〉 and the convex ψA(u) = maxν∈A〈u, ν〉. In terms of these functions, A %F B
iff for all u ∈ ND, ψA(u) ≥ ψB(u) and ψA(u) ≥ ψB(u). Further, Lη ∈ L◦ respects first order
dominance iff for all A %F B,∫

U1
0

(ψA − ψB)(u) dηmin(u) ≥
∫
U1

0

(ψB − ψA)(u) dηmax(u). (10)

Further, the closure, in L, of the set of Lη with η satisfying this condition, are exactly those that
respect first order dominance. Unfortunately, (10) is somewhat difficult to work with: (ψA−ψB)
is the difference of concave functions, so may be concave, convex, or neither; (ψB − ψA) is the
difference of convex functions, so may concave, convex, or neither. Matters are simpler if ηmin

and ηmax are carried by ND.

Corollary 1.1. A %F B iff Lη(A) ≥ Lη(B) for all η with (ηmin + ηmax)(ND) = 1.

Proof. Rearranging terms, Lη(A) ≥ Lη(B) iff∫
(ψA − ψB)(u) dηmin(u) ≥

∫
(ψB − ψA)(u) dηmax(u).

If A %F B, then for all u ∈ ND, (ψA − ψB)(u) ≥ 0 ≥ (ψB − ψA)(u).
Considering η’s of the form ηmin = δu and ηmax = δu, u ∈ ND gives the reverse implication.

�
While (ηmin + ηmax)(ND) = 1 is sufficient for Lη to respect first order dominace, it is not

necessary.

Example 5. For u, v ∈ ND, u 6= v, let (ηmin, ηmax) = (αδu, (1−α)δ1−v). For any A %F B, we
have Lη(A) ≥ Lη(B).

For the following, we replace ND with NDC in Corallary 1.1.

Corollary 1.2. A %S B iff Lη(A) ≥ Lη(B) for all η with (ηmin + ηmax)(NDC) = 1.

Note that Example 5 goes through if u, v ∈ NDC and u 6= v, showing that (ηmin +
ηmax)(NDC) = 1 is sufficient, but not necessary for Lη to respect second order dominance.
Working with A %S B in (10) gives a characterization of the Lη that respect second order
dominance.
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3.3. A Balance Interpretation of Respecting Dominance. We work with X ⊂ R and
preferences satisfying the usual order. Working with different orders on more general spaces of
consequences can be done with comonotonicity.

Example 6. Suppose that X = {0,M} ⊂ [0,M ] so that Cb(X) = {(f0, fM ) : f0, fM ∈ R}, U1
0 =

{(0, 1), (1, 0)}, and ND = {(0, 1)}. If L respects first order dominance, then α := ηmin(0, 1) ≥ 0
and (1− α) := ηmax(0, 1) ≥ 0, delivering L([a, b]) = α · a+ (1− α) · b as in the analysis of §2.
The change of basis [a, b] = [p−r, p+r] delivers L([a, b]) = p−vr where v = 2α−1 and |v| ≤ 1.

An alternative interpretation of |v| ≤ 1 in the two consequence case is that the preferences
are balanced in the sense that for any interval [a, b], [a, a] - [a, b] - [b, b]. When there are
many consequences, ND-unanimity about the best and the worst point in a set of distributions
is not generally available, and this balance interpretation of first order dominance disappears.
However, respecting first order dominance does constrain the relation between the range of the
resultant and the range of L.

Corollary 1.3. If L ∈ L respects first order stochastic dominance, then for any A ∈ K∆([m,m]),
u(m) ≤ L(A) ≤ u(m) where u is the resultant L.

Proof. {δm} -F A -F {δm}, L({δm}) = u(m), and L({δm}) = u(m). �

3.4. The Value of Ambiguous Information. For an expected utility maximizing decision
maker facing a risky problem the information they will have when making a decision can be
encoded in a posterior distribution, β ∈ ∆(X). The value of β is Vu(β) = maxa∈A

∫
u(a, x) dβ(x)

where u : A×X → R.
A prior is a point p ∈ ∆(X), and an information structure is a dilation of p, that is, a

distribution, Q ∈ ∆(∆(X)), such that
∫
β dQ(β) = p. The value of the information structure

is given by Vu(Q) :=
∫

∆(X)
Vu(β) dQ(β). An information structure Q dominates Q′ if for

all u, Vu(Q) ≥ Vu(Q′), equivalently, if for all convex V : ∆(X) → R,
∫

∆(X)
V (β) dQ(β) ≥∫

∆(X)
V (β) dQ′(β).

For vNM utility maximizing decision maker facing an ambiguous problem, the information
they will have when making a decision can be encoded in a set of posterior distributions,
B ∈ K∆(X). The value of B is VU (B) = maxa∈A U(δa × B) where U : A × K∆(X) → R is a
continuous linear functional on compact convex subsets of ∆(A×X) of the form δa×B (where
δa is point mass on a).

A set-valued prior is a set A ∈ K∆(X), and an information structure is a distribution, Q ∈
∆(K∆(X)), such that

∫
K∆(X)

B dQ(B) = A. It is very important to note the domain over which

we integrate here, it is K∆(X), not ∆(X).6 The value of the information structure Q is given by

VU (Q) :=
∫
K∆(X)

VU (B) dQ(B). As above, an information structure Q dominates Q′ if for all

U , VU (Q) ≥ VU (Q′). The usual argument that convex functions are the upper envelope of the
affine functions they majorize delivers the following.

Corollary 1.4. Q dominates Q′ iff
∫
v(B) dQ(B) ≥

∫
v(B) dQ′(B) for every convex v :

K∆(X) → R.

Here we follow the standard Bayesian approach and model information structures as dilations.
By contrast, previous work has limited the class of priors, A, and then studied a special class
of dilations of each p ∈ A. The set of A for which this can be done is non-generic in both the
measure theoretic and the topological sense, and the problems that one can consider are limited
to ones in which the decision maker will learn only that the true value belong to some E ⊂ X.
Here, A is expressed as a convex combination of/integral of B’s in K∆(X), and this is what
makes the problem tractable. Section 6.3 uses this insight to present a fairly complete solution
to the problem of convincing a Bayesian having ambiguous information, a problem that cannot
be sensibly modeled with the previous approaches.

6See e.g. [41, §2] for a quick development of the expectation of random closed sets.
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4. Descriptively Complete Sets of Priors

In order for multiple prior models to cover as broad a range of choice situations as preferences
over closed convex sets of probabilities, the set of priors should be descriptively complete.

Definition 3. A set of probabilities, Π, on a measure space (Ω,F) is descriptively complete
if for any Polish X and any A ∈ K∆(X), there exists a measurable fA : Ω → X such that
{fA(p) : p ∈ Π} = A.

If Π is descriptively complete, then so is co(Π), the weak closure of its convex hull. A set of
priors, Π, can be too large or too small to be descriptively complete. A standard measure
space is one that is measurably isomorphic to a measurable subset of a Polish space. The Borel
isomorphism theorem (e.g. [18, III.17]) tells us that all uncountable standard measure spaces
are measurably isomorphic.

Example 7. Suppose that (Ω,F) is an uncountable standard probability space. If Π = ∆(Ω),
then for any f : Ω → X, f(Π) = ∆(Rf ) where Rf is the range of f . If Π = {αp + (1 − α)p′ :
α ∈ [0, 1]}, then for any f : Ω→ X, f(Π) is either a 0- or a 1-dimensional subset of ∆(X).

4.1. Measurable Identifiability. Breiman et al. [13] show that the following condition is
necessary and sufficient for the existence of consistent estimators.

Definition 4. A measurable Π ⊂ ∆F is measurably identifiable if there exists an E ∈ F ,
and a measurable, onto ϕ : E → Π such that for all p ∈ Π, p(ϕ−1(p)) = 1.

Measurable identifiability is a strengthened form of mutual orthogonality — for p 6= q ∈ Π,
p(ϕ−1(p)) = 1, q(ϕ−1(q)) = 1, and ϕ−1(p)∩ϕ−1(q) = ∅. The connection to consistent estima-
tion can be seen as follows: let Π = {pr : r ∈ [0, 1]} where pr ∈ ∆({0, 1}N) is the distribution
of an i.i.d. sequence of Bernoulli(r) random variables; define ϕ′(ω) = lim supn

1
n#{k ≤ n :

ωk = 1}; set ϕ(ω) = pϕ′(ω); by the strong law of large numbers, pr(ϕ
−1(pr)) = 1 for each pr;

ϕ′n(ω) := 1
n#{k ≤ n : ωk = 1} → ϕ′(ω) with pr mass 1; and pϕ′n is a consistent sequence of

estimators.
The following minimalist example satisfying Definition 4 will appear several times below.

Example 8. Let E = Ω = [0, 1] × [0, 1], for each r ∈ [0, 1], takes pr to be the uniform
distribution on {r} × [0, 1], take Π◦ = {pr : r ∈ [0, 1]}, and set ϕ(r, u) = pr. By the Borel
isomorphism theorem, there exists ξA : [0, 1]↔ A, that is one-to-one, onto, measurable, with a
measurable inverse. By the Blackwell and Dubins [11] extension of the Skorohod representation
theorem, there exists a jointly measurable b : ∆(X) × [0, 1] → X with the property that for all
µ, b(µ, λ) = µ where λ is the uniform distribution on [0, 1]. Defining fA(r, u) = b(ξA(r), u)
delivers fA(Π◦) = A.

Theorem 2. If S is an uncountable, measurably identifiable set of non-atomic priors on a
standard space, then it is descriptively complete.

Comments.

a. We will see that, up to inessential duplication, measurable identifiability is also necessary
for descriptive completeness.

b. Measurably identifiable sets of non-atomic priors satisfy Siniscalchi’s [51] characterization of
plausible sets of priors.

c. An outline of the proof of Theorem 2 is contained in Example 8. Stronger versions of the
result that include a continuity result can be found in [19, §2]. A discussion of how to
dispense with the standardness assumption, at the cost of conditions that are slightly more
complicated to state, can be found in [19, §3].

4.2. Properties of Descriptively Complete Sets. We now give some basic properties of
descriptively complete sets: Corollary 2.1 shows that the lower envelope of a descriptively
complete set of probabilities is solvable in Wakker’s [57] sense, and is never a convex capacity;
this non-convexity is also a consequence of Corollary 2.2, which shows the lower envelope
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contains within it all convex capacities, and all concave capacities, on finite partitions of Ω;
Corollary 2.3 shows that a descriptively complete set can not be expressed as a set of densities
with respect to a σ-finite measure; and Corollary 2.4 shows that up to inessential duplications,
measurable identifiability is nearly necessary for descriptive completeness.

4.2.1. Lower Envelopes of Descriptively Complete Sets. The lower envelope of a set of proba-
bilities S is the capacity defined by cS(E) = inf{p(E) : p ∈ S}. Wakker [57] calls a capacity C
solvable if for each E ⊂ G, E,G ∈ F , and each γ ∈ (C(E), C(G)), there exists an F ∈ F such
that E ⊂ F ⊂ G and C(F ) = γ.

Corollary 2.1. If S is descriptively complete, then cS is solvable, and not convex.

Proof. If S is descriptively complete, then there exists f : Ω → [0, 1]2 such that f(S) = T :=
co(Π◦) where Π◦ was given in Example 8.

Solvability: Suppose first that there exists p∗ ∈ S such that p∗(E) = cS(E). Since p∗(G) ≥
cS(G) and p∗ is non-atomic, there is a subset, F ∗, of the intersection of E with a carrier of
p∗, such that p∗(F ∗) = γ. Let F = E ∪ F ∗. If the infimum is not achieved, i.e. for no p∗ is
p∗(E) = cS(E), take a sequence p∗n with cS(G) > p∗n(E) ↓ cS(E), for each n ∈ N, pick F ∗n as
before and let F = E ∪

⋃
n∈N F

∗
n .

Let A′ = {(r, u) : u ≥ 1
2}, B

′ = {(r, u) : 1
2r ≤ u ≤ 1

2 + 1
2r}, and let A = f−1(A′), B =

f−1(B′). It is immediate that cT (A′) = cT (A′ ∪B′) = 1
2 , while cT (B′) = 1

2 > cT (A′ ∩B′) = 0,

which yields cT (A′ ∪ B′) + cT (A′ ∩ B′) = 1
2 < cT (A′) + cT (B′) = 1, showing that cT (·) is

not convex. Since each q ∈ S has image measure f(q) ∈ T , cS(A ∪ B) + cS(A ∩ B) = 1
2 <

cS(A) + cS(B) = 1. �

Corollary 2.2. If S is descriptively complete, then for any convex (or concave) capacity C on
the set of subsets of finite set, there exist a finite partition of Ω such that the restriction of cS
to the partition is isomorphic to C.

Proof. We prove this for a convex capacity on the non-empty sets E,Ec. Induction completes
the proof, and the argument for concave capacities is essentially identical.

If S is descriptively complete, then there exists f : Ω → [0, 1]2 such that f(S) = co(Π◦)
where Π◦ was given in Example 8. Suppose that C(E) = a, C(Ec) = b, a ≤ b, a + b ≤ 1. If
A′ = {(r, u) : u ≤ r(1− b) + (1− r)a}, then cT (A) = a and cT (Ac) = b. �

Easy variants of this argument cover the mixed convex-concave (cavex in the terminology of
[57]) capacities on finite partitions that appear in the α-MEU preferences over functions from
a finite state space to consequences [29, 30, 31].

4.2.2. Descriptively Complete Sets Are Not Dominated. The descriptively complete set of priors
in Example 8 has an uncountable set of extreme points, and the extreme points have disjoint
supports. This yields the following.

Corollary 2.3. No σ-finite measure can dominate a descriptively complete set.

Proof. If S is descriptively complete, then there exists a measurable f : Ω → [0, 1]2 such that
f(S) = co(Π◦) (where Π◦ was given in Example 8); for each r 6= r′, each qr in f−1(pr) ∈ S
and each qr′ in f−1(pr′) ∈ S must be non-atomic, and the pair must be mutually orthogonal.
No σ-finite measure can assign strictly positive mass to each of the uncountably many disjoint
carrier sets. �

4.2.3. Measurable Non-Identifiability and Descriptive Completeness. Being measurably identifi-
able is sufficient for descriptive completeness. Sets of priors can fail to be measurably identifiable
but still be descriptively complete because one can duplicate coverage, that is, one can send
many priors to the same distribution over consequences.

Example 9. Let E = Ω = [0, 1] × [0, 1], for each r ∈ [0, 1
2 ] ∪ {1}, let pr be the uniform

distribution on {r} × [0, 1], and let Π† = {pr : r ∈ [0, 1
2 )} ∪ {αp 1

2
+ (1 − α)p1 : α ∈ [0, 1]}.

For all α ∈ (0, 1), the probabilities αp 1
2

+ (1 − α)p1 assign positive mass to all relatively open
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subsets of { 1
2 , 1} × [0, 1] so Π† cannot be measurably identifiable. However, for any A ∈ K∆(X),

by the Borel isomorphism theorem, there exists ξA : [0, 1
2 ) ↔ A, that is one-to-one, onto,

measurable, with a measurable inverse so that {pr : r ∈ [0, 1
2 )} ⊂ Π† is descriptively complete.

Pick µ ∈ A and a function g : [0, 1]→ X such that g(λ) = µ. If f( 1
2 , u) = f(1, u) = g(u), then

f({αp 1
2

+ (1− α)p1 : α ∈ [0, 1]} = {µ}, showing that Π† is descriptively complete.

Definition 5. A measurable Π ⊂ ∆F is broad sense measurably identifiable if there exists
an E ∈ F , and a measurable, onto correspondence Φ : E ⇒ Π with {Φ(ω) : ω ∈ E} an
uncountable measurable partition of Π and for all p ∈ Π, p(Φ−1(p)) = 1.

If Π is broad sense measurably identifiable, then for all ω, ω′ ∈ E, Φ(ω) = Φ(ω′) or Φ(ω) ∩
Φ(ω′) = ∅, and for p, p′ ∈ Π, we write p ∼Φ p′ if p(Φ−1(p′) = p′(Φ−1(p) = 1.

Corollary 2.4. If S is a descriptively complete set of probabilities then there exists an E ∈ F
and a measurable onto correspondence Φ : E ⇒ S for which {Φ(ω) : ω ∈ E} is an uncountable
measurable partition of Π, and for every A ∈ K∆(X) there exist a measurable fA : Ω → X such
that fA(S) = A and for all p, p′ ∈ S, [p ∼Φ p′]⇒ [fA(p) = fA(p′)].

Proof. Because S is descriptively complete, there exists a measurable f◦ : Ω → [0, 1] × [0, 1]
such that f◦(S) is equal to the set Π◦ from Example 8. For each r ∈ [0, 1], let Sr = {p ∈ S :
p(f−1
◦ ({r} × [0, 1])) = 1}, define h(ω) = proj1(f◦(ω)) as the projection of f◦(ω) ∈ [0, 1]2 onto

its first component, and define Φ(ω) = Sh(ω). Pick A ∈ K∆(X). Because Π◦ is descriptively

complete, there exists an hA : [0, 1]2 → X such that hA(Π◦) = A. Define fA(ω) = hA(f◦(ω)).
�

4.3. Combining Descriptive Completeness and State Independence. Suppose that
f, g : Ω → X and define the corresponding f ′, g′ : S → R by f ′(p) =

∫
Ω
u(f(ω)) dp(ω) and

g′(p) =
∫

Ω
u(g(ω)) dp(ω) where u is the decision maker’s vNM utility function for risky prob-

lems. From GMM f ′, g′ : S → R being positive affine transformations of each other implies
that αf ′ = αg′ .

Definition 6. We say that multiple prior preferences, %, over measurable functions f : Ω→ X
are state independent or neutral if [f(S) = f ′(S)]⇒ [f ∼ f ′].

In particular, if ϕ : Ω↔ Ω has the property that ϕ(S) = S, then f ∼ f ◦ ϕ.
An implication of the following is that if the preferences over random variables satisfy state

independence and GMM’s results for α-MEU preferences extend to functions taking on more
than finitely many values, then the α must be constant.

Proposition 1. If f, g : Ω → X, v ∈ Cb(X), S is a descriptively complete set of priors on a
standard space, and the mappings p 7→

∫
Ω
v(f(ω)) dp(ω) and p 7→

∫
Ω
v(g(ω)) dp(ω) from S to

R are not constant, then there exists f ′, g′ : Ω→ X such that f ′(S) = f(S), g′(S) = g(S), and
the mappings p 7→

∫
Ω
v(f ′(ω)) dp(ω) and p 7→

∫
Ω
v(g′(ω)) dp(ω) from S to R are positive affine

transformations of each other.

Proof. Let A = f(S) and B = g(S). For x, y ∈ [0, 1] define px,y to be the uniform distribution

on {(x, y)} × [0, 1]. The set {px,y|(x, y) ∈ [0, 1] × [0, 1]} is compact. Let P̃ denote the closure

of its convex hull, that is P̃ = co{px,y|(x, y) ∈ [0, 1] × [0, 1]}. From [19, Theorem 1 and §3.2],

there exists a measurable R : Ω→ [0, 1]3 such that {R(p) : p ∈ C} = P̃ .
Since A and B are compact convex sets, for the vNM utility function v : M → [0, 1], the

ranges of the maps p 7→ 〈v, f(p)〉 and p 7→ 〈v, g(p)〉 without loss in generality can be taken as
non-degenerate intervals, [a, b], [a′, b′] ⊂ [0, 1].

For r ∈ [a, b], define a closed convex subset of A by Ar = {ν ∈ A : 〈v, ν〉 = r}. The
correspondence

HA(r, µ) =

{
{(r, µ)} if µ ∈ Ar,
{(r, ν)|ν ∈ Ar} else.

(11)
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from [a, b]×∆(X) to [a, b]×∆(X) is closed valued, convex valued, lower hemicontinuous, defined
on a metric, hence paracompact, space, and takes values in a topologically complete, locally
convex, vector space. By [40, Theorem 3.2′′ (p. 364 et seq.)] HA has a continuous selection hA
with the property that hA(r, µ) ∈ Ar.

Let g : [0, 1]↔ ∆(X) be a measurable isomorphism and define fA(x, g(y)) = (rx, hA(rx, g(y))),
where rx := a + (b − a)x. The function fA(·, ·) is jointly measurable. This follows from: the
measurability of rx since it is continuous and that of g(y) by its construction; and joint con-
tinuity of hA, which preserves measurability. Moreover, by the construction of the Borel iso-
morphism g(·) and that of hA, for each x ∈ [0, 1], fA(x, ·) : [0, 1] → Arx is onto. Therefore

A = {Arx |x ∈ [0, 1]}. Define the measurable function X̃(x, y, z) = b(hA(rx, g(y)), z) where

b(·) is the Blackwell-Dubins function. Define the function f ′(ω) = X̃(R(ω)) as a composite of

measurable functions. Observe that f ′(S) = X̃(R(S)) = A.

Since [a, b] and [a′, b′] are non-degenerate intervals, [a′, b′] = α[a, b] + β with α = b′−a′
b−a > 0

and β = a′b−b′a
b−a . Therefore, [a′, b′] = {sx = αrx + β, x ∈ [0, 1]}. By analogous arguments

made in the previous two paragraphs B in the role of A and sx in the role of rx we construct
Ỹ (x, y, z) = b(hB(sx, g(y)), z) and g′(ω) = Ỹ (R(ω)) such that g′(S) = Ỹ (R(S)) = B. By
construction, for each p ∈ S, 〈v, g′(p)〉 = α〈v, f ′(p)〉+ β. �

Much less than descriptive completeness may force αf to be constant in the presence of state
independence.

Example 10. Suppose that S = {qβ : β ∈ [0, 1]} where qβ = βp + (1 − β)p′, p 6= p′ are
non-atomic probabilities on (Ω,F), and p′ = ϕ(p) for some ϕ : Ω ↔ Ω. Suppose also that
X = {a, b, c} and u : X → [0, 1] satisfies 0 = u(a) < u(b) < u(c) = 1. Every f(S) is either 0-
or 1-dimensional, so that the mapping β 7→ 〈u, f(qβ)〉 is affine, either constant, increasing, or
decreasing. Further, setting f ′ = f ◦ ϕ delivers f(S) = f ′(S) but the mapping β 7→ 〈u, f ′(qβ)〉
has −1 times the slope. Combined with state independence, the mapping f 7→ αf must be
constant.

A variation on the arguments for Proposition 1 yield the following.

Proposition 2. If f, g : Ω → X, u ∈ Cb(X), S is a descriptively complete set of priors on a
standard space, and the sets {

∫
Ω
u(f(ω)) dp(ω) : p ∈ S} are {

∫
Ω
u(g(ω)) dp(ω) : p ∈ S} equal,

then there exists f ′, g′ : Ω → X such that f ′(S) = f(S), g′(S) = g(S), and the mappings
p 7→

∫
Ω
u(f ′(ω)) dp(ω) and p 7→

∫
Ω
u(g′(ω)) dp(ω) from S to R are equal to each other.

This result has a strong implication for the MBA preferences of [14]. Suppose that prefer-
ences over measurable functions from Ω to X taking on more than finitely many values can be
represented by

MBA(f) = αf ·min
p∈S

∫
Ω

u(f(ω)) dp(ω) + (1− αf ) ·max
q∈S

∫
Ω

u(f(ω)) dq(ω) (12)

where αf = αg if the mappings p 7→
∫

Ω
u(f ′(ω)) dp(ω) and p 7→

∫
Ω
u(g′(ω)) dp(ω) from S to R

are equal to each other. Then, if the preferences are state independent and the set of priors is
descriptively complete, then Proposition 2 implies that αf = αg if the sets {

∫
Ω
u(f(ω)) dp(ω) :

p ∈ S} are {
∫

Ω
u(g(ω)) dp(ω) : p ∈ S} equal,

4.4. Descriptive Incompleteness. Let S be a set of priors on (Ω,F) and define R(S) =
{A ∈ K∆(X) : A = f(S), f : Ω→ X measurable }. For e.g. X = [0,M ], we have the following.

Theorem 3. If every non-empty neighborhood in X is uncountable and S is a set of priors
that fails to be descriptively complete, then there is a dense subset of K∆(X) that does not belong
to R(S), equivalently, if R(S) contains any non-empty, open subset of K∆(X), then S must be
descriptively complete.

Proof. If a descriptively complete subset of K∆(X) belongs to R(S), then S is descriptively
complete (by composition of measurable functions). The proof will be complete once we show
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that descriptively complete subsets of K∆(X) are dense. Pick arbitrary A ∈ K∆(X) and ε > 0,
and let Af denote a finite set of extreme points for A such that d(A, co (Af )) < ε/2.

For any δ > 0 and x ∈ X, let Bδ(x) denote the necessarily uncountable, open ball with radius
δ > 0 around x ∈ X. By the Borel isomorphism theorem, there exists ϕx,δ : [0, 1]×[0, 1]↔ Bδ(x)
where ϕx,δ is a measurable bijection with measurable inverse. Let Πx,δ denote the descriptively
complete set ϕx,δ(Π

◦) where Π◦ is the descriptively complete set of probabilities from Example
8.

Pick δ < ε/2 such that the points in Af are at least 2δ from each other. Since the support sets
are disjoint, the closed convex hull of the set ∪x∈AfΠx,δ is descriptively complete and within ε
of A. �

There are many situations in which the conclusion of Theorem 3 understates the degree to
which failing to be descriptively complete limits the set of problems that the decision maker
can conceive of.

a. If Sc,d = {p ∈ ∆([0, 1]) : c ≤ dp/dλ ≤ d}, 0 < c < 1 < d, then R(Sc,d) is a connected union
of three line segments if #X = 2 as in Figure 1(b), while R(S0,∞) contains only three sets.
More generally, for any non-atomic Q, if Sc,d(Q) := {p ∈ ∆(Ω) : c ≤ dp/dQ ≤ d}, then
R(Sc,d(Q)) is a negligible subset of K∆(X) if X is finite, and is a closed 1-shy subset of K∆(X)

if X is infinite.7

b. Suppose that ν is a strictly convex distortion of a probability, that is, ν(E) := ϕ(P (E)),
ϕ : [0, 1] → [0, 1] a strictly convex, increasing, and onto function. If S = {p ∈ ∆F :
(∀E)[p(E) ≥ ν(E)] } is the core of ν, then in the two consequence case, R(S) is the set of
intervals of the form [ϕ(r), 1 − ϕ(1 − r)], r ∈ [0, 1]. Only a one dimensional curve in the
two-dimensional set of intervals can be modeled, and for any non-trivial consequence space,
R(S) contains no singleton sets A = {µ} unless µ is a point mass.

c. If S = ∆(Ω) and X is finite, then R(S) = {∆(F ) : ∅ 6= F ⊂ X}, that is, R(S) contains only
the faces of ∆(X).

5. Separations of Risk and Ambiguity Attitudes

A continuous linear functional, L, on K∆(X), restricted to the closed, convex class of singleton
sets, gives an expected utility function, the resultant. By definition, this utility function contains
a decision maker’s attitude toward risk. The value of L on the rest of K∆(X) contains the attitude
toward ambiguity. The only remaining issue is the representation of this part of L. The essential
device is a continuous direct sum decomposition of elements of K∆(X) into singleton sets plus
sets centered at 0. We do this for two different classes of compact convex sets, Ksym∆(X), the

centrally symmetric sets, and Kfin∆(X), the finite dimensional sets. Ksym∆(X) is convex, closed, hence

complete, and is nowhere dense in K∆(X) unless #X = 2. By contrast, Kfin∆(X) is convex, equal

to K∆(X) if #X is finite, and dense in K∆(X) when #X is infinite.
A vector space X can be expressed as a continuous direct sum, written X = X1⊕X2, if X1 and

X2 are vector subspaces of X, every x ∈ X has a unique expression as x = x1+x2 where x1 ∈ X1,
x2 ∈ X2, and the mappings x 7→ xi are continuous and linear. Further, given a continuous direct
sum, any continuous linear functional on X can be expressed as L(x) = L(x1) + L(x2) where
each xi 7→ L(xi) is a continuous linear functional on Xi, and any pair of continuous linear
functionals, L1 and L2 on X1 and X2 can be combined by defining L(x) = L1(x1) + L2(x2).

We are interested in direct sum decompositions when X contains Kfin∆(X) and/or Ksym∆(X). When

the space X is finite, K∆(X) = Kfin∆(X), and we present a complete theory. When the space X is

infinite, decompositions of K∆(X) are more difficult.

7A set E ⊂ K∆(X) is 1-shy if there exists a non-degenerate line segment, L ⊂ K∆(X), with every translate

of E intersection L in a Lebesgue null set. See [4] for a full development of shy subsets of infinite dimensional

convex sets.
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5.1. Centrally Symmetric Elements of K∆(X). Line segments, parallelotopes, and ellipses
are classic examples of centrally symmetric sets. Non-degenerate triangles are not centrally
symmetric.

Definition 7. An A ∈ K∆(X) is centrally symmetric if there exists a symmetric center,
Symm(A) ∈ A and (A − Symm(A)) = −(A − Symm(A)). The class of centrally symmetric
elements in K∆(X) is denoted Ksym∆(X).

The symmetric center mapping, A 7→ Symm(A), is linear, Lipschitz continuous. Further, the
class Ksym∆(X) is a closed, convex subset of K∆(X) that is nowhere dense if #X ≥ 3.

5.2. Finite Dimensional Elements of K∆(X). The most extensively used and studied con-
tinuous linear center for compact and convex sets that are not centrally symmetric is the Steiner
point. It agrees with the symmetric center when the latter exists, but, unlike the symmetric
center, does not have a continuous extension to infinite dimensional sets. The setting for Steiner
points is the class of finite dimensional subsets of a separable Hilbert space H. We fix a con-

tinuous linear embedding of ∆(X) into H, and let Kfin∆(X) denote the class of finite dimensional

compact and convex subsets of H.8

Definition 8. The Steiner point of a finite dimensional, compact, convex A ⊂ H is the
vector-valued integral

St(A) =

∫
S`−1

argmin
µ∈A

〈h, µ〉 dλ`(h) (13)

where V` is an `-dimensional subset of H containing A and λ` is the uniform distribution on
{h ∈ V` : ‖h‖ = 1}.

Since A is convex, the mass of λ` is 1, and λ` has full support on {h ∈ V` : ‖h‖ = 1}, St(A)
is in the relative interior of A. Linearity of A 7→ St(A) is immediate. The theorem of the
maximum tells us that for each f , A 7→ argminµ∈A〈f, µ〉 is upper hemi-continuous. For all but
a λ-null subset of f , the argmin is single-valued, so that dominated convergence implies the
continuity of A 7→ St(A). Among the continuous linear centers, the Steiner point is uniquely
determined by the property that it commutes with rigid motions (see e.g. [49, Theorem 3.4.2]).

For finite dimensional centrally symmetric sets, the center of symmetry and the Steiner
point agree, and the Steiner point extends continuously to the infinite dimensional elements of
Ksym∆(X). Restricted to `-dimensional sets, the Steiner point mapping is Lipschitz continuous with

a Lipschitz constant that goes to ∞ as ` ↑ ∞. Thus, if a sequence, An → A and the An are of
bounded dimensionality, the dimensionality of A has the same bound, and St(An)→ St(A).

The Steiner point mapping cannot be continuously extended from the dense Kfin∆(X) to K∆(X)

in H. Vitale [55] shows that for any infinite dimensional Hilbert space, every compact convex
A has the following property: if x ∈ A, then x = limn St(An) where An is a sequence of finite
dimensional subsets of H with dimensionality going to∞ and dH(A,An)→ 0. This means that
there is no way to give a continuous linear decomposition of the compact convex subsets of H
that agrees with the Steiner point decomposition restricted to finite dimensional sets.

Vitale’s argument depends on the existence of highly asymmetric finite dimensional sets
pointing in ‘every’ direction. This is automatically satisfied in H, but, in principle, if X is
compact and A and the An are constrained to be subsets of the compact convex ∆(X) ⊂ H,
then the argument might not go through. But it does, at least partly.9

8With X = [0,M ], Machina [37] identified every µ ∈ ∆(X) with its cumulative distribution function, Fµ,

and used the L2 distance ‖Fµ −Fν‖2 =
(∫M

0 |Fµ(x)−Fν(x)|2 dx
)1/2

. For more general metric spaces, similar

embeddings are available. If X is finite, we can take H to be RX with the usual 2-norm.
9Sketchily, the proof of the following takes the en to have µ’s density plus terms of the form ε(1[k/n,(k+1)/n)−

1[k′/n,(k′+1)/n)), k 6= k′, in Vitale’s proof.
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Lemma 1. With X = [0,M ], under the embedding of µ ∈ ∆([0,M ]) as its cdf, µ 7→ Fµ ∈
L2[0,M ], for every A ∈ K∆(X), if µ ∈ extr(A) is mutually absolutely continuous with respect
to Lebesgue measure, then there exists a sequence of finite dimensional An in K∆(X) such that
dH(An, A)→ 0 and St(An)→ µ.

5.3. Decompositions and Ambiguity Aversion. Ksym∆(X) has the direct sum decomposition

into H⊕ Symm−1(0) and Kfin∆(X) has the direct sum decomposition into H⊕ St−1(0),

(∀A ∈ Ksym∆(X))[A = Symm(A) + (A− Symm(A))], and (14)

(∀A ∈ Kfin∆(X))[A = St(A) + (A− St(A))]. (15)

According to context, let Cent(A) denote Symm(A) if A is centrally symmetric, and let it denote
St(A) if A is finite dimensional. In terms of the representation in Theorem 1, the resultant u of
L captures the attitude toward risk, while the restriction of L to the vector subspace Cent−1(0)
captures attitudes toward ambiguity. The following records the separation result.

Proposition 3. The restriction of every continuous linear L : K∆(X) → R to Ksym∆(X) or to

Kfin∆(X) is, up to positive affine transformation, of the form

L(A) = 〈u,Cent(A)〉+ L(A− Cent(A)) (16)

where u is the resultant of L.

Let L◦ denote the restriction of L to the vector subspace, Cent−1(0), so that (u, L◦) is the

direct sum decomposition of a continuous linear L (on either Ksym∆(X) or Kfin∆(X)). Combining an

arbitrary u with an arbitrary L◦ delivers a continuous linear functional. Ambiguity aversion is
dislike of expansions of a set around its center. In the two outcome case discussed in §2, this is
the negativity of L◦([−r,+r]) = −vr for r ≥ 0. The following is the direct generalization.

Definition 9. For A ⊂ Ksym∆(X) or A ⊂ Kfin∆(X), a continuous linear (u, L◦) is

(1) ambiguity averse relative to A if L◦(Cent−1(0) ∩ A) ⊂ R−,
(2) ambiguity neutral relative to A if L◦(Cent−1(0) ∩ A) = {0}, and
(3) ambiguity loving relative to A if L◦(Cent−1(0) ∩ A) ⊂ R+.

Preferences (u1, L
◦
1) are more ambiguity averse relative to A than those given by

(u2, L
◦
2) if L◦1(A− Cent(A)) ≤ L◦2(A− Cent(A)) for all A ∈ A.

Comments.

a. The comparison between degrees of ambiguity aversion does not depend on u1 or u2. If u1

and u2 belong to U1
0 in Definition 9, as they would if they were comonotonic, then they have

the same sup and inf so that the comparison of L◦1 and L◦2 is on the same scale as the vNM
utility.

b. If #X ≥ 3, then for any ambiguity averse L◦2, the set of L◦1 that are more ambiguity averse
is an infinite dimensional cone. Olszewski [42] gives a definition of ambiguity aversion for
preferences over K∆(X) in which the set A depends on u1 and u2, and the set of more
ambiguity averse preferences is one dimensional.

c. Complete separation of ambiguity and risk attitudes can be achieved by other means: Gaj-
dos et al. [24] give a different description of choice problems, hence a different domain for
preferences, one that allows for complete separation; Klibanoff et al. [33] give preferences
over random variables that are not determined by a set of induced distributions (see §6.5).

6. Old Puzzles and New Preferences

Continuous linear preferences on K∆(X) illuminate a number of old puzzles and contain new
classes of preferences.

Puzzles
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• Comparative ambiguity aversion. Extant theories of comparative ambiguity aversion
for preferences over random variables has been, essentially, limited to comparing the
ambiguity attitudes of decision makers with the same attitude toward risk. Part of
the difficulty with making comparisons across people has been a neglect of the role
that a set of priors plays in determining the set of problems that a decision maker can
conceive of — if two sets of priors both fail descriptive completeness, it may be that the
only decision problems that the two decision makers can commonly contemplate are
trivial.10 Proposition 5 shows that this is only part of the problem: α-MEU preferences
are ambiguity averse with respect to the class of centrally symmetric sets iff α ≥ 1

2 and
ambiguity aversion relative to this set is increasing in α; however, α-MEU preferences
fail to be ambiguity averse relative to any class A that includes the triangular sets of
distributions unless α = 1.

• Constant relative ambiguity aversion. One can study the effects of wealth on risk
behavior, e.g. portfolio choices, by studying how ratios of the first and second derivative
of the expected utility function behave at higher levels of wealth. This means that
within the class of linear-in-probabilities expected utility preferences, one can observe
increasing or decreasing absolute or relative risk aversion. On simple classes of sets,
the RDU, CEU, and α-MEU preferences demonstrate constant ambiguity aversion, and
Machina [38] gives several counter-intuitive examples that arise from this constancy.
We show that constancy is not a necessary feature of preferences that are linear in sets,
and show how this allows us to resolve Machina’s challenges. In a simple model of
loss insurance, we show that neglect of decreasing relative ambiguity aversion will bias
measures of decreasing risk aversion.

• Updating sets of probabilities. As an illustration of the use of being able to update in
general information structures, we present a solution to the problem of convincing an
ambiguous Bayesian.

New classes of preferences

• Decreasing/increasing relative ambiguity aversion. We specify linear-in-sets preferences
for a subset, ZX ⊂ Ksym∆(X), with decreasing (or increasing) relative ambiguity aversion.

A simple insurance demand problem demonstrates that, in the presence of ambiguity,
measured decreases of relative risk aversion may be upwards biased.

• Utility range dominance. Corollaries 1.1 and 1.2 showed that if ηmin and ηmax are sup-
ported on the set of non-decreasing (resp. non-decreasing and concave functions), then
preferences respect first (resp. second) order stochastic dominance relations. Support
sets give rise to a novel form of dominance, utility range dominance, that can distinguish
between sources of ambiguity.

NB : for ease, in this section we assume that X = [0,M ].

6.1. Orderings of ηmin and ηmax. Positive measures are ordered by ηmin ≥ ηmax if for all
measurable E ⊂ U1

0, ηmin(E) ≥ ηmax(E). We first examine what can be said in the general
case, then turn to the case where ηmin and ηmax put all their mass on singletons.

6.1.1. The General Case. A sufficient condition for ambiguity aversion relative to Ksym∆(X) is that

the “pessimistic part” of the preferences, ηmin, is larger than the “optimistic part,” ηmax. A

sufficient condition for ambiguity aversion relative to Kfin∆(X) is that there be no “optimistic

part.” For the special case of α-MEU preferences, we will see that these condition are also
necessary.

Proposition 4. If η′min ≥ ηmin ≥ ηmax ≥ η′max, then Lη is ambiguity averse relative to Ksym∆(X)

and Lη′ is more ambiguity averse. If ηmax = 0, then Lη is ambiguity averse relative to Kfin∆(X).

10We conjecture that this is a generic property of pairs of sets of priors failing descriptive completeness.
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Proof. Suppose first that η′min(E) ≥ ηmin(E) ≥ ηmax(E) ≥ η′max(E) for any measurable E. For

any u ∈ U1
0 and A0 ∈ Symm−1(0), ψA0(u) ≤ 0 ≤ −ψA0(u) = ψA0(u). Therefore,∫

ψA0
(u) dη′min(u) +

∫
ψA0(u) dη′max(u) ≤ (17)∫

ψA0(u) dηmin(u) +

∫
ψA0(u) dηmax(u) ≤ 0.

Because A0 ∈ Symm−1(0), both sides of the inequality in (17) are linear in r ≥ 0 when A0 is
replaced with r ·A0, proving the first assertion.

Now suppose that ηmax = 0. For the second part of the Proposition, note that for any A
containing 0 in its algebraic interior and any u ∈ U1

0, ψA(u) ≤ 0. Any A0 ∈ St−1(0) contains 0
in its algebraic interior. Therefore, L◦(r ·A0) =

∫
ψr·A0(u) dηmin(u) is a decreasing function of

r ≥ 0. �

6.1.2. α-MEU and Related Preferences. Theorem 3 tells us that if a decision maker is modeled
as having α-MEU preferences but does not have a descriptively complete set of priors, then the
model precludes the decision maker from considering a large subset of the problems that may
be of interest. From Proposition 1, we know that a model of a decision maker having α-MEU
preferences and a descriptively complete set of priors must have a constant α. We now examine
the question of whether having a constant α ≥ 1

2 corresponds to ambiguity aversion, or whether
increases in α correspond to increases in ambiguity aversion. Recall that the line segments
joining probability distributions are centrally symmetric, but non-degenerate triangles, i.e. the
convex hulls of affinely independent probability distributions are not.

Proposition 5. Preferences represented by Lη with η = (ηmin, ηmax) = (αδv1 , (1−α)δv2) satisfy
the following:

(a) if v1 6= v2, then the preferences are ambiguity averse to A ⊂ Ksym∆([0,M ]) containing the line

segments iff α = 1;
(b) if v1 = v2, then the preferences are ambiguity averse to A ⊂ K∆([0,M ]) containing the

triangles iff α = 1; and
(c) if v1 = v2, then the preferences are ambiguity averse to Ksym∆([0,M ]) iff α ≥ 1

2 , and the

ambiguity aversion increases as α does.

Proof. For any u ∈ U1
0, A ∈ Ksym∆([0,M ]), and µ′ ∈ argminµ∈A〈u, µ〉, the line through µ′ and

Symm(A) goes through a µ′′ ∈ argmaxµ∈A〈u, µ〉, and Symm(A) = 1
2µ
′ + 1

2µ
′′, completing the

first part of the argument.

Now suppose that #X ≥ 3 and that A ⊂ Kfin∆([0,M ]) contains the triangles. If α = 1, then

ambiguity aversion relative to any class of sets is immediate.
Suppose now that α < 1. We will show that the preferences given by Lη fail to be ambiguity

averse relative to triangles. We require the following.

Lemma 2. If Th = co ((−1, 0), (0, h), (+1, 0)), h > 0, and (xh, yh) = St(Th), then limh↓0
h
yh

=
∞.

Proof. Let θh = tan−1(h) be the acute angle in Th, and let Uh be the set of u in the unit circle

with (0, h) ∈ argminµ∈Th〈u, µ〉. By complementary angles, that λ(Uh) = θh
π−θh . The height of

yh is at most h · λ(Uh) = h · θh
π−θh . Thus, h

yh
≥ π−θh

θh
↑ ∞. �

Returning to the proof of Proposition 5, pick ν1, ν2, ν3 such that 〈u, ν1〉 = 〈u, ν2〉 < 〈u, ν3〉,
and let Pl denote the intersection of ∆(X) and the smallest affine space containing ν1, ν2, and
ν3. Let lin be an affine map from R2 to Pl such that lin((−1, 0)) = 3

4ν1 + 1
4ν2, lin((0, 1)) =

1
4ν1 + 3

4ν2, and 〈u, lin((0, h))〉 > 〈u, lin((−1, 0))〉 = 〈u, lin((0, 1))〉. By Lemma 2, for any
ε > 0, for sufficiently small h, radial expansions of Ah := lin(Th) around St(lin(Th)) decrease
minµ∈Ah〈u, µ〉 by at most ε times the increase in maxν∈Ah〈u, ν〉. For any α < 1, this implies
that for small enough h, radial expansions of Ah increase utility. �
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In Proposition 5(c), ambiguity aversion increase as α increases, to put it another way, the
set of more ambiguity averse preferences is one-dimensional. With a very different definition of
comparative ambiguity aversion, Olszewski [42, Cor. 2] has a similar result.

6.2. Relative Ambiguity Aversion. For µ, ν ∈ ∆(X), we define line segments by Jµ, νK :=
{(1 − α)µ + αν : α ∈ [0, 1]} (note the convention that increases in α put more weight on the
right-hand element of the bracketed interval Jµ, νK). For fixed µ, ν, a subset [aµ,ν , bµ,ν ] of Jµ, νK
is defined as {(1 − α)µ + αν : α ∈ [aµ,ν , bµ,ν ]}, and [a, b] = [aµ,ν , bµ,ν ] is often conveniently
rewritten as [a, b] = [c− r, c+ r] where the center is c = 1

2 (a+ b) and the radius is r = 1
2 (b− a).

Note that [aµ,ν , bµ,ν ] = [0, 1] = Jµ, νK has center c = 1
2 and radius r = 1

2 , irrespective of how
close together µ and ν are.

6.2.1. Definition and Examples. For a continuous linear L : K∆([0,M ]) → R and all 0 ≤ x ≤
y ≤ M , define fL(x, y) = L(Jδx, δyK) so that fL(x, x) = u(x), and fL(·, ·) is increasing if
L respects first order dominance. By linearity, if {βi : i ∈ I} are a convex set of weights,
L(
∑
i βi(Jδxi , δyiK) =

∑
i βifL(xi, yi). We will investigate the properties of preferences satisfying

rank dependence axioms by examining the properties of their associated fL’s.
By the representation theorem and the analysis of the two outcome case in §2.3, fL(x, y) =

[ 1
2u(x)+ 1

2u(y)]− 1
2vx,y for some vx,y ∈ [−1,+1] (the 1

2 arises because the radius of Jδx, δyK is 1
2 ).

The number, vx,y, gives the degree of ambiguity aversion at the interval Jδx, δyK, and vx,y ≥ 0
corresponds ambiguity aversion. Scaling vx,y by the utility difference across the interval Jδx, δyK
gives the measure of relative ambiguity aversion.

Definition 10. For a continuous linear L : K∆([0,M ]) → R, L’s relative ambiguity aversion
at x < y is

ρx,y =
vx,y

[u(y)− u(x)]
, (18)

and L has constant/decreasing/increasing relative ambiguity aversion if (x, y) 7→ ρx,y
is constant/decreasing/increasing.

Example 11. For α-MEU preferences, fα(x, y) = αu(x) + (1 − α)u(y) so that vx,y = (2α −
1)[u(y)− u(x)] and ρx,y = (2α− 1) is constant.

Suppose that x1, . . . , xn ∈ X have ranked utilities, u(x1) ≤ · · · ≤ u(xn), that E1, . . . , En is
a measurable partition of Ω, and that C(·) is a capacity on F . The Choquet expect utility of
f :=

∑
k xk1Ek is

CEU (f) = u(x1)C(∪k≥1Ek) + [u(x2)− u(x1)]C(∪k≥2Ek)

+ · · ·+ [u(xn)− u(xn−1)]C(∪k≥nEk), (19)

that is, succesive increments to utility get lower decision weights. Rewriting yields

CEU (f) = u(x1)[C(∪k≥1Ek)− C(∪k≥2Ek)]+ (20)

u(x2)[C(∪k≥2Ek)− C(∪k≥3Ek)] + · · ·+ u(xn)[C(∪k≥nEk)].

Thus, CEU is a monotonic, linear function over ranked vectors of utilities.

Example 12. For any partition, Ex, Ey of Ω, and any capacity C(·),

LC(Jδx, δyK) := CEU(x1Ex + y1Ey ) = αu(x) + (1− α)u(y) (21)

where α = [C(Ω)−C(Ey)] and (1−α) = [C(Ey)] so that all Choquet expected utility preferences
have constant relative ambiguity aversion.

Let ϕ : [0, 1] → [0, 1] be increasing, onto, and convex. For a non-atomic P , define the
capacity C by C(E) = ϕ(P (E)), and let Π be the core of C. The rank dependent expected
utility (RDU) of a measurable f : Ω→ X is RDU(f) = minp∈Π

∫
Ω
u(f(ω)) dp(ω), which is equal

to the Choquet integral of f , so that, once again, the two outcome preferences have constant
relative ambiguity aversion.
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6.2.2. Decreasing Relative Ambiguity Aversion and Zonoids. We first characterize the closed,
convex subset, ZX ⊂ K∆([0,M ]), called point mass zonoids, for which specifying a function
(x, y) 7→ f(x, y) determines the preferences. We then turn to functions with vx,y = (h(x) +
h(y))[u(y)− u(x)], i.e. functions of the form

f(x, y) = [ 1
2u(x) + 1

2u(y)]− 1
2 (h(x) + h(y))[u(y)− u(x)] (22)

where h : [0,M ] → [0, 1
2 ] is a decreasing (or increasing) function. Such functions have relative

ambiguity aversion ρx,y = (h(x) + h(y)).
The examples below involve preferences over sets of probabilities of the form pJδx1

, δx2
K +

(1− p)Jδx3 , δx4K for different choices of p, x1, x2, x3, and x4. Such sets belong to the subclass
of the centrally symmetric sets known as point mass zonoids.

Definition 11. A ∈ Ksym∆([0,M ]) is a point mass zonotope if it is a finite convex combination

of line segments [ax,y, bx,y] ⊂ Jδx, δyK for point masses δx, δy ∈ ∆(X). A is a point mass
zonoid if it belongs to the closure of the set of point mass zonotopes. The class of pointmass
zonoids is denoted ZX.11

A continuous affine functional on ∆(X) is determined by its values on the extreme points
of ∆(X), that is, on the point masses. Indeed, there is an isometric isomorphism between the
continuous affine functionals and C(X), the continuous functions on the set of extreme points.
There is an analogous result for the point mass zonoids.

Lemma 3. If X is compact, then restriction to the extreme elements of ZX defines an isometric
isomorphism between the continuous affine functions on ZX and the continuous functions f :
X× X→ R satisfying f(x, y) = f(y, x).

Specifically, the extreme points of ZX are the 0- and 1-dimensional line segments Jδx, δxK and
Jδx, δyK. If L : ZX → R is continuous and affine, defining fL(x, y) = L(Jδx, δyK) delivers the
continuous function, if f is continuous and symmetric, then defining Lf (Jδx, δyK) = f(x, y) and
extending it by continuity and linearity delivers the continuous affine function, the mappings
L 7→ fL and f 7→ Lf are bijective inverses of each other, and maxA∈ZX |L(A) − L′(A)| =
maxx,y∈X |fL(x, y)− fL′(x, y)|.

Proof. ZX is compact and convex, and extr(ZX) is closed, hence compact. If τ and τ ′ are
probability distributions on extr(ZX) and τ 6= τ ′, one can construct an L ∈ L◦ such that∫
Ldτ 6=

∫
Ldτ ′ so that ZX is a simplex. Bauer’s Theorem12 tells us that if S is a compact

simplex, then extr(S) is closed if and only if the restriction mapping, a 7→ a| extr(S), defines
an isometric isomorphism between Caff (S), the continuous affine functions on S with the sup
norm, and C(extr(S)), the continuous functions on extr(S), also with the sup norm. �

6.2.3. Decreasing Relative Ambiguity Aversion in Loss Insurance. Suppose that a decision
maker has wealth W and faces a loss of size L with probability (1− p) where p ∈ [c− r, c+ r] ⊂
[0, 1]. If L is a continuous linear functional on ZX, then, letting ρ = ρW−L,W ,

L([a, b]) = [(1− c)u(W − L) + cu(W )]− rρ[u(W )− u(W − L)] =

[(1− (c− rρ))u(W − L) + (c− rρ)u(W )] (23)

where [a, b] = [c − r, c + r]. The decision maker’s certainty equivalent, X = X(W,L, c, r), is
defined by L({δX}) = L([c− r, c+ r]), that is, by

X = v((1− (c− rρ))u(W − L) + (c− rρ)u(W )) (24)

11Zonoids in R` are defined as finite convex combinations of line segments, equivalently characterized as (the
translate of) the range of non-atomic, R`-valued measures [12]. For a comparison of alternative definitions of

infinite dimensional polytopes, a class that includes the zonotopic subsets of K∆([0,M ]), see [44]. All two dimen-

sional centrally symmetric sets are zonoids, but the zonoids are nowhere dense in among centrally symmetric
sets of dimension three or higher.

12The direct reference is [7, Satz III], or else consult Phelps [45, Proposition 11.1].
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where v := u−1. Under risk and ambiguity aversion, this means that the certainty equivalent
increases in W , and increases more quickly for higher values or r or of ρ. Attributing the increase
only to risk aversion corresponds to setting r or ρ to 0, which can lead to overestimating the
degree to which sensitivity to risk decreases with W .

6.2.4. Trading Off Risk and Ambiguity. Machina [38] gives the following two pairs of ambigu-
ous choice problems with point mass zonotope outcomes based on the four strictly ranked
consequences x1 < x2 < x3 < x4, all in [0,M ],

f1 =
(

1
2 − ε

)
δx3

+
(

1
2 + ε

)
δx2

versus (25)

f2 =
(

1
2 − ε

)
Jδx2

, δx3
K +

(
1
2 + ε

)
Jδx2

, δx3
K, and

f3 =
(

1
2 − ε

)
Jδx3 , δx4K +

(
1
2 + ε

)
Jδx1 , δx2K versus (26)

f4 =
(

1
2 − ε

)
Jδx2 , δx4K +

(
1
2 + ε

)
Jδx1 , δx3K.

Option f2 is equivalent to Jδx2
, δx3

K, its Steiner point is 1
2δx2

+ 1
2δx3

, while f1 is the slightly

worse distribution just to the “left” of the Steiner point, ( 1
2 +ε)δx2 +(1

2−ε)δx3 . For any positive
amount of ambiguity aversion, for all small ε > 0, f1 � f2. Machina argues that reasonable
preferences might simultaneously have f4 � f3, but that the class of multiple prior preferences
satisfying a rank-dependence axiom have f1 � (%)f2 if and only f3 � (%)f4.

Dominance requires that the second part of f4 dominates the second part of f3, that is,

Jδx1
, δx3

K � Jδx1
, δx2

K,

while the first part of f3 dominates the first part of f4,

Jδx3
, δx4

K � Jδx2
, δx4

K.

Direct calculations show that if relative ambiguity aversion is constant, then f1 � (%)f2 if and
only if f3 � (%)f4.

However, if x1 � x2 ' x3 � x4 and decreasing ambiguity aversion is given by a decreasing
function h(·) as in (22) with h(x1) > h(x2) ' h(x3) ' h(x4), then decreasing relative ambiguity
aversion yields both f1 � f2 and f3 ≺ f4 for small ε.

6.3. Updating Sets of Probabilities. In the following risky problem (based on [32]), we
have a cheap talk signaling game [16] with the sender able to commit to a signaling structure.

The Judge/Jury has a prior probability p of the accused person being Guilty and probability
1 − p of being Innocent. Judge/Jury can either convict or acquity, and, after normalization
their utility function is given by

Innocent Guilty

Convict 0 z
Acquit 1 0

with z > 0. The optimal action is to convict if their beliefs, β, satisfy βz ≥ (1−β), i.e. β ≥ 1
1+z .

The signaler is the prosecuting attorney, their utility is 1 if the accused is convicted, 0 else.
The signaler commits to an information structure, and following Blackwell [9, 10], this can be
modeled as a dilation of p, that is, as a distribution, Q, over the space of beliefs, ∆(Ω) = [0, 1],
such that

∫
[0,1]

β dQ(β) = p. The signaler’s problem is

maxQ∈∆(∆(Ω))Q([ 1
1+z , 1]) subject to

∫
∆(Ω)

β dQ(β) = p. (27)

The solution is a Q that puts mass 1 − γ on 0 and γ on 1
1+z , and the constraint yields (1 −

γ)0 + γ 1
1+z = p, i.e. γ = p(1 + z). In equilibrium, the accused is convicted p(1 + z) > p of the

time.
Now suppose that the Judge/Jury has a set of possible priors, A = [a, b] and we wish to

solve the same design problem for the prosecuting attorney. We represent [a, b] as a point in
the triangle K∆(X) = {(a, b) ∈ [0, 1]2 : 0 ≤ a ≤ b ≤ 1}. Because K∆(X) is a simplex, each (a, b)
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has a unique representation as (a, b) = (1− (γ0,1 + γ1,1))(0, 0) + γ0,1(0, 1) + γ1,1(1, 1). Solving
for the weights, they are γ1,1 = a, γ0,1 = (b − a) (the diameter of the interval of beliefs), and
the weight on (0, 0) is (1− b). Interpreting the point (0, 1) ∈ K∆(X) as the question of Guilt or
Innocence being unknowable, the Judge/Jury’s utility function can be given as

Innocent Unknowable Guilty

Convict 0 1
2 (1− vc)z z

Acquit 1 1
2 (1− va) 0

where vcz > 0 and va > 0 represent ambiguity aversion. If beliefs are given by the set [0, 1],
then any standard of proof at least as strong as ‘preponderance of evidence’ makes acquital
optimal, (1− va) > (1− vc)z. We will assume something stronger, that increases in r decrease
utility more if the decision is to convict than if the decision is to acquit, 0 > −va > −vcz.
For beliefs B = [p − r, p + r], this means that more ambiguity, a higher r, requires a higher
probability of guilt, p, for conviction. The Judge/Jury convicts if their beliefs B = [p− r, p+ r]
satisfy U(convict× [p− r, p+ r]) ≥ U(acquit× [p− r, p+ r]), that is, if

pz − vczr ≥ (1− p)− var, equivalently p ≥ 1
1+z + r vcz−va1+z . (28)

As (vcz − va) > 0, larger degrees of ambiguity, that is, larger values of r, require a larger p to
convict.

Let S denote the conviction-optimal set
{

[a, b] ∈ K∆(X) : a+b
2 ≥

1
1+z + b−a

2
vcz−va

1+z

}
, so that

S is the triangle bounded with vertices ( 1
1+z ,

1
1+z ), (1, 1) and (a∗, 1) where a∗ = (1−z)−(vcz−va)

(1+z)+(vcz−va)

(see Figure 3).
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Figure 3

The signaler’s problem is

maxQ∈∆(K∆(X))Q(S) subject to
∫
K∆(X)

B dQ(B) = [a, b]. (29)

For any prior beliefs [a′, b′] in T ′, the region of K∆(X) above the line joining (0, 0) to (a∗, 1),
the signaler’s optimal Q puts weight only on (0, 0), (0, 1) and (a∗, 1) and satisfies γ0,0(0, 0) +
γ0,1(0, 1) + γa∗,1(a∗, 1) = (a, b). For any initial beliefs [a′′, b′′] in T ′′, the region of K∆(X) below
the line joining (0, 0) to (a∗, 1), the signaler’s optimal Q puts weight only on (0, 0) and the
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first intersection of S with the ray starting at (0, 0) and going through (a′′, b′′) (the head of the
arrow in the figure). In the special case that a′′ = b′′, we are in the risky case analyzed above
and the signaler’s optimum puts mass on (0, 0) and ( 1

1+z ,
1

1+z ).
For a more general version of this model, suppose that the set of possible actions, K, is

compact, as is X. We suppose that the receiver’s utility function for action a ∈ K when they
have beliefs B ∈ K∆(X) is given by a jointly continuous U(a,B) with each U(a, ·) linear, and
that the sender’s utility function is given by a function (a,B) 7→ V (a,B) satisfying the same
conditions. For B ∈ K∆(X), define

K∗(B) = argmax
a∈K

U(a,B), and v(B) = max
a∈K∗(B)

V (a,B). (30)

The existence of a solution to the problem in (29) is an instance of the following.

Proposition 6. Under the compactness and continuity conditions just given, for every set of
priors A ∈ K∆(X), there exists a commitment-optimal signaling structure for the signaler.

Proof. Let A ∈ K∆(X) be the receiver’s priors. The set I := {Q ∈ ∆(K∆(X)) :
∫
B dQ(B) = A}

is closed, hence compact. Since K∗(·) is upper hemicontinuous, v(·) is an upper semicontinuous
(usc) function. This implies that the mapping Q 7→

∫
v(B) dQ(B) is usc, hence achieves its

maximum on the compact set I. �
If the signaler is restricted to information structures where only some E ⊂ {I,G} can be

revealed, neither the risky nor the ambiguous version of this problem contains much of interest.

6.4. Utility Range Dominance and Support Sets. We now investigate how ηmin ≥ ηmax

interacts with the support set for (ηmin + ηmax). The key concept is utility range dominance.

Definition 12. For V ⊂ U1
0 and A,B ∈ K∆(X), the A utility range dominates B on V,

A %V B, if for all v ∈ V, the utility intervals have the same center,

1
2 [minµ∈A〈v, µ〉+ maxµ∈A〈v, µ〉] = 1

2 [minµ∈B〈v, µ〉+ maxµ∈B〈v, µ〉],
and the radius of A’s utility intervals is weakly smaller,

1
2 [maxµ∈A〈v, µ〉 −minµ∈A〈v, µ〉] ≤ 1

2 [maxµ∈B〈v, µ〉 −minµ∈B〈v, µ〉].

Lemma 4. If (ηmin + ηmax)(V) = 1, ηmin ≥ ηmax, and A %V B, then Lη(A) ≥ Lη(B).

Proof. Because V is a carrier set for (ηmin + ηmax),

Lη(A) =

∫
V

min
µ∈A
〈v, µ〉 dηmin(v) +

∫
V

max
ν∈A
〈v, µ〉 dηmax(v) (31)

with a similar expression for Lη(B). Because A %V B, for each v ∈ V, the utility ranges have
the same center. Therefore, there exists rv ≥ 0 such that minµ∈A〈v, µ〉 = rv + minµ∈B〈v, µ〉
and maxµ∈A〈v, µ〉 = (−rv) + maxµ∈B〈v, µ〉. This yields

[Lη(A)− Lη(B)] =

∫
V
rv dηmin(v) +

∫
V

(−rv) dηmax(v) = (32)∫
V
rv d(ηmin − ηmax)(v).

Because rv ≥ 0 and ηmin ≥ ηmax, [Lη(A)− Lη(B)] ≥ 0. �

6.4.1. Utility Range Equality. An implication of Lemma 4 is that A %V B, B %V A, and
(ηmin+ηmax)(V) = 1 imply that Lη(A) = Lη(B). To put this another way, Lη ignores expansions
in ‘directions’ not included in the support set of (ηmin + ηmax).

Example 13. Let X = {a, b, c} with a ≺ b ≺ c, so that ND ∩ U1
0 is the set of utility functions

ur = (ur(a), ur(b), ur(c)) = (0, r, 0), r ∈ [0, 1]. Let µ1 = (0, 0.3, 0.7), µ2 = (0.3, 0.3, 0.4), µ3 =
(0, 0.6, 0.4), and µ4 = (0.3, 0, 0.7) in ∆(X) so that µ1 %F µ2, µ3, µ4 and µ3, µ4 %F µ2. Figure 3
illustrates the sets C = {µ ∈ ∆(X) : µ1 %F µ %F µ2}co (µ1, µ2, µ3, µ4), A = co (µ1, µ2), and a
set B ∈ K∆(X) with A ⊂ B ⊂ C. For any η supported on ND ⊂ U1

0, Lη(A) = Lη(B) = Lη(C)
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— for any ur, µ1 is a best element in A, B, and C while µ2 is a worst element. These mean
that the utility intervals [infµ∈A, supµ∈A], [infµ∈B , supµ∈B ], and [infµ∈C , supµ∈C ] are equal.

a

c

b

m1

m2

m3

m4

C

indifference curves for u
r
 

A
B

g

Figure 4

6.4.2. Utility Range Dominance and Sources of Uncertainty. Machina [39] shows that prefer-
ences over random variables satisfying the rank-dependence axiom must be indifferent over the
sets in the following example.

Example 14. Suppose that we toss a fair coin indepedently of drawing a ball from an urn known
to contain balls that are either Black or White with no information about the proportions.
Consider the two sets of probabilities over the three outcomes, −8, 0, and +8 given by the
following tables.

A Black White
Heads +8 0
Tails −8 0

B Black White
Heads 0 0
Tails −8 +8

ur ∈ ND ∩ U1
0 iff it is of the form ur = (ur(−8), ur(0), ur(+8)) = (0, r, 1) for some r ∈ [0, 1].

Figure 5(a) illustrates the sets of probabilities A and B, and Figure 5(b) illustrates, as a function
of r, the utility intervals

UB,r := [min
µ∈B
〈ur, µ〉,max

µ∈B
〈ur, µ〉] and (33)

UA,r := [min
µ∈A
〈ur, µ〉,max

µ∈A
〈ur, µ〉]. (34)

For each r, these intervals have the same center, and for r 6= 0, 1, the set UB,r is strictly
wider than UA,r. If (ηmin + ηmax)(ND) = 1 and ηmin ≥ ηmax, then Lη(A) ≥ Lη(B) with strict
inequality if ηmin > ηmax and (ηmin +ηmax) puts positive weight on the set of ur with 0 < r < 1.

Comments.

a. The example works because, across the set A, possible expected utility levels do not vary as
much as they do across the set B. This is where the difference in the sources of uncertainty
enters. In the set A, the larger utility range uncertainty, −8 to +8, is determined by a known
probability, 1

2 , while in the set B the larger range utility uncertainty is determined by an
unknown probability. As Machina [39] shows, the symmetry built into models of preferences
over random variables that satisfy a rank-dependence axiom requires indifference between
the sets A and B.

b. If the coin is “bent,” that is, slightly biased in an unknown direction, the set A becomes the
triangular set

Ab = co ({( 1
2 − b, 0,

1
2 + b), ( 1

2 + b, 0, 1
2 − b), (0, 1, 0)}),
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i.e. becomes slightly flared when it meets the (α, 0, (1− α)) face of the vertex, while the set
B becomes

Bb = co ({(0, 1
2 − b,

1
2 + b), (0, 1

2 + b, 1
2 − b), (

1
2 − b,

1
2 + b, 0), ( 1

2 + b, 1
2 − b, 0)}),

i.e. becomes a quadrilateral having slightly wider intersections with the (β, (1 − β), 0) and
the (0, γ, (1 − γ)) faces. By continuity, if Lη(A) > Lη(B), then Lη(Ab) > Lη(Bb) for small
biases b.

-8,000

+8,000

0

A
B
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6.4.3. The Ambiguity of “Crisp” Acts. Following [25] (and a slightly stronger definition from
[14, Theorem 12]), a sufficient condition for a random variable f : Ω → X to be crisp relative
to a set of priors S is that f(S) ⊂ u−1(r) for some r ∈ R, equivalently, if for all p ∈ S,∫
u(f(ω)) dp(ω) = r. Such acts can still be ambiguous.

Example 15. Consider the preferences on K∆(X) when X = {−8, 000, 0,+8, 000} represented by

Lη where ηmin and ηmax are carried by the ur ∈ ND∩U1
0 of the form ur = (ur(−8), ur(0), ur(+8)) =

(0, r, 1) for some r ∈ [0, 1], and suppose that ηmin = 2
3λ and ηmax = 1

3λ, λ being the uniform
distribution on [0, 1], so that ηmin > ηmax. The resultant, u, is the risk neutral vNM utility
function u 1

2
so that, provided the decision maker can conceive of them, any subset of the set A

given in Figure 5(a) can arise from a crisp act. If C = {µ} is a singleton subset of A, then
Lη(C) =

∫
X u(x) dµ(x) = 1

2 . By contrast, for the ambiguous set A, Lη(A) = 11
24 <

1
2 .

We have already seen in Example 4 that smooth versions of MBA preferences must be
ambiguity neutral in a neighborhood of the set of risky outcomes. What the previous example
shows is that they must also be ambiguity neutral in the neighborhood of a class of ambiguous
outcomes.

6.5. Smooth Models of Ambiguity Aversion. The utility range analysis just given captures
part of the appeal of the smooth models of ambiguity aversion developed Klibanoff et al. These
give the utility of a function f : Ω→ X as

Smooth(f) =

∫
Π

ϕ(〈u, f(p)〉) dQ(p) (35)

where u ∈ U1
0, ϕ : [0, 1]→ [0, 1] is concave and Q is a probability distribution on a set of priors

Π.
Unlike the previously discussed preferences, change of variables does not allow smooth pref-

erences to fit into the framework of preferences over K∆(X). Rather, the domain becomes
{(A, p) : A ∈ K∆(X), p ∈ ∆(A)} and Smoothcov(A, p) is

Smoothcov(A, p) =

∫
A

ϕ(〈u, µ〉) dp(µ). (36)

As above, if Π is not descriptively complete, a DM modeled using preferences over measurable
functions will only be able to conceive of a limited subset of the domain of Smoothcov(·). The
next result is a direct consequence of Theorem 2 and the Blackwell and Dubins [11] extension
of the Skorohod representation theorem.

Lemma 5. If S is a descriptively complete set of priors and Q is a non-atomic distribution on
S, then for every (A, p), there exists an f : Ω→ X such that p is the distribution of f(p) when
p ∈ S is distributed according to Q.

7. Summary and Future Directions

This paper has developed two concepts: the representation theory for continuous linear
functionals on compact convex sets of probability distributions over utility relevant outcomes;
the theory of descriptively complete sets of priors. The representation theory leads to much
more tractable modeling of ambiguous choice problems. The theory of descriptively complete
sets of priors resolves several open problems and allows the multiple prior preferences over
measurable functions approach to model as large a class of problems as the continuous linear
preferences presented here.

In applied theory models of risky choice situations, the modeler must specify the decision
maker’s vNM utility function on ∆(X) and what distribution that the decision maker believes
to be associated with any given choice. The theory of choice under ambiguity developed here
requires the same level of detail, the modeler must specify the decision maker’s vNM utility
function on K∆(X) and what set of distributions the decision maker believes to be associated
with any given choice. The essential reason that the von Neumann/Morgenstern approach to
ambiguous decision problems is more tractable than the random variable approach is that it
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starts with a specification of the risk, the ambiguity, and the attitudes toward them rather than
trying to derive all of these from preferences over a space of measurable functions.

Descriptive completeness of a set of priors is necessary for the modeled decision maker to be
able to conceive of every element in some non-empty open set of partial descriptions. Given
descriptive completeness and state independence, the preferences over measurable functions
approach to the theory of choice in the presence of ambiguity can be understood as the study
of preferences over sets of probability distributions. This change of perspective allows us to
develop, in particular, the theory of comparative ambiguity aversion much further than has
been possible with multiple prior models.

It seems to us that there are many classes of applications where the introduction of ambiguity
will make a substantial difference, that there are some fascinating interpretational issues yet to
be resolved, and that there are some issues of a more theoretical nature as well. We discuss
these in turn.

7.1. Possible Applications. There is clearly a great scope for extensions of monotone com-
parative statics results to ambiguous problems. The partial orders given by first and second
order dominance, as well as utility range dominance should play a central role. This will re-
quire a systematic investigation of how other classes of partial orders on probabilities extend
to ambiguous problems.

One of our initial motivations for studying this class of problems was Knight’s [35] obser-
vation that most R&D takes place in larger firms because they can afford several projects
simultaneously. His intuition was that even though each such project would have an unknown
distribution over rewards, some version of the strong law of large numbers/central limit the-
orem should imply that several projects should yield less relative ambiguity. This seems to
us to be the same intuition that is behind Schmeidler’s [48] definition of ambiguity aversion
as a kind of preference for diversification. This will require a systematic investigation of how
convolution of sets of distributions interacts with ambiguity aversion and decreasing relative
ambiguity aversion.

For the class of problems Ksym∆(X) and Kfin∆(X), we can completely separate attitudes toward

risk and attitudes toward ambiguity. This should allow elicitation of the tradeoffs between the
two. A particularly useful form of elicitation in risky problems are the proper scoring rules.
This, and generic control of the elicitee’s value function [23] should be possible for ambiguous
problems as well.

One of the criticisms of mechanism design is the sensitive dependence of optimal contracts
on details of the model. An alternative approach to robust mechanism design may be to assume
that the principal’s prior over the agent’s utility and information is a set rather than a point.
We suspect that optimal contracts will need to take into account more of the possibilities of
error, and this may lead to a more ‘central’ and stable class of optimal contracts.

7.2. Interpretational Issues. Information structures for risky problems are modeled as distri-
butions over posterior distributions having the prior as the resultant. For ambiguous problems
this same structure is available with one change — we replace posteriors by sets of posteriors
and replace the single prior with a single set of priors. Of particular interest are the best in-
formation structures, the distributions carried on the extreme points of ∆(X) in the risky case,
and the distributions carried on the extreme sets of K∆(X) in the ambiguous case. Formally,
the extreme sets in K∆(X) can be treated as if they are a new class of points. For example, the
table giving the Judge/Jury’s utility function includes the “Unknowable” state. A prosaic in-
terpretation of such states might run along the lines of “unknowable in the time frame available
for making a decision.” A more speculative interpretation might, in some problems, run along
the lines of previously unobserved states, of states not available in the original model.

Perhaps the most fascinating extant interpretation of decision makers using the multiple
prior preferences is that they are reasoning by analogy [3]. It seems to us that this may offer
another way to understand descriptive completeness of a set of priors. In particular, we would
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like to know what structure or structures of the set of analogies is sufficient, or necessary, for
the implied set of priors to be descriptively complete.

On a different topic, writing down the conditions for an ambiguous Nash equilibrium in sets
of distributions is immediate. However, one often interprets only having a partial description of
what is happening as a lack of experience with the problem. By contrast, equilibrium is often
understood as what happens when there is sufficient experience. It may be that ambiguous
equilibria will, at least some of the time, describe intermediate-run behavior along some learning
dynamics, a result that would greatly clarify their interpretation. It may also be possible
to purify ambiguous equilibra using sets of perturbations to utilities, and this would provide
another class of interpretations.

7.3. Extensions to the Theory. Skorohod’s representation theorem has two parts: repre-
sentation, any µ is of the form f(p) provide that p ∈ ∆(Ω) is non-atomic; and continuity,
if µn →w µ, then there is a sequence, f, (fn)n∈N, such that fn(p) = µn, f(p) = µ, and
fn(ω)→ f(ω) for a set of ω having p-mass 1. This paper has only used the representation part
of the set-valued Skorohod theorem in [19], the continuity part is, so far, absolutely unexploited.
We suspect that appropriate versions of the Theorem of the Maximum and the various upper
hemicontinuity results in game theory and other equilibrium models will be relatively easy to
prove using almost everywhere convergence. The representation part of the result extends to
closed non-compact sets of probabilities, indeed, it extends to measurable sets of probabilities.
As can be seen in [8], in the non-compact case, the appropriate definition of continuity is a far
more subtle issue.

The separations of ambiguity attitude and risk attitude depend on a continuous direct sum
decomposition for subclasses of K∆(X). A Minkowski class of sets is one that is closed under
addition and non-negative dilation, and these are the basic ingredients for linear functionals
on sets and ambiguity aversion respectively. It may be possible to extend the separation of
attitudes toward risk and ambiguity to larger Minkowski classes of sets in [50].

Understanding of non-linear preferences over Minkowski subclasses of K∆(X) may also benefit

from study of their local linear approximations. For finite X, let Kfull∆(X) ⊂ K∆(X) denote the

full dimensional subsets of K∆(X), that is, the set of A with dim (A) = dim (∆(X)). The

preferences on Kfull∆(X) in [1] can be represented by the utility function V (A) = EQ(f |A) where

f : ∆(X) → R is continuous and Q ∈ ∆(∆(X)) has an almost everywhere positive density
with respect to Hausdorff/Lebesgue measure on ∆(X). If f is not constant, then V (·) is not

Lipschitz and does not have a continuous extension from the dense class Kfull∆(X) to K∆(X) when

#X ≥ 3. However, restricted to Kfull∆(X), V (·) is locally Lipschitz at most A if the density of Q

is well-behaved. In Banach spaces, Lipschitz functions are differentiable outside of Gauss null
sets, so it may be that there are informative local linear approximations to V (·) at most points
in its domain.

Theorem 3 showed that, when X = [0,M ], descriptive completeness of a set of priors is
equivalent to the decision maker being able to contemplate a single non-empty open subset
of K∆(X). This property leads us to conjecture that for generic pairs of convex sets of priors
that fail to be descriptively complete, the overlap in the problems that they can model is quite
minimal. As a side benefit to resolving this question, it may be possible to order sets of priors
in a more continuous fashion on the basis of the class of problems they allow one to model.
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Appendix A. The Proof of the Representation Theorem for Polish Spaces

The following encapsulates the mathematical structure of vNM preferences in the theory of
choice under uncertainty: the objects over which people have linear preferences are a convex
subset, C, of a Banach space, X ; the Banach space has a pre-dual, X◦; the norms on X and X◦
are related by ‖x‖ = sup‖x◦‖≤1 |〈x, x◦〉| and ‖x◦‖◦ = sup‖x‖≤1 |〈x, x◦〉|; the relevant set of linear

preferences are given by Ux◦(x) = 〈x, x◦〉 where x◦ ∈ X◦; these linear functionals are continuous
in the weak∗ topology, defined by xn →w∗ x in C iff 〈xn, x◦〉 → 〈x, x◦〉 for all x◦ ∈ X◦. One
then studies properties of expected utility preferences by studying properties of the elements in
the pre-dual that define the continuous linear functionals.

1. For expected utility preferences with a compact set of consequences: C is the set of countably
additive probabilities, ∆(X); X = ca (X) is the set of countably additive, finite signed
measures with the variation norm; X◦ = C(X); the set of continuous linear functions are of
the form U(p) = 〈u, p〉 =

∫
X u(x) dp(x) where u ∈ C(X); and pn →w∗ p in ∆(X) iff for every

u ∈ C(X), 〈u, pn − p〉 =
∫
X u(x) d(pn − p)(x)→ 0.

2. For expected utility theory with a general Polish set of consequences: X◦ = Cb(X); X is the
set of finitely additive, finite signed measures with the variation norm; the set of continuous
linear functions are of the form U(p) = 〈u, p〉 =

∫
X u(x) dp(x) where u ∈ Cb(X); and pn →w∗ p

in ∆(X) iff for every u ∈ Cb(X), 〈u, pn − p〉 =
∫
X u(x) d(pn − p)(x)→ 0. Because the failure

of countable additivity leads to money pumps in model with countably many consequences,
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and to indifference between a random variable act and one that pointwise dominates it, we
restrict attention to countably additive measures and probabilities.13

As above, U1
0 := {f ∈ Cb(X) : infx∈X f(x) = 0, supx∈X f(x) = 1} so that every element

g ∈ Cb(X) has a unique representation of the form r · h + s where r ∈ R+, s ∈ R, and
h ∈ U1

0. Lip(U1
0) denotes the set of Lipschitz functionals on U1

0 with the norm ‖ψ‖Lip =

supf∈U1
0
|ψ(f)| + supf 6=g∈U1

0

|ψ(f)−ψ(g)|
‖f−g‖∞ . From the monograph/textbook [58] or [27, Cor. 3.10],

Ms(U1
0), the set of separably supported, countably additive, finite signed measures on U1

0 is a
pre-dual of Lip(U1

0).
With these notations in place, we can give the parallel mathematical structure for continuous

linear preferences on sets of probabilities.

3. For preferences in the presence of ambiguity with a general Polish set of consequences: C is
K∆(X), the set of non-empty, compact, convex subsets of ∆(X); each A ∈ K∆(X) is identified

with its support function, µA(f) := minp∈A〈f, p〉, which is an element of X = Lip(U1
0);

the predual, X◦, is the closure in X ∗ of Ms(U1
0), the set of separably supported, countably

additive, finite signed measures on U1
0; the set of continuous linear functionals is given by

U(A) =
∫
U1

0
µA(f) dη(f) where η ∈ Ms(U1

0); and An →w∗ A iff for every η ∈ Ms(U1
0),∫

U1
0
µAn(f) dη(f)→

∫
U1

0
µA(f) dη(f).

The following shows that weak∗-convergence of An to A in K∆(X) has exactly the right form.

Lemma 6. The following are equivalent:

(a) dH(An, A)→ 0,
(b) for all f ∈ U1

0, µAn(f)→ µA(f), and
(c) for all η ∈Ms(U1

0), Lη(An)→ Lη(A).

The equivalence of (b) and (c) is a direct consequence of [58, Theorem 2.2.2].

Proof. (a)⇒(b): If dH(An, A) → 0, then for all f ∈ U1
0, minp∈An〈f, p〉 → minp∈A〈f, p〉 by the

Theorem of the Maximum, proving (b).
(b)⇒(c): If µAn(f) → µA(f) for all f ∈ U1

0, then dominated convergence implies that for
any η ∈Ms(U1

0),
∫

minp∈An〈f, p〉 dη(f)→
∫

minp∈A〈f, p〉 dη(f).
(c)⇒(a): Suppose that for all η ∈ Ms(U1

0), Lη(An) → Lη(A). Since the span of U1
0 and

{1} is equal to Cb(X), from [43, Theorem 6.6], there exist a countably {fk : k ∈ N} ⊂ U1
0 such

that r(µ, µ′) =
∑
k

1
2k
|〈fk, µ−µ′〉| metrizes weak∗ convergence. Because we are considering the

Hausdorff convergence of compact subsets of ∆(X), any metric for the weak∗ topology can be
used ([8, Ch. 3]). Because r(µ, µ′) = 0 iff µ = µ′, every B ∈ K∆(X) satisfies

B = ∩k{q ∈ ∆(X) : min
p∈B
〈p, fk〉 ≤ 〈q, fk〉 ≤ max

p∈B
〈p, fk〉}.

Therefore, dH(An, A)→ 0 iff for all fk, minp∈An〈p, fk〉 → minp∈A〈p, fk〉 and maxp∈An〈p, fk〉 →
maxp∈A〈p, fk〉. Let η1 =

∑
k

1
2k
δfk and η2 =

∑
k

1
2k
δ−fk . Because η1 is countably supported,

Lη1(An) → Lη(A) iff for all fk, minp∈An〈p, fk〉 → minp∈A〈p, fk〉. Because minp∈A〈−f, p〉 =
−maxp∈A〈f, p〉, Lη2(An)→ Lη(A) iff for all fk, maxp∈An〈p, fk〉 → maxp∈A〈p, fk〉. �

Recall that Lη◦(A) :=
∫
U1

0
minµ∈A〈u, µ〉 dη◦(u), L◦ := {Lη◦ : η◦ ∈Ms(U1

0)}, and L := cl(L◦)
in the metric d(L,L′) = supA∈K∆(X)

|L(A) − L′(A)|. We are now in a position to prove the

representation theorem.

Theorem 1. L : K∆(X) → R is continuous and linear if and only if L ∈ L.

Proof. Because the diameter of U1
0 is 1, [27, Cor. 3.10] implies thatMs(U1

0) is ‖·‖∗Lip-dense in the

dual of Lip(U1
0), and d(L,L′) = supA∈K∆(X)

|L(A)− L′(A)| metrizes this dual space norm. �
For conditions guaranteeing that L◦ is not merely dense in but is equal to L, see [27, Thm.

3.11].

13A collection of, and common resolution to these paradoxes, and to any others that might arise from failures

of countable additivity in decision theory can be found in [54].
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One clarification may be in order. In the expected utility case, the vector space containing
∆(X) was its span. By contrast, the span of the support functions is a strict subset of the vector
space Lip(U1

0). Let S = span({µA : A ∈ K∆(X)}) denote the span of the support functions in

Lip(U1
0). One could reasonably worry that the set of weak∗-continuous linear functionals on S is

larger than the set of weak∗-continuous linear functionals on the larger set Lip(U1
0). However,

the next result shows that S is weak∗ dense in bounded subsets of Lip(U1
0). As continuous

functions are determined by their values on dense sets, the worry is not well-founded.

Lemma 7. S is weak∗-dense in norm bounded subsets of Lip(U1
0).

Proof. From [28, Thm. 9], we know that, restricted to any compact subset of U1
0, S satisfies

the conditions for the Stone-Weierstrass theorem. The compactness of finite sets and the
equivalence of (b) and (c) in Lemma 6 shows that S is weak∗-dense in norm bounded subsets
of Lip(U1

0). �
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