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Abstract

Elga’s rejection [5] of an infinitesimal solution to the zero-fit prob-
lem does not seem to appreciate the opportunities provided by the use
of internal finitely additive probability measures. Indeed, internal laws
of probability can be used to find a satisfactory infinitesimal answer to
many zero-fit problems, not only to the one suggested by Elga, but also
to Markov chain (that is, discrete and memory-less) models of reality.
Moreover, the generalisation of likelihoods that Elga has in mind is not
as hopeless as it appears to be in his article. In fact, for many practically
important examples, through the use of likelihoods one can succeed in
circumventing the zero-fit problem.

1 The zero-fit problem on infinite state spaces
In general, the zero-fit problem arises when two candidates for a probabilistic
law of nature assign probability (“fit”) zero to an observation and it is therefore
not possible to prefer one over the other. This is the case for instance on any
state space that is an infinite power of a nontrivial probability space (i.e. a
probability space without an atom1 of probability 1) 2 – such as Elga’s example
2ω = {0, 1}N, the space of all countable sequences of coin tosses – and holds
as obviously for every atomless probability space (for example the Lebesgue
measure on the unit interval [0, 1] or the Gaussian distribution on the field of
the reals).
∗Institut für Angewandte Mathematik, Universität Bonn, Germany
†Mathematical Institute, University of Oxford, United Kingdom
1An atom of a measure space (Ω,A, µ) is a set A ∈ A of strictly positive µ-measure such

that any measurable subset of A has either measure µ(A) or zero.
2The proof for this assertion is straightforward: Let the probability space be Ω = Ω0

κ with
a probability measure P0 defined on the σ-algebra generated by the singletons of elements of
Ω0 and an infinite κ. Every singleton {(ai)i∈κ} ⊂ Ω has probability less or equal to the
product Πi∈IP0{ai} for any finite I ⊂ κ. Since P0{ai} < 1 holds for every i ∈ κ (because of
the nontriviality of (Ω, P0)), P0{(ai)i∈κ} is less than any positive number, thus equal to zero.
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One should realise that the zero-fit problem will never be encountered when
actually modelling physical data in practice: Due to constraints on the instru-
ments, there will always be bounds on the range of any observation variable that
can be measured. In view of the quantisation of physical observables, this en-
tails the finiteness of the state spaces associated with the respective experiment.
Moreover, as we shall see in section 6, in the most prominent case of probability
measures (or probability distributions, as we will sometimes call them) on finite-
dimensional real vector spaces, statisticians have a tool to deal with the zero-fit
problem: Likelihoods, a special case of what Elga rejects as “integrating over
densities” in generality.

Notwithstanding this remark, whenever thought experiments are conducted
for the investigation of theoretical hypotheses, there is of course no reason why
the state spaces should be assumed to be finite. Indeed, thought experiments on
criteria for the adequate description of an infinite history of observations have
been the framework in which the zero-fit problem was phrased for the first time
by David Lewis [16].

Now, if one was allowing for infinitesimal probabilities – which is precisely
what Lewis suggested [ibid.] to address the zero-fit problem as an obstacle to a
successful “best-system analysis” – , one might be able to distinguish between the
two competing probability distributions of standard (as opposed to nonstandard
in the sense of nonstandard analysis3 ) fit zero by choosing the one assigning the
bigger (infinitesimal) probability to the “observation” obtained in the thought
experiment (in Elga’s paper [5] referred to as the “actual world”). Any attempt
to address and settle the zero-fit problem thus entails a built-in bias to take a
nonstandard notion of probability into consideration.

2 Elga’s critique of the infinitesimal approach to
the zero-fit problem

Before summarising Elga’s reasoning, let us introduce some convention from
“standard” measure-theoretic terminology. The term “measure” in this paper
will always mean “σ-additive measure defined on a σ-algebra”, unless it is used in
the combination “finitely-additive measure”4 or “internal [probability] measure”.

Elga’s main line of thought against the use of infinitesimals to solve the
zero-fit problem can be rendered as follows:

1. The only way to obtain a nonstandard probability measure (whether finitely
additive or σ-additive) is by approximating a standard probability measure

3Nonstandard analysis is the part of analysis that uses infinitesimal elements and model-
theoretic techniques to formalise heuristic combinatorial reasoning. Its modern shape dates
back to Robinson’s classical monograph [23]. There are many accessible introductions to
nonstandard analysis, one might mention e.g. [17] and the introductory parts of [2].

4A finitely-additive measure is a function µ : A → [0,∞] defined on an algebra A assigning
to the union of any two disjoint sets the sum of the measure of these two sets, assigning
measure zero to the empty set and being monotone with respect to ⊆. A measure µ, on the
other hand, has the additional property that for every sequence (An)n∈N ∈ AN of disjoint
sets the sum

∑
n µ(An) converges and equals µ

(⋃
n An

)
. A σ-algebra is an algebra which is

closed under forming countable unions (and therefore under countable intersections as well).
A (finitely additive) probability measure is a (finitely additive measure) assigning measure
1 to the whole space. In [5], finitely-additive probability measures are called “probability
functions”.
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on the same (σ-)algebra.

2. The only possibility to perform this approximation is the method proposed
in [5, Appendix A].

3. The approximation in Appendix A is not unique in that every nonstandard
probability assigned to an event could be changed by an infinitesimal.

Conclusion:

4. There is never a canonical nonstandard probability measure for the for-
mulation of a probablistic law of nature.

The first presumption in his argument is flawed5 – notwithstanding that Elga
has proposed a convincing reasoning in favour of the second and third point in
the main argument. It is the main objective of this article to show that Elga’s
first premise is inaccurate.

There is no reason why the nonstandard probability measure we are look-
ing for should be defined on the state space itself, as long as we can find a
measurable transformation from the probability space where the nonstandard
measure is defined on to the state space. Therefore, it is sensible to allow for
nonstandard probabilistic laws of nature that are defined on internal probability
spaces (different from the state space). This prompts a new possibility to devise
nonstandard probability measures (which in turn may give the ultimately suc-
cessful candidates for probabilistic natures in the best system analysis suggested
by Lewis): The construction of (finitely-additive) internal probability measures
on internal algebras that can be measurably mapped to an algebra containing
all the singletons of the state space.

Since standard probability measures are extremely well understood, it is
desirable to associate a standard probability measure with any such internal
probability measure. In fact, one is lucky: Due to a theorem by Loeb [18],
any internal probability measure gives rise to a standard σ-additive probability
measure extending the standard part6 of the internal measure.

One can even define finitely-additive nonstandard (i.e. hyperreal-valued)
probability measures (nonstandard probability functions in the terminology of
[5]) satisfying Elga’s “regularity condition”7 very naturally on certain internal
subalgebras of internal (i.e. in the model-theoretic sense: definable) algebras8
by taking a generating system of this algebra and removing all algebra elements
to which the internal probability measure assigns zero. And every internal
probability space gives – via the Loeb measure construction outlined in Appendix

5Elga himself appears to realise that this point might be problematic, when he writes
“To my knowledge, there are only two ways of cooking up regular nonstandard probability
functions.“ [5, p. 70, footnote 10]

6For every hyperreal number r ∈ ∗R, the standard part r of r is defined to be the unique
real number s (if existent) such that r = s + ε for an infinitesimal ε. If no such number s
exists, one sets r = +∞ if r > 0 and r = −∞ if r < 0.

7This condition says that the empty set is the only event with probability zero.
8Probably the most frequently used example is the normalised hyperfinite counting measure

on the hyperfinite time line T :=
{

0, 1
H
, . . . , H−1

H
, 1
}
, a subset of the hyperreal unit interval

∗[0, 1] for an infinite hyperfinite number H ∈ ∗N \ N. The normalised hyperfinite counting
measure assigns to an internal subset A of T the internal cardinality of A (i.e. the smallest
hyperfinite number h such that there is an internal bijection between {0, . . . , h − 1} and A)
divided by H.
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A – rise to a σ-additive measure on the completion of the σ-algebra generated
by the internal algebra.

Summarising and paraphrasing the previous remarks, the pivotal difference
between Elga’s construction and ours is the order in which nonstandard and
standard measures are introduced.

3 Two examples for infinitesimal solutions to the
zero-fit problem

Now we will look for canonical candidates for such an internal (finitely additive)
probability measure in two settings.

First, we shall turn our attention to the example that Elga himself has
presented to illustrate the ambiguities that one will invariably get from merely
asserting the existence of nonstandard probability measures.

Let us fix a real number p̄ ∈ (0, 1) and denote the Bernoulli distribution of
parameter p by Bp = pδ0 + (1 − p)δ1 for any p ∈ (0, 1). For each h ∈ ∗N and
p ∈ (0, 1), we can assign an infinitesimal probability to each element a of the
sample space 2ω by defining

∀a ∈ 2ω ν(h)p {a} =
∏
i<h

Bp {∗a(i)} ,

where the right hand side is an element of ∗(0, 1) by the transfer principle. If h is
finite – that is, just a standard natural number – , then, after choosing an a ∈ 2ω,
the number ν(h)p {a} is the probability to get the sequence (a(0), . . . , a(n− 1))
after n coin tosses, under the assumption that the coin gives 0 with probability
p. In this setting, the function p 7→ ν

(h)
p {a} has an isolated maximum in p̄.

Combining this and other analytic properties of the function p 7→ ν
(h)
p {a} with

various instances of the transfer principle, we get that the function p 7→ ν
(h)
p {a}

is maximised by p̄ among all standard real numbers p ∈ [0, 1]∩R. This is proven
in Appendix B as Theorem B.1.

Let us next turn to a model of (one part of) what we perceive as the history
of “physical reality” that – while still being rather simplistic – comes closer to
what an actual scientific description would look like than a mere sequence of
coin tosses.

In order to keep things simple, we will exploit the quantisation of time and
we will therefore model the time-line as ω, the set of natural numbers. We shall
look at a model of the world that only knows finitely many states of the world,
and we shall impose the assumption that this description be instantaneously
complete in the sense that the conditional probability for a transition from one
state A to another one B will only depend on A. Technically speaking, we will
thus deal with a finite-state Markov chain.

We can view this as the partial description of a finite set of particles, endowed
with mass and electromagnetic charge, obeying the laws of classical Newtonian
mechanics (interpreted appropriately to take our time quantisation premise into
account) and Coulomb’s law – except when a collosion of two particles occurs,
which will stochastically result either in an elastic or a non-elastic collision (the
latter one forming a new particle, called a two-component particle), or in the
case of one of the particles being two-component, this two-component particle
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will always be breaking up into its components or the collision will be elastic.9
Then, if we assume that for each collision the stochastic distribution of possible
outcomes will only depend on the current state of the world (as opposed to its
history), a Markov chain model can be employed to describe the configuration
of the particles, the set of all singletons and pair-sets which correspond to one
or two-component particles, respectively. The decription through a finite-state
Markov chain will make sense since the set of all possible configurations has
finite cardinality.

Let us enumerate the possible configurations by 0, . . . , N − 1 and let pi,j :=
p(i, j) for i, j ∈ {0, . . . , N − 1} denote the conditional probability that, given
the current configuration is i, the configuration in the next moment will be j.
Then p := (pi,j)i<N,j<N ∈ [0, 1]N×N is commonly referred to as the matrix of
transition probabilities and satisfies the two conditions

∀j < N

N−1∑
i=0

pi,j = 1 (1)

(as we assume not to have omitted in our enumeration any possible configuration
that might occur in the next moment) as well as the dual condition

∀i < N

N−1∑
j=0

pi,j = 1 (2)

(meaning that we have counted in all the possible configurations from which
the current one might have come from). The set of possible histories of (con-
figurations which characterise one aspect of) the world will now equal the set
(N ×N)ω = ({0, . . . , N − 1} × {0, . . . , N − 1})N.

The zero-fit problem now appears in the following guise: If a ∈ (N × N)ω

is the actual history of the world, we are inclined to think that the matrix
p = (pi,j)i<N,j<N ∈ [0, 1]N×N of conditional probabilities that best fit our
observations should be given by the empirical limiting conditional frequencies
defined as

∀i, j < N qi,j(a) = lim
n→∞

|{` ≤ n : a(`) = i, a(`+ 1) = j}|
|{` ≤ n : a(`) = i}|

.

But the probability for the course that history has taken will always be

Pξp {a} = ξ{a(0)} ·
∞∏
n=0

pa(n),a(n+1)

(where ξ denotes the start distribution, that is the distribution of possible config-
urations at time 0) and this probability will – regardless of the particular choice
of p – always equal zero, except in the trivial case of ∀n < ω a(n) = a(0) and
pa(0),a(0) = 1 (corresponding to a world that does not change at all) where it is
going to be ξ{a(0)}.

However for the sake of circumventing this zero-fit problem we can now
employ the method outlined in Appendix B to canonically assign for arbitrary

9Studying this simple model of physical reality was suggested by an anonymous referee to
whom the the author would like to take this opportunity and express his sincere gratitude.
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hypernatural h ∈ ∗N \ N an infinitesimal chance ν(h)p {a} to a for every p ∈
[0, 1]N×N satisfing (1) and (2) by

ν(h)p {a} = ξ{a(0)} ·
∏
n<h

p∗a(n),∗a(n+1)

(where ∗ is an elementary embedding – in the model-theoretic sense – from
the standard mathematical universe to a nonstandard universe). One can then
show, in the same manner as in the proof of Theorem B.1 that for any infinite
h, ν(h)p {a} as a function of p becomes maximal when p = qi,j(a) – which is
nothing else but to say that when we truncate history after finitely many steps,
the transition matrix p that fits the observation best will simply be the one
obtained from evaluating the observation. Using the transfer principle and the
nonstandard characterisation of limits, this will also hold for all h ∈ ∗N when
p = qi,j(a).

A more rigorous presentation of these deliberations is provided in Theorem
C.1 and its proof.

4 Mathematical modelling in nonstandard uni-
verses?

The only remaning difficulty in the route of the previous section, which can be
but very serious, is to find the appropriate internal probability space related to
the state space. To a certain extent, this obstacle should not be too surprising.
On the one hand, roughly speaking, this is what nonstandard analysis is all
about10. On the other hand, the probabilistic modelling of a phenomenon in
the physical world is not a trivial task either – apart from certain toy problems
that are only used to emphasise methodoligical complications.

Given the task of finding an appropriate mathematical framework for a dis-
course involving probabilistic statements, there is no obvious reason to conceive
of probabilities as elements of the real unit interval [0, 1] rather than its nonstan-
dard counterpart ∗[0, 1]11 Basically, the notion of probability is a generalisation
and idealisation of the notion of relative frequency.

Therefore, there are not that many restrictions on what a suitable notion of
probability should be. Let us assume that we agree that a notion of probability
should always be realised by a function µ : A → S, where A is an algebra
(reflecting the canonical correspondence between Boolean algebras12 and sets of
sentences of a first order propositional language) on some space Ω and S is a
certain structure. The requirements on this structure are more or less immediate

10Written from a mathematical physicist’s point of view, [1] is a non-technical article high-
lighting related advantages and challenges of nonstandard analysis.

11A “radical” work by Nelson [20] concentrates on the latter rather than the former, proving
nonstandard versions of the Central Limit Theorem and the Law of Large Numbers for internal
stochastic processes and random variables. This is not about using nonstandard methods to
obtain results in standard stocahstic analysis (which has also been successful, witnessed e.g.
in [3],[21],[8, 9],[22], [14],[2],[25], [15], and more recently in [6]), but about a quite different
conception of what probability is.

12As was already pointed out, the usual convention in mathematical probability theory is
to consider, by definition of the spaces of events, only σ-additive measures on σ-algebras.
This is largely a consequence of the intention to study stochastic processes and their limiting
behaviour.
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from how we use natural language to talk about probabilities: One should be
able to do basic arithmetic in S; it should be possible to compare two elements
of S (by means of a linear order ≺); there should be two elements o,1 ∈ S
such that o ≺ p ≺ 1 for all S; the rational numbers between 0 and 1 should
be embeddable into S (in order to include references to relative frequencies).
Since every ordered field can only have characteristic zero, one would technically
require:

1. S is a subset of an ordered field (F,≺,+, ·, o,1);

2. For all p ∈ S, o ≺ p ≺ 1

Obviously, ∗[0, 1] satisfies these criteria for the field (∗R,≤,+, ·, 0, 1).

5 Are nonstandard models unnatural?
One objection to the use of any nonstandard analysis at all might read: “The
proof for the existence of nonstandard models of the reals is nonconstructive
– using the ultrafilter existence theorem – , therefore there is no way to call
any nonstandard (finitely additive) probability measure canonical.” In fact,
there is a definable nonstandard model of the reals, as proven by Kanovei and
Shelah [13]. Also note that the method of constructing nonstandard finitely
additive probability measures proposed in this paper does not rely on features of
a particular class of nonstandard models of the reals (apart from ℵ1-saturation,
which holds regardless of the ultrafilter one chooses to extend the filter of co-
finite sets on ω in the usual existence proof of ∗R).

6 Likelihoods and densities
Elga argues against another possible solution of the zero-fit problem which he
refers to as “integrating over densities”. Basically, this is nothing but a straight-
forward generalisation of what is well-known as “comparing likelihoods” to statis-
ticians. The common terminology in statistics [4], which we shall adopt, is to
address as “likelihood” what Elga calls “density”, and to refer to Elga’s “density
functions” as “densities” or “likelihood functions”.

What is remarkable about a rejection of this method (or its canonical gener-
alisation) is that this approach is one of the most frequently-used and basic tools
in statistics, although its usual formulation can only be applied successfully if
one has to compare probability distributions on finite-dimensional real vector
spaces. On the other hand, this is certainly the most important example for a
zero-fit problem arising in practice.

The theoretical background for the use of densities or likelihood functions
is the Radon-Nikodym Theorem: If µ and ν are measures on the same measure
space, then ν has a µ-density if and only if all null sets with respect to µ (these
are called µ-null sets) are ν-null sets as well [7].

For example, all Gaussian measures on finite-dimensional real vector spaces
have, of course, a density with respect to the Lebesgue measure. In the case
of the space 2ω of countable coin tossing sequences, Elga has shown in his
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paper [5] that no such measure µ can exist, no matter what powers of Bernoulli
distributions one might be looking at.13

So the deeper reason why a generalised likelihood (“integrating over densi-
ties”) approach fails in the case of the countable coin tossing example is that
the powers of Bernoulli distributions on 2ω do not have all the same null sets.
But this already provides a new way of distinguishing two candidates for the
best-system analysis, and possibly a comparison of the ideals of null sets for
powers of different Bernoulli measures highlights a difference that vindicates
the preference of one over the other.

Generalising our previous remarks, we may maintain that the idea of using
generalised likelihoods is not automatically deemed to failure, but might well
be a promising approach to deal with zero-fit problems.

When looking for explicit formulae for the densities of the candidate dis-
tributions, there are certain probability measures that can be regarded as the
canonical ones to be used as the measure with respect to which the respective
densities are to be found: If the measure space on which the candidate measures
are defined has a topological group structure, there is the Haar measure [7], the
essentially unique translation-invariant measure – e.g. in the case of the reals
with their order topology and the addition as group operation, the Lebesgue
measure is the Haar measure. But even if there is no structure at all apart from
the probability space structure, one can still find a canonical measure by means
of the Maharam spectrum14 [19].

In order to talk meaningfully about the value of a density function with
respect to this canonical measure when applied to a particular element of the
probability space, we will again have to single out one particular version of this
density function – as any density function will a priori only be defined up to
changes on null sets. One particular approach will be to look for continuous
densities: In an appendix, we shall show that if we assume the probability
space (Γ,G, ν) to be a complete separable metric space and G to be the Borel
σ-algebra generated by the topology of Γ, then a continuous version of a density
function on Ω =

∑
κ∈I ακ · [0, 1]κ will be well-defined everywhere. In that case

a pointwise comparison of two continuous versions of density functions makes
sense and can be applied to a best system analysis in the following vein. Suppose
we are given a set of equivalent measures {µj : j ∈ J} of equal complexity
(for instance if j ∈ J is simply a parameter occurring in the definition of the
µj) – possible models of (one aspect of) reality – on Ω, and suppose νj have
continuous densities fj . Then our observations in the preceding paragraph yield
the uniqueness of fj . Therefore, fixing the actual world a ∈ Ω, it does make
sense to look, generalising the maximum likelihood method, for a parameter

13One might suspect that Elga’s proof is incomplete because he does not show the mea-
surability of those subsets of 2ω that yield the reductio ad absurdum. However, this is not a
serious gap in this particular case (cf. Appendix D).

14The measure algebra of a measure space is the σ-algebra of the measure space modulo
the ideal of null sets. One can show [19] that for any atomless probability space there is a
countable set of cardinals, the Maharam spectrum I, and a set of positive numbers {ακ}κ∈I
satisfying

∑
κ ακ = 1 such that the measure algebra of that probability space is algebra-

isomorphic to the measure algebra of Ω =
∑
κ∈I ακ · [0, 1]κ – where the unit interval [0, 1] is

assumed to be equipped with the Lebesgue measure – , the sum being direct and calculated
event-wise. The measure algebras derived from the measure space [0, 1]κ for some cardinal
κ are called homogeneous measure algebras. On the importance of Maharam spectra for the
model theory of stochastic processes, cf. Fajardo and Keisler [6].
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or index j ∈ J such that fj(a) is maximal. However, one should note once
again that this way of comparing two atomless probability measures first of all
presupposes having found a density with a continuous version on the associated
direct sum of homogeneous measure algebras.

Appendix

A Internal probability measures and the Loeb
measure construction

As a summary of the following, somewhat technical paragraph: One can define
finitely-additive nonstandard (i.e. hyperreal-valued) probability measures (non-
standard probability functions in the terminology of [5]) satisfying Elga’s “regu-
larity condition”15 often very naturally on internal (i.e. in the model-theoretic
sense definable) algebras16. And such an internal probability space gives rise
to a σ-additive measure on the completion of the σ-algebra generated by the
internal algebra.

Starting from an internal probabilty space (Ω,A, µ) – i.e. a triple consisting
of an internal set Ω, an internal algebra A of subsets of Ω and an internal prob-
ability measure17µ : A → ∗[0, 1] – one can, as Loeb [18] discovered, construct in
the canonical way the Carathéodory extension [7] of (A, µ) , since ℵ1-saturation
of the nonstandard universe implies the ∅-continuity of the finitely-additive mea-
sure µ. Thus, one obtains a real-valued (as opposed to hyperreal-valued), σ-
additive, probability measure extending µ to the completion σ(A) = σ(A)∨Nµ
(with respect to µ) of the σ-algebra σ(A) generated by the algebra A. The
σ-algebra L(A) := σ(A) is called the Loeb σ-algebra of A (with respect to µ)
and the extension of µ to L(A) is called the Loeb measure L(µ) of µ.

One could even envisage a more extended application of Loeb’s work [18] to
our problem: Due to Loeb [18], every element of the Loeb σ-algebra can be ap-
proximated by an element of the internal algebra18. Since it is possible to obtain
this internal set C for every element of the Loeb σ-algebra A, one can assign,
using the axiom of choice, to A the nonstandard probability µ(C) and arrives
at a nonstandard set function which is finitely-additive up to an infinitesimal
on L(A) (and finitely-additive on A). This shows that it is even possible to
extend the nonstandard finitely additive probability measure in a suitable way
to the σ-algebra generated by A. However, given the non-constructive manner
in which this extension is achieved, one is not immediately able to avoid the
problem that Elga’s approximation in [5, Appendix A] has: Our “requirements

15This condition says that the empty set is the only event with probability zero.
16Probably the most frequently used example is the normalised hyperfinite counting measure

on the hyperfinite time line T :=
{

0, 1
H
, . . . , H−1

H
, 1
}
, a subset of the hyperreal unit interval

∗[0, 1] for an infinite hyperfinite number H ∈ ∗N \ N. The normalised hyperfinite counting
measure assigns to an internal subset A of T the internal cardinality of A (i.e. the smallest
hyperfinite number h such that there is an internal bijection between {0, . . . , h − 1} and A)
divided by H.

17A function µ : A → ∗[0, 1] defined on an internal algebra A is an internal probability
measure if and only if it is monotone with respect to ⊆, assigns to the union of two disjoint
sets the sum of the measures of these two sets, and assigns 0 to ∅.

18More precisely: For every B ∈ L(A) there is a C ∈ A such that L(µ) (B∆C) =
L(µ) ((B \ C) ∪ (C \B)) = 0.
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only very weakly constrain the probabilities those functions assign to any indi-
vidual outcome” [5, p. 70]. This illustrates why one needs to accomplish that
the probability measure on the algebra generated by the singletons stems from
an internal (finitely-additive) probability measure.

As soon as one can assign an element of the internal space to every element of
the state space and provided the measure on the internal space is chosen in such
a way that singletons have always positive (possibly infinitesimal) probability,
one can easily define a nonstandard finitely-additive probability measure on the
algebra generated by the singletons from elements of the state space such that
one ends up with a “regular nonstandard probability function” in the sense of
[5]. It is crucial to note that the use of a choice function in the extension of the
internal finitely additive probability measure is now causing no harm any more,
for the space of the singletons of the individual worlds (which we would like
assign non-zero infinitesimal probabilities to) is internal. Moreover, singletons
of elements of internal sets are always internal. And for elements of the internal
algebra, the nonstandard probability is fixed by the internal finitely additive
measure µ.

B The (countable) coin tossing sequence revis-
ited

We are going to show how there can be, for every Bernoulli distribution on
2 = {0, 1}, a canonical nonstandard probability assigned to any possible world
a ∈ 2ω.

Let p ∈ (0, 1), h ∈ ∗N \ N, and set Ω := 2h, which is the space of internal
functions from {0, . . . , h − 1} to 2. The algebra A, consisting of all internal
subsets of Ω, should be the algebra of events. There shall be an internal finitely
additive probability measure µ : A → ∗[0, 1], defined by

µp : {b} 7→ Πi<hBp{b(i)},

where Bp := B1,p is the Bernoulli measure p · δ0 + (1 − p)δ1 on 2, assigning
probability p to {0}. This product on the right hand side always exists because
of the transfer principle, and since A contains only hyperfinite elements (for
2h is hyperfinite), this set function can be uniquely extended from the set of
all singletons from Ω to the entire algebra A. Observe that any possible world
a ∈ 2ω has a canonical image ∗a ∈ 2

∗N in the nonstandard universe (which is
usually identified with a).

Now one notes that
⋂
i<h {·(i) = a(i)} is hyperfinite and defines the chance

of a possible world a to be

ν(h)p {a} := µp

[⋂
i<h

{·(i) = a(i)}

]
,

which is infinitesimal, since every factor in the product of the definition of µp for
singletons is less than one. This gives a finitely additive nonstandard probability
measure in the algebra generated by singletons of the state space 2ω, just as
required.

The only arbitrarity in this construction is the choice of an h ∈ ∗N\N. How-
ever, this has no effect on for which worlds a a particular Bernoulli distribution
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Bp should be preferred over other ones. Hence, it has no impact on the outcome
of the best-system analysis.

Most importantly, one can solve the zero-fit problem in this case by proving

Theorem B.1. Using the previous paragraph’s notation and fixing an a ∈ 2ω,
the limiting relative frequency p̄ of 0’s in a maximises ν(h)p {a} amongst the
standard real numbers p ∈ [0, 1] for all infinte hypernatural h.

Proof. Observe that

∀a ∈ 2N∀p ∈ [0, 1] f(a, h, p) := µp {a � h}

=
∏
i<h

Bp {a(i)}

= pcard{a(·)=0}(1− p)card{a(·)=1}

= pφ(a,h)(1− p)h−φ(a,h),

where φ(a, h) =
∑
i<h a(i) is the absolute frequency of 0’s in a � h. Then by

transfer

∀b ∈ ∗
(
2N
)
∀p ∈ ∗[0, 1] ∗f(b, h, p) = µp {b � h}

=
∏
i<h

Bp {b(i)}

= pcard{b(·)=0}(1− p)card{b(·)=1}

= pφ(b,h)(1− p)h−φ(b,h).

In particular, for all a ∈ 2N, and p ∈ ∗[0, 1]

ν(h)p {a} = µp {∗a � h} = ∗f (∗a, h, p)

= pφ(
∗a,h)(1− p)h−φ(

∗a,h).

where we do not distinguish between ∗φ and φ. Now, for finite h and standard
a ∈ 2N, h ∈ N, one easily checks, via computing the derivative of the function
f(a, h, ·) as

(f(a, h, ·))′ : p 7→ pφ(a,h)−1(1− p)h−φ(a,h)−1 (φ(a, h)− p · h) ,

that the (isolated) maximum of f on [0, 1] is attained when p = φ(a, h)/h.
Moreover, this is the only local extremum, and the farther p is from φ(a, h)/h,
the less is f(a, h, p) = ν

(h)
p {a}. This is to say that the function f(a, h, ·) : r 7→

rφ(a,h) · (1− r)1−φ(a,h), where

φ(a, h)/h =
1

h

∑
i<h

a(i),

is strictly monotonely decreasing on
[
φ(a,h)
h , 1

]
and strictly monotonely increas-

ing on
[
0, φ(a,h)h

]
. Note that all this can be expressed in the language of ordered

fields: < and = are the only relations, and +,−, ·, ÷ the only functions that need
to be employed to formalise the last sentence. By transfer to the nonstandard
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universe, the assertion of the penultimate sentence therefore also holds for infi-
nite hypernatural h and a ∈ ∗

(
2N
)
: ν(h)· {a} = ∗f (∗a, h, ·) strictly monotonely

decreasing on
[
φ(∗a,h)

h , 1
]
and strictly monotonely increasing on

[
0, φ(

∗a,h)
h

]
.

Let us now fix such an h ∈ ∗N \ N and let us identify a with ∗a for a ∈ 2N.
If we denote the limiting relative frequency of a ∈ 2N by p̄, i.e.

lim
n→∞

1

n

∑
i<n

a(i) = p̄,

we have – by the nonstandard characterisation of limits – the approximate
equality

φ(a, h)/h =
1

h

∑
i<h

a(i) ≈ p̄

(where h could be any infinite hypernatural number). Note that the function
f1/h has the same monotonicity properties as f , but it is also ∗-differentiable

with non-infinitesimal difference quotients

(
ν
(h)

φ(a,h)
h

+ε
{a}
) 1
h

−
(
ν
(h)

φ(a,h)
h

{a}
) 1
h

ε and(
ν
(h)

φ(a,h)
h

{a}
) 1
h

−
(
ν
(h)

φ(a,h)
h

−ε
{a}
) 1
h

ε for non-infinitesimal ε > 0. (To see this, note

that we have found an expression for
(
ν
(h)
p {a}

) 1
h

which only depends on the

relative frequency φ(a,h)
h of 0’s in the sequence, and on p; furthermore, this

expression is continuous in φ(a,h)
h , hence we can use the non-zero lower bounds

on the absolute values of these difference quotients that we get for finite h also
for hyperfinite h.) Therefore we can prove that whenever q is a standard real
number and p̄ = ◦ φ(

∗a,h)
h (where ◦ : ∗R→ R∪ {±∞} denotes the standard part

function), then f1/h(p̄) > f1/h(r), which immediately gives f(p) > f(r).

C Solution to the zero-fit problem for a finite-
state model without memory

We shall now keep the promise made in Section 3 and prove rigorously that in
discrete memory-less models of reality, one can solve the zero-fit problem by
means of infinitesimal probabilities.

Theorem C.1. Consider any infinite hypernatual number h. Adopting this
section’s notation and considering an a ∈ (N ×N)ω, the function

f := f(a, h, ·) : p 7→
h−1∏
n=0

p (∗a(n), ∗a(n+ 1))

attains its maximum on the set

Q :=

{
(p(i, j))i<N,j<N ∈ [0, 1]N×N :

∀j < N
∑N−1
i=0 p(i, j) = 1,

∀i < N
∑N−1
j=0 p(i, j) = 1

}
⊂ RN×N

(the set of transitions matrices) in (qi,j(a))i,j<N .

12



Proof. In analogy to the proof of Theorem B.1, it suffices to prove that for
finite h > 0, the function f(a, h) has an isolated global maximum on Q in(
|{`≤h : a(`)=i, a(`+1)=j}|

|{`≤h : a(`)=i}|

)
i,j<N

, – which is nothing else but to say that when

we truncate history after finitely many steps, the transition matrix p that fits the
observation best will simply be the one obtained from evaluating the observation.
A formal proof for this assertion can be given by introducing the abbreviations

φ(i, a, h) = |{` ≤ n : a(`) = i}|

as well as
φ(i, j, a, h) = |{` ≤ n : a(`) = i, a(`+ 1) = j}|

for all i, j < N and then writing f as

f(p)

=
∏

i<N−1,j<N−1
p(i, j)φ(i,j,a,h)

·
∏

i<N−1

1−
∑

j<N−1
p(i, j)

φ(i,N−1,a,h)

·
∏

j<N−1

(
1−

∑
i<N−1

p(i, j)

)φ(N−1,j,a,h)

·

1−
∑

i<N−1

 ∑
j<N−1

p(i, j)

φ(N−1,N−1,a,h)

,

which is a function that only depends on the coordinates (i, j) with i, j <
N − 1 and therefore is well-defined as a function on R(N−1)×(N−1), as one can
then, via computing the partial derivatives of the smooth function f , show that
f : [0, 1](N−1)×(N−1) → [0, 1] attains its global maximum on the compact set
[0, 1](N−1)×(N−1) in

(
|{`≤h : a(`)=i, a(`+1)=j}|

|{`≤h : a(`)=i}|

)
i,j<N−1

, and that for all i0, j0 <

N − 1, the function f
((
|{`≤h : a(`)=i, a(`+1)=j}|

|{`≤h : a(`)=i}|

)
i,j<N−1,i6=i0,j 6=j0

, ·
)

will be

strictly monotone on each of the intervals
[
|{`≤h : a(`)=i0, a(`+1)=j0}|

|{`≤h : a(`)=i0}| , 0
)
and(

|{`≤h : a(`)=i0, a(`+1)=j0}|
|{`≤h : a(`)=i0}| , 0

]
.

Since this is a first-order predicate logic expression in the language of or-
dered fields, we can use the transfer principle to obtain that the same as-
sertion also holds for infinite hypernatural h and the corresponding function
f : ∗[0, 1](N−1)×(N−1) → ∗[0, 1]. But then f1/h must have the same monotonic-
ity properties and, what is more, it will be ∗-differentiable with non-infinitesimal
difference quotients outside the monad of

(
|{`≤h : a(`)=i, a(`+1)=j}|

|{`≤h : a(`)=i}|

)
i,j<N−1

.

Hence whenever r ∈ [0, 1](N−1)×(N−1) ∩ R(N−1)×(N−1) with

r 6= ◦
(
|{` ≤ h : a(`) = i, a(`+ 1) = j}|

|{` ≤ h : a(`) = i}|

)
i,j<N−1

=: p̄ ∈ R

(◦ : ∗R(N−1)×(N−1) → (R ∪ {±∞})(N−1)×(N−1) denoting the multidimensional
standard part function), we will have that f1/h (p̄) > f1/h(r) and therefore
f (p̄) > f(r).
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However, due to the nonstandard characterisation of limits, for all h ∈ ∗N\N,

p̄ = ◦
(
|{` ≤ h : a(`) = i, a(`+ 1) = j}|

|{` ≤ h : a(`) = i}|

)
i,j<N−1

= lim
n→∞

(
|{` ≤ n : a(`) = i, a(`+ 1) = j}|

|{` ≤ n : a(`) = i}|

)
i,j<N−1

= (qi,j(a))i,j<N−1 .

Thus we finally arrive at f(r) < f ((q(a)) for all r 6= q(a).

D An additional note on “Integrating over densi-
ties”

Elga’s opposition to the generalisation of a likelihood approach to the zero-fit
problem for countable coin tossing sequences is based on the assumption that,
in Elga’s notation, the subset Lx ⊂ 2ω of all those sequences where the limiting
frequence of tails (or heads) is x should be measurable with respect to any power
of Bernoulli measures on 2ω. Hence, in our set of possible worlds 2ω, it should be
considered an event, i.e. a measurable19 set, that the limiting frequency equals
such a number x ∈ [0, 1]. In case there is any doubt about this,

Lx =
⋂

ε∈Q>0

⋃
N∈ω

⋂
n≥N

{∣∣∣∣∣ 1n
n−1∑
i=0

χπi−1{0} − x

∣∣∣∣∣ ≤ ε
}
,

if π : 2ω → 2 is the projection on the i-th toss.

E Well-defined continuous versions of density func-
tions

We shall now prove that if we make the topological assumption on the probabil-
ity space Γ described in Section 6, then a continuous version of a density function
(if existent) will be well-defined everywhere on the direct sum of homogenous
measure spaces associated with Γ.

So let us assume that the probability space (Γ,G, ν) (whose measure algebra
is isomorphic to Ω :=

∑
κ∈I ακ · [0, 1]κ) will be an “ordinary” probability space

in the sense of Fajardo and Keisler’s [6], that is a separably metrisable complete
space with ν being the completion of a probability measure on the Borel σ-
algebra of Γ. In that case the Maharam spectrum will only consist of finite and
countable cardinals20, thus the Maharam spectrum will be a subset of ω + 1
(and therefore it cannot be the direct sum of a set of probability spaces that

19Maybe it is worth reminding the reader that measurability cannot always be expected
from an arbitrary subset of a measure space. Assuming the Axiom of Choice, it is for example
by no means necessary that every subset of the reals is Lebesgue-measurable, as one knows
from the standard example of the Vitali set. Although the Vitali set is “constructed” by means
of the Axiom of Choice, it was not clear until the late sixties whether it would be possible
to obtain such an object without use of the Axiom of Choice. Solovay showed, using forcing
techniques, in the late Sixties that this is impossible [24]. Both [10] and [12] contain more
detailed, as well as historical, information on the so-called “measure problem”.

20To see this, first recall that according to Fajardo and Keisler [6, Theorem 3B.7] the
Maharam spectrum of a saturated probability space is a set of uncountable cardinals. However,
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contains a Loeb space21). Due to separability, this is a huge advantage, as. Let
us now assume without loss of generality that our model was built on Ω (instead
of Γ) in the first place.

The topology with respect to which our density function should be con-
tinuous is the one inherited from the Maharam spectrum. Starting from the
order topology on [0, 1], we obtain – by choosing the coarsest topology such
that projections are continuous – a topology on [0, 1]α for all α in the Maharam
spectrum I ⊂ ω + 1, enabling us to endow

∑
κ∈I ακ · [0, 1]κ with a topology.

Under this construction, we can now employ the assumption I ⊂ ω + 1 to see
that all continuous functions f : [0, 1]α → R will be measurable, since all closed
sets in [0, 1]ω will be measurable22. Continuing to assume as little topological
measure theory as possible on the part of the reader, we now remark that two
continuous functions f0, f1 : [0, 1]ω → R which we know to agree on all of [0, 1]κ

except possibly on a null set will in fact be equal23. Thus, if a density function
on the direct sum Ω of homogeneous measure spaces associated with Γ has a
continuous version, it is going to be well-defined everywhere on Ω.
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