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Abstract

We consider optimal consumption and portfolio choice in the pres-

ence of Knightian uncertainty in continuous-time. We embed the prob-

lem into the new framework of stochastic calculus for such settings,

dealing in particular with the issue of non�equivalent multiple priors.

We solve the problem completely by identifying the worst�case mea-

sure. Our setup also allows to consider interest rate uncertainty; we

show that under some robust parameter constellations, the investor

optimally puts all his wealth into the asset market, and does not save

or borrow at all.
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1 Introduction

The optimal way to invest and consume one's wealth belongs to the basic
questions of �nance. The standard textbook answer uses Merton's (1969)
solution within the framework of the geometric Brownian motion model for
risky assets. In this paper, we generalize this fundamental model to allow
for Knightian uncertainty about asset and interest rate dynamics and study
the consequences for ambiguity�averse investors.

In continuous time, Knightian uncertainty leads to some subtle issues.
Uncertainty about volatility, as well as uncertainty about the short rate, re-
quires the use of singular probability measures, a curious, but in an ambigu-
ous world natural fact. The investor is cautious and presumes that nature
has unpleasant surprises. In particular, the volatility of risky assets can take
surprising paths, within certain limits.

Fortunately, the last years have seen the development of a new stochastic
calculus1 that extends the omnipresent Itô�calculus to such multiple prior
models . The rationality of such an approach as well as the consequences
for utility theory and equilibrium asset pricing have recently been discussed
at length by Epstein and Ji (2011). We show here how to embed the classic
Merton�Samuelson model into this new framework. The new framework
has the advantage that it allows to use essentially well-known martingale
arguments to establish optimality of candidate policies, just as in the classic
case.

While explicit results are di�cult to obtain under Knightian uncertainty
in general, we are here able to solve completely the ambiguity�averse in-
vestor's optimal consumption�portfolio problem. In a �rst step, we derive the
extension to Knightian uncertainty for the classic Hamilton�Jacobi�Bellman
equation. A closer analysis of that equation leads to a conjecture for the
worst�case measure. We then verify that the ambiguity�averse investor be-
haves as a classic expected�utility maximizer under the worst�case measure
by using the new techniques. The existence of a worst case measure imme-
diately yields a maxmin result: the value function under ambiguity is the
lower envelope of the value functions under expected utility.

Ambiguity leads to di�erent predictions for optimal portfolios and con-
sumption plans. As in simple static models, high ambiguity about the mean
return of the uncertain asset leads to non�participation in the asset market.
As far as volatility is concerned, we show that our risk� and ambiguity�averse
investor always uses the maximal possible volatility to determine the opti-

1Denis and Martini (2006) developed such a framework for studying the pricing of
options under Knightian Uncertainty; Peng (2007) develops the whole theory of stochastic
calculus from scratch under Knightian uncertainty.
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mal policy. A more surprising and, as far as we know, new result emerges
when we take interest rate uncertainty into account: for robust parameter
sets, the investor puts all his wealth into the asset market when interest rate
uncertainty is su�ciently high, a phenomenon that we have observed in the
aftermath of the recent �nancial crisis. When interest rates are low, and
su�ciently high ambiguity is perceived by investors, they prefer to put all
capital into assets only. Both saving and borrowing are considered to be too
uncertain to be worthwhile activities.

The problem of Knightian or model uncertainty has recently attracted a
great deal of attention, both in practice, as the sensitivity of many �nan-
cial decisions with respect to questionable probabilistic assumptions became
clear, and in theory, where an extensive theory of decision making and risk
measurement under uncertainty has been developed. Gilboa and Schmeidler
(1989) lay the foundation for a new approach to decisions under Knightian
uncertainty by weakening the strong independence axiom or sure thing prin-
ciple used previously by Savage (1954) and Anscombe and Aumann (1963)
to justify (subjective) expected utility. The models are closely related to
monetary risk measures (Artzner, Delbaen, Eber, and Heath (1999)). Sub-
sequently, the theory has been generalized to variational preferences (Mac-
cheroni, Marinacci, and Rustichini (2006a), Föllmer and Schied (2002)) and
dynamic time-consistent models (Epstein and Schneider (2003), Maccheroni,
Marinacci, and Rustichini (2006b), Riedel (2004)).

The pioneering results of Samuelson (1969) and Merton (1969) laid the
foundation for a huge literature. As mean return, volatility, and interest
rates are constants in the basic model, the consequences of having stochas-
tic, time-varying dynamics for these parameters have been studied in great
detail. Mean�reverting drift (or �predictable returns�) , stochastic volatil-
ity models and models with stochastic term structures have been studied in
detail. These models all work under the expected utility paradigm as they
assume a known distribution for the parameters. In the same vein, one can
also study incomplete information models where the investor updates his ini-
tial belief about some unknown parameter2. In contrast to these Bayesian
models, we focus here on the recent Knightian approach where the investor
takes a pessimistic, maxmin view of the world concerning the parameters of
her model. One can also relax the time�additive structure of the intertempo-
ral utility function as in recursive utility models Du�e and Epstein (1992),
Hindy�Huang�Kreps models (Hindy and Huang (1992), Bank and Riedel

2Barberis (2000) studies mean�reverting returns and estimation errors. Chacko and
Viceira (2005) study stochastic volatility. See Liu (2007) for a recent general approach
with stochastic interest rates and volatilities. Schroder and Skiadas (2002)
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(2001)), or allow for trading constraints and transaction costs, topics that
are outside the scope of this paper.

The Knightian approach is closely related to model uncertainty, or robust-
ness considerations in the spirit of Anderson, Hansen, and Sargent (2003).
For example, Trojani and Vanini (2002) and Maenhout (2004) study the
robust portfolio choice problem with drift ambiguity. Drift ambiguity in con-
tinuous time is also discussed in Chen and Epstein (2002), Miao (2009) ,
Schied (2005), Schied (2008), Liu (2010), Liu (2011) among others. Föllmer,
Schied, and Weber (2009) survey this literature. In these papers, a reference
measure to which all priors are equivalent is used, in contrast to our ap-
proach. In particular, one cannot discuss volatility uncertainty within these
models.

The paper is setup as follows. The next section formulates the Merton
model under Knightian uncertainty within the new framework. The following
section derives derives optimal consumption and portfolio rules for ambiguity-
averse investors with �xed interest rates. Section 4 then generalizes to am-
biguous interest rates. An appendix collects the relevant information about
the new stochastic calculus.

2 The Samuelson-Merton Model under Knigh-

tian Uncertainty

The standard workhorse for asset pricing in continuous time has been pro-
posed by Samuelson (1969) and Merton (1971); they work with a safe asset,
or bond, with deterministic dynamics

dPt = rPtdt

for a known interest rate r and a risky asset S that satis�es

dSt = µStdt+ σStdBt

for a Brownian motion B and known drift and volatility parameters µ and
σ.

This basic model has been extended in many forms, of course3. Here,
we show how to treat the optimal portfolio-consumption choice problem for
an investor who does not know the speci�c parameters nor their probability
laws. We thus have Knightian uncertainty in the sense that the distribution
of the unknown parameters is not known. However, the investor is willing

3
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to work with (or knows) certain bounds for the relevant parameters; she is
ambiguity�averse and aims to �nd a policy that is robust to such parameter
uncertainty in the sense that it is optimal even against a malevolent nature.

As far as modeling is concerned, our new approach shows how to embed
the Samuelson�Merton model in an extended stochastic calculus framework;
the advantage of that model is that it allows to use the well-known Itô-
calculus-type martingale arguments to solve the problem.

Technically, we will replace the standard Brownian motion B by a so�
called G�Brownian motion that we denote by the same symbol B. A G�
Brownian motion is a di�usion with unknown volatility process. It shares
many properties with the known Brownian motion of classic calculus; its
quadratic variation 〈B〉, however, is not equal to expired time t; only esti-
mates of the form

〈B〉t ∈
[
σ2t, σ2t

]
for some volatility bounds 0 < σ ≤ σ are given. The classical model is
recovered for σ = σ.

We will replace the drift term µdt by an ambiguous term dbt where b is
a process of bounded variation that allows for any drift between two bounds
[µ, µ]. Our new model for what we now call the uncertain, rather than the
risky asset reads as

dSt = Stdbt + StdBt .

We will write dRt = dbt+dBt for the return process in the sequel. It exhibits
mean and volatility uncertainty.

The riskless asset is standard, with price dynamics

dPt = rPtdt,

where r is the constant interest rate. One can allow for interest rate uncer-
tainty as well as we show in Section 4. For the moment, the results are more
transparent when we keep the idealized assumption of constant and known
interest rates.

The investors beliefs are summarized then by a set of priors of the form
P µ,σ where µ and σ are (progressively measurable) stochastic processes. Un-
der a prior P µ,σ, the uncertain asset has drift µ and volatility σ, and the
short rate is equal to r. Note that for di�erent volatility or short rate speci�-
cations, the priors are mutually singular to each other. The investor does not
�x the null sets ex ante; under model uncertainty, one needs to reduce the
number of �impossible� events. Only events that are null under all possible
priors can be considered to be negligible. Technically, these events are called
polar; if an event has probability one under all priors, we say it happens
quasi-surely.
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In the appendix, we describe the mathematical construction of the set of
priors P and the corresponding sublinear and superlinear expectation for the
more general multi-dimensional case (using Shige Peng's method) in more
detail. It can be skipped at �rst reading.

2.1 Asset Prices

Let B be a G-Brownian motion with volatility bounds [σ, σ]. Let b be two
maximally distributed increasing process with drift bounds [µ, µ].

The uncertain asset prices evolve as

dSt = StdRt, S0 = 1

where the return dynamics satisfy

dRt = dbt + dBt .

The locally riskless bond evolves as

dPt = Ptrdt, P0 = 1 .

2.2 Consumption and Trading Opportunities

The investor chooses a portfolio strategy π and a consumption plan c. Uncer-
tainty reduces the set of possible consumption plans and trading strategies an
investor might choose. This re�ects the economic incompleteness of markets
that uncertainty can bring. As in the classic case, we want to give precise
meaning to the intertemporal budget constraint

dXt = Xtπ
T
t dRt + (1− πTt 1)Xtrdt− ctdt

= rXt(1− πTt 1)dt+Xtπ
T
t dbt − ctdt+Xtπ

T
t AdBt . (2.1)

In order to do so, we have to introduce suitable restrictions, intuitively speak-
ing, to make the stochastic di�erential equation meaningful under all priors
simultaneously.

In order to give the de�nitions of a consumption plan and portfolio choices
precisely, we introduce spaces of random variables and stochastic processes,
which are di�erent from the classical case, technically speaking, because of
the nonequivalence of the priors.

We denote by Ω = C2d
0 (R+) the space of all R2d-valued continuous path

(ωt)t∈R+ with w0 = 0, equipped with the topology generated by the uniform
convergence on compacts.
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We let L2(Ω) be the completion of the set of all bounded and continuous

functions on Ω under the norm ‖ ξ ‖= Ê[|ξ|2]
1
2 := sup

P∈P
EP [|ξ|2]

1
2 . For t ∈

[0, T ], we de�ne the following space

Lip(Ωt) =
{
ϕ(ωt1 · · · , ωtm) | m ∈ N, t1, · · · , tm ∈ [0, t],

for all bounded function ϕ
}
.

For p ≥ 1, we now consider the process η of the following form:

η =
n−1∑
j=0

ξj1[tj ,tj+1),

where 0 = t0 < t1 < · · · < tn = T , and ξj ∈ Lip(Ωtj), j = 0, · · · , n − 1, We
denote the set of the above processes Mp,0. And the norm in Mp,0 is de�ned
by

‖ η ‖p=
(
Ê
[ ∫ T

0

|ηt|pdt
]) 1

p

=

(
Ê
[ n−1∑
j=0

|ξtj |p(tj+1 − tj)
]) 1

p

.

Finally, we denote by Mp the completion of Mp,0 under the above norm.
The investor chooses a consumption plan c, a nonnegative stochastic pro-

cess such that c ∈M1. Also the investor can choose the fraction of wealth πit
invested in the i risky asset, and the fraction of wealth 1−

∑d
i=1 π

i
t invested

in the riskless asset.
The wealth of the investor with some initial endowment x0 > 0 and

portfolio�consumption policy (π, c) is given by

dXt = Xtπ
T
t dRt + (1− πTt 1)Xtrdt− ctdt

= rXt(1− πTt 1)dt+Xtπ
T
t dbt − ctdt+Xtπ

T
t AdBt, (2.2)

where π = (π1, · · · , πd)T is the trading strategy, and 1 = (1, · · · , 1)T . The
consumption and portfolio processes pair (π, c) is admissible if Xt ≥ 0, t ∈
[0, T ], c ∈M1 and π ∈M2.

We denote by Π the set of all such admissible π taking value in B =
(−∞,+∞). Also we denote by C the set of all such admissible c.

2.3 Utility

The investor is ambiguity�averse and maximizes the minimal expected utility
over his set of priors. For any random variable X on (Ω,FT ), we denote by

EX := inf
P∈P

EPX
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the lowest expected value of an uncertain outcome X.
The investor's utility of consuming c ∈ M1 and bequesting a terminal

wealth XT is

U(c,X) = E[

∫ T

0

u(s, cs)ds+ Φ(T,XT )],

the utility function u and the bequest function Φ are strictly increasing,
concave and di�erentiable with respect to c and X, respectively. We fur-
ther suppose that u and Φ are C1,3 and C1,2, respectively. Furthermore, we
suppose that the marginal utility is in�nite at zero:

lim
c→0

∂

∂c
u(t, x) =∞.

We de�ne the value function:

V (x0) = sup
(π,c)∈Π×C

U(c,X),

that is the indirect utility function de�ned over portfolio and initial wealth.
In the appendix, we prove that V (x0) is increasing and concave in x.

3 Optimal consumption and portfolio choice with

ambiguity

3.1 The Robust Dynamic Programming Principle

We quickly recap the classical dynamic programming approach put forward
by Merton in one dimension. When v(t, x) denotes the value function at time
t with wealth x, the dynamic programming principle states, informally, that

v(t,Xt) ' max
π,c

u(t, ct) + E[v(t+ ∆t,Xt+∆t|Ft]

which, according to the usual rules of Itô calculus, leads to the typical
Hamilton-Jacobi�Bellman equation

sup
π,c

{
u(t, c)− cvx(t, x) + πx(µ− r)vx(t, x) +

1

2
π2x2σ2vxx(t, x)

}
= 0.

It re�ects the usual martingale principle: for all admissible policies (π, c)
with wealth process X, the sum of indirect utility and past consumption
utility

v(t,Xt) +

∫ t

0

u(s, cs)ds
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is a supermartingale, and a martingale for the optimal policy.
We should thus expect a similar equation here, with the caveat that nature

(or our cautiousness) chooses the worst parameters for drift µ and volatility
σ. For given portfolio-consumption policy (π, c), nature will thus minimize
our utility, which leads locally to the uncertain HJB equation

sup
π,c

inf
(µ,σ)∈Θ

{
u(t, c)− cvx(t, x) + πx(µ− r)vx(t, x)

+
1

2
π2x2σ2vxx(t, x)

}
= 0. (3.1)

In fact, if we can �nd a suitable smooth function that solves this ad-
justed HJB equation, we have solved our problem. The following veri�cation
theorem states this fact in more detail.

Theorem 3.1 Let ϕ ∈ C1,2((0, T )×R+) be a solution of the following equa-
tion

sup
(π,c)∈B×A

{
u(t, c) + ϕt(t, x) + xrϕx(t, x)(1− πT1)− cϕx(t, x)]

+ inf
(q,Q)∈Θ

{ϕx(t, x)x〈π, q〉+
1

2
x2ϕxx(t, x)〈ATππTA,QQT 〉}

}
= 0, (3.2)

with boundary condition

ϕ(T, x) = Φ(T, x).

Then we have

V (x0) = ϕ(0, x0) = sup
(π,c)∈Π×C

U(c,X).

The above theorem delivers the uncertain HJB equation for optimal con-
sumption and optimal choice with very general speci�cations of drift and
volatility ambiguity. In our canonical case, these uncertainties are easily sep-
arated from each other (and are, in this sense, "independent�), but there are
many more interesting possible speci�cations for a dependence between drift
and volatility uncertainty. For example, Epstein and Ji (2013) consider

Θ =
{

(µ, σ2) : µ = µmin + z, σ2 = σ2
min + αz, 0 ≤ z ≤ z

}
,

where µmin, σ
2
min, α > 0 and z are �xed and deterministic parameters.
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3.2 The Worst�Case Measure in the Canonical Model

In this section, we will completely solve the ambiguity�averse investor's choice
problem by reducing it to a suitable classical expected utility maximizer's
problem. To do so, we will analyze the HJB equation in order to guess
the worst�case prior. We will then verify that the value function under the
worst�case prior solves our uncertain HJB equation as well.

In the canonical model, nature's minimization problem can be explicitly
solved. Let us have a look at the uncertain HJB equation again. First of
all, as in the classical case, it is natural to expect that indirect utility is
increasing, or ϕx > 0, and (di�erentiably strictly) concave, or ϕxx < 0.

In the canonical model, for the drift, we obtain then simply

inf
µ∈[µ,µ]

{
ϕx(t, x)x〈π, µ〉

}
= ϕx(t, x)x

d∑
i=1

πiµi1{πi>0} + ϕx(t, x)x
d∑
i=1

πiµi1{πi≤0}.

Clearly, nature decides for a low drift if we are long, and for a high drift if
we are short.

For the volatilities, as the value function is concave, we end up max-
imizing the potential volatility of returns. For volatility, we immediately
conclude that the nature always chooses its maximal possible value. Risk�
and ambiguity�averse investors use a cautious estimate for volatility, or add
an ambiguity premium to their estimate.

Having solved nature's choice, we are left with a simple maximization
problem for consumption and portfolio weights, yet with a kink in the linear
part at zero, when we change from short to long position. We thus need to
maximize

u(t, c) + ϕt(t, x) + ϕx(t, x)xr − ϕx(t, x)c+ ϕx(t, x)x
d∑
i=1

πi(µi − r)1{πi>0}

+ϕx(t, x)x
d∑
i=1

πi(µi − r)1{πi≤0} +
1

2
x2ϕxx(t, x)

d∑
i=1

(πi)2(σi)2

over π and c.
The solution for the portfolio depends on the relation of the riskless in-

terest rate with respect to the bounds for the drift. Let us write

a(t, x) = −xϕxx(t, x)

ϕx(t, x)
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for the agent's indirect relative risk aversion. The optimal portfolio choice
anticipates the worst case scenarios. The investor evaluates the best long
position and the best short position, and then make a choice of the better
one. The optimal portfolio is

π̂i =
µi − r

a(t, x)(σi)2
, i = 1, · · · , d,

if the lowest possible drift is above the riskless rate, µi > r, this is a long
position. And the optimal portfolio choice is

π̂i =
µi − r

a(t, x)(σi)2

if in contrast µi < r, and this is a short position. The important case is the
middle one, when ambiguity allows for lower or higher drift than the interest
rate; in this case, the optimal portfolio does not invest into the uncertain
asset,

π̂i = 0 .

The long position is evaluated by the lowest premium, and the short position
is evaluated by the highest premium. If the investor buys risky assets with
the lowest premium, or sell the risky assets with highest premium, the the
return of wealth is strictly lower than the riskless rate, which results in the
nonparticipation of the risky asset market.

When we compare the formulas for optimal portfolios to the classic Mer-
ton solution, we come to the following conjecture: the investor behaves as
if the lowest possible drift µi was the real one if µi > r. If the interest rate
belongs to the interval of possible drifts, then he behaves as if the drift was
equal to the riskless rate (in this case, a standard risk-averse expected utility
maximizer does not invest in the risky asset). Let us thus de�ne the worst
case parameters as follows: the worst case volatility is the highest possible
volatility, σ∗ = [σ1, · · · , σd]. The worst drift depends on the relation of the
interest rate r with respect to [µ, µ]:

µ̂i =


µi, if µi > r;
r, if µi ≤ r ≤ µi;
µi, else.

We let µ∗ = [µ̂1, · · · , µ̂d]. Let the the probability measure P ∗ = P µ∗,σ∗

the worst case prior. ϕ(0, x0) is the value function of an expected utility
maximizer using the worst-case prior.
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Theorem 3.2 The ambiguity�averse investor chooses the same optimal pol-
icy as an expected utility-maximizer with worst case prior P ∗. In particular,
the value function ϕ of an expected utility maximizer with prior P ∗ solves the
uncertain HJB equation (3.1),

V (x0) = ϕ(0, x0) = sup
(π,c)∈Π×C

U(c,X),

the optimal consumption rule is

ĉ = v(ϕx(t, x)),

where v is the inverse of uc, and

(i) if r ≤ inf
i
µi, then the optimal portfolio choice is µ̂i = µi, i = 1, · · · , d,

and

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σi)2

.

(ii) if sup
i
µi ≤ r, then the optimal portfolio choice is µ̂i = µi, i = 1, · · · , d,

and

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σi)2

.

(iii) if inf
i
µi < r < sup

i
µi, then the optimal portfolio choice is

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σi)2

1{r≤µi} −
ϕx(t, x)

ϕxx(t, x)x

µi − r
(σi)2

1{µi≤r}.

The previous theorem allows to draw several interesting conclusions. First
of all, as we have identi�ed a worst�case measure, we have proved a minmax
theorem.

Corollary 3.3 We have the following minmax theorem: Let φ(P, x) denote
the value function of an expected utility maximizer with belief P and initial
capital x. Let v(x) be the ambiguity�averse investor's indirect utility function.
Then

v(x) = min
P∈P

φ(P, x)

or

max
(π,c)

min
P∈P

EP [

∫ T

0

u(s, cs)ds+Φ(T,XT )] = min
P∈P

max
(π,c)

EP [

∫ T

0

u(s, cs)ds+Φ(T,XT )] .
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The fact that the ambiguity�averse investor behaves as an expected util-
ity maximizer under the worst�case measure P ∗ does not imply that their
demand functions are indistinguishable. Note that the worst�case measure
is frequently the one where the drift is equal to the interest rate. Under such
a belief, the expected utility maximizer does not invest at all into the risky
asset, a result that is by now well established.

3.3 Explicit solution for CRRA Utility

In this subsection, we give give explicit solutions for Constant Relative Risk
Aversion (CRRA) Utility, i.e.,

u(t, c) =
c1−α

1− α
,Φ(T, x) =

Kx1−α

1− α
, α 6= 1.

We have the following results. For the proof, see the appendix.

Proposition 3.4 (i) If r ≤ inf
i
µi, then the optimal consumption and port-

folio rules are given by the following

ĉ =
[
Kα−1

eβα
−1(T−t) + αβ−1(eβα

−1(T−t) − 1)
]−1

x,

and

π̂i =
1

α

µi − r
(σi)2

, i = 1, · · · , d,

where

β =
[
r +

d∑
i=1

(µi − r)2

2α(σi)2

]
(1− α).

(ii) if sup
i
µi ≤ r, then the optimal consumption and portfolio rules are

given by the following

ĉ =
[
Kα−1

eβα
−1(T−t) + αβ−1(eβα

−1(T−t) − 1)
]−1

x,

and

π̂i =
1

α

µi − r
(σi)2

, i = 1, · · · , d,

where

β =
[
r +

d∑
i=1

(µi − r)2

2α(σi)2

]
(1− α).
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(iii) if inf
i
µi < r < sup

i
µi, then the optimal consumption and portfolio rules

are given by the following

ĉ =
[
Kα−1

eβα
−1(T−t) + αβ−1(eβα

−1(T−t) − 1)
]−1

x,

and

π̂i =
1

α

µi − r
(σi)2

1{r≤µi} +
1

α

µi − r
(σi)2

1{µi≤r},

where

β =
[
r +

d∑
i=1

(µi − r)2

2α(σi)2

]
(1− α)1{r≤µi} +

[
r +

d∑
i=1

(µi − r)2

2α(σi)2

]
(1− α)1{µi≤r}.

In particular, if µi < r < µi, then the optimal portfolio choice is

π̂i = 0.

3.4 Comparative Statics

From the above results in the above subsection we obtain immediately fol-
lowing comparative statics.

Proposition 3.5 Let drift ambiguity be given by [µ0 − κ, µ0 + κ] for some
κ > 0. As κ increases, asset holdings decrease. After some critical level of
ambiguity κ∗, refrains from trading the asset altogether.

We have here the well�known phenomenon that high uncertainty about
mean returns keeps ambiguity�averse investors away form the asset market,
as Dow and Werlang (1992) �rst pointed out.

Proposition 3.6 The exposure of investors decreases with ambiguity: for
parameter sets Θ ⊂ Θ̂, let π and π̂ denote the optimal portfolio choices.
Then ‖π‖ ≥ ‖π̂‖.

This result follows from the fact that the investor always works with
the maximal volatility. If the asset is pro�table, he uses the minimal mean
excess return, and if she is going short, she uses the maximal mean return in
computing the portfolio. The absolute amount of assets held optimally thus
decreases with ambiguity.
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4 Interest rate uncertainty

A �xed and known interest rate, or in other words, a �at term structure, is
not a reasonable assumption for long-term investors. Investors face consid-
erable uncertainty about the short rate; on the one hand, stochastic demand
for credit leads to short term variability, on the other hand, the short rate
is partially determined by central bank policies. The latter are known to
be quite ambiguous, and sometimes deliberately so as central bankers have
strong incentives to conceal their real objectives. We thus also allow for
interest rate uncertainty.

Introducing Knightain uncertainty about the short rate requires the use
of singular measures: if we model the possibility that the bond dynamics
satisfy

dPt = rtPtdt

under one measure, and
dPt = r̂tPtdt

under another, for a di�erent short rate r̂, then these measures need to be
singular to each other. This is in contrast to the well�studied models of drift
ambiguity for the uncertain asset where the presence of the noise term allows
to work with equivalent probability measures.

But we are already used to work with singular measures, and so our
framework can be extended to cover such Knightian uncertainty about the
short rate as well. We model the ambiguity about the short rate via an
interval [r, r], similar to the ambiguity about drift and volatility.

Interest rate uncertainty leads to some new phenomena. The most in-
teresting case arises, in our view, when the uncertain asset is pro�table, but
interest rate uncertainty is high. Then it is optimal not to participate in the
market for bonds at all and to put all capital into the uncertain asset. We
thus obtain non�participation in the credit market; a phenomenon that we
have seen during the �nancial crisis as well. Of course, we do not model or
explain the origin of such uncertainty here, but we show that interest rate
uncertainty can play an important role in asset decisions.

Let us now come to the formal model. In a �rst step, as in Section 2, we
construct a set of priors. For θ = (µ, σ) and r, which are an F -progressively
measurable processes with values in Θ = [µ, µ]× [σ, σ] and [r, r], respectively,
we consider stochastic di�erential equation

dXθ
t = µtdt+ σtdBt, X0 = 0,

and
dY r

t = rtdt, Y0 = 0,
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under our reference measure P0.
We let P r,θ be the distribution of (Xθ, Y r), i.e.

P r,θ(A) = P0((Xθ, Y r) ∈ A),

for all A ∈ FT .
Let P0 be consist of all probability measures P r,θ constructed in this

way. Our set of priors P is the closure of P0 under the topology of weak
convergence. The set of priors leads naturally to a sublinear expectation:

Ê[·] = sup
P∈P

EP [·].

The sublinear function G : R3× → R :

G(p1, p2, p3) = sup
(r,µ,σ)∈[r,r]×[µ,µ]×[σ,σ]

{
rp1 + µp2 +

1

2
σ2p3

}
.

As introduced in the Section 2, let (B, b, b̂) be a pair of random vectors
under Ê such that B is a G-Brownian motion and (b, b̂) is a G-distributed
process, which has mean uncertainty. B is a G-normal distributed process,
which just has volatility uncertainty.

In a �nancial market, we consider the optimal consumption and portfolio
choice, not only with ambiguity about returns and volatility, but also with
interest rate uncertainty. The price of the riskless asset is now de�ned by

dPt = Ptdb̂t,

where b̂ is a G-distributed process, and b̂t has mean uncertainty [rt, rt].
In this section, we just consider one risky asset in the �nancial mar-

ket. The classical �risky� assets where we assume that expected return and
volatility are unknown. The uncertain asset prices evolve as

dSt = StdRt

and we model the return dynamics via

dRt = dbt + dBt.

As we did in Section 2, we can de�ne the consumption and trading opportu-
nities, and utility in the same way.

We consider the case corresponding to the Constant Relative Risk Aver-
sion (CRRA) Utility, i.e.,

u(t, c) =
c1−α

1− α
,Φ(T, x) =

Kx1−α

1− α
, α > 0, α 6= 1.
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The following three potentially optimal portfolio shares play a role as
candidate optimal policies in the following. First,

π1 =
µ− r
ασ2

corresponds to the case when maximal drift and maximal interest rate are
the worst case parameters. Similarly, we de�ne

π2 =
µ− r
ασ2

and

π3 =
µ− r
ασ2 .

Note that
π1 ≥ π2 ≥ π3.

We have the following main result in this section.

Theorem 4.1 The optimal consumption�investment policies under interest
rate uncertainty can be divided into �ve cases:

1. If π1 ≥ 0,

(a) and π2 ≤ 0, non�participation in the asset market, or π∗ = 0, is
optimal,

(b) and 0 < π2 < 1, the investor goes long and saves, i.e. π∗ = π2,

(c) and for π2 ≥ 1, we have

i. in case π3 < 1, the investor puts all capital in the uncertain
asset and does not participate in the credit market, or π∗ = 1,

ii. in case π3 ≥ 1, the investor goes long and borrows (leveraged
consumption) and π∗ = π3.

2. if π1 < 0, the investor goes short and saves (leveraged consumption)
and π∗ = π1.

For the above theorem, see the following �gures.
If µ ≤ r, then

µ
π∗ = 0

µ
π∗ = µ−r

ασ2 −→
r
.

If µ ≥ r, then

17



r − ασ2
π∗ =

µ−r
ασ2

r
π∗ = 1

r
π∗ =

µ−r
ασ2 −−−−→

µ−ασ2
.

The details of the proof are in the appendix. Our model allows to quan-
tify under what conditions non-participation in the credit market is optimal
for ambiguity-averse investors. This occurs when the highest possible drift
exceeds the highest possible interest rate, and investment in the uncertain
asset is thus potentially pro�table, but when the lowest possible drift, ad-
justed by a mean-variance term involving risk aversion, µ− ασ2, belongs to
the interval of possible interest rates [r, r].

Appendix

A G-Brownian motion

Peng (2007) introduced the theory of G-Brownian motion. For the conve-
nience of the readers, we recall the basic de�nitions and some results of the
theory of G-Brownian motion.

Let Ω be a given nonempty set and H be a linear space of real functions
de�ned on Ω such that if x1, · · ·, xn ∈ H, then ϕ(x1, · · ·, xn) ∈ H, for
each ϕ ∈ Cl,lip(Rn). Here Cl,lip(Rn) denotes the linear space of functions ϕ
satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|n + |y|n)|x− y|, for all x, y ∈ Rn,

for some C > 0 and n ∈ N, both depending on ϕ. The space H is considered
as a set of random variables.

De�nition A.1 A sublinear expectation Ê on H is a functional Ê : H 7→
R satisfying the following properties: for all X, Y ∈ H, we have

(i) Monotonicity: If X ≥ Y , then Ê[X] ≥ Ê[Y ].

(ii) Preservation of constants: Ê[c] = c, for all c ∈ R.

(iii) Subadditivity: Ê[X]− Ê[Y ] ≤ Ê[X − Y ].

(iv) Positive homogeneity: Ê[λX] = λÊ[X], for all λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space.
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Remark A.2 The sublinear expectation space can be regarded as a gener-
alization of the classical probability space (Ω,F ,P) endowed with the linear
expectation associated with P.

De�nition A.3 In a sublinear expectation space (Ω,H, Ê), a random vector
Y = (Y1, · · · , Yn), Yi ∈ H, is said to be independent under Ê of another
random vector X = (X1, · · · , Xm), Xi ∈ H, denoted by X ⊥ Y, if for each
test function ϕ ∈ Cl,lip(Rm+n) we have

Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

De�nition A.4 In a sublinear expectation space (Ω,H, Ê), X and Y are

called identically distributed, and denoted by X
d
= Y , if for each ϕ ∈ Cl,lip(Rn)

we have
Ê[ϕ(X)] = Ê[ϕ(Y )].

De�nition A.5 (G-distribution) A pair of random variables (X, η) in a
sublinear expectation space (Ω,H, Ê) is called G-distributed, if for all a, b ≥ 0,

(aX + bX̄, a2η + b2η̄)
d
=
√
a2X + b2X̄ + (a2 + b2)η,

where (X̄, η̄) is an independent copy of (X, η), i.e., (X̄, η̄)
d
= (X, η) and

(X̄, η̄) ⊥ (X, η).

If (X, η) is d dimensional G-distributed, for ϕ ∈ Cl,lip(Rd), let us de�ne

u(t, x, y) := Ê[ϕ(x+
√
tξ, y + tη)], (t, x, y) ∈ [0,∞)× Rd × Rd,

is the solution of the following parabolic partial di�erential equation:{
∂tu(t, x) = G(Dyu(t, x, y), D2

xxu(t, x, y)), (t, x) ∈ [0,∞)× Rd,
u(0, x) = ϕ(x).

Here G is the following sublinear function:

G(p,A) = Ê[
1

2
〈AX,X〉+ 〈p, η〉], (p,A) ∈ Rd × Sd,

where Sd is the collection of d×d symmetric matrices. There exists a bounded
and closed subset Θ of Rd × Rd×d such that

G(p,A) = sup
(q,Q)∈Θ

{
〈p, q〉+

1

2
tr(AQQT )

}
, for (p,A) ∈ Rd × Sd.
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Let Ω = C2d
0 (R+) be the space of all Rd-valued continuous paths (ωt)t∈R+

with ω0 = 0, equipped with the distance

ρ(ω1, ω2) =
∞∑
i=1

2−i
[
(max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1
]
, ω1, ω2 ∈ Ω.

For each t ∈ [0,+∞), we set ωt = {ω·∧t, ω ∈ Ω}. We will consider the
canonical process B̂t(ω) = (Bt, bt)(ω) = ωt, t ∈ [0,+∞), ω ∈ Ω.

For each T > 0, we consider the following space of random variables:

Lip(ΩT ) :=
{
ϕ(ωt1 · · · , ωtm) | t1, · · · , tm ∈ [0, T ],

ϕ ∈ Cl,lip(Rd×m), m ≥ 1
}
.

Obviously, it holds that Lip(Ωt) ⊆ Lip(ΩT ), for all t ≤ T < ∞. We further
de�ne

Lip(Ω) =
∞⋃
n=1

Lip(Ωn).

For each X ∈ Lip(Ω) with

X = ϕ(B̂t1 − B̂t0 , B̂t2 − B̂t1 , · · · , B̂tm − B̂tm−1)

for some m ≥ 1, ϕ ∈ Cl,lip(R2d×m) and 0 = t0 ≤ t1 ≤ · · · ≤ tm <∞, we set

Ê[ϕ(B̂t1 − B̂t0 , B̂t2 − B̂t1 , · · · , B̂tm − B̂tm−1)]

= Ẽ[ϕ(
√
t1 − t0ξ1, (t1 − t0)η1, · · · ,

√
tm − tm−1ξm, (tm − tm−1)ηm)],

where {(ξ1, η1), · · · , (ξm, ηm)} is a random vector in a sublinear expectation

space (Ω̃, H̃, Ẽ) such that (ξi, ηi) is G-distributed (ξi+1, ηi+1) is independent
of {(ξ1, η1), · · · , (ξi, ηi)}, for every i = 1, 2, · · · ,m− 1.

The related conditional expectation of X = ϕ(B̂t1−B̂t0 , B̂t2−B̂t1 , · · · , B̂tm−
B̂tm−1) under Ωtj is de�ned by

Ê[X|Ωtj ] = Ê[ϕ(B̂t1 − B̂t0 , B̂t2 − B̂t1 , · · · , B̂tm − B̂tm−1)|Ωtj ]

= ψ(B̂t1 − B̂t0 , B̂t2 − B̂t1 , · · · , Btj −Btj−1
),

where

ψ(x1, x2, · · · , xj)
= Ẽ[ϕ(x1, x2, · · · , xj,

√
tj+1 − tjξj+1, (tj+1 − tj)ηj+1 · · · ,√

tm − tm−1ξm, (tm − tm−1)ηm)],
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for (x1, x2, · · · , xj) ∈ Rj, 0 ≤ j ≤ m.

For p ≥ 1, ‖X‖p = Ê
1
p [|X|p], X ∈ Lip(Ω), de�nes a norm on L0

ip(Ω).
Let Lp(Ω) (resp. Lp(Ωt)) be the completion of Lip(Ω) (resp. Lip(Ωt)) under
the norm ‖ · ‖p. Then the space (Lp(Ω), ‖ · ‖p) is a Banach space and the

operators Ê[·] (resp. Ê[·|Ωt]) can be continuously extended to the Banach
space Lp(Ω) (resp. Lp(Ωt)). Moreover, we have Lp(Ωt) ⊆ Lp(ΩT ) ⊂ Lp(Ω),
for all 0 ≤ t ≤ T <∞.

De�nition A.6 (G-normal distribution) Let Γ be a given non-empty,
bounded and closed subset of Rd×d. A random vector ξ in a sublinear ex-
pectation space (Ω,H, Ê) is said to be G-normal distributed, denoted by ξ ∼
N (0,Γ), if for each ϕ ∈ Cl,lip(Rd), the following function de�ned by

u(t, x) := Ê[ϕ(x+
√
tξ)], (t, x) ∈ [0,∞)× Rd,

is the unique viscosity solution of the following parabolic partial di�erential
equation: {

∂u

∂t
= G(D2u), (t, x) ∈ [0,∞)× Rd,

u(0, x) = ϕ(x).
(A.1)

Here D2u is the Hessian matrix of u, i.e., D2u = (∂2
xixju)di,j=1, and

G(A) =
1

2
sup
γ∈Γ

tr(γγTA), A ∈ Sd.

Example A.7 In one dimensional case, i.e., d = 1, we take Γ = [σ2, σ
2
],

where σ and σ are constants with 0 ≤ σ ≤ σ. Then equation (A.1) has the
following form{

∂u

∂t
=

1

2
[σ2(∂2

xxu)+ − σ2(∂2
xxu)−], (t, x) ∈ [0,∞)× R,

u(0, x) = ϕ(x).

If σ = σ, the G-normal distribution is the classical normal distribution.

Example A.8 In multidimensional case, we consider one typical case when

Γ =
{
diag[γ1, · · · , γd], γi ∈ [(σi)2, (σi)2], i = 1, · · · , d

}
,

where σi and σi are constants with 0 ≤ σi ≤ σi. Then equation (A.1) has the
following form

∂u

∂t
=

1

2

d∑
i=1

[(σi)2(∂2
xixiu)+ − (σi)2(∂2

xixiu)−],

u(0, x) = ϕ(x).
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De�nition A.9 A process B = {Bt, t ≥ 0} in a sublinear expectation space
(Ω,H, Ê) is called a G-Brownian motion, if the following properties are sat-
is�ed:

(i) B0 = 0;

(ii) for each t, s ≥ 0, the di�erence Bt+s−Bt is N (0, Γs)-distributed and is
independent of (Bt1 , · · · , Btn), for all n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

De�nition A.10 (Maximal distribution) Let Λ be a given non-empty,
bounded and closed subset of Rd. A random vector ξ in a sublinear expectation
space (Ω,H, Ê) is said to be Maximal distributed, denoted by ξ ∼ N (Λ, {0}),
if for each ϕ ∈ Cl,lip(Rd), the following function de�ned by

u(t, x) := Ê[ϕ(x+ tξ)], (t, x) ∈ [0,∞)× Rd,

is the unique viscosity solution of the following parabolic partial di�erential
equation: {

∂u

∂t
= g(Du), (t, x) ∈ [0,∞)× Rd,

u(0, x) = ϕ(x),

where Du = (∂xiu)
d
i=1, and

g(p) =
1

2
sup
q∈Λ
〈p, q〉, p ∈ Rd.

Proposition A.11 If bt ∼ N ([µt, µt], {0}), where µ and µ are constants
with µ ≤ µ, then for ϕ ∈ Cl,lip(R)

Ê[ϕ(bt)] = sup
v∈[µt,µt]

ϕ(vt).

Proposition A.12 (Itô's formula) Let bt ∼ N ([µt, µt], {0}) and Bt ∼
N ({0}, [σ2t, σ2t]) where µ and µ are constants with µ ≤ µ, and σ and σ are
constants with σ ≤ σ. Then for ϕ ∈ C2(R) and

Xt = X0 +

∫ t

0

αsdbs +

∫ t

0

βsdBs, for all t ∈ [0, T ],

where α in M1 and β ∈M2, we have

ϕ(Xt)− ϕ(X0) =

∫ t

0

∂xϕ(Xu)βudBu +

∫ t

0

∂xϕ(Xu)αudbu

+

∫ t

0

1

2
∂2
xxϕ(Xu)β

2
ud〈B〉u, 0 ≤ t ≤ T.
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B Construction of the Set of Priors

In an ambiguous world, the investor is uncertain about the law that governs
the price dynamics of risky assets. We thus do not �x a probability measure
ex ante. We set up the canonical model in such a continuous�time Knightian
setting �rst.

As we want to study the standard Samuelson�Merton consumption�portfolio
problem in the Knightian case, we look at asset prices with continuous sam-
ple paths. We let C([0, T ]) be the set of all continuous paths with values in
Rd over the �nite time horizon [0, T ] endowed with the sup norm. Our state
space is

Ω0 =
{
ω : ω ∈ C([0, T ]), ω0 = 0

}
.

The coordinate process B = (Bt)t≥0 is Bt(ω) = ωt.
As in the classic case, the coordinate process Bt(ω) = ω(t) will play the

role of noise, but here it will be uncertain, rather than probabilistic noise;
ambiguous, or, as Peng calls it, G�Brownian motion. In order to model such
ambiguous Brownian motion, we construct a set of priors. We take as a
starting point the classic Wiener measure P0 under which B is a standard
Brownian motion. Note that P0 does not re�ect the investor's view of the
world; it merely plays the role of a construction tool for the set of priors.

Let F = (Ft)t≥0 denote the �ltration generated by B, completed by all
P0-null sets.

In the continuous�time di�usion framework, essentially two parameter
processes describe all uncertainty, drift and volatility. We thus model ambi-
guity with the help of a convex and compact subset Θ ⊂ Rd × Rd×d. The
investor is not sure about the exact value or distribution of the drift process
µ = (µt) with values in Rd nor about the exact value or distribution of the
volatility process σ = (σt) with values in Rd×d.

For every �hypothesis� θ = (µ, σ), an F -progressively measurable process
with values in Θ, the stochastic di�erential equation

dXt = µtdt+ σtdBt, X0 = 0

has a unique solution Xθ under our reference measure P0. We let P θ be the
distribution of Xθ, i.e.

P θ(A) = P0(Xθ ∈ A)

for all A ∈ FT .
Let P0 be consist of all probability measures P θ constructed in this way.

Our set of priors P is the closure of P0 under the topology of weak conver-
gence. Ambiguous volatility gives rise to nonequivalent priors. For example,
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let P σ and P σ be the distribution of the processes (σBt)t≥0 and (σBt)t≥0,
respectively. Then P σ and P σ are mutually singular, i.e.,

P σ(〈B〉T = σ2T ) = P σ(〈B〉T = σ2T ) = 1,

where the quadratic variation process of B is de�ned as follows, for 0 = t1 ≤
· · · < tm = T and ∆tk = tk+1 − tk,

〈B〉T = lim
∆tk→0

m−1∑
k=1

|Btk+1
−Btk |2.

The preceding construction is the canonical continuous-time model for a
world in which investors face ambiguity about drift and volatility.

The set of priors leads naturally to a sublinear expectation:

Ê[·] = sup
P∈P

EP [·].

One advantage of our continuous-time uncertainty model is the fact that
one can describe uncertainty by a quadratic real function. The sublinear
function G : Rd × Sd → R :

G(p,A) = sup
(q,Q)∈Θ

{
〈p, q〉+

1

2
tr(AQQT )

}
, for (p,A) ∈ Rd × Sd,

where Sd is the collection of d× d symmetric matrices, will describe locally,
at the level of parameters, uncertainty of drift and volatility in our model.

Let (B, b) be a pair of random vectors under Ê such that B is a G-
Brownian motion and b is a G-distributed process, which just has mean
uncertainty. B is a G-normal distributed process, which just has volatility
uncertainty. To see this, we consider d = 1 and Θ = [µ, µ]× [σ, σ]. Then the
process b has mean uncertainty with parameters [µ, µ], i.e.,

Ê[bt] = µt, and − Ê[−bt] = µt.

And the process B does not have mean uncertainty, i.e.,

Ê[Bt] = Ê[−Bt] = 0,

but has volatility uncertainty with parameters [σ2, σ2], i.e.,

Ê[B2
t ] = σ2t, and − Ê[−B2

t ] = σ2t.

The preceding construction is the canonical model for a world in which in-
vestors face ambiguity about drift and volatility, but do know certain bounds
on these processes.
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B.1 The Canonical Model

While the abstract characterization of optimal policies holds in a very gen-
eral setting, we will frequently focus on the special case where ambiguity
about drift is independent of ambiguity about volatility of the individual
asset returns.

For given constants µi ≤ µi, σi ≤ σi, i = 1, · · · , d, we consider

[µ, µ] =
{

[µ1, · · · , µd]T , µi ∈ [µi, µi], i = 1, · · · , d
}
,

and
Γ =

{
diag[γ1, · · · , γd], γi ∈ [σi, σi], i = 1, · · · , d

}
.

In order to give an explicit solution, we consider a special case of Θ =
[µ, µ]× Γ, and A = diag{1, · · · , 1}. We call this the canonical model.

C Proofs

C.1 Properties of V (x0)

Proposition C.1 V (x0) is increasing and concave in x.

Proof. Just for the proof of this proposition, we denote by

J(π, c, x0) = E[

∫ T

0

u(s, cs)ds+ Φ(T,XT )],

Also we denote the solution of (2.2) by Xx0 . For any arbitrary 0 < x ≤ y,
by the Comparison theorem of stochastic di�erential equations driven by
G-Brownian motion we have Xx ≤ Xy. Since the utility function u and
the bequest function Φ are strictly increasing, by the the monotonicity of
E-expectation, we know that J is increasing in x. Therefore, V is increasing
in x.

For any arbitrary 0 < x1, x2 and λ ∈ [0, 1], we denote by xλ = λx1 + (1−
λ)x2. For any c

1, c2 ∈ C and π1, π2 ∈ Π, we consider

{
dX1

t = rX1
t (1− (π1

t )
T1)dt+X1

t (π1
t )
Tdbt − c1

tdt+X1
t (π1

t )
TAdBt,

X1
0 = x1,

and{
dX2

t = rX2
t (1− (π2

t )
T1)dt+X2

t (π2
t )
Tdbt − c2

tdt+X2
t (π2

t )
TAdBt,

X2
0 = x2,
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We denote by Xλ := λX1 + (1− λ)X2, cλ := λc1 + (1− λ)c2 and

πλ :=
λπ1X1 + (1− λ)π2X2

λX1 + (1− λ)X2
.

Then cλ ∈ C, πλ ∈ Π and Xλ satis�es the following{
dXλ

t = rXλ
t (1− (πλt )T1)dt+Xλ

t (πλt )Tdbt − cλt dt+Xλ
t (πλt )TAdBt,

Xλ
0 = xλ,

Since the functions u and Φ are concave with respect to c and X, respec-
tively, we have

Φ(T,Xλ
T ) ≥ λΦ(T,X1

T ) + (1− λ)Φ(T,X2
T ).

and

u(s,Xλ
s ) ≥ λu(s,X1

s ) + (1− λ)u(s,X2
s ), s ∈ [0, T ].

Therefore, by virtue of the positive homogeneity and subadditivity of Ê, the
following holds

E[

∫ T

0

u(s, cλs )ds+ Φ(T,Xλ
T )]

≥ E[

∫ T

0

u(s, c1
s)ds+ Φ(T,X1

T )] + (1− λ)E[

∫ T

0

u(s, c2
s)ds+ Φ(T,X2

T )],

i.e.,

J(πλ, cλ, xλ) ≥ J(π1, c1, x1) + J(π2, c2, x2).

Consequently,

V (xλ) ≥ J(π1, c1, x1) + J(π2, c2, x2).

Since the above holds true for any c1, c2 ∈ C and π1, π2 ∈ Π, it follows that

V (xλ) ≥ V (x1) + V (x2).

This means that V is concave in x. �
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C.2 Proof of Theorem 3.1

Proof. For any arbitrary (π, c) ∈ Π×C we let X be a solution of equation
(2.2) associated with (π, c). From Itô formula it follows that

ϕ(T,XT ) =

∫ T

0

[ϕt(t,Xt) + rXtϕx(t,Xt)(1− πTt 1)− ϕx(t,Xt)ct]dt

+

∫ T

0

ϕx(t,Xt)Xtπ
T
t dbt +

∫ T

0

ϕx(t,Xt)Xtπ
T
t AdBt

+

∫ T

0

1

2
ϕxx(t,Xt)X

2
t 〈ATπtπTt A, d < B >t〉+ ϕ(0, x0).

Since for all x ∈ R, ϕ(T, x) = Φ(T, x). Then taking expectation yields

E[Φ(T,XT ) +

∫ T

0

u(t, ct)dt]

= E[

∫ T

0

[ϕt(t,Xt) + rXtϕx(t,Xt)(1− πTt 1)− ϕx(t,Xt)ct]dt

+

∫ T

0

ϕx(t,Xt)Xtπ
T
t dbt +

∫ T

0

1

2
ϕxx(t,Xt)X

2
t 〈πtπTt , d < B >t〉

+

∫ T

0

U(t, ct)dt
]

+ ϕ(0, x0)

= E
[ ∫ T

0

[ϕt(t,Xt) + rXtϕx(t,Xt)(1− πTt 1)− ϕx(t,Xt)ct]dt+

∫ T

0

u(t, ct)dt

−
∫ T

0

G(−ϕx(t,Xt)Xtπt,−X2
t ϕxx(t,Xt)A

Tπtπ
T
t A)dt

+

∫ T

0

ϕx(t,Xt)Xtπ
T
t dbt +

∫ T

0

1

2
ϕxx(t,Xt)X

2
t 〈πtπTt , d < B >t〉

+

∫ T

0

G(−ϕx(t,Xt)Xtπt,−X2
t ϕxx(t,Xt)A

Tπtπ
T
t A)dt

]
+ ϕ(0, x0).

By virtue of equation (3.2), we obtain that

E[Φ(T,XT ) +

∫ T

0

u(t, ct)dt]

≤ E
[ ∫ T

0

ϕx(t,Xt)Xtπ
T
t dbt +

∫ T

0

1

2
ϕxx(t,Xt)X

2
t 〈πtπTt , d < B >t〉

+

∫ T

0

G(−ϕx(t,Xt)Xtπt,−X2
t ϕxx(t,Xt)A

Tπtπ
T
t A)dt

]
+ ϕ(0, x0)
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= ϕ(0, x0).

For the last inequality we use the property of G-stochastic calculus,

E
[ ∫ T

0

ϕx(t,Xt)Xtπ
T
t dbt +

∫ T

0

1

2
ϕxx(t,Xt)X

2
t 〈πtπTt , d < B >t〉

+

∫ T

0

G(−ϕx(t,Xt)Xtπt,−X2
t ϕxx(t,Xt)A

Tπtπ
T
t A)dt

]
= 0.

Consequently,

V (x0) ≤ ϕ(0, x0).

Let (π̂, ĉ) satisfy

sup
(π,c)∈B×A

{
u(t, c) + ϕt(t, x) + xrϕx(t, x)(1− πT1)− cϕx(t, x)]

+ inf
(q,Q)∈Θ

{ϕx(t, x)x〈π, q〉+
1

2
x2ϕxx(t, x)〈ATππTA,QQT 〉}

}
=
{
u(t, ĉ) + ϕt(t, x) + xrϕx(t, x)(1− (π̂)T1)− ĉϕx(t, x)]

+ inf
(q,Q)∈Θ

{ϕx(t, x)x〈π̂, q〉+
1

2
x2ϕxx(t, x)〈AT π̂(π̂)TA,QQT 〉}

}
,

and{
dXt = [rXt(1− π̂(t,Xt)

T1)dt+Xtπ̂(t,Xt)
Tdbt − ĉ(t,Xt)dt+Xtπ̂(t,Xt)

TAdBt,
X0 = x0.

If π = π̂, c = ĉ, then from the above proof it follows that

V (x0) = ϕ(0, x0)

Therefore, we have

V (x0) = ϕ(0, x0) = sup
(π,c)∈Π×C

J(π, c, x0) = J(π̂, ĉ, x0).

This complete the proof. �

C.3 Proof of Theorem 3.2

Proof. From Theorem 3.1, we consider the following uncertain HJB equa-
tion:

sup
(π,c)∈B×A

{
u(t, c) + ϕt(t, x) + xrϕx(t, x)(1− πT1)− cϕx(t, x)]
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+ inf
(µ,Q)∈[µ,µ]×Γ

{ϕx(t, x)x〈π, q〉+
1

2
x2ϕxx(t, x)〈ππT , QQT 〉}

}
= 0,

with boundary condition

ϕ(T, x) = Φ(T, x).

The above equation can be written as follows:

sup
(π,c)∈B×A

{
u(t, c) + ϕt(t, x) + xrϕx(t, x)(1− πT1)− cϕx(t, x)]

+ inf
µ∈[µ,µ]

{ϕx(t, x)x〈π, q〉}+
1

2
x2 inf

Q∈Γ
{ϕxx(t, x)〈ππT , QQT 〉}

}
= 0,

If ϕx(t, x) > 0, then the optimal control µ̂i = µi1{πi>0} + µi1{πi≤0}, i =
1, · · · , d, and

inf
µ∈[µ,µ]

{
ϕx(t, x)x〈π, µ〉

}
= ϕx(t, x)x

d∑
i=1

πiµi1{πi>0} + ϕx(t, x)x
d∑
i=1

πiµi1{πi≤0}.

If ϕxx(t, x) < 0, then

inf
Q∈Γ
{ϕxx(t, x)〈ππT , QQT 〉} = ϕxx(t, x)

d∑
i=1

(πi)2(σi)2

Therefore, we have the following equation:

sup
(π,c)∈B×A

{
u(t, c) + ϕt(t, x) + ϕx(t, x)xr − ϕx(t, x)c

+ϕx(t, x)x
d∑
i=1

πi(µi − r)1{πi>0} + ϕx(t, x)x
d∑
i=1

πi(µi − r)1{πi≤0}

+
1

2
x2ϕxx(t, x)

d∑
i=1

(πi)2(σi)2
}

= 0. (C.1)

From the �rst order condition it follows that

uc(t, ĉ) = ϕx(t, x).

Since uc(t, c) is decreasing with respect to c, then its inverse exists and it
is denoted by v. Therefore, the optimal consumption rule is the following

ĉ = v(ϕx(t, x)).
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Lemma C.2 If a =
1

2
σ2x2ϕxx(t, x) < 0 and b = ϕx(t, x)x > 0,

f(π) = aπ2 + bπ(µ− r)1{π>0} + bπ(µ− r)1{π≤0},

then sup
π
f(π) has the the following three cases.

(i) If r ≤ µ, then

sup
π
f(π) = f(π̂) = −

b2(µ− r)2

4a
= − ϕ2

x(t, x)

ϕxx(t, x)

(µ− r)2

2σ2 ,

where

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

(ii) If µ < r < µ, then

sup
π
f(π) = f(π̂) = f(0) = 0,

where π̂ = 0.

(iii) If µ ≤ r, then

sup
π
f(π) = f(π̂) = −b

2(µ− r)2

4a
= − ϕ2

x(t, x)

ϕxx(t, x)

(µ− r)2

2σ2 ,

where

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

Proof of Lemma C.2.
Case I: If r ≤ µ, then

sup
π<0

f(π) = 0,

and

sup
π≥0

f(π) = f(π̄) = −
b2(µ− r)2

4a
= − ϕ2

x(t, x)

ϕxx(t, x)

(µ− r)2

2σ2 ,
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π̄ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

Therefore,

sup
π
f(π) = f(π̂) = −

b2(µ− r)2

4a
= − ϕ2

x(t, x)

ϕxx(t, x)

(µ− r)2

2σ2 ,

where

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

Case II: If µ < r < µ, then

sup
π<0

f(π) = f(0) = 0,

and

sup
π≥0

f(π) = f(0) = 0,

Therefore,

sup
π
f(π) = f(π̂) = f(0) = 0,

where π̂ = 0.

Case III: If µ ≤ r, then

sup
π≥0

f(π) = 0,

and

sup
π<0

f(π) = f(π̄) = −b
2(µ− r)2

4a
= − ϕ2

x(t, x)

ϕxx(t, x)

(µ− r)2

2σ2 ,

where

π̄ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

Therefore,

sup
π
f(π) = f(π̂) = −b

2(µ− r)2

4a
= − ϕ2

x(t, x)

ϕxx(t, x)

(µ− r)2

2σ2 ,
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where

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

The proof is complete. �

We now turn back to our proof. We de�ne

f(πi) =
1

2
(σi)2x2ϕxx(t, x)(πi)2 + ϕx(t, x)xπi(µi − r)1{πi>0}

+ϕx(t, x)xπi(µi − r)1{πi≤0},

We want to get
d∑
i=1

sup
πi
f(πi). We consider the following cases.

Case I: r ≤ inf
i
µi.

From the above lemma it follows that

d∑
i=1

sup
π
f(πi) =

d∑
i=1

f(π̂i) = − ϕ2
x(t, x)

ϕxx(t, x)

d∑
i=1

(µi − r)2

2(σ2)i
,

where

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σ2)i

.

Case II: sup
i
µi ≤ r.

From the above lemma it follows that

d∑
i=1

sup
π
f(πi) =

d∑
i=1

f(π̂i) = − ϕ2
x(t, x)

ϕxx(t, x)

d∑
i=1

(µi − r)2

2(σ2)i
,

where

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σ2)i

.

Case III: inf
i
µi < r < sup

i
µi.

We denote by A1 = {i | µi ≥ r, i = 1, · · · , d},A2 = {i | µi ≤ r, i =
1, · · · , d},A3 = {i | µi < r < µi, i = 1, · · · , d}. From the above lemma it
follows that

d∑
i=1

sup
π
f(πi) =

d∑
i=1

f(π̂i) = − ϕ2
x(t, x)

ϕxx(t, x)

∑
i∈A1

(µi − r)2

2(σ2)i
− ϕ2

x(t, x)

ϕxx(t, x)

∑
i∈A1

(µi − r)2

2(σ2)i
,
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where for i ∈ A1

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σ2)i

;

for i ∈ A2

π̂i = − ϕx(t, x)

ϕxx(t, x)x

µi − r
(σ2)i

.

for i ∈ A3, π̂
i = 0.

(C.1) is equivalent to the following equation


u(t, v(ϕx(t, x))) + ϕt(t, x) + ϕx(t, x)xr − ϕx(t, x)v(ϕx(t, x))

−
∑
i

ϕ2
x(t, x)(µi − r)2

2(σi)2ϕxx(t, x)
1{r≤µi} −

∑
i

ϕ2
x(t, x)(µi − r)2

2(σi)2ϕxx(t, x)
1{µi≤r} = 0,

ϕ(T, x) = Φ(T, x).

(C.2)

C.4 Proof of Propositions 3.4

Proof of Proposition 3.4. We just give the proof of (i), since the proof
of (ii) and (iii) are similar. By the de�nition of u and Φ, then the equation
(C.2) has the following form

ϕ1−α−1

x

1− α
+ ϕt + ϕxxr − ϕx(t, x)v(ϕx)−

∑
i

ϕ2
x(t, x)(µi − r)2

2(σi)2ϕxx
= 0,

ϕ(T, x) =
Kx1−α

1− α
.

(C.3)

We suppose that ϕ(t, x) has the following form

ϕ(t, x) = f(t)
x1−α

1− α
,

where f(t) is a function and given later. Therefore, substituting the above
form of ϕ(t, x) in to (C.3), we obtain the following equation{

αf(t)
1−α−1

+ βf(t) + f ′(t) = 0,
f(T ) = K,

where

β =
[
r +

∑
i

(µi − r)2

2(σi)2α

]
(1− α).
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The solution of the above equation is given by

f(t) =
[
Kα−1

eβα
−1(T−t) + αβ−1(eβα

−1(T−t) − 1)
]α
.

Therefore, from Theorem 3.2 we can get the desired result. The proof is
complete. �

C.5 Proof of Theorem C.3

Similar to the Section 3, we have the corresponding uncertain HJB as follows.

sup
(π,c)∈B×A

{
u(t, c) + ϕt(t, x)− cϕx(t, x) + inf

r∈[r,r]
{xrϕx(t, x)(1− π)}

+ inf
(µ,σ)∈[µ,µ]×[σ,σ]

{ϕx(t, x)xπµ+
1

2
x2ϕxx(t, x)π2σ2}

}
= 0, (C.4)

with boundary condition

ϕ(T, x) = Φ(T, x).

Before giving the proof of Theorem 4.1, we give the following theorem,
which will be needed in what follows.

Theorem C.3 Let ϕ ∈ C1,2((0, T )×R+) be a solution of (C.4) and ϕxx < 0,
then the optimal consumption is

ĉ = v(ϕx(t, x)),

where v is the inverse of uc, and

(i) if µ ≤ r, then the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

(ii) if µ < r < µ, then the optimal portfolio choice is π̂ = 0.

(iii) if r < µ < r, then the optimal portfolio choice is

π̂ =
[
− ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2

]
∧ 1.
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(iv) if µ ≥ r, and if − ϕx(t,x)
ϕxx(t,x)

µ−r
σ2 < x, then the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 ;

and if − ϕx(t,x)
ϕxx(t,x)

µ−r
σ2 > x, then then the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 ;

and if − ϕx(t,x)
ϕxx(t,x)

µ−r
σ2 ≤ x ≤ − ϕx(t,x)

ϕxx(t,x)

µ−r
σ2 , then then the optimal portfolio

choice is π̂ = 1.

Proof of Theorem C.3. From the �rst order condition it follows that

ĉ = v(ϕx(t, x)).

where v is the inverse of uc(t, c).

We denote by a =
1

2
σ2x2ϕxx(t, x) < 0 and b = ϕx(t, x)x > 0. Let us

consider the following functions

f(π) = aπ2 + bπ(µ− r)1{π>1} + bπ(µ− r)1{0≤π≤1}

+bπ(µ− r)1{π≤0} + br1{π>1} + br1{π≤1}.

For this, we de�ne the following functions:

f1(π) = aπ2 + bπ(µ− r) + br, π > 1,

f2(π) = aπ2 + bπ(µ− r) + br, 0 ≤ π ≤ 1,

f3(π) = aπ2 + bπ(µ− r) + br, π ≤ 0.

Let us consider sup
π
f(π) in the following cases.

Case I: If µ ≤ r, then

sup
π>1

f1(π) = f1(1) = a+ bµ,

sup
0≤π≤1

f2(π) = f2(0) = br,

sup
π<0

f3(π) = f3(π) = br − b2(µ− r)2

4a
,
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where

π = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

Since a < 0 and b > 0, we have

sup
π
f(π) = f(π̂),

where

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

Case II: If µ < r < µ, then it follows that

sup
π>1

f1(π) = f1(1) = a+ bµ,

sup
0≤π≤1

f2(π) = f2(0) = br,

sup
π<0

f(π) = f3(0) = br.

Since a < 0 and b > 0, we have

sup
π
f(π) = f(π̂),

where π̂ = 0.

Case III: If r < µ < r then

sup
π>1

f1(π) = f1(1) = a+ bµ,

sup
0≤π≤1

f2(π) = f2(π̄) > f2(0) = f3(0), f2(π̄) > f2(1) = f1(1)

where

π̄ = [− ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 ] ∧ 1,

sup
π<0

f3(π) = f3(0) = br,
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Therefore, it follows that

sup
π
f(π) = f(π̂),

where

π̂ = [− ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 ] ∧ 1.

Case IV: µ ≥ r. (a) If − ϕx(t,x)
ϕxx(t,x)

µ−r
σ2 < x, then

sup
π>1

f1(π) = f1(1) = a+ bµ,

sup
0≤π≤1

f2(π) = f2(π̄) > f2(0) = f3(0), f2(π̄) > f2(1) = f1(1),

where

π̄ =
ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 ,

sup
π<0

f3(π) = f3(0) = br.

Consequently,

sup
π
f(π) = f(π̂),

and the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

(b) If − ϕx(t,x)
ϕxx(t,x)

µ−r
σ2 > x, then

sup
π≥1

f1(π) = f1(π̄) > f2(0) = f3(0), f2(π̄) > f2(1) = f1(1),

where

π̄ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 ,

sup
0≤π≤1

f2(π) = f2(1) = f1(1) = a+ bµ > f2(0) = f3(0),
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sup
π<0

f3(π) = f3(0) = br.

From the above it follows that the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 .

(c) If − ϕx(t,x)
ϕxx(t,x)

µ−r
σ2 ≤ x ≤ − ϕx(t,x)

ϕxx(t,x)

µ−r
σ2 , then

sup
π≥1

f1(π) = f1(1),

sup
0≤π≤1

f2(π) = f2(1) = f1(1) = a+ bµ > f2(0) = f3(0),

sup
π<0

f3(π) = f3(0) = br.

Therefore the optimal portfolio choice is π̂ = 1. The proof is complete. �

Proof of Theorem 4.1.

Similar to the proof of Proposition 3.4, from Theorem C.3 we can get
that

(i) if µ ≤ r, then the optimal portfolio choice is

π̂ =
µ− r
ασ2 .

(ii) if µ < r < µ, then the optimal portfolio choice is π̂ = 0.

(iii) if r < µ < r, then the optimal portfolio choice is

π̂ =
[µ− r
ασ2

]
∧ 1.

We now consider µ ≥ r in the following cases.

Case I. Suppose
µ− r
ασ2 < 1, from Theorem C.3, then the equation (C.4) has

the following form
ϕ1−α−1

x

1− α
+ ϕt + ϕxxr − ϕxv(ϕx)−

ϕ2
x(µ− r)2

2σ2ϕxx
= 0,

ϕ(T, x) =
Kx1−α

1− α
.

(C.5)
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Similar to the proof of Proposition 3.4, the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 =

µ− r
ασ2 .

Case II. Suppose
µ− r
ασ2 > 1, from Theorem C.3, then the equation (C.4) has

the following form
ϕ1−α−1

x

1− α
+ ϕt + ϕxxr − ϕxv(ϕx)−

ϕ2
x(µ− r)2

2σ2ϕxx
= 0,

ϕ(T, x) =
Kx1−α

1− α
.

(C.6)

Similar to the proof of Proposition 3.4, the optimal portfolio choice is

π̂ = − ϕx(t, x)

ϕxx(t, x)x

µ− r
σ2 =

µ− r
ασ2 .

Case II. If
µ− r
ασ2 ≤ 1 ≤

µ− r
ασ2 , then then the optimal portfolio choice is

π̂ = 1. The proof is complete. �
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