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Abstract

This paper constitutes the second part in a series dealing with
vNM-Stable sets for (cooperative) linear production games with
a continuum of players, see [2|. The coalitional function is gen-
erated by r 4+ 1 “production factors” (non atomic measures). r
factors are given by orthogonal probabilities (“cornered” produc-
tion factors) while factor r + 1% is provided “across the corners”
of the market.

We consider convex vNM—Stable Sets of this game.

Within this second part we present an economy reflecting rel-
ative abundance of the “central” commodity. In this situation
the model allows for a vINM-Stable Set including but not equal
to the core of the game. Rather there is an additional impu-
tation such that the vINM-Stable Set is the convex hull of this
imputation and the core. This imputation is essentially described
by the density of the r+ 1! production factor - mutatis mutandis.
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1 Introduction

Within this second part we discuss a market notably different from the orig-
inal version that has been discussed in [2]. Here, the third production factor
appears in quantities such that the core fails to dominate all imputations
outside of itself. We observe the existence of a vINM-Stable set containing
but not equal to the core.

In the present model, the non—cornered production factor is available in rela-
tively rich quantities. Nevertheless, as all factors are necessary for to achieve
production in a coalition, this distribution provides an additional obstacle
for the formation of effective coalitions when compared to the “purely” or-
thogonal situation. This is reflected by the additional extremal point of the
vNM-Stable Set.

At this stage let us enter a discussion regarding the concept of the vNM—
Stable Set. This concept is not too popular in economic circles mainly, as
it would seem, by two reasons: the first one being its awkward tractability.
It is mathematically complicated, existence theorems are not obtained by
some standard or prefabricated set of procedures and results may have a
strange shape, difficult to justify or to interpret in economic terms. The
second reason is its “ex ante” interpretation: what does the concept yield in
view of its very definition. With both respects the vNM-Stable set is usually
considered to be inferior to the core or the competitive equilibrium. Note
however, that the concept was the first one developed by von Neumann and
Morgenstern in [6] while the core (not mentioning Edgeworth) appears later
in the work of Gillies and Shapley.

Since the concept yields set—valued solutions which - in general - are not
even unique, there have been quite a few attempts to justify this rich-
ness/abundance/chaotic appearance. E.g., it has been said (by the creators
in |6]), that the preselection of a particular Stable Set reflects a "standard
of behavior“. In the 3-person weighted majority game (the paradigm for
a successful evaluation of vNM-Stable Sets) the results illustrate this idea
rather impressively: either there is an implicit agreement that minimal win-
ning 2-person coalitions should be taken into considerations only (resulting
in the main simple solution) or else there is a (social?) convention according
to which one party (holding extreme political views?) is excluded from the
bargaining process a priori in which case the remaining two have to discuss
the “discriminating solution” (see [6]).

We would like to just scale down this cloudy idea, thus obtaining an inter-
pretation referring to the bargaining process around the game only. Vaguely
speaking, we want to replace the establishment of a "social standard of behav-
ior” by a first round of bargaining - not exactly between the players involved
but between certain coalitions. More precisely, there are now two rounds of
bargaining. The first one is being performed by “socially relevant groups”,
i.e., by (representatives of) certain ez ante influential coalitions. The second
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round then takes place inside those “influential” coalitions.

Now, for the 3—person majority game this idea may appear in just a rudimen-
tary version, as the “influential” coalitions will have to be the single players
(the political parties in a parliament in the most common interpretation of
that model). Thus, in the first round of the 3—person majority game play-
ers (political parties) will discuss whether to adopt the main simple solution
(meaning: all players/parties are on equal footing, everyone is willing to
communicate with everybody else; all the minimal winning coalitions are
considered to be feasible). Or else it might turn out that one player/party
is being shunned, the other two do not want to be seen talking with the
political extremists, so there is communication only between the remaining
two players. This result of the first round of bargaining would then lead to
the discriminating solution (meaning that, because of the large political gap,
one party is excluded from the discussion about forming a government).

In the second round then coalitions will internally agree about distributing
the worth of the game. That is, in the main simple solution (because of
the inherent pressure of a third eligible party being present) there will be
a fifty—fifty split in a minimal winning coalition. And in the discriminating
case — as the third party is ruled out — there is ample room for distribution
the wealth of this coalition between the two remaining parties at will.

In the light of this slight re—interpretation of the “classical” case let us focus
shortly on the result in the orthogonal market game discussed in [3] and [4].
In this context, there is a great appeal in restricting oneself to convex Stable
Sets. While this does not seem to be appropriate for the 3 person majority
game (as it is “zero-sum”) or more generally the class of homogenous weighted
majority games, it is well behaved in the context of the market game discussed
in those papers as well as in our present context. The (“purely”) orthogonal
game allows for an obvious interpretation of the various corners of the market
(the carriers of the orthogonal measures establishing production factors):
these are cartels guarding their commodity; all commodities are indispensable
for production and that establishes a considerable bargaining power of those
cartels. Specifically, cartels commanding a commodity distribution of total
wealth 1 = w(I) which is a probability, form the “short side” of the market,
while cartels possessing anabundance of their commodity (a measure with
high total mass) belong to the long side. (We use term “probability” only to
indicate a normalized measure).

The results of [3] and [4] characterize (!) all such solutions and they strongly
support our view of a two round bargaining process. Indeed, all vNM-Stable
Sets are being obtained in two stages: there is a probability distribution
selected in each cartel and the convex hull of these distributions establishes
a VNM-Stable Set.

We suggest that this feature corresponds to two rounds of the bargaining
process: in one round (“external” from the view of the members of a cartel)
(representatives of) the cartels (the corners of the market) establish a convex



* SECTION 1: INTRODUCTION * 5

combination of local distributions of the various cartels —i.e. the share of each
cartel in the distribution of wealth. Another round of discussions (“internal”)
is then engineered within a cartel in order to establish a (“local”) distribution
of the wealth inside each cartel (normalized, i.e., a probability).

There is no harm in regarding the order of organization of these two rounds
as a small matter. Yet, it is clear that for cartels on the short side of the
market, the internal distribution - a probability - is dictated by just this
probability. For cartels on the long side, players have to agree about some
probability inside this cartel which, however, (a result of the Characterization
Theorem [3],[4]) is absolutely continuous w.r.t. the commodity distribution
of this cartel and yields a density not exceeding one.

Now, an important point is that, as we have a large (“continuous”) game, the
core assigns no wealth to cartels on the long side of the market. In view of
the convergence or “equivalence” theorems, so do the competitive equilibrium
and the Shapley value. Of course, in the context of these concepts, the inter-
pretation of this fact is at hand: exploitation of the long side of the market
will take place as there is so much competition to rule out any payment to
members of the long side.

To which it can be said that, while this reflects the competitive notion of
the market, it fails to amply reflect the idea of cooperation: one does need
the longer side of the market for a coalition to yield the total worth v (I).
Why the members of any coalition that belong to the long side should agree
to obtain just nothing is — from the view of cooperative theory — a mystery.
Of course it is the view based on the Equivalence Theorem that competi-
tion forces out cooperation in a large market. This author’s view is rather
that competitive concepts are not appropriate for reflecting the results of
cooperation — not even in a large game.

At this stage we would like to shortly hint at some other solution concept
that also respects the power of cartels and does not assign zero worth to the
long side of the market. The reader is directed to take notice of a similar
discussion in [5] regarding the modified nucleolus or modiclus. This concept
shows quite an analogous development and reflect the results of cooperation
in a striking way: the long side of the market is obtaining value according to
its relevance and impact. On the other hand, it clearly suffers from the same
backlash as the vNM-Stable Set: it is mathematically difficult to handle and
requires some effort to interpret it “ex ante”. This effort is rewarded: in the
case of the modiclus the introduction of the dual game bears consequences
that definitely shed light on a feature neglected by some cooperative concepts:
the power to prevent as opposed to the power to achieve.

In view of these two concepts we argue that the class of concepts of the
“equivalence theorems” though quite powerful within contexts of competition
may not be exclusively appropriate for a class of cooperative market games
like linear production games. Hence, the concepts we have in mind are still
worth a lengthy strain of research — no matter what happens within that
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realm of the 70-ies till 90-ies.

Let us now turn to our present framework of a quasi orthogonal game and
its YNM-Stable sets. We consider a distribution A° of a “central commodity”
that exhibits mass across the cartels, hence is counteracting the carteliza-
tion tendencies. As we have a “min game”, the central commodity is more
important the smaller the contribution of A”. Now the central commodity
is, other then the goods in corners, not attached to any cartel like coalition.
We suggest that the role of the various cartels is augmented by a similar role
of the grand coalition. It may act in the external round by participating in
the discussion concerning the share of the cartels. And it may then engineer
an internal round of discussion like the cartels do — internal meaning in this
case on the global scale of the grand coalition.

Hence, when discussing a distribution within the grand coalition via some
imputation the “internal round” of discussions (the one that took place within
the cartels previously) will have to include some discussion within the grand
coalition that hinges on A°. But A° is decidedly not an imputation, we as-
sume A°(I) > 1. Our results suggest an outcome of this “internal” discussion
within the grand coalition: this consist of a pre-imputation & which equals
the density of A up to a few corrections. These corrections take place on
sectors D™ on which A’ is rather large (hence less influential) and on sectors
on which it is rather small (hence overly influential).

Consider Figure 3.2. Here Z is obtained by decreasing the density h of A in
sectors with values 1 and increasing it in sectors with small values.

Now, the vNM-Stable set obtained is given (in terms of pre— imputations)
by the convex hull of the core and &. Thus, we see that again there are two
rounds of bargaining suggested. The one (“internal”) involves a discussion in
each cartel and a discussion in the grand coalition about which distribution
to choose “internally”. The external round consists of some discussion among
(representatives of) cartels plus the grand coalition as to the coefficients of
the convex combination of the “internal” imputations applied in order to
result in an element of the vNM-Stable Set.

Thus, the vNM-Stable Set subtly reacts to the quasi orthogonal setup, that
is, the existence of a non cornered commodity. The procedure from the
orthogonal setup is copied up to the fact that the cartels are augmented
by the grand coalition. The internal procedure is, therefore, augmented by
the result of some global discussion in view of the central commodity. The
external procedure is also augmented by asking for some regard to the result
of the internal discussion of the grand coalition. The grand coalition kind of
plays the same role as the cartels — in all details.

In models to be discussed later on, vNM—-Stable Sets may appear in abun-
dance — as there is no uniqueness when certain data of A” are being relaxed.
In this case it is even more striking that the grand coalition is taking place as
a partner in the discussion of the cartels - just that the result of the internal
discussion of the grand coalition is not unique.
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Next want to stress a second feature of our concept which we believe to
be responsible for the power of cartels, that feature being neglected in the
concepts of the “equivalence theorem class”.

The essential argument appears in [5] regarding the modiclus: Cartels can-
not achieve any worth (v(C”) = 0) but they can prevent their opponents
from getting any worth as well (v(I \ C”) = 0). The “power to prevent”
is incorporated within the modiclus concept as it involves the dual game —
the game representing the preventing power of coalitions ipso forte. This
feature is completely missing regarding the core: the core is indicating what
coalitions can achieve and nothing else.

Now the core is simultaneously the set of undominated imputations. It is
always internally stable. That is, internal stability and the power to achieve
are closely connected.

Outside the core one may find imputations that cannot be dominated by
elements of the core, i.e., certain coalitions cannot be prevented from striving
for these imputations. Obviously the power to prevent is caught by the
concept of external stability. Thus, vNM-Stable Sets result in reflecting the
“preventive power” of cartels because they involve arguments of prevention
via external stability. This property, though by a different reason, is quite
similar to the one exhibited by the modiclus.

Finally let us comment on the subtlety of the nature of the vNM-Stable Set
as seen from the Mathematical or Computational viewpoint. It has been
argued (Y. Kannai, verbal communication) that it is a main disadvantage
of such a concept to be undecidable ex ante. l.e., given an imputation one
can at once (in principle) decide upon whether it is an element of the core
(say, by verifying a system of inequalities). There is no such decisive — not
to speak of constructive — procedure regarding vNM-Stable Sets. Frequently
they are not unique and any attempt to somehow find a computational idea
for exhibiting them is perturbed by the lack of transitivity of the domination
relation. Thus, there seems to be no way to ex ante decide about some
imputation being a member of a vNM—-Stable Set, and of which one. Hence
one may feel uncomfortable with such a concept.

To which we would like to reply that indeed, the core in a sense is a set of
“optimal elements” — hence “approachable”. As such it is also in a certain
sense naive. vNM on the other hand results from a more subtle considera-
tion, taking into account not just what one can do but also what one can
prevent others from doing. In what sense soever — optimality is just the
naive approach of Optimization — the one player game. Reflecting about
the influence of opposing coalitions is much more adapted to the real world
situation.

There are many versions of stability (of course the Nash equilibrium in a
non—cooperative game comes to ones mind) that are non unique, resistant
to computational methods, but intuitively closer to representing a situa-
tion of the real world. Frequently we do not know in advance which result
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to expect from conflict and cooperation — this is all what Game Theory is
about. To revert the 11* thesis of a 19"" century economist—philosopher:
The Politicians—Economists have but changed the world in various ways — it
is however essential to interpret it.

2 Notations and Definitions

We use definitions and notations as provided in [2] and previously in [3] and
[4]. Thus, we consider a (cooperative) game with a continuum of players,
i.e., a triple (I, F,v) where I is some interval in the reals (the players), E
is the o—field of (Borel) measurable sets (the coalitions) and v (the coali-
tional function) is a mapping v : E — R, which is absolutely continuous
w.r.t. the Lebesgue measure A. We focus on “linear production games”, that
is, v is described by finitely many measures A’  (p € {0,1,...,7}) via

(2.1) v(S) = min{N(S)|pe{0,1,....r} (Se€F).
(2.2) v= A{X°A N = AN

(as previously, we use R = {1,...,r} and Ry = RU {0}). All measures are
absolutely continuous w.r.t to Lebesgue measure X. The measures A',..., A"
are orthogonal copies of Lebesgue measure. Thus we choose the player set to
be I := [0,7). The carriers C* = (p—1,p] (p=0,...,r) of the measures
A’ are the “cartels” commanding commodity p.

The measure X is assumed to have a piecewise constant density A° w.r.t A
given by

(2.3) N =h onD’, (reT)

where {D"} e, constitutes a partition of the carrier C” of A” such that
U, et D7 = C”. Further details of our notation are exactly those presented
in [2].

In particular, we shall discuss the 2 x 2— example that goes back to EINY ET
AL. [1] but with initial data changed according to our present model. Thus,
we assume the density of A° (i.e., the levels h,) to be “small” on most blocks
D", meaning that the non—cornered factor is scarce. Within the example
(see Figure 2.1) this results in a requirement hy + hy < 1. More precisely:

Example 2.1. Figure 2.1 illustrates a situation for r =t = 2. We assume
A+ A3<1

(2.4) hi =0, ho,hg <1, hy=1
hoda + hsAs 4+ Ay > 1
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Al A2

AO

ho

D' D? D? D!
Figure 2.1: The case of 4 steps: the density of A’

Our solution concept is given by the vNM-Stable Set (VON NEUMANN-
MORGENSTERN [6]). We repeat the definition for a continuum of players,
see also Part 1 [2].

Definition 2.2. Let (I,E,v) be a game. An imputation is a measure §
with §(I) = v(I). An imputation & dominates an imputation n w.r.t S € E
if € is effective for S, i.e.,

(2.5) A(S) >0 and &(S) <v(9)
and if
(2.6) ET)>n(T) (TeE, TCSXT)>0)

holds true. That is, every subcoalition of S (almost every player in S ) strictly
improves its payoff at & versus 1. We write § domg mn to indicate domination.

It is standard to use & dom 1) whenever € domg 1 holds true for some coalition
S eF.

Definition 2.3. Let v be a game. A set 8 of imputations is called a vINM—
Stable Set if

e there is no pair & p € 8 such that & dom p holds true (“internal sta-
bility” ).

e for every imputation n ¢ 8 there exists & € 8 such that &dommn is
satisfied (“external stability” ).

The discrete nature of the density of A carries some implications for the
establishment of dominance based on discrete analogues of concepts like im-
putations, coalitions etc. We refer to these analogues as “pre-concepts”.
Again see Part 1 |2] for the details.
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We now specify the basic assumptions for the model under considerations
within this second part of our presentation. Within the following definition
it is understood that we pick r as a distinguished element of R.

Definition 2.4. We call
v= A{X°A, N = AN
PERg

a game with Rich Central Commodity if the following is satisfied.

There is a unique sequence T = (T1,...,7,) € TE x ... x T" such that
(2.7) D hs <1
pER

holds true. Thus, we have

(2.8) > hy, > 1

pER

for any sequence T = (11, ...,7.) € T! that does not contain at least one T,.

The 2 x 2 Example 2.1 is captured by this definition if we assume hy+hg > 1.
For in this case the sequence (hy, h3) = (0, hs) is the only one that satisfies
(2.7).

Pre—coalitions along the sequence T play an essential role in order to provide
domination certain imputations outside the core that cannot be dominated
from inside the core. Along this sequence the central commodity is more
scarce than any cornered commodity that is, any extremal of the core. Hence,
the distribution of A° along this sequence is decisive for external dominance.
Consequently, the core is not sufficient in order to reject certain imputations
with a small outfit of the central commodity: in such a coalition the value
of the game is dictated by the central commodity and hence domination
requires some additional imputation in the vNM-Stable Set.

It should be noted that the central commodity would be even richer in case
that there is no sequence at all satisfying (2.7). In this case however, it is
seen that the central commodity is of no influence to the game: any relevant
pre—coalition involves the short commodities of the corners and the long
commodity of the center is always available in abundance. Hence, the game
is essentially the “pure” orthogonal game. For this the vNM-Stable Sets are
well known ([3],[4]).

Consider the pre—coalition a® with coordinates 1 along the sequence T, i.e.,

1— (hg:l "‘---"‘hﬁ_l)
e,

a® = (0,...,0,1,0...,0,1,0,,...,0, ,0...,0) .

and similarly

e _ (1 4 (hay + ...+ hs_, +he ) =1 1—(hs +...4+hz)
) ) h;r . h% ) h;r . h% ’
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we have v(a®) =1 and v(a®) = 1. Now we will construct the extremal & of
the hypothetical vNM-Stable Set such that Za® = 1 = v(a®) and — even
more significant —

za® < 1 = v(a?).
This construction will permit the (pre-)domination of certain imputations

holding small amounts of the central commodity.

Recall that the pre—coalitions mentioned above are relevant vectors in the
sense of Definition 3.1 of [2]. The crucial result presented in |2] is offered by
the “Inheritance Theorem” (Theorem 3.3) according to which it is sufficient
and necessary to consider the relevant vectors in order to study dominance re-
lations for the Semi Orthogonal Game in our sense. More precisely, recalling

*)
the notation of the vector valued measure A via
N T
Ax) == {A*ND") .}

it is sufficient and necessary to study e-relevant coalitions, i.e., coalitions
T = T¢* that, for some small € > 0 and some relevant vector a, yield

X(T) = caandv(T) = 1.
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3 Rich Central Commodity

Recall the set of pre-imputations
(3.1) H = {zecJ|xa>v(a) =1 (ac A%}

that was introduced in in (4.7) of Part I of [2|] (J = J(v) denotes the
pre-imputations of the pre-game v). Within this section we exhibit a pre-
imputation Z that, given appropriate requirements regarding A°, renders

H = ConvH{z, e’ (peR)} .
Then we show that H provides the basis for a vNM—-Stable Set
H = ConvH{d* N (peR)} .

To this end we pick r as the distinguished element of R. We assume that our
conditions regarding a rich central commodity (Definition 2.4) are satisfied.

As a prerequisite we consider a linear system of equations that eventually
will serve to define the pre-imputation Z.

Definition 3.1. Let 7 = (71,...,7,) € T' X ... x T" and let (T7,...,75.) €
R",. We shall say that T € R’} obeys the defining system with boundary
conditions (Tz,, ..., T=.) if the coordinates T, (T € T) are determined by the
following linear system of equations in variables x, (1 € T):

(3.2) . =z, (te{n,....}) ,

(3.3) . =z (7€ T\{7,}, p€R),

(3.4) T+ Y T ta, =1 (0€R\{r}),
pER\{o,r}

(3.5) > Aw =1,

Remark 3.2. As r plays a distinguished role, equation (3.4) is not required
for p = r, instead the pre-imputation requirement (3.5) is supplied. As (3.2)
shows, there is essentially one value z for 7 € T”, 7 # 7, to be determined,
let the generic element be denoted by x., € T”. Then the defining system is
essentially equivalent to a linear system in r variables x,, with r equations

T+, = 1— > 2z (0€R\{r})

pER\{o,r}

:E:lkpxﬂﬂ =1 - :E:‘A?hxﬁv

pER pER

(3.6)
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with

(3.7) Ap = ) A= 1-)

TeTP\{7,}

In order to exhibit the solution of (3.6) (and hence of the defining system),
we attempt to eliminate the variables x,, (o # r). We introduce

(3.8) Hy, == Y
peR\{or}

then the first line of (3.6) reads
(3.9) t, = 1—H,—z, (0 €R\{r})

The second line of (3.6) is then transformed to
(3.10) S AQ-Hy—z )+ MNa, =1 - ) Ias
pER\{r} ZS

which permits to come up with a closed expression for x, in terms of zz,
and A, as follows:

(3.11)

Lo = DpeR M5, = D pery(ry Mol — H)p)
" Ar =2 pervgry Mo
L =2 erir A = 2Zpervin) {A% ~ 2oeR\{pr} Aa} T5, = AT,
Ar = ZpeR\{r} A

Combining our results, we come up with the following lemma.

Lemma 3.3. Given the data xz, and )\,, a solution of the defining system
necessarily satisfies equations (3.9) and (3.11).

On the other hand, let xz, and X, satisfy the following conditions.

A= > A,

pER\{r}
)\?-p > Z Ay (/0 €R \ {T}) )
(3.12) UER\{P,T}
1 > Z Ap — Z )\?p — Z Ag Tz, — )\?Tx?r
pER\{r} pER\{r} oeR\{p,r}

Then equations (3.9) and (3.11) define a unique pre—imputation that satisfies
the defining system.



* SECTION 3: RicH CENTRAL COMMODITY * 14

Remark 3.4. The conditions of Lemma 3.3 define a nonempty set of data
A, such that the conclusions of the lemma hold true. For, rewriting these
conditions in view of (3.7), we obtain

Z /\?p > (T’—Z)—f—/\’ﬁ ,
pER\{r}

Z /\?p>r—2

pER\{r}

(3.13)

for the first two inequalities, while the third one follows immediately if the
first two are satisfied. However, (3.13) shows, that the second one follow also
once the first one is satisfied, hence a sufficient condition is actually provided
by the first inequality in (3.13). For example, assume that for some ¢ > 0
we have

(3.14) /\?p >1—-¢ (p €R \ {r}), A Z e,
then it is sufficient to assume that
1
(7"—1)(1—6) > (7"-2)"‘616 E< m

holds true. Thus we observe that the regions D™ with small density factor,
say Tz, = ks, have relatively large masses Az while the region D™ has small
mass.

Now define a pre-imputation & € J as follows:

Definition 3.5. Let T = (71,...,7,) € Tt x ... x T". Assume that (3.12)
is satisfied for T, = h, (r € {71,...,7+}). Then & is the unique pre—
imputation resulting from Lemma 3.3.

That is, & coincides with the density of A" along the specified sequence 7
and all values Z, within some T? are equal for 7 # 7, and determined by
Definition 3.1 or (3.6) respectively.

Figures 3.1 and 3.2 provide a visual presentation of A" and . The sketch
reflects the assumption that 7, is the first element in T?, that is 7, = (p —
1)t + 1.

We write
Vo= Y A
peR\ {1}
(3.15) ¢ =M= > A
oeR\{p,r}
A, — A7

1= A"
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htr

Dl D2 Dt D2t DTt

Figure 3.1: The density of X’

Dl D2 Dt D2t / DTt

D™

Figure 3.2: The pre-imputation &
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Note that these quantities depend on the A, only. The following Lemma
capitalizes essentially on this fact.

Lemma 3.6. Let (z7,...,27) € R ( a vector of “boundary conditions”)
and let € J be the corresponding solution of the defining system. Assume
that the data A\, (p € R) satisfy the conditions (3.12). Then

1_Zp€Rx?p
— Tz = — .

(3.16) x; 3 0

T

Proof:
Using the abbreviations of (3.15) we find that (3.11) is shortened to

1 - AT - ZPGR\{T} Cpx?p - )\?Tx’fr

(3.17) T, =

T AT‘ — Ar
Thus
Xy, — X7 = LA ZpER\{r} cptz, — {As + A — A}z,
Tr Tr AT - Ar
(3.18) c {ns, +A A7}
_ e TR T R
= i)
1-A"

Hence we are done if all coefficients to the zz, equal 1. Now for p € R\ {r}

¢ o= A= > A,

ceR\(pyr}
(3.19) =1-8- > A
aeR\{p,r}
= 1- Z AO’)
o€R\{r}

that is the coefficient of zz, equals

Cp

1- ZaeR\{r} AO’ )

Next
(3.20) M +A —AN = 1-A"

thus is the coefficient of z= also equals 1. This proves the lemma.
q.e.d.

Remark 3.7. Lemma 3.6 explains the complicated choice of some pre—
imputation Z via the defining system (Definition 3.1 and Remark 3.2). For,
the coordinates 7, resulting from the choice of the 77 (as given by (3.9) and
(3.11)) ensure that the coefficients to these coordinates T, are linear in the
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boundary coordinates 7z, in such a way, that they allow for a simple form of
the difference (3.16). This difference turns out to be crucial when dominance
w.r.t the pre—coalitions of type a® is at stake.

Corollary 3.8. Let T = (T1,...,7,) € TP x ... x T" and let (T, ...,77) €
R’,. Let & € J be the corresponding solution of the defining system. Then

(3.21) T, >7:, (TeT’\{7,}, p<€R).
In particular, whenever & is determined via Definition 3.5, then

(3.22) Tr 2%z, = hﬂ (e Tp\{?p}, p €R).

Proof:

For p = r this follows from Lemma 3.6. For p < r we have in view of (3.6)

By —Tr, = 1= Y Tp - — T,
pER\{O’,T‘}
= 1-) & — 3, +15
pER
= 1= & — (3, —T5)
pER
= (1 Z@)O 1)
= — 2, _ =
PER Q
>0
as @ > 1,
q.e.d
Definition 3.9. We denote by
1—(hs +...4+ hs_
a® = (0,...,0,1,0...,0,1,0,,...,0, (h . 1),()...,()).

I,

the pre—coalition where the non—zero coordinates appear exactly along

T = (?1,?2,...,?7,).

Also,
(3.23)
G° — (1 1(h?1+...+h?r—1+hgr)—1 1—(h?1+,,,+h?r))
' o hez, — hs, ’ hz — h,

denotes a/the pre—coalition with non vanishing coordinates along the sequence
(r,7) = (11,..., 7, 7) for some 7, # 7.
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Moreover,
a® = (0,...,0,1,0...,0,1,0,,...,,...,0,1,0...,0) .

denotes a pre—coalition the coordinates 1 of which appear exactly along a
sequence T that differs from T at least at one coordinate p, e.qg.
T = (?1, Ce 7?p—1a7—pa?p+17 Ce ,?T).

Theorem 3.10. 1. The pre—coalitions a® and a® are efficient. More pre-
cisely,

(3.24) za®=1, Ta®<1.
2. 2za® >1 = v(a®) .
3. & 1is an extremal point of
H = {zcJ|xa>v(a)=1 (ac A°)}
4. @ 1is the only extremal of H, i.e.,

H = ConvH{Z, e (peR)} .

Proof:
1StSTEP :

The pre-imputation & is the solution of the defining system with boundary

conditions given by T, = h; (1 =71, 7»,...,7,). Hence, along7T = (74, 7,...,7;)

all the coordinates of & equal those of h, and consequently & obviously sat-
isfies all equations

ra =

1— hz
L > TE LA

Tp h? -
ER\{c} 7
(3.25) 8
1-— hz
_ Z h?p"‘ (ZhR\{o} p>h70 -1
pER\{0} T
Next,
(3.26)

(ha+...+hs  +hz ) =1 1—(hsy+...+hz)

Ta® = (hﬂ,...,h%,f;r) (1,...,1,
= hs + ...+ hs_, +ahs + Tz,

where «, 8 are the last two coordinates of a® which are positive and sum up
to 1. Hence, if hz, > T, then

:TZCLGSZh?p<1.

pER

h= — hs, " he —ha

)
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On the other hand, if hz < 7, , then

Ta® < Y ha 4T <hy+ > ha 4T, =1,
pER\{r} pER\{1,r}

using equations (3.4).

2"dSTEP : For any pre-—coalition a® as above we have

(3.27) Ta® = > T, > he =1

pER pER
by (3.22).

3"4STEP : Obviously & satisfies a system of equations that are among the
inequalities defining H. As & € H by the first two steps, clearly, & is
extremal in H.

4*9STEP : Finally, let Z be a further extremal point of H. Then @ has to
satisfy all the equations (3.4) at least with an inequality, say

(3.28) T+ Y B ta, > 1 (0eR\{r}),
pER\{O’,T‘}

Moreover, there will be further inequalities involving more than one coordi-
nate 7 ¢ {7y, ...,7,}, say

(3.29) T, + 2, Z Tz, +x, > 1 (c€R\{r}).

peR\{o,0" 1}

Suppose that we have an equation in one of the inequalities (3.29). then
there are two corresponding equations of type (3.28) and it is seen that at
least one of the terms Tr,, 7, has to be zero as all terms involved are non
negative. We would then proceed by induction (neglecting for the moment
our requirement that all T7 are of equal size). Thus, let us assume that all
equations determining & are of the type (3.28).

Next, assume that two of the terms x,,, x, , are different, say z,, > x., for
some 75,7, € T?. Both terms would have to appear in certain inequalities
of type (3.28). Regarding both these equations exchanging z,, and z.,
would necessarily result in an inequality of at least one of these equations,
a contradiction. Hence all terms x, ,z, , for 7,1, € T° have to be equal.
Consequently, T satisfies equations (3.3) as well.

Finally, the variables 7z can appear only in equations of the type dictated by
a® from which it follows that Z satisfies all equations determining &, hence
T =Z.

q.e.d.

Now we have
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Theorem 3.11. Assume the conditions for rich central commodity to be
satisfied. Then .
H = ConvH{9* N(peR)}

i.e., the set of imputations induced by
(3.30) H = ConvH{z.e" (peR)} ,

15 internally stable.

Proof:

15*STEP : By definition, all vectors @ € H satisfy xa = v(a) = 1 for
all separating pre—coalitions @ € A°. Hence, no separating relevant vector
induces a coalition that yields a domination. Therefore, we can restrict
ourselves to domination via the non—separating relevant vectors of the type
a® described by item 3 of Theorem 3.4 of [2] (relevant vectors of the third
type), also described in Definition 3.9. These vectors a® are given by a
sequence (7,...,7,,7,) by

@, =1 (p R\ {r})
(ha +...+hs_ +hz)—1

(3.31) o hz, = hs,
' aﬁ_l_(hﬁ—f—”'—‘f—hﬂ)
T h;r - h;:r ’
a, =0 otherwise
with

h?1+...+h?r< 1 <h?1+"'+h?r71+h?r'

Now according to (3.28) and (3.29) we have for the extremal & of H
(3.32) > T 4T 21
peR\{r}

for any separating sequence 7 including 7,. On the other hand, for any
separating sequence not including 7, we have

(3.33) d m <1

pER

Finally, any e’” (p € R) and hence any vector e of the pre—core satisfies

(3.34) d e =1,

PER

no matter whether the separating sequence ends up with or without 7,.

2"dSTEP :
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The vectors of H are of the form

(3.35) z = ) o +azx
pER
with a convex coefficients (g, ..., a,,@). We write this

(3.36) r = (Z%) ZLeT” +az = (1 -a)e+ax ;

o€R pER ZUER Qo

in other words, any & € H is a convex combination of a core element and
Z. Suppose now, that domination takes place between two elements of JH
via some relevant vector as described by (3.31). Then necessarily we have
vectors e and €’ in the pre—core satisfying

(3.37) (1-a)e+azx > (1—B)e +pz .

with suitable coefficients @, B and for the coordinates (7, ...,7,,7,). First,
consider the separating sequence obtained by omitting 7., i.e., (71,...,7,).
Then, according to (3.32) and (3.34) we find by taking the sum > g\ (4 77,4
zz > 1 on both sides and writing § = > cg\ () 77, + 75,

(I—@)+a > (1—-p5)+ B¢

ie.
aE—1)>BE-1)
a>f.
Now we perform the same operation along the sequence (71,...,7,) not in-
cluding 7,. Then the sum n := ZpeR 77, < 1 can be employed so that

summation along the sequence now produces

(I1—@)+an>(1-5)+p8ny

an—1)>Bn—1)
a(l—n) < B(1—n)
a<p.

This contradiction proves that domination cannot take place inside H via a
non—separating sequence resulting from a relevant vector described by (3.31).

q.e.d.

Remark 3.12. Note that internal stability as treated above does not make
any specific use of the particular shape of the pre-imputation . We just
use the inequalities Za > v(a) = 1 for all separating relevant vectors. Hence
the theorem rests essentially on the shape of the relevant vectors only, which
was established in Part I (see [2]). Consequently we can say that, whenever
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some & € J(v) satisfies €a > v(a) = 1 for all separating relevant vectors,
then the convex hull

(3.38) ConvH {z,e" (peR)} ,
is internally stable.

This observation will be useful later on when other versions of the pre—
imputation & may occur. The above proof will not work for for the convex
hull of the e and more than one additional pre-imputation.

Eventually we shall verify that H or H is externally stable as well.

Theorem 3.13. 1. Let a® be the separating vector of the second type
given by Definition 3.9. Let x be an imputation such that

(3.39) > rr <> ha,
PER pER

Then

o

(3.40) Z domges x .

2. Let ¥ be an imputation with minima vector m. If
(3.41) Zm?p < Z h?p s
pER pER

Then, for sufficiently small € > 0, there exists an e-a® relevant coali-
tion T = T and & € H such that

(3.42) 97 domyp- 9 .

Proof:

. . T2y . 8n .
1*STEP : Assume w.l.g. that r minimizes the quotients 72, i.e, ij < 2,
or

o

l'?r o
(3.43) - h?p < a7, (peR).
Define @ := 7= < 1. Now because of
1—2.’%@ > 1—Zh$p
pER peER

it follows that

(1 — D eR x?p) +trh g
> h_'\ -
(1= Sperhn, ) +hs Ho
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or, equivalently

[e)

1- ZpER\{T‘} 7
L =2 perviry 15

1—25%?p>a 1—Zh?p

pER\{r} pER\{r}

which is

(3.44) 1—a > > (i, —ahs, )

peR\{r}

Because of (3.43) the terms under sum in (3.44) are all non negative. There-

fore, (3.44) permits to choose positive reals a, ..., a, such that
(3.45) l—@ > 1-a, > Y (¥, —ahs, )
pER\{r}
(3.46) a, > :%?p —ayhz, (pe R\ {r}),
and
(3.47) l—a, = Z a,
pER\{r}

holds true. In other words, the o, are positive convex coefficients,

(3.48) da, = 1.

pER
Also, we have
Xz,
(3.49) o, >0 = h—%
Now consider the vector
(3.50) T = Z e +a,x .
pER\{r}

Then clearly for p € R\ {r} we have

(3.51) T

(o]
= a,tahs, > Tz,

(in view of (3.46)), and for p =r

(3.52) /:L‘\?T = a,hs >ahs; = x5
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(in view of (3.49)). Next

(3.53) za® = Z a,ea® + a,za® = Zar =1.
peR\{r} pER

Now (3.51),(3.52) and (3.53) imply

~ (o]
x domgs x .

2"dSTEP : If 9 is an imputation satisfying the condition specified for m,
then mm can play the role of @. Hence by Theorem 4.5. of [2] we find, for
e > 0 sufficiently small, an e-relevant coalition T° = T°%° such that

9% domy- 9 |

Theorem 3.14. Let ¢ € R satisfy

1.
(3.54) 1> "2 > hs,
pER pER
2. forall e T\ {7,}
(3.55) Tr 4 oty AT 4T > 1,

(3.56) d Nz <1

TET
that 1s, T is a “pre—subimputation”.
Then there erists x € H and 7 € T\ {7} as well as a® with values at
coordinates 71,7y, . . ., 7o, 7 provided for by Definition 3.9 such that
(3.57) x domge
holds true.
Proof:

1StSTEP :
Define

1— Tn
(3.58) a;:@, D<a<l,
1_Zp€Rh?p
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and
(3.59) a, = 1, —ah:, pER.
If it so happens that a, > 0 for p € R, then ay, ..., a,, @ constitutes a set of

“convex coefficients”. If this is not so, then a slight digression is necessary in
order to adjust these coefficients as follows. Because of

a(l—=> hz) = (1-) 1)

pER pER
le.
d s, —a)y hs=1-a
pER pER
le.
> (¥z, —ahs)=1-a
pER
we have
da,=1-a.
pER
We write a™ := max{0, a} for real a. Now consider
L(e) : [0,1] — [0, 1]
given by

L(a) == Y (¥7, —ahz)" (a€0,1))
pER
which is continuous and decreasing in . We have

LO0)=) 7z < 1

pER

L) >> 2z =Y hs >0

pER peER

Compare this with the decreasing function & — 1 — « on [0, 1] which has
values 1 and 0 at arguments 0 and 1. Clearly we can find some @ € [0, 1], @ <
a, such that both functions are equal, that is

(3.60) L—@ = > (Ts,—hz)" 2 (22, —hs,) >0.

pER pER

Define a4, ...,a,,> 0 by
(3.61) a, = (zz, —ahs)" > (22, — ahs,)

then
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~

Thus, the set of coefficients @, . .., @,, @ replaces the initial set ay,...,Q,,Q
as constructed above.

2"dSTEP :
Now we put
=Y e’ +arcH.
pER
Then clearly
:Z'?-p =, +ahz, > %?-p
by just rewriting (3.61).
Now by (3.24) we know that Za® < 1 and as @ > 0 it follows that

(3.62) za® <1.

Hence, if we can show that

(3.63) %; > %; for some 7 € T"\ {7},

then by a slight change in the coordinates of & we obtain a strict inequality
for coordinates along a®, hence

(3.64) x domge

as we have claimed.

Indeed, all we have to do is replacing T by a suitable convex combination
of z and the e7”. E.g., as er =1 and 7; < 1 we find that, for sufficiently
small £; > 0, the vector

*1 Tl

' = (1—e))x+cre
exceeds @ on the first coordinate without disturbing inequalities (3.62) and

(3.63). Next, for sufficiently small g5 > 0 the vector

%2 = (1 — 62)%1 + 526T2

exceeds @ on the first and second coordinate without disturbing inequalities
(3.62) and (3.63); etc.
Thus, it remains to prove (3.63).

3rdSTEP :
We shall treat the case that

ZCL)‘?p > @h?p JAS R
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only, this permits a simplification of the notation. The remaining cases would
be treated quite analogously.

Thus we have

(o]

1-— Tz
(3.65) a=a = 172 per s <1
1—= z:peR}%?
with 0 < @ < 1. Also
(3.66) @, == 1z —ahs, pER;

and these quantities are assumed to be non—negative and bounded by 1.

Then, we recall

a(l—>» hs) = (1-) 1z

PER pER
ie.
jgzi%ﬁ)—-ZEEE:f%% =1—-a
pER PER
i.e.
2{:(%37——Zihﬁ) =1—«
pER
and
a,=1-a,ie » a,+a=1.
pER peER
Hence
T = ZapeTp+d53€H ,
pER
and
Tz, =, +ahz, = s,
5'"STEP :
Now, in order to show that
(3.67) T, = ap + 0%, > I,
holds true for some 7 € T"\ {7,} we insert a, = x> —ahs, so that we need

to show

(o]

—_ —_— o} . o o _— —_
Tz — Qhs + QT > 1, , 16 T2 — 2, > a(Tz — T,)

for some 7 € T"\ {7,}. The coefficient of @ on the right side will turn out
to be positive ( 5""STEP, formula (3.73)); hence we have to show

(3.68) R A &

Tz — T,

T
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for some 7 € T"\ {7, }.

A" h"STEP :
We start out with

o o ]- - Xz
(3.69) T, —Ts > %

for some 7 € T\ {7, }. Observe that the inequality looks similar to equation
(3.16) in Lemma 3.6 up to the equation being replaced by an inequality.

To this end we first of all argue that w.l.g. we may assume that

(3.70) . = a0 (r,71€T’\ {7}, p€R),
that is, equations (3.3) are satisfied for & = . Indeed, otherwise replace
T, by

s Leetn M

R
ZTETP\{?,,} )\t :

This leads to an imputation & which is the same as & on coordinates Tlyyenns Tre1
and smaller on at least some coordinate 7 € T™\ {7, }. Then a domination of
T along coordinates 7y, ,...,7,, 7, can at once be seen to induce a domination
of & along coordinates 7, , . ..,7, 7 for some 7 € T" \ {7}

Next, we observe that instead of equations (3.3) and (3.4) we now have
inequalities (3.55) and (3.56). Therefore, returning to Remark 3.2, we obtain

(3.71) T, > 1—H,—z, .

replacing equation (3.9) and

(3.72) A —Hy—2)+ N, <1 — ) M
peR\{r} pER

replacing equation (3.10). We may then follow up the development in Lemma
3.6 to exactly obtain the desired inequality (3.69).

5'"STEP :

Now in order to verify the inequality (3.68) we use inequality (3.69) and
equation (3.16) in Lemma 3.6, again noting that the denominator @ in both

terms is independent of the initial data 7z, or g%f;p respectively. It follows then
that

o o 1 - ZpGR 17,
T — X, > ——
Q
(3.73) and
_ — o 1 - ZpERy?p
Tz, =Ty = ——=

Q
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consequently

[}
(3.74) Sl N D VT S
Tz —Tr 1—2,@%

where the quantifier is now meant for all 7 € T\ {7} as all z, and Z, are
all equal for 7 € T" \ {7,.}. Thus, the quotient is which proves (3.68).

6'"STEP :

Now, we have

(3.75) T, = G +ah, > T,

we know that Z exceeds @ strictly along all the coordinates of a®. Moreover

(3.76) Ta® = ZapeT”aG +aza® < Zap +a =1
peER peER

using (3.24). Hence we have Z domge .

TBSTEP : Given 9, the minima vector m can play the role of z. By The-
orem 4.5. of [2] we find, for ¢ > 0 sufficiently small, an e-relevant coalition
T = 7% such that

¥° domp- 9 |
q.e.d
Remark 3.15. If z satisfies
Loy + Loyt 4Ty 42, > 1,
for all sequences T = (1, 72,...,Tr_1,7), then z equals some 7. This fol-

lows from Lemma 4.8 and Theorem 4.9 of [2|. Therefore, if 1 is an imputation
such that the minima vector m satisfies

(o] ] ] ]
My + M+, ..., My +my, > 1

for all sequences 7 = (71,7,...,7r_1,7,), then m = e for some p € R,
Hence the minima vector is a pre-imputation from which it follows at once

that @ = 9™ = 9° = A’

Theorem 3.16. Let v be a game with rich central commodity. Let H be the
set of preimputations

(377 H = {zxeJ|za>1 (ac A%)} = ConvH{z,e" (peR)}

Then
H = ConvH{9* N(peR)}

18 externally stable, hence a vNM-Stable Set.
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Proof: Extern stability follows from Theorems 3.13, 3.14 and the above
Remark 3.15. Intern stability has been proven in Theorem 3.11

q.e.d.

Remark 3.17. As we have seen in Remark 3.13, the conditions to the quan-
tities A\, determining the area of the domains of the density amount to small
density factors implying large areas. Now, the result established with regard
to the vNM—Stable Set we have exhibited is quite fine—tuned:

Other than the case studied in Part I, the core is no longer stable. Instead,
there appears a unique further pre-imputation & which is obtained by cor-
recting the density of A” outside the areas of small values in a way such that
a pre-imputation results. The resulting imputation together with the ele-
ments of the core now establishes the vNM—Stable Set. Clearly, as we have
a min game, a rich central commodity along some sequence hz, increases the
importance of that commodity for the formation of dominating imputations
and it is this importance that is exactly reflected by 97.
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