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Abstract

Motivated by trying to better understand the norms that govern
pedestrian traffic, I study symmetric two-player coordination games
with independent private values. The strategies of “always pass on
the left” and “always pass on the right” are always equilibria of this
game. Some such games, however, also have other (pure strategy)
equilibria with a positive likelihood of mis-coordination. Perhaps sur-
prisingly, in some such games, these Pareto-inefficient equilibria, with
a positive likelihood of mis-coordination, are the only evolutionarily
stable equilibria of the game.
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1 Introduction

When people walk across a busy square, shopping mall, train-station, or
other busy places, they occasionally have to stall or make sharp maneuvers
to avoid bumping into each other. On the other hand cars can drive down
busy roads at high speed, passing each other at close quarters, without the
fear of an accident.

In both cases, the two pedestrians or the two cars approaching each other,
the game the two parties play seems to be a game of coordination. The most
important objective seems to be to avoid bumping into each other.

In this paper I try to understand why there does not seem a clear norm for
pedestrians such as “always pass other people on the right”, while we do
seem to have such a norm for cars. In fact, for cars we actually have a law,
we do not only rely on a norm. (Young 1998, pp. 16-17), in his overview
to his book, discusses how the behavior regarding “which side of the road
to drive on” has evolved over time in Europe. Among other things he states
that “... for the most part these norms were not codified as traffic laws until
well into the nineteenth century.” If there was a norm in place, why then
was such a law introduced?

Young (1998) argues, and I agree, that these encounters are perfectly suited
for an evolutionary game theoretic analysis (even beyond Nash equilibrium
analysis). The reason for this is that the game is played over and over or,
in the language of evolutionary game theory, “recurrently” (to distinguish
it from the analysis of “repeated” games), by essentially always different
people. Moreover any of a large population of individuals engage in such
interactions. This gives all players the time to learn to play “well”, while at
the same time it makes little sense not to play myopically as the interactions
in the future will be with very different individuals.

Suppose our model of such encounters, between pedestrians or cars, is the
two-player coordination game with commonly known payoff structure given
by the following matrix.

L R
L 1,1 0,0
R 0,0 1,1
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The evolutionary analysis of such a game is straightforward. The mixed
equilibrium is unstable, the two pure equilibria are stable. This is true under
all evolutionary models I am aware of (see e.g. (Weibull 1995, Category II
on p. 40 and p. 75) for a textbook treatment). In particular this means that
the evolutionary stable play or “norm” is Pareto-optimal (and such that
accidents do not happen).1 If this is indeed the case, then the norm should
really suffice and no law is required.

Possibly when pedestrians encounter each other in the process of crossing a
busy square, these people, while their most important concern is to get passed
each other, may yet have a slight preference for which side they would like to
pass the other person on. Suppose for, instance, that a person after passing
the opposed individual would then like to turn left for some reason (e.g. to
enter a shop). This slight preference for one side over the other is very likely
private information.

1.1 The content of this paper

In this paper, I therefore model this kind of interaction between pedestrians
as a coordination game with independent private values. The game is such
that, with probability one, players do not have a dominant strategy. The
model is provided in Section 2. In Section 3 I find all symmetric Nash
equilibria of this game in Proposition 1. The strategies “always pass on the
left” and “always pass on the right” are always equilibria. Some games also
have equilibria in which players use a cut-off strategy to decide whether to
pass their opponent on the right or the left. These equilibria are Pareto-
inferior to the aforementioned equilibria as shown in Proposition 2.

1Suppose the game is not one of pure coordination, but given, for instance, by payoff
matrix

L R
L 4,4 0,2
R 2,0 3,3

.

Also in this game the mixed equilibrium is unstable, the two pure equilibria are stable,
under any reasonable static or deterministically dynamic evolutionary process. The main
point of Young (1993) and Kandori, Mailath, and Rob (1993) is that a stochastic model
of evolution, with small but constantly occurring probabilistic mistakes or mutations,
predicts that only one of the two pure equilibria will occur in the long-run. This selection
is not driven by Pareto-optimality but by risk-dominance. In the example, this means the
unique long-run stable equilibrium strategy is R. Note, nevertheless, that in the long-run
stable equilibrium there is also no mis-coordination.
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In Section 4 I first show that, unlike the pure coordination game with com-
plete information the coordination game with independent private values is
not a doubly-symmetric game (Proposition 3). This is of significance, as it is
known that for doubly-symmetric games, evolution always leads to average-
payoff improvements. This is the so-called fundamental theorem of natural
selection, first stated by Fisher (1930), proven for the replicator dynamics in
finite games by Losert and Akin (1983), and for games with a continuum of
strategies by Oechssler and Riedel (2002). In the present context this fun-
damental theorem would predict the evolutionary stability of only the two
strategies of “always pass on the left” and “always pass on the right”. As
the game at hand is not doubly-symmetric, however, the theorem does not
necessarily hold, and, in fact I show that it does not hold. In Proposition
4 I show that there are coordination games with independent private values
in which the only evolutionary stable strategies are Pareto-inferior and are
such that a certain likelihood of mis-coordination is unavoidable.

1.2 Additional motivation

The present paper is heavily influenced and motivated by Goffman’s (1971)
“naturalistic” study of the “public order”. Goffman (1971) is generally inter-
ested in the societal norms that govern human interaction in public places.
In particular, in Chapter 1, “The individual as a unit”, part II, “Vehicular
Units”, Goffman (1971) is concerned with “traffic codes” between all sorts of
vehicular units (pedestrians, cars, bikes, ships, etc.).

Goffman’s (1971) work is generally very amenable to an, especially evolution-
ary, game-theoretic analysis. The way Goffman (1971) thinks of a “norm”,
here e.g. a traffic code, is very similar to how an evolutionary game theorists
would define it: as an evolutionary stable Nash equilibrium. For instance,
(Goffman 1971, Preface, p.xx) states that “..., the rules of an order are nec-
essarily such as to preclude the kind of activity that would have disrupted
the mutual dealings, making it impractical to continue with them.”2 In my
opinion this, in the language of game theory, means that no individual has an
incentive to deviate from the norm. Goffman (1971) is also aware that there
may be multiple equilibria (or norms): “However, it is also the case that the
mutual dealings associated with any set of ground rules could probably be
sustained with fewer rules or different ones, ...”. He is aware that norms are

2See also (Goffman 1971, Preface, footnote 3, p.xxi) in which he demonstrates that he
understands incentives in game theory very well.
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not necessarily Pareto-efficient, as he continues the last sentence as follows:
“..., that some of the rules which do apply produce more inconvenience than
they are worth, ...”.

Goffman’s (1971) study is mostly descriptive. The present paper is an at-
tempt to begin a complementary game-theoretic analysis that uses Goffman’s
(1971) observations and classifications and takes up his possible explanations.
The present paper in some ways falls utterly short of the full analysis given
in (Goffman 1971, Chapter 1.II), but, I believe, in other ways adds a formal
precision that enables us to understand such norms even better.

The following quote probably allows to explain best where this paper falls
short of, and where it improves upon Goffman (1971). (Goffman 1971, Chap-
ter 1.II, p.6): “Take, for example, techniques that pedestrians employ in order
to avoid bumping into one another. These seem of little significance. How-
ever, there are an appreciable number of such devices; they are constantly in
use and cast a pattern on street behavior. Street traffic would be a shambles
without them.” I here do not study the “techniques that pedestrians employ
in order to avoid bumping into one another”, even though I feel this can
be done by means of adding a cheap-talk communication phase prior to the
actual coordination game. I certainly would like to analyse such a model in
the future. What I do do here, however, is to ask myself, what norm would
emerge if we did not have such an “appreciable number of such devices” at
our disposal. I, thus, ask whether it would really be true that “[s]treet traffic
would be a shambles without them”. In other words, the present paper pro-
vides a, hopefully useful, benchmark result that could be the basis of further
game-theoretic analysis.

2 The Model

There are two players, artificially termed row and column player. Players can
choose one of two actions, L and R. Players cannot condition their behavior
on their role. Each player has a privately known “value” or “type”, denoted
by u for the row player and by v for the column player. The two values u
and v are independently drawn from a common distribution on the interval
[0, 1] with distribution function F . For convenience we shall assume that F
has full support and admits a continuous density function, denoted by f . In
particular, F has no atoms. For any realized type pair the players play the
following coordination game given by the following payoff matrix.
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L R
L 1-u,1-v 0,0
R 0,0 u,v

This game could, thus, be called a symmetric two-player coordination game
with independent private values. A pure strategy is any measurable function
σ : [0, 1] → {L,R}. The set of measurable pure strategies shall be denoted
by Σ. Let ∆ denote the set of all mixed strategies, i.e. all probability dis-
tributions over elements in Σ. A special class of pure strategies of interest
in the present analysis is the set of cut-off strategies. In fact, if we deal
with cut-off strategies, it is without loss of generality to consider only those
cut-off strategies, denoted σx for some x ∈ [0, 1], that have the property that
σx(u) = R if u ≥ x and σx(u) = L otherwise.3 When dealing with a cut-off
strategy σx ∈ Σ within the context of only all cut-off strategies I shall abuse
notation to denote this strategy simply by its cut-off x.

For any two mixed strategies µ, µ′ ∈ ∆ denote by π(µ, µ′) the resulting ex-
ante expected payoff for the player playing µ when her opponent plays µ′. If
it is clear from the context I abuse notation slightly and simply write π(x, y)
when dealing with pure cut-off strategies σx and σy for x, y ∈ [0, 1].

It is useful to consider some special classes of coordination games with in-
dependent private values, depending on properties of the commonly known
distribution of values F . A game shall be called left-biased if F is first or-
der stochastically dominated by the uniform distribution (i.e. F (x) ≥ x for
all x ∈ [0, 1]). This means that the distribution tends to produce low val-
ues. A game is right-biased if, conversely, the uniform distribution first order
stochastically dominates F (i.e. F (x) ≤ x for all x ∈ [0, 1]). A game is
action-symmetric if f(x) = f(1− x) for all x ∈ [0, 1] (i.e. the distribution is
symmetric around 1

2
). A game is extreme-biased if F is a mean-preserving

spread of the uniform distribution. That is, the mean value under F is 1
2

(as in the uniform distribution) and
∫ x
0
F (t)dt ≥

∫ x
0
tdt. Finally, a game is

center-biased if F second order stochastically dominates the uniform distribu-
tion. That is, the mean value under F is again 1

2
and now

∫ x
0
F (t)dt ≤

∫ x
0
tdt.

3 Cut-off strategies in which L is played for values above the cut-off and R for values
below the cut-off play no special role in the analysis. We could, also consider cut-off
strategies in which we replace the weak inequality in the definition of the cut-off strategy
(i.e. in u ≥ x) by a strict one. This would, however, change behavior only with probability
zero given the no-atom assumption for F . Any mixture of these two pure cut-off strategies,
one with a weak the other with a strict inequality for the same cut-off x, is also behaviorally
equivalent with probability one to the pure cut-off strategy.
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There are, of course, games that are in none of these classes.

3 Symmetric Equilibrium

Lemma 1 Let µ ∈ ∆ be an arbitrary mixed strategy. Its unique best re-
sponse, denoted B(σ), must be a cut-off strategy σx with cut-off x ∈ [0, 1].4

Proof: Let µ ∈ ∆ be an arbitrary mixed strategy played, w.l.o.g. by the
column player. Let pµ denote the induced probability of playing action L.
Then the row-player’s payoff, if she is of type u, from playing action R is
given by (1 − pµ)u, and from playing action L is given by pµ(1 − u). She
weakly prefers R over L if and only if u ≥ pµ. QED

Proposition 1 A strategy is a symmetric Nash equilibrium strategy if and
only if it is a cut-off strategy σx with cut-off x ∈ [0, 1] satisfying F (x) = x.

Proof: By Lemma 1 any symmetric equilibrium strategy must be a cut-off
strategy. Denote the cut-off by x ∈ [0, 1]. Suppose the column player uses
this cut-off strategy. The row player’s unique best response is then to choose
a cut-off strategy with cut-off F (x) as she strictly prefers R if u > F (x), is
indifferent between R and L if u = F (x), and strictly prefers L otherwise.
QED

Note that this game, thus, has no equilibrium other than in pure strategies.
Note, furthermore, that in the proof of this proposition we also identified
the best response function against cut-off strategies, identified by cut-off
x ∈ [0, 1], which is given by B(x) = F (x).

Corollary 1 For any distribution F the coordination game with independent
private values has at least two symmetric equilibrium strategies. These are
cut-off strategies with cut-offs 0 and 1 and correspond to the strategies of
always playing R and always playing L, respectively. Left-biased games and
right-biased games have no other equilibria.

4In principle, there is an infinite number of mixed best-responses and one other pure
best response, but all these are with probability one behaviorally equivalent to the stated
cut-off strategy. See also Footnote 3.
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An action-symmetric game must have F (x) = 1− F (1− x) for all x ∈ [0, 1]
and, in particular F (1

2
) = 1

2
. This implies that any action-symmetric there

has at least one other symmetric equilibrium strategy with cut-off x = 1
2
.

A very special example is given by the uniform distribution. In this case
every cut-off strategy is a symmetric equilibrium strategy.

Proposition 2 Any symmetric equilibrium strategy with a cut-off strictly
between 0 and 1 is ex-ante expected payoff dominated by at least one of the
extreme cut-off equilibrium strategies (i.e. with cut-off 0 or 1).

Proof: Let x ∈ (0, 1) be the cut-off for a symmetric equilibrium strategy.
The ex-ante expected payoff in this equilibrium can be written as

π(x, x) = F (x)

∫ x

0

(1− u)f(u)du+ (1− F (x))

∫ 1

x

uf(u)du,

or equivalently as

π(x, x) = (F (x))2IE[1− u|u < x] + (1− F (x))2IE[u|u ≥ x].

The expected payoff for the cut-off strategy equilibrium with cut-off x = 0
is given by

π(0, 0) =

∫ 1

0

uf(u)du = IE[u],

which can also be written as

π(0, 0) = F (x)IE[u|u < x] + (1− F (x))IE[u|u ≥ x].

Analogously, the expected payoff for the cut-off strategy equilibrium with
cut-off x = 1 is given by

π(1, 1) =

∫ 1

0

(1− u)f(u)du = IE[1− u],

which can also be written as

π(1, 1) = F (x)IE[1− u|u < x] + (1− F (x))IE[1− u|u ≥ x].

Now consider the convex combination of π(0, 0) and π(1, 1) with weights
(1 − F (x)) on the former and F (x) on the latter. It is immediate that this
convex combination strictly exceeds π(x, x). Therefore, at least one of the
two payoffs, π(0, 0) or π(1, 1), must be strictly higher than π(x, x). QED
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4 Evolutionary Stability

4.1 Preliminary Thoughts

The pure coordination game with complete information is a doubly sym-
metric game, that is both players always get the same payoff. For such
games, and for most models of evolutionary adaptation, the so-called fun-
damental theorem of natural selection holds. See Losert and Akin (1983) or
(Weibull 1995, pp. 109-110) for a textbook treatment. This theorem says
that as evolution unfolds the average payoff always increases. For the pure
coordination game with complete information given by, for instance,

L R
L 1,1 0,0
R 0,0 1,1

this implies that the mixed strategy equilibrium is not evolutionarily stable
under essentially any model of evolution as, among all symmetric strategy
profiles the mixed equilibrium provides the lowest possible payoff. If we inject
a proportion of L-strategists to the mixed equilibrium and start evolution
from there, by the fundamental theorem we cannot go back to the mixed
equilibrium.

Oechssler and Riedel (2002) show, among other things, that this fundamen-
tal theorem of natural selection also holds for games with a continuum of
strategies if such a game is doubly symmetric.

Proposition 3 The coordination game with independent private values is
not doubly symmetric.

Proof: Suppose that the row player plays σ0 (i.e. always R), while the col-
umn player plays σ 1

2
. The payoff to the row player is given by π(0, 1

2
) =(

1− F (1
2
)
)

IE[u], while the payoff to the column player is given by π(1
2
, 0) =(

1− F (1
2
)
)

IE[u|u ≥ 1
2
], which is strictly greater than

(
1− F (1

2
)
)

IE[u]. QED

Therefore, the stated sufficient condition (that the game is doubly symmetric)
for the fundamental theorem of natural selection is not satisfied and further
analysis of evolutionary stability is warranted.
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4.2 Stability

For evolutionary stability I focus on Lyapunov (or asymptotically) stable
equilibria in cut-off strategies under the continuous-time best-response dy-
namics.5

In the light of Lemma 1 it seems innocuous to restrict attention to cut-off
strategies (as they are the only possible best responses. The best response
dynamics is, thus, given by ẋ = B(x)− x = F (x)− x.

A cut-off strategy x is then stationary under the dynamics if and only ẋ = 0,
i.e. if and only if x = F (x), or in other words if and only if x is an equilibrium
strategy.

Definition 1 A cut-off strategy x is Lyapunov stable under ẋ = F (x) − x
if and only if it is stationary x = F (x) (i.e. an equilibrium) and there is
an ε > 0 such for all y ∈ (x, x + ε) F (y) ≤ y (i.e. ẏ ≤ 0) and for all
y ∈ (x− ε, x) F (y) ≥ y (i.e. ẏ ≥ 0). It is asymptotically stable if we replace
the weak inequalities by strict ones.6

While I find it more convenient to work with this definition directly it is
perhaps useful to the reader to think in terms of derivatives of the vector
field V (x) = F (x)−x. A necessary condition for Lyapunov (and asymptotic)
stability is V ′(x) ≤ 0 (i.e. F ′(x) = f(x) ≤ 1). A sufficient condition for
Lyapunov (and asymptotic) stability is V ′(x) < 0 (i.e. F ′(x) = f(x) < 1).
If V ′(x) = 0 the equilibrium is hyperbolic and many things are possible. See
e.g. (Hofbauer and Sigmund 1998, Chapter 3.1).

Note that the necessary condition for Lyapunov (and asymptotic) stability
is also a necessary condition for an equilibrium being a continuously stable
strategies (CSS), as defined by Eshel and Motro (1981). Also the sufficient
condition for Lyapunov (and asymptotic) stability is also a sufficient condi-
tion for an equilibrium being a CSS.

Proposition 4 Every coordination game with independent private values
(they differ in terms of distribution F ) has a Lyapunov stable strategy. More-

5For the continuous-time best-response dynamics see e.g. Gilboa and Matsui (1991),
Matsui (1992), and Hofbauer (1995). A discrete time version is given by Moulin (1984).

6This can be shown to follow from general definitions of Lyapunov and asymptotic
stability, as given, for instance, in (Weibull 1995, Definition 6.5).
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over if f(0) > 1 and f(1) > 1 then any Lyapunov stable strategy is a Pareto-
dominated symmetric equilibrium (with interior cut-off x ∈ (0, 1)).

Proof: Consider first cut-off strategy 0. There are two cases. Case 1: Suppose
that there is an ε > 0 such that F (y) ≤ y for all y < ε. Then strategy 0
is Lyapunov stable. Case 2: Otherwise strategy 0 is not Lyapunov stable
and there is an ε > 0 such that F (y) > y for all y ∈ (0, ε). Now consider
cut-off strategy 1. Case 2a: Suppose there is an ε < 1 such that F (y) ≥ y
for all y > ε. Then strategy 1 is Lyapunov stable. Case 2b: Suppose not.
Then strategy 1 is not Lyapunov stable and there is an ε < 1 such that
F (y) < y for all y ∈ (ε, 1). Now as F is a continuous function and maps the
interval [0, 1] onto itself, and as F is above the 45 degree line for some low
x and below that line for some high x, there must be a point x ∈ (0, 1) such
that F (x) = x with the desired property that there is an ε > 0 such for all
y ∈ (x, x + ε) F (y) ≤ y and for all y ∈ (x − ε, x) F (y) ≥ y. This proves
existence. To prove the final claim of the Proposition note that if f(0) > 1
and f(1) > 1 we are in case 2b and any Lyapunov stable cut-off strategy x
must be interior (i.e. ∈ (0, 1)) and, by Proposition 2, payoff-inferior to one
of the 0 and 1 cut-off equilibria. QED

Corollary 2 For every left-biased game the 1 cut-off (always play L) is Lya-
punov stable. For every right-biased game the 0 cut-off (always play R) is
Lyapunov stable. For every extreme-biased game an interior x ∈ (0, 1) cut-off
strategy is Lyapunov stable. For every center-biased game the two extreme
cut-offs 0 and 1 are Lyapunov stable.

Proof: A left-biased game has the property that F (x) ≥ x for all x ∈ [0, 1].
Thus, ẋ = F (x) − x ≥ 0 for all x ∈ [0, 1] and, thus, the best-response
dynamics can only increase x. The cut-off strategy 1 is then Lyapunov stable.
Similarly a right-biased game has the property that F (x) ≥ x for all x ∈ [0, 1]
and ẋ = F (x)− x ≤ 0 for all x ∈ [0, 1] and, the best-response dynamics can
only decrease x. The cut-off strategy 0 is then Lyapunov stable. An extreme-
biased game has the property that

∫ x
0
F (t)dt ≥

∫ x
0
tdt for all x ∈ [0, 1]. In

particular, let x0 = inf{x|F (x) 6= x}. Note that x0 could be 0. Then, there
is an ε > 0 such that for all y ∈ (x, x+ ε) we must have F (y) > y. Thus, the
cut-off strategy 0 is Lyapunov stable. An analogous argument can be made
for cut-off strategy 1. Finally, for a center-biased game we must have that∫ x
0
F (t)dt ≤

∫ x
0
tdt for all x ∈ [0, 1]. In particular, let x0 = inf{x|F (x) 6= x}.

Note that x0 could be 0. Then, there is an ε > 0 such that for all y ∈ (x, x+ε)
we must have F (y) < y. Thus, by the case 2b in the proof of Proposition 4
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we have the existence of a Lyapunov stable interior cut-off strategy. QED

Note that for an appropriate “strict” notion of the various classes of games, no
strategy other than those identified in the above corollary would be Lyapunov
stable in the respective cases.7 Moreover, the Lyapunov stable strategies
identified in the corollary would then be asymptotically stable.

Thus, there are coordination game with independent private values with
the property that in any Lyapunov stable strategy (one necessarily exists) a
certain degree of mis-coordination is unavoidable. This is true, even though,
the strategies “always play R” and “always play L” are also equilibrium
strategies. These are, however, not evolutionarily stable in these cases.

Remark 1 For the special case of F the uniform distribution, every cut-off
x ∈ [0, 1] is Lyapunov stable.

Remark 2 We think of the game being played recurrently by, in each stage,
randomly chosen pairs of individuals from a large population of individuals.
A Lyapunov stable strategy, in the present context, can then be interpreted
to require stability of an incumbent strategy with respect to all individuals in
the population playing another cut-off strategy, where the cut-off is close to
the cut-off of the incumbent strategy. This is not necessarily the only kind
of “small” perturbation one would like to consider. One could also consider,
more in the spirit of Maynard Smith and Price’s (1973) notion of an evo-
lutionary stable strategy (ESS), a perturbation in which a small fraction of
individuals play any strategy. See Oechssler and Riedel (2002) for a full treat-
ment of this issue. In the present context any such small perturbation (where
small is in the sense of the weak topology, see Oechssler and Riedel (2002)),
must be such that the probability of a randomly selected opponent playing R
is close to what it is in the incumbent strategy. The best response to such a
perturbation must then, by Lemma 1, be a cut-off strategy, which is then also
close to the incumbent strategy. Thus, any Lyapunov stable strategy I here
identify is also Lyapunov stable with respect to any small perturbation, where
“small” is “small in the weak topology”.

Remark 3 There are many other models of evolution I could have employed
here. Not all provide exactly the same result. For instance, Oechssler and
Riedel’s (2002) notion of evolutionary robustness, an extension of ESS to con-
tinuous strategy games and the weak topology, has as a necessary condition for

7A strict left-biased game, for instance, would be defined as satisfying F (x) > x for all
x ∈ (0, 1).
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stability that the strategy is a neighborhood invader strategy (NIS) as defined
by Apaloo (1997). See also Oechssler and Riedel (2002) for an argument that
a strategy is a NIS if and only if it is Lyapunov stable under a version of the
replicator dynamics (of, originally, Taylor and Jonker (1978) for finite strat-
egy games, and Bomze (1990), Oechssler and Riedel (2001), and Oechssler
and Riedel (2002) for the case of a continuum of strategies). A necessary
condition for a strategy to be a NIS is that d

dx
B(x) = F ′(x) = f(x) ≤ 1

2
(see

also Oechssler and Riedel (2002)). This is obviously more restrictive than be-
ing Lyapunov stable under the best-response dynamics. Note that we cannot
guarantee existence of a NIS in coordination games with independent private
values, as the uniform distribution example demonstrates. This means, that
under some dynamics and with occasional perturbations we do not expect any
stable social norm to emerge at all.

Remark 4 Another model of evolution one could look at is the discrete-
time best response dynamics. In this case there is the additional (to the
CSS condition) requirement for stability that the best-reply function, at the
equilibrium, has a derivative that exceeds −1 (see Moulin (1984)). Given that
the derivative of the best-reply is the density f , this condition is automatically
satisfied.

Remark 5 A norm without mis-coordination is certainly observationally
distinguishable from a norm based on interior cut-off strategies, as the lat-
ter produces occasional mis-coordination while the former does not. At first
thought, one might think that a situation in which there is a stable norm,
which, however, is a cut-off strategy, may not be observationally different
from a situation in which there is no stable norm at all. This is not neces-
sarily true, however. If we looked at the frequency of left and right action
choices over time (perhaps computing moving averages), in the first case we
would expect this frequency to roughly stay the same, while in the second case
we could observe that this frequency fluctuates.

Remark 6 This is about the assumption that the support of values is ex-
actly [0, 1] making the game such that with probability 1 no player has a
dominant strategy. Suppose, first that the support is a proper subinterval
of [0, 1] bounded away from 0 and 1. Then the extreme cut-off equilibria 0
and 1 are stable (as d

dx
B(x) = 0). This does not imply, however, that there

are no stable interior cut-off equilibria. If the distribution has support on
a smaller interval, but is also extreme-biased and, let us assume for con-
venience action-symmetric (i.e. values close to 1

2
are relatively unlikely),

then the 1
2

equilibrium is also stable. In such cases one could complement
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the deterministic stability analysis by studying a stochastic model of evolu-
tion similar to e.g. Foster and Young (1990), Young (1993), and Kandori,
Mailath, and Rob (1993). My conjecture, based on my reading of this litera-
ture, here would be that the stochastic stability of the various Lyapunov stable
cut-off strategies would then depend on the size of the basin of attraction of
the various Lyapunov stable strategies. Such a model would then, again, pre-
dict for some games that the only stochastically stable strategy is an interior
cut-off strategy.

Remark 7 Suppose, now that the support of the distribution F extends be-
yond the interval [0, 1] on both sides. Then a contagion argument, not un-
like the argument in the global games literature (started by Carlsson and
Van Damme (1993) and Morris and Shin (1998)), implies that the extreme
cut-off strategies 0 and 1 are not equilibria of the game. In this case, a certain
degree of mis-coordination is unavoidable in any equilibrium. Note, however,
that, depending on the distribution, there could be equilibria very close to
the extreme cut-off equilibria. Note, furthermore, that equilibria close to the
extreme cut-off equilibria would (generically) be Lyapunov stable. As in the
previous remark, this does not mean that there cold not also be a stable and
“more interior” cut-off equilibrium. Again, in this case one could study a
stochastic model of evolution which, one conjectures, would show that the
size of the basin of attraction determines the stochastic stability of the equi-
librium.

Remark 8 I now ask the question why there are laws governing driving but
no law (or at least fewer laws) governing walking. One could probably argue
that for driving all the payoffs in the game have to be multiplied by a large
factor. This would not change incentives. Possibly one could argue that the
distribution of values for the case of driving is typically more center-biased
compared to the case of walking. This, however, would imply that no law
governing driving is needed as, in this case, the only stable norms are the
extreme cut-off strategies which are also Pareto-optimal. The fact that there
is a law for driving, and not just a norm, suggests that individual drivers
would, in the absence of a law, be sometimes tempted not to follow the norm
after all (such behavior might then, in turn, lead to the gradual collapse of the
norm). It is, thus, possible that the driving game, at least in some cases (or
places) is not that different from the walking-game. The fact that there is no
law for walking is then best explained by the fact that walking accidents are
not very costly and no individual would like to press charges on the basis of
a law (as this is also costly) if there was one. Finally, I would like to explain
how a law could help to stabilize an extreme cut-off equilibrium. Suppose the
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law states that one should walk on the right and that it has the effect that
in the event of mis-coordination (an accident) the person walking on the left
is clearly the guilty party and can be penalized. The game is, thus, as before
with one change:

L R
L 1-u,1-v -c,0
R 0,-c u,v

Best responses are still in cut-off strategies, but the best response function
is now given by B(x) = max{0, F (x)(1 + c) − c}. Note that for x close to
zero the best-response function is flat and equal to 0. Thus, at the 0-cut-off
the derivative of the best-response is equal to zero and, thus, 0 is now an
asymptotically stable strategy for any distribution function F .
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