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Abstract

We refine the discretization of G-expectation by Y. Dolinsky, M.
Nutz, and M. Soner (Stochastic Processes and their Applications, 122
(2012), 664–675 ), in order to obtain a discretization of the sublinear
expectation where the martingale laws are defined on a finite lattice
rather than the whole set of reals.

Mathematics Subject Classification: 60F05; 60G44; 91B25; 91B30
Keywords: G-expectation; Volatility uncertainty; Weak limit theorem;
Discretization; Donsker invariance theorem.

1 Introduction

Dolinsky et al. [4] showed a Donsker-type result for G-Brownian motion,
henceforth referred to as G-Donsker, by introducing a notion of volatil-
ity uncertainty in discrete time and defined a discrete version of Peng’s
G-expectation. In the continuous-time limit, the resulting sublinear expec-
tation converges weakly to G-expectation. In their discretization, Dolinsky
et al. [4] allow for martingale laws whose support is the whole set of reals.
In other words, they only discretize the time line, but not the state space of
the canonical process. Now for certain applications, for example a hyperfi-
nite construction of G-expectation in the sense of Robinsonian nonstandard
analysis, a discretization of the state space would be necessary. Thus, we
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develop a modification of the construction by Dolinsky et al. [4] which even
ensures that the sublinear expectation operator for the discrete-time canon-
ical process corresponding to this discretization of the state space (whence
the martingale laws are supported by a finite lattice only) converges to the
G-expectation. The proof is based on technique from (linear) probability
theory. Ruan [9] constructed the G-Brownian motion via the weak limit of
a sequence of G-random walks which can be seen as the invariance principle
of G-Brownian motion. The proof relies heavily on the theory of sublinear
expectation.

This paper is organised as follows: in Section 2, we introduce the G-
expectation, and the discrete-time and continuous-time version of the sub-
linear expectation in the spirit of Dolinsky et al. [4]. Unlike in [4], we require
the discretization of the martingale laws to be defined on a finite lattice
rather than the whole set of reals. We also introduce the strong formulation
of volatility uncertainty. In Section 3, we show that a natural push forward
of our discretize sublinear expectation converges weakly to G-expectation
as n→∞ provided the domain of volatility uncertainty D is scaled by 1/n.
Finally, we prove that

sup
P∈QD

EP [ξ] = lim
n→∞

max
Q∈Qn

D′n/n

EQ[ξ(X̂n)].

2 Framework

2.1 G-expectation via volatility uncertainty

Peng [8] introduced a sublinear expectation on a well-defined space L1
G, the

completion of Lipb.cyl(Ω) (bounded and Lipschitz cylinder function) under
the norm ‖·‖L1

G
, under which the increments of the canonical process (Bt)t>0

are zero-mean, independent and stationary and can be proved to be (G)-
normally distributed. This type of process is called G-Brownian motion and
the corresponding sublinear expectation is called G-expectation. We fix a
constant T > 0 and replace the d-dimensional setting by Dolinsky et al. [4]
with d = 1. We also fix a nonempty, compact and convex set D ⊆ R+ such
that the volatility processes take values in D.

The G-expectation ξ 7→ EG(ξ) is a sublinear operator defined on a class
of random variables on Ω. The symbol G refers to a given function

G(γ) :=
1

2
sup
c∈D

cγ : R→ R (1)

where D = [rD, RD] and 0 ≤ rD ≤ RD < ∞ are fixed numbers. The
construction of the G-expectation is as follows. Let ξ = f(BT ), where BT is
the G-Brownian motion and f a sufficiently regular function. Then EG(ξ)
is defined to be the initial value u(0, 0) of the solution of the nonlinear
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backward heat equation,

∂tu−G(∂2
xxu) = 0,

with terminal condition u(·, T ) = f , Pardoux and Peng [7]. The mapping
EG can be extended to random variables of the form ξ = f(Bt1 , · · · , Btn) by
a stepwise evaluation of the PDE and then to the completion L1

G of the space
of all such random variables. Denis et al. [3] showed that L1

G is the comple-
tion of Cb(Ω) and Lipb.cyl(Ω) under the norm ‖ · ‖L1

G
, and that L1

G is the space
of the so-called quasi-continuous function and contains all bounded contin-
uous functions on the canonical space Ω, but not all bounded measurable
functions are included. Theorem 6 (our main result in this paper) cannot
be extended to the case where ξ is defined on L1

G under the norm ‖ · ‖L1
G

(see below), thus, we work in a smaller space L1
∗ defined as the completion

of Cb(Ω;R) under the norm ‖ · ‖∗. Our setting is based on a set of martin-
gale laws not a single probability measure. However, when rD = RD = 1,
the canonical process under EG(ξ), G-Brownian motion, becomes the (stan-
dard) Brownian motion since EG(ξ) will be a (linear) expectation under the
Wiener measure.

There also exists an alternative representation of the G-expectation
known as the dual view on G-expectation via volatility uncertainty, see
Denis et al. [3]: One can show that the G-expectation can be expressed as
the upper expectation

EG(ξ) = sup
P∈PG

EP [ξ], ξ = f(BT ), (2)

where PG is defined as the set of probability measures on Ω such that, for
any P ∈ PG, B is a martingale with the volatility d 〈B〉t /dt ∈ D P ⊗ dt
a.e, and D = [rD, RD], for 0 ≤ rD ≤ RD <∞.

Remark 1. (2) can be seen as the cheapest super-hedging price of a Euro-
pean contingent claim where ξ can be regarded as the discounted payoff.

2.2 Continuous-time construction of sublinear expectation

Let Ω = {ω ∈ C([0, T ];R) : ω0 = 0} be the canonical space of contin-
uous paths with time horizon T ∈ (0,∞), endowed with uniform norm
‖ω‖∞ = sup0≤t≤T |ωt|, where the Euclidean norm on R is given by | · |. Let
B be the canonical process Bt(ω) = ωt, and Ft = σ(Bs, 0 ≤ s ≤ t) is the
filtration generated by B. A probability measure P on Ω is called a martin-
gale law provided B is a P -martingale and B0 = 0 P a.s. Then, PD is the
set of martingale laws on Ω and the volatility takes values in D, P ⊗ dt a.e;

PD = {P martingale law on Ω: d 〈B〉t /dt ∈ D, P ⊗ dt a.e.} .
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Thus, the sublinear expectation is given by

ED(ξ) = sup
P∈PD

EP [ξ], (3)

such that, for any ξ : Ω → R, ξ is FT -measurable and integrable for all
P ∈ PD. EP denotes the expectation under P . It is important to note
that the continuous-time sublinear expectation (3) can be considered as the
G-expectation (for every ξ ∈ L1

G where L1
G is defined as the E[| · |]−norm

completion of Cb(Ω;R)) provided (1) is satisfied (cf. Dolinsky et al. [4]).

2.3 Discrete-time construction of sublinear expectation

Here we introduce the setting of the discrete-time sublinear expectation. We
denote

Ln =

{
j

n
√
n
, −n2

√
RD ≤ j ≤ n2

√
RD, for j ∈ Z

}
,

and Ln+1
n = Ln × · · · × Ln(n + 1 times), for n ∈ N. Let

Xn = (Xn
k )nk=0 be the canonical process Xn

k (x) = xk defined on Ln+1
n and

(Fnk )nk=0 = σ(Xn
l , l = 0, . . . , k) be the filtration generated by Xn. Let

D′n = D ∩
(

1

n
N
)2

be a nonempty bounded set of volatilities. Recall D = [rD, RD], for
0 ≤ rD ≤ RD <∞. We note that RD = supα∈D |α|, where | · | denotes the
absolute value. A probability measure P on Ln+1

n is called a martingale law
provided Xn is a P -martingale and Xn

0 = 0 P a.s. The increment ∆Xn de-
notes the difference by ∆Xn

k = Xn
k −Xn

k−1. Let PnD be the set of martingale
laws of Xn on Rn+1, i.e.,

PnD =
{
P martingale law on Rn+1: rD ≤ |∆Xn

k |2 ≤ RD, P a.s.
}
,

such that for all n, Ln+1
n ⊆ Rn+1.

In order to establish a relation between the continuous-time and
discrete-time settings, we obtained a continuous-time process x̂t ∈ Ω from
any discrete path x ∈ Ln+1

n by linear interpolation. i.e.,

x̂t := (bnt/T c+ 1− nt/T )xbnt/T c + (nt/T − bnt/T c)xbnt/T c+1

where ̂: Ln+1
n → Ω is the linear interpolation operator,

x = (x0, . . . , xn) 7→ x̂ = {(x̂)0≤t≤T }, and byc denotes the greatest inte-
ger less than or equal to y. If Xn is the canonical process on Ln+1

n and ξ is
a random variable on Ω, then ξ(X̂n) defines a random variable on Ln+1

n .
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2.4 Strong formulation of volatility uncertainty

We introduce the so-called strong formulation of volatility uncertainty for
the continuous-time construction, as in Dolinsky et al. [4], Nutz [6], Soner
et al. [10, 11], and for the discrete-time construction, as in Dolinsky et al.
[4]; i.e., we consider martingale laws generated by stochastic integrals with
respect to a fixed Brownian motion and a fixed random walk.
For the continuous-time construction; let QD be the set of martingale laws
of the form:

QD =

{
P0 ◦ (M)−1; M =

∫
f(t, B)dBt, and f ∈ C([0, T ]× Ω;

√
D) is adapted

}
.

B is the canonical process under the Wiener measure P0, and D is a convex
set.

Remark 2. The elements of QD, in particular M , with nondegenerate f
which satisfies the predictable representation condition, correspond to the
analogy of market completeness in finance (martingale representation theo-
rem).

For the discrete-time construction; we fix n ∈ N, Ωn = {ω =
(ω1, . . . , ωn) : ωi ∈ {±1}, i = 1, . . . , n} equipped with the power set and
let

Pn =
δ−1 + δ+1

2
⊗ · · · ⊗ δ−1 + δ+1

2︸ ︷︷ ︸
n times

where for all A ⊆ R,

δx(A) =

{
1, x ∈ A
0, x /∈ A

be the product probability associated with the uniform distribution. Let
ξ1, . . . , ξn be an i.i.d sequence of {±1} -valued random variables. The com-
ponents of ξk are orthonormal in L2(Pn). We denote the associated random
walk by

Znk =

k∑
l=1

ξl,

then, we can view
k∑
l=1

f(l − 1,X)∆Xl

as the discrete-time stochastic integrals of X, where f is Fn-adapted and

X =
1√
n
Zn
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is the scaled random walk. We denote by QnD′n the set of martingale laws of
the form:

QnD′n =
{
Pn ◦ (Mf,X)−1; f : {0, . . . , n} × Ln+1

n →
√

D′n is Fn-adapted.
}
(4)

where

Mf,X =

(
k∑
l=1

f(l − 1,X)∆Xl

)n
k=0

.

3 Results and proofs

Proposition 4 states that a sublinear expectation with discrete-time volatility
uncertainty on our finite lattice converges to the G-expectation.

Lemma 3. Let

QnD =

{
Pn ◦

(
Mf,X

)−1
; f : {0, . . . , n} × Rn+1 →

√
D is adapted.

}
where

Mf,X =

(
k∑
l=1

f(l − 1,X)∆Xl

)n
k=0

.

Then QnD ⊆ PnD.

Proof. From the above equation, we can say that ∆Mf
k = f(k,X)ξk. And

by the orthonormality property of ξk, we have

EPn [f(k,X)2ξ2
k|Fnk ] = EPn [f(k,X)2|Fnk ] ≤ EPn [(

√
RD)2|Fnk ] = RD Pn a.s.,

as |ξk| = 1, f(· · · )2 ∈ D implies

|(∆Mf
k )2| = |f(k,X)|2 ∈ [rD, RD] Pn a.s.

Proposition 4. Let ξ : Ω→ R be a continuous function satisfying |ξ(ω)| ≤
a(1+ ‖ ω ‖∞)b for some constants a, b > 0. Then,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] = sup
P∈QD

EP [ξ]. (5)

Proof. To prove (5), we prove two separate inequalities together with a
density argument which imply (5). Before then, we introduce a smaller
space L1

∗ that is defined as the completion of Cb(Ω;R) under the norm

‖ ξ ‖∗:= sup
Q∈Q

EQ|ξ|, Q := PD ∪ {P ◦ (X̂n)−1;P ∈ PnD/n, n ∈ N.}.
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This is because Proposition 4 will not hold if ξ just belong to L1
G, where L1

G

is the completion of Cb(Ω;R) under the norm

‖ ξ ‖G:= sup
P∈PD

EP [|ξ|]. (6)

In fact, a random variable which is defined on a set of paths of finite variation
will have zero expectation under any martingale law P ∈ PD because the
support of the martingale laws is disjoint to a set of paths of finite variation
whereas it will have non zero expectation under an element of Q.
Dolinsky et al. [4, Lemma 3.4] show that if ξ : Ω→ R satisfies the condition
of Proposition 4, then ξ ∈ L1

∗.

First inequality (for ≤ in (5)):

lim sup
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] ≤ sup
P∈QD

EP [ξ]. (7)

For all n, trivially
√

D′n/n ⊆
√

D/n and Ln+1
n ⊆ Rn+1. Thus,

QnD′n/n ⊆ Q
n
D/n. Therefore,

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] ≤ sup
P∈Qn

D/n

EP [ξ(X̂n)],

and for all n, we have

lim sup
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] ≤ lim sup
n→∞

sup
P∈Qn

D/n

EP [ξ(X̂n)]. (8)

In Dolinsky et al. [4], it was shown that

lim sup
n→∞

sup
P∈Pn

D/n

EP [ξ(X̂n)] ≤ sup
P∈PD

EP [ξ].

Since Lemma 3 shows that QnD ⊆ PnD, and the convex hull of QD is a weakly
dense subset of PD, see Dolinsky et al. [4, Proposition 3.5], then,

lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈QD

EP [ξ].

Hence, (7) follows.

Second inequality (for ≥ in (5)):

It remains to show that

lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] ≥ sup
P∈QD

EP [ξ].
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For arbitrary P ∈ QD, we construct a sequence (Pn)n such that for all n,

Pn ∈ QnD′n/n, (9)

and
EP [ξ] ≤ lim inf

n→∞
EP

n
[ξ(X̂n)]. (10)

Fix n and let ξ1, . . . , ξn be some i.i.d sequence of random variables on Ωn

as defined in Section 2, i.e., ξi : Ωn → {±1}, for i = 1, . . . , n. Now, we want
to construct martingales Mn whose laws are in QnD′n/n and the laws of their
interpolations tend to P. To achieve the above task, we introduce a scaled
random walk with the piecewise constant càdlàg property (right continuity
with left limits),

Wn
t :=

1√
n

bnt/T c∑
l=1

ξl =
1√
n
Znbnt/T c, 0 ≤ t ≤ T, (11)

and we denote the continuous version of (11) obtained by linear interpolation
by

Ŵn
t :=

1√
n
Ẑnbnt/T c, 0 ≤ t ≤ T. (12)

By the central limit theorem;

(Wn, Ŵn)⇒ (W,W )

as n → ∞ on D([0, T ];R2) (⇒ implies convergence in distribution). i.e.,
the law (Pn) converges to the law P0 on the Skorohod space D([0, T ];R2)
Billingsley [1, Theorem 27.1]. Let g ∈ C([0, T ]× Ω,

√
D), such that

P = P0 ◦

∫ g(t,W )dWt︸ ︷︷ ︸
M


−1

.

Since g is continuous and Ŵn
t is the interpolated version of (11), it turns

out that(
Wn,

(
g
(
bnt/T cT/n, Ŵn

t

))
t∈[0,T ]

)
⇒
(
W, (g(t,Wt))t∈[0,T ]

)
as n → ∞ on D([0, T ];R2). We introduce martingales with discrete-time
integrals,

Mn
k :=

k∑
l=1

g
(

(l − 1)T/n, Ŵn
)
Ŵn
lT/n − Ŵ

n
(l−1)T/n. (13)
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In order to construct a discretize martingale Mn which is “close” to M and
also is such that Pn ◦ (Mn)−1 ∈ QnD′n/n. We shall choose some

gn : {0, . . . , n} × Ln+1
n →

√
D′n/n,

such that,

Mn
k =

k∑
l=1

gn

(
l − 1,

1√
n
Zn
)

1√
n

∆Znl .

Let dJ1 be the Kolmogorov metric for the Skorohod J1 topology. We choose

h̃n : {0, · · · , n} × Ω→
√

D′n/n such that

dJ1

((
h̃n(bnt/T cT/n, Ŵn

t )
)
t∈[0,T ]

,
(
g(bnt/T cT/n, Ŵn

t )
)
t∈[0,T ]

)
is minimal (this is possible because there are only finitely many choices for(
h̃n(bnt/T cT/n, Ŵn

t )
)
t∈[0,T ]

). This implies, due to the construction of D′n

as a discretization of D that

dJ1

((
h̃n(bnt/T cT/n, Ŵn

t )
)
t∈[0,T ]

,
(
g(bnt/T cT/n, Ŵn

t )
)
t∈[0,T ]

)
→ 0

as n → ∞ on D([0, T ];R). From Billingsley [2, Theorem 3.1 and Theo-
rem 14.1], it follows that(

Wn,
(
h̃n

(
bnt/T cT/n, Ŵn

t

))
t∈[0,T ]

)
⇒
(
W, g(t,Wt)t∈[0,T ]

)
as n→∞ on D([0, T ];R2). We then define gn : {0, . . . , n}×Ln+1

n →
√
D′n/n

by

gn : (`, ~X) 7→ h̃n(`, ~̂X).

Let Mn be defined by

Mn
k =

k∑
l=1

gn

(
l − 1,

1√
n
Zn
)

1√
n

∆Znl , ∀k ∈ {0, · · · , n}.

By stability of stochastic integral (see Duffie and Protter [5, Theorem 4.3
and Definition 4.1]),(

Mn
bnt/T c

)
t∈[0,T ]

⇒M as n→∞ on D([0, T ];R)

because

Mn
bnt/T c =

bnt/T c∑
l=1

h̃n

(
(l − 1)T/n,

(
ŴkT/n

)n
k=0

)
∆ŴlT/n.
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By Dolinsky et al. [4], the continuous version of (13) obtained by linear

interpolation M̂n converges in distribution to M on Ω endowed with the
uniform metric on the Skorohod space, i.e., M̂n ⇒ M on Ω. Since ξ is
bounded and continuous,

lim
n→∞

EPn◦(M
n)−1

[ξ(X̂n)] = EP0◦M−1
[ξ]. (14)

Therefore, (9) is satisfied for Pn = Pn ◦ (Mn)−1 ∈ QnD′n/n. Trivially, (9)
implies

EP
n
[ξ(X̂n)] ≤ sup

Q∈Qn
D′n/n

EQ[ξ(X̂n)]. (15)

Combining (14) and (15), and taking the lim inf as n tends to ∞, gives

EP [ξ] ≤ lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (16)

Taking the supremum of (16) over P ∈ QD, the equation becomes

sup
P∈QD

EP [ξ] ≤ lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (17)

Combining (7) and (17),

sup
P∈QD

EP [ξ] ≥ lim sup
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]

≥ lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]

≥ sup
P∈QD

EP [ξ].

Therefore,
lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] = sup
P∈QD

EP [ξ]. (18)

Density argument: Hence (5) is established for all ξ ∈ Cb(Ω,R). Since
QnD′n ⊆ Q and QD ⊆ Q, this implies that QD ⊆ PD Dolinsky et al. [4,

Propostion 3.5] that is (5) holds for all ξ ∈ L1
∗, and hence Dolinsky et al. [4,

Lemma 3.4] holds for all ξ that satisfy condition of Proposition 4.

Proposition 5. Let ξ : Ω→ R be a continuous function satisfying |ξ(ω)| ≤
a(1 + ‖ω‖∞)b for some constants a, b > 0 and QnD′n be the set of probability

measures as defined in (4), then

sup
Q∈Qn

D′n

EQ[ξ(X̂n)] = max
Q∈Qn

D′n

EQ[ξ(X̂n)]. (19)
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Proof. The LHS of (19) can be written as

sup
Q∈Qn

D′n

EQ[ξ(X̂n)] = sup
f∈A

EPn◦(M
f,X)−1

[ξ(X̂n)],

where A =
{
f : {0, . . . , n} × Ln+1

n →
√
D′n
}

such that f is Fn-adapted. We
shall prove that A is a compact subset of a finite-dimensional vector space,
and that f 7→ EPn◦(Mf,X)−1

[ξ(X̂n)] is continuous.

First part

Recall that for fixed n ∈ N, Xn = (Xn
k )nk=0 is the canonical process defined

by Xn
k (x) = xk for x = (x0, . . . , xn) ∈ Ln+1

n , and (Fnk )nk=0 = σ(Xn
l , l =

0, . . . , k) is the filtration generated by Xn. We consider Ωn = {ω =
(ω1, . . . , ωn) : ωi ∈ {±1}, i = 1, . . . , n} equipped with the power set. Let

Pn =
δ−1 + δ+1

2
⊗ · · · ⊗ δ−1 + δ+1

2︸ ︷︷ ︸
n times

where for all A ⊆ R,

δx(A) =

{
1, x ∈ A
0, x /∈ A

,

be the product probability associated with the uniform distribution.
ξ1, . . . , ξn is the i.i.d sequence of real-valued random variables such that
ξk belongs to {±1} and the components of ξk are orthonormal in L2(Pn).
We denote the associated random walk by Znk =

∑k
l=1 ξl.

A is closed1 and obviously bounded with respect to the norm ‖ · ‖∞ as D′n
is bounded2. By Heine-Borel theorem, A is a compact subset of a N(n, n)-
dimensional vector space equipped with the norm ‖ · ‖∞.

Second part

Here, we want to show that F : f 7→ EPn◦(Mf,X)−1
[ξ(X̂n)] is continuous.

QnD′n =
{
Pn ◦ (Mf,X)−1; f : {0, . . . , n} × Ln+1

n →
√

D′n is Fn-adapted.
}

1The cardinality of Ln, #Ln = 2n + 1, #Ln+1
n = (2n + 1)n+1, and #({0, . . . , n} ×

Ln+1
n ) = (n+1)(2n+1)n+1 = N(n, n). Let (fm)m ∈ AN(n,n) and f : {0, . . . , n}×Ln+1

n →
R, such that fm → f , as m → ∞, with respect to the maximum norm ‖ · ‖∞ (or any
norm as a result of norm equivalency) on RN(n,n). We have to prove that f is adapted
and
√
D′n-valued (is obvious,

√
D′n is closed). For the first part, let j ∈ {0, . . . , n}. We

want to show that f(j, ·) is Fnj -measurable. This, however, follows from Billingsley [1,
Theorem 13.4(ii)].

2If V ∈ R>0 such that D′n ⊆ [0, V ], then obviously
‖f‖∞ = maxj∈{0,...,n}

ω∈Ln+1
n

|f(j, ω)| ≤
√
V .
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where

Mf,X =

(
k∑
l=1

f(l − 1,X)∆Xl

)n
k=0

.

EPn◦(M
f,X)−1

[ξ(X̂n)] =

∫
Ln+1
n

ξ(X̂n)dPn ◦ (Mf,X)−1,

=

∫
Ωn

ξ(X̂n(Mf,X))dPn, (transforming measure)

=
∑

ωn∈Ωn

Pn{ωn}ξ ◦ (X̂n) ◦Mf,X(ωn).

From Proposition 4 we know that ξ is continuous, X̂n is the in-
terpolated canonical process, i.e., X̂ : Ln+1

n → Ω, thus X̂n is
continuous and Pn takes it values from the set of real numbers.
For F : f 7→ EPn◦(Mf,X)−1

[ξ(X̂n)] to be continuous, ψ : f 7→Mf,X

has to be continuous. Since A = {f : {0, . . . , n} × Ln+1
n →√

D′n, where f is adapted with respect to the filtration generated by X} is
a compact subset of a N(n, n)-dimensional vector space for fixed n ∈ N and
Mf,X : Ωn → Ln+1

n , for all f, g ∈ A,

|Mf,X −Mg,X| = |‖f‖∞ − ‖g‖∞| ≤ ‖f − g‖∞.

Thus, ψ is continuous with respect to the norm ‖·‖∞. Hence F is continuous
with respect to any norm3 on RN(n,n).

Theorem 6. Let ξ : Ω → R be a continuous function satisfying |ξ(ω)| ≤
a(1 + ‖ω‖∞)b for some constants a, b > 0. Then,

sup
P∈QD

EP [ξ] = lim
n→∞

max
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (20)

Proof. The proof follows directly from Proposition 4 and Proposition 5.
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Appendix

Density argument verification

Let
f : ξ 7→ sup

P∈QD

EP [ξ]

and
g : ξ 7→ lim

n→∞
sup

Q∈Qn
D′n/n

EQ[ξ(X̂n)].
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From (18), we know that for all ξ ∈ Cb(Ω,R), f(ξ) = g(ξ). Since L1
∗ is the

completion of Cb(Ω,R) under the norm ‖ · ‖∗, Cb(Ω,R) is dense in L1
∗; and

we want to prove for all ξ ∈ L1
∗, f(ξ) = g(ξ). To prove this, it is sufficient to

show that f and g are continuous with respect to the norm ‖ · ‖∗.

For continuity of f :

For all P ∈ QD and ξ, ξ
′ ∈ L1

∗,

sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
] ≤ sup

P∈QD

EP [ξ − ξ′ ]

and
sup
P∈QD

EP [ξ − ξ′ ] ≤ sup
P∈QD

EP [|ξ − ξ′ |].

Since, QD ⊆ Q,

sup
P∈QD

EP [|ξ − ξ′ |] ≤ sup
Q∈Q

EQ[|ξ − ξ′ |] = ‖ξ − ξ′‖∗.

Then,
sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
] ≤ ‖ξ − ξ′‖∗. (21)

Interchanging ξ and ξ
′
,

sup
P∈QD

EP [ξ
′
]− sup

P∈QD

EP [ξ] ≤ ‖ξ′ − ξ‖∗. (22)

Adding (21) and (22), we have∣∣∣∣ sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
]

∣∣∣∣ ≤ ‖ξ − ξ′‖∗. (23)

Hence,
|f(ξ)− f(ξ

′
)| ≤ ‖ξ − ξ′‖∗.

For continuity of g:

We can follow the same argument as above; for all Q ∈ QnD′n/n, ξ, ξ
′ ∈ L1

∗
and for all n,

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)]

≤ sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)− ξ′(X̂n)]

≤ sup
Q∈Qn

D′n/n

EQ[|ξ(X̂n)− ξ′(X̂n)|].
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Since, QnD′n/n ⊆ Q
n
D/n and QnD/n ⊆ Q, we can say that

sup
Q∈Qn

D′n/n

EQ[|ξ(X̂n)− ξ′(X̂n)|] ≤ sup
Q∈Q

EQ[|ξ − ξ′ |] = ‖ξ − ξ′‖∗,

then,

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)] ≤ ‖ξ − ξ′‖∗. (24)

Taking the limit when n goes to ∞, (24) becomes,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)] ≤ ‖ξ − ξ′‖∗. (25)

Interchanging ξ and ξ
′
,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)]− lim

n→∞
sup

Q∈Qn
D′n/n

EQ[ξ(X̂n)] ≤ ‖ξ′ − ξ‖∗. (26)

Adding (25) and (26), we have

∣∣∣∣ lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)]

∣∣∣∣ ≤ ‖ξ − ξ′‖∗.
Hence, ∣∣∣g(ξ)− g(ξ

′
)
∣∣∣ ≤ ‖ξ − ξ′‖∗.

15


