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2 Spike Timing

Introduction

A major task of sensory systems is to supply an organism with knowledge about the 
dynamics of external stimuli. Thus, much information can be expected to be con-
tained in the temporal structure of their output, the electrical activity of nerve cells. 
Beyond that, it has been argued that distinct events in the outside world might be 
encoded by patterns of neural activity, in which the specific timing of electrical sig-
nals carries more information than that provided by the overall rate of neural activ-
ity (reviews: Borst and Theunissen, 1999; Lestienne, 2001; Shadlen and Newsome, 
1994; Tiesinga et al., 2008).

The visual systems of several insect species provide excellent models to study 
how information about the outside world is encoded by the temporally varying activ-
ity of individual nerve cells (review: Egelhaaf and Kern, 2002). A mayor advantage 
of these model systems is the ability to record neural activity in the unanesthetized 
state. Moreover, in some insect species, locomotor behavior can be registered in a 
highly precise way. Such analysis enables the use of dynamic visual stimuli that 
closely resemble those encountered by the animal in a behavioral context (reviews: 
Egelhaaf et al., 2005; Kurtz and Egelhaaf, 2003).

In this chapter, some examples of research on dynamic signal processing in the 
insect visual system will be presented. It will be outlined how the dynamics of 
brightness and motion signals is encoded into neuronal output signals that are fast 
and precise enough to form the basis of rapid visuomotor responses, in particular 
during flight (Taylor and Krapp, 2007). Several examples will demonstrate how indi-
vidual neurons exploit the spatiotemporal correlations in their visual input to extract 
behaviorally relevant information, such as the approach of objects (see Section 2) 
or self-motion-induced panoramic image displacements (see Section 3). As infor-
mation in the insect visual system is often carried by graded changes of the mem-
brane potential of neurons instead of action potentials (de Ruyter van Steveninck 
and Laughlin, 1996; Juusola et al., 1995), or by a combination of both (Simmons and 
de Ruyter van Steveninck, 2005; Warzecha et al., 2003), the synaptic transfer of this 
type of temporal information will be considered (see Section 3.5).

The last section gives two examples for the role of spike timing in fast sensory-
motor control during flight. Section 4.1 outlines how shifts in the position of the 
horizon in the visual field can be rapidly perceived and used for fast visuomotor con-
trol of body attitude during flight. Section 4.2 describes how an essential aspect of 
motor control during flight, the adjustment of head position by neck motor neurons, 
depends on the combination of visual motion input with mechanosensory informa-
tion about the wing-beat cycle.

�Functional Significance of Temporally Precise 
Information in the Insect Visual System

During locomotion, in particular when flying, an animal’s eye is confronted with 
rapidly changing brightness signals. From these spatiotemporal patterns of bright-
ness changes, crucial information has to be gathered about the parameters of self-
motion, the three-dimensional (3D) layout of the environment, as well as motion of 
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3Spatiotemporal Processing of Dynamic Visual Information

objects and conspecifics (Britten, 2008; Egelhaaf et al., 2003; Egelhaaf and Kern, 
2002; Frost, 2010; Rind and Simmons, 1999). In general, these tasks require fast 
information processing. However, the biochemical process of photon conversion in 
the photoreceptor cells (Fain et al., 2010; Yau and Hardie, 2009) results into input 
signals to the visual system that are per se comparatively slow compared, for exam-
ple, to sensory signals in the auditory or electrosensory system (Fortune et al., 2006; 
Grothe et al., 2010; Pollack, 2000). In these sensory modalities, differences in spike 
timing in the millisecond range or even below can carry information about stimulus 
localization. In contrast, a general requirement for neuronal interactions in the visual 
system to be precise on a millisecond or even submillisecond timescale is not imme-
diately evident. Nevertheless, as outlined in Sections 3.3 and 4.1, precisely timed 
signals occur in the insect visual system and appear to be functionally significant.

The temporal precision at which information is encoded sets limits on how much 
information is represented, how the code is generated, and how it is read out. In 
general, spike trains can carry much information if different stimuli reliably lead to 
millisecond or even submillisecond differences in the timing of individual spikes 
(reviews: Borst and Theunissen, 1999; Shadlen and Newsome, 1994; Tiesinga et al., 
2008). In the visual system, such temporal coding might not be restricted to the 
encoding of stimulus dynamics. In principle, other stimulus qualities, such as its 
texture or its position within the receptive field, could also be encoded by differ-
ent spike patterns. However, unlike a rate code, in which only the number of spikes 
within a certain time interval is informative, a precise temporal code requires exact 
mechanisms in downstream neurons to keep track of the temporal structure of spike 
trains. In the presence of stochastic fluctuations of biophysical parameters, a coarser 
rate code might thus be more robust and energetically more efficient than a code that 
relies on precise spike timing (review: Laughlin and Sejnowski, 2003).

Intriguingly, some prominent specializations for fast signaling are present in the 
visual systems of many insect species. Thus, many insects are far superior to most ver-
tebrates with respect to rapid visual processing and to the execution of visually driven 
motor responses. First, a phototransduction cascade different from that in vertebrates 
enables insect photoreceptors to produce fast and brief electrical output signals (Fain 
et al., 2010; Yau and Hardie, 2009). As a result, the temporal resolving power of insect 
eyes is often higher than that of vertebrate eyes, as expressed in the high flicker fusion 
frequencies measured in electroretinograms (Autrum, 1950). Second, sensory input 
and motor output are often linked by only few processing stages in insect nervous 
systems. For example, in flies, the motoneurons for the control of head movements are 
separated from the visual input by only 4–6 synapses (Haag et al., 2010; Huston and 
Krapp, 2008; Milde et al., 1987). Third, input from the insect visual system is com-
bined with input from other modalities very early during processing (Haag et al., 2010; 
Huston and Krapp, 2009; Rowell and Reichert, 1986; Simmons, 1980; Strausfeld and 
Bassemir, 1985). In this respect, insects differ from most higher vertebrates, where 
such integration is largely restricted to later processing stages. Fourth, several neuro-
pils of the insect visual system contain only a fairly small number of large neurons, 
which are tailored to their tasks in a highly specific way by their intricate input struc-
ture and their distinct biophysical properties (Borst et al., 2010; Gabbiani et al., 2004; 
Hedwig, 2006; Hennig et al., 2004; Jacobs et al., 2008; Rind and Simmons, 1999; 
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4 Spike Timing

Simmons, 2002). Such highly specialized neurons, many of which can be individually 
identified in physiological experiments, are often located close to the sensory input 
layer. It can be expected that this compact form of neuronal wiring increases process-
ing speed compared to the use of large networks of smaller, less specialized neurons. 
One prominent example for such a type of neuron is the lobula giant movement detec-
tor (LGMD) in the locust brain described in the next section, which is thought to 
signal object approach on a collision course toward the animal.

�Spatiotemporal Computation of Object Approach by 
Individual Neurons in the Locust Brain

�Collision Sensing by Precisely Timed Neuronal Activity 
in the Locust Brain

The LGMD of locusts presents a prominent example in which a characteristic time 
course of neuronal activity is selectively triggered by specific spatiotemporal features 
of the visual input (reviews: Gabbiani et al., 2004; Rind and Simmons, 1999; Rind, 
2002; Simmons et al., 2010). In many animals, the visual cues produced by rapidly 
approaching objects are very effective to trigger a quick escape response (Card and 
Dickinson, 2008; Fotowat et  al., 2009; Fotowat and Gabbiani, 2007; Oliva et  al., 
2007). The LGMD and its postsynaptic target, the descending contralateral move-
ment detector (DCMD) (see Figure 1a), respond vigorously to objects approaching 
on a collision course with the animal or their two-dimensional projections, called 
looming stimuli (O’Shea and Williams, 1974; Schlotterer, 1977; Rind and Simmons, 
1992; Rowell, 1971; see Figure 1b).

An important visual cue that may be extracted from a looming stimulus is obtained 
by calculating the ratio of its angular size and velocity at the retina (see Figure 1c). 
For an object approaching at constant speed, this ratio is independent of object size 
and absolute speed, and it decreases linearly as long as the distance of the object is 
considerably larger than its size (see Figure 1d). Thus, the time course of this ratio 
provides a useful indicator of whether objects are on a direct collision course, and it 
enables a good prediction of the time of collision (Lee, 1976). Which combination 
of object angular size and velocity is best suited to describe the time course of the 
response of the LGMD/DCMD is currently actively investigated (Gabbiani et  al., 
1999b, 2004; Rind and Simmons, 1999). Nevertheless, it is clear that these neurons 
respond specifically to looming objects over a wide range of stimulus conditions 
(Gabbiani et al., 2001; Rind and Simmons, 1992). The typical response profile is a 
strong, nonlinear increase in firing rate during object approach. Depending on stimu-
lus conditions, the response either peaks before collision or continues until after col-
lision (see Figure 1b) (Gabbiani et al., 1999a; Hatsopoulos et al., 1995; Rind and 
Simmons, 1992; Rind, 1996; Rind and Santer, 2004). Much weaker responses or 
responses that decline much earlier are elicited by other stimuli, for example, station-
ary objects whose contrast increases over time, translatory object motion, or objects 
expanding without showing the typical parameter combinations of looming approach 
(Hatsopoulos et al., 1995; Judge and Rind, 1997; Peron and Gabbiani, 2009; Rind, 
1996; Simmons and Rind, 1992).
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6 Spike Timing

�Significance of Looming-Sensitive Neurons for the Triggering 
of Escape Behavior

Apart from the LGMD/DCMD of locusts, neurons that are sensitive to looming 
stimuli are also present in the nucleus rotundus of pigeons (Sun and Frost, 1998; 
Wang and Frost, 1992) and in the lobula of crabs (Medan et al., 2007; Oliva et al., 
2007). Recently, looming-sensitive neurons were also identified in recordings from 
the optic lobes and from the neck connective in Drosophila (de Vries and Clandinin, 
2012; Fotowat et al., 2009). In all these cases, the timing of motor activity generating 
escape behavior is linked to the response profile of the looming-sensitive neurons 
(Fotowat and Gabbiani, 2007; Fotowat et al., 2009; Oliva et al., 2007). In one analy-
sis, the response of the LGMD peaked at a fixed delay after the retinal size of the 
object reached a certain threshold value for a variety of different parameters of the 
looming stimulus (Gabbiani et al., 1999a) (see Figure 1e). Retinal size might there-
fore be a critical parameter that triggers an escape response.

In electrical recordings from tethered flying locusts, the temporal integration of 
inputs from DCMD by a flight motor neuron was characterized (Santer et al., 2006). 
The recorded motor neuron is thought to have a significant function in controlling 
escape responses, because it raises the locust’s wings and thus initiates an interruption 
of flight by a gliding phase. The motor neuron only reaches spike threshold when a 
sufficiently large number of DCMD-mediated EPSPs are integrated, which is the case 
when DCMD fires a burst of high-frequency spikes in response to a looming stimu-
lus. Intriguingly, the efficiency of DCMD high-frequency spikes to activate the motor 
neuron depended on the wing-beat phase at which they occur. This dependency was 
proposed to result from synchronization with a gating input derived from the motor 
system to ensure that a glide only occurs at the end of a complete wing-beat cycle.

Recently, photoablation experiments showed that DCMD is involved in triggering 
a precisely timed jump of the locust in response to an impending collision (Fotowat 
et al., 2011). Using a miniature telemetry system, the activity of DCMD and motor 
activity was simultaneously registered in freely behaving locusts. DCMD did not 
play a prominent role in the initial preparatory movements leading to a jump. In con-
trast, triggering of the jump itself was dependent on DCMD activity. The time course 
of DCMD firing was a highly relevant parameter for the timely execution of a jump 
movement, as much of the trial-to-trial variability in jump time could be predicted 
from the time of the peak of DCMD’s firing rate.

�Roles of Spatiotemporal Input Dynamics and Synchronization in the 
Generation of Looming Sensitivity

The LGMD exemplifies the capacity of single neurons in the insect visual system to 
perform complex computations. The spatial arrangement and the relative timing of 
excitatory and inhibitory inputs are crucial for the generation of specific responses 
to looming stimuli (Gabbiani et al., 2002; Rind and Bramwell, 1996). The LGMD 
integrates on a large dendrite excitatory retinotopic inputs (Peron et al., 2009; Rind 
and Leitinger, 2000). Lateral inhibition presynaptic to these inputs may link their 
strength to retinal image velocity, and reduce their responses to translatory motion 
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7Spatiotemporal Processing of Dynamic Visual Information

(O’Shea and Rowell, 1975; Rind and Simmons, 1998). In particular, motion was sug-
gested to cause a “critical race” over the dendrites of the LGMD, resulting from 
the particular arrangement of excitatory and inhibitory input synapses and their 
presumed latencies (Rind and Bramwell, 1996; Rind and Simmons, 1998). During 
movement of the edges of an expanding image, excitation arrives before inhibition 
and wins this race.

Recently, a mechanism that is independent from inhibition was suggested to 
shape the selectivity of the LGMD for looming stimuli (Jones and Gabbiani, 2010). 
It was found that a looming stimulus tends to synchronize a large population of 
synaptic inputs to the LGMD. This is the case because presynaptic neurons are very 
sensitive to the slope of a luminance change. When stimulating single photoreceptors 
with luminance changes of equal amplitudes but increasing slopes the peaks of the 
responses increased and their latencies decreased. These effects were already pres-
ent in the photoreceptors and became more prominent in downstream processing 
layers, being strongest in the direct synaptic inputs to the LGMD. The accelerating 
angular velocity of a looming stimulus stimulates successively activated photore-
ceptors with increasingly rapid changes in luminance. As a result of the decreasing 
response latencies, the inputs of the LGMD are synchronized, leading to a large 
amplitude of the integrated response.

In addition to the mechanisms outlined above, feedforward inhibition plays a 
role in the generation of looming sensitivity of the LGMD. Two separate den-
dritic fields arborize in distinct regions of the visual neuropil (see Figure 1a) 
and receive phasic nonretinotopic, feedforward inhibition related to object size 
(Rowell et al., 1977). Blocking the latter type of inhibition during object approach 
increases response strength and delays peak firing time, indicating that it is one 
of the essential parameters for the generation of a specific response to looming 
stimuli (Gabbiani et al., 2002).

Recently, it was shown that intrinsic biophysical parameters of the LGMD also 
contribute to the selectivity of the neuron for looming stimuli. Spike-frequency 
adaptation, mediated by a calcium-dependent potassium conductance, attenuates the 
neuronal response to translatory motion, and thus enhances neuronal specificity to 
looming stimuli (Peron and Gabbiani, 2009). Thus, tuning of the LGMD to looming 
stimuli is accomplished by a large set of different mechanisms, which build on its 
synaptic input geometry, the properties of dendritic integration as well as specific 
intrinsic biophysical characteristics.

�Extraction of Motion Information from Dynamic 
Visual Input in the Fly Visual System

Correlation-Based Visual Motion Detection

The lobula plate tangential cells (LPTCs) of flies present a class of neurons, which 
process global dynamic visual input, similar to LGMD and DCMD in locusts 
(see Section 2). However, unlike LGMD/DCMD, these neurons respond to visual 
motion in a highly direction-selective way (see Figure 2a). They are excited by 
motion in their preferred direction (PD), but inhibited by motion in the opposite 
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Kurtz R. 2011. Eur J Neurosci 34:705–716.(c) Modified from Warzecha AK, Kretzberg 
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23:10776–10783.) 
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9Spatiotemporal Processing of Dynamic Visual Information

direction, the null direction (ND). The responses of LPTCs to visual stimuli can be 
monitored by electrical recordings and functional imaging in vivo in several genera 
of fly, in particular Calliphora, Lucilia, and Eristalis (reviews: Borst et al., 2010; 
Egelhaaf et al., 2005; Kurtz et al., 2008) and, since recently, as well in Drosophila 
(review: Borst, 2009). The detailed analysis of the response properties of LPTCs 
together with the study of behavioral responses to visual motion provided insight 
into the basic steps of motion detection, even though these computations are to 
a large extent carried out further upstream in the visual pathway (reviews: Borst 
and Egelhaaf, 1989; Borst et al., 2010; Egelhaaf and Borst, 1993; Egelhaaf, 2006). 
LPTCs integrate the outputs of arrays of numerous local motion-detecting ele-
ments, which are too small to be easily accessible to electrical recordings. Thus, 
LPTCs became a favorite model for the study of the basic mechanisms underlying 
motion detection and for analyzing the links between neuronal response dynamics 
and motor control.

There is vast evidence that the computational principle underlying visual motion 
detection is a type of coincidence detection performed by a so-called elementary 
motion detector (EMD, see Figure 2b, review: Borst and Egelhaaf, 1989). Some 
aspects of this type of computation are reminiscent of basic models for sound 
localization based on interaural time differences (review: Grothe et  al., 2010). 
However, the temporal scale on which coincidence needs to be detected is nearly 
an order of magnitude shorter in auditory processing than in visual motion compu-
tation. In its simplest form, an EMD is organized in the following way. It has two 
inputs, which are sensitive to the luminance modulations of neighboring locations 
in the visual field. The signals from these input lines interact in a nonlinear way 
after one of them is temporally delayed. In EMD models, the nonlinear interaction 
and the delay are usually implemented as a multiplication and a temporal low-pass 

Timing VS–V1 (ms)

BM

VCcCC
+20 mV

VCcCC
–20 mV

0
0.02
0.04
0.06

–1 0 1 2 3

0
0.02
0.04
0.06

0
0.02
0.04
0.06

410 mV
100 ms

Motion

Amplitude (mV)
45 35 25 15

Fr
eq

ue
nc

y

VS-spike(e)
(i) (ii) (iii)

Figure 2  (Continued) (e) Impact of graded changes in membrane potential of a fly VS 
neuron on spike amplitude and on temporally precise initiation of spikes in the postsynaptic 
V1 neuron. (i) Responses of VS to motion recorded in bridged mode (BM) and with different 
graded holding potentials in VCcCC. For these conditions, amplitude of spikes (ii) and histo-
grams of frequency distributions of the latency between spikes in VS and V1 (iii) are shown. 
((e) Modified from Rien D, Kern R, Kurtz R. 2011. Eur J Neurosci 34:705–716.)
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10 Spike Timing

filter, respectively. A moving luminance signal that first arrives at the nondelayed 
detector input and subsequently at the delayed input will temporally coincide at 
the multiplication stage if its velocity fits to the detector’s delay. By combining 
two mirror-symmetrical detector units, the outputs of which are subtracted from 
each other, the EMD yields positive output for one direction of motion and nega-
tive output for the opposite direction. In more elaborate implementations of the 
EMD, additional temporal and spatial filters are added to the basic model (see, 
e.g., Brinkworth and O’Carroll, 2009; Lindemann et al., 2005). Moreover, EMD 
models have been proposed that use instead of a formal mathematical multiplica-
tion a biophysically more realistic form of coincidence detection, such as a neuro-
nal computation based on shunting inhibition (reviews: Borst and Egelhaaf, 1993; 
Clifford and Ibbotson, 2002).

Reliability of Responses to Time-Varying Visual Motion Signals

The retinal image shifts during self-motion, called “optic flow,” provide a rich 
source of information about the parameters of locomotion and about the 3D layout 
of the environment (reviews: Egelhaaf et al., 2009; Lappe et al., 1999; Taylor and 
Krapp, 2007). LPTCs integrate local motion cues supplied by EMDs over large 
parts of the visual field (Krapp et al., 1998; Spalthoff et al., 2010), which is a cru-
cial step in the transfer of visual motion input into output signals for locomotor 
control (review: Taylor and Krapp, 2007). Therefore, fly LPTCs are likely to play 
a prominent role in providing the motor system with the specific sensory signals 
that are required for visually guided flight stabilization, course control, and object 
detection (Egelhaaf, 1985; Huston and Krapp, 2008; Karmeier et al., 2006; Kern 
et al., 2005).

The optic flow in a typical behavioral situation, flight in an environment with 
a complex 3D layout, has complex spatiotemporal characteristics. Rather than fly-
ing straight ahead over extended periods of time, the flight trajectories of flies are 
characterized by frequent changes between mainly translatory locomotion and brief 
periods of rapid rotation movements, called saccades (Geurten et al., 2010; Schilstra 
and van Hateren, 1998). These locomotor patterns lead to a highly dynamic structure 
of the resulting optic flow. Thus, the dynamic response characteristics and the reli-
ability of LPTCs and their synaptic interactions are critical parameters in setting the 
timescale on which information about time-varying optic flow can be conveyed to 
the motor areas (Karmeier et al., 2006; Kern et al., 2005).

The reliability of the responses of LPTCs to time-varying motion stimuli has 
been assessed in numerous studies (de Ruyter van Steveninck et al., 2001; Warzecha 
and Egelhaaf, 1997, 1999, 2001; Warzecha et al., 1998). In one study, the variability 
of spike trains of an LPTC in Calliphora, the H1 neuron, was compared for motion 
with constant velocity and motion with randomly fluctuating velocity (de Ruyter van 
Steveninck et al., 1997). Motion of a random bar pattern was repeatedly presented 
to count the number of spikes in time windows of different sizes and to calculate the 
variance across trials. The ratio between the variance and the mean (the Fano factor) 
was close to one when data for different constant velocities were pooled. In con-
trast, values much smaller than one were found when random velocity fluctuations 

K11729_Spatio.indd   10 11-04-2014   19:57:29



11Spatiotemporal Processing of Dynamic Visual Information

were used. Thus, it was concluded that H1 produces more reliable output signals 
when stimulated with more natural, dynamic inputs compared to constant inputs. 
However, these conclusions were later challenged by studies, which demonstrated in 
the same neuron that both with constant and with dynamic stimulation the variabil-
ity is similarly low, with Fano factors much smaller than one, apart from conditions 
that lead to very low spike rates (Warzecha and Egelhaaf, 1999; Warzecha et al., 
2000). These conflicting conclusions seemed to result not so much from differences 
in the data obtained, as from differences in data analysis. De Ruyter van Steveninck 
et al. (1997) pooled data obtained from different evaluation time windows for con-
stant stimulation, but used only equally sized windows for dynamic stimulation. In 
contrast, in the later studies, time windows of equal size were used for all conditions 
(Warzecha and Egelhaaf, 1999; Warzecha et al., 2000).

Temporal Precision of Visual Motion Computation

In the fly motion vision system, timing of spikes with a precision in the millisec-
ond or even submillisecond range has been observed, but the functional significance 
of this precision is a controversial issue (Egelhaaf et al., 2001; Lewen et al., 2001; 
Nemenman et al., 2008; Warzecha et al., 1998). A very precise time-locking of spikes 
occurs most frequently between synaptically coupled LPTCs (Beckers et al., 2009; 
Farrow et al., 2006; Horstmann et al., 2000) and between LPTCs that share their 
sources of synaptic input to a large extent (Warzecha et al., 1998). In the latter case, 
synchronicity between neurons might be elicited either by certain features of the 
visual input or by common input noise, or by a combination of both. This question 
was addressed in dual recordings of a pair of LPTCs, H1 and H2, which resemble 
each other in their receptive field properties (Warzecha et al., 1998). The responses 
of these neurons to random velocity fluctuations were synchronized to a large extent, 
as evidenced by a sharp peak in the cross-correlogram calculated for simultaneously 
recorded response traces (see Figure 2c). However, when responses of the two neu-
rons to identical stimulus sequences were recorded nonsimultaneously, only a fairly 
broad peak was found in their cross-correlogram. Two aspects were demonstrated 
by these findings: First, the biophysical properties of H1 and H2 enable precise spike 
generation on a millisecond timescale. Second, precise spike timing is mostly elic-
ited by stochastic fluctuations of the activity of input neurons and not by time-lock-
ing of spikes to the visual stimulus. Consistent with these conclusions, a recent study 
indicated that in the H1 neuron, precise spike timing is not a major determinant for 
the quality of velocity encoding (Spavieri, Jr. et al., 2010).

The visual stimuli encountered by the fly in real life differ considerably from 
those usually applied under laboratory conditions. First, the luminance under out-
door conditions spans a larger range and can reach higher values compared to the 
stimulus devices mostly used in laboratory experiments. Second, flies are equipped 
with nearly panoramic vision and are confronted with panoramic stimuli in real 
life, but usually not in electrophysiological experiments. Third, in particular during 
flight, the spatiotemporal dynamics of the visual input differs much from experi-
menter-designed stimuli. These discrepancies might compromise conclusions drawn 
from laboratory experiments on the role of spike timing in natural signal encoding. 
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12 Spike Timing

To overcome these problems, recordings of the H1 neuron were performed outdoors, 
rotating the fly either in a sinusoidal way (Egelhaaf et al., 2001) or with seminatural 
rotation dynamics (Lewen et al., 2001; Nemenman et al., 2008). The latter two stud-
ies revealed that small differences in spike timing, even down to the submillisecond 
scale, code for subtle differences in the time course of rotation velocity. This finding 
should not be misinterpreted to mean that every spike is reproducible on a millisec-
ond timescale. Instead, only certain features of the stimulus waveform lead to spike 
patterns that are distinct enough to contribute to the overall information conveyed 
by the spike train. For example, fast transitions in velocity may lead to exceptionally 
short interspike intervals or to spikes that are particularly precise in their absolute 
timing.

Even though spike trains of fly visual motion-sensitive neurons could be shown 
to contain information about their input stimuli at submillisecond resolution 
(Nemenman et al., 2008), it should be kept in mind that the timing of spikes is to 
a large extent dominated by noise (Warzecha et al., 1998). This compromises the 
ability to infer the dynamic properties and the qualitative feature of a stimulus 
from a single spike train. However, the reliability of fast neuronal computations 
can be improved when the output of a population of neurons instead of a single 
neuron is used. This aspect was addressed in a study that combined recordings 
from individual members of a particular class of fly LPTC with modeling of popu-
lation coding (Karmeier et al., 2005). The VS (“vertical system”) neurons form a 
class of 10 neurons, which all respond to global visual motion as it occurs during 
horizontal self-rotation of the fly (Hengstenberg et al., 1982; Hengstenberg, 1982; 
Krapp et al., 1998). The rotation axes that evoke the largest response are spread 
along the azimuth, such that individual VS neurons differ in their preferred axis. 
A Bayesian approach was used to calculate how well global motion about dif-
ferent rotation axes is represented in the population response of the VS neurons 
(Karmeier et al., 2005). With an integration time as small as 10 ms after response 
onset, the error for the calculation of this rotation axis of the stimulus was esti-
mated to be less than 10°.

�Impact of Light Intensity and Temperature on Temporal Coding 
of Motion Velocity Fluctuations

At extremely low light levels, the reliability of the visual system is constrained 
by the stochastic nature of light, which results into a variable temporal pattern of 
single photon absorptions in the photoreceptors. In flies, the high light sensitivity of 
the system under such conditions is preserved in motion-vision. As a consequence, 
single photon effects were observed in the spike patterns of H1 (Lillywhite and 
Dvorak, 1981) and were indeed shown to be a limiting factor in particular tasks (de 
Ruyter van Steveninck and Bialek, 1995). De Ruyter van Steveninck and Bialek 
(1995) analyzed the responses of H1 to stepwise displacements of a random bar 
pattern. The performance of H1 to discriminate different step sizes was shown to 
approach the limits imposed by the optical properties of photoreceptors and photon 
shot noise. However, over which range of luminance conditions and in which tasks 
the performance of H1 is limited mainly by the photon noise in the photoreceptor 
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array rather than by internal sources of noise has been a matter of debate (de Ruyter 
van Steveninck et  al., 2001; Lewen et  al., 2001; Warzecha and Egelhaaf, 2001). 
Grewe et al. (2003) made an attempt to discern how these different noise sources 
compromise the performance of H1. An approach similar to the “equivalent noise” 
paradigm commonly used in psychophysics was applied to the responses of H1. 
The influence of photon noise was emulated by random brightness modulations of 
dots moving in the PD. The minimal modulation depth that is required to affect 
the responses of H1 was determined (see Figure 2d). The brightness modulations 
required to modify the response of H1 in a detectable way were much larger than 
those estimated to result from photon noise. This discrepancy suggests that at mod-
erate brightness levels, and even more so at daylight, neuronal performance is lim-
ited by internal sources of variability rather than by photon noise. This conclusion 
might be compromised by the fact that fairly long stimulus sequences in the range 
of seconds were used in the experiments. Thus, these sequences might be distin-
guished by H1 mainly based on differences in the low frequency range, whereas 
the strongest disturbance of visual processing by photon noise might be on a much 
finer timescale. However, inconsistent with this argument, the discrimination per-
formance of the ideal observer paradigm used by Grewe et al. (2003) was best on a 
timescale as fine as 10–15 ms (see Figure 2d). With a coarser temporal resolution of 
the ideal observer, information about the fine temporal structure remains unused. 
On the other hand, owing to the presence of trial-to-trial variability, a resolution 
finer than 10 ms increases the dissimilarity between responses to one and the same 
stimulus and deteriorates the performance of the ideal observer. Thus, the optimal 
temporal resolution of the ideal observer gives an idea on which temporal scale the 
responses of H1 are most informative about a temporally fluctuating input stimu-
lus. Notably, much longer encoding windows (40–100 ms) were found to optimize 
information decoding when motion stimuli were used that were self-generated 
by the fly during tethered flight in a flight simulator under closed-loop conditions 
(Warzecha and Egelhaaf, 1997). A plausible explanation for the longer time win-
dows is the prevalence of fairly slow transitions in velocity in the stimuli generated 
by such a procedure.

In a recent study, the response of H1 to random velocity fluctuation was sys-
tematically tested at different temperatures and luminance values (Spavieri et al., 
2010). An increase in any of these parameters, within the tested range, led to an 
increase in firing rate. In a previous study, a dependency of spike rate on tem-
perature was already shown to be present under outdoors conditions (Egelhaaf 
et al., 2001). On the other hand, firing precision increased with luminance, but was 
unaffected by temperature (Spavieri et al., 2010). Moreover, the information rate 
and the coding efficiency (i.e., the ratio between transmitted information and total 
entropy) of H1 increased systematically with firing rate. Surprisingly, these infor-
mation measures did not increase with firing precision. This finding should not be 
taken as evidence that firing precision is entirely irrelevant for the H1 neuron. With 
increased firing precision, the temporal scale of signaling is changed. This became 
evident in a drastically reduced latency, which might, for example, be important to 
mediate fast responses to abrupt transitions in motion velocity (see also Warzecha 
and Egelhaaf, 2000).
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Synaptic Transfer of Dynamic Visual Information

The ability of a neuron to produce precisely timed output is only relevant if this tem-
poral information is transmitted to postsynaptic targets. This issue has been studied 
in the fly motion vision system by paired recordings from individual, synaptically 
coupled neurons. The V1 neuron integrates motion input from several VS neurons 
and conveys this signal to the contralateral brain hemisphere. In a series of stud-
ies, V1 and one of its presynaptic VS neurons were simultaneously recorded during 
visual stimulation (Beckers et al., 2007, 2009; Haag and Borst, 2008; Kalb et al., 
2006, 2008; Kurtz et al., 2001; Warzecha et al., 2003). The VS–V1 network has some 
remarkable features, which are relevant for the interpretation of the experimental 
results of these studies. First, the VS–V1 connection is most likely formed by mixed 
electrical and chemical synapses, but it is still unclear to which extent the two types 
of transmission contribute to signal transfer at individual contact sites (Beckers et al., 
2009; Haag and Borst, 2008; Kalb et al., 2006). Second, the VS neurons are them-
selves interconnected by electrical synapses in a chain-like manner (Haag and Borst, 
2004). Third, the synaptic output of VS neurons consists of a mixture of graded 
membrane potential changes and action potentials (Hengstenberg, 1977; Warzecha 
et al., 2003). These features—graded (analog) synaptic signaling and electrical cou-
pling—are not just a peculiarity of this particular type of synapse, but have been 
shown to be widespread phenomena in the insect nervous system, as well as in many 
brain areas of vertebrates (reviews: Alle and Geiger, 2008; Bloomfield and Volgyi, 
2009; Borst et al., 2010; Juusola et al., 2007; Simmons, 2002).

Graded presynaptic depolarization of VS cells was shown to be transferred in a fairly 
linear way to the postsynaptic V1 cell over a broad range of amplitudes (Beckers et al., 
2007; Kurtz et al., 2001). Moreover, the dynamics of synaptic signaling between VS and 
V1 was analyzed by motion stimulation with random velocity fluctuations (Warzecha 
et al., 2003) and by voltage-clamping the presynaptic membrane potential with sinu-
soidal waveforms (Beckers et al., 2007). In a frequency range from the lowest tested 
values (1 Hz) to about 20 Hz, the response of V1 was found to follow the presynaptic 
graded input fairly well. Similar observations were made at graded synapses between 
certain ocellar interneurons in locusts (Simmons and de Ruyter van Steveninck, 2005). 
However, on a finer timescale, a prominent role of presynaptic spikes of VS neurons 
in shaping the response of the postsynaptic V1 neuron was demonstrated. First, dur-
ing visual stimulation, temporal coupling with millisecond precision is found between 
spikes in VS and V1, even during concomitant strong graded fluctuation of the presyn-
aptic membrane potential (Haag and Borst, 2008; Kurtz et al., 2001; Warzecha et al., 
2003). Second, brief depolarizing current pulses injected into a VS neuron are much 
more effective to elicit a precisely time-locked spike in V1 when they trigger a spike in 
the VS cell than when remaining just subthreshold (Beckers et al., 2009). A functional 
role of spikes in synaptic transmission is consistent with experimental as well as model 
data, which suggest that spikes can amplify responses to fast modulations of an input 
signal, and may thus be used to sharpen the temporal structure of the neuronal response 
(Haag and Borst, 1996; Kretzberg et al., 2001a, 2001b).

To further elucidate how graded voltage signals and spikes contribute to syn-
aptic transmission in the fly’s visual system, dual recordings of VS and V1 during 
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visual stimulation were performed during voltage-clamp-controlled current-clamp 
(VCcCC) (see Figure 2e). This method (Sutor et al., 2003) enables selective voltage 
clamp of slow fluctuations in membrane potential, that is, of the sustained graded 
signal component. In contrast, fast signals, in particular spikes, are preserved during 
VCcCC. Thus, if VCcCC and full voltage clamp of a VS neuron differs in its effect 
on V1, this difference can be attributed to synaptic transmission of fast signals from 
VS. It was found that full voltage clamp of a VS neuron caused a stronger reduction 
in overall spike rate in V1 than blocking only the graded component (Rien et al., 
2011). Moreover, the graded component was found to interact with the spike compo-
nent in controlling the postsynaptic response. The amplitude of VS spikes increased 
when the graded depolarization during visual stimulation was blocked by VCcCC. 
Spike amplitude increased even more when a sustained graded hyperpolarization 
was applied during VCcCC, but it decreased during sustained depolarization (see 
Figure 2e; see also Hengstenberg, 1977). Most importantly, large presynaptic spike 
amplitude was associated with a high probability of postsynaptic firing (Beckers 
et  al., 2009) and with a short latency between pre- and postsynaptic spikes (see 
Figure 2e). These findings demonstrate that at VS–V1 synapses in the fly visual 
system, spikes function in a graded way rather than representing all-or-non signals, 
which is commonly accepted to be the major mode of spike-mediated synaptic trans-
mission (but see reviews: Alle and Geiger, 2008; Juusola et al., 2007).

Spike bursts have been shown to carry information about stimulus features or 
about network states (review: Krahe and Gabbiani, 2004). In the fly V1 neuron, the 
occurrence of brief bursts, mainly formed by only two spikes (“spike doublets”), 
appears to depend on the synchronized activity of the presynaptic VS neurons 
(Beckers et  al., 2009). Presumably, synchronization of spiking between the VS 
neurons leads to nearly simultaneous spike input to V1, which might elicit spike 
doublets. Blocking presynaptic synchronization by voltage-clamping one of the VS 
neurons led to a pronounced drop in the rate of “spike doublets” in V1 (Beckers et al., 
2009). Spike synchronization between LPTCs might result from common input that 
is unrelated to the visual signal, as has been shown in paired recordings from H1 
and H2 (Warzecha et al., 1998). In VS neurons, a further plausible explanation for 
spike synchronization is their chain-like electrical coupling (Haag and Borst, 2004). 
Nevertheless, spike doublets in V1 might carry important information about stimu-
lus features. Since the VS neurons differ in their receptive fields and their preferred 
optic flow stimuli (Krapp et al., 1998), the occurrence of spike doublets in V1 might 
signal a close correspondence of stimulus features with the preferences of several of 
the VS neurons instead of only a single one.

Phase Locking to Periodic Input in Multimodal Neurons 
in the Insect Sensory-Motor System

Precise Spike Timing in the Ocellar Pathway of Locusts

In many flying insects, the ocellar pathway forms a second visual system in addition 
to the compound eyes (reviews: Krapp, 2009; Simmons, 2002). Built as underfocused 
single lens eyes, ocelli have only poor spatial resolution. However, they provide input 
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for a sensory-motor pathway that is very fast because it consists of only very few 
stages, which are connected by large-diameter axons. Accurate timing of spikes in the 
ocellar pathway of locusts was recently proposed to be relevant for providing appro-
priately timed control input to flight muscles (Simmons and van Steveninck, 2010).

The interneuron DNI in the locust brain receives synaptic input from ocellar 
L-neurons, the second stage in the ocellar pathway, and excites thoracic flight motor 
neurons (Rowell and Reichert, 1986; Simmons, 1980). Spikes of the DNI neuron were 
shown to be tightly time-locked to rapid decreases in light intensity (Simmons and 
van Steveninck, 2010) (see Figure 3a). In response to random modulations in light 
intensity, the standard deviation of spike times was in the range of only 0.5–1.5 ms, 
depending on the contrast of the stimulus (see Figure 3b). As spikes were sparse, their 
timing rather than their rate was concluded to form the relevant information in DNI’s 
output signal. Fluctuations in light intensity during movements of a visual horizon 
in the ocellar field of view were shown to be effective stimuli that drive DNI spiking 
(see Figure 3c). DNI responded reliably with a precisely timed spike to every cycle 
of sinusoidal light modulation when the stimulus frequency was in the range of the 
locust’s wing-beat frequency (see Figure 3d). Thus, the regular nodding movement of 
the head caused by the wing beat during flight would form an effective stimulus for 
DNI as long as the horizon is kept in the ocellar field of view. DNI output might there-
fore represent a control signal that is used for rapid corrections of flight attitude. For 
an excitatory signal delivered to wing muscles, the precise timing of spikes relative 
to the wing-beat cycle is critical because the effect of excitation depends on the phase 
of muscle contraction (Misizin and Josephson, 1987). The tight time-locking of DNI 
output spikes to the wing-beat cycle might thus be beneficial to maintain steady acti-
vation of flight muscles as long as flight attitude is kept stable, and to elicit a prompt 
corrective change in muscle activation when flight attitude has changed.

DNI receives input from another modality, excitation by wind-sensitive hairs on 
the head (Simmons, 1980). When air puffs were given in addition to a sinusoidal lumi-
nance modulation, the precise time-locking of DNI spikes to the phase of the light 
stimulus was shown to be largely preserved (Simmons and van Steveninck, 2010). It 
was hypothesized that the natural fluctuations of air velocity during flight coincide 
with the fluctuations of light intensity, and might therefore even support time-locking 
of DNI spikes to the wing-beat cycle. This idea is consistent with an earlier study 
demonstrating that boosts in air velocity caused by flight movements elicit wing-beat-
related spiking in another locust wind-sensitive interneuron (Bacon and Möhl, 1979).

�Spatiotemporal Integration of Visual and Mechanosensory Input 
in the Fly Neck Motor System

A role of periodic, gating-like signals in the generation of properly timed spike output, 
functionally similar to the interactions that synchronize the locust’s DNI activity to 
the wing-beat cycle, has been described in the neck motor system of flies (Huston and 
Krapp, 2009). Some of the fly’s neck motor neurons generate spike output only when 
panoramic retinal image shifts coincide with mechanosensory input (see Figure 3e). 
In these neurons, spikes are phase locked to the periodic signals produced by mecha-
nosensory organs at the base of the halteres, club-like appendages of dipteran flies 
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Figure 3  Spike timing in insect sensory-motor systems. (a) Spikes (vertical lines) of the 
DNI neuron in the locust’s ocellar pathway in response to random modulations in light inten-
sity. Different mean intensities and contrasts were tested. (b) Histograms of spiking probabil-
ity were averaged over 128 repetitions of the same modulated light stimulus (mean intensity 
35 µW/cm²). The plot shows a brief instance in time during which a single spike occurred in 
many of the traces, and illustrates the temporal precision of individual spikes (standard devia-
tion of spike time <0.5 ms at a contrast of 0.24). (c) Responses of DNI to up-and-down move-
ments of a horizon, simulated by dividing a monitor into a top bright and a bottom dark part. 
An oscillation of the horizon at 20 Hz, which mimics the effect of nodding movement of the 
locust’s head during flight, elicits reliable spiking only when the horizon is shifted upwards 
above a critical position. (d) Quantification of the reliability and the timing of DNI spikes 
in response to sinusoidally modulated light that jumped between different mean intensities. 
(e) Recordings from a neck motor neuron in the blowfly Calliphora vicina were performed 
during visual stimulation with a drifting grating and stimulation of the mechanosensitive hal-
tere system. Visual motion in the PD alone only leads to subthreshold depolarization (top). 
In contrast, the combination of visual motion and haltere oscillation elicits spikes (bottom). 
(f) Postsynaptic potentials during haltere stimulation are phase-locked to the cycle of haltere 
movement (top). During concomitant visual stimulation, this phase-locking results into spikes 
that occur at a distinct phase of the haltere stimulus (bottom). ((a–d) Modified from Simmons 
PJ, van Steveninck RR. 2010. J Exp Biol 213:2629–2639; (e,f) Modified from Huston SJ, 
Krapp HG. 2009. J Neurosci 29:13097–13105.)
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evolutionary derived from hind wings. Functioning like a vibratory gyroscope, halteres 
sense inertial forces during rapid changes of the body in position or attitude (review: 
Taylor and Krapp, 2007). Since halteres beat at the same frequency as the wings, the 
multimodal integration together with the high temporal precision at the level of the 
neck motor neurons leads to a time-locking of muscle activation to the wing-beat cycle 
(see Figure 3f). Whether this phase locking has a functional significance similar to that 
proposed for the locust DNI neuron is not clear. Unlike for flight motor neurons, there 
is in principle no need for neck motor neurons to provide excitation that is properly 
phase locked to the wing beat cycle. Thus, the primary function of haltere input to neck 
motor neurons might be to provide a type of gating. This interaction would ensure that 
gaze stabilization by optomotor head movements is effective during locomotion, but 
largely reduced during rest. Consistent with this idea, a distinct bimodality of the head 
optomotor gain was found on the behavioral level (Rosner et al., 2009). Weak gaze sta-
bilization by pitch movements was closely correlated with haltere rest, whereas much 
stronger pitch movements were present during haltere activity. Interestingly, in the 
high-gain condition, oscillations of head movements were present, corresponding in 
frequency to the haltere beat frequency. These oscillations likely reflect phase locking 
of spikes of neck motor neurons to the halteres’ beat cycle (Huston and Krapp, 2009).

Conclusions

The visual system of flying insects presents an excellent case for fast neuronal com-
putation. During flight, processing of spatiotemporal visual information needs to be 
fast and reliable to enable rapid visually guided locomotor control. In several recent 
studies, the investigation of visual neurons and motor output has been linked to 
understand how sensory processing is matched to the properties of its self-generated, 
continually changing input signals. Such approaches benefit from the slim neuronal 
architecture and the fairly stereotyped motor patterns of insects, and they empha-
size the significance of insects as valuable animal models for the study of dynamic 
sensory-motor processing. Recent advances in the design of virtual reality stimula-
tion setups and in approaches to monitor neural responses during ongoing locomotor 
activity, together with the possibility to record from individually identifiable neurons, 
will in the future further increase our understanding of how the demanding tasks of 
rapid image processing are solved by tiny insect brains.

Acknowledgment

The author thanks Jutta Kretzberg and Fabrizio Gabbiani for valuable feedback on 
earlier versions of the manuscript.

References

Alle H, Geiger JR. 2008. Analog signalling in mammalian cortical axons. Curr Opin Neurobiol 
18:314–320.

Autrum H. 1950. Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen an 
Calliphora und Dixippus). Zeitschrift für vergleichende Physiologie 32:176–227.

K11729_Spatio.indd   18 11-04-2014   19:57:32



19Spatiotemporal Processing of Dynamic Visual Information

Bacon J, Möhl B. 1979. Activity of an identified wind interneurone in a flying locust. Nature 
278:638–640.

Beckers U, Egelhaaf M, Kurtz R. 2009. Precise timing in fly motion vision is mediated by fast 
components of combined graded and spike signals. Neuroscience 160:639–650.

Beckers U, Egelhaaf M, Kurtz R. 2007. Synapses in the fly motion-vision pathway: Evidence 
for a broad range of signal amplitudes and dynamics. J Neurophysiol 97:2032–2041.

Bloomfield SA, Volgyi B. 2009. The diverse functional roles and regulation of neuronal gap 
junctions in the retina. Nat Rev Neurosci 10:495–506.

Borst A. 2009. Drosophila’s view on insect vision. Curr Biol 19:R36–R47.
Borst A, Egelhaaf M. 1989. Principles of visual motion detection. Trends Neurosci 12:297–306.
Borst A, Egelhaaf M. 1993. Detecting visual motion: Theory and models. Rev Oculomot Res 

5:3–27.
Borst A, Haag J, Reiff DF. 2010. Fly motion vision. Annu Rev Neurosci 33:49–70.
Borst A, Theunissen FE. 1999. Information theory and neural coding. Nat Neurosci 2:947–957.
Brinkworth RS, O’Carroll DC. 2009. Robust models for optic flow coding in natural scenes 

inspired by insect biology. PLoS Comput Biol 5:e1000555.
Britten KH. 2008. Mechanisms of self-motion perception. Annu Rev Neurosci 31:389–410.
Card G, Dickinson MH. 2008. Visually mediated motor planning in the escape response of 

Drosophila. Curr Biol 18:1300–1307.
Clifford CW, Ibbotson MR. 2002. Fundamental mechanisms of visual motion detection: 

Models, cells and functions. Prog Neurobiol 68:409–437.
de Ruyter van Steveninck RR, Bialek W. 1995. Reliability and statistical efficiency of a blow-

fly movement-sensitive neuron. Philos Trans R Soc Lond B Biol Sci 348:321–340.
de Ruyter van Steveninck RR, Borst A, Bialek W. 2001. Real-time encoding of motion: 

Answerable questions and questionable answers from the fly’s visual system. In: Vision: 
Computational, Neural, and Ecological Constraints (Zanker JM, Zeil J, eds), Berlin, 
Heidelberg: Springer, pp. 279–306.

de Ruyter van Steveninck RR, Laughlin SB. 1996. The rate of information transfer at graded-
potential synapses. Nature 379:642–645.

de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W. 1997. 
Reproducibility and variability in neural spike trains. Science 275:1805–1808.

de Vries SE, Clandinin TR. 2012. Loom-sensitive neurons link computation to action in the 
Drosophila visual system. Curr Biol 22:353–362.

Egelhaaf M. 1985. On the neuronal basis of figure-ground discrimination by relative motion in 
the visual system of the fly: II. Figure-detection cells, a new class of visual interneurons. 
Biol Cybern 52:195–209.

Egelhaaf M. 2006. The neural computation of visual motion information. In: Invertebrate 
Vision (Warrant E, Nilsson D-E, eds), Cambridge: Cambridge University Press, pp. 
399–461.

Egelhaaf M, Boddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK. 2003. Visually 
guided orientation in flies: Case studies in computational neuroethology. J Comp Physiol 
A Neuroethol Sens Neural Behav Physiol 189:401–409.

Egelhaaf M, Borst A. 1993. A look into the cockpit of the fly: Visual orientation, algorithms, 
and identified neurons. J Neurosci 13:4563–4574.

Egelhaaf M, Grewe J, Karmeier K, Kern R, Kurtz R, Warzecha AK. 2005. Novel approaches to 
visual information processing in insects: Case studies on neuronal computations in the 
blowfly. In: Methods in Insect Sensory Neuroscience (Christensen TA, ed), Boca Raton: 
CRC Press, pp. 185–212.

Egelhaaf M, Grewe J, Kern R, Warzecha AK. 2001. Outdoor performance of a motion-sensi-
tive neuron in the blowfly. Vision Res 41:3627–3637.

Egelhaaf M, Kern R, Lindemann JP, Braun E, Geurten BRH. 2009. Active vision in blow-
flies: Strategies and mechanisms of spatial orientation. In: Flying Insects and Robots 

K11729_Spatio.indd   19 11-04-2014   19:57:32



20 Spike Timing

(Floreano D, Zufferey JC, Srinivasan MV, Ellington C, eds), Berlin, Heidelberg: 
Springer, pp. 51–61.

Egelhaaf M, Kern R. 2002. Vision in flying insects. Curr Opin Neurobiol 12:699–706.
Fain GL, Hardie R, Laughlin SB. 2010. Phototransduction and the evolution of photorecep-

tors. Curr Biol 20:R114–R124.
Farrow K, Haag J, Borst A. 2006. Nonlinear, binocular interactions underlying flow field 

selectivity of a motion-sensitive neuron. Nat Neurosci 9:1312–1320.
Fortune ES, Rose GJ, Kawasaki M. 2006. Encoding and processing biologically relevant tem-

poral information in electrosensory systems. J Comp Physiol [A] 192:625–635.
Fotowat H, Fayyazuddin A, Bellen HJ, Gabbiani F. 2009. A novel neuronal pathway for visu-

ally guided escape in Drosophila melanogaster. J Neurophysiol 102:875–885.
Fotowat H, Gabbiani F. 2007. Relationship between the phases of sensory and motor activity 

during a looming-evoked multistage escape behavior. J Neurosci 27:10047–10059.
Fotowat H, Harrison RR, Gabbiani F. 2011. Multiplexing of motor information in the dis-

charge of a collision detecting neuron during escape behaviors. Neuron 69:147–158.
Frost BJ. 2010. A taxonomy of different forms of visual motion detection and their underlying 

neural mechanisms. Brain Behav Evol 75:218–235.
Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G. 2004. Multiplication and 

stimulus invariance in a looming-sensitive neuron. J Physiol Paris 98:19–34.
Gabbiani F, Krapp HG, Koch C, Laurent G. 2002. Multiplicative computation in a visual neu-

ron sensitive to looming. Nature 420:320–324.
Gabbiani F, Krapp HG, Laurent G. 1999a. Computation of object approach by a wide-field, 

motion-sensitive neuron. J Neurosci 19:1122–1141.
Gabbiani F, Laurent G, Hatsopoulos N, Krapp HG. 1999b. The many ways of building colli-

sion-sensitive neurons. Trends Neurosci 22:437–438.
Gabbiani F, Mo C, Laurent G. 2001. Invariance of angular threshold computation in a wide-

field looming- sensitive neuron. J Neurosci 21:314–329.
Geurten BR, Kern R, Braun E, Egelhaaf M. 2010. A syntax of hoverfly flight prototypes. J Exp 

Biol 213:2461–2475.
Grewe J, Kretzberg J, Warzecha AK, Egelhaaf M. 2003. Impact of photon noise on the reliabil-

ity of a motion-sensitive neuron in the fly’s visual system. J Neurosci 23:10776–10783.
Grothe B, Pecka M, McAlpine D. 2010. Mechanisms of sound localization in mammals. 

Physiol Rev 90:983–1012.
Haag J, Borst A. 1996. Amplification of high-frequency synaptic inputs by active dendritic 

membrane processes. Nature 379:639–641.
Haag J, Borst A. 2004. Neural mechanism underlying complex receptive field properties of 

motion-sensitive interneurons. Nat Neurosci 7:628–634.
Haag J, Borst A. 2008. Electrical coupling of lobula plate tangential cells to a heterolateral 

motion-sensitive neuron in the fly. J Neurosci 28:14435–14442.
Haag J, Wertz A, Borst A. 2010. Central gating of fly optomotor response. Proc Natl Acad Sci 

USA 107:20104–20109.
Hatsopoulos N, Gabbiani F, Laurent G. 1995. Elementary computation of object approach by 

a wide-field visual neuron. Science 270:1000–1003.
Hedwig B. 2006. Pulses, patterns and paths: Neurobiology of acoustic behaviour in crickets. 

J Comp Physiol [A] 192:677–689.
Hengstenberg R. 1977. Spike responses of “non-spiking” visual interneurone. Nature 

270:338–340.
Hengstenberg R. 1982. Common visual response properties of giant vertical cells in the lobula 

plate of the blowfly Calliphora. J Comp Physiol [A] 149:179–193.
Hengstenberg R, Hausen K, Hengstenberg B. 1982. The number and structure of giant vertical 

cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J Comp Physiol 
[A] 149:163–177.

K11729_Spatio.indd   20 11-04-2014   19:57:32



21Spatiotemporal Processing of Dynamic Visual Information

Hennig RM, Franz A, Stumpner A. 2004. Processing of auditory information in insects. 
Microsc Res Tech 63:351–374.

Horstmann W, Egelhaaf M, Warzecha AK. 2000. Synaptic interactions increase optic flow 
specificity. Eur J Neurosci 12:2157–2165.

Huston SJ, Krapp HG. 2008. Visuomotor transformation in the fly gaze stabilization system. 
PLoS Biol 6:e173.

Huston SJ, Krapp HG. 2009. Nonlinear integration of visual and haltere inputs in fly neck 
motor neurons. J Neurosci 29:13097–13105.

Jacobs GA, Miller JP, Aldworth Z. 2008. Computational mechanisms of mechanosensory pro-
cessing in the cricket. J Exp Biol 211:1819–1828.

Jones PW, Gabbiani F. 2010. Synchronized neural input shapes stimulus selectivity in a colli-
sion-detecting neuron. Curr Biol 20:2052–2057.

Judge SJ, Rind FC. 1997. The locust DCMD, a movement-detecting neurone tightly tuned to 
collision trajectories. J Exp Biol 200:2209–2216.

Juusola M, Robinson HP, de Polavieja GG. 2007. Coding with spike shapes and graded poten-
tials in cortical networks. Bioessays 29:178–187.

Juusola M, Uusitalo RO, Weckstrom M. 1995. Transfer of graded potentials at the photorecep-
tor-interneuron synapse. J Gen Physiol 105:117–148.

Kalb J, Egelhaaf M, Kurtz R. 2008. Adaptation of velocity encoding in synaptically coupled 
neurons in the fly visual system. J Neurosci 28:9183–9193.

Kalb J, Egelhaaf M, Kurtz R. 2006. Robust integration of motion information in the fly visual 
system revealed by single cell photoablation. J Neurosci 26:7898–7906.

Karmeier K, Krapp HG, Egelhaaf M. 2005. Population coding of self-motion: Applying 
bayesian analysis to a population of visual interneurons in the fly. J Neurophysiol 
94:2182–2194.

Karmeier K, van Hateren JH, Kern R, Egelhaaf M. 2006. Encoding of naturalistic optic flow 
by a population of blowfly motion-sensitive neurons. J Neurophysiol 96:1602–1614.

Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M. 2005. Function of a 
fly motion-sensitive neuron matches eye movements during free flight. PLoS Biol 
3:e171.

Krahe R, Gabbiani F. 2004. Burst firing in sensory systems. Nat Rev Neurosci 5:13–23.
Krapp HG. 2009. Ocelli. Curr Biol 19:R435–R437.
Krapp HG, Hengstenberg B, Hengstenberg R. 1998. Dendritic structure and receptive-

field organization of optic flow processing interneurons in the fly. J Neurophysiol 
79:1902–1917.

Kretzberg J, Egelhaaf M, Warzecha AK. 2001a. Membrane potential fluctuations determine 
the precision of spike timing and synchronous activity: A model study. J Comput 
Neurosci 10:79–97.

Kretzberg J, Warzecha AK, Egelhaaf M. 2001b. Neural coding with graded membrane poten-
tial changes and spikes. J Comput Neurosci 11:153–164.

Kurtz R, Egelhaaf M. 2003. Natural patterns of neural activity: How physiological mecha-
nisms are orchestrated to cope with real life. Mol Neurobiol 27:13–32.

Kurtz R, Kalb J, Spalthoff C. 2008. Examination of fly motion vision by functional fluores-
cence techniques. Front Biosci 13:3009–3021.

Kurtz R, Warzecha AK, Egelhaaf M. 2001. Transfer of visual motion information via graded 
synapses operates linearly in the natural activity range. J Neurosci 21:6957–6966.

Lappe M, Bremmer F, van den Berg AV. 1999. Perception of self-motion from visual flow. 
Trends Cogn Sci 3:329–336.

Laughlin SB, Sejnowski TJ. 2003. Communication in neuronal networks. Science 
301:1870–1874.

Lee DN. 1976. A theory of visual control of braking based on information about time-to-
collision. Perception 5:437–459.

K11729_Spatio.indd   21 11-04-2014   19:57:32



22 Spike Timing

Lestienne R. 2001. Spike timing, synchronization and information processing on the sensory 
side of the central nervous system. Prog Neurobiol 65:545–591.

Lewen GD, Bialek W, de Ruyter van Steveninck RR. 2001. Neural coding of naturalistic 
motion stimuli. Network: Comput Neural Syst 12:317–329.

Lillywhite PG, Dvorak DR. 1981. Responses to single photons in a fly optomotor neurone. 
Vision Res 21:279–290.

Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M. 2005. On the computations 
analyzing natural optic flow: Quantitative model analysis of the blowfly motion vision 
pathway. J Neurosci 25:6435–6448.

Medan V, Oliva D, Tomsic D. 2007. Characterization of lobula giant neurons responsive to 
visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J Neurophysiol 
98:2414–2428.

Milde JJ, Seyan HS, Strausfeld NJ. 1987. The neck motor system of the fly Calliphora eryth-
rocephala. II. Sensory organization. J Comp Physiol [A] 160:225–238.

Misizin AP, Josephson RK. 1987. Mechanical power output of locust flight muscle. J Comp 
Physiol [A] 160:413–419.

Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR. 2008. Neural coding of nat-
ural stimuli: Information at sub-millisecond resolution. PLoS Comput Biol 4:e1000025.

O’Shea M, Rowell CH. 1975. Protection from habituation by lateral inhibition. Nature 
254:53–55.

O’Shea M, Williams JLD. 1974. The anatomy and output connection of a locust visual inter-
neurone; the lobular giant movement detector (LGMD) neurone. J Comp Physiol [A] 
91:257–266.

Oliva D, Medan V, Tomsic D. 2007. Escape behavior and neuronal responses to looming stimuli 
in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J Exp Biol 210:865–880.

Peron S, Gabbiani F. 2009. Spike frequency adaptation mediates looming stimulus selectivity 
in a collision-detecting neuron. Nat Neurosci 12:318–326.

Peron SP, Jones PW, Gabbiani F. 2009. Precise subcellular input retinotopy and its computa-
tional consequences in an identified visual interneuron. Neuron 63:830–842.

Pollack G. 2000. Who, what, where? Recognition and localization of acoustic signals by 
insects. Curr Opin Neurobiol 10:763–767.

Rien D, Kern R, Kurtz R. 2011. Synaptic transmission of graded membrane potential changes 
and spikes between identified visual interneurons. Eur J Neurosci 34:705–716.

Rind FC. 1996. Intracellular characterization of neurons in the locust brain signaling impend-
ing collision. J Neurophysiol 75:986–995.

Rind FC. 2002. Motion detectors in the locust visual system: From biology to robot sensors. 
Microsc Res Tech 56:256–269.

Rind FC, Bramwell DI. 1996. Neural network based on the input organization of an identified 
neuron signaling impending collision. J Neurophysiol 75:967–985.

Rind FC, Leitinger G. 2000. Immunocytochemical evidence that collision sensing neurons in 
the locust visual system contain acetylcholine. J Comp Neurol 423:389–401.

Rind FC, Santer RD. 2004. Collision avoidance and a looming sensitive neuron: Size matters 
but biggest is not necessarily best. Proc Biol Sci 271 Suppl 3:S27–S29.

Rind FC, Simmons PJ. 1992. Orthopteran DCMD neuron: A reevaluation of responses 
to moving objects. I. Selective responses to approaching objects. J Neurophysiol 
68:1654–1666.

Rind FC, Simmons PJ. 1998. Local circuit for the computation of object approach by an iden-
tified visual neuron in the locust. J Comp Neurol 395:405–415.

Rind FC, Simmons PJ. 1999. Seeing what is coming: Building collision-sensitive neurones. 
Trends Neurosci 22:215–220.

Rosner R, Egelhaaf M, Grewe J, Warzecha AK. 2009. Variability of blowfly head optomotor 
responses. J Exp Biol 212:1170–1184.

K11729_Spatio.indd   22 11-04-2014   19:57:32



23Spatiotemporal Processing of Dynamic Visual Information

Rowell CH. 1971. The orthopteran descending movement detector (DMD) neurons: A charac-
terisation and review. Zetischrift für vergleichende Physiologie 73:167–194.

Rowell CH, O’Shea M, Williams JLD. 1977. The neuronal basis of a sensory analyser, the 
acridid movement detector system. iv. The preference for small field stimuli. J Exp Biol 
68:157–185.

Rowell CH, Reichert H. 1986. Three descending interneurons reporting deviation from course 
in the locust. II. Physiology. J Comp Physiol [A] 158:775–794.

Santer RD, Rind FC, Stafford R, Simmons PJ. 2006. Role of an identified looming-sensitive 
neuron in triggering a flying locust’s escape. J Neurophysiol 95:3391–3400.

Schilstra C, van Hateren JH. 1998. Stabilizing gaze in flying blowflies. Nature 395:654.
Schlotterer GR. 1977. Response of the locust descending movement detector neuron to rapidly 

approaching and withdrawing visual stimuli. Can J Zoolog 55:1372–1376.
Shadlen MN, Newsome WT. 1994. Noise, neural codes and cortical organization. Curr Opin 

Neurobiol 4:569–579.
Simmons PJ. 1980. A locust wind and ocellar brain neurone. J Exp Biol 85:281–294.
Simmons PJ. 2002. Signal processing in a simple visual system: The locust ocellar system and 

its synapses. Microsc Res Tech 56:270–280.
Simmons PJ, de Ruyter van Steveninck. 2005. Reliability of signal transfer at a tonically 

transmitting, graded potential synapse of the locust ocellar pathway. J Neurosci 
25:7529–7537.

Simmons PJ, Rind FC. 1992. Orthopteran DCMD neuron: A reevaluation of responses to moving 
objects. II. Critical cues for detecting approaching objects. J Neurophysiol 68:1667–1682.

Simmons PJ, Rind FC, Santer RD. 2010. Escapes with and without preparation: The neu-
roethology of visual startle in locusts. J Insect Physiol 56:876–883.

Simmons PJ, van Steveninck RR. 2010. Sparse but specific temporal coding by spikes in an 
insect sensory-motor ocellar pathway. J Exp Biol 213:2629–2639.

Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R. 2010. Localized direction selective responses 
in the dendrites of visual interneurons of the fly. BMC Biol 8:36.

Spavieri DL, Jr., Eichner H, Borst A. 2010. Coding efficiency of fly motion processing is set 
by firing rate, not firing precision. PLoS Comput Biol 6:e1000860.

Strausfeld NJ, Bassemir UK. 1985. Convergence of visual, haltere, and prosternal inputs at 
neck motor neurons of Calliphora erythrocephala. Cell Tissue Res 240:601–615.

Sun H, Frost BJ. 1998. Computation of different optical variables of looming objects in pigeon 
nucleus rotundus neurons. Nat Neurosci 1:296–303.

Sutor B, Grimm C, Polder HR. 2003. Voltage-clamp-controlled current-clamp recordings 
from neurons: An electrophysiological technique enabling the detection of fast potential 
changes at preset holding potentials. Pflugers Arch 446:133–141.

Taylor GK, Krapp HG. 2007. Sensory systems and flight stability: What do insects measure 
and why? Adv Insect Physiol 34:231–316.

Tiesinga P, Fellous JM, Sejnowski TJ. 2008. Regulation of spike timing in visual cortical cir-
cuits. Nat Rev Neurosci 9:97–107.

Wang Y, Frost BJ. 1992. Time to collision is signalled by neurons in the nucleus rotundus of 
pigeons. Nature 356:236–238.

Warzecha AK, Egelhaaf M. 1997. How reliably does a neuron in the visual motion pathway of 
the fly encode behaviourally relevant information? Eur J Neurosci 9:1365–1374.

Warzecha AK, Egelhaaf M. 1999. Variability in spike trains during constant and dynamic 
stimulation. Science 283:1927–1930.

Warzecha A, Egelhaaf M. 2000. Response latency of a motion-sensitive neuron in the fly 
visual system: Dependence on stimulus parameters and physiological conditions. Vision 
Res 40:2973–2983.

Warzecha AK, Kretzberg J, Egelhaaf M. 1998. Temporal precision of the encoding of motion 
information by visual interneurons. Curr Biol 8:359–368.

K11729_Spatio.indd   23 11-04-2014   19:57:33



24 Spike Timing

Warzecha AK, Kretzberg J, Egelhaaf M. 2000. Reliability of a fly motion-sensitive neuron 
depends on stimulus parameters. J Neurosci 20:8886–8896.

Warzecha AK, Kurtz R, Egelhaaf M. 2003. Synaptic transfer of dynamic motion informa-
tion between identified neurons in the visual system of the blowfly. Neuroscience 
119:1103–1112.

Warzecha A-K, Egelhaaf M. 2001. Neural encoding of visual motion in real-time. In: Vision: 
Computational, Neural, and Ecological Constraints (Zanker JM, Zeil J, eds), pp. 239–
277. Berlin, Heidelberg: Springer.

Yau KW, Hardie RC. 2009. Phototransduction motifs and variations. Cell 139:246–264.

K11729_Spatio.indd   24 11-04-2014   19:57:33


