
Journal of Software Engineering and Applications, 2014, 7, 387-395 
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea 
http://dx.doi.org/10.4236/jsea.2014.75035   

How to cite this paper: Sandin, F., et al. (2014) Concept Learning in Neuromorphic Vision Systems: What Can We Learn 
from Insects? Journal of Software Engineering and Applications, 7, 387-395. http://dx.doi.org/10.4236/jsea.2014.75035 

 
 

Concept Learning in Neuromorphic Vision 
Systems: What Can We Learn from Insects? 
Fredrik Sandin1, Asad I. Khan2, Adrian G. Dyer3,4, Anang Hudaya M. Amin5, 
Giacomo Indiveri6, Elisabetta Chicca7, Evgeny Osipov8 
1EISLAB, Luleå University of Technology, Luleå, Sweden 
2Clayton School of Information Technology, Monash University, Clayton, Australia 
3Department of Physiology, Monash University, Clayton, Australia 
4School of Media and Communication, Royal Melbourne Institute of Technology, Melbourne, Australia 
5Faculty of Information Science & Technology (FIST), Multimedia University, Melaka, Malaysia 
6Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland 
7Cognitive Interaction Technology, Center of Excellence, Bielefeld University, Bielefeld, Germany 
8Division of Computer Science, Luleå University of Technology, Luleå, Sweden 
Email: fredrik.sandin@ltu.se, asad.khan@monash.edu, adrian.dyer@monash.edu, anang.amin@mmu.edu.my, 

giacomo@ini.phys.ethz.ch, chicca@cit-ec.uni-bielefeld.de, evgeny.osipov@ltu.se  
 
Received 25 March 2014; revised 20 April 2014; accepted 27 April 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Vision systems that enable collision avoidance, localization and navigation in complex and uncer-
tain environments are common in biology, but are extremely challenging to mimic in artificial 
electronic systems, in particular when size and power limitations apply. The development of neu-
romorphic electronic systems implementing models of biological sensory-motor systems in silicon 
is one promising approach to addressing these challenges. Concept learning is a central part of 
animal cognition that enables appropriate motor response in novel situations by generalization of 
former experience, possibly from a few examples. These aspects make concept learning a chal-
lenging and important problem. Learning methods in computer vision are typically inspired by 
mammals, but recent studies of insects motivate an interesting complementary research direction. 
There are several remarkable results showing that honeybees can learn to master abstract con-
cepts, providing a road map for future work to allow direct comparisons between bio-inspired 
computing architectures and information processing in miniaturized “real” brains. Considering 
that the brain of a bee has less than 0.01% as many neurons as a human brain, the task to infer a 
minimal architecture and mechanism of concept learning from studies of bees appears well moti-
vated. The relatively low complexity of insect sensory-motor systems makes them an interesting 
model for the further development of bio-inspired computing architectures, in particular for re-
source-constrained applications such as miniature robots, wireless sensors and handheld or 
wearable devices. Work in that direction is a natural step towards understanding and making use 
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of prototype circuits for concept learning, which eventually may also help us to understand the 
more complex learning circuits of the human brain. By adapting concept learning mechanisms to a 
polymorphic computing framework we could possibly create large-scale decentralized computer 
vision systems, for example in the form of wireless sensor networks. 

 
Keywords 
Concept Learning, Computer Vision, Computer Architecture, Neuromorphic Engineering, Insect 

 
 

1. Introduction 
Efficient and lightweight computer vision devices that operate on a low energy budget can open up novel appli-
cation domains. For instance, reliable collision avoidance, localization, and navigation have a range of practical 
applications. Making systems that can perform such tasks in environments with greater complexity and uncer-
tainty than current systems can tolerate is an important challenge [1]. 

Neuromorphic [2] vision sensors are hybrid analog/digital VLSI devices that implement models of biological 
visual systems in hardware [3]-[7]. Similarly, neuromorphic neural processing systems implement real-time 
biologically plausible models of neural circuits and architectures that can be configured to carry out complex 
signal processing and computational tasks. Systems composed of neuromorphic vision sensors and neuromor-
phic multi-neuron chips are becoming elaborate and powerful enough for use in real-world applications [8] [9]. 
For example, a system of this type has been recently synthesized to perform context-dependent classification of 
motion patterns observed by a silicon retina [10]. Neuromorphic systems are designed to deal with uncertainties 
and show potential for brain-like computability and remarkable capabilities in vision, for example in terms of 
high temporal resolution and dynamic range at low data rate and power use. The speed at which such a system 
can operate in resource-constrained environments surpasses that of conventional computer vision systems. A 
major challenge, however, is to design a flexible sensory-motor architecture that can be adapted to real-world 
applications in a cost-efficient manner. 

Seeking inspiration in animal cognition, it is evident that concept learning [11] [12] is a key function that en-
ables motor response in complex environments and novel situations by generalization of former experience, 
thereby making it unnecessary to learn each particular situation that is encountered. There is evidence for three 
types of concept learning in animals [12]: similarity-based in which items are categorized based on similarity; 
relational in which one item is categorized relative to another; associative in which arbitrary stimuli become in-
terchangeable due to association with another stimulus or response. Concept learning is also a central part of 
analogy making [11] [13], which is used to infer novel information about objects or situations through mapping 
of memories with similar compositional structure, see [14] [15] for examples. Learning approaches to computer 
vision are typically inspired by empirical studies of vision in mammals. A complementary approach is to seek 
inspiration and guidance in studies of insects that demonstrate conceptual learning and problem solving abilities 
[16]-[18]. Work in that direction is motivated due to the relatively low complexity of insect brains, e.g., 105 
neurons in the fruit fly brain [19] or 106 in the bee brain [20] versus 1011 in the human brain [21]. Despite the 
low number of neurons, the mushroom bodies in the brain of honeybees process visual, olfactory, gustatory, and 
mechanosensory information, and show a remarkable ability to learn how to solve problems [22]. Insect brains 
provide an excellent template for an empirical study, and for electronic implementation using neuromorphic 
circuits. For example, some aspects of the silicon retina vision sensors correlate to insect vision—prioritizing 
speed of processing over finer details such as colour vision. 

Being inspired by neural systems, the neuromorphic engineering approach is naturally motivated for the de-
velopment of compact low-power sensory-motor and neural processing systems. In distributed and heterogene-
ous large-scale systems the polymorphic computing (PmC) approach provides a scalable and reliable alternative 
to conventional computing architectures for pattern recognition, and vector symbolic architectures (VSAs) pro-
vide a mathematical framework for encoding concepts and related functions with distributed representations, 
which in principle can be implemented in neuromorphic devices and systems. In the next section we introduce 
the remarkable concept learning results obtained in studies of bees that are mentioned above. Thereafter we 
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briefly introduce the neuromorphic approach to building artificial sensory-motor systems, followed by an intro-
duction to vector symbolic representations of concepts and polymorphic computing in decentralized systems. 

2. Higher-Order Learning in Insects 
Insects operate in complex environments and potentially provide a valuable model for understanding how in-
formation is efficiently managed in a miniaturized brain [23] [24]. In particular the honeybee has become a su-
permodel [18] [22] [25]-[27] for understanding learning, due to their altruistic lifestyle that provides convenient 
access to investigating how individuals learn through experience to solve complex problems. Such learning was 
first demonstrated by the Nobel laureate Karl von Frisch exactly 100 years ago [28] who showed that bees could 
be trained to solve a visual task through associative conditioning with a rewarding sweet solution, and tested in 
extinction trials when rewards were removed. Since bees collect nutrition to contribute to the entire colony, it is 
possible to train and test one individual bee for 8 - 10 hours a day to evaluate learning in psychophysics type 
experiments, where behavioral outcomes to known stimuli allow for black box evaluations of information proc-
essing by the visual system [29]. 

The brain of the bee has been intensively studied and is known to have very distinct hierarchical structures 
[30] [31]. Considering visual stimuli, the honeybee as a model of bee vision has three classes of receptors (UV-, 
Blue- and Green-sensitive). The Green receptor signals are initially processed in the lamina region of the brain, 
which has neurons with fast response times that potentially drive rapid responses to achromatic signals like sa-
lient edges [32]. Beyond the level of the lamina, visual processing incorporates all three classes of receptor in-
puts that occur in specialized regions of the honeybee brain which have been imaged at high resolution [30]. 
After the lamina, visual signals are next processed in the medulla where information starts to become segregated 
by specialized neurons including broad-band neurons that respond equally to multiple wavelengths of light; 
narrow-band neurons that respond to input from a single photoreceptor type; or colour-opponent-neurons that 
antagonistically process multiple spectrally different signals [31]. Interestingly, it appears that from this medulla 
level of processing, signals may follow different pathways such that neurons from the outer layers of the me-
dulla project to the posterior protocerebrum region of the brain, whilst signals processed in the inner layers of 
the medulla project to the lobula, the lateral protocerebrum and mushroom bodies. These different pathways 
may enable either fast hard-wired responses, or a capacity to learn through experience [31]. Thus whilst the bee 
brain contains less than one million neurons, the hierarchical structure and alternative neural pathways appear to 
facilitate either a hard wired or plastic learning capacity for different scenarios that might occur for a flying in-
sect. 

Indeed individual honeybees show a remarkable capacity to learn how to solve problems. One of the clearest 
demonstrations of this is the capacity of honeybees to solve delayed matching-to-sample type tasks where a 
viewed initial stimulus must be loaded into working memory, and then subsequently compared to alternatives in 
order to make a correct decision and collect a sucrose solution reward [33]. Whilst this type of delayed matching 
to sample task actually takes an individual bee a very long time to learn with variable stimuli during different 
trials; once the “matching” rule is learnt (involving long term memory), a bee can quickly apply the acquired 
rule to a novel task like matching scents within a trail [33]. Indeed, rule learning appears to be a major way that 
insects learn to solve problems, but only if provided with the correct conditions to reinforce flexible learning. 
For example, if free flying honeybees have to “only” learn a fixed target at a constant visual angle, then there is 
a poor ability to make correct decision if conditions change, but bees trained to a set of variable stimuli learn 
how to use this acquired information to solve novel problems [34]. Bees can learn to solve complex visual tasks 
like face recognition using configural processing mechanisms [35], and even with the right conditioning experi-
ence deal with complex transformation imposed by viewpoint variation [36]. Some of these tasks like solving 
above/below relational problems [16], or simultaneously applying multiple rules like spatial relationships and 
differences [17], are at a level of complexity that challenges our current understanding of what mammalian 
brains can achieve [18] [37]. This shows that miniaturized information-processing systems have a capacity to 
efficiently deal with very complex information provided that they are appropriately organized through adapta-
tion. However, current challenges exist in completely bridging between the higher-order learning (i.e. non-ele- 
mental learning) behavior demonstrated in free-flying bees, and our complete understanding of the neural re-
gions responsible because when a bee is harnessed, as would typically be required to enable brain recordings 
[38], learning performance for visual stimuli in significantly impaired [39]. Solutions to this problem are starting 
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to emerge with new work on displaying complex moving stimuli to tethered bees [40], or using closed-loop 
paradigms allowing tethered but walking bees to actively control visual objects within a virtual reality arena [41]. 
Indeed such experiments reveal that attention like behavioral responses result in modulation of neural activity in 
the medulla region of the brain, again pointing towards the importance of this structure for filtering information 
for decision making in insects. These remarkable studies provide a road map for future work to more fully allow 
direct comparisons between bio-inspired computing architectures and information processing in miniaturized 
“real” brains [24] [31]. Currently there appears to be similarities in hierarchical organization and segregation of 
information parsed into fast hard-wired solutions, or more plastic learning modules depending upon task diffi-
culty. 

3. Neuromorphic Sensory-Motor Systems 
Neuromorphic vision sensors are hybrid analog/digital VLSI devices that implement hardware models of biologi-
cal visual systems, which typically are used in machine vision [3]-[7]. It is only recently that these hardware 
models have become elaborate enough for use in a variety of engineering applications [8] [9]. These types of de-
vices and systems offer a low cost alternative to special purpose Digital Signal Processors (DSPs) for machine vi-
sion tasks. They can be used for reducing the computational load on the digital system in which they are embed-
ded or, ideally, for carrying out all of the necessary computation without the need of any additional hardware. 
They process images directly at the focal plane level: each pixel contains local circuitry that performs different 
types of spatio-temporal computations on the continuous analog brightness signal in real-time. In contrast, CCD 
cameras or conventional CMOS imagers merely measure the brightness at the pixel level, eventually adjusting 
their gain to the average brightness level of the whole scene. In neuromorphic vision chips, photo-receptors, 
memory elements and computational nodes share the same physical space on the silicon surface. The specific 
computational function of a neuromorphic sensor is determined by the structure of its architecture and by the way 
its pixels are interconnected. Since each pixel processes information based on locally sensed signals and on data 
arriving from its neighbors, the type of computation being performed is fully parallel and distributed. Another 
important feature is the asynchronous operation of neuromorphic sensors, which is preferable to clocked opera-
tion for sensory processing, given the continuous nature of sensory signals. Clocked systems introduce temporal 
aliasing artifacts that can significantly compromise the time-dependent computations performed in real-time sen-
sory processing systems. 

Recent neuromorphic vision sensors are clock-less and use a frame-less communication protocol [42]-[44]. In 
these sensors each pixel is assigned an address, and when a pixel generates an event (e.g., when it measures a 
contrast difference greater than a set threshold) its address is instantaneously put on a digital bus, using asyn-
chronous logic. In this asynchronous “Address-Event Representation” (AER) time represents itself, and analog 
signals are encoded by the inter-spike intervals between the addresses of their sending nodes. Address-events are 
the digital pulses written on the bus. In this way neuromorphic multi-chip systems can be assembled, consisting 
for example of neuromorphic sensory devices such as silicon retinas interfaced to one or more chips containing 
networks of spiking neuron circuits. Spiking neural network chips can receive address-events produced by neu-
romorphic sensors and process them (e.g., to implement concept learning), and eventually transmit the processed 
signals to actuators, thus implementing complete neuromorphic sensory-motor systems. 

4. Representation of Concepts and Conceptual Relationships 
In general, the question how to realize higher-order learning and cognition in neuromorphic sensory-motor sys- 
tems is open because we do not fully understand the principles and architectures of neural circuits in brains that 
make this possible. In particular, extracting and making use of conceptual relationships such as same/different or 
above/below is a challenge. Computational approaches to analyze spatial structure of images typically result in 
NP-hard graph matching problems [45] that are difficult to approximate. Research over the last few decades 
have advanced our understanding of concept learning [11]-[13] [46], but we are still lacking a plausible descrip- 
tion of the mechanisms and neural architecture involved. Open questions include the nature of neural object 
representations and how representations change across different processing stages, for example how object fea- 
tures are computationally integrated into coherent object representations, and how these are read-out by higher- 
order circuits. This problem includes learning of elementary sparse representations of objects and events, and 
representations of invariant features of object and event categories, which are grounded in sensory projections 
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[47] [48]. Generative representations and motor programs play an important role in concept learning, see for 
example [49] and references therein. This appears natural in the case of animals since concept learning is an in- 
tegrated part of the sensory-motor system, but covert actions may be more important than overt actions and the 
underlying computational mechanisms are unknown. In principle, the possibilities to generalize beyond familiar 
examples suggest that concepts are representationally rich. Therefore, it is remarkable that relatively few exam- 
ples can be sufficient to learn a new concept. Efficient sensory and motor-program coding strategies are likely 
involved, for example sparse coding [50] and complexity minimization [51]. 

Vector symbolic architectures (VSAs) [52]-[54] offer an interesting mathematical framework for modeling of 
concepts, relationships between concepts and analogies [14] [15]. VSAs are based on high-dimensional vector 
representations of objects (e.g., image parts), relations (e.g., composition of objects), and sequences (e.g., sen- 
tence structures), and operators for dynamic binding and formation of chunks of multiple concepts in working 
memory. Such representations can in principle be integrated in spiking neural networks and neuromorphic 
hardware, see [55] for an example where a large-scale brain model is designed and simulated. VSAs can be in- 
tegrated with a model of associative memory [14] known as sparse distributed memory [56] (SDM), forming a 
Monte Carlo importance sampler that approximates Bayesian inference [57]. The integration of an associative 
memory enables learning of multiple concepts and relationships. VSAs offer possibilities to prove learnability 
and enable rapid learning and generalization with high systematicity, meaning that generalization to composi- 
tional structures more complex than those in the training set is possible [58]. However, it is not known to what 
extent a VSA can approximate the complex dynamics of neural representations read out by higher-order circuits 
of a brain. One fundamental aspect of VSAs and the SDM is that similar or related concepts are represented by 
similar vectors in a vector space, which appears to be coherent with electrophysiology of hippocampal place 
cells in rodents showing that the topology of the stimulus space can be inferred from co-firing neurons [59]. 

Research integrating computational and empirical approaches to study the neural mechanisms underlying ob- 
ject perception and concept learning as it is observed in the behaviour of bees can help us to address the chal- 
lenging questions outlined above, and to develop a more realistic architecture and computational model of con- 
cept learning. Insights gained from such studies can also stimulate the development of artificial concept learning 
mechanisms for decentralized applications such as wireless sensor networks (WSNs) and the Internet, for exam- 
ple in the form of polymorphic computing which is briefly introduced in the next section. 

Extending VSA-based concept learning to the case of distributed networks opens a possibility to develop 
drastically new communication modes. For example, the superposition of broadcasted messages in a wireless 
transmission medium could be exploited as a physical implementation of the VSA chunking mechanism rather 
than as a collision, thereby dynamically creating new concepts in the form of parallel transmissions. Recently a 
VSA was adopted for implementing novel communication protocols and architectures for collective communi-
cations in machine-to-machine communication scenarios including wireless sensor networks [60] [61]. The first 
work demonstrates unique reliability and timing properties that are essential in the context of industrial ma-
chine-to-machine communications. The latter work presents an example of collective communications using 
current radio technology. 

5. Decentralized Computer Vision Systems 
In a decentralized computer vision system the transportation of data to a centralized location for information 
processing is inefficient in terms of energy use and communication, and it entails unnecessary time penalties. 
Ideally pattern recognition should commence as soon as sensory data enters the processing network. The ability 
to perform such computations, however, depends on the availability of a network-centric computational model 
that is fully distributable and thus able to dynamically reconfigure its internal resources. Changing the hardware 
architecture to suit computational goals is common in e.g. field programmable gate arrays (FPGAs), but is less 
explored in the context of networks and pattern learning in complex and changing environments. 

Polymorphic computing (PmC) is a scalable and reliable alternative to conventional computing architectures 
for pattern recognition in such scenarios. Polymorphic computing can in this context be defined as a computing 
architecture that can vigorously adapt towards changes in the computational model requirements of specific ap-
plications. A key characteristic of a polymorphic computer is the ability to dynamically re-arrange the hardware 
configuration during runtime [62]. Ideally it should also be possible to dynamically change the software during 
runtime. A benefit of PmC is the ability to dynamically divide and distribute tasks according to time-varying 
computational capacities and requirements. The concept of making such a machine can be traced back to late 
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1950s [63], but only a few practical design concepts and methods have emerged so far. One instance of a recon-
figurable computer design is the MONARCH (Morphable Networked Micro-Architecture) system developed at 
the University of Southern California and Raytheon Inc. [64]. 

WSNs and the emerging Internet of Things offer new interesting opportunities to develop and study such sys-
tems, possibly taking a bio-inspired approach. For example, the dynamic reconfigurablity of PmC through opti-
mal dataflow manipulation in a network mimics learning-induced plasticity in brains. A distributed pattern rec-
ognition approach developed for WSNs is the hierarchical graph neuron (HGN) [65], which implements 
one-shot learning of patterns and provisions the structure necessary for deep learning (a form of learning that 
models data at multiple levels of abstraction or composition). Deep learning, which apparently is nature’s way 
of coping with complexity in visual processing, is based on hierarchically connected layers, with local feature 
learning at the lowest layer and upper layers combining features into higher-order representations. A similar hi-
erarchical organization of information takes place in the visual system of honeybees. In principle, a suitably de-
signed polymorphic computer with stimuli-driven data flows could facilitate deep learning, and by using VSA 
principles for the design of the higher-order architecture, such a system could be capable of processing concepts. 
The HGN has been further developed at the conceptual level to a reconfigurable PmC design [66]. In our ap-
proach pattern recognition is undertaken progressively in multiple layers as sensory data flows from the input 
layer(s) upwards in the hierarchy. This design envisages an efficient in-network pattern recognition approach. 
One way to readily demonstrate the concept will be accomplished by implementing a connection-based com-
puting mechanism within a WSN. Doing so will facilitate computation through data flows between simple proc-
essing elements. 

6. Concluding Remarks 
Systems composed of neuromorphic vision sensors and neuromorphic multi-neuron chips are becoming elabo-
rate enough for use in real-world applications [8]-[10]. If higher-order learning and cognitive mechanisms can 
be implemented in such systems, it will enable efficient and lightweight computer vision systems that can per-
form tasks in environments with greater complexity and uncertainty than current systems can tolerate. Concept 
learning [11] [12] is a central part of animal cognition that enables appropriate motor response in novel situa-
tions by generalization of former experience, possibly from a few training examples. These aspects make con-
cept learning a challenging and important problem, which can lead to discoveries that radically change how we 
design and use computer vision systems and computing architectures. Learning methods in computer vision are 
typically inspired by mammals, but recent studies of insects motivate an interesting complementary research di-
rection that is outlined in this paper. In particular, individual honeybees show a remarkable capacity to learn 
how to solve problems involving abstract concepts. Some of these tasks like solving above/below relational 
problems [16], or simultaneously applying multiple rules like spatial relationships and differences [17], are at a 
level of complexity that challenges our current understanding of what mammalian brains can achieve [18] [37]. 
These results provide a road map for future work to allow direct comparisons between bio-inspired computing 
architectures and information processing in miniaturized “real” brains. Considering that the brain of a bee has 
less than 0.01% as many neurons as a human brain, the task to infer a minimal neural architecture and mecha-
nism mediating concept learning and other forms of higher-order learning from studies of bees appears well mo-
tivated. Vector symbolic architectures [52]-[54] offers a mathematical framework for modeling of concepts and 
higher-order learning with distributed representations, which can also be implemented in digital processing sys-
tems and neuromorphic systems. The integration of concept learning mechanisms in a polymorphic computing 
architecture could enable the development of decentralized computer vision systems, for example in the form of 
wireless sensor networks, which are scalable and can perform advanced pattern recognition in complex and 
changing environments. 
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