
Coherence in generic representation theory∗

Phillip Linke†

∗Gedruckt auf alterungsbeständigem Papier ISO 9706
†The author was partially supported by the Friedrich Ebert Stiftung

1

Abstract

Let Fq be the category of functors from finite dimensional vector spaces over a
finite field to vector spaces over the same field. Here q denotes the cardinality of
the finite field Fq. Initial Motivation for this paper is to show that the category Fq
is coherent. While the Artinian conjecture would imply the subcategory of finitely
generated functors in Fq is abelian, coherence implies that the category of finitely
presented functors in Fq is abelian. Therefore, coherence is somewhat weaker. We
document approaches of ways how to show that the category Fq is coherent.
A second subject of this paper is the following. The category Fq admits an ex-
act endo-functor ∆. We prove that this endo-functor is diagonalizable on the
Grothendiek-group of indecomposable projective functors. To achieve this goal we
will use computational methods and properties of the dimension of indecompos-
able projective functors. A second step will then be to show that the previously
computed dimension function is sufficient to compute diagonalizability.

Zusammenfassung

Wir bezeichnen mit Fq die Kategorie von Funktoren, die von der Kategorie endlich
dimensionaler Vektorräume über einem endlichen Körper in die Kategorie von Vek-
toräumen über diesem Körper abbilden. Dabei ist q die Mächtigkeit des endlichen
Körpers Fq. Die initiale Motivation für diese Arbeit ist zu zeigen, dass die Kat-
egorie Fq kohärent ist. Während die Artinsche Vermutung besagt, dass die Un-
terkategorie von Fq, die endlich erzeugte Funktoren enthählt abelsch ist, so besagt
Kohärenz, dass die Unterkategorie der endlich präsentierten Funktoren abelsch ist.
Daher ist Kohärenz etwas schwächer. Wir dokumentieren eine Reihe von Ansätzen
mit denen gezeigt werden sollte, dass die Kategorie Fq kohärent ist.
Ein weiterer Schwerpunkt dieser Arbeit ist der folgende. Die Kategorie Fq besitzt
einen exakten Endo-Funktor ∆. Wir beweisen, dass dieser Endo-Funktor auf der
Grothendiek-Gruppe der unzerlegbaren projektiven Funktoren diagonalisierbar ist.
Um dieses Ziel zu erreichen werden wir Eigenschaften der Dimensionsfunktionen
unzerlegbar projektiver Funktoren berechnen und benutzen. Ein zweiter Schritt
wird dann darin bestehen zu zeigen, dass es für die Diagonalisierbarkeit hinre-
ichend ist die Dimensionsfunktionen zu kennen.

2

Acknowledgements

First and foremost I would like to express my gratitude towards my supervisor,
Professor Henning Krause. I thank him for his support, for helpful discussions and
for coming up with the interesting topic of this thesis.
Several parts of this thesis have been created during research stays. Therefore,
I would like to thank Dr. Jürgen Müller for the introduction to the Meat-Axe-
Algorithm. Many thanks also go to Paris and Professor Lionel Schwarz for the
idea of a diagonalizable functor ∆.
I would also like to thank the members and visitors of the Bielefeld Representation
Theory group for helpful discussions. I am particularly grateful to Julia Sauter,
Andrew Hubery, Philipp Lampe, Reiner Hermann, Martin Kalck, Claudia Köhler,
Edward Green and Aurelien Djament.
I am indebted to the Friedrich-Ebert-Stiftung for financial support during both
my undergraduate and graduate studies as well as the BGTS, Bielefeld Graduate
School for Theoretical Sciences, for the travel grant that made my research stay
in Paris possible.
Last but not least I would like to thank my wife Sonya, my parents and sister as
well as all of my family for the support during this time.

3

Contents

1 Introduction and notation 6
1.1 The main results . 6
1.2 Outline . 9

2 Generic representation theory 9
2.1 The Artinian conjecture . 13
2.2 A few properties of dimension functions 17

3 On the Grothendiek group K0(Fq) 22
3.1 ∆ is diagonalizable on K0(Fq) . 22
3.2 On n 7→ dimPλ(Fnq) . 28

4 The category Fq viewed as a module category 34
4.1 Finitely presented functors and quivers 35
4.2 An example: the Kronecker case . 37

5 Approaches to coherence 43
5.1 The radical . 45
5.2 Properties of the radical . 47
5.3 Behavior of the dimension of coker(f,Fnq) 50
5.4 Conceptual approach by using the closed form 56
5.5 Semi-direct approach . 62
5.6 Inductive approach . 64

6 Approach to finitely generated functors 72
6.1 Dimension formula for subfunctors of projectives 72
6.2 Remarks on the Strong Artinian conjecture 78

7 The extension quiver 79
7.1 Theoretical aspects . 79
7.2 Computational aspects . 81
7.3 Properties of the quiver . 85

8 An algorithm to compute generators of kernels
of representable morphisms and to test them 90
8.1 input.g . 91
8.2 sortf.g . 91
8.3 fkernel.g . 93
8.4 weakcoker.g . 97
8.5 searchcoker.g . 101

4

8.6 kertest.g . 103

9 References 110

5

1 Introduction and notation

1.1 The main results

Theoretical basis for this work is the remarkable three paper series by N. Kuhn
[Kuh93], [Kuh94], [Kuh95]. He considers functor categories to study representa-
tions of the general linear group GL(V), V a vector space, which is a rater classical
problem in representation theory. The approach chosen by Kuhn allows to connect
representations of the general linear group to unstable modules over the Steenrod
algebra. The latter is a problem arising in algebraic topology. The study of rep-
resentations of GLn(Fq) in terms of functor categories allows to define the setting
of generic representation theory, which we will explain a little later.
In this paper we want to consider same setting as N. Kuhn. We start in the category
of finite dimensional vector spaces over a finite field Fq. Our object of interest is
the category of functor starting in finite dimensional vector spaces with the target
category of Fq vector spaces that are not necessary finite dimensional. We call this
category Fq. When we evaluate a functor F ∈ Fq at a vector space V ∈ modFq
the result F (V) gives naturally rise to a representation of GL(V). Variation of V
generically yields representations for all general linear groups GL(V). Therefore,
we call this setting generic representation theory.
The general concept of functors from an additive or K-linear category C, for a
field K, to the category of abelian groups or vector spaces is very classical. A lot
dates back to the 1960s and the work of M. Auslander. A good reference, where
many details are summed up, is the work [AR74] by M. Auslander and I. Reiten.
When we consider categories of such functors, the morphisms are given by natural
transformations.
A class of often used functors are the standard projective functors. By the Yoneda
embedding we have a standard projective PV for every finite dimensional vector
space V . A functor F is called finitely generated if it is a quotient of a finite direct
sum of functors PV . More structure of those functors will be introduced a little
later.
Furthermore, the category Fq admits a discrete derivation functor ∆ : Fq → Fq
that sends a functor F to the quotient ∆F := F (Fq⊕−)/F . In his paper [Kuh94]
N. Kuhn states that ∆F is projective if F is. He provides a formula how to com-
pute ∆F in this case.
By using the formula for ∆P , provided by N. Kuhn, we can calculate the function
φ(P, n) = dimFq P (Fnq), as a function of n, explicitly for any finitely generated
projective functor P . This yields our first main result.

6

Proposition 1.1.1. For an indecomposable projective functor P it holds that

φ(P, n) =
s∑
i=0

aiq
in.

Where ai ∈ Q and q is the cardinality of the finite field we are working over.

During discussions with L. Schwartz the author was introduced to the question
if knowledge of this form for the dimension function φ(P, n) could be used to obtain
eigenfunctors for the derivation functor ∆. An eigenfunctor would be a functor F
such that ∆(F) ∼= F⊕m. Known eigenfunctors are the standard projective functors

PV which yield ∆(PV) ∼= P⊕q
dimV −1

V .
The Grothendiek group K0(Fq) is generated by the isomorphism classes of inde-
composable projective functors. If there would be enough eigenfunctors given by
direct sums of projective functors, it would be possible to give a generating set of
K0(Fq), that consists only of eigenfunctors. We can deduce the following result.

Theorem 1.1.2. The functor ∆ : Fq → Fq is diagonalizable on K0(Fq) and the
eigenvalues are qk − 1 for k ∈ N0.

A second subject of this paper and also the initial start of this project is the
following conjecture posed by L. Schwartz.

Conjecture 1.1.3 (Artinian Conjecture due to Lionel Schwartz). The functor IV
is artinian for all finite dimensional vector spaces V .

In this paper we use the dual approach to show that all projective functors PV
are noetherian. The point from which to start is the question wether the functors
PV are at least coherent. While noetherian would imply that any subfunctor of
PV would be finitely generated, coherence only implies that all subfunctors which
are kernels of maps f : PV → PW are finitely generated.
The idea we start with is the following generalization of the form of a dimension
function in proposition 1.1.1.

Definition 1.1.4. Let F be a functor in Fq. We say that φ(F, n) is of closed form
if

φ(F, n) =
s∑
i=0

pi(n)qin,

where pi(n) are polynomials and q is the cardinality of the field.

We conjecture the following.

Conjecture 1.1.5. Let F be a finitely presented functor, then the function φ(F, n)
is of closed form.

7

Classes of functors such that φ(F, n) is of closed form are projective functors
and functors of finite composition length. Our hope is that knowledge of the
existence of the closed form will provide a way of understanding the structure of
kernels of maps f : PV → PW .
We shall however already remark that it is not possible to show coherence. But it
is possible to show some hints that it should at all be possible to show coherence
or even the Artinian conjecture.

Lemma 1.1.6. It holds that rad∞ P = 0 for all indecomposable projectives.

Lemma 1.1.7. Let F be finitely generated, then radr F/ radr+1 F is a functor of
finite composition length.

For a subfunctor G of PV we can also show:

Lemma 1.1.8. Let G ⊂ PV for some finite dimensional V . For all U ∈ modFq
we can find finite dimensional vector space L and a map g : PL → PV such that
gU induces an epimorphism PL(U) � G(U).

Lemma 1.1.9. Let F be finitely generated via

m⊕
i=1

PVi
χ−−→ F → 0.

With the previous lemma we can always find PW and f such that χ ◦ f = 0. For
fixed Fnq this can be chosen such that the sequence

0→ ImfFnq →
m⊕
i=1

PVi(Fnq)→ F (Fnq)→ 0

is exact. Then it holds that this sequence is also exact for Fn−kq .

Unfortunately we cannot say much what happens in the case Fn+k
q . But we

document some attempts on promising leads. The closed form, that we conjecture
to be exist for all finitely generated functors, will be of help here.
In case when the map f : PV → PW is rather simple, the so-called Kronecker case
as it is connected to the representation theory of the Kronecker quiver, we can
show that ker f is finitely generated. So far we did not say anything about how
such a map f : PV → PW looks like. It turns out that f can be written as a formal
linear combination of linear maps. For this reason the solution of wether ker f
is finitely generated or not is somewhat connected to the representation theory
of quivers. As mentioned before, the case of the Kronecker quiver can be solved
completely.

8

Proposition 1.1.10. Let f : PV → PW be a representable morphism such that
f = λ[f1] + µ[f2], then ker f is finitely generated.

The last result of this paper is the beginning of the so-called extension quiver
of the category Fq. Due to computational restrictions only could the first few steps
be computed.

1.2 Outline

The thesis is organized as follows. In Section 2 we introduce the background of
the problem we want to address. We will introduce notation and discuss a few
examples. Equipped with this knowledge we are able to turn our attention to
finitely generated projective functors. Section 3 aims at a full description of their
dimension functions. Afterwards, we can prove that the endo functor ∆ : Fq → Fq
is diagonalizable on the Grothendiek group of finitely generated projectives.
Section 4 introduces a concept based on representations of quivers of how to view
the category Fq as a category of modules. This is afterwards used to show that the
kernel of a representable map in the so called Kronecker case is finitely generated.
The following Section 5 deals with attempts to prove that the category Fq is co-
herent. Though not complete or even remotely satisfying answer to wether Fq is
coherent can be given, the applied methods might be enlightening for future work.
In Section 6 the partial results of Section 5 will be addressed in a more general
setting, aiming to get closer to the Artinian Conjecture.
The final Sections 6 and 7 deal with algorithmic approaches to a better under-
standing of the functors in our category Fq. In Section 6 we use the Meataxe
algorithm to compute the beginning of the extension quiver of the category Fq.
Section 7 deals with an algorithm developed by the author that can compute and
test wether a subfunctor of a given functor F ∈ Fq is finitely generated.

2 Generic representation theory

We fix a prime power q = ps and denote by Fq the field of characteristic p and
q elements, which is unique up to isomorphism. We want to study the category
Fq = Func(modFq,ModFq), the category of all covariant functors that take finite
dimensional vector spaces over a finite field to vector spaces over that field. For
all V ∈ modFq and F ∈ Fq, F (V) is naturally a representation of GL(V) and of
the semi-group (with composition) End(V). Considering all F (V) together we call
this setting generic representation theory.
Instead of looking at all the functors, it is enough that if we Fq-linearize the
category we start with and then only consider Fq-linear functors. We need to
observe that the Fq-linearization Fq[modFq] of modFq is not additive and therefore

9

the functors F : Fq[modFq] → ModFq do not preserve direct sums. F being Fq-
linear means that the maps

FV,W : HomFq [modFq](V,W)→ HomFq(F (V), F (W))

are Fq-linear. The category of such functors will be denoted by

Lin(Fq[modFq],ModFq).

It is a general result that Fq and Lin(Fq[modFq],ModFq) are equivalent. Most of
the time we implicitly work with Lin(Fq[modFq],ModFq).
Now what does the category Fq[modFq] look like? The objects in Fq[modFq] are
the same as in modFq but the morphism spaces are defined as follows:

HomFq [modFq](V,W) :=

{
m∑
i=1

λi[fi]

∣∣∣∣∣λi ∈ Fq, fi : V → W a linear map

}
This is again a vector space. In fact it is isomorphic to the vector space
Fq[HomFq(V,W)] which has a basis that is given by HomFq(V,W) as a set.
In particular, it holds dimFq HomFq [modFq](Fsq,Ftq) = qst.
Throughout this paper we abbreviate HomFq [modFq](V,W) by (V,W). Note that
(Fq,−)⊕ (Fq,−) 6∼= (F2

q,−) because their dimensions will differ if we evaluate them
at an arbitrary Ftq.
For V ∈ modFq the representable functors PV = (V,−) are projective objects
in Fq by Yoneda’s lemma. We call a projective functor P in Fq standard if it is
isomorphic to a finite direct sum

⊕
i∈I(Vi,−) and the (Vi,−) will come from vector

spaces Vi in modFq.
The Yoneda-embedding V 7→ (V,−) yields an embedding (Fq[modFq])op ↪→ Fq. A
projective is finitely generated if and only if it is a direct summand of a standard
projective

⊕n
i=1(Vi,−) and the Vi are finite dimensional for all i.

The duality functor D is defined as follows: DF (V) = F (V ∗)∗ where V ∗ denotes
the vector space dual of V . This is sometimes called the Kuhn-dual. It is con-
travariant but sends covariant functors to covariant functors. If P is projective, it
holds that DP is injective.
Before we begin with more concrete work, we should make a few remarks.

Remark 2.0.1. The category Fq is abelian since the target category of the functors
is abelian.

Let us now start to consider special classes of functors in Fq. We want to
start with simples and indecomposable projectives. Luckily those two are closely
related but we need some definitions until we can get to them. We follow the way
of [HK88].

10

Definition 2.0.2. Let Fq be the field of characteristic p and q = ps elements.
Then GLn(Fq) is the group of invertible n × n-matrices with entries in Fq and
Mn(Fq) is the semi-group of all n× n-matrices with entries in Fq.
By Fq[GLn(Fq)] we denote the group algebra of GLn(Fq) over Fq. Analogously we
define the semi group algebra Fq[Mn(Fq)].

Definition 2.0.3 ([HK88]). A simple Fq[Mn(Fq)]-module is called singular if it is
induced by a simple Fq[Mn−1(Fq)]-module. The module where every matrix acts
as the identity we call the trivial module.

Definition 2.0.4 ([HK88]). Let det : Fq[Mn(Fq)]→ Fq be the determinant repre-
sentation.

Definition 2.0.5 ([HK88]). If N is an Fq[Mn(Fq)]-module, let ResMn
GLn

denote N

restricted to Fq[GLn(Fq)]. We note that ResMn
GLn

((det)q−1) is the trivial module,
although (det)q−1 is not.

Theorem 2.0.6 ([Kuh94], Theorem 5.17). 1. {N ⊗ (det)j|N is singular and
0 ≤ j ≤ q − 1} is the set of simple Fq[Mn(Fq)]-modules.

2. {ResMn
GLn

(N ⊗ (det)j)|N is singular and 1 ≤ j ≤ q − 1} is the set of simple
Fq[GLn(Fq)]-modules.

Definition 2.0.7 ([Kuh94], Notation/Definition 5.18). Let n ≥ 0 and let Ω(q, n)
be the set of λ = (λ1, . . . , λn) with 0 ≤ λi ≤ q − 1.
For each λ ∈ Ω(q, n) we get a simple Fq[Mn(Fq)]-module as follows: For n = 0 let
M0 be the trivial module. For n > 0 and λ = (λ′, λn) with λ′ ∈ Ω(q, n− 1) we let

Mλ = cnn−1(Mλ′)⊗ (det)λn .

Where cnn−1 : modFq[Mn−1(Fq)]→ modFq[Mn(Fq)] is the induction functor.
It is Mλ 6∼= Mµ for λ 6= µ. We set dλ = dimFq Mλ.

Corollary 2.0.8 ([Kuh94], Corollary 5.19). {Mλ|λ ∈ Ω(q, n)} is a complete set
of simple Fq[Mn(Fq)] modules. Furthermore ResMn

GLn
(Mλ) is a simple Fq[GLn(Fq)]

module and we have the identification

ResMn
GLn

(M(λ′,0)) ∼= ResMn
GLn

(M(λ′,q−1)).

Definition 2.0.9 ([Kuh94], Notation/Definition 5.20). Let Ω be the set of se-
quences λ = (λ1, λ2, . . .) of non-negative integers, such that λn = 0 for large n.
For λ ∈ Ω, we let n(λ) = max{n|λn 6= 0}. Let Ω(q) be the subset of sequences
with λi < q, the so called q-restricted weights.

11

For each λ ∈ Ω(q) there is an indecomposable projective a with simple top.
The characterization of these simples is the subject of the following corollary due
to Kuhn.

Corollary 2.0.10 ([Kuh94], Corollary 5.21). 1. {Fλ, λ ∈ Ω(q)} is a complete
set of simple functors in Fq.

2. Fλ(Fnq) is nonzero exactly when n ≥ n(λ), and in that case is the simple
Fq[Mn(Fq)]- (or Fq[GLn(Fq)]-) module Mπn(λ), where πn : Ω(q) → Ω(q, n) is
the projection onto the first n coordinates.

With this at hand we can now look further.

Proposition 2.0.11 ([Kuh94], Proposition 3.4). For PFnq = (Fnq ,−) it holds PFnq =⊕
λ dλPλ where Pλ is the projective cover of Fλ.

Remark 2.0.12. The result uses Fq ∼= EndFq [Mn(Fq)](Mλ).

Remark 2.0.13 ([Kuh94], Remarks 3.5). 1. The Mλ remain simple when re-
stricted to GLn(Fq), so that the numbers dλ are the dimensions of simple
GLn(Fq)-modules.

2. Since PFn−1
q

is a direct summand of PFnq , it is quite easy to deduce that the

’new’ λ correspond to the simple Fq[GLn(Fq)]-modules.

3. Applying the duality functor to the decomposition yields DPFnq = IFnq
∼=⊕

λ dλIλ, where Iλ has a simple socle DFλ. We have DFλ ∼= Fλ.

A categorical property of Fq that should not stay unmentioned is the tensor
product. For two functors F,G ∈ Fq the tensor product F ⊗ G is defined point
wise via: (F ⊗ G)(V) = F (V) ⊗ G(V). It yields the following nice isomorphism:
PV ⊗ PW ∼= PV⊕W , where V and W are vector spaces and the direct sum is in the
category of vector spaces.
A look at the Yoneda-lemma yields:

HomFq(PV , F) ∼= F (V)

A corollary of this is EndFq(PV) = (V, V). We remark that [0] ∈ (V, V) is a non-
zero idempotent.
We now turn to the problem we want to address.

12

2.1 The Artinian conjecture

Conjecture 2.1.1. (Lionel Schwartz) The functor IV is artinian for all finite
dimensional vector spaces V .

Definition 2.1.2. A functor F ∈ Fq is called finitely generated if it is a quotient
of a functor P =

⊕m
i=1(Vi,−). Finitely co-generated functors are dually defined.

The full subcategory of finitely generated functors in Fq is denoted by Fqfg.
The full subcategory of finitely presented functors is denoted by Fqfp.

Remark 2.1.3. In his papers [Kuh93], [Kuh94] N. Kuhn calls a finitely generated
projective also p-small.

The following proposition shows equivalent formulations to this conjecture.

Proposition 2.1.4 ([Kuh94], Proposition 3.13). The following statements are
equivalent:

1. Every finitely co-generated F has a resolution by finitely co-generated injec-
tives.

2. Every finitely generated F has a resolution by finitely generated projectives.

3. Every quotient of a finitely co-generated object is again finitely co-generated.

4. Every subobject of a finitely generated object is again finitely generated.

5. Every finitely co-generated F is artinian.

6. Every finitely generated F is noetherian.

7. IV is artinian for all V .

8. PV is noetherian for all V .

9. In Fq, every direct sum of injectives is again injective.

The formulation of the conjecture that is used in this paper is the second one.
So we try to construct resolutions for finitely generated functors F . Before we can
start, we will need some definitions

Definition 2.1.5. Let F ∈ Fq, then define ∆F = cokerF (ι) where ι : V → V ⊕Fq
is the canonical inclusion. This is a functor, well defined and since F (ι) is a split
monomorphism (we make this explicit in a bit), we have ∆F ⊕ F = F (Fq ⊕−).
∆nF is then defined by induction.

13

Remark 2.1.6. We have that F (ι) is a split monomorphism where ι : V → V ⊕Fq
is the canonical inclusion. Let id : Fq → Fq be the identity functor and Σ : Fq →
Fq the functor be defined via Σ(F) = F (Fq ⊕ −). Then ι : id → Σ is a natural
transformation. We also have a natural transformation π : Σ → ι defined in the
obvious way. It is not hard to see that ι ◦ π is the identity transformation on
id. Therefore, F (ι) ◦ F (π) is also the identity on F (id) ∼= id making F (ι) a split
monomorphism.

Remark 2.1.7. The endofunctor ∆ is exact. Therefore it commutes with kernels,
images and cokernels.

Definition 2.1.8. A functor F ∈ Fq is called polynomial if ∆nF = 0 for some
n ∈ N0.

For the following sections the next theorem will be useful. It also yields cases
of functors that admit resolutions by finitely generated projectives.

Theorem 2.1.9 ([Kuh98], Proposition 4.4). For F ∈ Fq the following are equiv-
alent:

1. F is of finite length.

2. F takes finite dimensional values and is polynomial.

3. The function n 7→ dimFq F (Fnq) is a polynomial function in n with coefficients
in Q.

Example 2.1.10. Examples of finite length functors are the n-fold tensor products
T n and symmetric powers Sn, Sn. The exterior powers Λn are simple for all n.
These functors are defined in the following way:

T n : mod−Fq → mod−Fq
V 7→ T n(V) := V ⊗n

Sn : mod−Fq → mod−Fq
V 7→ Sn(V) := (V ⊗n)

Sn

Sn : mod−Fq → mod−Fq
V 7→ Sn(V) := V ⊗n/

〈
v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)

〉
Λn : mod−Fq → mod−Fq

V 7→ Λn(V) := V ⊗n/ 〈v ⊗ v〉

Where Sn is the symmetric group on n letters and σ ∈ Sn. On morphisms these
functors are defined in the obvious way.
For more details on this we refer the reader to the work of Kuhn.

14

The third equivalent statement of the last theorem has an interesting charac-
terization, and will also come in handy later. In this context there are two cases
where L. Schwartz managed to prove projective resolutions to exist.

Theorem 2.1.11 ([Sch94], Theorem 5.3.8 and [FLS94], Section 10). Let F ∈ Fq.
If there exists an n such that ∆nF is a finitely generated projective, then F has a
resolution by finitely generated projectives.

Since we can also think of the 0-functor as a finitely generated projective, there
is the following corollary.

Corollary 2.1.12 ([Kuh94], Theorem 3.9). Every finite length functor F has a
resolution by finitely generated projectives.

Definition 2.1.13. We call a simple functor Fλ a simple Steinberg functor if

Fλ(Fn(λ)
q) ∼= Pλ(Fn(λ)

q).

Where Pλ is the projective cover of Fλ.

Lemma 2.1.14. Let Pλ be an indecomposable projective. Then Pλ has only finitely
many composition factors that are Steinberg.

Proof. Let Fµ be Steinberg. Since Pµ(Fn(µ)
q) is a simple Fq[Mn(µ)(Fq)] module the

functor Pµ cannot have composition factors Fν with n(ν) ≤ n(µ). Vice versa if Pλ
is arbitrary and one of its composition factors Fµ is Steinberg then n(λ) > n(µ).
Since Pλ can only have finitely many composition factors of any given weight and
there are only finitely many weights µ with n(µ) < n(λ) the lemma follows.

Definition 2.1.15. We denote by Serre(P) the Serre subcategory of Fq which is
generated by all the finitely generated projectives. Serre(I) is the analogue Serre
subcategory which is co-generated by the finitely co-generated injectives.

These Serre subcategories fit into our category Fq as follows: Let us look at
the full subcategory Fqfin of Fq that consists of all functors F : modFq → modFq.
Then the Kuhn-dual D induces an autoequivalence on Fqfin that restricts to an
equivalence of Serre(P) and Serre(I).

Remark 2.1.16. It holds that DF is of finite length if and only if F is of finite
length and that DFλ = Fλ for all simple functors Fλ.

Definition 2.1.17. The functor arising from the zero vector space, (0,−), is not
a functor that sends everything to zero. It rather sends every object to the one
dimensional vector space Fq and is therefore called the constant functor. We denote
it by Fq to stay consistent with the literature on this topic.

15

The functor Fq is projective and injective and it has another special property.

Corollary 2.1.18 ([Kuh93], Appendix B, Corollary B.9). A projective PV cannot
have a nonzero polynomial subfunctor other than Fq.

In the category Fq the standard projectives are finite direct sums of repre-
sentable functors. For computations to come, this is not very useful. The follow-
ing lemma will tell us that, when looking at finitely generated projectives, we can
restrict ourselves always to projectives that are representable and will not loose
too much information.

Lemma 2.1.19. Let P =
⊕s

i=1(Vi,−) be an arbitrary standard projective functor
in Fq. Then there exists a vector space V such that P is a direct summand of
(V ,−)⊕ Fs−1

q . Where Fq is the constant functor.

Proof. Assertion 3 of theorem 2.1.9 gives us that n 7→ dimFq Fλ(Fnq) is a polyno-
mial function in n for any simple Fλ. These polynomials are not constant except
for F0 = Fq the constant functor.
Now it is a basic analytic fact that every non-constant polynomial p(n) goes to
±∞ as n goes to +∞. Since the dimension of Fλ(Fnq) can never be negative, the
dimension has to go to +∞. Therefore, for any finite set of simple functors {Fλ}λ,
that does not contain the constant functor, and any constant a there is an N ∈ N
such that a ≤ min{dimFq Fλ(FN)}λ. This even holds for infinite sets, but we do
not need that here.
Next step is to look at the decomposition of a standard projective (Fmq ,−) into
indecomposable ones. Remark 2.0.13 gives (Fmq ,−) =

⊕
λ dλPλ, where dλ =

dimFq Fλ(Fmq). Since we can think of any standard projective (W,−) as (Fmq ,−)
for suitable m, we can apply this to an arbitrary P in the following way:

P =
s⊕
i=1

(Fmiq ,−) =
s⊕
i=1

⊕
λ

diλPλ =
⊕
λ

(
s∑
i=1

diλ

)
Pλ

Where we have diλ = dimFλ(Fmiq). Now we can apply the first part of the proof
to find a finite dimensional W such that dimFλ(W) ≥

∑s
i=1 dimFλ(Fmiq) for all

λ 6= 0.
It is easy to see now that all indecomposable projectives in P can be embedded
as direct summands in (FNq ,−). The only thing we cannot embed is the constant
part of P . Therefore, we have to add the missing s − 1 constant functors Fq to
(FNq ,−) to get an injective map.

The above lemma only states the existence of such an embedding, but as we
partially work with the computer, there is always the question of optimality. It
appears not to be trivial, but is really straight forward to be proven.

16

Lemma 2.1.20. Let P =
⊕s

i=1(Vi,−) be a standard projective functor in Fq.
Then P is a direct summand of (V ,−) ⊕ Fs−1

q . Where Fq is the constant functor

and dimV =
∑s

i=1 dimVi.

Proof. Let (ιi,−) : (Vi,−) → (V ,−) be the following representable morphism. ιi
is just a basis vector of (V , Vi) with entries aij such that

aij = 1 if j =
i−1∑
k=1

dimVk + i, 0 else.

(ιi,−) is a split monomorphism (the reversed map is given by its transpose) and the
kernel map

∑s
i=1 ιi :

⊕s
i=1(Vi,−)→ (V ,−) is generated by pairs [0]i ⊕ (p− 1)[0]j

for [0]i ∈ (Vi,−) and [0]j ∈ (Vj,−).
Let us now modify some of the ιi. We set ι′i = (ιi + (p − 1)[0], [0]) : (Vi,−) →
(V ,−)⊕Fq for i > 1 and ι′1 = ι1. These maps are again split monomorphisms but
now

∑s
i=1 ι

′
i :
⊕s

i=1(Vi,−) → (V ,−) ⊕ Fs−1
q has no more kernel,therefore we get

again a split monomorphism.

Lemma 2.1.20 is equivalent to the following.

Corollary 2.1.21. It holds that dimFλ(−) is super additive, i.e. dimFλ(V⊕W) ≥
dimFλ(V) + dimFλ(W).

Though most of the time we will work with resolutions respectively will try to
prove in which cases they exist, we do not want to leave the cases unmentioned
where functors PV are known to be noetherian.

Theorem 2.1.22 ([Pow98b]). The functors (Fq,−) are noetherian for all q.

And the only known bigger cases.

Theorem 2.1.23 ([Pow98a]). The functor (F2
2,−) is noetherian.

Theorem 2.1.24 ([Dja09]). The functor (F3
2,−) is noetherian.

2.2 A few properties of dimension functions

The first property that comes to us just by looking at the Fq-linearized Hom-spaces
is the following.
Fact: dimFq P (Fnq) =

∑m
i=1 q

n·dimFq Vi .
Following Kuhn [Kuh93] we know that there is a scalar decomposition of every

F (V). This actually induces a decomposition of functors, not just vector spaces.

Theorem 2.2.1 ([Kuh93], Section 3.3). A functor F ∈ Fq has a splitting F =
F0 ⊕ · · · ⊕ Fq−1 where Fi(V) = {x ∈ F (V)|F (λ idV)(x) = λix ∀λ ∈ Fq}.

17

Proof. This is a finite field version of MacDonald’s eigenspace (degree) composition
[Mac08, appendix to chap. 1].

Example 2.2.2. Let q = 2 and F = (F2,−). Then (F2,−) should decompose into
two direct summands. Let x =

∑s
i=1 µi[xi] ∈ (F2,Fn2).

(F2,−)0(Fn2) ={
x ∈ (F2,Fn2)

∣∣∣∣∣(F2, λ idFn2)(x) =
s∑
i=1

µi[λxi] =
s∑
i=1

µi[xi] = λ0x ∀λ ∈ F2

}

In particular for λ = 0 this yields

x =
s∑
i=1

µi[xi] =

(
s∑
i=1

µi

)
[0] ∈ F2[0].

We conclude that (F2,−)0(Fn2) = F2[0] for any n. So (F2,−)0 = (0,−) = F2 the
constant functor.

(F2,−)1(Fn2) ={
x ∈ (F2,Fn2)

∣∣∣∣∣(F2, λ idFn2)(x) =
s∑
i=1

µi[λxi] =
s∑
i=1

µi[xi] = λ1x ∀λ ∈ F2

}

In particular for λ = 0 this yields

0 = 0 · x =
s∑
i=1

µi[0 · xi] =

(
s∑
i=1

µi

)
[0].

We conlude that

(F2,−)1(Fn2) =

{
x =

s∑
i=1

µi[xi] ∈ (F2,Fn2)

∣∣∣∣∣
s∑
i=1

µi = 0

}

We can now even show that (F2,−)1 is the projective cover of the identity functor
Λ1. The map

(F2,−)1(Fn2) → Λ1(Fn2) = Fn2∑s
i=1 µi[xi] 7→

∑s
i=1 µixi

This map is surjective since for each y ∈ Fn2 the element [y]+(p−1)[0] is a preimage
in (F2,−)1(Fn2). So far this is only a surjection. The missing properties for the
projective cover are content of the following example.

The functor P (Λ1) can be described more explicitly.

18

Example 2.2.3. Let q = 2, the functor P (Λ1) is a uniserial by [Kuh93, Appendix
B] and it is a chain of exterior powers where the right hand side are the composition
factors.

P (Λ1) =

Λ1

Λ2

Λ3

...

Its dual, the injective functor I(Λ1), which is the injective hull of the identity
functor, is also uniserial, just the functors are in the reversed order.

I(Λ1) =

...
Λ3

Λ2

Λ1

Lemma 2.2.4. There is a decomposition of one in End((Fq,−)) = Fq[Fq] by q
orthogonal primitive idempotents given by

e0 = [0]
ei = (p− 1)

∑
λ∈Fq λ

i[λ], 1 ≤ i ≤ q − 1.

Proof. We start by showing that these elements are indeed idempotents. It is
obvious that e2

0 = [0]2 = [02] = [0] = e0. For ei we have

e2
i =

∑
λ,µ∈Fq

(λµ)i[λµ]

Now we do some counting for each of the [λ]. If [λ] = [0] we have precisely 2q − 1
summands of it, q from [0]ei and one out of every [λ]ei. Since we work over a field
of characteristic p the coefficient in the result will be p − 1. For [λ] = [1] there
will be q − 1 summands since there is precisely one multiplicative inverse of each
λ. So the coefficient of [1] in e2

i will be p− 1. For the other non zero [λ] the same
argument yields again a coefficient of (p− 1). Therefore, e2

i = ei.
Now we need to check that eiej = 0. It is obvious that e0ei = q[0] = 0. Next
we check e0ei =

∑
λ λ

i[0] = 0 since taking the i-th power is an automorphism of
Fq and each element has an additive inverse. Therefore we have found a set of q
orthogonal idempotents. Since dimFq[Fq] = q, they must be primitive and their
sum must be [1].

Lemma 2.2.5. The projective (Fq,−) decomposes as Fq[Mn(Fq)] modul into Fq
and q − 1 equidimensional parts Pi with 1 ≤ i ≤ q − 1 and the constant part P0.

19

Proof. Without loss of generality we look at (Fq,Fnq). Then we use induction on
n.
The above lemma guaranties us that 1EndFq ((Fq ,−)) decomposes into q nontrivial
idempotents. Since EndFq ((Fq,−)) = Fq[Fq], this corresponds to an idempotent
decomposition of (Fq,Fnq). Let [α] be a basis vector of (Fq,Fnq), so α is a linear
map from Fq to Fnq . Then we have

[α]e0 = [0]
[α]ei = (p− 1)

∑
λ∈Fq λ

i[λα], 1 ≤ i ≤ q − 1.

Therefore, dim(Fq,Fnq)e0 = 1 = dimP0(Fnq) the constant part. We can also easily
see that [α]ei 6= 0 for basis vectors [α] and [α]ei 6= [β]ei for [α] 6= [β]. We conclude
that dim(Fq,Fnq)ei = dim(Fq,Fnq)ej for 0 < i, j.

This yields a decomposition as functors and it is known [Kuh93, Appendix B]
that these functors are all uniserial.

Corollary 2.2.6. Let Pi, 1 ≤ i ≤ q − 1 be as in the previous lemma. The
dimension of each of the Pi(Fnq) is

∑n−1
j=0 q

j.

Proof. Follows from the identity of the geometric sum

qn − 1

q − 1
=

n−1∑
j=0

qj

Example 2.2.7. As in most cases as well here the case q = 2 is the one that is best
investigated. Here are some examples of dimensions of certain indecomposable
projectives. In the case of (F2,−) we have two of them, P0 = Fq the constant
functor and P1 = P (Λ1) the projective cover of the identity functor. The notation
P0 and P1 uses 0 and 1 as sequences in Ω(q, 1) of definition 2.0.7:

dimP0(Fn2) = 1 this even holds for arbitrary q

dimP1(Fn2) = 2n − 1

For n(λ) > 1 the calculation of the closed form for the dimension of a given
projective is no longer that easy. Here we need the primitive Idempotents to get
to results. The new indecomposables do no longer have such a nice description as
before, so we give them in weight notation.

dimP11(Fn2) =
1

3
22n − 1

3

dimP01(Fn2) =
1

3
22n − 2n +

2

3

20

The results about the growth of the projective functors in the above lemma
are promising. It is possible to utilize them in a broader sense. For this we need
the following general definition.

Definition 2.2.8. Let f : N→ C a (counting) function. We say that f is of closed
form if

f(n) =
k∑
i=1

pi(n)αtini

with αi ∈ C and ti ∈ Z for all i, pi(n) complex valued polynomials.

As mentioned before, this definition is very general. To make it more accessible
in our context, we need to specialize it.

Definition 2.2.9. For a functor F ∈ Fq and a non-negative integer n we define
φ(F, n) = dimFq F (Fnq).
We say that φ(F, n) is of closed form if there exists a k ∈ Z≥0 and integers t1, . . . tk
such that

φ(F, n) =
k∑
i=1

pi(n)αtini .

The pi(n) are polynomials with coefficients in Q for all i.
We sometimes say that F is of closed form in this case.

Remark 2.2.10. Without loss of generality, we will be able to order the poly-
nomials in such a way that we can assume {t1, . . . , tk} = {0, . . . ,maxk(tk)}. For
integers j not included in the set of the ti we then set pj(n) = 0.

This is somewhat an abuse of the definition of the closed form. But in our
context we always find αi = q.
There are some specializations of this definition of the closed form. They read as
follows:

Lemma 2.2.11. Let 0→ H → F → G→ 0 be a short exact sequence in Fq, then
we have φ(F, n) = φ(H,n) + φ(G, n).

Proof. It follows from the properties of dimFq .

Corollary 2.2.12. If φ(F, n) is of closed form, then also φ(∆F, n) is.

Proof. Obviously, since with φ(F, n) also φ(F (Fq⊕−), n) = φ(F, n+1) is of closed
form. Then we use the above lemma.

Example 2.2.13. A representable projective (V,−) is of closed form and not
polynomial (unless V = 0).

Before we start doing calculations, let us pose a conjecture.

Conjecture 2.2.14. Let F be a finitely generated functor in Fq, then F is of
closed form if and only if F is finitely presented.

21

3 On the Grothendiek group K0(Fq)
We define K0(Fq) as the the Grothendiek group of Fq that is generated by the
isomorphism classes of indecomposable projective modules. The aim of this section
is to show that the difference functor ∆ is diagonalizable on the Grothendieck group
K0(Fq).
A first step is to start with a very general remark about how the closed form of
an indecomposable projective looks like.

3.1 ∆ is diagonalizable on K0(Fq)
When looking at example 2.2.7, we can get the impression that one invariant worth
looking at could be the dimensional growth of functors. The category Fq does not
posses a dimension function. The category Fq[modFq] can also not be used for
that. If we evaluate a functor F ∈ Fq at an object V ∈ Fq[modFq], we get to the
category of vector spaces which has a notion of dimension.
From the start there are only two kinds of functors which have a dimension function
of the desired form. These are standard projectives and finite length functors. The
following lemma suggests how we can get to more types of functors.

Lemma 3.1.1. Let F,G ⊂ P =
⊕m

i=1(Vi,−) such that φ(F, n) and φ(G, n) are
of closed form, then φ(F ∩G, n) is of closed form if and only if φ(F +G, n) is of
closed form.

Proof. This is just lemma 2.2.11 applied to the exact sequence

0→ F ∩G→ F ⊕G→ F +G→ 0.

But here we can also see a problem. If we do not have any idea how the
dimension function of all but one indecomposable projective looks like, we have
no chance to find out what dimension function of the remaining indecomposable
looks like. This is somewhat disappointing, so we will have to find a way around
it. We will use the following combinatorial identity.

Definition 3.1.2. A counting function f : N0 → C is said to be of finite recursion
type if there exists d ∈ N and complex numbers h1, . . . , hd with hd 6= 0 s.t.

f(n+ d) + h1f(n+ d− 1) + · · ·+ hdf(n) = 0∀n ∈ N.

Theorem 3.1.3 ([Aig06], Theorem 3.1). Let h1, . . . , hd be a fixed series of complex
numbers with d ≥ 1 and hd 6= 0, g(z) = 1 + h1z + . . .+ hdz

d = (1− α1z)d1 · · · (1−

22

αkz)dk . Then for a counting function f : N0 → C the following are equivalent:
(A1) f solves the recursion f(n+ d) + h1f(n+ d− 1) + . . .+ hdf(n) = 0 ∀n ≥ 0.
(A2) f is of closed form:

f(n) =
k∑
i=1

pi(n)αtini

where pi(n) are polynomials of degree < di and ti positive integers for i = 1, . . . , k.

For more details we refer the reader to the source.
We might ask ourselves what this has to do with our case. Let us look at the
following example, that will give us a connection to finite functors. Afterwards we
turn to more general cases.

Example 3.1.4. Let us look at theorem 2.1.11. If F has only finitely many
composition factors then, ∆rF becomes zero for some r. We get the following
dimension formula for ∆tF :

∆F (−) = F (Fq ⊕−)/F (−)⇒ φ(∆F, n) = φ(F, n+ 1)− φ(F, n)

∆2F (−) = ∆F (Fq ⊕−)/∆F (−)

⇒ φ(∆2F, n) = (φ(F, n+ 2)− φ(F, n+ 1))− (φ(F, n+ 1)− φ(F, n))

= φ(F, n+ 2)− 2φ(F, n+ 1) + φ(F, n)

By induction we can derive:

φ(∆tF, n) =
t∑
i=0

(
t

i

)
(−1)t−iφ(F, n+ i)

If ∆rF = 0 for some r, then this gives rise to a recursive formula for φ(F, n),
therefore it must be of closed form by theorem 3.1.3.

The next class of functors we would like to get our hands on are indecomposable
projectives. Rather quickly we arrive at closed form for this class of functors.
Let Pλ be an indecomposable projective. Then it possesses the following projective
presentation by standard projectives.

(Fn(λ)
q ,−)

(e,−)
// (Fn(λ)

q ,−) // // Pλ // 0

We know that (e,−) is an idempotent since Pλ is a direct summand of (Fn(λ)
q ,−).

By the work of Kuhn [Kuh94] we also know that ∆P is again projective if P is.
But we can say even more if P is a standard projective.

23

Definition 3.1.5. F ∈ Fq is eigenfunctor of ∆ if there exists a λ ∈ Z≥0 such that

∆(F) = F (Fq ⊕−)/F = F⊕λ.

λ is then called an eigenvalue of ∆.

The first thing that comes to mind is the following:

Example 3.1.6.

φ(∆(Fmq ,−), n) = φ((Fmq ,−), n+1)−φ((Fmq ,−), n) = qm(n+1)− qmn = qmn(qm−1)

So just by the attained dimensions there are some candidates. But the question
remains if ∆(Fmq ,−) is really (Fmq ,−)⊕q

m−1, in other words, if it is representable.
This is the content of the following lemma.

Lemma 3.1.7. There is a functorial equivalence ∆(Fmq ,−) ∼= (Fmq ,−)⊕q
m−1.

Proof. For the proof we need again to consider the endo functor Σ with ΣF =
F (Fq ⊕−). For a projective this yields:

Σ(Fmq ,−) : Fnq 7→ (Fmq ,Fq ⊕ Fnq) ∼= (Fmq ,Fq)⊗ (Fmq ,Fnq)

Therefore, Σ(Fmq ,−) ∼= (Fmq ,Fq)⊗(Fmq ,−) as functors. As in the definition of ∆ we
can write down the inclusion (Fmq , ι) : (Fmq ,−)→ (Fmq ,Fq)⊗(Fmq ,−) via x 7→ x⊗[0]
and (Fmq , π) : (Fmq ,Fq) ⊗ (Fmq ,−) → (Fmq ,−) via x ⊗ y → x. Again we have

(Fmq , π) ◦ (Fmq , ι) ∼= id(Fmq ,−) and therefore ∆(Fmq ,−) ∼=
(
(Fmq ,Fq)/Fq

)
⊗ (Fmq ,−) ∼=

(Fmq ,−)⊕q
m−1 since dim

(
(Fmq ,Fq)/Fq

)
= qm − 1.

Having this in mind, we go back to indecomposable projectives. The first thing
we can observe is the following lemma.

Lemma 3.1.8. If (e,−) is idempotent, then so is ∆(e,−). It is also representable
again.

Proof. Let us again look at the projective presentation of Pλ.

(Fn(λ)
q ,−)

(e,−)
// (Fn(λ)

q ,−) // // Pλ // 0

If we apply the exact functor ∆ to this sequence, we get the following.

(Fn(λ)
q ,−)⊕q

m−1−1 ∆(e,−)
// (Fn(λ)

q ,−)⊕q
m−1−1 // // ∆Pλ // 0

Since (Fn(λ)
q ,−)⊕q

m−1−1 is again representable, the same must hold for ∆([e],−)
and since ∆Pλ is projective again, it also should be an idempotent.

24

Corollary 3.1.9. ∆(e,−) decomposes into primitive idempotents.

Proof. Easy to see, since ∆Pλ decomposes into indecomposable projectives.

Now we would like to say something about ∆Pλ explicitly in order to be able
to derive a conclusion for φ(Pλ, n). Section 6 of [Kuh94] deals explicitly with this.
We need to borrow a few definitions and lemmata from it.

Definition 3.1.10 ([Kuh94], Definition 6.14). Let λ, µ, ν ∈ Ω(q) then aνλ,µ and
aνλ,µ are defined as follows:

Fλ ⊗ Fµ =
∑
ν

aνλ,µFν

Pλ ⊗ Pµ =
∑
ν

bνλ,µPν

Lemma 3.1.11 ([Kuh94], Lemma 6.15). It holds that

∆Pν =
∑
λ,µ

aνλ,µPλ ⊗ Pµ

and
∆Fν =

∑
λ,µ

bνλ,µFλ ⊗ Fµ.

Definition 3.1.12 ([Kuh94], Notation/Definition 6.16). Let λ, µ ∈ Ω then

• λ+ µ ∈ Ω is defined by (λ+ µ)i = λi + µi.

• λ·µ is defined recursively on n(λ)+n(µ) as follows. Let d = min{λn(λ), µn(µ)}.
Let λ′ equal λ except that λn(λ′) is replaced by λn(λ) − d. Similarly, µ′ is

defined. Then we define (λ · µ)i =


d, if i = n(λ) + n(µ),
(λ′ · µ′)i, if i < n(λ) + n(µ),
0, if i > n(λ) + n(µ).

• λ ≤ µ if, for all k ≥ 1,

k∑
i=1

iλi +
∞∑

i=k+1

kλi ≤
k∑
i=1

iµi +
∞∑

i=k+1

kµi

It is not hard to check that if λ, µ ∈ Ω(q), then so is λ · µ and that if λ ≤ λ′

and µ ≤ µ′, then both λ+ µ ≤ λ′ + µ′ and λ · µ ≤ λ′ · µ′.

Theorem 3.1.13 ([Kuh94], Theorem 6.17). Let λ, µ, ν ∈ Ω(q).

25

• If aνλ,µ 6= 0, then ν ≤ λ+ µ and n(ν) ≥ max{n(λ), n(µ)}.

• If λ+ µ ∈ Ω(q), then aλ+µ
λ,µ = 1.

Theorem 3.1.14 ([Kuh94], Theorem 6.18). Let λ, µ, ν ∈ Ω(q).

• If bνλ,µ 6= 0, then ν ≥ λ · µ and n(ν) ≤ n(λ) + n(µ).

• bλ·µλ,µ = 1.

With this at hand we can prove the following lemma.

Lemma 3.1.15. It holds that

∆Pλ = P⊕aλ ⊕
⊕

µ, n(µ)<n(λ)

mµPµ.

Proof. From the above theorems from [Kuh94] we know the following

∆Pν =
∑
λ,µ

aνλ,µPλ ⊗ Pµ =
∑
λ,µ

aνλ,µ
∑
ρ

bρλ,µPρ.

So we should look for which combinations of λ, µ, ρ the product aνλ,µb
ρ
λ,µ 6= 0. We

already know that this has to be zero if n(ρ) > n(ν).
So we want to look at n(ρ) = n(ν). Let ν ≥ ρ and choose λ = ν and µ = 0 then
aνλ,µ = aνν,0 = 1 and bνλ,µ = bνν,0 = 1. But ν ≥ ρ ≥ λ · µ = ν yields ρ = ν.
Let now ρ ≥ ν. Then ρ = ν + σ and n(σ) < n(ρ). To have aνλ,µ 6= 0, we need
to have λ + µ ≥ ν and n(ν) ≥ max{n(λ), n(µ)}, but to have bρλ,µ 6= 0 we need
ρ ≥ λ · µ and n(ρ) ≤ n(λ) + n(µ). If λ + µ ≥ ρ, we have that λ · µ ≥ ρ · 0 = ρ
and equality can hold if and only if one of them is zero. If ρ ≥ λ+ µ ≥ ν, we first
assume that ρ = ν + (1). Then ν · (1) is defined on entries (ν · (1))i+1 = ρi and
(ν · (1))2 = min{1, ν1} and (ν · (1))1 = ρ1 − (ν · (1))2. By the definition of λ ≥ µ
with k ≥ 3 this yields that we still have λ · µ ≥ ρ and therefore bρλ,µ = 0 in this
case. It is not hard to see that this still holds true if ρ = ν + (0, . . . , 0, k). Let
ρ = ν + σ1 + · · ·+ σs where σi = (0, . . . , 0, ki). Then we have ρ ≥ (ν + σ1 + · · ·+
σs−1) · σs ≥ (ν + σ1 + · · ·+ σs−2) · σs−1 < · · · unless σi = 0 for any i.
Therefore, either aνλ,µ = 0 or bρλ,µ = 0 unless ρ = ν.
We did not say anything so far about terms of lower order but we do not have
to.

Corollary 3.1.16. It holds that ∆Pλ = P0 ⊕ P⊕q−1
λ if n(λ) = 1.

Proof. The components that can occur follow from the above theorem. The mul-
tiplicity of Pλ follows from ∆(Fq,−) = (Fq,−)⊕q−1.

26

Proposition 3.1.17. It holds that ∆Pλ = P⊕q
n(λ)−1

λ ⊕
⊕

µ, n(µ)<n(λ) mµPµ.

Proof. Follows by induction on n(λ) from the above corollary.

Now we can proof that φ(Pλ, n) is of closed form and describe how the pi(n)
and the αi look like.

Lemma 3.1.18. ?? The dimension function φ(Pλ, n) is of closed form and in
φ(Pλ, n) all the pi(n) are constant and αi = qi for all Pλ.

Proof. By the above corollary we have φ(Pλ, n+ 1)− qn(λ)φ(Pλ, n) =
∑

µ φ(Pµ, n).
By induction on n(λ) it follows immediately that φ(Pλ, n) is of closed form and
that pn(λ) is a constant. Since from this construction we can also follow that the
length of a recursion that φ(Pλ, n) fulfills is at most of length n(λ) + 1, we have
that all the other pi(n) must be constants as well.
Induction now yields αi = qi.

With this identities at our disposal, it is relatively easy to show that ∆ is
diagonalizable.

Definition 3.1.19. Let K0(Fq)d := spanZ{[Pλ] |n(λ) ≤ d} ⊂ K0(Fq) be the sub-
group generated by the isomorphism classes of indecomposable direct summands
of (Fdq ,−).

Remark 3.1.20. It is obvious that we have K0(Fq)d ⊂ K0(Fq)d+1 and K0(Fq) =∑
d∈NK0(Fq)d.

As a corollary of the above calculations we can obtain the following proposition.

Proposition 3.1.21. It holds that

1. ∆(K0(Fq)d) ⊂ K0(Fq)d.

2. ∆ is diagonalizable on K0(Fq)d with minimal polynomial

m∆|K0(Fq)d
(T) =

d∏
k=0

(T − (qk − 1))

Proof. The first assertion follows directly from proposition 3.1.17.
For the second assertion a second look at propostion 3.1.17 yields (∆ − (qd −
1))(K0(Fq)d) ⊂ K0(Fq)d−1. This implies m∆|K0(Fq)d

(∆) = 0 on K0(Fq)d. Therefore

the minimal polynomial of ∆ on K0(Fq)d must divide m∆|K0(Fq)d
(T). If we consider

[P] :=
⊕d

k=0[(Fkq ,−)], which is an element in K0(Fq)d, we see that m∆|K0(Fq)d
(T) is

in fact the polynomial of minimal degree that lets ∆ vanish on K0(Fq)d. Since all
zeros of m∆|K0(Fq)d

(T) are pairwise different, this implies that we can diagonalize
∆.

27

Remark 3.1.22. The above proposition yields diagonalizablility of ∆ only on
the Grothendiek group. However it is possible for small dimensions to actually
compute a diagonal action of ∆ on finite direct sums of indecomposable projective
functors.

3.2 On n 7→ dimPλ(Fnq)
The aim of this subsection is to provide more detailed calculations of the coefficients
ai in the closed form of an indecomposable projective.

Lemma 3.2.1. Let Pλ be an indecomposable projective and φ(Pλ, n) =
∑n(λ)

i=0 aiq
ni.

Then ai ∈ Q∀ i.

Proof. Let an(λ) be non-zero. We need to look at the (n(λ)+1)×(n(λ)+1) system
of linear equations in (n(λ) + 1) indeterminats ai. We define bk := φ(Pλ, k).

an(λ) +an(λ)−1 · · · +a0 = b0

an(λ)q
n(λ) +an(λ)−1q

n(λ)−1 · · · +a0q
0 = b1

...
...

...
...

...
...

an(λ)q
n(λ)n +an(λ)−1q

(n(λ)−1)n · · · +a0q
0n = bn(λ)

Since the bk are integers, as they are the dimensions of Pλ(Fkq), and the determinant
of the Vandermonde matrix

Vn(λ) =


1 1 · · · 1

qn(λ) qn(λ)−1 · · · 1
...

...
...

...
qn(λ)n q(n(λ)−1)n · · · 1


is both non-zero and rational, we see that also all the coefficients ai must be
rational.

Corollary 3.2.2. For φ(Pλ, n) =
∑n(λ)

i=0 aiq
ni it holds that ai ∈ Z[detV −1

n(λ)].

Remark 3.2.3. The entries of the general inverse Vandermonde matrix can be
computed explicitly for V −1

n(λ). They are:

(V −1
n(λ))ij =

∑
0≤m0<...<mn(λ)−i≤n(λ)

m0,...,mn(λ)−i 6=j

(−1)i−1qm0 · · · qmn(λ)−i

qj
∏

0≤m≤n(λ)
m 6=j

(
qm − qj

)

28

Corollary 3.2.4. Let Pλ be an indecomposable projective functor and φ(Pλ, n) =∑n(λ)
i=0 aiq

ni. Let us further assume i < j ∈ {0, . . . , n(λ)} such that aiaj 6= 0 and
ak = 0 for i < k < j. Then aiaj < 0.

Proof. Since we can also use the adjoint matrix to compute the inverse of Vn(λ),
this follows directly from the computation.

For most of the Pλ an explicit calculation of the coefficients is rather hard since
we cannot say anything about the values of φ(Pλ, n) for n ≤ n(λ). If Pλ is the
projective cover of a simple Steinberg functor, the situation is different.

Remark 3.2.5. For a simple Steinberg functor Fλ it holds that φ(Fλ, n) = 0 for
n < n(λ) and φ(Fλ, n(λ)) = q(n(λ)−1)n(λ)/2. We further have φ(Fλ, n) = φ(Pλ, n)
for n ≤ n(λ).

Lemma 3.2.6. Let Pλ be the projective cover of a simple Steinberg functor Fλ
then it holds that

a0 = (dimFλ(Fn(λ)
q))2 det(Vn(λ)−1)/ det(Vn(λ))

and
an(λ) = (−1)n(λ)+1 dimFλ(Fn(λ)

q) det(Vn(λ)−1)/ det(Vn(λ))

Proof. We know that the Vandermonde matrix Vn(λ) is invertible. Therefore, we
can solve the system of linear equations Vn(λ)a = b by multiplying with the inverse
of Vn(λ). For the the entry wij in V −1

n(λ) it holds that

wij = (−1)i+j det(Vn(λ))ji/ detVn(λ),

where (Vn(λ))ji is the matrix resulting form (Vn(λ))ji by eliminating the j-th row
and the i-th column. So if the only non-zero entry in b is the (n(λ) + 1)st, we only
need to look at the (n(λ) + 1)st column of the inverse. This yields:

a0 = (−1)2n(λ) bn(λ)+1

detVn(λ)

· det


1 1 · · · 1

qn(λ) qn(λ)−1 · · · q1

...
...

...
...

qn(λ)(n(λ)−1) q(n(λ)−1)(n(λ)−1) · · · q1(n(λ)−1)


We can simplify this in the following way

a0 =
bn(λ)+1 ·

∏n(λ)−1
i=1 qi

detVn(λ)

· det


1 1 · · · 1

qn(λ)−1 qn(λ)−2 · · · 1
...

...
...

...
q(n(λ)−1)(n(λ)−1) q(n(λ)−2)(n(λ)−1) · · · 1


29

Since
∏n(λ)−1

i=1 qi = bn(λ)+1 = φ(Fλ, n(λ)), we have

a0 = (dimFλ(Fn(λ)
q))2 det(Vn(λ)−1)/ det(Vn(λ))

as claimed. For an(λ) we have

an(λ) = (−1)n(λ)+1 bn(λ)+1

detVn(λ)

·det


1 1 · · · 1

qn(λ)−1 qn(λ)−1 · · · q0

...
...

...
...

qn(λ)(n(λ)−1) q(n(λ)−1)(n(λ)−1) · · · q0(n(λ)−1)

 .

From identity this we can see directly

an(λ) = (−1)n(λ)+1 dimFλ(Fn(λ)
q) det(Vn(λ)−1)/ det(Vn(λ))

Next, we need to say something about the other ai.

Lemma 3.2.7. Let i ≤ n(λ)
2

then an(λ)−i = −a′n(λ)−i
qi−1

qi−1
and ai = a′i−1

1
qi−1

. Where

a′i are the coefficients in φ(Pµ, n) with Pµ the projective cover of the Steinberg
functor with n(µ) = n(λ)− 1.

Proof. Let i ≤ n(λ)
2

, then we have by the same argumentation as in the above
lemma:

ai = (−1)n(λ)+i bn(λ)+1

detVn(λ)

· det


1 1 · · · 1

qn(λ) qn(λ)−1 · · · q0

...
...

...
...

qn(λ)(n(λ)−1) q(n(λ)−1)(n(λ)−1) · · · q0(n(λ)−1)


as well as

a′i−1 = (−1)n(λ)+i bn(λ)

detVn(λ)−1

· det


1 1 · · · 1

qn(λ)−1 qn(λ) · · · q0

...
...

...
...

q(n(λ)−1)(n(λ)−2) q(n(λ)−1)(n(λ)−2) · · · q0


Now we set (qi − 1)ai = a′i−1. After some eliminations we get

(qi − 1)qn(λ)−1∏n(λ)−1
j=0 (qj − qn(λ))

· det


1 1 · · · 1

qn(λ) qn(λ)−1 · · · q0

...
...

...
...

qn(λ)(n(λ)−1) q(n(λ)−1)(n(λ)−1) · · · q0(n(λ)−1)

 =

30

det


1 1 · · · 1

qn(λ)−1 qn(λ)−1 · · · q0

...
...

...
...

q(n(λ)−1)(n(λ)−2) q(n(λ)−1)(n(λ)−2) · · · q0(n(λ)−2)


Now both matrices are again of Vandermonde type so their determinants can be
computed explicitly. This yields:

(qi − 1)qn(λ)−1/

n(λ)−1∏
j=0

(qj − qn(λ)) ·
∏

0≤k<j≤n(λ)−1

(xk − xj) =
∏

0≤k<j≤n(λ)−1

(yk − yj)

Where xj = qj for j < i and xj = qj+1 for j ≥ i and yj = qj for j < i − 1 and
xj = qj+1 for j ≥ i− 1. With this at hand we can simplify both sides. First of all
we will eliminate all the terms coming from qn(λ).

(qi − 1)qn(λ)−1/(qi − qn(λ)) ·
∏

0≤k<j≤n(λ)−2

(xk − xj) =
∏

0≤k<j≤n(λ)−1

(yk − yj)

Next we eliminate all the factors that occur on both sides.

(qi − 1)qn(λ)−1/(qi − qn(λ)) ·
n(λ)−2∏
j=i

(qi−1 − qj) ·
i−2∏
j=0

(qj − qi−1) =

n(λ)−2∏
j=i+1

(qi − qj) ·
i−1∏
j=0

(qj − qi)

Now we can factor out on the right hand side and eliminate even more.

(qi − 1)qn(λ)−1/(qi − qn(λ)) · (qi−1 − qn(λ)−2) = qn(λ)−i−1qi−1(qi − 1)

And we can finally see that our claim ai = a′i−1
1

qi−1
holds.

The second claim, an(λ)−i = −a′n(λ)−i
qi−1

qi−1
, is proven similarly. The proof also yields

that if n(λ) is even, both values for an(λ)
2

coincide.

This recursive definition has a nice consequence.

Corollary 3.2.8. For coefficients ai and a′i as in the above lemma it holds that
|a′i| ≥ |ai|.

Proof. This follows right from the recursive definition of the ai.

So far we did only mention the case where Pλ is the projective cover of a
Steinberg functor. In the more general case we can obtain the following lemma.

31

Proposition 3.2.9. Let Pµ be an indecomposable projective which is not the pro-

jective cover of a Steinberg functor. Let us further assume φ(Pµ, n) =
∑n(µ)

i=0 ciq
in.

Then |ci| < |ai| with ai the coefficients in the closed form of the projective cover
Pλ of a Steinberg functor.

Proof. Though we do not use induction directly, we prove the lemma by starting
to look at the case where φ(Pµ, n) = 0 for n < n(µ)− 1 and afterwards by looking
at the case for n(µ)− k for bigger k.
Let bn(µ) := φ(Pµ, n(µ)) and bn(µ)−1 := φ(Pµ, n(µ) − 1). We further assume that
V −1
n(µ) = (wij)i,j, then we have

ci = wi,n(µ)−1bn(µ)−1 + wi,n(µ)bn(µ).

We can use the following simplifications that will make the right hand side bigger:

wi,n(µ)−1 < −(qn(µ) + 1)wi,n(µ)−1

This follows from the definition of the general element of the inverse of the Van-
dermonde matrix. We can further use

qn(µ)−1bn(µ)−1 < bn(µ) < qn(µ)bn(µ)−1.

So we can follow

ci = wi,n(µ)−1bn(µ)−1 + wi,n(µ)bn(µ) < wi,n(µ)(bn(µ) − (qn(µ) − 1)bn(µ)−1) <

wi,n(µ)(q
n(µ)bn(µ)−1 − (qn(µ) − 1)bn(µ)−1) = wi,n(µ)bn(µ)−1 < wi,n(µ)bn(µ)

From here it follows that

|ci| = |wi,n(µ)bn(µ)| < |wi,n(µ)q
n(µ)
2

(n(µ)−1)| = |ai|.

Now we look at the general case. We use the same simplifications. If follows:

k∑
j=0

wi,n(µ)−jbn(µ)−j <

k∑
j=0

(−1)k−j

(
j∏
l=0

ql(n(µ)−1)+1

)
wi,n(µ)q

n(µ)(k−j)bn(µ)−k <

k∑
j=0

(−1)k−j

(
j∏
l=0

q(l+k−j)n(µ)−l+1

)
wi,n(µ)bn(µ)−k <

wi,n(µ)bn(µ)−kq
k(n(µ)−1) < wi,n(µ)bn(µ)

Since the all the summands in the alternating sum are limited by qk(n(µ)−1), this
again yields

|ci| = |wi,n(µ)bn(µ)| < |wi,n(µ)q
n(µ)
2

(n(µ)−1)| = |ai|.

32

The insight of this proposition can be used to determine when instead of diag-
onalizability on K0(Fq) we can actually diagonalize ∆ on Fq.

Corollary 3.2.10. Let Pd be the full subcategory of Fq that consists of direct sums
of indecomposable projective functors Pλ with n(λ) < d. Then ∆ is diagonalizable
on Pd if and only if the a direct sum of the projective cover of a Steinberg functor
and functors of lower weight is an eigenfunctor in Pd.

Proof. Let Pµ be the projective cover of a non-Steinberg simple functor. Let
further Pλ be a projective cover of a Steinberg functor such that n(λ) < n(µ).
Since |ci| < |ai| for any non-Steinberg projective we can always find x, y ∈ N such

that in φ(P⊕xµ ⊕ P
⊕y
λ , n) =

∑n(µ)
i=1 ĉiq

in we have ĉj < 0 for 0 ≤ j < n(µ) the largest
index such that ĉj 6= 0. Now we can iterate as we would do in the Steinberg case.
The converse is obviously true.

The following example will shed some light on how to construct such eigen-
functors in Fq.

Example 3.2.11. Let K0(Fq)d be the subgroup generated by the isomorphism
classes of indecomposable projectives Pλ such that n(λ) ≤ d.
If d = 0 the only functor we can look at is Fq, the constant functor. We have

∆Fq = 0 = F⊕(q0−1)
q as we claimed.

If d > 0, we look at Pλ the projective cover of one of the Steinberg functors for
n(λ) = d. From the proofs of the above lemmata we can observe that if φ(Pλ, n) =∑n(λ)

i=0 aiq
in is the closed form of its dimension function, then ai/an(λ) ∈ Z, which

is just a consequence of the construction of the inverse via the adjoint matrix.

We now want to study φ(P
⊕a−1

n(λ)

λ ⊕ P⊕((q−1)an(λ))
−1

µ , n) =
∑n(λ)

i=0 âiq
in with Pµ the

projective cover of a Steinberg functor with n(µ) = n(λ) − 1. We have ân(λ) = 1
by construction. For ân(λ)−1 we can obtain

ân(λ)−1 =
an(λ)−1

an(λ)

+
a′n(λ)−1

an(λ)(q − 1)
.

Substitution via the above lemma yields:

ân(λ)−1 =
an(λ)−1

an(λ)

+
a′n(λ)−1

an(λ)(q − 1)
= −

a′n(λ)−1

an(λ)(q − 1)
+

a′n(λ)−1

an(λ)(q − 1)
= 0.

Calculations for ân(λ)−2 yield

ân(λ)−2 =
an(λ)−2

an(λ)

+
a′n(λ)−2

an(λ)(q − 1)
= −

qa′n(λ)−2

(q2 − 1)an(λ)

+
a′n(λ)−2

an(λ)(q − 1)
=

a′n(λ)−2

(q2 − 1)an(λ)

.

33

Therefore ân(λ)−2 is negative since a′n(λ)−2 has to be smaller than zero. We can also
follow ân(λ)−2 > an(λ)−2. For the general ân(λ)−i we have

ân(λ)−i =
an(λ)−i

an(λ)

+
a′n(λ)−i

an(λ)(q − 1)
= −

a′n(λ)−iq
i−1

an(λ)(qi − 1)
+

a′n(λ)−i

an(λ)(q − 1)
=

a′n(λ)−i

an(λ)

∑i−2
j=0 q

j

(qi − 1)
⇒ |an(λ)ân(λ)−i| < |a′n(λ)−i|.

On the other hand we get for âi

âi =
ai
an(λ)

+
a′i

an(λ)(q − 1)
=

a′i−1

an(λ)(qi − 1)
+

a′i
an(λ)(q − 1)

.

If a′i > 0 we can now follow

âi =
a′i−1

an(λ)(qi − 1)
+

a′i
an(λ)(q − 1)

<
−a′i

an(λ)(qi − 1)
+

a′i
an(λ)(q − 1)

=
a′i
an(λ)

∑i−1
j=1 q

j

qi − 1
.

For a′k > 0 we can argue similarly. It follows |an(λ)âi| < |a′i| for any i. So we

can continue with P
⊕a−1

n(λ)

λ ⊕ P
⊕((q−1)an(λ))

−1

µ to construct an eigenfunctor to the
eigenvalue qn(λ) − 1 as |an(λ)âi| < |a′i| for any i.
The next step is to add (an(q2 − 1)(q − 1))−1 copies of Pν , a projective cover of

a Steinberg functor with n(ν) = n(λ) − 2, to P
⊕a−1

n(λ)

λ ⊕ P
⊕((q−1)an(λ))

−1

µ to make
ân(λ)−2 vanish. By similar computations as above we can follow that∣∣∣∣âi +

a′′i
an(λ)(q2 − 1)(q − 1)

∣∣∣∣ ≤ ∣∣∣∣ a′i
an(λ)(q − 1)

+
a′′i

an(λ)(q2 − 1)(q − 1)

∣∣∣∣ .
Therefore, in the k-th step of this process we have â

(k)
n(λ)−k−1 < 0 by an induction

on n(λ) and the above corollary. We can continue and will obtain an eigenfunctor
of ∆ in Fq for each projective cover of a Steinberg functor.

4 The category Fq viewed as a module category

In this section we provide an idea on how to view finitely presented functors as
modules over a path algebra. This result is then used to calculate kernels on one
example, the Kronecker case.

34

4.1 Finitely presented functors and quivers

In this subsection we restrict ourselves to finitely generated functors. The benefit
is that we can describe them more explicitly as modules over a ring with several
objects as defined in the previous subsection.

Definition 4.1.1. Let γ be the following quiver. We start with the infinite bipar-
tite multigraph with countably many edges between two vertices. Now we orient
all edges from one set of vertices to the other.
Explicitly γ = (Q0, Q1) with

1. Q0 = {i ∈ N}∪̇{j ∈ N} =: Q0(s)∪̇Q0(t)

2. Q1 = {i ijl−→ l| i, j, l ∈ N, i ∈ Q0(s), j ∈ Q0(t)}

Definition 4.1.2. Let Γ be the following quiver. We start with the infinite bi-
partite graph with exactly one edge between two vertices. Now we orient all edges
from one set of vertices to the other.
Explicitly γ = (Q0, Q

′
1) with

1. Q0 as before

2. Q′1 = {i ij−→ j| i, j ∈ N, i ∈ Q0(s), j ∈ Q0(t)}

Definition 4.1.3. Let Q be a quiver. We define the category repFq [modFq] Q as
follows. The objects are sets (Vi, Va) such that Vi is a finite dimensional vector
space and Va ∈ (Vs(a), Vt(a)). Morphisms are defined in the obvious way.

Definition 4.1.4. We define the following map

Φ : repFq γ → repFq [modFq] Γ

on objects

(Vi, Vi
aijl−−→ Vj) 7→ (Vi,

∑
l∈N

[aijl])

on morphisms

Vi
aijl

//

fi
��

Vj
� //fj
��

Vi

∑
[aijl]
//

[fi]

��

Vj

[fj]

��

Wi

bijl
//Wj Wi

∑
[bijl]
//Wj

This defines a functor.

Lemma 4.1.5. The functor Φ is faithful. If p = q, then Φ is essentially surjective.

35

Proof. It is faithful because it is on Hom-sets a restriction of the injection⊕
i∈Q0

HomFq(Vi,Wi) //
⊕

i∈Q0
(Vi,Wi)

fi
� // [fi]

If p = q it is easily seen to be essentially surjective.

But what does this have to do with our category Fq?

Lemma 4.1.6. The functor η : repFq [modFq] Γ→ Fqfp defined by

(Vi, aij) 7→ coker a

with
a =

(
(aij,−)j∈Q0(t),i∈Q0(s)

)
:
⊕
i∈Q0(t)

(Vi,−)→
⊕

j∈Q0(s)

(Vj,−)

is dense and full.

Proof. This is obviously dense since we can display every morphism and by that
every finitely presented functor in that way.
To show that it is full, we just have to look at the following resolutions, where we
make use of lemma 2.1.19 to simplify to one standard projective on either side.

· · · // (W,−)
(f,−)

// (V,−)

��

πF // // F //

θ

��

0

· · · // (W ′,−)
(f ′,−)

// (V ′,−)
πG // // G // 0

If θ : F → G is a natural transformation, we have that πG is surjective and θ ◦ πF
starts in a projective, therefore we must have a map from (V,−) to (V ′,−) such
that the square commutes. By passing to the image of (f,−) we will also get a
fitting map from (W,−) to (W ′,−). But this does mean nothing else than that
we are able to obtain a map of the representations from this. Therefore, the map
η is full.

Remark 4.1.7. The functor η is not faithful since the representation V
id−→ V is

mapped to zero for any V .
However, η preserves direct sums.

Definition 4.1.8. Let K ⊂ repFq [modFq] be the full subcategory with objects M
such that η(M) = 0. By previous remark it is additive.

36

Corollary 4.1.9. The functor η induces an equivalence of categories

η : repFq [modFq] Γ/K ∼= Fqfp.

Two morphisms f1 and f2 are equivalent under η if η(f1) = η(f2).

Let us put together what we got here.

K �
�

// repFq [modFq] Γ
η′

// // Fqfp� _
i

��

Fqfg

4.2 An example: the Kronecker case

In this subsection we study kernels of representable morphisms (f,−) : (V,−) →
(W,−) with f = [f1]+µ[f2]. The associated representation of the Kronecker quiver
is

Kf : W
f1
//

f2
// V

Proposition 4.2.1. Let (f,−) : (V,−) → (W,−) be a representable morphism
such that f = [f1] + µ[f2], then ker(f,−) is finitely generated.

Remark 4.2.2. Without loss of generality we can assume f1 6= f2 and µ 6= 0
because kernels of maps ([g],−) with g linear are completely described by the
rank of the matrix g.
Also, once we understand the kernel of ([f1]+µ[f2],−), µ 6= 0 we are done because
this kernel is isomorphic to the kernel of ([f2] + µ−1[f1],−). This means the roles
of f1 and f2 can be interchanged.
For now we assume that Kf is indecomposable. These are the cases we need to
look at:

1. f1 =


1 0 · · · 0
0 1 · · · 0
...

.
...

0 0 · · · 1
0 0 · · · 0

, f2 =


0 0 · · · 0
1 0 · · · 0
...

.
...

0 · · · 1 0
0 0 · · · 1



2. f1 =


1 0 · · · 0 0
0 1 · · · 0 0
...

.
...

...
0 0 · · · 1 0

, f2 =


0 1 · · · 0 0
0 0 1 · · · 0
...

.
...

0 0 · · · 0 1


37

3. f1 = id, f2 = Bλ with Bλ a matrix in Jordan-normal-form with eigenvalue
λ.

Remark 4.2.3. If (f,−) is a epimorphism, then

0→ ker(f,−)→ (V,−)→ (W,−)→ 0

is a split short exact sequence, so the kernel is a direct summand of (V,−). The
projection (V,−) � ker(f,−) shows that ker(f,−) is finitely generated. Therefore,
it is sometimes easier to look at the image in order to determine the kernel.

Now we go through each of the cases one by one to determine the kernel. In any
case we can again assume by pre-compositon that we look at f = [f1] + µ[f2]. It
turns out that if µ 6= −1, calculations are somewhat different than if µ = −1. For
all cases we assume that we look at (f,Fnq) : (Fm′q ,Fnq)→ (Fmq ,Fnq).
Case 1 Here we start by looking at the image. Let µ 6= −1 then [0]◦f = (µ+1)[0]
and therefore [0] is in the image of f . Now we look at a general basis vector [α] ∈
(Fm+1

q ,Fnq). We have [α] ◦ f = [αm+1] + µ[α1] with [αi] = [α1, . . . , α̂i, . . . , αm+1] ∈
(Fmq ,Fnq) is the element where the i-th column ”has to take its head”. Therefore, an
element [β] with only non-zero entries in the first column is mapped to [βm+1]+µ[0].
As [0] is in the image, all the elements with just the first column non-zero are in
the image. Now we look at the elements [β] with just entries in the first and second
column. Those are mapped to [βm+1]+µ[β1] where [β1] is an element with non-zero
entries just in the first column. By the discussion before all elements with entries
in the second column are in the image. We can iterate this process and see that all
elements with non-zero entries in m columns are in the image. Therefore, (f,−) is
an epimorphism in this case. Since (Fmq ,−) is projective, the kernel of (f,−) must
be a direct summand of (Fm+1

q ,−) and therefore finitely generated.
If µ = −1, we have [0] ◦ f = 0. But the rest of the arguments works as well.
Therefore we can associate an element [α] ◦ f to every non-zero basis vector [β] ∈
(Fmq ,Fnq). As f is not injective, we get that the image of f is (Fmq ,−)/Fq. The kernel
is therefore isomorphic to (Fm+1

q ,−)/(Fmq ,−)⊕ Fq which is finitely generated.
Case 2: Again we will first assume µ 6= −1 and also start by looking at the
image. In this case [0] is in the image of (f,Fnq) and a general [α] is mapped to
[α, 0] +µ[0, α]. Therefore, it is not hard to see that (f,−) is a monomorphism and
therefore has only a trivial kernel. If µ = −1, the element [0] and therefore the
constant functor is in the kernel. In both cases we have a finitely generated kernel.
Case 3: This case is of course the most complicated one. There are several
phenomena that can appear. We work through them case by case. First of all we
assume that λ = 0. In this case the computation is completely analogue to case 1
and (f,−) is an epimorphism, so even an isomorphism for dimension reasons.
The case for general λ is not so easy anymore. It is the content of the following
lemmata.

38

Lemma 4.2.4. Let A ∈ GLm(Fq) and µ ∈ F×q . If (−µ)ordA = 1, then f =
[Em] + µ[A] is not invertible.

Proof. It holds that (−µ)ordA = 1. We can follow that

ord(−µ)−1∑
j=0

((−µ)ordA)j = ord(−µ) · 1 6= 0

since p6 | ord(−µ) because p6 | q − 1. By multiplication with −µ the above yields

a1 :=
ordA−1∑
j=0

(−µ)j ordA+1 6= 0.

Let l := ord(−µ) ordA and

g :=
l∑

i=1

(−µ)i[A]i =
ordA∑
i=1

(−µ)i−1a1[Ai] 6= 0 since a1 6= 0,

where the coefficient in front of [Ai] is ai :=
∑

j∈J(−µ)j with J = {1 ≤ i ≤
l | ordA|(j − i)}. It holds that (−µ)ai = ai+1 and a1 =

∑
j | ordA|(j−1)(−µ)j =∑ord(−µ)−1

j=0 (−µ)j ordA+1. With g defined in such a way we can now look at the
composition f ◦ g. We have

f ◦ g =
l∑

i=1

(−µ)i[Ai] + µ
l∑

i=1

(−µ)i[Ai+1]

=
l∑

i=1

(−µ)i[Ai]−
l∑

i=1

(−µ)i[Ai+1] = g − g = 0

Remark 4.2.5. Let Bλ,m = λEm + Jm with
0 1 0 · · · 0
0 0 1 · · · 0
...

...
.

...
0 0 · · · 0 1
0 0 · · · 0 0


Now rm := ordBλ,m is the minimal r such that ordλ|r and

Em −Br
λ,m = rλr−1Jm +

(
r

2

)
λr−2J2

m + . . .+

(
r

k

)
λr−kJkm = 0

39

⇔ p|
(
r

j

)
, 1 ≤ j ≤ k.

For 1 ≤ n ≤ m define

gn :=
ln∑
j=1

(−µ)j




0
. . .

0

Bj
λ,n




and
ln := lcm(ord(−µ), ordBλ,n)

Lemma 4.2.6. It holds for f = [Em] + µ[Bλ,m] that

ker(f,−) =
m∑
n=1

Im(gn,−).

Proof. Let α =
∑r

j=1 νj[αj], νj 6= 0, αi 6= αj ∀ i 6= j be in (V, U). We have α ∈
ker(f, U)⇔ α = −µα[Bλ,m]⇔ π ∈ Sr such that νj = −µνπ(j) and αj = απ(j)Bλ,m.
Without loss of generality π = (1, . . . , r) ∈ Sr. If π is not an r-cycle, we can write
it as a product of disjoint cycles and replace α by a summand over the support of
one of these cycles. It follows:

1. ν1 = (−µ)rν1 ⇔ ord(−µ)|r

2. α1 = α1B
r
λ,m ⇔ ordλ|r and α1(Em −Br

λ,m) = 0

From now on we assume that ord(−µ)|r and ordλ|r. We also assume that ν1 = 1.
Case 1: It holds that p|

(
r
j

)
, 1 ≤ j ≤ k = min(m − 1, r). Since ord(−µ)|r, it

follows that lm|r. We can now follow that (Em −Br
λ,m) = 0 and α1 can be chosen

arbitrary, i.e.

α =
r∑
j=1

(−µ)j[α1B
j
λ,m] =

r

lm

lm∑
j=1

(−µ)j[α1B
j
λ,m].

Since α 6= 0, we get r
lm
6= 0, i.e. not divisible by p, and we obtain all elements of

Im(gm, U) in this way.
Case 2: There is an u ∈ {1, . . . , k = min(m−1, r)} such that p|

(
r
j

)
for 1 ≤ j ≤ u−1

and p6 |
(
r
u

)
. It follows that lu|r. We now have

ker((Em −Br
λ,m)t) = ker((Jum)t) =

〈
etm−u+1, . . . , e

t
m

〉
.

40

It holds that α1(Em−Br
λ,m) = 0⇔ α1 = (0, . . . , 0, xm−u+1, . . . , xm) with arbitrary

columns xi. Then it holds that

α =
r∑
j=1

(−µ)j[α1B
j
λ,m]

=
r∑
j=1

(−µ)

x


0
. . .

0

Bj
λ,u




=
r

lu

lu∑
j=1

(−µ)

x


0
. . .

0

Bj
λ,u




for x ∈ Mt×m(Fq). Since α 6= 0, we get r
lu
6= 0, i.e. not divisible by p. Clearly, we

obtain all elements in Im(gu, U) in this way.

Remark 4.2.7. The algorithm presented in section 8 gives Im (
∑m

n=1 gn,−) as
kernel of (f,−). But for our purposes the weaker version presented in the lemma
is enough.

Lemma 4.2.8. Let (f,−) : (V,−) → (W,−) be a representable morphism such
that f = [f1] + µ[f2] and f one of the indecomposable Kronecker cases, then
ker(f,−) is finitely generated.

Proof. The lemma is the result of the above computations.

Now we can study what happens in the case of a decomposable Kf . We could again
use a case by case study, but luckily we can obtain the following nice construction.

Remark 4.2.9. Let Bλ,m be a matrix in Jordan normal form and rm as in remark
4.2.5. Now we consider a tuple of positive integers m = (m1, . . . ,ms), n analogue.
We say n ≤ m if ni ≤ mi for any i. Let us further consider a tuple λ = (λ1, . . . , λs)
of elements in Fq. We set Bλ,m to be the diagonal block matrix with i-th block
Bλi,mi . Then for S ⊂ {1, . . . , s} define

gS,n :=
∑
j≤lS,n

(−µ)
∑
k∈S jk


∑
s∈S



0
. . .

0

Bjs
λs,ns

0
. . .

0




41

and
lS,n ∈ N|S|, (lS,n)k = lcm(ord(−µ), ordBλk,nk)

With this definition at hand we can prove an analogue of lemma 4.2.6 with an
analogue proof.

Lemma 4.2.10. It holds for f = [Em] + µ[Bλ,m] that

ker(f,−) =
∑

S⊂{1,...,s}

∑
n≤m

Im(gS,n,−).

Proof. Let α =
∑s

i=1

∑ri
j=1 νij[α1,i, . . . , αi,j, . . . , αs,i], νj 6= 0 and the

[α1,i, . . . , αi,j, . . . , αs,i] pairwise different, be in (V, U). We have α ∈ ker(f, U) ⇔
α = −µα[Bλ,m] ⇔ πi ∈ Sri for at least one i such that νij = −µνiπi(j) and
[α1,j, . . . , αi,j, . . . , αs,j] = [α1,j, . . . , αi,πi(j)Bλi,mi , . . . , αs,j]. Without loss of gener-
ality πi = (1, . . . , ri) ∈ Sri . If πi is not an ri-cycle, we can write it as a product
of disjoint cycles and replace α by a summand over the support of one of these
cycles. All the i as described above will be collected in S. It follows:

1. νi1 = (−µ)riνi1 ⇔ ord(−µ)|ri

2. αi,1 = αi,1B
ri
λ,m ⇔ αi,1(Em −Bri

λ,m) = 0

for any i ∈ S. From now on we assume that ord(−µ)|ri and ordλi|ri for i ∈ S.
We also assume that νi1 = 1. For the elements i ∈ S there are two cases that can
occur, analogue to lemma 4.2.6. This shows the case for |S| = 1.
It remains to show how to treat the case |S| > 1. Let α =∑s

i=1

∑ri
j=1 νij[α1,i, . . . , αi,j, . . . , αs,i], νj 6= 0, [α1,i, . . . , αi,j, . . . , αs,i] pairwise differ-

ent, be in ker(f, U). Let S ⊂ {1, . . . , s} and define n via:

ni :=

{
mi respectively ui i ∈ S

0 else
.

mi and ui are results of the two cases of lemma 4.2.6. So for |S| > 1 an arbitrary
α ∈ ker(f, U) must be a product of all αi ∈ ker([Emi] + µ[Bλi,mi]) for i ∈ S. It
follows that

α =

|S|∑
i=1

ri
(lS,n)i

(lS,n)1,...,(lS,n)|S|∑
j1,...,j|S|=1

|S|∏
k=1

(−µ)jk

x
∑
s∈S



0

. . .

0

Bjsλs,ns

0

. . .

0




42

=

|S|∑
i=1

ri
(lS,n)i

∑
j≤lS,n

(−µ)
∑
k∈S jk

x
∑
s∈S



0

. . .

0

Bjsλs,ns

0

. . .

0




for x ∈ Mn×m(Fq) (a block matrix with block k of size uk ×mk). Since we have
ri
lS,n
6= 0, i.e. not divisible by p, we obtain all elements in Im(gS,n, U) in this way.

Remark 4.2.11. The above lemma only deals with maps f such that [f1] has full
rank and [f2] is of jordan normal form. We further only deal with endomorphisms.
Dealing with endomorphisms is however not problematic since we can just embed
(V,−) and (W,−) into the the bigger functor. We might only add finitely many
indecomposable projectives to the kernel.
Therefore, the indecomposable cases 1 and 2 can be integrated in the above lemma.
We just need to add the epimorphism onto the kernel to the construcion of gS,n in
remark 4.2.9

This concludes the Kronecker case. More complicated cases such as the 3-
Kronecker case cannot be solved this way as we have no chance of determining or
parameterizing all the indecomposable cases as those algebras are wild.

5 Approaches to coherence

Before we start to document our attempts, we want to recall the definition of
coherence and give a reason why it is interesting to consider it. Though it is not
possible to show that the category Fqf.g. is in fact coherent or even abelian, we
want to use this section to give some motivation why this could be true at all.

Definition 5.0.1. A functor F in the category Fq is finitely presented if it is the
cokernel of a representable morphism. So we have a sequence

P1
(f,−)

// P0
// // F // 0

Definition 5.0.2. A functor F in the category Fq is coherent if it is finitely
generated and its finitely generated subfunctors are again finitely presented.
The category Fq is coherent if all the finitely generated projectives are coherent.

Proposition 5.0.3. The following are equivalent:

1. The category Fq is coherent.

43

2. The category Fqfp is abelian.

3. The category Fq[modFq] has weak cokernels

4. Every finitely presented functor in the category Fq has a resolution by finitely
generated projectives.

Proof. M. Auslander and I. Reiten claim in [AR74] that this is well known, but
we will give a proof anyway.
1⇒ 4: Let Fq be coherent and F be finitely presented. Then F = coker(f,−) for
some (f,−) : P1 → P0. Then Im(f,−) is a finitely generated subfunctor of P0. In
accordance with the coherence it follows that Im(f,−) is again finitely presented
which is equivalent to ker(f,−) being finitely generated. Since (f,−) is chosen at
random, we can now inductively construct a projective resolution for all finitely
presented F in Fq.
1⇐ 4 Let G be a finitely generated subfunctor of some P0 then G = Im(g,−) for
some (g,−) : P1 → P0. Since coker(g,−) has a resolution by finitely generated
projectives, it especially follows that ker(g,−) is finitely generated, and therefore,
G = Im(g,−) is finitely presented.
3 ⇔ 4: Let Fq[modFq] have weak cokernels. Then for each f : V → W in
Fq[modFq] there exists a vector space U and a homomorphism g : W → U such
that each h : W → U ′ with h ◦ f = 0 factors through g.

U

∃
��

Wg
oo

h~~

V
f
oo

U ′

If now embed this into Fq via the Yoneda embedding we get:

(U,−)
(g,−)

// (W,−)
(f,−)

// (V,−)

(U ′,−)
(h,−)

99

∃

OO

Which is equivalent to ker(f,−) being finitely generated for all representable mor-
phisms (f,−). The last statement is furthermore equivalent to the existence of a
projective resolution for each finitely generated functor in Fq.
The converse is shown similarly.
2⇔ 4: Let Fqf.p. be abelian. This implies that for each given morphism φ : F → G
for finitely presented F and G the functors kerφ and cokerφ are again finitely pre-

44

sented. So we can obtain the following commutative diagram

P ′1

��

// P1

��

// Q1

��

// Q′1

��

P ′0

��

// P0

��

(f,−)
// Q0

��

// Q′0

��

kerφ // F
φ
// G //// cokerφ

But this is equivalent to ker(f,−) being finitely generated. Since we can obtain all
representable morphisms (f,−) in that way, we conclude that ker(f,−) is finitely
generated for all of them. This again yields projective resolutions for all finitely
generated functors in Fq.
The converse is again shown similarly.

5.1 The radical

In this subsection we discuss two definitions of the radical of a functor. Though it
might not seem that way it will turn out that those two definitions will coincide.
In our category this is one thing less to worry about. The concept we use works
in very general cases. Therefore we introduce it in all generality and deduce the
result for our category Fq afterwards.
We want to work with the following settings: Let K be a field and C a Hom-finite
K linear category.

Definition 5.1.1. We can define the functor

Fun : C → K- mod

as the category of K-linear functors.

The radical of a Functor F can now be defined in the following ways.

Definition 5.1.2. Classically, we can define for a functor F ∈ Fun:

radF =
⋂

G⊂F, G maximal

G

For the second, the categorical description of the radical, we need to go into
further details.

45

Definition 5.1.3. Let C be an additive category and X, Y ∈ C then

radC(X, Y) = {φ ∈ HomC(X, Y)|φ ◦ ψ ∈ J(EndC(Y))∀ψ ∈ HomC(Y,X)}

with J(EndC(Y)) the Jacobson radical of the endomorphism ring.

Proposition 5.1.4 ([Kra], Proposition 1.8.1). The radical radC is the unique two-
sided ideal of C such that radC(X,X) = J(EndC(X)) for every object X ∈ C.

This enables us to state the following.

Definition 5.1.5. Let F ∈ Fun then

RadF (Y) =
∑

f∈radC(X,Y)

Im (F (f) : F (X)→ F (Y))

with radC(X, Y) being the radical in the domain category C.
Therefore we can regard RadF (Y) as precomposing F (Y) with elements in radC
and will also use the notation RadF = radC ·F which is borrowed from ring-theory.

Before we can prove equality, we first need to introduce further characteristics
of the category Fqf.g.. We need the following definition and the following lemmata.

Definition 5.1.6. Let C be an additive category and radC its radical. We say
the quotient C ∼= C/ radC is semi-simple, if EndC(X) ∼= EndC(X)/J(EndC(X)) is
semi-simple for all X ∈ C.

Lemma 5.1.7. The category C is semi-simple modulo its categorical radical.

Proof. For all X ∈ C the endomorphism algebra EndC(F) is finite dimensional as
C is Hom-finite. Therefore EndC(F)/J(EndC(F)) is semi-simple. As F is chosen
arbitrary, the quotient C/ radC must be semi-simple as well.

Now we want to show that radF = RadF for F in our general category Fun.
We will do so by proving the following three lemmata.

Lemma 5.1.8. It holds that F/RadF is semi simple in Fun and therefore,

rad(F/RadF) = 0⇔ radF ⊂ RadF.

Proof. In the previous lemma we have established that C/ radC is a semi-simple
category. As RadF = radC ·F we have that F/RadF is a functor on C/ radC.
Since C/ radC is semi-simple, the functor F/RadF is a semi-simple functor on
C.

46

For the proof of equality between the two radicals we need the following char-
acterization of radF

Lemma 5.1.9. Let F ∈ Fun and radF be its classic radical. Then it holds that
rad(F/ radF) = 0 and if rad(F/G) = 0 it follows that radF ⊂ G.

Proof. The book [AF10] of Anderson and Fuller is of great help here. Proposition
9.15 in [AF10] guarantees that rad(F/ radF) = 0 for any functor F ∈ Fun. For
the second assertion we take a look at Proposition 9.14 from the same book. It
tells us that for any natural transformation f : F → H we have f(radF) ⊂ radH.
In our situation this means for the canonical projection π : F → F/G we have
π(radF) ⊂ rad(F/G) = 0. Therefore, we must have radF ⊂ kerπ = G.

Lemma 5.1.10. It holds that RadF is contained in every maximal subfunctor of
F and therefore RadF ⊂ radF .

Proof. Let G be a maximal subfunctor of F . Then F/G is simple and radC ·F/G =
0. Therefore, radC ·F = RadF ⊂ G. As G is an arbitrary maximal subfunctor of
F , we have RadF ⊂ radF .

Corollary 5.1.11. It holds that RadF = radF for all F ∈ Fun.

Now we want to adapt this knowledge to the situation of the category Fq.

Lemma 5.1.12. RadF = radF for any F ∈ Fq.

Proof. Since the domain category Fq[modFq] of Fq is Hom-finite, the quotient cat-
egory Fq[modFq]/ rad(Fq[modFq]) is semi-simple. The only thing we have to take
into the account is that Fq[modFq] does a priori not have split idempotents. But
since in the end we work with Fq, we can just pass to the idempotent completion
without doing any harm.
Application of the above lemmata for the equality of the two definitions of the
radical yields the result for Fq.

Now that we know what to think of when we talk about the radical of a
functor, we turn back to projective functors. Corollary 2.1.12 especially implies
that a finitely generated projective P must also have a finitely generated radical
as simple functors are the unique tops of indecomposable projectives. This has
some interesting consequences which are a subject of the next subsection.

5.2 Properties of the radical

In this subsection we will show two nice properties of the radical of a functor.

47

Lemma 5.2.1. Let Pλ be an indecomposable projective, then radPλ is finitely
generated.

Proof. Since Pλ/ radPλ = Fλ is simple and therefore polynomial, it has a resolution
by finitely generated projectives. This is a consequence of [Sch94, Theorem 5.3.8]
respectively [FLS94, Section 10].

Lemma 5.2.2. Let F be a finitely generated functor. Then radF is finitely gen-
erated as well.

Proof. F being finitely generated means that it admits a projective cover P . The
projective cover P is calculated by looking at topF ∼= F/ radF . The cover P then
will have the same top as F . We get the following commutative diagram.

P // //

����

topP

∼=
��

F // // topF

We can complete either of the rows into a short exact sequence by mentioning the
kernel on the left hand side, the kernel being nothing else but the radical.

0 //

p0

��

radP

p1
��

// P // //

p2
����

topP

∼=p3

��

// 0

0 // radF // F // // topF // 0

The map p1 exists and is well defined because rad is a functor. Now p0 and p2 are
epimorphisms and p3 is a monomorphism. By the 4-lemma also p1 has to be an
epimorphism. Therefore radF is finitely generated since radP is.

Lemma 5.2.3. Let F be finitely generated with radr F 6= 0. Then it holds

radr+1 F (radr F.

Proof. By the Nakayama-lemma we have for any finitely generated functor G:

radG = G ⇒ G = 0

With G = radr F we get the claim of the lemma.

Something that will not be of immediate use, but is interesting enough in itself
is the infinite radical, rad∞ =

⋂
i≥0 radi, of a projective. We want to show that it

vanishes for all the indecomposable projectives. The proof is done in two steps.
Before we start we have to recall some definitions.

48

Definition 5.2.4. Let C be a category. A non-empty subcategory A is called a
Serre subcategory if it is closed under taking subobjects and quotients.

Definition 5.2.5. We denote by Serre(P) the Serre subcategory of Fq which is
generated by all the finitely generated projectives. Serre(I) is the analogue Serre
subcategory which is generated by the finitely co-generated injectives.

These Serre subcategories fit into our category Fq as follows: Let us address
the full subcategory Fqfin of Fq that consists of all functors F : modFq → modFq.
Then the Kuhn-dual D induces an autoequivalence on Fqfin that restricts to an
equivalence of Serre(P) and Serre(I).

Lemma 5.2.6. It holds that radG (G for all non-zero functors G in Serre(P).

Proof. We need to start in the category Serre(I). From the work of Kuhn [Kuh93]
[Appendix B] we know that all the injective functors in Fq and therefore all objects
in Serre(I) are locally finite. That means that we can write them as a union of
their finite length subfunctors. We especially have F =

⋃
i≥0 soci F .

We claim that the Kuhn-dual D sends the socle of a functor in Serre(I) to the top
of a functor in Serre(P), the top being defined as functor modulo its radical.
We start with a simple socle. If Fλ ↪→ Iλ and we apply D to that sequence, we get
Pλ � Fλ since D(Iλ) ∼= Pλ and simples are selfdual. An arbitrary socle might be
bigger, but it is most certainly semi-simple as socF =

∑
S S with S ⊂ F , S simple.

Since D is additive, we are done and have an equivalence socF ∼= topD(F).
By the definition of soc we can see that it will never be 0. Therefore, the top of the
dual will never be 0 as well. But this is equivalent to the claim of the lemma.

Lemma 5.2.7. It holds that rad∞ Pλ = 0 for all indecomposable projectives Pλ.

Proof. We need to start in the category Serre(I). Again from the work of Kuhn
[Kuh93][Appendix B] we know that all the injective functors in Fq and therefore
all objects in Serre(I) are locally finite. That means we can write them as the
union of their finite length subfunctors. We especially have F =

⋃
i≥0 soci F .

We have the following exact sequence.

0→ soci F → F → F/ soci F → 0

The Kuhn dual sends this to

0→ radiDF → DF → DF/ radiDF → 0

As F =
⋃
i≥0 soci F this implies that rad∞DF =

⋂
i≥0 radiDF = 0.

Corollary 5.2.8. It holds that rad∞G = 0 for all functors G in Serre(P).

49

Lemma 5.2.9. Let F be finitely generated, then radr F/ radr+1 F is a polynomial
functor.

Proof. The duality functor D transfers the exact sequence

0→ radr+1 F → radr F → radr F/ radr+1 F → 0

to the sequence

0→ socrDF → DF/ socrDF → DF/ socr+1DF → 0.

Since socrDF is polynomial, so is radr F/ radr+1 F .

5.3 Behavior of the dimension of coker(f,Fnq)
In this subsection we attempt to describe the growth of the dimension of a rep-
resentable functor in the category Fq. We mostly use the same way as in the
previous subsection and try to generalize the lemmata.
For all of this section we fix F = coker(f,−) with (f,−) : (V,−) → (W,−).
Lemma 2.1.19 is the reason why we can restrict ourselves to this case. The general
case for arbitrary representable f would follow immediately, but there are some
difficulties which could not be overcome.
First of all we would like to have an analogue of lemma 3.1.15. We know that as
∆(W,−) and ∆(V,−) are again representable, the same must hold for ∆(f,−).
But we cannot say if ∆(f,−) : ∆(V,−)→ ∆(W,−) will decompose into pieces of
the form ∆(fi,−) : (V,−)→ (W,−). So let us summarize what we can say so far.

Lemma 5.3.1. Let f = ((f1,−), . . . , (ft,−)) :
⊕t

i=1(Vi,−) → (W,−), Vi,W ∈
modFq arbitrary, then

1. Im(f) =
∑t

i=1 Im(fi,−) with (fi,−) : (Vi,−)→ (W,−).

2. There is a k ∈ N and a map g :
⊕k

i=1(V,−) → (W,−) such that Im(h) ⊂
Im(g) for all h :

⊕t
i=1(V,−)→ (W,−) with t > k.

3. For fixed V, W there are only finitely many direct summands, depending on
V and W , of which the image of h can consist of.

Proof. For the first assertion we fix Fnq and choose α to be an element of (W,Fnq)

with (fi,Fnq)(β) = α. Then (0, . . . , 0, β, 0, . . . , 0) ∈
⊕t

i=1(Vi,−), with β in the i-th
component, is a preimage of α under f .
The second assertion follows from the first assertion together with the fact that
(V,W) is finite as a set.
Assertion three is then a combination of the first two.

50

Example 5.3.2. In the above lemma we do not necessary have that Im(f) is a
direct summand of Im(g).
Let q = 2, V = F2

2 and W = F2. If we now choose f : (F2
2,−) � radP (Λ1) and

g : (F2
2,−) � (F2,−), then we have Im(f) ⊂ Im(g) but not as a direct summand;

cf. example 2.2.2.

We can also dualize this construction.

Lemma 5.3.3. Let

f =


(f1,−)
(f2,−)

...
(fm,−)

 : (V,−)→
m⊕
j=1

(Wj,−)

with V,Wj ∈ modFq arbitrary, then

1. ker(f) =
⋂m
j=1 ker(fj,−) with (fj,−) : (V,−)→ (Wj,−).

2. There is a k ∈ N and a map g : (V,−) →
⊕k

i=1(W,−) such that Im(f) ↪→
Im(g) (as a direct summand) for all f : (V,−)→

⊕m
j=1(W,−) with m > k.

3. For fixed V, W there are only finitely many direct summands, depending on
V and W , of which the image of f can consist of.

Proof. For the first assertion it is not hard to see that for fixed Fnq it is f(Fnq)(α) = 0
if and only if (fj,Fnq)(α) = 0 ∀ j. Therefore, ker(f(Fnq)) =

⋂m
j=1 ker(fj,Fnq).

Assertion two requires us to take care of one specific detail. Let g : (V,−) →
(W,−) ⊕ (W,−) with (g1,−) = (g2,−). Then the composition with a projection
on either component yields an isomorphism Im(g) ∼= Im(gi,−). Therefore, we can
assume that gi 6= gj for i 6= j. We can further assume k = |(V,W)|. Now we take
a map of sets σ : {1, . . . ,m} → {1, . . . , k} with gσ(i) = fi.
Together with the first part of the proof of assertion two, this does not only yield
a direct embedding Im(f) ↪→ Im(g) but tells us, via σ, how it looks like.
The third part, analogue to lemma 5.3.1, is a combination of part one and two.

The next step would be to plug those two sides together, but unfortunately
this is not possible. We give the conjectured proposition and show where the
proof fails.

Conjecture 5.3.4. Let

f =


(f11,−) · · · (f1t,−)
(f21,−) · · · (f2t,−)

...
(fm1,−) · · · (fmt,−)

 :
t⊕
i=1

(V,−)→
m⊕
j=1

(W,−).

51

Then

1. Im(f) =
∑t

i=1 Im(fi) with fi : (V,−)→
⊕m

j=1(W,−).

2. There are k,m ∈ N and a map g :
⊕k

i=1(V,−) →
⊕m

j=1(W,−) such that

Im(f) ⊂ Im(g) for all f :
⊕t

i=1(V,−)→
⊕s

j=1(W,−) with t > k and s > m.

3. For fixed V, W there is a finite list S of subfunctors of (W,−) that depends
only on V and W such that for all k, m and maps g we have that Im(g) ∼=⊕

S∈S S
dS , dS ∈ N0.

Motivation: The first assertion is a direct consequence of lemma 5.3.1 and true
even though the other assertions are not.
From lemma 5.3.1 and its dual, we know that there can only be a finite number
of fi : (V,−) →

⊕m
j=1(W,−) until the image cannot grow bigger anymore as well

as there are only finitely many possibilities of how fi can look like.
The functors S would then be given by the finitely many indecomposable direct
summands of Im(f) =

∑t
i=1 Im(fi). There are only finitely many indecomposable

direct summands since the image is finitely generated. Finally, as there are only
finitely many fi, the list of all indecomposable direct summands of all fi has to be
finite for each combination of t and s.
The problem arising is that the number of fi depends on either t or s. If we could
fix one of them as in the previous lemmata, this proof would work. But for the
proof of assertions two and three we need precisely the independence of t and s.

For our purposes it would however suffice to assume a weaker version of this
conjecture.

Conjecture 5.3.5. Let

(f,−) : (V,−)→ (W,−).

Then there is a finite list S of subfunctors of (W,−) that depends only on (f,−)
such that for all k ∈ N Im(∆k(f,−)) ∼=

⊕dS
S∈S , dS ∈ N0.

For the remainder of the subsection we will assume conjecture 5.3.5. If we do
so, we get the following corollary.

Corollary 5.3.6. The cardinality of the set S of all possible direct summands
of the image any representable morphism ∆k(f,−) : ∆k(V,−) → ∆k(W,−) is

restricted by N = 2q
qdimV ·dimW

.

Proof. The number N is the cardinality of the set of all maps ∆k(f,−) in conjec-
ture 5.3.5. The set of all maps (f,−) is the set of all subsets of (V,W) viewed as
a set.

52

If the previously stated conjecture 5.3.5 would be true, we could now derive an
analogue of lemma 3.1.15. We should remark that since ∆ is an exact functor, it
commutes with images.

Lemma 5.3.7. There is a k ∈ N such that there exists a partition J∪̇I =
{0, . . . , k} and positive integers mi, 0 ≤ i ≤ k and mk 6= 0, with⊕

j∈J

∆jIm(f,−)⊕mj ∼=
⊕
i∈I

∆iIm(f,−)⊕mi .

Proof. Let
S = {S, S ⊂ ∆iIm(f,−) direct summand}/ ∼= .

Conjecture 5.3.5 gives us that this set should be finite. Therefore, the Q vector
space X = 〈S〉Q is finite dimensional.
So there must be a k ∈ N such that the set {∆iIm(f,−), i ≤ k}, viewed as elements
in X, is linear dependent in X. Therefore, there are mi ∈ N for 0 ≤ i ≤ k, mk 6= 0,
such that⊕

j∈J

∆jIm(f,−)⊕mj ∼=
⊕
i∈I

∆iIm(f,−)⊕mi , with J∪̇I = 0, . . . , k.

With out loss of generality we can assume k ∈ J .

Assuming conjecture 5.3.5 we could further prove.

Lemma 5.3.8. φ(G, n) is of closed form for all finitely presented functors G in
Fq.

Proof. Let H = Im(f,−); H being of closed form is equivalent to a finitely
presented functor being of closed form. Then by the previous lemma we have⊕

j∈J ∆jIm(f,−)⊕mj ∼=
⊕

i∈I ∆iIm(f,−)⊕mi . Since this sum is direct, it follows:∑
j∈J

mjφ(Im∆j(f,−), n) =
∑
i∈I

miφ(Im∆i(f,−), n)

We will again write φ(∆kH,n) as a function in φ(H,n) via

φ(∆kH,n) =
k∑
j=0

(
k

j

)
(−1)k−jφ(H,n+ j)

If we plug this in on both sides of the recursion formula for ∆kIm(f,−), we get

∑
j∈J

mj

j∑
l=0

(
j

l

)
(−1)j−lφ(H,n+ l) =

∑
i∈I

mi

i∑
l=0

(
i

l

)
(−1)i−lφ(H,n+ l).

53

By reordering we will in fact obtain a recursion formula for φ(H,n + k). The
coefficient for φ(H,n + k) is not zero. In fact it is mk. Because of theorem 3.1.3
this is equivalent to φ(H,n) being of closed form.

If we now look at the general case of an arbitrary morphism f = (fij,−)ij
between direct sums of standard projectives. We need to show this case to obtain
coherence for the category Fq. It might look like there is a lot more work to do.
But that is not the case since we have lemma 2.1.19.

Corollary 5.3.9. Let f be a matrix of representable morphisms MorFq. Then
φ(Imf , n) is of closed form if φ(Im(f,−), n) is of closed form for all representable
morphisms (f,−).

Proof. We know that φ(Im(f,−), n) is of closed form whenever (f,−) : (V,−) →
(W,−).
Now let f be arbitrary with P1 =

⊕s
i=1(Vi,−) and P2 =

⊕t
j=1(Wj,−). The

structure of the decomposition of (Fmq ,−) into indecomposable projectives admits
a section

P1 ↪→ (V ,−)⊕ F⊕(s−1)
q

where Fq is the constant functor and (V ,−) is a standard projective as constructed
in lemma 2.1.19 (W is the analogue on the W -side). Therefore, we obtain the
following commutative diagram:

ker(f)� g

ιker
��

� � // P1� g

ιV
��

f // P2
π // //

� g

ιW
��

coker(f,−)

ker(f,−)

πker

JJ JJ

� � // (V ,−)⊕ F⊕(s−1)
q

πV

II II

([f],−)
// (W,−)⊕ F⊕(t−1)

q

πW

II II

π // // coker(f,−)

The maps are defined as follows: π = π ◦ πW which has again a finitely generated
kernel. Now choose (f,−) : (V ,−) � kerπW . We already derive the desired result
since (f,−) is covered by lemma 5.3.8 up to the constant part. Therefore, the claim
holds for the images of arbitrary matrices of representable morphisms.

If we now knew that finitely presented functors are of closed form, we would
again like to know how the closed form looks like.

Lemma 5.3.10. In φ(F, n) we have αi = qi for all F finitely presented. If we
assume conjecture 5.3.5.

Proof. F is a factor of a finite direct sum of indecomposable projectives and the
subfunctor that is to be factored out is also finitely generated. For indecomposable
projectives the this was shown in lemma ??.

54

Corollary 5.3.11. Let (f,−), (g,−) be representable morphisms in Fq such that
the composition f ◦g is defined. We have that ker(f,−) and ker(g,−) are of closed
form. It follows that ker(f ◦ g,−) is also of closed form.

Proof. Let f =
∑s

i=1 λi[fi] and g =
∑t

j=1 µi[gi] then we have

f ◦ g =
s∑
i=1

t∑
j=1

λiµj[fi · gj] =
s·t∑
l=1

νl[hl].

But the kernels of such morphisms are of closed form.

So far we have said nothing about how we get to polynomials in the closed form.
The following example shows how to get arbitrary high degrees of polynomials for
q0. It is also a hint why the closed form for finitely presented functors exists after
all.

Example 5.3.12. These following results have been obtained by using the com-
puter. A direct calculation by hand is rather complicated but manageable. Let
q = 2 and

f =

[
1

0

]
+

[
0

1

]
+

[
1

1

]
,

then φ(Im(f,−), n) = 2n − n.
We calculate the dimension of the image of (f,−) by taking a look at the elements
of its target space (F2,−). Let [α] ∈ (F2,Fn2) have at least two nonzero entries.
Then we can decompose α into α1 and α2 both not equal to [0] and wlog. α1 with
only one nonzero entry. The element (α1, α2) ∈ (F2

2,Fn2) is then a preimage under
(f,Fn2) of α+α1 +α2. If α ∈ (F2,Fn2) does only have one non-zero entry, we cannot
use this construction to get to a preimage. So when passing to the cokernel all
α with only one non-zero entry will generate the cokernel. But these α, viewed
as a subset of Fn2 , have a name: the canonical basis {ei, 1 ≤ i ≤ n}. So the set
of all [ei], 1 ≤ i ≤ n, generates the cokernel of (f,Fn2) which is therefore at most
n-dimensional.
Now we want to show that those residue classes are indeed linear independent in
the cokernel. We have

∑n
i=1 λi[ei] = 0 in the cokernel if

∑n
i=1[ei] =

∑t
j=1 µj([α] +

[α1] + [α2]) but this is not possible since by the previous construction at least one
of the tree terms [α], [α1], [α2] has to have at least two non-zero entries, unless all
are [0]. As φ((F2,−), n) = 2n this yields the result.
We also get

f =

1
0
0

+

0
1
0

+

0
0
1

+

1
1
0

+

1
0
1

+

0
1
1

+

1
1
1


55

with φ(Im(f,−), n) = 2n − 1
2

(n2 + n).
The calculation is analogue for three entries not zero. Therefore, the cokernel is
generated by the residue classes

[ei], 1 ≤ i ≤ n and [ei + ej], 1 ≤ i 6= j ≤ n.

Counting those elements yields a cokernel that is of dimension 1
2
(n − 1)n + n =

1
2
(n+ 1)n.

In this manner we can construct functors as cokernels of arbitrary high polynomial
degrees.

5.4 Conceptual approach by using the closed form

In this subsection we attempt to prove that the kernels of representable morphisms
in the category Fq are finitely generated. This is equivalent to the existence of
projective resolutions of finitely presented functors where all the projectives are
finitely generated.
The approach uses the existence of the closed form for the finitely presented func-
tors in Fq which we derive by assuming conjecture 5.3.5 in the previous subsection.
In addition, since it is not clear if the closed form actually exists, the attempt runs
into problems on its own. However there are some statements that can still be
made even without assuming the closed form.

Lemma 5.4.1. Let (f,−) and (g,−) be representable morphisms in Fq such that
(f,−) ◦ (g,−) = 0 and that φ((ker(f,−), n) = φ(Im(g,−), n). Then ker(f,Fnq) =
Im(g,Fnq)∀n.

Proof. If φ(ker(f,−), n) = φ(Im(g,−), n)∀n ∈ N0, we have equivalence since
Im(g,−) ⊂ ker(f,−).

Lemma 5.4.2. Let χ : (V,−) → F for some finitely generated F . For all U ∈
modFq we can find a pair (L, g) such that

(L,U)
(g,U)

// (V, U)
χ(U)

// F (U)

is exact.

Proof. For all U ∈ modFq, (V, U) is a finite length GL(U) and End(U) module.
Therefore, kerχ(U) must have a finite top consisting of simple End(U) modules
Mλ. We know that simple End(U) modules are in 1:1 correspondence with simple
functors Fλ of restricted weight. With Pλ the projective cover of Fλ we get:⊕

Mλ
oo 1:1 //

⊕
Fλ

⊕
Pλ

OOOO

56

Now [Kuh94, Lemma 3.7] guaranties that Pλ(U) is a projective End(U) module.
Since the Mλ are simple, Pλ(U) must be their projective cover. This yields the
following commutative diagram.

kerχ(U) // //
⊕

Mλ

⊕
Pλ(U)

OOOO

ϕ

ff

The map ϕ must exist because of the universal property of projectives. It must
also be surjective since Pλ(U) is a projective cover of Mλ.
Again by [Kuh94, Lemma 3.7] we get

HomFq(⊕Pλ, kerχ) ∼= HomEnd(U)(⊕Pλ(U), kerχ(U)).

This means that ϕ from the above diagram must come from a ϕ′ completing the
following:

kerχ // //
⊕

Fλ

⊕
Pλ

OOOO

ϕ′

cc

So far
⊕

Pλ is just an arbitrary projective but it can be easily embedded as a
direct summand into a standard projective (L,−). Together with the canonical
inclusion of kerχ into (V,−) we can obtain

(L,−)

��

(g,−)
// (V,−)

⊕
Pλ

ϕ′
// ker(χ,−)

OO

where (g,−) is just the composite of the other maps. It must be representable
since HomFq((L,−), (V,−)) ∼= (V, L). Because of the choice of (g,−) we clearly
have χ ◦ (g,−) = 0 and since χ is surjective, we can also derive that Im(g, U) =
kerχ(U).

The next lemma guaranties that if we find (L, g) to resolve kerχ(U), this L
will also do for U ′ ⊂ U .

Lemma 5.4.3. Let F be finitely generated via

m⊕
i=1

(Vi,−)
χ−−→ F → 0.

57

By the previous lemma we can always find (W,−) and (f,−) such that χ◦(f,−) =
0. For fixed Fnq this can be chosen such that the sequence

0→ Im(f,Fnq)→
m⊕
i=1

(Vi,Fnq)→ F (Fnq)→ 0

is exact. Then it holds that this sequence is also be exact for Fn−kq .

Proof. By applying the exact functor ∆ to the sequence

Im(f,−)→
m⊕
i=1

(Vi,−)→ F (−)

and evaluating at Fn−1
q we obtain the following commutative diagram:

0

��

0

��

0

��

Im(f,Fn−1
q)

��

a //
⊕m

i=1(Vi,Fn−1
q)

��

b // F (Fn−1
q)

��

0 // Im(f,Fnq)

��

//
⊕m

i=1(Vi,Fnq)

��

// F (Fnq)

��

// 0

∆Im(f,Fn−1
q)

��

c // ∆
⊕m

i=1(Vi,Fn−1
q)

��

d // ∆F (Fn−1
q)

��

0 0 0
Where the middle row is exact. Now it is straight forward to show that a is
injective and d is surjective. The injectivity of c follows because c = ∆a and the
surjectivity of b is guaranteed by χ being an epimorphism.
It remains to show that the first and second row are exact. This can be done via
counting of dimensions. It holds that:

φ(Im(f,−), n) + φ(F, n) = φ

(
m⊕
i=1

(Vi,−), n

)
Since the columns are exact this can be reformulated to

φ(Im(f,−), n− 1) + φ(∆Im(f,−), n− 1) + φ(F, n− 1) + φ(∆F, n− 1) =

φ

(
m⊕
i=1

(Vi,−), n− 1

)
+ φ

(
∆

m⊕
i=1

(Vi,−), n− 1

)

58

Since χ ◦ (f,−) = 0 we get that

φ(Im(f,−), n− 1) + φ(F, n− 1) ≤ φ

(
m⊕
i=1

(Vi,−), n− 1

)
and

φ(∆Im(f,−), n− 1) + φ(∆F, n− 1) ≤ φ

(
∆

m⊕
i=1

(Vi,−), n− 1

)
.

So there has to be equality in both equations.
To get the result for arbitrary Fn−kq we iterate this process.

Remark 5.4.4. Due to additivity this also holds for f : P1 → P2.

Assuming conjecture 5.3.5 and the result that for a finitely presented functor
φ(F, n) is of closed form, we could further prove.

Lemma 5.4.5. Let (f,−) : (V,−) → (W,−) be a representable morphism. Then
there exist mi ∈ N for 0 ≤ i ≤ k such that⊕

i∈I

mi∆
i ker(f,−) ∼=

⊕
j∈J

mj∆
j ker(f,−)

with I∪̇J = {0, . . . , k}.

Proof. By lemma 5.3.7 we have the same assertion for the image of a representable
morphism. We also have that ∆(V,−) ∼= (V,−)⊕q

dimV −1. So we can find positive
integers mi for 0 ≤ i ≤ k where mk 6= 0 and I∪̇J = {0, . . . , k} such that:⊕

j∈J

mj∆
j ker(f,−) ∼=

⊕
i∈I

mi∆
i ker(f,−)

and ⊕
j∈J

mj∆
j(V,−) ∼=

⊕
i∈I

mi∆
i(V,−)

Therefore, we have the following diagram of short exact sequences with commuting
squares:

0 //
⊕

i∈I mi∆
i ker(f,−) //

c

��

⊕
i∈I mi∆

i(V,−) //

∼=
��

⊕
i∈I mi∆

iIm(f,−) //

∼=
��

0

0 //
⊕

j∈J mj∆
j ker(f,−) //

⊕
j∈J mj∆

j(V,−) //
⊕

j∈J mj∆
jIm(f,−) // 0

Since the first two maps are isomorphisms, the map c also has to be an isomor-
phism.

59

Our hope is now that this recursive definition of the kernel of a representable
morphism is able to help us to control its behavior. We would like to prove the
following conjecture; a suggested proof is attached.

Conjecture 5.4.6. Let ker(f,−) ⊂ (V,−) be a kernel of a representable morphism
(f,−) : (V,−)→ (W,−). Then ker(f,−) is finitely generated.

Motivation: Following lemma 5.3.7 there exists a k′ ∈ N and positive integers
mi, 0 ≤ i ≤ k′ and mk′ 6= 0, such that⊕

j∈J ′
m′j∆

j ker(f,−) ∼=
⊕
i∈I′

m′i∆
i ker(f,−);

where I ′∪̇J ′ = {0, . . . , k′}.
Let further (L,−) be a projective standard such that (g,Fsq) : (L,Fsq) � ker(f,Fsq)
for some s > k. Since ∆(L,−) ∼= (L,−)⊕q

dimL−1, we can find positive integers mi

for 0 ≤ i ≤ k where mk 6= 0 and k = k′ + 1 as well as I∪̇J = {0, . . . , k} such that:⊕
j∈J

mj∆
j ker(f,−) ∼=

⊕
i∈I

mi∆
i ker(f,−)

and ⊕
j∈J

mj∆
j(L,−) ∼=

⊕
i∈I

mi∆
i(L,−)

Since (g,Fnq) is surjective for n ≤ s and ∆F ∼= F (Fq⊕−)/F , we have that ∆(g,Fnq)
is surjective for n ≤ s− k. Therefore, we get:

⊕
i∈I mi∆

i(L,Fs−kq)
mi∆

i(g,Fs−kq)
// //

∼=
��

⊕
i∈I mi∆

i ker(f,Fs−kq) //

∼=
��

0

⊕
j∈J mj∆

j(L,Fs−kq)
mj∆

j(g,Fs−kq)
// //
⊕

j∈J mj∆
j ker(f,Fs−kq) // 0

Without loss of generality we can assume that k ∈ J , so if we pass from Fs−kq to
Fs−k+1
q , we obtain:

⊕
i∈I mi∆

i(L,Fs−k+1
q)

mi∆
i(g,Fs−k+1

q)
// //

∼=
��

⊕
i∈I mi∆

i ker(f,Fs−k+1
q) //

∼=
��

0

⊕
j∈J mj∆

j(L,Fs−k+1
q)

mj∆
j(g,Fs−k+1

q)
//
⊕

j∈J mj∆
j ker(f,Fs−k+1

q) // 0

In this case we so far know that
⊕

i∈I mi∆
i(g,Fs−k+1

q) because its image is fully
described (g,Fiq) with i ≤ s. The commutativity can be used to obtain that

60

⊕
j∈J mj∆

j(g,Fs−k+1
q) must be also surjective. At the level of dimensions this

yields ∑
j∈J

mjφ(∆Im(g,−), s− k + 1) =
∑
j∈J

mjφ(∆ ker(f,−), s− k + 1).

The recursive definition of φ(∆iF, n) (example 3.1.4) can be used to reformulate
this to∑

j∈J

ajφ(Im(g,−), s− k + 1 + j) =
∑
j∈J

ajφ(ker(f,−), s− k + 1 + j).

Where ak = mk 6= 0. Since we already know that φ(Im(g,−), s − k + 1 + j) =
φ(ker(f,−), s−k+1+j) for j < k this yields φ(Im(g,−), s+1) = φ(ker(f,−), s+1)
and therefore, Im(g,Fs+1

q) ∼= ker(f,Fs+1
q).

If this is true, we could iterate this process and obtain that we have an epimor-
phism (L,Fnq) � ker(f,Fnq) for all n ∈ N. Since by construction (L,−) is finitely
generated, it would appear that it holds that ker(f,−) is finitely generated as well.

It may not appear obvious that this is false. The problem rests in the behavior
of the maps ∆i(g,−). Of course, those remain surjective when being evaluated at
sufficiently small Fnq . Also, we have an l ∈ N a partition I∪̇J = {0, . . . , l} and
positive integers mi for 0 ≤ i ≤ l with ml 6= 0 such that

⊕
i∈I mi∆

iIm(g,−) ∼=⊕
j∈J mj∆

jIm(g,−). But we have no chance to restrict l independent of dimL.
Therefore, it is not known if it is possible to find a common recursion for both
Im(g,−) and ker(f,−) such that⊕

i∈I mi∆
iIm(g,F1

q)
∼= //

∼=
��

⊕
i∈I mi∆

i ker(f,F1
q) //

∼=
��

0

⊕
j∈J mj∆

jIm(g,F1
q) //

⊕
j∈J mj∆

j ker(f,F1
q) // 0

So we can conclude that this approach cannot be used. Although it would have
some very nice consequences.

Corollary 5.4.7. Let f : P1 → P2 be a matrix representable morphisms in Fq.
Then ker(f) is finitely generated.

This result would also generalize the results of L. Schwartz which we stated in
theorem 2.1.11. Firstly we can observe that functors of finite length have resolu-
tions by finitely generated projectives. Since dimF (Fnq) is a polynomial in n, all
the functions of the dimensions of images and kernels involved must be of closed
form.

61

The more general result is that F has a resolution by finitely generated projectives
if ∃k s.t. ∆kF is a finitely generated projective. If ∆kF = P then dimP (Fnq) is of
closed form. And since F is part of the following sequence

P = ∆kF // ∆F k(Fq ⊕−)

''

// · · · // ∆F (Fq ⊕−) // F

∆k−1F

;;

we see that dimF (Fnq) must also be of closed form.

5.5 Semi-direct approach

In this subsection we will try to approach coherence by using a method that relies
on both, the closed form and explicitly calculated representable morphisms (g,−)
such that g ◦ f = 0. We must assume that φ(ker(f,−), n) is of closed form for any
representable morphism (f,−).
For all of this subsection we abbreviate F = ker(f,−) for some (f,−) : (V,−) →
(W,−). We further set G = Im(g,−) for an approximation (g,−) : (L,−) →
(V,−) such that (f,Fnq) ◦ (g,Fnq) is exact for n ≤ N . The map (g,−) will be
obtained as in lemma 5.4.2.

Remark 5.5.1. Since φ(F, n) and φ(G, n) are of closed form, there are d, d′ ∈ N
and ai, bi ∈ C such that

φ(F, n+ d) =
d−1∑
i=0

aiφ(F, n+ i) respectively φ(G, n+ d) =
d′−1∑
i=0

biφ(G, n+ i).

For coherence we would now need that φ(F, n) = φ(G, n) for all n ∈ N. But
the closed form allows us to restrict to a finite number of n, namely those smaller
or equal to d. So our hope is that if

φ(F, n) = φ(G, n)∀n ≤ d

that we can follow φ(F, n) = φ(G, n)∀n ∈ N. But sadly, there is no chance to a
priori determine d′ or restrict it. Therefore, we are in the same situation as in the
previous subsection and cannot proceed any further with this approach. But there
are still some more things to say.

Remark 5.5.2. Let H = F/G with φ(H,n) =
∑s

i=0 pi(n)qin. Now we choose
N ∈ N such that both φ(H,N) 6= 0 and all pi(N) 6= 0. If we use lemma 5.4.2 again
to find an approximation G′ = Im(g′,−) such that g′◦f = 0 and φ(G′, n) = φ(F, n)
for n ≤ N , then we get

G (G′ +G ⊂ F.

62

Lemma 5.5.3. Let H ′ = F/(G′ + G) with G and G′ as before, then it holds
that φ(H ′, n) ≤ φ(H,n) for all n and we can further obtain from the closed forms

φ(H,n) =
∑s

i=0 pi(n)qin and φ(H ′, n) =
∑s′

i=0 p
′
i(n)qin that it must hold that s′ ≤ s

and deg ps ≥ deg p′s.

Proof. Since G (G′ +G it is obvious that φ(H ′, n) ≤ φ(H,n) for all n as φ(G′ +
G, n) ≥ φ(G, n) for all n. If we now assume that s′ > s then we would end up with
φ(H ′, n) > φ(H,n) for large enough n. The same can be obtained for the degree
of the leading polynomial.

It is however not possible to make any statement on how G′ looks like. Lemma
5.4.2 barely gives us the existence of such a finitely generated subfunctor of F .
But we do not know what happens to the closed form. To be more precise, we
cannot prove anything better than s′ ≤ s in terms of the leading non zero qn term.
Another hope would be that we would at least have deg ps > deg p′s. As the degree
of any polynomial is finite, after finitely many approximations as in lemma 5.4.2
we would be able to archive s′ < s. But all attempts to show this have also been
running into difficulties and deg ps ≥ deg p′s is the best we could show.

Corollary 5.5.4. Let φ(H,n) =
∑s

i=0 pi(n)qin and φ(H ′, n) =
∑s

i=0 p
′
i(n)qin with

φ(H ′, n) < φ(H,n) for large n then there must be at least one polynomial p′i such
that p′i(n) < pi(n) for large n.

The problem, that is described in the above corollary, is that if pi(n)′ < 0
for large enough n being smaller than another polynomial, can also mean that
deg p′i > deg pi. The definition of the length of the recursion for φ(G′ + G, n)
would of course imply that this length grows. Computationally, this would take
us away even further from φ(F, n).
The final approach that comes to mind is the following.

Conjecture 5.5.5. Let H = F/G with φ(H,n) =
∑s

i=0 pi(n)qin. Then there is

a finitely generated subfunctor F̂ of F such that G (G + F̂ ⊂ F . and φ((G +
F̂)/G, n) =

∑s
i=0 p̂i(n)qin.

Assuming this conjecture we can prove the following.

Lemma 5.5.6. Let H = F/G with φ(H,n) =
∑s

i=0 pi(n)qin then adding a finite

number of functors of the form F̂ , F̂ as described in the above conjecture, will
decrease deg ps(n) after finitely steps.

Proof. We use induction on s. For s = 0 we would obviously face the problem
that subtracting something positive from φ(H,n), this expression would become
negative for some n. This is a contradiction since H is a functor.

63

For s > 0 we can just use the functor ∆ as for some iteration of ∆kH the func-
tional φ(∆kH,n) will be a qn ·

(∑s−1
i=0 piq

in
)
. In this case pi(n) will still be a

polynomial of the same degree as pi(n) and even pi(n) =
∑k

i=0 q
ipi(n) which yields

that φ(∆kH,n) would become negative which is a contradiction.

If this lemma could be proven, we could follow this nice corollary from it.

Corollary 5.5.7. Let F ⊂ (V,−) be of closed form, then F is finitely generated.

Proof. Let G be a finitely generated approximation at F and φ(F/G, n) =∑s
i=0 pi(n)qin. Then by the previous lemma we can find finitely many functors

of the form F̂ such that G′ = G +
∑l

i=1 F̂i admits φ(F/G′, n) =
∑s

i=0 p
′
i(n)qin

with deg ps > deg p′s. Iterating this process will yield a G′′ with φ(F/G′′, n) =∑s′

i=0 p
′′
i (n)qin with s′ < s.

Further iteration yields a Ĝ with φ(F/Ĝ, n) = 0. Therefore, Ĝ = F and since Ĝ
is finitely generated, so must F be.

The problem here is that it is not clear how to construct the finitely generated
functors F̂ . The idea is that if we have H = F/G with φ(H,n) =

∑s
i=0 pi(n)qin,

then for large enough Fnq there is a subset {α} ⊂ F (Fnq), {α} 6⊂ G(Fnq) such that
all elements α ∈ {α} have s columns such that all entries in this columns can be
chosen freely without leaving the functor F and the set {α}. From such a subset
we would then construct a finitely generated subfunctor F̂ ⊂ F . But it is not clear
at all how to choose the subset that we stay in the kernel.

5.6 Inductive approach

This subsection uses the proof of L. Schwartz in [Sch94][Theorem 5.3.8]. The
enveloping method used is induction as well as an explicit description of a map
∆(f,−) respectively matrices of such maps. We are only be able to prove the
inductive start and step in a rather special case that will not lead us to a proof of
coherence in the category Fq.

Definition 5.6.1. Let (f,−) : (V,−)→ (W,−) be a representable morphism with
f =

∑s
i=1 λi[fi]. Then (f,Fq ⊕ −) is a qdimW × qdimV matrix with rows indexed

by elements w ∈ (W,Fq) and columns indexed by elements v ∈ (V,Fq) such that

(f,Fq ⊕−)w,v =
∑
i∈Iw,v

λi[fi].

The sets Iw,v are defined such that i ∈ Iw,v if v ◦ [fi] = w. The entry at 0, 0
corresponds to (f,−). Furthermore, the column indexed by v = 0 corresponds
to the direct summand (f,−) : (V,−) → (W,−) of (f,Fq ⊕ −) : (V,Fq ⊕ −) →
(W,Fq ⊕−).

64

Lemma 5.6.2. Let (f,−) : (V,−) → (W,−) be a representable morphism with
f =

∑s
i=1 λi[fi]. For the index set I(w1

w2
),(v1v2)

needed in ∆2(f,−) it holds that:

I(w1
w2

),(v1v2)
= Iw1,v1 ∩ Iw2,v2

Proof. We have i ∈ I(w1
w2

),(v1v2)
if
(
v1
v2

)
◦ [fi] =

(
w1

w2

)
. But this holds if and only if

v1 ◦ [fi] = w1 and v2 ◦ [fi] = w2. Therefore, the claim of the lemma holds.

Corollary 5.6.3. For ∆k(f,−) the index sets Iw,v are defined inductively by the
above lemma.

Lemma 5.6.4. Let (f,−) : (V,−) → (W,−) be a representable morphism with
f =

∑s
i=1 λi[fi]. Then there is a k ∈ N such that |Iw,v| < s, Iw,v index sets in

∆k(f,−), for all w, v if and only if there are no g ∈ Fq[GL(V)] and h ∈ Fq[GL(W)]
such that in f ′ = h ◦ f ◦ g =

∑t
j=1[f ′j] all the [f ′j] have one row in common.

Proof. Since [fi] 6= [fj] for all i 6= j, there must be a v ∈ (V,Fnq), for some n ∈ N,
such that v ◦ [fi] 6= v ◦ [fj] unless all [fi] have a common row, which we can find
after base change as described above. Therefore, i ∈ Iw,v and j ∈ Iw′,v for w 6= w′

which shows that |Iw,v| < s.
The other direction is obvious.

The following lemma stems from the work of L. Schwartz. Though it is very
important in the original appearance, it is not stated in this very manner, therefore,
we restate it a little.

Lemma 5.6.5. Let G be a functor in Fq then G is finitely generated if and only
if ∆G is.

Proof. This is result of the proof of Theorem 5.3.8 and Lemma 5.3.9 in [Sch94].

The importance of this lemma becomes clear in a moment. Let us first state a
conjecture for an inductive start. We will prove it a little later.

Conjecture 5.6.6. Let

f =


(f11,−) · · · (f1t,−)
(f21,−) · · · (f2t,−)

...
(fm1,−) · · · (fmt,−)

 :
t⊕
i=1

(V,−)→
m⊕
j=1

(W,−).

If (fji,−) = ([fji],−) for all j, i then ker(f) is finitely generated.

65

If we assume this conjecture, we can prove the following proposition which
would be the inductive step in an inductive proof on the length of the linear
combinations that each fji consists of.

Proposition 5.6.7. Let

f =


(f11,−) · · · (f1t,−)
(f21,−) · · · (f2t,−)

...
(fm1,−) · · · (fmt,−)

 :
t⊕
i=1

(V,−)→
m⊕
j=1

(W,−).

Where fji =
∑sji

l=1 λ
(ij)
l [f

(ij)
l] and s = max{sji}. If we know that ker(f) is finitely

generated for max{sji} < s such that there is a k such that ∆kf is a matrix of map
that are basis vectors, then ker(f) is finitely generated if there is a k ∈ N such that
in ∆kf we have max{sji} ≤ 1.

Proof. Let us assume that there is a k ∈ N such that in the matrix corresponding
to ∆kf , all components are sums of basis vectors at most length 1. The above
conjecture respectively the inductive hypothesis we know that ker ∆kf is finitely
generated. From 5.6.5 we know that this is equivalent to ker f being finitely gen-
erated.

If we could prove the inductive start given by conjecture 5.6.6, we could show
that ker f is finitely generated for any matrix of representable morphism which are
basis vectors. We now turn our attention to a proof of the inductive start.

Lemma 5.6.8. Let

f =


([f1],−)
([f2],−)

...
([fm],−)

 : (V,−)→
m⊕
j=1

(W,−).

Then ker f is finitely generated by the set

G =
⋃

J⊂{1,...,m}

(∑
I⊂J

(p− 1)|I|[g + kJI]

)
,

[g] arbitrary, with kJ∅ = 0, kJI =
∑

i∈I k
J
i such that kJi ◦ fi = 0 and for k 6∈ J we

have kJi ◦ fk = 0.

66

Proof. We use induction on m. For m = 1 we can assume [f1] to be in rank normal
form with rank r:

[f1] =



1 0 · · · 0
0 1 · · · 0
...

.
...

...
· · · 0 0 1 · · ·
0 0 0 · · · 0
...

.
...

...
0 0 0 · · · 0


The kernel and image of ([f1],−) are finitely generated projectives as [f1] is an
idempotent. The kernel is generated by elements of the form [gi, ri] + (p− 1)[gi, 0]
as claimed.
Let us now make the inductive step. We suppose that we know that for one m the
kernel of f is finitely generated. We further assume the map [fm+1] to be in rank
normal form as above. From previous computations we know that

ker f =
m+1⋂
i=1

ker([fi],−).

Now take x ∈
⋂m
i=1 ker([fi],Fnq) for some n.

x =
t∑
i=1

λi
∑

J⊂{1,...,m}

∑
I⊂J

(p− 1)|I|[gi + k
J,(i)
I]

If x ◦ [fm+1] = 0, we know that there must also be a representation

x =
s∑
i=1

µi([gi, ri] + (p− 1)[gi, 0]).

We now want to show that

G =
⋃

J⊂{1,...,m+1}

(∑
I⊂J

(p− 1)|I|[g + kJI]

)

which is a candidate for a generating set of
⋂m+1
i=1 ker([fi],Fnq) is in fact a generating

set. Suppose we have an element in this intersection of the kernels.

x =
t∑
i=1

λi
∑

J⊂{1,...,m}

∑
I⊂J

(p− 1)|I|[gi + k
J,(i)
I] =

t′∑
i=1

µi([gi] + (p− 1)[gi + ki])

67

where we have ki ◦ fm+1 = 0. Since x ∈
⋂m+1
i=1 ker([fi],Fnq), we have

0 =
t∑
i=1

λi
∑

J⊂{1,...,m}

∑
I⊂J

(p− 1)|I|[gi + k
J,(i)
I] ◦ fm+1.

We know that for every [gi] there must be elements [gj] = [gi+k
J,(i)
I] (if the element

[gj] is represented as [gj + k
J,(j)
I], we just rename it) with k

J,(i)
I ◦ fm+1 = 0 such

that
∑

[gj]
λj = 0. Now there are two cases that can occur.

Case 1: If not all of those elements come from the same summand in the repre-
sentation of x as element of

⋂m
i=1 ker([fi],Fnq), we need to take a second summand

−λi′
∑

J⊂{1,...,m}
∑

I⊂J(p− 1)|I|[g′i + k
J,(i′)
I] into the account. We might not be able

to take everything of this summand out as we may have λi′ 6= −λi, but we can de-
crease the number of summands in the sum

∑
[gj]
λj = 0 and can therefore iterate

this process. But this yields x being generated by elements in G.
Case 2: If 0 =

∑t
i=1 λi

∑
I⊂{1,...,m}(p − 1)|I|[gi + k

J,(i)
I] ◦ fm+1 and the elements

[gi] ◦ fm+1 = [gi + k
J,(i)
I] ◦ fm+1 such that

∑
[gj]
λj = 0 all stem from the same

summand. This means that x is generated by the elements of

⋃
J⊂{1,...,m}

(∑
I⊂J

(p− 1)|I|[g + kJI]

)
⊂ G,

in accordance with the definition of kJI for m+ 1 6∈ J , and therefore by G.

Corollary 5.6.9. Let G ⊂ (V,−) where G =
⋂m
i=1 Pλi, where Pλi ⊂ (V,−) is an

indecomposable projective. Then G is finitely generated.

Proof. We can find maps ([fi],−) that each have a different isomorphic copy of Pλ
in their kernel. This intersection is finitely generated by the above lemma as our
given G will be a direct summand of such a kernel.

Corollary 5.6.10. Let

f =


(f1,−)
(f2,−)

...
(fm,−)

 : (V,−)→
m⊕
j=1

(V,−).

Then ker f is finitely generated if there are invertible maps gj, h : V → V . such

68

that

gj ◦ fj ◦ h = idV +(p− 1)



1 0 · · · 0
0 1 · · · 0
...

.
...

...
· · · 0 0 1 · · ·
0 0 0 · · · 0
...

.
...

...
0 0 0 · · · 0


for all j. Where the matrix on the right hand side is of rank rj.

Proof. The kernel of such a map is again a finitely generated projective again since
f 2
j = fj and therefore the kernel of f can be written as kernel of a map as in lemma

5.6.8.

In the previous corollary we did require that f : (V,−) →
⊕m

j=1(V,−) though
technically we do not need that restriction and the claim holds more generally.

Corollary 5.6.11. Let f = ((f1,−), . . . , (ft,−)) :
⊕t

i=1(V,−) → (W,−), then
ker f is finitely generated.

Proof. We can calculate that ker f ∼=
⊕t

i=1 ker([fi],−)⊕
⊕

S⊂{1,...,t}
⋂
i∈T Im([fi],−).

The sum of the kernels we know to be finitely generated. For the intersection we
can use lemma 5.6.8 as the intersection of the images is of the form of a kernel
with respect to corollary 5.6.10.

Corollary 5.6.12. Let

f =


([f11],−) · · · ([f1t],−)
([f21],−) · · · ([f2t],−)

...
([fm1],−) · · · ([fmt],−)

 :
t⊕
i=1

(V,−)→
m⊕
j=1

(W,−).

Then ker f is finitely generated.

Proof. It holds that ker f ∼=
⋂t
i=1 ker fj where fj :

⊕s
i=1(V,−) → (V,−) (j-th

copy). We further have ker fj =
⊕s

i=1 ker([fij],−) ⊕
⋂s
i=1 Im([fij],−) which is

finitely generated by corollary 5.6.11. Therefore, we have

ker f ∼=
t⋂

j=1

(
s⊕
i=1

ker([fij],−)⊕
s⋂
i=1

Im([fij],−)

)
∼=

⊕
J∪̇J ′={1,...,t}

(⋂
j∈J

(
s⊕
i=1

ker([fij],−)

)
∩
⋂
j′∈J ′

(
s⋂
i=1

Im([fij′],−)

))
∼=

69

t′⊕
k=1

s′⋂
l=1

Pλtl where λtl = λt′l′ is possible.

This is a finite direct sum of finite intersections of finitely generated projective
functors and therefore finitely generated by corollary 5.6.9.

Corollary 5.6.13. Conjecture 5.6.6 holds true.

After proving this conjecture, we can now prove a better version of proposition
5.6.7.

Proposition 5.6.14. Let

f =


(f11,−) · · · (f1t,−)
(f21,−) · · · (f2t,−)

...
(fm1,−) · · · (fmt,−)

 :
t⊕
i=1

(V,−)→
m⊕
j=1

(W,−).

Where fji =
∑sji

l=1 λl[fl] and s = max{sji}. If there is a k ∈ N such that in ∆kf ,
we have max{sji} ≤ 1, then ker f is finitely generated.

Proposition 5.6.15. Let (f,−) : (V,−) → (W,−) be a representable morphism,
with f =

∑s
i=1 λi[fi], then ker(f,−) is finitely generated if ker(f ′,−) is finitely

generated where f ′ =
∑s

i=1 λi[f
′
i] and [f ′i] is made from [fi] by removing all the

rows that are common (after base change) for all i.

Proof. Lemma 5.6.4 tells us precisely how the part that we cut out of every [fi]
looks like to get to [f ′i]. The part we cut out we denote by [m]. Then we want to
use corollary ?? as we can find a decomposition

(V ′,−)⊗ (V ′′,−)
(f ′,−)⊗([m],−)

// (V,−) .

Now it is not hard to see that we also have Im(f,−) ∼= Im(f ′,−)⊗ Im([m],−) and
can therefore obtain that ker(f,−) is finitely generated as it is the tensor product
of two finitely generated functors.

This proposition shows a way on how to deal with common rows in (f,−). But
it does not provide a way of treating maps f where multiple representable maps
have the same starting vector space. So unfortunately, this is as close as we can
get to coherence. We have however managed to obtain finitely generatedness for
a large group of kernels of morphisms.
The following conjecture motivates how to proceed with the obtained information.

70

Conjecture 5.6.16. Let

f =


(f11,−) · · · (f1t,−)
(f21,−) · · · (f2t,−)

...
(fm1,−) · · · (fmt,−)

 :
t⊕
i=1

(V,−)→
m⊕
j=1

(W,−),

where fji =
∑sji

l=1 λl[fl] and s = max{sji}. If there is a k ∈ N such that in ∆kf we
have max{sji} ≤ t, then ker f is finitely generated. Here t is maximal such that
we know that ker(f,−), for f =

∑t
i=1 λi[fi], is finitely generated.

Motivation: One would again start by setting t = 1 and use a proof similar
to lemma 5.6.8 to show that ker f is finitely generated in such a case. Instead of
doubling the length of a generator the length could now increase by factor l if l is
the max length of a generator for one of the kernels of the fi. Solving this part
is already as hard as showing that F ∩ G is finitely generated for F,G ⊂ (V,−)
finitely generated subfunctors which are kernels of representable morphisms.
Lastly, we could prove an analogue of corollary 5.6.12 as the kernel of such a given
f is just again a finite sum of finite intersections of finitely generated kernels.

Assuming the conjecture, we can prove the following.

Proposition 5.6.17. Let (f,−) : (V,−) → (W,−) be a representable morphism
with f =

∑s
i=1 λi[fi] then ker(f,−) is finitely generated.

Proof. We use induction on s. For s = 1 the claim can be proved by a direct
computation.
For s > 1 we can have two cases. If all [fi] have common rows (after base change)
then we can use proposition 5.6.15 to arrive at an (f ′,−) that does no longer have
common rows. If there is no common row, we can just continue with (f,−). In
both cases ∆(f,−) and ∆(f ′,−) respectively allows to use the inductive hypothesis
as all component maps are sums of length less than s. The kernel of ∆(f,−) and
∆(f ′,−) respectively is then a finite sum of finite intersections of finitely generated
functors, and as stated in the above conjecture, finitely generated. From lemma
5.6.5 we know this to be equivalent to ker(f,−) and ker(f ′,−) respectively being
finitely generated. In case we work with (f,−), we are done. For (f ′,−) we need
to use proposition 5.6.15 once more.

If the above conjecture holds, in other words if we could show that a finite
intersection of two finitely generated kernels of representable morphisms is finitely
generated, the above proposition would yield coherence.

71

Remark 5.6.18. Moreover corollary 5.6.9 gives rise to the following heuristics:
Let (f,−) : (V,−)→ (W,−) a representable morphism. Then Im(f,−) is finitely
generated, as it is a finite sum of finitely generated projectives. Therefore ker(f,−)
should be, analogue to the subspace case, a finite sum of finite intersections of
finitely generated projectives and therefore also finitely generated. The subspace
case arising from the connection to representations of certain quivers as described
in subsection 4.1.

6 Approach to finitely generated functors

Finitely generated functors come with less structure than finitely presented ones.
This causes some problems that we have to deal with. Again this section lists just
some attempts and approaches.

Since an arbitrary subfunctor G ⊂
⊕m

i=1(Vi,−) does not necessary come from
a representable morphism we have little hope to be able to describe the growth of
the dimension of G, e.g. in closed form explicitly.
Let us summarize what we can say so far.

Remark 6.0.1. Let G be a proper sub functor of
⊕m

i=1(Vi,−). Then it holds that

dimG(Fnq) ≤
m∑
i=1

qn dimVi ∀n ∈ N.

6.1 Dimension formula for subfunctors of projectives

We now try to describe the dimensional growth of a non-finitely generated sub-
functor of a projective functor. The desired result being that such a functor cannot
exist.
Let us suppose that G ⊂

⊕m
i=1(Vi,−) is not finitely generated. We get the follow-

ing remark:

Remark 6.1.1. If G is not finitely generated then @N ∈ Z≥0 and vector spaces
Wi, i ∈ {1, . . . , N} s.t.

N⊕
i=1

(Wi,−) � G→ 0.

Definition 6.1.2. Let G be any functor and P a projective, s.t. there is a
surjection P � G. Then we set topG = topP . This is well defined for P
projective cover of G. topPλ is defined for all indecomposable projectives by
topPλ = Pλ/ radPλ, where radPλ is the unique maximal submodule. Further,
we have rad

(⊕
i∈I Pλi

)
=
⊕

i∈I rad (Pλi) for all index sets I.

72

If G is finitely generated, then topG is obviously a semi-simple module of
finite length. Though a non-finitely generated module must not necessary have an
infinite topG, but it must in our case.

Lemma 6.1.3. If G is a non finitely generated submodule of a finitely generated
projective, then top must be a semi simple module of infinite length.

Proof. Let G be a non finitely generated submodule of some
⊕m

i=1(Vi,−) = Q.We
need to show that topG is in fact of infinite length. Suppose topG is of finite
length and Q′ its projective cover.

G

����

� � // Q

Q′

π

<<

// // topG

We need to show that the map π is an epimorphism. If π is not surjective, then
Imπ is a proper subfunctor of G, so we can look at the cokernel. By definition of
topG G/Imπ can only have a trivial top. Therefore, we must have rad (G/Imπ) =
G/Imπ. This is equivalent to G/Imπ not having any maximal submodules.
Let us now look at

(
radi(Q/Imπ)

)
∩(G/Imπ). This is again a submodule of G/Imπ

and by the structure of Q there must be a minimal i such that this is a proper
submodule of

(
radi−1(Q/Imπ)

)
∩ (G/Imπ). Then(

(radi−1(Q/Imπ)) ∩ (G/Imπ)
)
/
(
(radi(Q/Imπ)) ∩ (G/Imπ)

)
is of finite length since radiQ/ radi−1Q is. So we can construct a maximal sub-
module of G/Imπ from it and (radi(Q/Imπ))∩ (G/Imπ), which is a contradiction.
Therefore, π must be an epimorphism and G must be finitely generated if its top
is.

Corollary 6.1.4. Let G be a subfunctor of a finitely generated projective, then G
is non finitely generated if and only if topG is of infinite length.

But how can such a non finitely generated subfunctor of a finitely generated
projective look like? Let us restate lemma 5.2.9 here.

Lemma 6.1.5. Let F be finitely generated, then radr F/ radr+1 F is a polynomial
functor.

Corollary 6.1.6. Let G ⊂
⊕m

i=1(Vi,−) be a non finitely generated subfunctor.
Then topG ∩ top (radr

⊕m
i=1(Vi,−)) 6= 0 for infinitely many r.

73

Corollary 6.1.7. Let G ⊂
⊕m

i=1(Vi,−) be a non finitely generated subfunctor.
Then the composition

G ∩ radr
m⊕
i=1

(Vi,−) ↪→ G� topG

is nontrivial for infinitely many r.

With this information we can ask ourselves if on the journey through this in-
finitely many layers we must also come across arbitrary high weights. The following
lemma tells us that this is in fact true.

Lemma 6.1.8. Let G ⊂
⊕m

i=1(Vi,−) be non finitely generated, then top(G) con-
tains functors of arbitrary high weight.

Proof. If n would be the highest weight of all the simple functors in top(G), then
we would have

m∑
i=1

qn dimVi = dim
m⊕
i=1

(Vi,Fnq) ≥ dimG(Fnq) =∞,

which is a contradiction.

Corollary 6.1.9. Let G be a subfunctor of F , F finitely generated. Then for every
n ∈ Z≥0 there exist only finitely many simple composition factors Fλ of G with
n(λ) = n.

Let us look at the following construction. We use an implicite induction on
n(λ) since we know that Pλ is noetherian for any λ with n(λ) ≤ 1.
From now on we again assume that we know about the existence of the closed
form for finitely presented functors.

Conjecture 6.1.10. Let Pλ be a projective such that n(λ) is minimal for Pλ not
noetherian. Then there exists an infinitely generated G ⊂ Pλ s.t.

φ(Pλ/G, n) = p0(n) a power series

but no infinitely generated H s.t.

φ(Pλ/H, n) = p1(n)q1n + p0(n), pi(n) power series

Motivation : G resp. H being non-finitely generated means that we can have a
family ([f]n,−) of representable morphisms s.t.

(Wn,−)
([f]n,−)

//

����

(V,−)

G �
�

// Pλ
?�

OO

74

for Fkq with k ≤ n and by increasing the dimension of Wn we get a new order
polynomial that approximates the power series.
If the family ([f]n,−) admits a power series at q1n than it has one degree of
freedom that is not used to create the dimension of said power series. So we
can take this degree of freedom out of ([f]n,−) and still have a subfunctor of a
projective which is not of closed form and, therefore, non-finitely generated. But
that is a contradiction to the minimality of n(λ). Therefore, only G and not H
can exist.
The problem with this construction is that it is not so clear how the taking out of
a degree of freedom works.

Corollary 6.1.11. Given G as described above:

φ(Pλ/G, n) = p0(n), p0(n) a power series

Corollary 6.1.12. With G as above, Pλ/G cannot be embedded in a projective
functor.

Proof. The function φ(F, n) must be of closed form for F finitely generated sub-
module of a projective.

The following looks a bit surprising but is not arbitrary at all.

Lemma 6.1.13. Every strictly ascending in terms the radical layer of chain of
simples C inside a projective Pλ going to infinity has dimensional growth of at
least q1n.

Proof. Without loss of generality we can assume that the simple functor at the top
of C is the top of the projective Pλ, it is lying in. This makes C a factor functor
of Pλ. The kernel of the projection map is generated by the projective covers of
top(radPλ)/top(radC). Therefore, C is finitely presented and its dimension of
closed form.
Since C is of infinite length the closed form cannot be just a polynomial but must
have at least a term that grows with q1n.

Corollary 6.1.14. Every infinite length functor has dimensional growth of at least
q1n.

Now we want to look at top(G), where G is constructed as above. We order
the simple functors in there by the radical layer of Pλ they fall in, so Fµ < Fν if
Fµ ∈ top(radj Pλ), Fν ∈ top(radi Pλ) and j < i. If two simples lie in the in the
same radical layer, we use an arbitrary order.

75

Lemma 6.1.15. Let G be as in lemma 6.1.11. There exists an infinite number of
uniserial chains of simples in Pλ/G descending to infinity which have dimensional
growth of at least q1n.

Proof. We start in the top of Pλ/G which is also the top of Pλ. Now we descend
through each radical layer and add one simple functor to our chain C that is
not in G. This is possible by corollary 6.1.6 and the fact that Pλ/G has to be
indecomposable since it is only generated by one indecomposable projective with
a simple top.
But going to infinity with this construction, it yields a uniserial factor functor of
Pλ which is also factor functor of Pλ/G.
Now we repeat this process by considering Ĉ/G, where Ĉ is defined as the kernel
of the projection Pλ � C. As we can apply corollary 6.1.6 to Ĉ, we can now
find another uniserial chain C ′, which is a factor of Ĉ/G. This process may be
infinitely many times continued.

Corollary 6.1.16. For every b ∈ N there is a k ∈ N such that top((radk Pλ)∩G)
and top(radk Pλ)/top((radk Pλ) ∩G) contain more than b simples.

Since every polynomial or power series in a dimension formula arises from
simple modules, we can similarly argue for higher q1n terms that there cannot be
power series, replacing polynomials in a dimension formula.

Conjecture 6.1.17. φ(G, n) is of closed form for any subfunctor of an indecom-
posable projective.

Motivation : Starting from lemma 6.1.11, we work the case for a power series
at the q0n term. Now we can use lemma 6.1.10 to turn this into an inductive
proof on n(λ), where λ is the weight of Pλ ⊂ (Fn(λ)

q ,−). To explicitly make it, let
n(λ) = 1. Then (Fq,−) is a direct sum of uniserial functors. Therefore, each factor
is a direct sum of uniserial and finite length functors. So every subfunctor of such
a projective has closed form dimension with a possible polynomial as coefficient
for q0n. Let n(λ) > 1. In this case we can apply lemma 6.1.15. It implies that

φ(Pλ/G, n) = p1(n)q1n + p0(n), pi(n) power series

since the chains of simples have arbitrary high simples at their top. We can even
demand that p0(n) ≥ 0 for all n.
By assumption, at least one of the pi(n) must be a proper power series. If p1(n)
would be a polynomial and p0(n) a power series, then we could further apply lemma
6.1.15 to decrease p0(n) and thus raising the polynomial degree of p1(n). If the
degree of the polynomial p1(n) would not be raised and the values of p1(n) would
just get bigger, then we can assume that there is an a such that p1(a) > qn(λ)a

76

which is a contradiction.
It follows that p1(n) must be a power series in any case. But this would be a
contradiction to conjecture 6.1.10. So p1(n) should be a polynomial and by the
above argument, so must p0(n) be.
Therefore, we should always get closed form for the dimension functional for sub-
modules G of Pλ for fixed n(λ) given that all Pµ with n(µ) < n(λ) are noetherian.

Once we would be able to show that indecomposable projectives are noetherian,
the rest is relatively easy. For the proof of the Artinian conjecture we need to show
that all the standard projectives are noetherian but this is standard.

Lemma 6.1.18. Let 0 → X → Y → Z → 0 be an exact sequence of modules.
Then Y is noetherian if and only if X and Z are.

Proof. Let X, Y, Z be modules and Xi, Yi, Zi ascending sequences of submodules
such that Xi = X ∩ Yi. We need to look at the following diagram.

0 // X // Y // Z // 0

0 // Xi

?�

OO

// Yi
?�

OO

// Zi
?�

OO

// 0

0 // Xi−1

?�

OO

// Yi−1

?�

OO

// Zi−1

?�

OO

// 0

0 // X1
// Y1

// Z1
// 0

Let us now suppose that X and Z are noetherian and Yi is any ascending sequence
in Y . Now the sequences Xi and Zi must be stationary after finitely many steps.
Therefore this will also hold for Yi, so Y is noetherian.
The converse follows similar. We start with a sequence Xi in X, but this can be
viewed as a sequence in Y , which therefore must be stationary after finitely many
steps. To show that Z is also noetherian, we start with a sequence Zi in Z. Then
we look at pre-images of the Zi in Y . This is again an ascending sequence in
Y , which then must be stationary after finitely many steps. So, Z must also be
noetherian.

Conjecture 6.1.19. Standard projectives are noetherian.

Motivation: First of all, we can use the above lemma in our situation, since
the category Fq, that we are working in, can be viewed as a module category.
Standard projectives are a finite direct sum of indecomposable projectives. So our

77

method of choice is induction on the number of the indecomposable summands.
But this is nothing more than lemma 6.1.18.

0→ Pλ → Pλ ⊕ Pµ → Pµ → 0

The inductive step is performed as follows.

0→ Pλ → Pλ ⊕
n−1⊕
i=1

Pµi →
n−1⊕
i=1

Pµi → 0

6.2 Remarks on the Strong Artinian conjecture

The aim of this subsection is to give an approach to the Strong Artinian conjecture.
This approach relies strongly on the the Artinian conjecture or better the closed
form of the dimension function that we now claim to have for all subfunctors of
all projectives.

Conjecture 6.2.1 (Strong Artinian conjecture (Schwartz)). (Fmq ,−) is noetherian
of type m for any q and m.

We first need to explain what it means to be noetherian of type m. Afterwards
we give an idea of how we can describe the type in this case.

Definition 6.2.2. Let C be an abelian category with a dimension function. We
say that an object C is noetherian of type m if there exists a finite filtration of C
such that all the composition factors are simple noetherian of type m.
An object C is simple noetherian of type m if all its subobjects are noetherian of
type m− 1.
A simple object is noetherian of type 0.

Remark 6.2.3. The noetherian type is also sometimes referred to as the dimen-
sion.

Example 6.2.4. In the category Fq we know that all indecomposable direct sum-
mands of (Fq,−) are uniserial. We now say that a subfunctor of such an indecom-
posable is noetherian of type 0 if its quotient is of finite composition length (that
is going to be every subfunctor, but we do not mind).
In this way every indecomposable direct summand of (Fq,−) becomes simple
noetherian of type 1. Since there are only finitely many of them, this makes
(Fq,−) noetherian of type 1 by taking the indecomposable direct summands as
composition factors of a finite composition series.

Definition 6.2.5. Call C simple noetherian of type m if all subfunctors G of
C produce a factor functor that has lower order closed form, i.e. if φ(C, n) =∑m

i=0 p
C
i (n)qin then φ(C/G, n) =

∑m′

i=0 p
C/G
i (n)qin with m′ < m.

78

Motivation for the proof of the Strong Artinian conjecture. We will assume the
Artinian conjecture as well as the closed form. In this case we can show the
following. We need to find a finite filtration for each (Fmq ,−) such that each
composition factor is of simple noetherian type m.
A first obvious step is to filter (Fmq ,−) by its indecomposable projectives. Since
there are only finitely many such functors, we can restrict our attention to one of
them.
Then we filter an indecomposable Pλ by some subfunctors Cj such that:

1. Ct ⊂ Ct−1 ⊂ · · · ⊂ C1 ⊂ C0 = Pλ

2. Ct is the largest subfunctor of Pλ s.t. φ(Ct, n) =
∑s

i=0 p
Ct
i (n)qin

with s < n(λ).

3. Cj for j < t, s.t. Cj/Cj+1 does not admit a subfunctor G s.t.
φ((Cj/Cj+1)/G, n) =

∑s
i=0 p

G
i (n)qin with s = n(λ).

Now the second point is fulfilled because Pλ is assumed to be noetherian. Espe-
cially, Ct is again finitely generated. Further Cj can be constructed in such a way
that they comply with the third point. We only need finitely many of those again
since Pλ is assumed to be noetherian.

7 The extension quiver

When looking at the resolutions above, there is one naturally arising question.
Since we can always find projective resolutions for simple functors, we would like
to know how those simple functors stick together. A question that can be answered
by looking at the extension or Gabriel quiver. This quiver was introduced by P.
Gabriel in [Gab72] and [Gab].

7.1 Theoretical aspects

Definition 7.1.1. The vertices of the extension quiver of a K-linear hom finite
category A are given by the simple objects S ∈ Obj(A). For two simples S, S ′ we
get d arrows S → S ′ iff dim Ext1(S, S ′) = d.

Since the category Fq has infinitely many simple functors, we would like to
know which simple functors can occur in the top of the radical or in the second
term of such a resolution respectively. The following lemma helps us to compute
extensions.

79

Lemma 7.1.2. We have

Ext1
Fq(Fµ, Fλ) = (radPµ, Fλ) ⊂ ((V,−), Fλ) = Fλ(V),

where (V,−) is the smallest standard projective that has radPµ as a factor.

Proof. The equality of the Ext and the Hom space follows from the long exact
sequence of homology. (radPµ, Fλ) ⊂ ((V,−), Fλ) is then due to the fact that
every indecomposable projective has a simple top.

As a corollary we get that this is of course 0 if dimV < n(λ). But since we
have no chance to decide which standard projective will admit an epimorphism to
radPµ by just looking at Fµ, we cannot make any statement of the appearance or
non appearance of arrows from here.

Remark 7.1.3. Since it is not possible to make any assertion about how far the
the arrows can reach in the quiver, in terms of lengths of weights, we need to pick
a suitable bound for our computations to come.
We have that φ(radPλ, n) is of closed form with

φ(radPλ, n) =

n(λ)∑
i=0

aiq
in − pλ(n),

where we have pλ(n) = φ(Fλ, n).
Now theorem 3.1.3 tells us that this closed form is determined by a recursion of
length n(λ) + deg pλ + 1 and the same number of starting values. Therefore we
will use the bound n(λ) + deg pλ + 1 in our computations as upper bound for the
degree of simple functors in top(radPλ), though this bound is not accurate.

In [Kuh94] we can even find an upper bound for deg(Fλ). Let Mn(q) the
category of Fq[Mn(Fq)]-modules. Section 3 of [Kuh94] yields an extension functor
c∞n :Mn(q)→ Fq that satisfies the following:

Theorem 7.1.4 ([Kuh94], Theorem 4.8). 1. c∞n (M) is an extension of M :
There are natural isomorphisms c∞n (M)(Fnq) ∼= M of Fq[Mn(Fq)]-modules.

2. c∞n (M) is minimal with respect to 1: if F is any other functor satisfying
F (Fnq) ∼= M as Fq[Mn(Fq)]-modules, then c∞n (M) is a quotient of F .

3. c∞n preserves monos, epis and direct sums.

4. If M is simple Fq[Mn(Fq)]-module, then c∞n (M) is a simple functor.

5. If M is finitely generated, then c∞n (M) is of finite length.

80

6. c∞n (M) is always locally finite. In fact, c∞n (M) will be a polynomial functor
of degree not more than n2(q − 1).

By applying 6 of the above theorem to remark 7.1.3 we get the following spe-
cialization.

Remark 7.1.5. Since c∞n(λ)(Mλ)(Fnq) = Fλ(Fnq) = 0 if n < n(λ) we have that

dimFλ(Fnq) is a polynomial of degree smaller or equal n(λ)2(q− 1). We also know
that radPλ is finitely generated. Therefore we get for the highest degree of a
simple functor in the top of the radical of Pλ:

m = n(λ)2(q − 1) + n(λ) + 1

Also the work of Piriou and Schwartz [PS98] shows that there are no self
extensions of simples and therefore no loops in the quiver.

Theorem 7.1.6 ([PS98]).

Ext1
Fq(S, S) = 0 ∀S ∈ Fq, S simple.

The work of Harris and Kuhn, [HK88], provides a classification of the simple
functors in Fq. It turns out they are induced by simple Fq[Mn(Fq)]-modules. We
call a simple Fq[Mn(Fq)]-module singular if it is induced by a simple Fq[Mn−1(Fq)]-
module, i.e. definition 2.0.3.

Theorem 7.1.7 ([HK88], Theorem 6.1). 1. {N ⊗ (det)j |N singular and 0 ≤
j ≤ q − 1} is the set of simple Fq[Mn(Fq)]-modules.

2. {ResMn
GLn

(N ⊗ (det)j) |N singular and 1 ≤ j ≤ q − 1} is the set of simple
Fq[GLn(Fq)]-modules.

Here det is the determinant representation det : Fq[Mn(Fq)]→ Fq.

7.2 Computational aspects

How do we compute resolutions or just indecomposable projectives? Since we deal
with finite fields usage of the computer comes to mind. The naive attempt is to
use the regular representation of EndFq((Fnq ,−)) = Fq[Mn(Fq)] and decompose it
into indecomposables by multiplication with primitive idempotents.

Algorithm 7.2.1. Computing the regular representation of Mn(Fq)

1. Choose a generating set for Mn(Fq).

2. Compute the actions of the generators on every element of Mn(Fq).

81

3. The resulting matrices give the generators for the regular representation.

Remark 7.2.2. It is a simple exercise in linear algebra to check that a generating
set of Mn(Fq) consists exactly of 3 elements: a nilpotent matrix of rank n− 1, an
n-cycle and an unipotent matrix with only the entry at (1,2) not zero.

Remark 7.2.3. Unfortunately the dimension of the regular representation of
Mn(Fq) is qn

2
, so even for small q this will become very big, even for consider-

ably small n. For example the dimension of the regular representation of M4(F2)
is already 216 = 65536.

Algorithm 7.2.4. Decompose 1 ∈ Fq[Mn(Fq)] into primitive idempotents.
Since we work in defining characteristic, we can no longer use closed formulas to
determine the idempotents. We can however compute the central idempotents,
that will divide Fq[Mn(Fq)] into the principal and the defect 0 part.

1. Calculate the central idempotents.

2. Pass from Fq[Mn(Fq)] to Fq[Mn(Fq)]c1 and Fq[Mn(Fq)]c2.

3. Take such an ideal and search for an idempotent in it. If we found one divide
up into Fq[Mn(Fq)]cie and Fq[Mn(Fq)]ci(ci − e)

4. Continue recursively until no more idempotents can be found, in which case
they are primitive.

5. Calculate the action of such an idempotent on all the elements of Mn(Fq).

6. The result will be an idempotent in the endomorphism ring of the regular
representation of Mn(Fq).

7. Multiply with the generators of the regular representation to obtain an
Fq−basis an indecomposable projective.

Remark 7.2.5. There are approximation algorithms for primitive idempotents
that will work faster that this brute force attempt, but there are enough reasons
not to follow that path. First of all while the calculations themselves will work
faster, the data structure required is very hard to implement in an effective manner.
A second reason, which is a real selling argument, is that calculating primitive
idempotents will provide us with more information than actually needed and by
loosing just this extra information, we can save a lot of time in the computations.

Luckily there is an easier way to determine the decomposition of Fq[Mn(Fq)], or
more precisely its regular representation, into indecomposable projectives, because
that is what we want to look at. It is called the Meataxe [Rin].

82

Algorithm 7.2.6. The algorithms behind it are explained in [LMR94].

Using this program package it is very easy and relatively fast to decompose
Fq[Mn(Fq)] into indecomposable projectives and determine the radical series of
each of the summands.
The Meataxe makes it already way more efficient to compute indecomposable
projectives but we still rely on the regular representation. Doing it like this is
equivalent to evaluating Pλ at Fnq , with n(λ) ≤ n.
Since we only have a finite amount of memory we cannot expect evaluation at all
n ∈ N, but it sure would be nice to look at Pλ(Fmq) for an m that is not n(λ), since
simple functors of higher degree can occur in the top of the radical of Pλ.
The first idea would be to look at a decomposition of Fq[Mn+k(Fq)], since (Fnq ,−)
is a direct summand of (Fn+k

q ,−). That surely does give Pλ(Fn+k
q) but we have

to decompose Fq[Mn+k(Fq)] first. Let us just look at the dimension of this again:
dimFq[Mn(Fq)] = qn

2
and therefore dimFq[Mn+k(Fq)] = q(n+k)2 = qn

2
q2nkqk

2
. So

this grows just incredibly fast! Soon the computer will refuse work in this case. So
we will have to use a different approach. We can make use of the tensor product
here.

Lemma 7.2.7. We have

(Fnq ,−) =
n⊗
i=1

(Fq,−) =
⊕
n(λ)=1

n⊕
i=1

P
⊗(ni)
λ ⊕ Fq.

Proof. Follows from PV ⊗ PW = PV⊕W and the decomposition of PFq .

From this lemma we can see that all that needs to be understood is already
encoded in (Fq,−). But how do we get to a Pλ with n(λ) > 1 now? The key is to
view (Fq,Fnq) as Fq-Mn(Fq)-bimodule.

Algorithm 7.2.8. Leave out the regular representation.

1. Decompose 1 ∈ Fq[Fq] into primitive idempotents.

2. For all these idempotents ei perform right multiplication on (Fq,Fnq) and
choose an Fq-basis of the image.

3. Perform left multiplication on all (Fq,Fnq)ei with the generators of Mn(Fq)
and note this map in matrix form. These matrices will be generators of the
indecomposable projectives Pi(Fnq).

4. Use lemma 7.2.7 to generate projectives Pλ(Fnq) with n(λ) > 1. Computa-
tionally this is done by using the Kronecker product of matrices.

83

5. Use the Meataxe package to decompose this tensor products into indecom-
posable projectives.

Remark 7.2.9. Decomposition of 1 ∈ Fq[Fq] by idempotents is fairly easy, since
this is only q-dimensional. We already have done it by hand in subsection 3.

But as it turns out, even this is too much work to be done. It is sufficient
to produce matrix generators for P1. All the other Pi will turn up in the tensor
products.

Lemma 7.2.10. Pi ⊂ P⊗i1

Proof. We have to recall theorem 2.2.1 and apply it to (Fq,−).

P1(V) = {x ∈ (Fq, V)|(Fq, λ · id)(x) = λx∀λ ∈ Fq}

Pi(V) = {x ∈ (Fq, V)|(Fq, λ · id)(x) = λix∀λ ∈ Fq}

So it is not hard to see that

P⊗i1 ⊃ {x ∈ (Fq, V)|(Fq, λ · id)(x) = λix∀λ ∈ Fq}.

We just use the multi-linearity of the tensor product. Of course this has to stop
after q steps, since λq = λ in Fq.

Algorithm 7.2.11. Simplification of Algorithm 7.2.8

1. Decompose 1 ∈ Fq[Fq] into primitive idempotents.

2. For e1 perform right multiplication on (Fq,Fnq) and choose an Fq−basis of
the image.

3. Perform left multiplication on (Fq,Fnq)e1 with the generators of Mn(Fq) and
note this map in matrix form. These matrices will be generators of the
indecomposable projectives P1.

4. Use lemma 7.2.7 to generate projectives Pλ with n(λ) ≥ 1.

5. Use the Meataxe package to decompose this tensor products into indecom-
posable projectives.

With this we can now start to compute resolutions of simple functors respec-
tively of the radical of indecomposable projectives. We would like to have a knitting
algorithm. If possible one that is as simple as the one for the Auslander-Reiten
quiver of a finite dimensional algebra. But it is not quite that easy.

84

Algorithm 7.2.12. Knitting algorithm for the extension quiver

1. Start with n(λ) = 1.

2. Generate the indecomposable projectives of Fq[Mn(Fq)] for n = n(λ)2(q −
1) + n(λ) + 1, for current n(λ).

(a) Look at top(radPλ) for one λ with given n(λ).

(b) Find this module(s) in the tops of the other projectives.

(c) Draw arrows for all of them.

(d) Repeat for every projective Pλ with current n(λ).

3. Increase n(λ).

7.3 Properties of the quiver

A nice lemma due to [FFSS99] helps us to understand what the extension quiver
will look like:

Lemma 7.3.1 ([FFSS99], Lemma 1.12). Assume that F,G ∈ Fq take only finite
dimensional values, then the duality homomorphism

D : Ext1(F,G)→ Ext1(DG,DF)

is an isomorphism.

Corollary 7.3.2.
dim Ext1(F,G) = dim Ext1(G,F)

if G,F are simple functors in Fq.

Proof. By theorem 2.1.9 we know that simple functors take only finite dimensional
values, so we can apply the above lemma here. [Kuh94] now tells us that simple
functors are self dual, which yields the result.

Corollary 7.3.3. In the extension quiver for each arrow a there is also its reversed
a.

Lemma 7.3.1 suggests a simplification of the knitting algorithm 7.2.12. The
following lemma shows how.

Lemma 7.3.4. Let n(µ) ≤ n(λ) then the following holds for Fµ:

Fµ ∈ top(rad(Pλ)) then Fµ(Fn(λ)
q) ∈ top(rad(Pλ(Fn(λ)

q)))

85

Proof. Let Fµ be in top(rad(Pλ)). Since Fµ(Fn(λ)
q) 6= 0, it must also appear in

top(rad(Pλ(Fn(λ)
q))).

Remark 7.3.5. Keep the following counter example in mind to see that the con-
verse is not true. We have Ext1

Fq(S, S) = 0 for S simple, since it can occur that

Ext1
Mn(λ)

(Fλ(Fn(λ)
q), Fλ(Fn(λ)

q)) 6= 0. In this case we just omit the arrow in the

Ext-quiver. Such an example is q = 2 and Λ2. For n = 2 we have radP (Λ2) = Λ2.

Now we can simplify the knitting algorithm 7.2.12. We use two types of arrows,
dotted and bold, dotted arrows are used to indicate possible arrows in the extension
quiver. Bold arrows are confirmed arrows.

Algorithm 7.3.6. Knitting algorithm for the extension quiver

1. Start with n(λ) = 1.

2. Generate the indecomposable projectives of Fq[Mn(Fq)] for n = n(λ).

(a) Look at top(radPλ)(Fnq) for one λ, n(λ) = 1.

(b) Find this module(s) in the tops of the other projectives Pµ for n(µ) ≤
n(λ).

(c) Draw dotted arrows for all of them, except µ = λ.

(d) If you draw an arrow from Fλ to Fµ, then check top(radPµ)(Fnq)
again to see if this arrow can be confirmed.

(e) Repeat for every projective Pλ(Fnq) with the same length.

(f) Draw bold arrows for Fµ ↔ Fλ if n(λ) ≥ n(µ)2(q − 1) + n(µ) + 1.

3. Increase n(λ).

We now turn to q = 2 again.

Lemma 7.3.7 ([Fra96]). Let q = 2 and k, l > 0 then

Ext1
Fq(Λ

k,Λl) 6= 0 iff |k − l| = 1.

In this case Ext1
Fq(Λ

k,Λk±1) ∼= F2.

Corollary 7.3.8. Except for the projective injective simple, the extension quiver
of F2 is connected.

Proof. Let T n ∈ Fq be the n-fold tensor functor for n > 0. Then we have
top(T n) = Λn. Since also every finite and therefore every simple functor occurs as
composition functor of some T n as worked out by N. Kuhn in [Kuh94]. Lemma
7.3.7 then yields the result.

86

Example 7.3.9. In the case p = q = 2 the following is known:

F0 F1

vv
F01

		 ��

55

F11

��

F001

		

II

++))

F101

\\

kk

++))

F011ii kk F111ii

F0001

??

II

F1001 F0101 F1101 F0011 F1011 F0111 F1111

Example 7.3.10. This also provides a good example of the above lemmata about
the bounds of the weights of simples at the top of the radical. As of example 2.2.7
we know that there is one more qn term in the closed form of the dimension of P11

than in P01. Therefore we can have an arrow at least one step further in the first
case.
We had 2 as the sum of all polynomial degrees plus one in for P01 and 3 in P11

and both closed forms have a constant, i.e. 20 term. Their tops are of polynomial
degree 2 and 3, so the upper border for the degree of functors in the top of the
radical is 6 in case of P01 and 10 in case of P11. And indeed, the top of the radical
contains higher degree functors for P11.

87

Example 7.3.11. In the case p = q = 3 we will simplify a pair of reverse arrows • ((•hh by • oo // • , since

already for the few cases, where we know about the existence of arrows, we would loose the overview otherwise. We

also use two diagrams, one for the confirmed extensions and one for the conjectured ones. We further decorate all

the extensions of F1 as • ks +3 • and those of F2 as • oo // • .

F0 F1KS

��

F2 cc

##

F01
tt **

``

))

F11 `h

��

>F

~�

F215=

u}

F02<<

||

ii

))

F1208

px

8@

x�

F22\\

��

F001 F101 F201 F011 F111 F211 F021 F121 F221

F002 F102 F202 F012 F112 F212 F022 F122 F222

88

This diagram now holds all the extensions that are yet to be confirmed. We draw them as • oo // • .

F001

vv ((vv ((

F101
ss ++
oo //F201OO

��

F011\\

��

uu))

F111 F21144

rr

F021OO

��

F121 F221

F002 ll 22jj 44kk 33F102
uu

55

oo //F202 F012

��

BB

xx &&

F112 F212 F022 F122 F222

89

It seems as if this quiver would have 2 connected components, except for the
isolated projective injective module everything would be connected. As a conse-
quence of theorem 2.2.1 this is however not true.

Lemma 7.3.12. There can be no extensions between Fi and Fj for all i, j. There-
fore the extension quiver of Fq has at least q connected components.

Proof. If ExtnFq(Fi, Fj) 6= 0 for some n then there would have to exist a sequence

0→ Fj → E1 → · · · → En → Fi → 0

with all the Ek indecomposable. But for all functors E we have

E(V) = E0(V)⊕ E1(V)⊕ · · · ⊕ Eq−1(V),

a direct decomposition of functors. By definition of Fi and Fj, they have to
belong to Ei and Ej respectively. But this contradicts the assumption that all
the Ek are indecomposable. Therefore Fi and Fj must lie in different connected
components.

Conjecture 7.3.13. The extension quiver of Fq has q connected components.

But why is the quiver in the example connected? Is there maybe something
wrong with the algorithm 7.3.6? The situation is a little like the one in remark
7.3.5:

8 An algorithm to compute generators of kernels

of representable morphisms and to test them

In this section we will state the source code for an algorithm to explicitly compute
kernels of representable morphisms. The language used is the computer algebra
system GAP. There is a GUI available for MacOS which is written in JAVA; a jar
file for other operating systems is also included. The front end program produces
a file named input.g which can also be created by hand. A documentation on how
to use it is included separately.
The program has been built to be very modular so that modifications to one part
may be made while maintaing compatibility with the other parts. The programs
used can be found under the following adress:
http://www.math.uni-bielefeld.de/∼plinke/gap/kernelcalc.zip

90

8.1 input.g

The first script produced by the user interface or by hand. The user can input,
modify or review the representable morphism and the standard projectives they
wish to investigate.

q :=2;
p :=2;
r :=1;
s :=1;
m:=1;
n :=5;
c o e f : = [1] ;
f : = [1] ;
Read (” s o r t f . g”) ;

Here p is a prime number and q = pr the cardinality of the field. We then
want to investigate the kernel of (f,−) : (Fsq,−)→ (Fmq ,−). f is given by a list of
matrices encoded as integers and a list of coefficients which are also encoded by
integers. The functions doing the work will be discussed in connection with the
next script.

8.2 sortf.g

The second script calculates sorts the input and removes redundancies. It further
displays the input data in a sensible fashion.

#Function t h a t g e n e r a t e s an a x b i n t e g e r matrix over a
#prime f i e l d from the q−adic decomposi t ion o f an i n t e g e r c .
#Therefore the i n t e g e r c d e f i n e s t h a t matrix u n i q u e l i y .
qmat := func t i on (a , b , c)
a i s row count , b column and c the the number o f the
#matrix we want to l o o k at

l o c a l m,mm;
m:=NullMat (a , b ,GF(q)) ;
#genera te a Nul l matrix
mm:= C o e f f i c i e n t s Q a d i c (c , q) ;
#decompose c q−a d i c l y
for i in [0 . . a∗b−1] do
#t h i s loop f i l l s in the e lements .

i f Length (mm) = i then break ; f i ;
#error break c o n d i t i o n
m[QuoInt (i , b) + 1] [(i mod b)+1]:=

91

Elements (GF(q)) [mm[i +1]+1];
od ;
return m;

end ; ;

Example 8.2.1. Let a = b = 2 and c = 9 then the 2-adic decomposition of c is
the vector [1, 0, 0, 1]. Therefore we have

qmat(2, 2, 9) =

(
1 0

0 1

)
.

##S c r i p t t h a t s o r t s a v e c t o r o f homomorphisms and adds
#up c o e f f i c i e n t s
S o r t P a r a l l e l (f , c o e f) ; #s o r t both l i s t s

#take out d u p l i c a t e s from the matr ices
i f I sDup l i ca t eFree (f)= f a l s e then

k:=Length (f) ;
while k>1 do

i f f [k]= f [k−1] then
Remove(f , k) ;
c o e f [k−1]:= c o e f [k]+ c o e f [k−1] ;
Remove(coe f , k) ;

f i ;
k:=k−1;

od ;
f i ;

S o r t P a r a l l e l (coe f , f) ; #s o r t f o r c o e f

#remove zero c o e f f i c i e n t s and matr ices t h a t be long to them
i f c o e f [1]=0∗Z(q) then

repeat
Remove(f , 1) ;
Remove(coe f , 1) ;

u n t i l c o e f [1]<>0∗Z(q) ;
f i ;

S o r t P a r a l l e l (f , c o e f) ; #s o r t back f o r f

92

f l e n :=Length (f) ; #take l e n g t h o f f

#Output s e c t i o n

Print (” t e s t i n g now in (F ” ,q , ”ˆ” , s , ” , F ” ,q , ”ˆ” ,n , ”)−−>
(F ” ,q , ”ˆ” ,m, ” , F ” ,q , ”ˆ” ,n , ”) ” , ”\n”) ;
Pr int (”With the Homomorphism” , ”\n”) ;
#Disp lay (f) ;
#Disp lay (c o e f) ;

Print (c o e f [1] , ”∗” , qmat (s ,m, f [1] −1)) ;
for i in [2 . . Length (f)] do

Pr int (”+” , c o e f [i] , ”∗” , qmat (s ,m, f [i] −1)) ;
od ;
Pr int (”\n”) ;

Read (” f k e r n e l . g”) ; #cont inue in program

The function intmat reverses the action of pmat, such that we will dispense
with an example. We will briefly look into the function matp however.

Example 8.2.2. Let q = 2 and f = [2, 1, 2] with coef = [1, 1, 1]. Then this input
will be sorted to f = [1] and coef = [1].

8.3 fkernel.g

#Function t h a t g e n e r a t e s an a x b i n t e g e r matrix over a
#prime f i e l d from the q−adic decomposi t ion o f an i n t e g e r c .
#Therefore the i n t e g e r c d e f i n e s t h a t matrix u n i q u e l i y .
qmat := func t i on (a , b , c)
a i s row count , b column and c the the number o f the
#matrix we want to l o o k at

l o c a l m,mm;
m:=NullMat (a , b ,GF(q)) ;
#genera te a Nul l matrix
mm:= C o e f f i c i e n t s Q a d i c (c , q) ;
#decompose c q−a d i c l y
for i in [0 . . a∗b−1] do
#t h i s loop f i l l s in the e lements .

i f Length (mm) = i then break ; f i ;
#error break c o n d i t i o n

93

m[QuoInt (i , b) + 1] [(i mod b)+1]:=
Elements (GF(q)) [mm[i +1]+1];

od ;
return m;

end ; ;

#Function t h a t c o n v e r t e s an a x b Matrix c over a
#f i n i t e f i e l d back i n t o an i n t e g e r
intmat := func t i on (c)

l o c a l a , b ,m;
a:=DimensionsMat (c) [1] ;
b:=DimensionsMat (c) [2] ;
m:=0;
for i in [0 . . a∗b−1] do

#analogue to qmat
m:=m+(Pos i t i on (Elements (GF(q)) ,

c [QuoInt (i , b) + 1] [(i mod b)+1])−1)∗qˆ i ;
od ;
return m;

end ; ;

The function intmat reverses the function qmat and converts a matrix over Fq
back into an integer.

#f u n c t i o n t h a t computes the k e r n e l o f a g iven
#homomorphism between two hom−spaces
#main f u n c t i o n o f the programm , i t needs the
#Dimensions o f the s t a r t and termina l space , the
#homomorphism t o g t h e r wi th i t s l eng th , i . e . the
#count o f non zero e n t r i e s i f a p p l i c a b l e , and
#the Matrix t h a t con ta ins a l l the r e s u l t s o f the
#m u l t i p l i c a t i o n s between the e n t r i e s in homf and
#the b a s i s v e c t o r s in (F qˆdims , F qˆdimn)
k e r n e l c a l c := func t i on (dims , dimn , dimm, homf ,RR, len , c)

#output matrix f o r the r e s u l t o f the m u l t i p l i c a t i o n s ,
#or matrix r e a l i s a t i o n o f the homomorphism
#we now compute the r e s u l t o f the m u l t i p l i c a t i o n o f
#the b a s i s v e c t o r s wi th our g iven homomorphism from
#the matrix RR

l i s t o u t :=NullMat (q ˆ(dims∗dimn) , q ˆ(dimm∗dimn) ,GF(q)) ;
for j in [1 . . l en] do

94

i f homf [j]<>0 then
for k in [1 . . q ˆ(dims∗dimn)] do

l i s t o u t [k] [RR[k] [j]+1]:=
l i s t o u t [k] [RR[k] [j]+1]+ c [j] ;

od ;
f i ;

od ;
#Disp lay (l i s t o u t) ;

#r e s u l t i s now the matrix o f the homomorphism (f , F qˆn) ,
#now we need to f i n d i t s r i g h t−kerne l , b e f o r e we do that ,
#s e t the matrix to the f i n t e f i e l d t h a t we a c u r r e n t l y
#working in

ke rne l :=Length (Tr iangul izedNul l spaceMat (l i s t o u t)) ;
return ke rne l ;

end ; ;

End of Functions

The function kernelcalc is the heart of this script. It requires a lot of data,
most of which we have already seen. What is new is the matrix of matrices RR.
It contains the result of each multiplication of each basis element of (Fsq,Fnq) as
an element of the integers. We will get to this matrix in a bit and also move the
example on kernelcalc to the end of this subsection.

##This s c r i p t r e q u i r e s dimensions s ,m, n , and a
#homomorphism f wi th c o e f f i c i e n t s c o e f as input . This input
#i s genera ted by the s c r i p t input . g but can a l s o manually
#be i n s e r t e d f o r examples . The s c r i p t r e t u r n s the dimension
#of the k e r n e l o f f .

#Generates a l i s t o f matr ices t h a t w i l l conta in a l l the
#r e s u l t s o f a l l m u l t i p l i c a t i o n s between b a s i s homomorphisms
#and e n t r i e s in the components o f [f]
R:=NullMat (q ˆ(n∗ s) , f l e n) ;
for j in [1 . . f l e n] do

fm:=qmat (s ,m, f [j]−1) ;
for k in [1 . . q ˆ(n∗ s)] do

R[k] [j] := intmat (qmat (n , s , k−1)∗fm) ;
od ;

od ;

#Disp lay (R) ;

95

#Print (” M u l t i p l i c a t i o n s s u c c e s s f u l l y genera ted ! \n ”) ;

f k e r n e l := k e r n e l c a l c (s , n ,m, f ,R, f l en , c o e f) ;

#Print (”The k e r n e l i s genera ted by : ”) ;
#Disp lay (f k e r n e l) ;
Print (”Dimension o f the ke rne l i s : ”) ;
#kk := Length (f k e r n e l) ;
Display (f k e r n e l) ;
#f i r s t important s tep , now we know what we are d e a l i n g wi th
#in terms o f dimension . The next s t e p shou ld be to see i f
#we got a decomposi t ion o f the k e r n e l in d i r e c t summands .

#uncomment i f used as par t o f the whole program . In t h a t
#case the path has to be changed manually , r e l a t i v e l y to
#the gap b in d i r e c t o r y
Read(” weakcoker . g”) ;

Example 8.3.3. Let q = 2, m = s = 1, n = 2 and f = [0] + [1]. Then The matrix
R (or RR in the function kernelcalc) is a 4× 2 matrix of results of multiplications.
These eight multiplications are:[

0

0

]
◦ [0] =

[
0

0

]
;

[
1

0

]
◦ [0] =

[
0

0

]
;

[
0

1

]
◦ [0] =

[
0

0

]
;

[
1

1

]
◦ [0] =

[
0

0

]
[

0

0

]
◦ [1] =

[
0

0

]
;

[
1

0

]
◦ [1] =

[
1

0

]
;

[
0

1

]
◦ [1] =

[
0

1

]
;

[
1

1

]
◦ [1] =

[
1

1

]
The resulting R is (we recall that we have always shifted the numbers corresponding
to the matrices up by one): 

1 1
1 2
1 3
1 4


With this data we can now call the function kernelcalc to obtain the matrix listout
which will give us the kernel of (f,Fnq). For the matrix listout we just count how
many times we will get which element of (Fmq ,Fnq) when we multiply a basis element
of (Fsq,Fnq) with f . With the present data listout will be:

2 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1


96

Modulo q = 2 it is immediately clear that the (right-)kernel will be generated by
the element [1, 0, 0, 0] which corresponds to the element

[
0
0

]
in (Fsq,Fnq).

8.4 weakcoker.g

The fourth step is to prepare the search for the a candidate for a weak cokernel of
the map f respectively a kernel of the map (f,−).

#Function t h a t g e n e r a t e s an a x b i n t e g e r matrix over a
#prime f i e l d from the q−adic decomposi t ion o f an i n t e g e r c .
#Therefore the i n t e g e r c d e f i n e s t h a t matrix u n i q u e l i y .
qmat := func t i on (a , b , c)
a i s row count , b column and c the the number o f the
#matrix we want to l o o k at

l o c a l m,mm;
m:=NullMat (a , b ,GF(q)) ;
#genera te a Nul l matrix
mm:= C o e f f i c i e n t s Q a d i c (c , q) ;
#decompose c q−a d i c l y
for i in [0 . . a∗b−1] do
#t h i s loop f i l l s in the e lements .

i f Length (mm) = i then break ; f i ;
#error break c o n d i t i o n
m[QuoInt (i , b) + 1] [(i mod b)+1]:=

Elements (GF(q)) [mm[i +1]+1];
od ;
return m;

end ; ;

#Function t h a t c o n v e r t e s an a x b Matrix c over a f i n i t e
#f i e l d back i n t o an i n t e g e r
intmat := func t i on (c)

l o c a l a , b ,m;
a:=DimensionsMat (c) [1] ;
b:=DimensionsMat (c) [2] ;
m:=0;
for i in [0 . . a∗b−1] do

#analogue to qmat
m:=m+(Pos i t i on (Elements (GF(q)) ,

c [QuoInt (i , b) + 1] [(i mod b)+1])−1)∗qˆ i ;

97

od ;
return m;

end ; ;

#q−adic incrementa t ions f u n c t i o n f o r l i s t o f numbers
qinc := func t i on (a)
l o c a l i ;

for i in [1 . . Length (a)] do
i f a [i]=(q−1) mod q then a [i] : = 0 ;
else a [i] := a [i]+1; break ; f i ;

od ;
return a ;

end ; ;

The only new function is qinc. This function helps us to run through all linear
combinations of elements in a given vector space over Fq.

Example 8.4.4. Let q = 5

[4, 0, 1, 0] 7→ [0, 1, 1, 0]

[0, 1, 1, 0] 7→ [1, 1, 1, 0]

#f u n c t i o n t h a t computes the k e r n e l o f a g iven homomorphism
#between two hom−spaces
#main f u n c t i o n o f the programm , i t needs the Dimensions o f
#the s t a r t and termina l space , the homomorphism t o g t h e r wi th
#i t s l eng th , i . e . the count o f non zero e n t r i e s i f a p p l i c a b l e ,
#and the Matrix t h a t con ta ins a l l the r e s u l t s o f the
#m u l t i p l i c a t i o n s between the e n t r i e s in homf and the
#b a s i s v e c t o r s in (F qˆdims , F qˆdimn)
k e r n e l c a l c := func t i on (dims , dimn , dimm, homf ,RR, len , c)

#output matrix f o r the r e s u l t o f the m u l t i p l i c a t i o n s ,
#or matrix r e a l i s a t i o n o f the homomorphism
#we now compute the r e s u l t o f the m u l t i p l i c a t i o n o f
#the b a s i s v e c t o r s wi th our g iven homomorphism from
#the matrix RR

l i s t o u t :=NullMat (q ˆ(dims∗dimn) , q ˆ(dimm∗dimn) ,GF(q)) ;
for j in [1 . . l en] do

i f homf [j]<>0 then
for k in [1 . . q ˆ(dims∗dimn)] do

l i s t o u t [k] [RR[k] [j]+1]:=

98

l i s t o u t [k] [RR[k] [j]+1]+ c [j] ;
od ;

f i ;
od ;

#r e s u l t i s now the matrix o f the homomorphism (f , F qˆn) ,
#now we need to f i n d i t s r i g h t−kerne l , b e f o r e we do that ,
#s e t the matrix to the f i n t e f i e l d t h a t we a c u r r e n t l y
#working in

ke rne l :=Length (Tr iangul izedNul l spaceMat (l i s t o u t)) ;
return ke rne l ;

end ; ;

##End of Functions , s t a r t i n g main program
#As input we need again dimension v e c t o r s s ,m, dimension n ,
#homomorphism f through f , f l e n and the k e r n e l g i ven by
#f k e r n e l
Now we t r y to f i n d a s u i t i n g g :Fˆ h q−−>Fˆ s q s . t . g∗ f =0,
#f i r s t t r y s m a l l e s t h s . t . q ˆ(n∗h)>=dim Ker (f ,Fˆ n q) , gk i s
#the dimension o f the k e r n e l o f g
Print (” Sta r t s ea r ch ing f o r a weak coke rne l .\n”) ;
h :=0;
gk :=0;

while q ˆ(n∗h)< f k e r n e l do

After making sure that the chosen space (Fhq ,Fnq) is big enough to cover the
calculated ker(f,Fnq) in terms of dimension. We calculate the kernel of (f,−) on
(Fsq,Fhq) which gives all the maps g such that g ◦ f = 0.

Example 8.4.5. Let q = 2 and f = [0] + [1], then the space of all g such that
g ◦ f = 0 is generated by g = [0].

Now we take all possible linear combinations of generators of this space and
check if we can obtain Im(g,Fnq) = ker(f,Fnq) this is done in the next script. If we
are successful, the result is printed out.

od ;

#use r e p e a t here i n s t e a d o f f o r f o r b e t t e r p o s s i b l e
#manipulat ion o f the count v a r i a b l e bc
r epeat
#Generates the matrix t h a t w i l l conta in a l l the r e s u l t s o f
#a l l m u l t i p l i c a t i o n s between the e lements o f f and b a s i s

99

#homomorphisms t h a t can occur as e lements o f g
R:=NullMat (q ˆ(h∗ s) , q ˆ(h∗m) ,GF(q)) ;
for k in [1 . . q ˆ(h∗ s)] do

gm:=qmat (h , s , k−1);
for j in [1 . . f l e n] do

pp:= intmat (gm∗qmat (s ,m, f [j] −1)) ;
R[k] [pp+1]:=R[k] [pp+1]+1∗Z(q) ˆ 0 ;

od ;
od ;
nu l l gg := Triangul izedNul l spaceMat (R) ;

#n u l l g g now conta ins a b a s i s o f the l e f t annu la tor o f f
i f Length (nu l l gg)=0 then

Display (”no more morphisms l e f t ! ”) ;
break ;

f i ;
Pr int (”Space o f [g] ∗ [f]=0 generated .\n”) ;

#Generates the matrix t h a t w i l l conta in a l l the r e s u l t s o f
#a l l m u l t i p l i c a t i o n s between b a s i s homomorphisms and e lements
#of a l l g , t h i s i s on ly needed i f we go t a new h s i n c e the
#l a s t time we passed t h i s p o i n t

R1:=NullMat (q ˆ(h∗n) , q ˆ(h∗ s)) ;
for j in [1 . . q ˆ(h∗ s)] do

gm:=qmat (h , s , j −1);
for k in [1 . . q ˆ(n∗h)] do

R1 [k] [j] := intmat (qmat (n , h , k−1)∗gm) ;
od ;

od ;
Pr int (” M u l t i p l i c a t i o n s s u c c e s s f u l l y generated ! \n”) ;

g:= L i s t W i t h I d e n t i c a l E n t r i e s (qˆ(h∗ s) ,0∗Z(p)) ;

#Chance to save the workspace to use p a r a l l e l computing
#SaveWorkspace (” P2coker ”) ;
#We read the s c r i p t t h a t does the a c t u a l search . This a l l o w s
#us to save the workspace and load the search s c r i p t on
#another computer as w e l l f o r f a s t e r search .

Read(” sea rchcoke r . g”) ;
#end o f the r e p e a t
u n t i l f k e r n e l=qˆ(h∗n)−gk ;

100

#output o f the r e s u l t
Print (”A weak coke rne l i s g iven by ”) ;
Pr int (” (F ” ,q , ”ˆ” ,h , ” ,−)”) ;
Pr int (” with the homomorphisms g=” , ”\n”) ;
gg : = [] ;
gc : = [] ;
for i i in [1 . . Length (g)] do

i f g [i i]<>0∗Z(q) then
Pr int (g [i i] , ”∗” , qmat (s ,m, i i −1) ,”+”) ;

Add(gg , i i) ;
Add(gc , g [i i]) ;

f i ;
od ;
Pr int (”\n”) ;
Pr int (”Output f o r t e s t−a lgor i thm ” , ”\n”) ;
Pr int (”g:=” , gg , ” ; ” , ”\n”) ;
Pr int (” coe f g :=” , gc , ” ; ” , ”\n”) ;

8.5 searchcoker.g

The final step is to calculate if the representable map (g,−) such that (f,Fnq) ◦
(g,Fnq) is exact. This script admits to be used in parallel computing for faster
speed.

##Warning t h i s S c r i p t needs a loaded Workspace c r e a t e d by
#weakcoker . g
gs := L i s t W i t h I d e n t i c a l E n t r i e s (Length (nu l l gg) , 0) ;
c l o s e := f a l s e ;

#Manipulat ion chance f o r g i f we were to use t h i s s c r i p t
#on a d i f f e r e n t computer then the one we did the o r i g i n a l
#computation on
#gs [Length (gs)] : = 1 ; #Example f o r manipulat ion

r epeat
gs := qinc (gs) ;
g:=g ∗0 ;
for jk in [1 . . Length (gs)] do

i f gs [jk]<>0 then
g:=g+Z(q)ˆ (gs [jk]−1)∗ nu l l gg [jk] ;

f i ;

101

od ;

gg : = [] ;
for jk in [1 . . Length (g)] do

i f g [jk]<>0∗Z(q) then
Add(gg , 1) ;

else
Add(gg , 0) ;

f i ;
od ;

#compute the k e r n e l o f g and determine i t s dimension
gk:= k e r n e l c a l c (h , n , s , g , R1 , q ˆ(s∗h) , g) ;
#Disp lay (q ˆ(h∗n)−gk) ;

#t e s t i f we go t the d e s i r e d dimension o f the image
i f (q ˆ(h∗n)−gk=f k e r n e l) then

#Disp lay (gk) ;
c l o s e := true ;
break ;

f i ;
Pr int (gs , ”\ r ”) ;

#t e s t where we are c u r r e n t l y s tand ing ; because o f the
#break c o n d i t i o n b e f o r e gg=Length (gs) can only occur
#i f we don ’ t f i n d anyt ing

u n t i l gs=L i s t W i t h I d e n t i c a l E n t r i e s (Length (gs) , q−1);
#f a i l c o n d i t i o n
i f (gs=L i s t W i t h I d e n t i c a l E n t r i e s (Length (gs) , q−1))and

(c l o s e=f a l s e) then
Pr int (”No Sucess ! ” ,h , ”\n”) ;
Pr int (”Trying new h” , ”\n”) ;
h:=h+1;

f i ;

#The important Output
#g ;
#h ;

We just loop over all the possible linear combinations for g and calculate the
dimension of their image using the function kernelcalc. If we find our desired

102

result, it is printed out.

Example 8.5.6. Let q = 2, m = n = 3, n = 3. As homomorphism we choose

f =

 1 0 0
0 1 0
0 0 1

+

 1 1 0
0 1 1
0 0 1


The function kernelcalc yields a dimension of 148 for the kernel. An example

of a g such that g ◦ f = 0 is

g =

 0 0 0
0 0 0
0 0 1


or

g =

 0 0 0
0 1 0
0 0 1

+

 0 0 0
0 1 1
0 0 1


But they yield the wrong dimensions of the image. The algorithm computes that
the kernel is generated by the map

g =

 1 0 0
0 1 0
0 0 1

+

 1 1 0
0 1 1
0 0 1

+

 1 0 1
0 1 0
0 0 1

+

 1 1 1
0 1 1
0 0 1

+

 0 0 0
0 1 0
0 0 1

+

 0 0 0
0 1 1
0 0 1

+

 0 0 0
0 0 0
0 0 1


8.6 kertest.g

The program kertest.g computes whether a candidate that we have found in the
previous program can actually pass as the kernel as it varies the dimension n of the
test-space Fnq . Most of the functions used already appear in the previous scripts.

#Function t h a t g e n e r a t e s an a x b i n t e g e r matrix over a
#prime f i e l d from the q−adic decomposi t ion o f an i n t e g e r c .
#Therefore the i n t e g e r c d e f i n e s t h a t matrix u n i q u e l i y .
qmat := func t i on (a , b , c)
a i s row count , b column and c the the number o f the
#matrix we want to l o o k at

l o c a l m,mm, i ;
m:=NullMat (a , b ,GF(q)) ;

103

#genera te a Nul l matrix
mm:= C o e f f i c i e n t s Q a d i c (c , q) ;
#decompose c q−a d i c l y
for i in [0 . . a∗b−1] do
#t h i s loop f i l l s in the e lements .

i f Length (mm) = i then break ; f i ;
#error break c o n d i t i o n
m[QuoInt (i , b) + 1] [(i mod b)+1]:=

Elements (GF(q)) [mm[i +1]+1];
od ;
return m;

end ; ;

#Function t h a t c o n v e r t e s an a x b Matrix c over a
#f i n i t e f i e l d back i n t o an i n t e g e r
intmat := func t i on (c)

l o c a l a , b ,m, i ;
a:=DimensionsMat (c) [1] ;
b:=DimensionsMat (c) [2] ;
m:=0;
for i in [0 . . a∗b−1] do

#analogue to qmat
m:=m+(Pos i t i on (Elements (GF(q)) ,

c [QuoInt (i , b) + 1] [(i mod b)+1])−1)∗qˆ i ;
od ;
return m;

end ; ;

#Function t h a t checkes i f two homomorphisms in the
#K−l i n e a r i s e d c a t e g o r y compose t i r v i a l l y
homprod := func t i on (gg , cog , f f , cof , dh , ds ,dm)

l o c a l pos , re , jk , i k ;
r e := L i s t W i t h I d e n t i c a l E n t r i e s (q ˆ(dh∗dm) , Zero (GF(q))) ;
for jk in [1 . . Length (gg)] do

for i k in [1 . . Length (f f)] do
pos := intmat (qmat (dh , ds , gg [jk]−1)∗

qmat (ds ,dm, f f [i k]−1))+1;
re [pos] := re [pos] := re [pos]+cog [jk]∗ co f [i k] ;

od ;
od ;

104

i f re=L i s t W i t h I d e n t i c a l E n t r i e s (q ˆ(dh∗dm) , Zero (GF(q))) then
return t rue ;

else
return f a l s e ;

f i ;
end ; ;

#f u n c t i o n t h a t computes the k e r n e l o f a g iven
#homomorphism between two hom−spaces
#main f u n c t i o n o f the programm , i t needs the
#Dimensions o f the s t a r t and termina l space , the
#homomorphism t o g t h e r wi th i t s l eng th , i . e . the
#count o f non zero e n t r i e s i f a p p l i c a b l e , and
#the Matrix t h a t con ta ins a l l the r e s u l t s o f the
#m u l t i p l i c a t i o n s between the e n t r i e s in homf and
#the b a s i s v e c t o r s in (F qˆdims , F qˆdimn)
k e r n e l c a l c := func t i on (dims , dimn , dimm, homf ,RR, len , c)

#output matrix f o r the r e s u l t o f the m u l t i p l i c a t i o n s ,
#or matrix r e a l i s a t i o n o f the homomorphism
#we now compute the r e s u l t o f the m u l t i p l i c a t i o n o f
#the b a s i s v e c t o r s wi th our g iven homomorphism from
#the matrix RR

l i s t o u t :=NullMat (q ˆ(dims∗dimn) , q ˆ(dimm∗dimn) ,GF(q)) ;

The functions homprod and kfprod are used to calculate the product g ◦ f in
the category Fq[mod−Fq] and check if it is trivial. If g ◦ f 6= 0 we do not need to
do further computations.

for k in [1 . . q ˆ(dims∗dimn)] do
l i s t o u t [k] [RR[k] [j]+1]:=
l i s t o u t [k] [RR[k] [j]+1]+ c [j] ;

od ;
f i ;

od ;
#Disp lay (l i s t o u t) ;

#r e s u l t i s now the matrix o f the homomorphism (f , F qˆn) ,
#now we need to f i n d i t s r i g h t−kerne l , b e f o r e we do that ,
#s e t the matrix to the f i n t e f i e l d t h a t we a c u r r e n t l y
#working in

ke rne l :=Length (Tr iangul izedNul l spaceMat (l i s t o u t)) ;
return ke rne l ;

end ; ;

105

End of Functions , s t a r t i n g main program

Input
q :=2;
Pr int (”Using the prime power q=” , q , ”\n”) ;
#and so f a r no suppor t f o r in time read
Print (” Set now h , s and m to check i f a g iven g g i v e s

a weak coke rne l in (F q ˆ(h 1 , . . . , h l) , F qˆn) −−>
(F q ˆ(s 1 , . . . , s r) , F qˆn) −−>
(F q ˆ(m 1 , , m s) , F qˆn) ” , ”\n”) ;

Pr int (” read ing h ”) ;
h :=3;
Pr int (” read ing s ”) ;
s :=3;
Pr int (” read ing m ”) ;
m:=3;
Pr int (” t e s t i n g now in (F ” ,q , ”ˆ” ,h , ” , F ” ,q , ”ˆn) −−>

(F ” ,q , ”ˆ” , s , ” , F ” ,q , ”ˆn) −−>
(F ” ,q , ”ˆ” ,m, ” , F ” ,q , ”ˆn) ” , ”\n”) ;

g := [257 ,273 ,274 ,278 ,305 ,308 ,312] ;
c o e f g :=[Z(q)ˆ0 ,Z(q)ˆ0 ,Z(q)ˆ0 ,Z(q)ˆ0 ,Z(q)ˆ0 ,Z(q)ˆ0 ,Z(q) ˆ 0] ;
f : = [2 7 4 , 3 0 8] ;
c o e f f :=[Z(q)ˆ0 ,Z(q) ˆ 0] ;
Pr int (”With the homomorphisms g=” , ”\n”) ;
Pr int (coe f g [1] , ”∗” , qmat (s ,m, g [1] −1)) ;
for i in [2 . . Length (g)] do

Pr int (”+” , coe f g [i] , ”∗” , qmat (s ,m, g [i] −1)) ;
od ;
Pr int (”\n”) ;
Pr int (”and f=” , ”\n”) ;
Pr int (c o e f f [1] , ”∗” , qmat (s ,m, f [1] −1)) ;
for i in [2 . . Length (f)] do

Pr int (”+” , c o e f f [i] , ”∗” , qmat (s ,m, f [i] −1)) ;
od ;
Pr int (”\n”) ;

t e s t s t a r t :=1;
t e s tdepth :=4;

i f homprod (g , coe fg , f , c o e f f , h , s ,m)=true then

106

Print (” Success ! ” , ”\n”) ;
f l e n :=Length (f) ;
g l en :=Length (g) ;

for n in [t e s t s t a r t . . t e s tdepth] do
Rf:=NullMat (q ˆ(n∗ s) , f l e n) ;

for jk in [1 . . f l e n] do
for k in [1 . . q ˆ(n∗ s)] do

Rf [k] [jk] := intmat (qmat (n , s , k−1)∗qmat (s ,m, f [jk] −1)) ;
od ;

od ;
#M u l t i p l i c a t i o n s f o r f genera ted

Rg:=NullMat (q ˆ(n∗h) , g l en) ;
for jk in [1 . . g l en] do

for k in [1 . . q ˆ(n∗h)] do
Rg [k] [jk] := intmat (qmat (n , h , k−1)∗qmat (h , s , g [jk] −1)) ;

od ;
od ;

#M u l t i p l i c a t i o n s f o r g genera ted

k e r f := k e r n e l c a l c (s , n ,m, f , Rf , f l en , c o e f f) ;
img:=q ˆ(n∗ s)−k e r n e l c a l c (h , n , s , g , Rg , glen , coe f g) ;

#Disp lay (C o e f f i c i e n t s Q a d i c (ker f , qˆn)) ;

Print (”Dimension o f the Kernel : ” , ker f , ”
Dimension o f the Image : ” , img , ”\n”) ;

succ := true ;
i f ker f<>img then

Pr int (” This compos it ion i s not exact at ” ,n , ”\n”) ;
succ := f a i l ;
break ;

f i ;
od ; #end o f t e s t d e p t h−l oop
i f succ=true then Pr int (”The te s tdepth ” , testdepth ,

” was s u c e s s f u l !\n”) ; f i ;
else

Print (”The compos it ion o f f and g does not seem to
be t r i v i a l . Check the homomorphisms .\n”) ;

f i ;

107

After inputting we the homomorphisms together with their initial and terminal
spaces we need to specify the lowest dimension we want to test, teststart, and the
highest dimension, testdepth. For each dimension in that interval the dimensions
of Im(g,Fnq) and ker(f,Fnq) are computed. If they match up the test was successful.
As we know that Im(g,Fnq) = ker(f,Fnq) holds for any n smaller or equal to the
n where we calculated g it is of particular interest what happens if we increase
testdepth beyond that point. In the case that is implanted in the script, which is
the same case that was discussed in the previous subsection we have the following
output, where GAP regards 0 ∗ Z(2) as 0 ∈ F2 and Z(2)0 as 1 ∈ F2:

Using the prime power q=2

Set now h,s and m to check if a given g gives a weak cokernel in

(F_q^(h_1,...,h_l),F_q^n) -->(F_q^(s_1,...,s_r),F_q^n) -->

(F_q^(m_1,,m_s),F_q^n)

reading h reading s reading m testing now in (F_2^3,F_2^n) -->

(F_2^3,F_2^n) -->(F_2^3,F_2^n)

With the homomorphisms g=

Z(2)^0*[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[Z(2)^0, 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[Z(2)^0, 0*Z(2), Z(2)^0], [0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[Z(2)^0, Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0, Z(2)^0],

[0*Z(2), 0*Z(2), Z(2)^0]]

and f=

Z(2)^0*[[Z(2)^0, 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]+Z(2)^0*

[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0],

[0*Z(2), 0*Z(2), Z(2)^0]]

Success!

Dimension of the Kernel: 4 Dimension of the Image: 4

Dimension of the Kernel: 22 Dimension of the Image: 22

Dimension of the Kernel: 148 Dimension of the Image: 148

Dimension of the Kernel: 1096 Dimension of the Image: 1096

108

The testdepth 4 was sucessful!

As g was calculated usind n = 3, exactness at n = 4 gives a pretty strong
motivation that g might actually generate ker(f,−).

109

9 References

References

[AF10] Frank W. Anderson and Kent R. Fuller, Rings and categories of mod-
ules, 2. ed., [nachdr.] ed., Graduate texts in mathematics ; 13, vol. 13,
Springer, New York [u.a.], 2010 (eng).

[Aig06] Martin Aigner, Diskrete Mathematik, 6., korrigierte auflage ed., Friedr.
Vieweg & Sohn Verlag — GWV Fachverlage GmbH, Wiesbaden, Wies-
baden, 2006.

[AR74] M. Auslander and I. Reiten, Stable equivalence of dualizing R-varieties,
Adv. Math. 12 (1974), 306–366.

[Dja09] Aurelien Djament, Le foncteur V 7→ F2[V]⊗3 entre F2-espaces vectoriels
est noetherien, Ann. Inst. Fourier, Grenoble 59 2 (2009), 459–490.

[FFSS99] Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and An-
drei Suslin, General linear and functor cohomology over finite fields,
Annals of Mathematics 150 (1999), 663–728.

[FLS94] Vincent Franjou, Jean Lannes, and Lionel Schwartz, Autour de la coho-
mologie de Mac Lane des corps finis., Invent. Math. 115 no. 3 (1994),
513538.

[Fra96] Vincent Franjou, Extensions entre puissances exterieures et entre puis-
sances symetriques, J. Algebra 179 (1996), 501–522.

[Gab] Peter Gabriel, Idecomposable Representations II.

[Gab72] , Unzerlegbare Darstellungen I, manuscripta mathematica 6
(1972), no. 1, 71–103 (English).

[HK88] John Harris and Nicolas Kuhn, Stable decompositions of classifying
spaces for finite abelian p groups, Math. Proc. Camb. Phil. Soc. 103
(1988), 427–449.

[Kra] Henning Krause, Krull-Remak-Schmidt categories and projective covers,
http://www.math.uni-bielefeld.de/˜hkrause/krs.pdf.

[Kuh93] Nicolas Kuhn, Generic Representations of the Finite General Linear
Groups and the Steenrod Algebra: I, American Journal of Mathematics
116 (1993), 327–360.

110

[Kuh94] , Generic Representations of the Finite General Linear Groups
and the Steenrod Algebra: II, K-Theory 8 (1994), 395–428.

[Kuh95] , Generic Representations of the Finite General Linear Groups
and the Steenrod Algebra: III, K-Theory 9 (1995), 273–303.

[Kuh98] , The generic representation theory of finite fields: a survey of
basic structure, Infinite Length Modules, Proc. Bielefeld (1998), 193–
212.

[LMR94] Klaus Lux, Jürgen Müller, and Michael Ringe, Peakword condensation
and submodule lattices: an application of the meat-axe, J. Symb. Com-
put. 17 (1994), 529–544.

[Mac08] Ian G. Macdonald, Symmetric functions and Hall polynomials, Claren-
don Press, Oxford, 2008.

[Pow98a] Geoffrey Powell, The Artinian Conjecture for I⊗2, Journal of Pure and
Applied Algebra 128 (1998), 291–310.

[Pow98b] , The Structure of indecomposable Injectives in generic Repre-
sentation Theory, Transactions of the American Mathematical Society
350 (1998), 4167–4193.

[PS98] Laurent Piriou and Lionel Schwartz, Extensions de foncteurs simples,
K-Theory 15 (1998), 269–291.

[Rin] Michael Ringe, C-Meataxe, http://www.math.rwth-aachen.de/˜MTX/.

[Sch94] Lionel Schwartz, Unstable modules over the Steenrod algebra and Sulli-
van’s fixed point conjecture, Chicago Lecture Notes in Mathmatics, Univ.
Chicago Press, 1994.

111

	Introduction and notation
	The main results
	Outline

	Generic representation theory
	The Artinian conjecture
	A few properties of dimension functions

	On the Grothendiek group K0(Fq)
	 is diagonalizable on K0(Fq)
	On ndimP(Fqn)

	The category Fq viewed as a module category
	Finitely presented functors and quivers
	An example: the Kronecker case

	Approaches to coherence
	The radical
	Properties of the radical
	Behavior of the dimension of `39`42`"613A``45`47`"603Acoker(f,Fqn)
	Conceptual approach by using the closed form
	Semi-direct approach
	Inductive approach

	Approach to finitely generated functors
	Dimension formula for subfunctors of projectives
	Remarks on the Strong Artinian conjecture

	The extension quiver
	Theoretical aspects
	Computational aspects
	Properties of the quiver

	An algorithm to compute generators of kernels of representable morphisms and to test them
	input.g
	sortf.g
	fkernel.g
	weakcoker.g
	searchcoker.g
	kertest.g

	References

