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 1 Introduction

The main aim of this work is to apply „ab initio calculations“ either  DFT- or KKR 
Green's  function-  based  to  gain  further  information  about  the  band  structure  of 
materials  and stability in different phases such as  Co nanoparticles, Fe2CoO4 and 
Co2FeO4 ferrite  spinels  and  some  kinds  of  Heusler  alloys.  To  fulfill  this  goal, 
different  Simulation  Programms  including  elk,  Quantum-Espresso  (opEn  Source 
Package for Research in  Electronic Structure,  Simulation,  and Optimization) and 
SPRKKR (spin-polarized relativistic Korringa-Kohn-Rostoker) have been used. 

In chapter 2 the Density Functional Theory (DFT) is described in detail;  in this work 
Density  Of  States  (DOS)  of  Cobalt  in  3  fcc-,  hcp-  and  ε-structures  have  been 
calculated by using „Elk program“ which is a  DFT-based program. But to do the 
same calculations for „Fe2CoO4“ and „Co2FeO4“ spinels, due to underestimating the 
band gaps in these compounds, Elk-code was not proper to do these calculations. In 
order to solve the problem DFT+U based calculations were used, where  U is the 
„Coloumb Potential“ which should be considered to simulate better the real system. 
In fact the position of Valence Band Maxima (VBM) has been corrected to a large 
extent by adding Hubbard “Ueff” to the transition metal  d-orbital.  „Ueff is generally 
expressed  as  the  difference  between parameters  U and J.  The Hubbard  U is  the 
Coulomb-energetic  cost  to  place  two  electrons  at  the  same  site,  and  J  is  an 
approximation to the Stoner exchange parameter“ [1] which defines ferromagnets. 
For  this  thesis  with  consideration the  available  calculated  results  for  DOS  in 
literature [2, 3], it has been tried to change Ueff  as a parameter in the way that band 
gaps  presented in  those  references  be  attained.  Afterwards experimental  results 
obtained by our experimentists  have also confirmed the calculation results which 
showed that  Fe2CoO4 is  an  insulator  and  Co2FeO4 is  a  half-metal.  Doing  these 
calculations  with  elk-code  which  is  an  „all-electron  potential“  was  too  time-
consuming,  thus  the  „Quantum-Espresso“  program  which  contains 
„pseudopotentials“  has  been  used  for  spinels  and  Heusler  alloys.  The  kinds  of 
pseudopotentials and their basics are also explained in chapter 2. 

In chapter 3 the SPRKKR method enabling to do calculations for off-stoichiometric 
Heusler alloys is introduced.

As it  is  well-known the aim of spintronics is  searching for highly spin polarized 
materials  to  enhance  tunneling  magnetoresistance  (TMR)  of  magnetic  tunnel 
junctions (MTJs). There are several ways to achieve high spin-polarization; the most 
practical  way  is to apply fully  spin-polarized  ferromagnetic  metals  named half-
metals (HM). Another possibility is to  utilize the features of the band structure of 
tunnel  barrier  materials  such  as  MgO  to filter  the electronic  wave  functions 
according to their symmetry. The least explored way is using the spin-filtering effect 
based  on  ferromagnetic  or  ferrimagnetic  insulating  barriers.  In  spin  filtering 
phenomenon electrons with spin parallel to the magnetization of the material will be 
low scattered and transit nearly hundred percent through the material in contrast  to 
other  electrons  will  be strongly scattered.  As a  result  spin-dependent  gap  should 
result  in  a  spin-dependent  barrier.  „Since  the  tunneling  probability  depends 
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exponentially on the barrier height, the spin filtering efficiency can be very high [4].“ 
Fe2NiO4, Fe2CoO4, and Fe2MnO4 are candidates for spin filtering.
Chapter 4 contains the calculated Density Of States for Co in three phases which also 
have been observed in experiments and for Co2FeO4 and Fe2CoO4 spinels.

The prospect of exploiting the latent energy in the systems has arisen recently. The 
origin of this energy is variation the entropy of the system resulted from the changing 
the macroscopic properties of the system such as volume, temperature and strain on 
it and  further  for the ferromagnetic systems could be also attained by applying an 
external magnetic field. As a result the Heusler alloys which show a shape memory 
effect and among them Ni2MnGa which is also ferromagnetic have attracted high 
attention.  Ni2MnGa shows  a  shape  memory  effect  originated  in  the  martensitic 
transition which takes place through cooling about 200K from the cubic L21 Heusler 
austenite structure to a tetragonal martensite phase.  The origin of this transition is 
lowering the energy of system due to  the  hybridization between d-electrons of Ni 
with p-electrons of Ga atoms which results in a lowering in tetragonality (c/a) of the 
unit cell.  This transformation is a simple contraction along [100] direction of the 
cubic phase without any change in atomic positions. There is a strong deformation of 
the cell (c/a=0.94) but a light change in cell volume of only≈1%. The outstanding 
point for this transformation is that in spite of a strong deformation of the unit cell, 
this  transformation  is  reversible  [5,6].  An alternative  for  Ni-Mn-Ga alloy  system 
could be Ni-Mn-Sn-based Heusler alloys. „The Martensitic Transformation (MT) in 
offstoichiometric Ni-Mn-Sn-based alloys is often accompanied by the abrupt changes 
of magnetization and resistance“ [7]. Quantum-Espresso and SPRKKR programs by 
applying PBE (Perdew, Burke and Ernzerhof), generalized gradient approximation 
(GGA),  as  exchange-correlation  functional  within  the  spin-polarized  scalar 
relativistic approximation have been used to calculate the  DOS  for stoichiometric 
Ni2MnGa and Ni2MnSn and for offstoichiometric compounds such as Ni54.5Mn20.5Ga25 

and Ni47Co3.1Mn36.6Sn13.3 for both austenite and martensite states SPRKKR program 
has been used.

Chapter 5 introduces the Heusler alloys and their applications based on magnetic and 
structural transitions taken from literature. Structural properties in both austenite and 
martensite states,  effect of magnetic field on strain observed in these alloys have 
been discussed in this chapter. 

In Chapter 6 shape memory effect for Ni2MnGa has been studied by calculating the 
Density Of States and investigating it at Fermi level for the three minima of energies 
taken from literature [8]. And the stability between these three phases are discussed 
as well. The charge density distribution is also calculated for these three minima by 
utilizing Q-Espresso program. Total magnetic moment and contributions associated 
with individual atoms in Ni2MnGa as a function of tetragonality taken from literature 
[8] are also mentioned in this chapter 

Chapter 7 involves study of shape memory effect in Ni2MnSn alloy which seems to 
be  a  good  alternative  for  Ni2MnGa.  The charge  density  distribution  and  total 
magnetic moment and contributions associated with individual atoms in Ni2MnSn as 
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a function of tetragonality is also calculated by applying Quantum-espresso code and 
presented in this chapter.

In chapter 8 a series of multilayers consisting of Ni2MnGa and Ni2MnSn in different 
configurations have been investigated to study  the magnetic moment behaviors of 
individual atoms inside the layers and in interfaces and as well  the possibility to 
occur  martensitic  transition  and  finally  spin  polarization  is  also  studied  in these 
configurations.

Chapter 9 presents the calculated DOS and magnetic moments resulting of SPRKKR 
simulation  for  two  off-stoichiometric  compounds  including  Ni54.5Mn20.5Ga25 and 
Ni47Co3.1Mn36.6 Sn13.3. 

Chapter  10  involves summary  and  conclusions  and  finally  chapter  11  including 
outlook for the further investigations is followed.
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 2 Density Functional Theory (DFT) 

The aim of most ab initio methods is to solve the time-independent, non-relativistic 
Schrödinger equation.  In 1964 Hohenberg & Kohn discovered all  properties  of a 
stationary electronic system can be described by its ground-state density n0(r); that is 
one scalar function of position. The density is a physical observable quantity and 
depends  only  on  three  spatial  coordinates.  Hohenberg  &  Kohn  also  disclosed  a 
variational principle in terms of the density whose minimum gives the exact ground 
state density. Within the Kohn-Sham approach, the electrons are presumed as non 
interacting particles under an effective external potential, VKS. The effective potential 
is usually written as follows
VKS (r) = Vext (r) + VHartree (r) + Vxc (r) (2.1) 

where  the  first  term is  the  external  potential  (normally  the  Coulomb interaction 
between the electrons  and the nuclei),  whereas  the  second term accounts  for  the 
classical  electrostatic  interaction  between  the  electrons.  All  other  many-body 
complex effects are contained in the unknown exchange-correlation (xc) functional 
dependence on the density, Vxc.  Whether the solution of the Schrödinger equation 
results in the exact solutions depends on the accuracy of the approximation to the xc 
potential. Kohn & Sham proposed a simple approximation for Vxc as well, named the 
„local density approximation (LDA)“. This approach is based on the homogeneous 
electron gas and turned out to be quite accurate for a number of applications, and is 
still widely used. Fig. 2-1 presents the relation established by Hohenberg and Kohn 
between exact many-body interacting system with a non-interacting auxiliary system.
The  assumption  of  density  as  the  fundamental  variable,  and  the  Kohn-Sham 
approach construct the basis of „density functional theory (DFT)“. DFT provides a 
powerful tool for computations of the quantum state of atoms, molecules and solids. 
It  was  built  in  its  initial  naїve and approximative version by Thomas and Fermi 
immediately after the foundation of the quantum mechanics, in 1927.  
The  Schrödinger  equation  can  be  further  simplified  if  the  significant  differences 
between the masses of nuclei and electrons are taken into account. Hence, the nuclei 
move much slower than the electrons. The practical consequence is to consider the 
electrons as moving particles in the field of fixed nuclei. This is the famous „Born-
Oppenheimer approximation“.
From the  Kohn-Sham orbitals,  φi(r,t),  the  electron  density  can  be  calculated  by 
following formula

n(r ,t )=∑
i

N

∣ϕi(r , t)∣2 (2.2)

In 1996, Pedrew, Bruke, and Ernzerhof proposed an exchange-correlation functional 
refered to PBE which is a subset of GGA functionals that satisfy as many formal 
properties and sacrifice only those terms to be energetically less important (Perdew et 
al.,  1996).  In  this  work  PBE functionals  are  used  to  approximate  the  exchange-
correlation potential between electrons.[9, 10, 11, 12] Fig. 2-2 represents a schematic 
self-consistent loop for solution the Kohn-Sham equations.
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      Vext(r)                n0 (r)            n0 (r)             VKS(r)

    Ψi ({r}) Ψ0({r})        ψi=1, Ne (r) ψi (r)

Figure  2-1.  Schematic  representation  of  Kohn-Sham  ansatz.  The  notation  HK0 denotes  the 
Hohenberg-Kohn theorem applied to the non-interacting problem. The arrow labeled KS provides the 
connection in both directions between the many-body and independent-particle systems, so that the 
arrows connect any point  to any other point. Therefore,  in principle,  solution of the independent-
particle Kohn-Sham problem determines all properties of the full many-body system [12].
 

Figure 2-2.  Schematic representation of the self-consistent loop for solution of Kohn-Sham equations. 
In general, this loop must be iterated simultaneously for both spin-ups and -downs, with the potential 
as a functional of the density of both spins  for each spin [12].
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 2.1 Hartree-Fock Approximation

The Hartree-Fock (HF) scheme is the simplest approximation yet purposed to resolve 
the   complex  many-body wave function  equation  where  a  system consists  of  M 
nuclei  and  N  electrons.  It  approximates  the  N-electron  wave  function  by  an 
antisymmetrized product of N one-electron wave functions,  χi (xi) . John C. Slater 
introduced the „Slater determinants, ΦSD“,  based on utilizing matrices to ensure the 
antisymmetry of a wave function [13]. The one-electron functions, χi (xi), called „spin 
orbitals“ are composed of a spatial orbital φi (r) and a spin function σ (s); where σ 
represents spin direction of electrons.

  χ (x) = φ (r) σ (s) (2.3)

for such a system the HF energy is given by
 

EHF=〈ΦSD∣Ĥ∣ΦSD〉=∑
i

N

( i∣ĥ∣i)+
1
2
∑

i

N

∑
j

N

(ii∣ jj)−(ij∣ ji) (2.4) 

where 

(i∣ĥ∣i)= ∫ χi
∗(x1){

−1
2

∇ 2−∑
A

M Z A

r1A

}χi(x1)d x1 (2.5) 

defines the one electron contribution to the Hamiltonian due to its kinetic energy and 
the electron-nucleus attraction and the following integrals

(ii∣jj)=∬∣χi(x1)
2
∣

1
r12

∣χ j(x2)∣
2
d x1d x2 (2.6)

(ij∣ji)=∬χ i(x1)χ j
∗
(x1)

1
r 12

χ j(x2)χi
∗
(x2)d x1 d x2 (2.7)

are the so-called „Coulomb“ and „exchange integrals“, respectively which simply 
represent the possible interactions between two electrons. 
These N equations can be written in the form of eigenvalue equations, fi χi(x)=εi χi(x), 
where  the  orbital  energies,  εi, are  the  eigenvalues  of  the  operators  fi.  The  Fock 
operator, f , is  an effective one-electron operator defined as 

f =
−1
2

∇ i
2−∑

A

M Z A

riA

+V HF (i)  (2.8) 

The  first  two  terms  are  the  kinetic  energy  and  the  potential  energy  due  to  the 
electron-nucleus  attraction.  The  Hartree-Fock  potential,  VHF(i),  is  the  average 
repulsive potential experienced by the i’th electron. Generally, VHF comprises of two 
Coulomb, J, and exchange, K, operators: 

V HF (x1)=∑
j

N

(Ĵ j(x1)−K̂ j(x1))   (2.9) 

The Coulomb operator Ĵ is defined as 
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Ĵ j(x1)=∫∣χ j(x2)∣
2 1
r 12

d x2   (2.10) 

and represents the potential that an electron at position x⃗1 experiences due to the 
average  charge  distribution  of  another  electron  in  spin  orbital  χj.  The  exchange 
operator K̂ has no classical equivalent and can only be defined through its effect 
when operating on a spin orbital as follows: [9]

K̂ j(x1)χ i(x1)=∫χ j
∗
(x2)

1
r12

χi(x2)d x2χ j(x1)    (2.11) 

 2.2 Electron Correlation

It is noted that the „Slater determinant“, ΦSD, as an approximate wave function never 
corresponds to the exact wave function. In the Hartree-Fock scheme the electrons 
come often too close to each other because the electrostatic interaction is treated in 
an average manner.  As a consequence, the electron-electron repulsion term is too 
large resulting in EHF lies above E0. The difference between these two energies is 
named the „correlation energy“ by  Löwdin in 1959 and is defined as follows [9]

EC
HF = E0 − E HF      (2.12)

 2.3 Exchange Interaction

The exchange energy or interaction is the energy required to align all other exsisting 
spins in the system with itself. Mathematically, it can be expressed in terms of the 
dot-product of spin operators. With this assumption that the orbital components are 
fixed, the exchange Hamiltonian can be written as follows:

H ex=∑
i , j

J ij Si S j  (2.13)

where Jij is called the „exchange-coupling constant“. Exchange-couplings are called 
“ferromagnetic” or “antiferromagnetic”, if they align parallel or antiparallel to the 
interacting spins, respectively. [14]

 2.4  Pseudopotentials

As it will be seen in this thesis the „elk-program“ which treats all valence and core 
electrons in the same way is not able to do band structure calculations for compounds 
including transition metal oxides. The reason is the rapidly fluctuations of electron 
densities in the vicinity of atomic cores resulted from strongly attractive  potential of 
the nucleus. In order to resolve this problem a new generation of potentials named 
„Pseudopotentials“ are  established which  discard the effect  of  bare core,  such as 
„norm-conserving“  and  „ultrasoft-pseudopotentials“.  In  the  next  sections 
„Pseudopotentials“ properties will be discussed. [15, 16]
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 2.4.1 Norm-Conserving and Ultrasoft Pseudopotentials

In order to construct pseudopotentials it is needed to consider appropriate electrons 
configurations  (e.g.,  Fe  3d7 4s1)  and pseudopotential  radii,  rc which are spherical 
cutoff radii to truncate potential to make it calculable. Generally, pseudopotentials 
must fulfill the following conditions:
- They must have no nodes to avoid using higher cutoff radius (Fig.2-4).
-  Above the  cutoff  radius  pseudo-functions  and -potentials  behave like  the  exact 
ones. 
- If the charge surrounded within the pseudopotential radius is equal to that of the 
all-electron potential, the „norm-conserving“ pseudopotential will be resulted. 
- The eigenvalues of equations applying pseudofunctions must be similar to those of 
the all-electron solution at least for the reference configuration.
In 1990, Vanderbilt suggested to drop „the norm-conserving“ requirement and just be 
needed that the spheres centered on different atoms not be overlapped which will 
result in a larger cutoff radius. Hence, the pseudo-functions and -potentials  will be 
much softer (Fig. 2-3). [15, 16]

Figure  2-3.  Schematic   representation  of  the 
pseudofunction  of  an  ultrasoft  pseudopotential 
compared to the pseudofunction of a norm-conserving 
pseudopotential [15].

Figure  2-4.  Schematic  view  of  pseudofunctions  and 
corresponding pseudopotentials. The pseudofunction is 
smooth and has no nodes in contrast to the „true“ one. 
At r > rc, the pseudofunction coincides the all-electron 
wavefunction [15]. 
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 2.4.2 Pseudopotentials in Spin-Polarised Calculations

For magnetic materials, the peak in the d-wavefunction is shifted outward to make 
the pseudopotentials softer, as a result, the valence-core overlap is artifically reduced. 
As a result the spin enhancement factor ξ(r), Eq. (2.14), is overestimated, where m(r) 
is the magnetic moment of atoms and nvalence  (r) and ncore  (r) are the density of states 
for valence and core electrons, respectively. 

    ξ(r) =
m(r )

nvalence (r )+ncore(r )
        (2.14)

Thus pseudopotentials fail in spin-polarised calculations. [17]
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 3  SPRKKR Method 
The  KKR method  of  band-structure  calculation  was  introduced  in  the  1940s  by 
Korringa and Kohn and Rostoker. But first after developing by application of the 
„multiple  scattering  theory“,  this  method  became  popular.  This  implies  that  the 
information on the electronic structure of a system is not expressed in terms of Bloch 
wave functions and eigenvalues but the corresponding Green’s function leading to an 
extreme flexibility of the method. This method covers electronic structure calculation 
in non-relativistic, scalar-relativistic as well as fully relativistic modes. Although it is 
not counted among the fastest band structure methods, it is usually regarded as a very 
accurate technique. The advantage of the KKR method lies in this fact that allows to 
express the Green’s function in  terms of single-site scattering and geometrical or 
structural quantities. A second outstanding feature of the KKR method is the Dyson 
equation  relating  the  Green’s  function  of  a  perturbed  system  with  the  Green’s 
function  of  the  corresponding  unperturbed  reference  system.  Because  of  this 
property,  the  KKR  Green’s  function  method  allows  to  deal  with  substitutional 
disorder  including  both  impurities  and concentrated  alloys.  Hence  for  this  thesis 
SPRKKR method is used to do density of state calculations for stoichiometric and 
offstoichiometric Heusler alloys to investigate DOS at Fermi level more accurately. 
The spin-polarized relativistic Korringa-Kohn-Rostoker Green’s function method is 
based on the following Dirac-Hamiltonian,

[
h
i

cα⋅∇+βm c
2
+V (r )+βσ⋅Beff (r )] ψk (r , E)=E ψk (r , E) (3.1)

   V=Vn + VH + Vxc (3.2)

In this equation the potential V contains the Coulomb potential due to the nuclei (Vn) 
and  the  other  electrons  (VH).  The  contribution  due  to  the  exchange-correlation 
potential  has been split  into a spin-averaged part  (Vxc) included in V and a spin-
dependent part  (βσ.Beff).  The effective magnetic field  Beff in the latter  term arises 
from  the  dependence  of  the  exchange-correlation  energy  Exc on  the  spin 
magnetization density m:

Beff (r )=Bext (r )+
∂E xc [n ,m ]

∂m(r )
(3.3)

where n is the particle density. The spin-dependent term in Eq.(3.1) strongly reduces 
the symmetry.
In  the  Spin-Polarized  Relativistic  Korringa-Kohn-Rostoker  (SPRKKR) Green’s 
function  method the differential Schrödinger equation, 
[−∇

2
+V (r )]ψk (r ,E)=Ek ψk (r , E)  (3.4)

is replaced by the integral Lippmann-Schwinger equation,
ψk (r , E)=e i k.r

+∫ d3 ŕ G0(r , ŕ , E)V (ŕ )ψk ( ŕ ,E)                            (3.5)
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representing scattering of a plane wave at a target with free electron Green's function 
G0 (r, r´, E). [18,19,20,21,22,23]

Principle of multiple scattering theory- The concept of XAFS (X-ray Absorption 
Fine Structure) theory is used to calculate electronic structure. In this way that a 
perturbation is applied to the Hamiltonian of the system to get information about the 
structure configuration and energy levels of atoms (Fig.3-1).
                                                  

   Figure 3-1. SPRKKR seperates structural and scatterers  information [21].

 3.1 Dyson Equation

If H0 and  H = H0  + V(r)  are Hamiltonians of system before and after perturbation, 
respectively, where V(r) is the applied perturbation, Dyson equations are as follows:

(E−H 0)G0 (r , ŕ , E )=δ(r−ŕ )  (3.6)

(E−H)G (r , ŕ , E )=δ ( r− ŕ ) (3.7)

if the wave functions before and after perturbation are defined by plane and spherical 
waves, respectively, the perturbed system is defind by

 Ψ(r , E)=ei k .r
+ f (θ , φ)

ei k.r

r
(3.8)

where the first term represents the  incoming plane waves (φk) and the  second term 
the outgoing spherical waves ( (Fig.3-1) and f (θ, φ) is the scattering amplitude, then 
the free electron Green's function is [24]

G0(r , ŕ ,E)=
1

(2π)3
∫ d3 k

e i k.r e−i k. ŕ

E−k2 =
−1
4π

e−i√E∣r−ŕ∣

∣r− ŕ∣
 (3.9)

 3.2 Transition Matrix 

To solve the Lippmann-Schwinger equation a transition or T-matrix which relates the 
unperturbed and perturbed systems via V|ψk> = T|φk> defined by inserting  |ψk>= |
ψ0>+ g0V |ψk> as follows where G0(r , ⃗́r ,E)=〈r∣g0(E)∣⃗́r 〉

 T = V + Vg0V + Vg0Vg0V + · · ·  (3.10)
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by substituting T in the Dyson equation in the same way one is led to  Vg = Tg0   and 
the Lippmann-Schwinger and Dyson equations by inserting T become

Lippmann-Schwinger equation  |ψ1> = |ψ0> + g0T |ψ0 > (3.11)

Dyson equation  g = g0 + g0 T g0    [24].  (3.12)
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 4  DOS Calculations for Co, Fe2CoO4 and Co2FeO4 

 4.1  Cobalt characterization in different Phases

The  materials  involving  cobalt  are  very  interesting  and  desirable  for  academic 
researches and industrial applications due to their particular magnetic and electronic 
properties  being useful as magnetic data storage or as spin-current source and spin-
filters in spintronic field. Metallic cobalt can crystallizes in three different crystal 
structures: (1)  hcp, hexagonal closed-packed (α-phase), (2)  fcc,  face-centered cubic 
(β-phase) and (3) primitive cubic phase (ε-phase). 

Under atmospheric pressure Cobalt is only in two structures stable; below 425°C α-
phase and at  higher  temperatures  β-phase.  Hence,  small  temperatures  or  pressure 
variations lead to changes in the crystal phase. In ε-phase, the Co particles present a 
complex cubic primitive structure (P4132) similar to the manganese β-phase with 20 
atoms in a cubic unit cell with 6.09A˚ side.  The ε-structure is considered as a soft 
magnetic material (like β-phase) and its magnetic properties favor the formation of 
ordered films applicable in magnetic recording.  The  ε-phase  seems to be a good 
precursor to obtain α-Co nanoparticles desired for magnetic storage uses.

These three phases possess similar energetic stabilities that is also confirmed through 
the calculations done for this thesis as it  is discussed in next section (Table 4-I). 
Studies show a strong correlation between crystal structure and magnetic properties 
in  Co-based  materials.  Although  α- and  β-Co phases  can  coexist  at  different 
conditions, at room temperature and atmospheric pressure the α-phase is more stable 
which is also confirmed  through calculations done for this thesis.
There  is  strong relation  between crystal  structure  and the  magnetic  properties  of 
cobalt.  The  α-phase  (hcp  structure)  with  high  magnetic  coercivity  is  proper  for 
permanent magnet applications such as recording media, while the more symmetric 
low coercivity β-phase (fcc structure) is good for soft magnetic applications.
Both hcp and fcc structures are consisted of close-packed atoms but they differ in the 
stacking sequence of the [111] plane. Fig. 4-1 shows TEM image of 0.1 micrometer 
cobalt crystals with epsilon structure.  Fig. 4-2 displays an X-ray powder diffraction 
pattern of these 3 phases of cobalt to compare. [25, 26, 27,28]

Figure  4-1.  TEM  image  of  0.1  μm  cobalt 
crystals with the ε-cobalt structure [28].
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 Figure 4-2. Comparison between two known diffraction patterns of (a) fcc-cobalt (simulated) and (b) 
hcp-cobalt (simulated) with (c) ε-cobalt (experimental) [27]. 

 4.2 DOS Calculation for Cobalt in three Phases

For this section  to do calculations Elk code [29], a DFT-based program is used, in 
chapter 2 a brief description has been presented to introduce the mechanism of DFT-
based programs.  Since Cobalt  has a magnetic structure,  spin polarized version of 
DFT solving the Schrödinger equation seperately for spin up and down electrons 
with considering PBE functionals as  exchange-correlation potentials are used. The 
initial unit cell constants are taken from the experimental lattice constants. For the α-, 
β-,  and  ε-Co the  unit  cell  involves  2,  4,  and 20 atoms,  respectively.  The results 
obtained correspond to 0 K. The ε-Co, described by Dinega et al. [27] posses a cubic 
structure (space group P4132) with a unit cell similar to that of  β-manganese. This 
structure contains 20 cobalt atoms per unit cell dependent on the position are divided 
in two types: eight atoms of type I and twelve atoms of type II. These two types of 

14



Figure 4-3. A sketch of different cobalt structures: (A) hcp or α-phase, (B) fcc or β-phase, and (C) ε-
phase and its unit cell with specified two types of atoms [25]. 

atoms differ in the number of neighbors. An ideal close-packed structure has twelve 
nearest neighbors, whereas ε-cobalt has only three nearest neighbors for Type I atoms 
and two nearest for Type II ones (Fig. 4-3). [25,27,28]
The  calculated  total  energy  per  cobalt  atom shows that,  for  generalized-gradient 
approximation (GGA) calculations, the α-Co phase is more stable than the β- and ε-
Co phases.  However, the structural stability should be expressed as energy per unit 
cell volume  (Ex/Vx, where x is Co-phase) , the calculated  Δ(E/V)~(Eα/Vα − Ex/Vx, 
where x is Co-phase) values show that the α-Co structure is the most stable (Table 4-
I) which is in accordance with the  experiments. Table 4-I presents lattice parameters 
achieved from both „ab initio calculations“ and experiments taken from literature and 
energy per atom and energy per  unit  cell  volume and spin magnetic moments in 
magneton bohr (µB) unit for three phases.
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Table 4-I. Lattice parameter (a), total energy per cobalt atom (E), energy per volume unit ΔE /V,   spin 
moment( σ) and Fermi energy (EF ).

                              Phase       aa                    E                ΔE/V b                 σ                            EF

                                        (Å)               (eV/Coatom)          (htr/ Å3)          (μB)                     (eV)

          GGA              hcp (α)    1.620         37918.590        0.0000             1.6881                      8.6849
                            fcc  (β)    3.498         37918.577        118.76             1.6915                      9.3114
                             ε  (FM)   6.057        37918.223         3.9113            1.6140                      9.5216
                                                                                                              [type I:1.5426 , 
                                                                                                               type II:1.6616]

      Expt.              hcp (α)    1.633               –                     –                   1.72 c                           –
                            fcc  (β)     3.545               –                     –                  1.75 d     –
                             ε  (FM)   6.097                –                     –                 1.70 e                            –

  a  Correspond to a cell parameter for fcc and epsilon phase and c/a for hcp phase.
  b  ΔE/V=(E α/Vα – E x/Vx), where x is the Co phase.
  c Reference 30.
  d Reference 31.
  eReference 28.

The obtained spin density per atom (σCo) for the different phases- For the hcp and fcc 
phases the σCo values for all atoms are almost identical with values of 1.69µB. In the 
case of epsilon phase different σCo values are obtained as a function of the atom type. 
The eight atoms of  type I exhibit a lower  σCo value of  1.54µB while for the twelve 
atoms of type II the atomic spin density is larger 1.66µB. 
Graphs  of  DOS for  α-,  β-,  and  ε-Co phases  are  presented  in  (Figs.  4-4  to  4-9), 
respectively. In this diagrams TDOS is the total density of state and PDOS is partial 
density  of  states  showing  contribution  of  atom  orbitals  in  the  unit  of 
states/Hartree/unit cell and energy is in unit of Hartree which equals to 27.2114 eV.
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           Figure 4-4. Total density of state for  hcp or α-phase of cobalt. 

               Figure 4-5. Partial density of state for cobalt atoms involving hcp or α-phase unit cell.
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         Figure 4-6. Total density of state for fcc or β-phase of cobalt. 

                
Figure 4-7. Partial density of state for  cobalt atoms involving fcc or β-phase  unit cell. 
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  Figure 4-8. Total density of state for ε structure of cobalt. 

                Figure 4-9. Partial density of state for type I and II Co atoms involving ε-phase unit cell.
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Conclusion- from these figures for Density of states for Cobalt in three phases, it is 
concluded that cobalt  is  a half-metal because at  Fermi level only one channel of 
electrons (spin up electrons) are present. And as it was expected Co in ε-phase shows 
the highest density of states due to the more atoms that are present in the unit cell, 
therefore it can be a good source for spintronics field.  

 4.3 Spinel Ferrites Compounds 

The spinels with unit formula AB2X4 are one of the most interesting and important 
families of compounds, where A, B and X represent, a divalent cation, a trivalent 
cation and a divalent anion, respectively. Where one of the cation sites are occupied 
with iron they are named spinel ferrites. Majority of the spinel ferrites form cubic 
spinel structure belonging to space group F d 3̄m. The cations A and B can occupy 
two different sites, i.e.  octahedral (Oh) and tetrahedral (Td) sites within the fcc X 
sublattices.  In  „normal  spinel“  tetrahedral  and  octahedral  sites  are  occupied  by 
divalent  and  trivalent  cations,  respectively,  while  in  „inverse  spinel“  half  of  the 
trivalent cations occupy tetrahedral sites and a mixture of di- and trivalent cations are 
distributed on the octahedral sites.  Depending upon the nature (magnetic  or non-
magnetic) and distribution of cations among A and B sublattices, spinel ferrites can 
exhibit  different  magnetic  properties  such as  ferrimagnetic,  antiferromagnetic  and 
paramagnetic. The ferrimagnetic features are mediated by antiferromagnetic coupling 
between the magnetic moments at the A and B sites. The spinel ferrites are used 
widely  in  industry  due  to  their  magnetic  and  electronic  properties  such  as  high 
magnetostriction,  cubic  magnetocrystalline  anisotropy,  high  coercivity,  moderate 
saturation magnetization, high Curie temperature, high chemical stability and good 
electrical  insulation,  in particular the „spinel cobalt  ferrite“,  Fe2CoO4,  has a wide 
range of  applications  including  electronic  devices,  ferrofluids,  magnetic  delivery 
microwave devices and high density information storage.  Fig. 4-10 presents cubic 
spinel structure.
In this  thesis,  density  of states,  stability and magnetic properties of Co2FeO4  and 
Fe2CoO4  spinel ferrites are studied. The experimental work on these compounds are 
very limited. The probable reason for Co2FeO4   could be the spinel phase stability 
over a small temperature range about 900oC. 
Crystal field splittings and expected occupation of the 3d electrons of Co and Fe in 
their divalent and trivalent oxidation states are shown in Fig. 4-11. In the tetrahedral 
crystal field, the doubly-degenerate eg states are lowered in energy with respect to the 
t2g triplet states due to the electrostatic repulsion of the dzy, dyz and dxz orbitals, while 
in  the octahedral  site  it  is  vice versa,  the dz

2 and dx
2
−y

2 orbitals  are  repelled  and 
possess  higher  energy.  Experimental  measurements  of  the  magnetic  moments 
confirm the fact that Co tends towards low spin configurations, while Fe favors high 
spin ones. [1, 32, 33]
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Figure  4-10.  Illustration  of  the  cubic  AB2O4 spinel  structure.  The  A atoms  colored  blue  occupy 
tetrahedral  sites  and the B atoms colored  dark gray occupy octahedral  sites  within a  fcc  oxygen 
sublattice colored red [1].  

Figure  4-11.  Schematic  crystal  field  splitting  and  occupations  of  the  Co and  Fe  3d  electrons  in 
tetrahedral and octahedral sites [33]. 
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 4.3.1 DOS Calculation for Fe2CoO4 and Co2FeO4

It is noted for these calculations the „Elk“ -program was not able to produce the 
reliable results due to the failure in band gap estimations, hence „Quantum Espresso“ 
[34] is  used which is an integrated suite of computer codes for electronic structure 
calculations and materials modeling, although it is also a DFT-based program, the 
applied pseudopotentials which presume not the effect of the bare nuclei, but rather 
the potentials screened by the core electrons, makes it proper to do these calculations. 
These potentials are more flattend than the “true” one. The acronym  ESPRESSO 
stands for  opEn Source Package for Research in Electronic Structure, Simulation,  
and Optimization. 
Calculation  Method- it  was  started with  the  experimentally  determined  lattice 
constants,  ultrasoft  pseudopotentials  are used and the exchange-correlation effects 
were treated by the generalized gradient approximation (GGA).
DFT band gap error- the DFT resulted band gap is underestimated, as the valence 
band maxima (VBM) lies too high and the conduction band minimum (CBM) lies 
too low with respect to vacuum conditions. Mainly the reason for this deficiency is 
the self-interaction contained in the LDA and GGA exchange–correlation potentials. 
There  are  variant  ways  to  correct  the  band  gap  errors.  One  is  to  use  a  non-
multiplicative potential, for example „Hybrid functionals“ by replacing a fraction of 
exact exchange potential with the LDA or GGA exchange, improve the band gap. 
However,  in  the  most  cases  the  hybrid  methods  are  not  appropriate.  Another 
possibility is the LDA+U method, where U is the „Hubbard term“ but it can only be 
applied to correlated and localized electrons, such as 3d or 4f electrons in transition 
and rare-earth oxides. In this thesis the second method is applied to resolve the band 
gap problem. By adding the Hubbard parameter,  “Ueff” to the transition metal  d-
orbital  the  position  of  VBM is  corrected  to  a  large  extent.  Ueff is  the  difference 
between parameters U and J. The Hubbard U is the amount of energy which should 
be supplied to conquer the Coulomb-energy to place two electrons at the same site, 
and J is an approximation to the Stoner exchange parameter (for more details refer to 
[35]). In contrast to the Local Spin Density Approximation (LSDA) which produces 
the metallic solution for these spinels, the LSDA+U shows an insulating behavior for 
Fe2CoO4. The calculated value of Ueff depends on the theoretical approximations and 
for this work it is sufficient to regard the value of Ueff as a parameter and try to 
ascertain  its  value  from  comparison  of the  calculated  physical  properties  with 
experiments. 
In the  LDA+U method the double-counted Coulomb energies should be corrected. 
This means the Hubbard Hamiltonian can not be simply added to the LDA, but those 
contributions  that  have  already  been  taken  into  account  in  the  LDA must  be 
subtracted in a mean-field way. There are three different approximations to define 
such  a  mean-field  corrected  Hubbard  Hamiltonian  in  the  literature;  namely  the 
“around mean field” (AMF) correction,  the “fully localized limit” (FLL),  and the 
interpolation scheme between these two cases. [1,36,37,38,39,40]       
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For the Fe2CoO4 and Co2FeO4 spinel ferrites also DFT-based calculations failed to 
describe insulating and magnetic properties. To improve the results DFT+U method 
is  used  and  the  theoretical  information  available  in  literature  [33]  is  taken  into 
account as reference for starting magnetic moments (Table 4-II).  And from these 
references it was known Fe2CoO4 is an insulator but no information was available for 
Co2FeO4. By applying Hubbard U parameter the correct band gaps are attained. The 
results  show an insulating behavior  for  Fe2CoO4 and a  half-metallic  for  Co2FeO4 

which is also confirmed by our experimentalists.
The total Density Of States (DOS) are calculated for both Normal- (N) and Inverse- 
(I) structures. The graphs of them are presented in Figs. 4-14 to -20). The calculated 
magnetic moments are presented in Table 4-III.

      Table 4-II.  Magnetic moments (μB) for Co and Fe taken as reference [33]
 
     Material               Cotet                            Cooct                            Fetet                Feoct   

   Fe2CoO4 (N)       2.45                                      –4.06      
   Fe2CoO4 (I)                                0.13                 3.51            –4.05

   Co2FeO4 (N)                           –0.22                 3.78      
   Co2FeO4 (I)         2.47              0.09                                     –4.05

The calculated total energies (Table 4-IV) show that Co2FeO4 in inverse structure 
possesses the lowest energy. However, the structural stability should be expressed as 
energy per unit cell volume (Ex/Vx,). The calculated energies per unit cell volume by 
considering  the  Co2FeO4-inverse  structure  total  energy  as  reference  (Table  4-IV) 
show that the Co2FeO4 in normal structure is unstable but the others are stable. Fig. 
4-12 presents the phase diagram of Co-Fe-O taken from [41,42,43], in this diagram 
the red dots indicate the stable phases and purple dot, the Co2FeO4 as unstable phase 
confirming the results obtained from the calculations done for this thesis. Fig. 4-13 
shows the total energy of compounds with respect to Co2FeO4-inverse total energy 
taken as reference versus absolute magnetization.

     Table 4-III.  Calculated magnetic moments (μB) for Co and Fe 

   Material              Cotet                            Cooct                            Fetet                Feoct   

  Fe2CoO4 (N)        1.68                                        –3.87     
  Fe2CoO4 (I)                                 2.74               3.02               –3.50

 Co2FeO4  (N)                              –2.35              2.47
 Co2FeO4  (I)           3.49             –2.50                                    –2.50
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Table 4-IV.  Calculated absolute magnetic moments,   total energy and energy per unit cell volume 
(ΔE/V)

   Material          total energy (eV)     absolute magnetic moment ( μB/unit cell)       ΔE/V a(eV/ Å3)

  Fe2CoO4 (N)             -8506.8       20.28                    5.7642
  Fe2CoO4 (I)              -8512.2       18.45      0.3816
                       

 Co2FeO4 (N)             -8967.8       16.02                        -0.0034
 Co2FeO4 (I)              -8992.3       17.52         0.0000

a ΔE/V = ( E CoFeO-i/VCoFeO-i – E x/Vx ), where x is the spinel compound

24



Figure 4-12.  (Color online) Co-Fe-O phase diagram, red dots show the stable phases and purple dot 
the unstable Co2FeO4  one. 

Figure 4-13. Difference of either total energy from the total energy of the most stable phase Co2FeO4-
inverse vs. the absolute magnetization in  (μB /unit cell).
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Figure 4-14.  Density  of states  for  Fe2CoO4 normal  spinel  vs.  energy (eV)  for  spin up and down 
electrons.

             

Figure 4-15.  Density of  states  for  Fe2CoO4 normal  spinel  vs.  energy (eV)  for  spin up and down 
electrons close to the Fermi level.
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Figure 4-16.  Density  of  states  for  Fe2CoO4 inverse spinel  vs.  energy (eV) for  spin up and down 
electrons.

Figure 4-17.  Density of states  for  Fe2CoO4 inverse spinel  vs.  energy (eV) for  spin up and down 
electrons close to the Fermi level.
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Figure 4-18. Density of  states  for  Co2FeO4 normal  spinel  vs.  energy (eV) for  spin up and down 
electrons.

Figure  4-19.  Density  of  states  of  Co2FeO4 inverse  spinel  vs.  energy  (eV)  for  spin up and  down 
electrons.
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 Figure 4-20. Density of states for Co2FeO4 inverse spinel vs. energy (eV) for spin up and down 
electrons close to Fermi level.

Conclusion- According to these results Fe2CoO4  in both structures is an insulator 
with a gap about 0.21 eV for Normal structure which is in a good agreement with [4] 
and 0.24 eV for Invesre one which does not correspond to [4] with a gap of 0.8 eV, 
while Co2FeO4 is a half-metal which  corresponds to the expriments of Anna-Lena 
Wolff.  As  the  data  in  Table  4-III  shows  the  calculated  magnetic  moments  in 
comparison  to  Table  4-II,  taken  magnetic  moments  as  reference,  the  magnetic 
moments for Co are overestimated as a result of what is discussed in section 2.6. 
From Fig. 4-13 it seems that  the higher the absolute magnetic moment is, the less 
stable is the compound. Fig. 4-12 shows the phase diagram of Co-Fe-O taken from 
[41,42,43], in this diagram red dots indicate the stable phases and purple dot, the 
Co2FeO4 as unstable phase, according to this diagram the total energy of Co2FeO4 is 
less than the Fe2CoO4 which is in a good agreement with the data resulted from the 
calculations done for this  thesis  (Table 4-IV).  According to  these calculations,  as 
indicated in Fig. 4-13, Co2FeO4  in inverse structure possesses the lowest total energy, 
hence  it  is  taken  as  reference  structure  to  calculate  energy  per  unit  cell  volume 
(ΔE/V) to investigate the stability of these compounds. The results are presented in 
Table 4-IV. Generally  compounds in an 'Inverse structure' do have lower total energy 
than the 'Normal structure'.  The stability investigation on these compounds reveals 
that the Fe2CoO4 is in both structures stable while the Co2FeO4 is only in Inverse 
structure stable. As a result Co2FeO4 is a metastable phase.
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 5 Heusler Alloys and Shape Memory Effect

This  family  of  compounds  were  discovered  by  Heusler  in  the  1903  and  their 
remarkable property is to be ferromagnetic, although the elements comprising are not 
ferromagnetic such as  Cu2MnAl. In section 5.4 the total magnetic moments of this 
family  will  be  more  discussed  as  „Slater-Pauling  rule“.  The  Heusler  alloys  with 
general formula X2YZ, where X is 3d-metal, Y is usually Mn but could be other 3d-
metal or rare-earth elements,  Z is one of the elements from groups III or IV of the 
periodic table crystallize in the L21  structure (space group Fm-3m) comprising four 
interfering fcc sublattices  (Fig. 5-1). Different metallic elements with a variety of 
compositions occupy this structure to generate stoichiometric or nonstoichiometric 
compounds. Heusler alloys due to the presence of the so-called p elements (Ga, Al, 
Ge, etc.) which form partially filled bands close to Fermi level  favoring to hybridize 
with the d electrons of transition metals.  In  the case of  Ni2MnGa, the Ga atoms 
hybridize with Ni atoms. This hybridization gives a peak for the spin-down electrons 
in  the  total  electronic  density  of  states  right  at  the  Fermi  level  which  can  be 
spontaneously split  and  induced  a  phase  transition  due  to  the  Jahn-Teller  effect 

described in detail in section 5.3.
On the other hand, Heusler alloys like 
Cu2NiAl  and  Zn2CuAu  are 
characterized  by  thermoelastic 
martensitic  transformations  presenting 
strains up to 20%. The transformation 
is caused either by inducing a structural 
martensitic  transition  –  a  diffusionless 
first-order  solid-solid  phase 
transformation  from  the  high-

temperature  austenite  to  low-temperature  martensite  phase  obtained  by the  small 
cooperative  movement  of  the  atoms,  the  L21 cubic  structure  is  distorted  by  a 
contraction  of  the  c  axis  to  a  low  symmetry  body-centered-tetragonal  structure 
represented by the tetragonality parameter c/a  – or by rearranging twin boundaries 
between domains.  The shape memory effect in Heusler alloys is the capability to 
remember their original shape when they are deformed to the martensitic state by 
lowering the temperature and then heated to transform to the austenitic state. While 
the shape memory effect in most of the current commercial actuators is caused by a 
martensitic  phase  transformation  driven  by  temperature or  applied  stress,  the 
magnetic control of such transformations would be faster and more efficient. 
The  Ferromagnetic  Shape  Memory  Effect  was  first  discovered  in  Ni2MnGa 
ferromagnetic  „Heusler  alloy“  by  O’Handley  and  collaborators  at  MIT in  1996. 
O’Handley et al. were able to induce reversible deformations of 0.2% by application 
of magnetic fields below 1T. Since then, the study of ferromagnetic shape memory 
Heusler alloys attracts the interests to explore physics behind this phenomenon  and 
to discover the technologically interesting possibilities for applications. Only a few 
years after discovery this effect, giant deformations of about  10% were obtained in 
nonstoichiometric Heusler alloys. [45,46,47,48,49,50]
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Figure 5-1. L21 structure 
also called Heusler 
structure belongs to Fm-
3m Space Group 
presenting Ni2MnGa 
compound [44]. 



 5.1 Structural Properties of Magnetic Heusler Alloys

The crystal structure of the austenitic parent phase for stoichiometric compound has 
been determined by neutron diffraction to be cubic with L21 structure Fig. 5-1. The 
magnetism is due to 3d electrons of  X and  Y elements. Dependeng on martensitic 
transformation  temperature  (TM) the  alloy  shows different  structures.  If  the  alloy 
transforms  at  T  < TM usually  shows  a  modulated  structure  constructed  from 
nanotwinned variants  of  a  tetragonal  L10 phase  [Fig.  5-2  (d)]  and  for  T > TM  a 
nonmodulated  structure  involving  a  body  center  tetragonal  (bct)  L10  unit  cell is 
known.  For  Ni-Mn-Z (where  Z =  Ga, In, Sn,  Sb, ... )  alloys, there is a range of 
composition that during cooling the system first becomes ferromagnetic,  and at a 
lower  temperature  undergoes  the  martensitic  transition  with  different  magnetic 
behaviors  such as  ferro-,  para-  and non-magnetism.  For  Ni-Mn-Ga,  the  range of 
compositions is very broad and extends from the Mn-poor to the Mn-rich alloys. 
Ni2MnGa is  so  far  the  only  stoichiometric  Heusler  alloy  known  that  shows  a 
martensitic transition in the ferromagnetic state. [46, 49, 51, 52]
 

Figure  5-2.  Austenite  and 
martensite  structures  of 
Heusler  alloys  shown  for 
the  case  of  Ni2MnGa. 
Light grey: Ni, white: Mn, 
black:  Ga.  (a)  The  L21 

Heusler  structure  showing 
also  the  relationship  with 
the  tetragonal  unit  cell 
which is also shown in part 
(b). (c) The tetragonal unit 
cell  viewed  from  the  top 
and  (d)  the  5M (or  10M) 
and  (e)  7M  (or  14M) 
modulated  structures 
obtained  by  shearing  the 
tetragonal cell [53].
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 5.1.1 Martensite Structures

The ferromagnetic shape memory effect takes place only in phases with a modulated 
structure,  where  a  giant  strains  of  several  percent  by  applying  fields  due  to 
rearrangement in twinned microstructures are observed. 
These  modulated  phases  form  by  a  displacive  transition  from  a  high-symmetry 
austenite to a low-symmetry martensite phase is not stable thermodynamically which 
is  proved  by  calculations  done  for  this  thesis  for  Ni2MnGa in  next  chapter.  As 
presented in Fig. 5-3(a), there are three equivalent ways to transform the cubic unit 
cell to a tetragonal one. This results in three possible alignments of the tetragonal cNM 

-axis with respect to the original austenite cube axes aA. In the absence of external 
fields or loads, none of the three possible orientations of the tetragonal martensite 
unit cell is favoured. A uniform distribution is realized by martensite variants with 
different  orientation  where  one  variant  consists  of  neighbouring  unit  cells  with 
identical orientation (Fig. 5-4). A magnetic field applied in  y direction rotates the 
magnetic moment of the  x-variant, thus deforms it due to magnetostriction, while 
leaving the y-variant undeformed and its magnetic moment unrotated. According to 
microscopic analysis of Ni–Mn–Ga alloys [54,55], the ends of twin boundaries can 
be pinned at the cores of twinning dislocations situated at the dislocation walls and 
the distance between the pinning centers may be of the order of 0.5 μm or even more. 
The dimensions  of cores  are  of  the order of  the lattice parameter,  and therefore, 
according to the Wechsler –Liberman – Read theory [56], the estimated lattice misfit 
induced  by  magnetostriction  is  sufficient  for  the  rearrangement  of  twinning 
dislocations and the initiation of a detwinning process. The distance traveled by the 
twin boundary should be dependent not only on the applied stress, but also on the 
spatial distribution and the strength of the pinning centers- A and B points in Fig. 5-4. 
In  martensitic  transformation a  habit  plane  [Fig.5-3(b)]  is  considered  as  a  lattice 
invariant interface connecting the two crystal structures. The martensitic structure 
compensates the lattice mismatch between two crystals  by twinning the structure 
[Fig.  5-3(b)].  By  assuming  this  structure  continues  to  microstructure  scale, 
Khachaturyan et al. argue that the modulated structures observed in materials with 
lattice instabilities could be understood as ultrafinely twinned metastable structures 
and not as thermodynamically stable phases. In this view, the large and complex unit 
cell of the modulated phase is composed of nanotwin layers of a thermodynamically 
simpler stable martensitic phase. The twinning periodicity and hence the modulation 
is determined by geometrical constraints and the transformation path.  A very low 
nanotwin boundary energy requirement to convert one unstable modulated structure 
to a simple stable unit cell could be the proof for this explanation. Based on this 
concept  the  14M Ni-Mn-Ga modulated  lattice  is  built  from  unit  cells  of 
thermodynamically stable non-modulated (NM) phase.
The periodic twinning of the tetragonal martensite lattice is expressed through the 
fraction of the twin layers widths d1 and d2  [Fig.  5-3(b)];  d1/d2=(aNM-aA)/(aA-cNM). 
Here, aNM and cNM  represent the lattice constants of the tetragonal martensite and aA 

the lattice constant of the cubic austenite. 
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Figure 5-3. (a) The unit cell of cubic austenite 
can transform into three equivalent orientations 
of a tetragonal martensite unit cell. (b) Sketch of 
the  orientation  relationship  between  parent 
austenite and nanotwinned (adaptive) martensite 
phase.  The  different  blue  background  colours 
mark differently oriented tetragonal martensitic 
variants  which  are  connected  by  twin 
boundaries.  The  grey  plane  marks  the  habit 
plane.  It  is  drawn  with  finite  thickness  to 
illustrate that it is accompanied by a distortion 
of the lattice [57].

Figure  5-4.  Schematic  representation of  two- 
twin-variants  configuration  in  a  tetragonal 
ferromagnetic martensite [58].

the nanotwinned modulated structure can be related to nonmodulated (NM) phase by 
branching. Hence  the 14M unit cell can be constructed based on NM unit cells as 
building blocks (Fig. 5-5). As it will be shown in the following by using the NM 
lattice constants and the (5 2̄)2 twinning periodicity one can calculate the lattice 
constants of the adaptive 14M phase as well as the angles between crystal axes of the 
tetragonal NM twin variants and the axes of the adaptive 14M unit cell (as sketched 
in Fig. 5-5). 

Figure 5-5. 14M structure constructed by periodic (52̄)2  
twinning of tetragonal NM building blocks. One of the NM 
cells is exemplarily marked in grey. The green lines mark 
the  nanotwin  boundaries  connecting  NM  cells.  The 
directions of the three different 14M lattice parameters are 
sketched with brown color. The angles of the NM unit cells 
subtended with the 14M supercell  (thick lines)  are given. 
The  conventional  14M  unit  cell  within  the  bct  reference 
system is marked in yellow [59].

As the calculations  done for  this  thesis  presenting  in  next  chapter  show that  the 
modulated structure has higher energy than the NM martensite. By considering the 
concept of adaptive martensite, the energy difference can  be  interpreted as twin 
boundary energy γ of the NM phase. 
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In Ni-Mn-Ga Heusler  alloys  by  increasing  the  electron  density  (e/a)  these  phase 
order is commonly observed; austenite, 6M (premartensitic), 10M (5-layer), 14M (7-
layer) and NM (nonmodulated) martensite. The tetragonality of the NM martensites 
increases with the electron density, from c/aNM = 1.0152 for 6M to 1.16 for 10M and 
1.26 for 14M. 
If the 10M- and 14M-type structures own the same stacking unit composed of the 
distorted L21 phase [denoted as a face-centered tetragonal (fct) structure in Fig. 5-7], 
the lattice parameters for the 10M and 14M structures can be evaluated on the basis 
of  the  fct  structure  as  follows:  a2M  =  c2M  = (√a fct

2
+c fct

2
)/2 and  b2M  =  afct.  The 

monoclinic angle β of the stacking structures can be evaluated as  tan(β − 90˚) = A 
tan(β0− 90˚), where A [≡(n − m) / (n + m)] is a parameter indicating the extent of 
deviation from 90˚ in the angle β, and  β0 is the monoclinic angle of the 2M structure. 
For the 2M, 10M, and 14M structures this parameter is A2M = 1, A10M = 0.2, and A14M 

= 0.43, respectively. By taking into account the 2M and fct structures (Fig.  5-7), 
lattice parameters for 10M and 14M structures in 2M parameters can be written as 
follows: a10M = a14M = a2M , b10M =  b14M = b2M , c10M = 5c2M (sin β0 / sin β10M), and  c14M 

= 7 c2M (sin β0 / sin β14M). [52,56,57,58,59,60]
Fig.5-6 taken from [58] compares the lattice constans for three phases.

Figure 5-6. Comparison of lattice constants for the three different phases. The blue dashed lines mark 
the calculated lattice constants of the adaptive martensite phase. For each phase, film, and bulk [51] 
lattice constants are shown [59]. 

Figure  5-7.  Projections  of  the  face-centered 
tetragonal  (a),  2M  (b),  10M  (c),  and  14M  (d) 
structures on b axis [52]. 
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 5.1.2  Construction of the layered Structures

A face centred tetragonal (fct) with  L10  lattice is most often supposed as the basic 
martensitic structure (NM) [Fig. 5-8(a)]. The martensitic modulated structures are 
commonly constructed as long period stackings of close-packed planes derived either 
from the {110} planes of austenite or from the {111} planes of the NM unit cell 
(L10). The modulated unit cell is described as a monoclinic lattice with a-, b- and c-
axis, respectively aligned along the [1̄ 1 0] ,  [001] and [110] planes of the cubic 
austenite. The stacking sequences of the 14 M and 10 M structures are (5 2̄)2 and
(3 2̄)2 in  Zhdanov  notation,  respectively.  The  basal  planes,  {001},  are  stacked 

along the c-axis in such a way that two consecutive planes are shifted along the a-
axis a distance given by (1/3+δ )a, where δ is an adjustable parameter (δ=0 presents a 
perfect close-packed structure) [51].

Figure 5-8.  (a)  Scheme of  the 
L10  unit  cell  (b)  relations 
between  the  „cubic“-  and 
„L10“- structure axes [51].

Zhdanov notation of distorted stacking sequences in close packed crystals-  The 
Zhdanov  notation is  a  helpful  notation  to  symbolize  close  packed  or  layered 
structures  with  ordered  or  disordered  sequences  of  stacking.  The  long  period 
martensitic  structures  are  frequently  designated  by  this  compact  schematic 
representation. The periodic shuffling can be noted as a zig-zag sequence of layers : a 
series  of  numbers  indicate  the  atomic  layers  related  to  a  periodical  shift 
corresponding to a fundamental lattice vector, the opposite shift direction of the next 
stacking of planes is indicated by a minus sign over the number of layers. The suffix 
means the total number of zig-zag motifs constituting the periodic crystal lattice. In 
Fig. 5-9 some examples of this notation are illustrated [50].

                

Figure 5-9. Three examples of Zhdanov sequences of 
martensitic  layered  structures.  The two structures  on 
the left are referred to the 7M modulation and the right 
structure relates to the 5M modulation. The Zhdanov 
symbol  for  each  model  is  displayed  under  the 
structures [50].
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 5.2  Magnetic field effect on Strain

It is known that by applying a magnetic field  orthogonal to the magnetization of a 
single  variant large  thermoelastic  strains  are  achieved  in  Ferromagntic  Shape 
Memory  Alloys  (FSMA).  The  field-induced  strain  is  induced  by  twin  boundary 
motion due to the reorientation of the tetragonal martensite variants. The required 
driving  force  for  this  reorientation  is  provided  by  the  difference  in  the  Zeeman 
energy  EZeeman =  ΔM  ·  H of  neighboring  variants  with  different  crystallographic 
anisotropy.  In  a  martensitic  transformation,  e0,  the  transformation  strain, 
characterizing the crystallographic distortion, depends on the tetragonality c/a of the 
martensitic phase and is described as

e0  = 1 − c/a         (5.1)

Besides, the shear strain across the twin boundary is given by
              
ε0 = (a/2c)(1− c2/a2) (5.2)

Fig. 5-10 shows the field-induced-strain measured in martensitic phase of Ni2MnGa 
at 265 K. Fig. 5-11 illustrates how the crystal is bent under applied magnetic field. 
This change in magnetization direction provides the mechanism for field-induced 
motion of the atoms constituting twin-boundary motion. [46,61]

Figure  5-10.  Strain  vs  applied  field  at  265K  in  the 
martensitic  phase  of  Ni2MnGa.  Inset,  relative 
orientation  of  sample,  strain  direction  [110],  and 
applied  field  [001]  for  field-induced  strain 
measurements [61].

Figure 5-11. (top) schemes of magnetization directions in the sample. (below-left) the orientation of 
the martensitic unit cell, (below-right) the twinned martensitic cell [61].
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 5.3    Jahn-Teller effect

One  hypothesis  for  explanation  the  occurence  of  spontaneos  phase  transition  in 
Heusler  alloys  is  Jahn-Teller  theorem.  The theorem was originally  formulated by 
Jahn-Teller (1937) to describe the instability of symmetric molecules in the presence 
of  degenerate  electronic  orbitals. The  effect  is  a  phase  transition  driven  by  the 
interaction between the electronic states of one of the constituents of material with 
the collective lattice vibrations or phonons.  This phase transition may be of first or 
second order and in both these cases involves a symmetry-lowering of the lattice  by 
distortion the lattice and as a result splitting the electronic energy levels. In other 
words the effect is a result of the electron-phonon interaction. The term electron-
phonon implies that both heavy and light particles are involved. The movement of 
heavy particles (distortions) induced normal coordinates or phonons. The specific 
property  of  the  Jahn-Teller  interaction  is  that  there  must  be  a  degeneracy  of 
electronic states to interact with one ore more normal modes of vibration to breaking 
the symmetry and removing the electronic degeneracy.
The d orbitals contributing in the magnetic moment are presumed to be split by a 
cubic crystal field into a doubly degenerate  eg  and a triply degenerate  t2g  set which 
have different spatial distributions (Fig.5-12). The tetragonal distortion splits these 
orbitals  further  leading  to  1  doubly  and  3  singly  degenerate  sets.  The  2  singly 
degenerate sets  x2  − y2 and  3z2− r2 are derived from the cubic  eg orbitals and the 
singly degenerate xy and doubly degenerate xz ± yz sets from the t2g orbitals (Fig.5-
13). 
For treatment the strain Kanamori (1960) assumed the phonon states and energies 
should be a function of the strain. But in most cases this can be neglected because the 
strain involved is so small. It is useful to divide the lattice modes into three types: the 
macroscopic strain, acoustic phonons and optic phonons. [62,63,64]

Figure 5-12. Spatial distributions of d-orbitals involving eg and t2g subsets [65].
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    Figure 5-13. Splitting of d-orbital under cubic and tetragonal fields [65].

 5.4 Slater-Pauling rule

The  Slater-Pauling  (SP)  rule  states  that  the  total  magnetic  moments  of  the  full 
Heusler alloys achieved from following formula
  
      Mt = Zt−24                                        (5.19)

where Zt is  the total  number of  valence electrons  per  unit  cell.  Briefly,  the total 
number of electrons Zt is given by the sum of the number of spin-up and -down 
electrons, while the total magnetic moment Mt per unit cell is given by the difference 
of spin-up and -down states, hence 

    Zt = N ↑ + N ↓          (5.20)

    Mt = N ↑ − N ↓ → Mt = Zt − 2N ↓          (5.21)

In this  viewpoint  it  is  assumed that  first  spin down orbitals  are  filled,  hence the 
occupancy  of  the  spin-down  bands  does  not  change  and  the  extra  or  missing 
electrons will only occupy the spin-up states. As a result, in Eq-5.19 the  number 24 
means that there are 12 occupied spin-down states. First, the sp atom creates one s 
band and three p bands which are fully occupied.  In the case of the full-Heusler 
alloys eight minority d states are occupied per unit cell: the double-degenerated  eg 

very  low  in  energy,  the  triple-  degenerated  t2g orbital,  and  finally  the  triple-
degenerated  t1u just below the Fermi level. In general, the minority valence bands 
involve twelve electrons: 1 × s, 3 × p, and 8 × d. 
It is noted where the total spin magnetic moment is negative the spin-up electrons are 
designated  as  the  minority  and  the  spin-down  ones  as  the  majority  states. 
[66,67,68,69]
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 6 Shape Memory Effect in Ni2MnGa 

The  Ni2MnGa  Heusler  alloy  showing  shape  memory  effect  attracts  recently 
considerable interest due to being ferromagnetic with a Curie temperature TC of 376 
K. The origin of the shape memory effect in Ni2MnGa is in the martensitic transition 
which takes place in cooling from the cubic L21 Heusler structure to a tetragonal 
phase around 200 K. The transformation can be described as a  simple contraction 
along one of the [100] directions of the cubic phase without any change in atomic 
positions.  It  is  notable  despite  a  strong  deformation  of  the  unit  cell,  this 
transformation is reversible and a single crystal can be cycled through it many times 
without breaking. The point in this transition is that the lattice distortion breaks the 
degeneracy of the d bands in the vicinity of the Fermi level causing a redistribution 
of electrons in these bands with a consequent reduction of the free energy, hence this 
concept is used to interprete the Density Of State Diagrams in this work. Fig. 6-1 
shows a small but distinct anomaly of magnetization occuring in high fields at ≈ 220 
K through heating. 
This  anomaly  arises  from the  change in  magnetic  anisotropy associated with  the 
structural transition. In the inset of Fig. 6-1 the temperature variation of specific heat 
is displayed.
Neutron scattering experiments on stoichiometric Ni2MnGa show that the magnetic 
moment is  mainly localized on the Mn atoms with values  ranging from 3.8µB  to 
4.2µB. Although the magnetic moment of Ni is considerably smaller being about 0.2-
0.4µB, Ni atoms are important because they influence the structural stability in  L21 

structure as ab initio calculations in this work show.  [64,69,70] 

Figure 6-1. Magnetization of Ni2MnGa at 4.6T plotted as a function of temperature. The inset shows 
the temperature variation of the specific heat in the vicinity of the phase transition [64].

 6.1 Martensitic structure of Ni2MnGa

The structure of the martensitic phase for the Ni2MnGa stoichiometric compound 
was first studied by neutron elastic scattering and revealed the martensitic structure is 
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formed  by  the  tetragonal  distortion  of  the  initial  cubic  lattice  (c/a  <1)  and  the 
martensitic unit cell is modulated along the (110) [1 1̄0]P plane and the modulation 
period is five, seven or ten (110)P planes (five, seven, ten-layered martensite). For Ni-
Mn-Ga the alloys  with martensitic  transformation temperatures  (Ms)  below 270K 
show a five-layered martensite (this group includes the stoichiometric composition); 
the group with Ms near 270K present five-layered and/or seven-layered martensite, 
while the group of alloys with Ms above room temperature exhibit the seven-layered 
martensite or the non-modulated structure without modulation having c/a >1 or a 
new modulated structure with a period of 10 (110)P planes (10-layered martensite). It 
should be noted  only 5M and 7M structures show a giant magnetic-field-induced 
strain MFIS. [50, 51,71]

 6.2 Composition and Temperature dependence of the Crystal 
Structure of Ni–Mn–Ga alloys

The  crystal  structure  of  the  Ni–Mn–Ga  martensitic  phase  strongly  depends  on 
composition and temperature. Increasing e/a with respect to the value of 7.5 for the 
stoichiometric case stabilizes tetragonal martensite while for e/a < 7.5 the modulated 
phases appear, a behaviour which is qualitatively marked by the arrows in Fig. 6-2 
showing  a  sector  of  ternary  phase  diagram  of  Ni-Mn-Ga.  In  addition, Fig.  6-2 
summarizes  the  available  experimental  results  from the  literature  for  TC and  TM 

which clearly show that there is a relation between the variation of TC = TM (i.e. the 
filled  circles  marking  the  magnetostructural  transition)  with  composition  which 
approximately follows the e/a ≈ 7.7 line.  In Ref. [72] the  e/a dependence of TM  is 
described  as  TM  = [702.5  (e/a)  −  5067]K which  makes  it  possible  to  define  the 
empirical  dependence  of  TM on  the  molar  Mn content  (xMn)  and  the  molar  Ga 
content (xGa) as TM = (1960 − 21.1 xMn − 49.2 xGa) K. [69,70]

Figure 6-2.  a sector of the ternary phase diagram 
of Ni–Mn–Ga showing the critical range of 7.67 < 
e/a < 7.7 of the coupled magnetostructural phase 
transitions (- - - -). The figure lists experimental 
data for TC < TM (□), TC = TM  (●) and TC > TM  (■). 
The  arrows  in  the  figure  mark  the  theoretical 
prediction  for  preferred  transformation  to 
modulated  5M  and  7M  and  non-modulated 
tetragonal  T structures,  respectively.  The yellow 
dot marks the stoichiometric compound Ni2MnGa 
[69].

 6.3  Denisty of States Calculation for  Ni2MnGa

Calculation details-  In this thesis the calculations were performed by utilizing two 
different ab initio programs: the opEn Source Package for Research in Electronic 
Structure,  Simulation,  and  Optimization  (Quantum  ESPRESSO)  and  the  full-
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potential Korringa-Kohn-Rostoker Munich SPRKKR package. Q- ESPRESSO is an 
integrated suite of computer codes for electronic-structure calculations and materials 
modeling,  based  on density-functional  theory,  plane waves,  and pseudopotentials. 
The  DOS  calculations  were  performed  using  a  spin-polarized  scalar-relativistic 
Hamiltonian,  PBE  (Pedrew,  Bruke,  and  Ernzerhof)  generalized gradient 
approximation, as exchange-correlation functional.
The  calculations  done  for  this  work  confirmed  the  literature  [45]  claimed  by 
lowering the symmetry through tetragonal distortions some degeneracy of the system 
is removed, and some peaks in the density of states near the Fermi level are split. In 
this section it will be discussed for Ni2MnGa.
Fig. 6-3  present calculated total energies for Ni2MnGa and Ni2MnSn Heusler alloys 
as a function of the lattice constant  by utilizing the Q-Espresso program. In this 
Figure can be seen that near lattice constants of 11 a.u. (5.82 Aº) and 11.5 a.u. (6.08 
Aº) for Ni2MnGa and Ni2MnSn, respectively, these compounds possess the lowest 
total energies which confirms the literature [45], as a result to do calculations for 
these alloys in this thesis the lattice constants of 11 and 11.5 a.u. are considered for 
Ni2MnGa and Ni2MnSn alloys, respectively.

Figure 6-3. The total energy ∆Etot (relative to the lowest energy) variation of Ni2MnGa and Ni2MnSn 
Heusler alloys vs. lattice constants a. 

        
Tetragonal distortions- The unit cell of  Heusler alloy crystals can be also regarded 
as a body centred tetragonal structure which is from „ab initio method“ point of view 
favorable due to contribution of fewer atoms in unit cell [Fig. 6-4(b)] leading to do 
time-conserving calculations. The total energy as a function of c/a taken from [45] is 
presented in Fig. 6-5. In this Figure it can be seen that Ni2MnGa shows in two points 
lower energy first  in L21 structure with  c/a  =1 and another in  c/a  ≈1.2 which is 
presumed to be the crystal constant in martensite phase.
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Figure 6-4. (a) The L21 crystal structure with unit cell of space group Fm 3̄m (Oh
5
) of Ni2MnGa. The 

structure of this so-called full Heusler system of type X2YZ (here X=Ni, Y=Mn and Z=Ga) consists of 
four interpenetrating fcc lattices and (b) body centered tetragonal unit cell [6]. 

Figure 6-5. The total-energy difference Δ E tot
distorted (relative to the L21 phase) as a function of c/a in 

the tetragonal distortions for the alloys: Ni2MnGa (dashed curve); Ni2MnSn (dotted–dashed) [45].

Fig. 6-6 focused on the energy as a function of the tetragonality  c/a  for Ni2MnGa. 
The inset of Fig. 6-6, with a higher resolution shows in addition to  c/a  =1 another 
minimum at c/a <1 with a small energy barrier, about 0.34 meV. The structure with 
c/a <1 shows smaller energy difference toward c/a =1 than the structure with c/a>1. 
It is noted the energy required to overcome the barriers in the distortion process is 
provided by the latent heat. As it is mentioned in literature the latent heat for Heusler 
alloys varies in the interval of 0.9–5.0 meV/formula unit. Hence it is estimated that at 
low temperatures the structure with c/a >1 will appear which is confirmed through 
calculations done for this thesis. 
From total  energy point  of  view both  programs give  for  L21 austenite  phase the 
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lowest total energy which contradicts Fig.6-6 but to investigate the stability energy 
per unit volume is calculated and presented in Table 6-I. As it can be seen martensitic 
phase with c/a=0.94 resulted from both programs is unstable. Therefore as mentioned 
above at low temperatures the structure with c/a >1 is expected to appear. And this 
can be a proof for „adaptive modulation“ disscussed in chapter 5.
The magnetic moments of Ni2MnGa and contributed Ni and Mn atoms as a function 
of the tetragonality taken from [8] are presented in Fig. 6-7. Experimentally, the total 
magnetic  moment  for  the  L21 cubic  structure  is  4.17µB  . Fig.  6-7 shows that  Ni 
moment variation around c/a =1 looks like the total magnetic variation because two 
Ni atoms contribute to the total magnetic moment. [8,45,73,74] 
The total and local magnetic moments obtained by running „Quantum-Espresso“ and 
„SPRKKR“ programs are presented in Table 6-II. Total and local density of states for 
the three minima involving c/a <1, c/a =1 and c/a >1 are presented in Figs. 6-11 to 
-22.

Figure 6-6.  Total energy difference Δ E tot
distorted (relative to the L21 phase and per formula unit of 

Ni2MnGa) as a function of c/a in the tetragonal distortions [8]. 
      

Table 6-I. Total energy for the three minima states and energy per unit cell volume Δ(E /V) calculated 
by both Q-Espresso and SPRKKR programs.

     Structure       Q-Espresso                  SPRKKR Δ(E /V)a                  Δ(E /V)b   

      (eV)  (eV)  (eV/Å3)                 (eV/Å3) 

        
      L21                      -7602.67            -166864.65  0.000 0.000
     c/a = 0.94            -7602.54                    -166845.62 -10.05              -214.67   
     c/a = 1.25            -7601.72                    -166859.08                31.06 100.64

 a  Δ(E/V)=(EL21 /VL21 – E x/Vx), where x is the other states calculated by Q-Espresso
 b   calculated by SPRKKR
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Table 6-II. Calculated total and local magnetic moments in units of µB. Experimental values (Exp.) are 
taken from [73]. 

                                        Ni            Mn           Ga                µtot

    
   L21   cubic     Th. (Q-Espresso)      0.36         3.75       −0.14            4.29

           Th. (SPRKKR)    0.30     3.36    −0.06            3.90
                          Exp.       0.24        2.74       −0.013           4.17
    c/a = 0.94     Th.(Q-Espresso)         0.36        3.59       −0.14             4.15

           Th. (SPRKKR)    0.30        2.69         0.00              3.31
                          Exp.      0.36        2.83       −0.06             −
    c/a =1.25      Th.(Q-Espresso)         0.39        4.14       −0.17             4.71

           Th. (SPRKKR)     0.42    3.88   −0.03           4.69

Figure 6-7. Total and local magnetic moments in Ni2MnGa as a function of tetragonality [8].

First it will be determined for austenite phase which orbitals contribute the most to 
the local densities of states.
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Figure 6-8. Density of states of Ni in Ni2MnGa for austenite state.

Figure 6-9. Density of states  of Mn in Ni2MnGa for austenite state.
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       Figure 6-10. Density of states  of Ga in Ni2MnGa for austenite state.

From Figs.6-8 to -10 it is concluded that d-orbitals of Ni and Mn and p-orbital of Ga 
contribute  the  most  to  local  density  of  states  which  was  expected  because  these 
orbitals are not full occupied. As a result they contribute the most in total density of 
state  of  Ni2MnGa-L21 phase.  It  can  be  seen  that  contribution  of  Ga p-orbital  is 
negligible.  Figs.  6-11 and -12 present  the total  density  of states  for  Ni2MnGa in 
austenite state. Fig. 6-12 shows a peak at Fermi level. Fig 6-13 shows the d-orbital 
density of states of Ni and Mn  for austenitic state. This Figure confirms this fact that 
at  Fermi  level  minority  electrons  of  Ni  play  the  most  important  role  to  occur 
instability and as a result leads to tetragonal distortion to lower the energy at Fermi 
level.
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Figure 6-11. Total Density of states  for Ni2MnGa in austenitic phase.

Figure 6-12. Total density of states for Ni2MnGa in austenitic phase close to Fermi level. 
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Fig 6-13. Density of states of Ni and Mn d- orbitals  for austenitic state.

Fig.6-14 presents the SPRKKR outcome for austenitic phase.

 

Fig 6-14. (a) Total DOS for austenite state, (b) partial 
DOS  for  Ni  and  (c)  for  Mn  in  austenite  state 
calculated  by  SPRKKR.  In  (a),  (b)  and  (c)  the  upper 
parts  show spin down density  of  states  and the lower 
parts  spin up density of states.
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As it is seen it shows also a peak at Fermi level due to Ni-minority electrons. For  
martensite  states  only  Ni  and  Mn  d-orbitals  will  be  investigated,  because  for 
austenitic state it has been found out that these orbitals contribute the most to partial 
and total densities of states for Ni2MnGa. In the following first the density of states 
in martensite phase with c/a <1 will be presented and afterwards the ones for c/a >1.

 Figure 6-15. Total Density of states  for Ni2MnGa in martensitic phase (c/a <1).

Figure 6-16. Total density of states for Ni2MnGa in martensitic phase (c/a <1) close to Fermi level. 
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   Fig 6-17. Density of states of Ni and Mn d-orbitals for martensitic phase (c/a <1).

Fig 6-18. (a) Total DOS for martensite state (c/a 
<1) ,  (b) partial  DOS for Ni and (c) for Mn in 
martensite state (c/a <1) calculated by SPRKKR. 
In (a), (b) and (c) the upper parts show spin down 
density  of  states  and  the  lower  parts   spin  up 
density of states.
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With regard to Figs.  6-16 and -18(a) for c/a<1 neither  Q-Espresso nor SPRKKR 
results show a peak at Fermi level meaning this state is stable which is in contrast to 
stability discussions done before.

Figure 6-19. Total density of states  for Ni2MnGa in martensitic phase (c/a >1).

Figure 6-20. Total density of states for Ni2MnGa in martensitic phase (c/a >1) close to Fermi level. 
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Figure 6-21. Density of states of Ni and Mn d-orbitals for martensitic phase (c/a >1).

Fig 6-22. (a) Total DOS for martensite state (c/a>1) , 
(b) partial DOS for Ni and (c) for Mn in martensite 
state (c/a>1) calculated by SPRKKR. In (a), (b) and 
(c) the upper parts show spin down density of states 
and the lower parts  spin up density of states.
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Fig. 6-20 depicts calculated total density of state by Q-Espresso close to Fermi level 
showing a small peak at Fermi level which in comparison to the peak appeared in L21 

total DOS (Fig. 6-11) could not cause a splitting in energy at Fermi level, hence it is 
concluded martensitic state with  c/a  >1 is also stable which is in agreement with 
stability discussion. But with regard to Figs. 6-16 and -20 martensitic state with c/a 
<1 seems to be more stable than c/a >1 which is contrary to stability discussions. 
In cnclusion, through figures of total density of states neither by Q-Espresso nor by 
SPRKKR the most stable phase could not be determined. Instead of that total energy 
per unit cell volume must be considered to determine the right state for martensitic 
phase. However, the figures of density of states calculated by utilizing an all-electron 
program  as  presented  in  [8]  show  the  expected  graphs  as  density  of  state  for 
Ni2MnGa.  Therefore  it  is  infered  for  achieving  the  coincident  results  with 
experiments the core electrons must be considered to do these calculations. 
It is noted that total magnetic moment of  Ni2MnGa in L21 state is estimated better 
with Quantum-Espresso in comparison to experimental data, while the site projected 
magnetic moments resulted from SPRKKR calculations (Table 6-II)  are closer to 
experimental results.
At the end the charge density distribution obtained by Q-Espresso in the (0 0 1) plane 
where martensite transition appears involving the different atoms, i.e., Ni, Mn and 
Ga for these minima are presented in Fig. 6-23. In this figure the charge density is 
changing between 0.00-0.09 e/a.u3  (e is the absolute value of the electron charge).

Figure 6-23. Charge density distribution in the (0 0 1) plane from left to right for: a)  c/a=0.94, b) 
c/a=1 and c) c/a=1.25 .

As it was expected, this figure confirms this fact that by contracting the structure (c/a 
<1)  the  density  of  charge  becomes  denser,  while  for  c/a>1 phase  it  is  thiner  in 
comparison to L21 [Fig.6-23 (b)] . As a result total magnetic moment will increase 
from c/a<1 to c/a>1 which is in agreement with Table 6-II.
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 7 Shape Memory Effect in Ni–Mn–Sn alloys         
Although  it  is  reported  that  Ni2MnSn  stoichiometric  alloy  shows  no  martensitic 
transformation,  in  Ni-Mn-Sn  off-stoichiometric  alloys  a  first-order  magnetic 
transition  (FOMT)  from  a  high  temperature  cubic  phase  (austenite)  to  a  low 
temperature  orthorhombic  phase  (martensite)  with  decreasing  temperature  is 
observed. The MT in these alloys is often accompanied by the abrupt changes of 
magnetization and resistance which result in several interesting phenomena such as 
meta-magnetic  SME (Shape Memory Effect),  large magneto-resistance,  and large 
magneto-caloric effect (MCE). As a result, applications of Ni-Mn-Sn-based Heusler 
alloys  are  highly  expected  in  actuators,  sensors,  and  magnetic  refrigerators,  etc. 
While  Ni2MnSn stoichiometric  compound in the austenitic  phase has a L21  cubic 
structure,  the  martensitic  structure  can  be  10M,  14M,  L10, 4O  depending  on 
composition. [7,75] 
In the following, the possibility of occurrence of Shape Memory Effect in Ni2MnSn 
stoichiometric alloy in austenitic phase is investigated by calculation the Density Of 
State (DOS) and observation at Fermi level.

 7.1 Density of State Calculation for Ni2MnSn

The  total  Density  Of  States  (DOS)  for  Ni2MnSn  calculated  by  applying  „Q-
Espresso“ code is shown in Figs. 7-1 and -2. Fig. 7-2 representing total DOS close to 
Fermi  level  shows  a  peak  for  minority  electrons  at  the  Fermi  level  contrary  to 
literature [45] to deny the existence of martensitic transformation.“ In Fig.7-3 site 
spin projected for Ni and Mn d-electrons has been depicted. This figure presents that 
Ni- and Mn-minority electrons contribute to forming the peak at Fermi level.

  

    Figure 7-1. Total DOS for Ni2MnSn in austenitic phase.
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          Figure 7-2. Total DOS for Ni2MnSn in austenitic phase close to Fermi level.

Figure 7-3. Site spin-projected d-electron state densities for Ni and Mn in Ni2MnSn austenitic phase.

To prove the results achieved by „Q-Espresso“, Density Of State for Ni2MnSn has 
also  been  calculated  with  SPRKKR  program.  As  it  could  be  seen  in  Fig.  7-4, 
SPRKKR results also confirm the result of „Q-Espresso“ and shows only a small 
peak at Fermi level. Table 7-I shows the total and local magnetic moments resulted 
from „Q-Espresso“ and „SPRKKR“ programs. In Fig. 6-6 the total energy difference 
relative to  L21 for  Ni2MnSn austenite  structure has  been shown as  a  function of 
tetragonality (c/a).
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Figure 7-4. SPRKKR calculated total DOS and site spin-projected d-electron state densities for Ni, 
Mn and Sn in Ni2MnSn austenite phase. Upper part presents spin down density of states and lower 
part spin up density of states. 

Concerning electronic aspects, the magnetic moment as a function of tetragonality 
has  been  investigated  and  is  presented  in  Fig.7-5.  The  total  and  local  magnetic 
moments obtained by running „Q-Espresso“ and „SPRKKR“ programs are given in 
Table 7-I. Magnetic moments calculated by Q-Espresso are overestimated as a result 
of applying ultrasoft  pseudopotentials  to do these calculations while in SPRKKR 
method full potential is considered. 

               Table 7-I. Total and local magnetic moments per site in units of µΒ.
                     L21                        Ni            Mn           Sn            µtot

                 
  Q-Espresso        Th.                0.21          3.96       −0.13         4.21

                 SPRKKR           Th.                0.19          3.55       −0.05         3.87
                                          Exp. [45]          −            −              −           4.05
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Figure 7-5. Total magnetic moment and contributions associated with Ni and Mn atoms in Ni2MnSn 
as a function of tetragonality (c/a).
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 8 Multilayer systems consisting of Ni2MnGa and  Ni2MnSn

In  this  section  electronic  and  magnetic  moment  structures  of  some  multilayers 
consisting of Ni2MnGa and Ni2MnSn Heusler alloys in austenite phase are studied to 
investigate  the  occurence  of  martensitic  transformation.  Spin  polarization  is  also 
studied for these configurations.

1) Ga-Sn-Ga trilayer system
First,  the trilayer structure consisting of two Ni2MnGa layers as upper and lower 
layers and Ni2MnSn as middle layer with a layer of vacuum above all of them to 
simulate  better  the  real  system,  are  studied,  Fig.  8-1  shows the  structure  of  this 
trilayer  system  from  two  aspects,  plotted  by  Xcrysden  [76],  a  crystalline  and 
molecular structure visualisation program. As it has been mentioned in chapter 5 Fig. 
5-2 austenite structure can also be shown as a tetragonal positioned in the center of 
austenite structure which makes the calculations much easier and faster becuase of 
less number of atoms existing in the tetragonal unit cell in comparison to L21 cubic 
structure. As a result to do the calculations of this chapter a simple tetragonal with an 
average constant cell (average of Ni2MnGa and Ni2MnSn constant cells) of 4.2425 Å 
is assumed as supercell. This system contains 26 atoms including 14 Ni, 6 Mn, 4 Ga 
and 2 Sn -atoms. From this point on, this system will be referred to as Ga-Sn-Ga. It 
should be noted that the thickness of each layer is 6 Å and of vacuum is about 10 Å. 
Fig. 8-2 shows the total density of states for the system, seperated for electrons with 
spin-up and -down and Fig.8-3 shows the total density of states close to Fermi level. 
According to  the  manner  for  concluding whether  a  diagram shows a  martensitic 
transformation or not in [45] this diagram shows a very small peak at Fermi level, as 
a result no martensite transition is expected for this system. Fig. 8-4 presents the site 
projected density of states for d-electrons of Ni- and Mn- atoms of Ni2MnGa layers. 
It should be noted that density of states of Ni and Mn constructing Ni2MnSn alloy are 
a little different from those of Ni2MnGa. Fig. 8-5 presents the magnetic moments for 
Ni, Mn and Sn versus thickness of multilayer. Total magnetic moment of the system 
is 26.97µB  and the total energy is -2314.84 Ry. 
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Figure 8-1. Structure of trilayer system in austenitic phase consisting of two  Ni2MnGa layers as upper 
and lower layers and  one Ni2MnSn layer in the middle with a layer of vacuum on top of the system 
[76].
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     Figure 8-2. Total DOS for Ga-Sn-Ga austenitic trilayer system.

Figure 8-3. Total DOS for Ga-Sn-Ga austenitic trilayer system close to Fermi level.
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 Figure 8-4.  PDOS for Ni and Mn d-electrons of Ni2MnGa-layer involving the austenitic trilayer 
system Ga-Sn-Ga.

Figure 8-5. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic trilayer system Ga-Sn-
Ga vs. thickness of trilayer.
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2) Sn-Ga-Sn trilayer system
In order to compare, the trilayer system which would be referred to as Sn-Ga-Sn has 
been studied as well; upper and lower layers are of Ni2MnSn and the middle layer is 
of Ni2MnGa. The assumed structure is the same as previous one. The total energy is 
-2312.85 Ry. The total energy of Ga-Sn-Ga system is lower than Sn-Ga-Sn system, 
this means that the previous system is a little more stable than the current system. 
This system contains 26 atoms including 14 Ni, 6 Mn, 2 Ga and 4 Sn -atoms. Total 
magnetic moment for this system is 25.90µB that is less than previous structure.  Fig. 
8-6 shows the total density of states for Sn-Ga-Sn system, and Fig. 8-8 presents the 
site projected density of states for Ni and Mn atoms seperated for electrons with 
spin-up  and  -down.  Fig.  8-9  presents  the  change  of  magnetic  moments  of  four 
elements along this trilayer. As it is seen magnetic moments for Ga and Sn are the 
same, of Mn is almost constant of 4µB,  Ni magnetic moment oscillates along the 
multilayer. Regarding to Fig. 8-7 it is probable this system shows the martensitic 
transformation  due  to  majority  electrons  resulting  from  Ni-  and  Mn-  majority 
electrons. 

  Figure 8-6. Total DOS for Sn-Ga-Sn austenitic trilayer system.
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Figure 8-7. Total DOS for Sn-Ga-Sn austenitic trilayer system close to Fermi level.

         
Figure 8-8. PDOS for Ni and Mn d-electrons involving the austenitic trilayer system Sn-Ga-Sn. 
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Figure 8-9. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic trilayer system Sn-Ga-
Sn vs. thickness of trilayer.

For further information from the trilayer Ga-Sn-Ga system the thickness of layers 
will be increased; in this way that first only the thickness of Ni2MnGa layers and then 
only of Ni2MnSn layer and finally of all three layers will be increased and the results 
will be discussed. 
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3) 2Ga-Sn-2Ga fivelayer system
Fivelayer system consisting of four layers of Ni2MnGa and one layer Ni2MnSn which 
is  sandwiched between these four Ni2MnGa layers in the way that two layers  of 
Ni2MnGa are above and two others are below the Ni2MnSn layer. This means, in this 
system Ni2MnGa layer has a thickness of 6 Å but the thickness of Ni2MnSn layer is 
doubled to 12 Å and vacuum is about 12 Å. The current fivelayer system will be 
named as 2Ga-Sn-2Ga in this work. This system contains 42 atoms including 22 Ni, 
10 Mn, 8 Ga and 2 Sn -atoms. The total magnetic moment of system is 44.50µB and 
the total energy is -3745.13 Ry. Figs. 8-10 and -12 present the total DOS and PDOS 
for Ni and Mn atoms respectively, Fig.8-11 shows the changes close to Fermi level. 
As it could be seen there is no peak at Fermi level, therefore martensite transition for 
this system is impossible. Fig.8-13 shows the changes of magnetic moment for either 
element along the thickness of fivelayer-system. 

   

Figure 8-10. Total DOS for 2Ga-Sn-2Ga austenitic fivelayer system.
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Figure 8-11. Total DOS for 2Ga-Sn-2Ga fivelayer system close to Fermi level.

    

Figure 8-12. PDOS for Ni and Mn d-electrons involving the austenitic fivelayer system  2Ga-Sn-2Ga.
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Figure 8-13. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic fivelayer system 2Ga-
Sn-2Ga vs. thickness of fivelayer.

4) Ga-2Sn-Ga fourlayer system
As the next step, as mentioned before the system in which the thickness of Ni2MnSn 
layer of previous studied trilayer system would be doubled to 12 Å and it will be 
referred to as Ga-2Sn-Ga. The vacuum thickness is about 12 Å. For this system also 
a supercell like previous cases is assumed.
Figs. 8-14 and -15 show total DOS and Fig.8-16 shows PDOS of Ni and Mn atoms 
for Ga-2Sn-Ga system. Fig. 8-15 shows a large peak at the Fermi level  due to the 
minority  d-electrons  of  Ni  (Fig.  8-16)  therefore  a  martensitic  transformation  is 
expected  for  this  system,  although  the  simple  Ga-Sn-Ga  system  has  shown  no 
martensitic transformation. This system contains 34 atoms including 18 Ni, 8 Mn, 4 
Ga and 4 Sn -atoms. The total energy for this system is –3027.97 Ry. Total magnetic 
moment  for  this  system  is  35.23µB   and  the  change  of  magnetic  moments  of 
individual atoms versus thickness of system is depicted in Fig. 8-17.
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Figure 8-14. Total DOS for Ga-2Sn-Ga austenitic fourlayer system.
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           Figure 8-15. Total DOS for Ga-2Sn-Ga fourlayer system close to Fermi level.

Figure 8-16. PDOS for Ni and Mn atoms in Ga-2Sn-Ga austenitic fourlayer system.
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Fig. 8-17. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic fourlayer system Ga-2Sn-
Ga vs. thickness of fourlayer.

5) 2Sn-Ga-2Sn fivelayer system
The five layer configuration involving a layer Ni2MnGa sandwiched between couple 
layers of Ni2MnSn are  also studied. Total and partial DOS are presented in Figs. 8-
18, -19 and -20. According to Fig. 8-19 like Sn-Ga-Sn system it is possible that this  
system shows a martensitic transformation due to majority electrons. Fig. 8-21 shows 
the  changes  of  magnetic  moments  for   elements  involving in  this  system versus 
thickness of system. This system contains 42 atoms including 22 Ni, 10 Mn, 8 Sn 
and 2 Ga-atoms. Total magnetic moment for this system is 42.11µB    and the total 
energy is -3739.11 Ry. 
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Figure 8-18. Total DOS for  2Sn-Ga-2Sn austenitic fivelayer system.

       
 

Figure 8-19. Total DOS for 2Sn-Ga-2Sn fivelayer system close to Fermi level.
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Figure 8-20. PDOS for Ni and Mn atoms in 2Sn-Ga-2Sn austenitic fivelayer system.

Fig. 8-21. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic fivelayer system 2Sn-Ga-
2Sn vs. Thickness.

6) Sn-2Ga-Sn fourlayer system
Now it is interesting to study Sn-2Ga-Sn configuration as well. It involves 2 layers of 
Ni2MnGa layer sandwiched between Ni2MnSn layers. In order to do calculation a 
supercell  as previous is  used.  Fig.  8-22 shows the total  density of states for this 
configuration. Fig. 8-23 shows the total density of states close to Fermi level. Fig. 8-
24 presents the partial density of states for this system. As it could be seen in Fig. 8-
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23,  in  contrast  to  Ga-2Sn-Ga  system,  this  system  shows  no  martensitic 
transformation.  The  change  of  magnetic  moments  of  individual  atoms  versus 
thickness  of  system  is  depicted  in  Fig.  8-25.  Total  magnetic  moment  for  this 
configuration is 34.75µB   and total energy is -3028 Ry. 

   Figure 8-22. Total DOS for Sn-2Ga-Sn fourlayer austenitic system.

     Figure 8-23. Total DOS for Sn-2Ga-Sn fourlayer system close to Fermi level.
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Figure 8-24. Partial DOS of Ni and Mn involving Sn-2Ga-Sn fourlayer system

Figure 8-25. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic fourlayer system Sn-
2Ga-Sn vs. thickness of fourlayer.

7) 2Ga-2Sn-2Ga sixlayer system
In the next step the case with three doubled layers will be studied. And it will be 
named by 2Ga-2Sn-2Ga system. Figs. 8-26 and -27 show the total density of states 
and Fig.8-28 presents partial density of states for Ni and Mn atoms. Fig. 8-29 shows 
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changes  of  magnetic  moments  for  individual  atom  types  along  the  thickness  of 
system involving six 6 Å layers. To do calculation a supercell as mentioned before is 
assumed.  As  it  is  seen  in  Fig.  8-27  a  peak  present  just  after  Fermi  level  so  a 
martensitic transformation is eventually possible for this system. The total energy is 
-4458.26 Ry and system contains 50 atoms including 26 Ni, 12 Mn, 8 Ga and 4 Sn 
atoms. Charge density distribution is also studied and the result was the same as the 
2Ga-Sn-2Ga system.

 
          Figure 8-26. Total DOS for 2Ga-2Sn-2Ga austenitic sixlayer system.

    

        Figure 8-27. Total DOS for 2Ga-2Sn-2Ga sixlayer system close to Fermi level.
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 Figure 8-28. PDOS for Ni and Mn atoms in 2Ga-2Sn-2Ga.

Figure 8-29. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic sixlayer system 2Ga-
2Sn-2Ga vs. thickness of sixlayer.
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8) Multilayer stack consisting of Ga-2Sn-Ga fourlayer system
At the end a multilayer stack with 60  Å lang  making up of Ga-2Sn-Ga fourlayer 
system shown a strong peak at Fermi level with a vacuum of 10 Å thereon has been 
considered to study. The outcoming results  are presented in Figs. 8-30 to -33.  In 
comparison  to  simple  Ga-2Sn-Ga  system,  total  DOS  also  shows  a  martensitic 
transformation due to the Ni-miniority d electrons. Changes the magnetic moments is 
presented in Fig. 8-33. 

Figure 8-30. Total DOS for multilayer stack composing of Ga-2Sn-Ga austenitic fourlayer system.
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Figure 8-31. Total DOS for multilayer stack of Ga-2Sn-Ga system close to Fermi level.
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 Figure 8-32. PDOS for Ni and Mn d-electrons involving the multilayer stack.

Figure 8-33. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic multilayer stack.
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Conclusion- Among different configurations of N2MnGa and Ni2MnSn layers which 
are studied in this thesis, with regard to the graphs of total and partial density of 
states for systems including Ga-2Sn-Ga fourlayer,  and 2Sn-Ga-2Sn fivelayer it  is 
concluded  that  these  systems  might  show  martensitic  transformation  due  to  d-
miniority electrons of Ni atoms. Although Ga-Sn-Ga and Sn-Ga-Sn trilayers do not 
show a martinsitic transformation occurence, the Ga-2Sn-Ga fourlayer and 2Sn-Ga-
2Sn fivelayer systems do. For all these studied configurations, magnetic moments for 
either element possess almost the same value; for Mn is circa 4µB  ,  Ni magnetic 
moment is  changing from 0.2  to 0.5µB    and Sn and Ga's  magnetic  moments are 
among -0.1 to -0.2µB, but the Ga's magnetic moment is always higher than Sn's. 
A  multilayer  stack  of  Ga-2Sn-Ga  also  shows  the  martensitic  transformation 
probability  as  the  simple  system.  One  interesting  point  in  these  studied 
configurations is that the amount of magnetic moments in interfaces do not change 
significantly  and  it  could  be  a  proof  for  „exchange  interaction“  between  atomic 
magnetic  moments  attempting  to  align  all  other  atomic  magnetic  moments  with 
itself.  In  the  following  for  Ga-2Sn-Ga  fourlayer  system  a  comparison  between 
magnetic moments of these elements with their bulk amounts is done the result is 
presented in Fig. 8-34. In this diagram the atoms involving in bulks are denoted with 
a star (*). As it is seen for Ga and Sn in multilayer no changes are observed but for  
Ni  and  Mn  atoms  involving  in  Ni2MnGa of  multilayer  a  little  increase  for  Mn 
magnetic moments could be seen. For Ni atoms at the free side of configuration a 
little  increase  and in  interfaces  a  little  decrease  are  observable  in  comparison to 
Ni2MnGa bulk. These results show that by multilayer configurations the magnetic 
moments amount could be manipulated.

Figure 8-34. Magnetic moments of Ni, Mn, Ga and Sn involving the austenitic multilayer stack Ga-
2Sn-Ga and in Ni2MnGa and Ni2MnSn bulks denoted with (*).
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Finally  to  compare  magnetic  moments  of  Ni  and  Mn  in  these  different 
configurations, once the magnetic moments of Ni and Mn for trilayers and sixlayer 
system are depicted in one graph and once those of four- and fivelayer systems in 
another one. The results are presented in Figures 8-35  to -38. In general it is seen 
that Ni and Mn of Ni2MnGa possess higher magnetization than that of Ni2MnSn, but 
in the cases that Ni2MnGa comes between Ni2MnSn layers maybe due to exchange 
interaction the magnetization of Ni and Mn of Ni2MnSn in these cases increase to the 
level of Ni2MnGa.

 Figure 8-35. Ni magnetization changes through thickness of tri- and sixlayer austenitic systems.
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Figure 8-36. Ni magnetization changes through thickness of four- and fivelayer austenitic systems.
Thickness(Å)

Figure 8-37. Mn magnetization changes through thickness of tri- and sixlayer austenitic systems.
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Figure 8-38. Mn magnetization changes through thickness of four- and fivelayer austenitic systems.

For these systems the spin polarization from Eq.(8.1) which shows spin polarisation 
as a ratio of difference of density of states for spin up and down electrons at the 
Fermi level to the sum of them is calculated and presented in Table 8-I.

P=
D↑(EF)−D↓(EF)

D↑(EF )+D↓(EF)
(8.1)

Table 8-I. Total energy and spin polarization for each configuration

          Configuration total Energy(Ry)   |P|

 Sn-Ga-Sn    -2312.86 0.28

 Ga-Sn-Ga    -2314.84 0.22

 Sn-2Ga-Sn    -3028.00 0.84

Ga-2Sn-Ga    -3027.97 0.22

2Ga-Sn-2Ga    -3745.13 0.45

2Sn-Ga-2Sn    -3739.11 0.016

2Ga-2Sn-2Ga    -4458.26 1.00

        2Sn-2Ga-2Sn    -4454.26               0.018

Interestingly, it is seen that 2Ga-2Sn-2Ga system shows a spin polarisation about 1 
which is desirable for having an optimum spin current in spintronics therefore 2Sn-
2Ga-2Sn sixlayer system has been also investigated to know whether the same 
behavior occurs for that system or not. As it could be seen in Table 8-I, 2Sn-2Ga-2Sn 
sixlayer system in contrast to 2Ga-2Sn-2Ga system shows a weak spin polarization. 
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 9 Shape Memory Effect of Non-Stoichiometric Compounds

In this section two non-stoichiometric Heusler alloys including Ni54.5Mn20.5Ga25 and 
Ni47Co3.1Mn36.6Sn13.3 which  could  be  also  expressed  as  Ni2.18Mn0.82Ga  and 
Ni1.92Co0.09Mn1.46Sn0.53, respectively, would be studied in both austenite (c/a=1) and 
martensite (c/a=1.25) states. 
In order to do related calculations for this section SPRKKR code by applying PBE, 
generalized gradient  approximation,  as  exchange-correlation functional  within  the 
spin-polarized scalar relativistic approximation has been used. 
In  Ni2.18Mn0.82Ga compound with e/a = 7.63, 18% of Mn sites (4b wyckoff position) 
are occupied by Ni atoms which would be referred in the following graphs as Ni_a 
and Ni atoms at Ni sites (8c wyckoff position) are specified with Ni_b. The TM for 
this alloy is 335K, and TC = 350K [77].
In other studied compound, Ni1.92Co0.09Mn1.46Sn0.53  with  e/a  = 8.07, 6% of Ni sites 
(8c) and 1% of Sn sites (4a) are occupied by Co atoms which would be referred to as 
Co_b and Co_a,  respectively.  46% of  Sn sites  (4a)  are  also  filled  by  Mn atoms 
[referred to as Mn_a and Mn_b are Mn atoms at their sites (4b)], with TM = 300K and 
TC = 335K [78]. Figs. 9-1, -2, -3 and -4 show the total DOS of these compounds in 
austenite and martensite states and site projected DOS for Ni and Mn atoms. Tables 
9-I, -II show the total and local magnetic moments and total energy for both austenite 
and martensite states. With a glance at total energies for these compounds in both 
states, it seems that austenite states are more stable than the martensite states.
From the graphs for austenite states for both compounds, it could be inferred that like 
the stoichiometric compound Ni2MnGa, minority d-electrons of Ni atoms which are 
localized at their sites, in 8c wyckoff position (0.25, 0.25, 0.25), are responsible for 
occuring  martensite  states.  Regarding  the  magnetic  moment  values  presenting  in 
Table  9-I  and  martensitic  temperature,  it  could  be  concluded  that 
Ni1.92Co0.09Mn1.46Sn0.53 compound could be a good choice for practical applications. 
Because according to  [79]  yielding a large magnitude of saturation magnetization 
difference, between the parent and martensite phases causing the driving force for the 
field-induced transformation is provided by the Zeeman energy difference between 
the two phases, i.e., EZeeman = μ0 ΔM . H, where H is the strength of the applied field. 
Because of the large magnitude of ΔM, Ni1.92Co0.09Mn1.46Sn0.53 alloy is considered to 
be  capable  of  generating  a  large  magnetic  driving  force  with  a  relative  small 
magnetic field. 
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Figure 9-1.   Total DOS and spin-projected DOS for Ni_a,  Ni_b and Mn atoms of Ni2.18Mn0.82Ga in 
austenite state.
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Figure 9-2.  (Color online) Total  DOS and spin-projected DOS for Ni_a,  Ni_b and Mn atoms of 
Ni2.18Mn0.82Ga in martensite state.
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Figure 9-3.  (Color online)  Total DOS and spin-projected DOS for Ni,  Mn_a and Mn_b atoms of 
Ni1.92Co0.09Mn1.46Sn0.53 in austenite state.
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Figure 9-4.  (Color online)  Total DOS and spin-projected DOS for Ni,  Mn_a and Mn_b atoms of 
Ni1.92Co0.09Mn1.46Sn0.53 in martensite state.
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  Table 9-I. Total and Local magnetic moments per site in units of  µB

      
          Ni2.18Mn0.82Ga     Ni_a (4b)1       Ni_b (8c)     Mn (4b)     Ga (4a)        µ tot        

         L21           c/a=1              0.22             0.27             3.5            -0.07          3.38             
                    c/a=1.25         0.00             0.00          0.0002          0.00        0.0002           

Ni1.92Co0.09Mn1.46Sn0.53      Ni(8c)  Mn_a(4a) Mn_b(4b)  Co_a(4a)  Co_b(8c)  Sn(4a)        µ tot

         L21           c/a=1         0.42      4.00          3.69          1.95             0.21       -0.09         6.33      
    c/a=1.25       0.07      4.30         -0.00          2.16             0.03        0.01         2.14      

1. In parentheses show the wyckoff positions of atoms in austenite state

 Table 9-II.  Total energy (Ry)

Ni2.18Mn0.82Ga       total energy (Ry)

      L21 c/a=1          -12419.39
c/a=1.25         -12357.64

   Ni1.92Co0.09Mn1.46Sn0.53           total energy (Ry)

             L21 c/a=1          -16021.67
c/a=1.25         -16002.68
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 10 Summary and Conclusions

In this work Density Of States (DOS) for different materials including cobalt in three 
alpha,  beta  and  epsilon  phases,  Fe2CoO4 and  Co2FeO4 of  spinel  ferrites  in  both 
normal and inverse structures, and Heusler alloys containing Ni2MnGa and Ni2MnSn 
for both stoichiometric and non-stoichiometric alloys, and diverse arrangement of 
Ni2MnGa and Ni2MnSn layers have been calculated. By study the calculated DOS 
for spinels it has been clear, whether they could be used as a spin filter in Multi 
Tunnel Junction (MTJ) systems or not. And for Heusler alloys it is shown whether 
they could experience a martensite transition or not which is interesting to develop 
novel materials for engineering applications.

For calculating DOS of Co, spin polarized DFT-based Elk Code with considering 
PBE (Perdew, Burke and Ernzerhof), generalized gradient approximation (GGA), as 
exchange-correlation functionals have been carried out, the results show a very high 
density of states for epsilon-Cobalt  phase. The  ε-Co phase is a very special case 
when compared to the other cobalt phases, exhibits different structural properties. 
The  ε-Co,  described by Dinega et  al.  [27] posses  a  cubic structure,  space group 
P4132, with a unit cell similar to that of  β-manganese. This structure contains 20 
cobalt atoms, per unit cell, divided in two types: eight atoms of type I and twelve 
atoms of type II. The calculated total energy per cobalt atom shows that, for GGA 
calculations, the α-Co phase is more stable than the β- and ε-Co phases.  However, 
the structural stability should be expressed as energy per cell volume (Ex/Vx, where x 
is Co-phase) , the calculated ΔE/V (Eα/Vα − Ex/Vx, where x is Co-phase) values show 
that the α-Co structure is the most stable, as expected from experimental studies. A 
special 20 × 20 × 20 k-point mesh is considered for α- and β-Co phases while for ε-
Co due to being time-consuming a  8 × 8 × 8 k-point mesh. The obtained results are 
for 0K.

Spinel ferrites are represented by the formula unit AB2O4 . Most of the spinel ferrites 
form cubic spinel structure belonging to space group F d 3̄m with oxygen anions in 
fcc positions  and cations  in  the tetrahedral  and octahedral  coordinated interstitial 
lattice sites, forming the A and B sublattices. Depending upon the nature (magnetic 
or  non-magnetic)  and  distribution  of  cations  among  A and  B  sublattices,  spinel 
ferrites  can  exhibit  properties  of  different  type  magnets,  like:  ferrimagnet, 
antiferromagnet and paramagnet [32]. The ferrimagnetic features are mediated by 
antiferromagnetic coupling between the magnetic moments at the A and B sites. For 
spinels containing di- and trivalent cations there are two extreme ways to distribute 
the A and B constituents; normal and inverse spinel. In normal spinel distribution 
pattern all divalent cations are located in the tetrahedrally coordinated locations and 
the  trivalent  atoms  in  the  octahedrally  ones.  In  inverse  spinel  arrangement  the 
tetrahedral sites are filled with trivalent cations and the rest of the trivalent cations 
together with the divalent cations are distributed over the octahedral sites [80]. 
DFT-based  calculations  fail  in  describing  insulating  and magnetic  properties;  the 
band gap is underestimated, as the valence band maxima (VBM) lies too high and the 
conduction band minimum (CBM) lies too low and the magnetic moments tend to be 
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too small. There are alternative ways to have an estimate of the experimental band 
gap.  One  possibility  is  the  DFT+U  method;  it  takes orbital  dependence  of  the 
Coulomb and exchange interactions  into account. The position of VBM would be 
corrected to a large extent by adding Hubbard parameter “Ueff” to the transition metal 
d-orbital.  To  do  calculations,  the  initial  unit  cells  values  are  taken  from  the 
experimental lattice constants. Then by taking the presumed parameters into account, 
the best lattice value which minimizes the total energy has been chosen as lattice 
constant.
In  planewave  calculations,  the  main  problem  arises  when  dealing  with  rapidly 
fluctuating electron densities in the vicinity of atomic cores. One needs a very large 
number of plane waves in order  to describe such fluctuations properly.  The only 
possibility  to  save  a  purely  planewave  basis  set  is  to  discard  core  states.  The 
exclusion of the core states from the direct consideration means that one has to deal 
in  the following not with the effect of bare nuclei  potentials,  but  rather with the 
potentials screened by the core electrons. This potential is more smooth and shallow 
than the “true” one. This  simplification gives  rise to  a  family of pseudopotential 
methods in  contrast  to  the “all-electron methods” (i.e.,  those where all  electrons, 
valence and core electrons, are treated in the same way). 
In this thesis „Quantum-Espresso“ program by applying „ultrasoft pseudopotentials“ 
are utilised to do ab initio calculations. Density of states calculations for Fe2CoO4 

and Co2FeO4 ferrite spinels in both normal and inverse structures - confirming the 
experimental results of Anna-Lena Wolff- have shown Fe2CoO4 as an insulator with a 
gap of 0.21 eV for normal and 0.24 eV for inverse structure and Co2FeO4 as a half-
metal. For both cases the calculations also proved that inverse structure is the more 
stable  structure  regarding  the  total  ground  state  energies.  In  these  calculations 
magnetic moments of Co are overestimated and the band gaps are underestimated. As 
a result of these calculations, Co2FeO4 in inverse structure does have the lowest total 
energy is taken as a reference to determine the specific energy ∆E/V for Fe2CoO4 and 
Co2FeO4 in  both  normal  and  inverse  structures.  These  calculations  show  that 
Co2FeO4 is merely in inverse form stable, but Fe2CoO4 is in both normal and inverse 
structure stable. 
As the next step in this work Heusler alloys have been studied especially the shape 
memory effect  in these alloys  the capability of alloys to  remember their  original 
shape when they deform in the martensitic state and then heated to retransform to the 
austenitic  state  [46].  „While  the  shape  memory  effect  in  most  of  the  current 
commercial  actuator  materials  such  as  TiNi  is  related  to  a  martensitic  phase 
transformation  driven  by  temperature  [45]  or  applied  stress  [47],  the  magnetic 
control of such transformation would be faster and more efficient.  Ferromagnetic 
Shape Memory (FSM)-alloys provide the opportunity to drive a transformation of 
martensitic variants by an external magnetic field. These materials can be used where 
high  switching frequencies  are  needed (e.g.  in  actuators)  or  where  the  necessary 
temperature changes are not applicable (e.g. in medical devices) [47].“
In  this  part  of  work  to  do  „first  principle“  calculations,  in  addition  to  the  „Q-
Espresso“  code,  KKR function-based  program,  SPRKKR,  has  been  also  used  to 
investigate the martensitic transition behavior regarding to DOS of these structures in 
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both  austenite  (cubic  structure)  and  martensite  (tetragonal  structure).  Both  „Q-
Espresso“ and „SPRKKR“ calculations showed a martensite transformation for both 
Ni2MnGa and Ni2MnSn which for Ni2MnGa confirms the literature, but for Ni2MnSn 
not.  In  addition  while  DOS  graphs  resulting  from  Q-Espresso  calculations  for 
Ni2MnGa in both austenite and martensite phases confirms the literature which states 
the  martensitic  modulated  phase  with  c/a<1 is  the  most  stable  phase,  the  results 
regarding energy per  unit  cell  volume present  austenite  phase as  the  most  stable 
phase.
Afterwards some multilayers system consisting of Ni2MnGa and Ni2MnSn in diverse 
arrangements involving tri-, four-, five- and six-layers have been studied. The most 
outstanding result of this part is appearing a peak due to Ni-d miniority electrons at 
the Fermi level in total DOS of the systems that Ni2MnGa layer is sandwiched by 
double  Ni2MnSn layers  which  are  named in  this  thesis  by 2Sn-Ga-2Sn fivelayer 
system and the fourlayer system involving two layers of Ni2MnSn sandwiched by 
Ni2MnGa  layers  (Ga-2Sn-Ga)  show  the  possibility  of  occurence  of  martensitic 
transformation due to appearing a peak at Fermi level in their total DOS graphs. 
Spin  polarization  calculation  for  these  multilayers  showed  2Ga-2Sn-2Ga  system 
possesses spin polarisation about 1 which is desirable for having an optimum spin 
current in spintronics field.
Finally,  two  non-stoichiometric  Heusler  alloys  including  Ni54.5Mn20.5Ga25 and 
Ni47Co3.1Mn36.6Sn13.3  are also studied, the result of calculations show a magnetic and 
structural  transition  for  Ni47Co3.1Mn36.6Sn13.3   alloy  which  can  result  in  effective 
practical  application.  This  is  in  agreement  with  literature  [78]  yielding  a  large 
magnitude of saturation magnetization difference between the parent and martensite 
phases causing the driving force for the field-induced transformation is provided by 
the Zeeman energy difference between the two phases, i.e.,  EZeeman = μ0  ΔM . H, 
where H is the strength of the applied field. Because of the large magnitude of ΔM 
resulted from the calculations it is concluded these alloys are capable of generating a 
large  magnetic  driving  force  with  a  relative  small  magnetic  field.  In  contrast, 
martensitic transformations in many other designated ferromagnetic shape memory 
alloys,  e.g.,  Ni2MnGa  and  Ni2MnAl  have  only  been  found  to  be  inducible  by 
applying temperature or stress but not magnetic field. 
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 11 Outlook

In the future the focus will be on simulating multilayer stack consisting of Ni2MnGa 
and Ni2MnSn Heusler alloys by applying SPRKKR program, mainly for the systems 
investigated experimentally which are constructed of three layers either of them with 
a thickness of 30 nanometer.

To be able to calculate phonon density of states, the advanced programs available to 
do „first  principle“  calculations  such as  VASP (The Vienna Ab initio  Simulation 
Package) could be utilized. In VASP central quantities like the one-electron orbitals, 
the electronic charge density,  and the local potential  are expressed in plane wave 
basis sets. The interactions between the electrons and ions are described using norm-
conserving or ultrasoft  pseudopotentials, or the projector-augmented-wave method 
wich  is  an  „all-electron“  method  which  can  lead  to  obtain  the  experimental 
observations .

And  finally  a  multilayer  stack  involving  Heusler  alloys  and  Ferrite  spinels  with 
vacant positions and defects is in prospect to be studied.
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