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Introduction
Modern physics is making fast progress in measuring always smaller systems and
always faster dynamics. Today it is possible to breach into the realm of single atoms
and the dynamics of solid state electron transitions are probed with a resolution in
the atomic scale. The time regime for electron movement in bound valence states
or in free electron gases with a comparable length scale is in the region of 100 as [1,
p. 165]. To investigate and eventually be able to control electron dynamics on that
time scale pulses of light have been made shorter and shorter in the course of the
last decades. The duration of a pulse of light, however, is related to the frequency
bandwidth of its spectrum. Similar to the uncertainty between time and energy a
pulse of light which is severely limited in time has by necessity a broad spread in
energy.
Light with a very broad frequency bandwidth is sometimes referred to as white

light, since it encompasses many ’colors’ of light. When a narrow-band input pulse
undergoes extreme nonlinear spectral broadening to yield a broadband spectrally
continuous output, this spectrum is referred to as a supercontinuum [2, p. 1136].
A supercontinuum can spread over more than an octave bandwidth and hence has
the potential to support a very short pulse of light. Another application of such a
broad spectrum is the measurement and stabilization of a frequency comb, which
can be used for absolute optical frequency measurements or the stabilization of the
carrier-envelope phase [3].

Historically, the first supercontinuum was generated by Alfano and Shapiro in
1970 [4] after the effect was discovered in the laboratory by accident. Laser pulses
at a wavelength of 530nm, a pulse duration of about 6ps and an energy of 5mJ
per pulse were sent through bulk glass and liquid samples to create filaments with
a supercontinuum ranging from 2.7 to 4.7PHz angular frequency, or 400 to 700 nm
wavelength. In 1976 Lin and Stolen [5] presented fiber waveguides as a new and
superior method to generate supercontinua. The advantage of the fiber waveguide
is that the interaction length between the laser pulse and the nonlinear medium is
greatly increased in comparison to a bulk medium, where the interaction length is
limited by the length of the laser focus. Anomalous dispersion in fused silica for
wavelengths longer than 1.3 µm led 1980 to the field of soliton generation, in which
the cancellation of nonlinear and dispersive effects causes a pulse of light to propagate
through a fiber without any further change in pulse shape [6]. Conventional optical
fibers are made from solid dielectric material, usually fused silica. In 1996 photonic
crystal fibers were introduced by Knight et al. [7], in which the refractive index in the
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fiber is determined by an array of air holes surrounding the solid core. It is possible
to finely control the properties of the fiber this way and a large supercontinuum
community has evolved around the use of photonic crystal fibers [2].
However, due to the use of solid material the amount of laser power which can be

transported in a conventional optical fiber or a photonic crystal fiber without the
fiber being damaged is limited. Hollow-core fibers filled with a noble gas have higher
attenuation losses than solid fibers, since the beam is not guided by total internal
reflection anymore but rather by reflections under grazing incidence, but are capable
of transporting high power light beams. High laser pulse powers are important for
nonlinear applications, and in 1996 Nisoli et al. [8] adapted a gas-filled hollow-core
fiber for supercontinuum generation and improved the method to create ultra short
laser pulses with multigigawatt peak powers [9].

Such ultrashort high power laser pulses are required to achieve pulse durations
in the attosecond regime and study the dynamics of electrons in an atomic scale,
and Hentschel et al. isolated a single light pulse of attosecond duration from high
harmonic radiation in 2001 [10]. In 2004 Kienberger et al. demonstrated the use of
such pulses in streaking measurements to resolve atomic electron dynamics in gases
at an attosecond time scale [11]. In 2007 this method was adapted in a groundbreak-
ing experiment to measure the electron dynamics of single-crystalline tungsten by
Cavalieri et al. [12], or more recently in similar investigations of single-crystalline
magnesium [13].

This thesis concerns itself with the optimization of the supercontinuum generated
by means of a gas-filled hollow-core fiber for the purpose of attosecond metrology in
experiments which are very similar in their setup to the experiment of Cavalieri et al.
[12]. The main objective of the optimization of the supercontinuum in this regard is
the generation of laser pulses which have as short a duration as possible.

The introduction of the review paper of Zheltikov [14] from 2002 gives a good
overview over the field of hollow-core fiber generated supercontinua. Since then
there have been publications about innovative ways to improve the general setup
for the employment of gas-filled hollow-core fibers, like utilization of a gas gradient
in the fiber pressure chamber instead of a constant pressure [15], or a cascading
arrangement of two hollow-core fibers in sequence [16]. However, there has been
scarce investigation of the impact of the input laser pulses’ properties, beyond energy
per pulse and pulse duration, on the resulting supercontinuum.
In this work numerical simulations are used to investigate how the supercontinuum

generated in the gas-filled hollow-core fiber is affected by the spectral phase of the
laser pulses in front of the fiber. This is supported by measurements of the spec-
tral phase with a SPIDER (Spectral Phase Interferometry for Direct Electric-field
Reconstruction) from Venteon, which is able to retrieve the spectral phase both in
front and after the hollow-core fiber. It is found that the spectral phase of the pulses
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in front of the fiber does indeed have a vast impact on the form and bandwidth
of the resulting supercontinuum, and not only insofar that it determines the input
pulses’ duration and power. Because of that, control of the spectral phase of the
input laser pulses opens up the possibility to optimize and tailor the supercontinuum
in regard to specific properties and applications, and this is applied to optimize the
pulse duration after compression behind the hollow-core fiber in simulations.

This thesis is organized as follows. In chapter 1 the concepts necessary to describe
ultra short laser pulses are introduced and the groundwork for the numerical calcu-
lations is laid in form of the 1-dimensional pulse propagation equation. In chapter 2
the experimental setup is described and the model for the numerical calculations by
means of the split-step method explained. In chapter 3 measurements of the super-
continuum and the pulses’ spectral amplitude and phase in dependence on the gas
pressure inside the hollow-core fiber are presented and discussed, and shown to be in
qualitative agreement with the results of the numerical calculations. In chapter 4 the
effect of the input pulses’ spectral phase on the supercontinuum after the hollow-core
fiber is investigated by means of numerical calculations, and the simulation is used
to optimize the supercontinuum in regard to pulse duration. In chapter 5 a brief
summary of the results presented in this thesis is delivered.





1. Theoretical Background
In this chapter the background for the rest of this work and especially the numerical
calculations is laid out. Section 1.1 starts with the representation of short pulses
of light. In section 1.2 the optical Kerr effect and its consequences on the refractive
index are explained, which are the source of the nonlinear process studied throughout
this work. In section 1.3 the pulse propagation equation (PPE) is derived from the
Maxwell equations. The PPE describes what is happening to a pulse of light during
propagation in a medium, including dispersion in that medium and nonlinear effects
like the generation of new frequencies due to self-phase modulation (SPM) and self-
steepening. It is the base of the numerical simulation presented in section 2.2. In
section 1.4 SPM is discussed in more detail. In section 1.5 time-frequency represen-
tations are introduced as a tool for pulse analysis.

1.1. Representation of light pulses
In this section a by necessity brief introduction of concepts useful for the representa-
tion and description of short pulses of light is given. For a more detailed treatment
the work of Wollenhaupt et al. [17, p. 1047-1069] is pointed out as a reference.

1.1.1. Representation in time and frequency domain
A pulse of light is represented by its electric field vector E(r, t). Throughout this
work only linearly polarized fields which maintain the direction of their polarization
are considered, and hence the field vector can be treated as a scalar E(r, t). In this
section it is also assumed for simplicity’s sake that the pulse is stationary or rather
that it is observed by a stationary detector, and as such the spatial components are
ignored and the electric field is reduced to E(t).
The electric field E(t) of a wave can be separated into an amplitude function A(t),

which would be a constant in case of a monochromatic wave instead of a pulse of
light, and a wave oscillation term with a phase φ(t) such that [17, p. 1048]

E(t) = A(t) cosφ(t). (1.1)

The temporal phase φ(t) can be separated into different parts as [17, p. 1049]

φ(t) = φ0 + ω0t+ φa(t), (1.2)
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where the first term is a constant phase offset, the second term is linear in t with ω0
being the carrier frequency, and the third term includes any remaining higher orders
of t.
Eq. (1.2) can be treated as an expansion of φ(t) around t0 = 0 in a Taylor series,

and as such ω0 is ∂φ(t)/∂t|t0 . As will be discussed later the carrier frequency ω0 is
more commonly defined as [18, p. 6]

ω0 =

∞∫
0
|Ẽ(ω)|2ω dω
∞∫
0
|Ẽ(ω)|2 dω

, (1.3)

where Ẽ(ω) is the complex field amplitude in dependency on the angular frequency
ω. Here and throughout this work complex-valued quantities are denoted with a tilde.
From now on the term angular will be dropped and frequency will refer to both
the frequency f = 1/T , with T being the period of an oscillation, and the angular
frequency ω = 2πf .
It is often very useful to represent the electric field E(t) in the frequency domain

as Ẽ(ω). Since time and frequency are a Fourier transform pair it is possible to do
so with a Fourier transformation, and E(t) can accordingly be expressed with an
inverse Fourier transformation of Ẽ(ω) such that [17, p. 1049]

Ẽ(ω) = FE(t) =
∫
∞
E(t)e−iωt dt

E(t) = F−1Ẽ(ω) = 1
2π

∫
∞
Ẽ(ω)eiωt dω.

(1.4)

Because E(t) as a physical observable is a real valued function Ẽ(ω) = Ẽ∗(−ω)
holds, where ∗ denotes the conjugate-complex of the respective quantity. It follows
that for a light field without DC component, meaning without a component at ω = 0,
it is sufficient to know Ẽ(ω) for positive frequencies to fully characterize the electric
field [17, p. 1049]. An Ẽ+(ω) can be defined, which is equal to Ẽ(ω) for ω > 0
and equal to zero otherwise. The inverse Fourier-transform of Ẽ+(ω) is the complex
valued Ẽ+(t). This is used to avoid the treatment of negative frequencies where it is
not necessary, and to allow for a complex representation of E(t).
In the same way an Ẽ−(ω) and Ẽ−(t) can be defined and it is obtained that [17,

p. 1050]

Ẽ(ω) = Ẽ+(ω) + Ẽ−(ω)
E(t) = Ẽ+(t) + Ẽ−(t) = 2 Re{Ẽ+(t)}.

(1.5)

1.1.2. The envelope function and the phase term
A pulse of light can be represented in a so called envelope function in conjunction
with a phase term not unlike Eq. (1.1). This is a method to reduce the fast oscillating
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electric field to a slower varying envelope function, which is generally easier to handle
in calculations than the electric field itself.
Since Ẽ+(t) is complex valued it can be expressed as a product of a real amplitude

function and a phase term such that

Ẽ+(t) = |Ẽ+(t)|eiφ(t) = 1
2A(t)eiφ(t), (1.6)

where the factor 1/2 is chosen to make A(t) conform with Eq. (1.1) and (1.5). Using
Eq. (1.2), it is also possible to define a complex amplitude or envelope function Ã(t)
by separating the temporal phase φ(t) and including some of its terms in the envelope
such that

Ẽ+(t) = 1
2Ã(t)eiω0t. (1.7)

In this representation the light pulse is separated into a fast carrier wave and an
envelope function. This is especially useful if the envelope Ã is varying only slowly in
comparison to the carrier frequency ω0, but Eq. (1.7) for itself does not impose any
restrictions in that regard. The designation of the carrier frequency is not unique
and it is chosen in such a way that the envelope function is as smooth as possible,
usually by calculating ω0 as in Eq. (1.3) [18, p. 6].
In analogy to Ẽ+(t) it is also possible to separate Ẽ+(ω) into an envelope function

and a phase term, and one obtains

Ẽ+(ω) = |Ẽ(ω)+|e−iφ(ω) = Ã(ω)e−iω0t, (1.8)

where φ(ω) is the spectral phase. It can be expanded in a Taylor series around the
carrier frequency ω0 and is written as [17, p. 1052]

φ(ω) =
∞∑
j=0

1
j!φj(ω − ω0)j

= φ0 + φ1(ω − ω0) + 1
2φ2(ω − ω0)2 + 1

6φ3(ω − ω0)3 + ...,

(1.9)

where the φj are derivatives with respect to ω, with

φj = ∂jφ(ω)
∂ωj

∣∣∣∣∣
ω0

. (1.10)

The first term on the right-hand side of Eq. (1.9) describes the absolute phase or
the carrier-envelope phase (CEP) in the time domain. That is the offset between the
maximum of the envelope function and the nearest maximum of the carrier wave. A
pulse with a CEP equal to zero has no offset between carrier and envelope and is
often referred to as cosine pulse, while a pulse with maximal offset is called a sine
pulse [17, p. 1048].
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The φ1 coefficient causes a temporal shift of the pulse in the time domain without
changing the actual pulse shape. A positive φ1 corresponds to a shift towards later
times. In the absence of higher terms φj, φ1 = ∂φ/∂ω|ω0

is identical to the group delay
Tg(ω), which is defined as Tg(ω) = ∂φ/∂ω and describes the relative temporal delay of
a given spectral component [17, p. 1051].
The φ2 coefficient is called group delay dispersion (GDD) in a medium [17, p. 1058]

and causes the pulse to be chirped, meaning the different frequencies are not uni-
formly distributed over the pulse in the time domain anymore. The sign in Eq. (1.8)
is chosen so that a positive φ2 corresponds to a linearly up-chirped laser pulse, mean-
ing the high frequencies will be at the tail-end of the pulse in the time domain. This
term broadens the pulse shape in the time domain symmetrically and has a strong
impact on pulse duration.
The φ3 coefficient is called third order dispersion (TOD) in a medium [17, p. 1058]

and causes a nonlinear chirp and an asymmetrical deformation of the pulse shape,
changing the gradient of the slopes and giving rise to prepulses for negative TOD or
after-pulses in the case of positive TOD.
In Fig 1.4 on page 28 different laser pulses with exemplary phases are illustrated,

including spectral amplitude, spectral phase, group delay, pulse shape and temporal
phase. In the work of Wollenhaupt at al. [17, p. 1051-1053] further examples for the
visualization of the effects of the spectral phase are provided.
When the temporal phase is presented in figures throughout this work, only the

nonlinear part φa(t) of Eq. (1.2) is shown. This is done because the linear terms of φ(t)
only contain information about the CEP offset and the choice of carrier frequency.
Pulse properties like the chirp of the pulse are part of the nonlinear coefficient φa(t),
and because of that it is presented without perturbance through the linear phase
terms.

A short light pulse propagating in a linear medium experiences changes in both
amplitude and phase, which are expressed in the complex optical transfer function
M̃(ω). If the input electric field is Ẽin(ω), one obtains for the output field after the
medium [17, p. 1057]

Ẽout(ω) = M̃(ω) Ẽin(ω) = R(ω)e−iφd(ω)Ẽin(ω), (1.11)

where R(ω) is the real valued spectral amplitude response, which includes absorp-
tion effects, and φd(ω) is the spectral phase transfer function. During propagation
in a medium a light pulse accumulates the spectral phase transfer function [17, p.
1058]

φd(ω) = n(ω)k(ω)z, (1.12)

where n is the refractive index of the medium, k = ω/c is the vacuum wavenumber,
c is the vacuum speed of light, and z is the propagation distance. The spectral phase
transfer function is expanded in a Taylor series like the spectral phase in Eq. (1.9),
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and if n(ω) of the medium is known, the coefficients φdj
can be calculated with

Eq. (1.10).
Here n(ω) is real valued in accord to the cited reference. In section 1.2.2 the

refractive index n is treated as complex valued and includes absorption effects. In
that case φd(ω) also becomes complex and the real valued spectral amplitude response
R(ω) can be dispensed with.
In the spectral region considered in this work all materials have a spectral phase

transfer function with positive coefficients for GDD and TOD. A material commonly
used in optics due to its low dispersion is fused silica, whereas a material like Schott
SF-10 glass is chosen when a high dispersion is desired. In the table below the GDD
and TOD of materials and gases employed in our beamline are listed. The values
for the gases are given for room temperature and a pressure of 1 bar. For higher
pressures, like p = 3 bar for neon in the hollow-core fiber, the value is multiplied
with p/1bar as explained in section 1.2.2. The values for Schott SF-10 glass are taken
from [17, p. 1056], and for air from [19]. The other materials are calculated from the
refraction index n(λ) gained from the Sellmayer equation, which is taken from [20] for
fused silica and [21] for neon. The dependence on the wavelength for the dispersion
coefficients of neon gas is shown in the left-hand side of Fig. 2.4 on page 41.

material GDD [fs2/mm] TOD [fs3/mm]
Fused Silica 36.1 27.4
Schott SF-10 143.4 97.3
Neon gas 0.0026 0.0012
Air 0.02 0.012

1.1.3. Pulse duration
The pulse duration τ is an important property for an ultra short pulse which consists
of only few optical cycles. It is common practice in ultrashort optics [18, p. 9] to
calculate the pulse duration τ as the full width at half maximum (FWHM) of the
temporal envelope |E(t)|2. This approach is justified since the pulses examined nearly
always consist of a single main peak and any side peaks are of negligible intensity. For
nonlinear applications in particular it is mainly the peak with the highest intensity
which is of interest for the experiment.

However, in cases where the pulse shape notably deviates from a single peak form,
like for the asymmetric side peaks generated by large amounts of third order disper-
sion (TOD), the FWHM pulse duration τ is not meaningful anymore as a description
of the pulse. Instead the statistical definition of a width in time t as standard devia-
tion can be used as a measure of the pulse duration [17, p. 1055-1056]. The standard
deviation or mean square deviation σ of a variable x is defined as

σ = 〈∆x〉 =
√
〈(x− 〈x〉)2〉 =

√
〈x2〉 − 〈x〉2, (1.13)
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with 〈x〉 being the expected value of the variable x. In the time domain one obtains
[18, p. 16]

〈∆t〉 =
√

1
W

∫
∞
t2P (t)dt− 1

W 2

(∫
∞
tP (t)dt

)2
, (1.14)

withW being the energy per pulse and P (t) the instantaneous power. The standard
deviation 〈∆t〉 is only a half width, and similar to the FWHM pulse duration τ a pulse
duration τσ can be defined as τσ = 2σ. For a Gaussian pulse with G(t) = exp

(
−1

2
t2

σ2

)
one obtains

τσ = 2〈∆t〉 = 1√
2ln2

τ ' 0.85 τ, (1.15)

where τ is the FWHM pulse duration. For a pulse with a single Gaussian peak τσ
is smaller than τ . For a pulse with side peaks τσ increases very fast though and is
usually larger than τ , until the FWHM-based τ loses any significance once a second
peak grows so high that it reaches half of the height of the main peak.
Most works about ultra short pulse phenomena are treating light pulses with neg-

ligible side peaks though, which makes consideration of the time standard deviation
unnecessary, and hence the FWHM pulse duration τ is used by default. Furthermore,
for nonlinear applications like high harmonic generation only peaks of high intensity
are of importance, providing another reason to ignore low intensity side peaks. Be-
cause of this the FWHM duration τ is used in all discussions of the pulse duration
in this thesis. However, in section 4.3.2 laser pulses with very high amounts of TOD
are investigated, and in those cases τσ is considered in comparison.

Since time t and frequency ω are Fourier transforms of one another, it is obvious
that a pulse cannot be sharply localized in both domains at once. Similar to the
uncertainty principle a time-bandwidth product can be retrieved, which for Gaussian
pulse shapes can be written as [18, p. 17]

〈∆t〉〈∆ω〉 = 1
2 , (1.16)

or in FWHM designation [17, p. 1053]

τ∆ω = 4 ln2. (1.17)

Here τ and ∆ω are the FWHM widths of the pulse in the time and frequency
domains respectively, while 〈∆t〉 and 〈∆ω〉 are the corresponding standard deviations.
For non-Gaussian pulse forms the time-bandwidth product assumes slightly different
values [18, p. 10].
The equality in Eq. (1.16) and (1.17) only holds for pulses which are Gaussian in

both domains, or which have only a linear spectral phase φ(ω). As soon as a nonlinear
spectral phase is present, the equality has to be replaced with a greater-than sign.
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It follows that for a given spectrum a pulse has the shortest possible duration in the
time domain if it has a nonlinear spectral phase equal to zero. This is defined as the
bandwidth-limited or Fourier-transform limited (FTL) duration τ0. For a Gaussian
spectrum τ0 can be determined with Eq. (1.17), but otherwise it has to be calculated
by Fourier-transforming the spectral amplitude and determining the FWHM width
of the result in the t domain.

1.2. The nonlinear refractive index
In the previous section pulse propagation in a linear medium has been addressed.
When the intensity of the propagating light pulse is high enough, nonlinear effects
start to play a role and change the value of the refractive index of the medium. The
optical Kerr effect is such a nonlinear process and scales with the cubic of the electric
field. It is the source of self-phase modulation and the generation of new frequencies
in a light pulse propagating through a hollow-core fiber filled with a rare gas. While
there are also nonlinear effects scaling with the square of the electric field instead
of the cubic, these do not occur in a medium with an inversion symmetry at the
molecular level [22, p. 14] like a rare gas.
The optical Kerr effect is presented in section 1.2.1, and in section 1.2.2 the conse-

quences of the nonlinear refractive index in regard to some properties of the medium
are discussed.

1.2.1. The optical Kerr effect
The Kerr effect in general is a change in the refractive index of a material in response
to an applied electric field. This applies both to direct (DC) and alternating currents
(AC). The optical Kerr effect in particular handles the electric fields of light and is
hence an AC effect.
The interaction of light with a medium is governed by the medium’s polarization

P. As in section 1.1 it is assumed that the light is linearly polarized and maintains
its polarization direction during propagation, which allows to treat the vector P as
a scalar P .
If the nonlinearity is small enough to be handled as a perturbation of the linear

process, P is defined as [18, p. 167]

P = ε0χE = ε0
(
χ(1)E + χ(2)E2 + χ(3)E3 + ...

)
= P (1) + P (2) + P (3) + ...

(1.18)

where E is the electric field, ε0 is the vacuum permittivity, and χ is the electric
susceptibility of the medium which consists of a linear part χ(1) and higher nonlinear
terms, with

χ = χ(1) + (χ(2)E + χ(3)E2 + ...). (1.19)
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Here the coefficients χ(j) are scalars, but if E and P are vector quantities the
coefficients χ(j) are generally tensors.
Eq. (1.18) holds both in the time and in the frequency domain. However, in the

frequency domain E, P and χ have complex values.
In Eq. (1.18) it is also assumed that the polarization acts nearly instantaneously

with changes of the field. In general, both electrons and nuclei respond to the electric
field, with the nuclei response being inherently slower than the electronic response.
The assumption of a nearly instantaneous response amounts to neglecting the con-
tribution of molecular vibrations [22, p. 32]. However, this work concerns itself with
noble gases as interaction medium and hence does not need to consider molecular
vibrations.
Any P (j) with an even j can be neglected in a noble gas medium due to symmetry

considerations [22, p. 14]. The terms with j ≥ 5 can also be neglected at the pulse
powers P < 20GW employed in this work. A recent study in argon demonstrates
that even for a pulse power sufficient to cause filamentation, equivalent to roughly
five times the pulse power used in our experiments, the inclusion of higher order
nonlinearities only has notable consequences for input pulses with a central wave-
length of 400 nm or less [23]. For input pulses with a central wavelength of 800 nm,
as they are used in the scope of this work, nearly no influence of high order (j ≥ 5)
nonlinearities was observed even at high laser powers.
With all even order and higher order terms of the nonlinear polarization dropped,

P is reduced to P = P (1) + P (3).

In the case of a single input pulse with a linear polarized electric field, which can
be expressed with a complex envelope Ã(t) and a carrier wave as in Eq. (1.7)), E(t)3

can be written as

E(t)3 =
(
Ã(t)eiω0t + Ã∗(t)e−iω0t

)3

= Ã(t)3ei3ω0t + 3|Ã(t)|2Ã(t)eiω0t + c.c.,
(1.20)

where c.c. denotes the conjugate-complex of the previous terms. Accordingly
P (3) = χ(3)E3 can be separated into two terms oscillating with different frequencies.
One term has a frequency of ω = 3ω0 and represents third harmonic generation. This
term is dropped since it requires phase matching [22, p. 32]. What is left is the part
oscillating with ω0, which corresponds to 3/4 of the original P (3).
From this it is obtained that

P (3) = ε0χ
(nl)E (1.21)

χ(nl) = 3
4χ

(3)|Ã(t)|2, (1.22)

with χ(nl) being the sole remaining nonlinear part of the electric susceptibility χ.
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The refractive index n of a medium can be derived from the electric susceptibility
χ as [24, p. 6]

n2 = 1 + χ. (1.23)
Since χ has a nonlinear component χ(nl), it follows that the refractive index also

acquires a nonlinear component, which is denoted as n2. With the approximations
made above it follows from Eq. (1.18) to (1.23) that

n =
√

1 + χ

=
√

1 + χ(1) + χ(nl)

=

√√√√n2
0

(
1 + χ(nl)

n2
0

)

= n0

(
1 + χ(nl)

2n2
0

)

= n0 + 3χ(3)

8n0
|Ã(t)|2

= n0 + n̂2|Ã(t)|2

= n0 + n2I(t)

(1.24)

The linear refractive index is defined as n0 =
√

1 + χ(1), and because χ(3) is small
in comparison to χ(1), the approximation

√
1 + x ' (1 + x/2) is used. The nonlinear

refractive index n̂2 is used for |Ã(t)|2, while n2 without the hat is used for I(t), which
is the light intensity with [17, p. 1048]

I(t) = ncε0

2 |Ã(t)|2. (1.25)

In obtaining Eq. (1.24) only real valued quantities have been used. However,
the equation also holds for complex values of the refractive index and the electric
susceptibility if in the last step, in addition to the real valued n2, also a term iα2 is
introduced to account for the intensity dependency of the absorption.
The dependency of the refractive index on light intensity is the optical Kerr effect,

and it has been discovered 1875 by John Kerr [25]. It is governed by the χ(3) coefficient
of the medium and is hence classified as a nonlinear χ(3) process.

1.2.2. Complex refractive index, propagation constant and
nonlinear parameter

Before the propagation of pulses in a nonlinear medium can be discussed in the
next section, it is necessary to introduce the complex refractive index and some
derived quantities, and the consequences of a nonlinear refractive index for these.
The obtained relations are used later in this work.
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The complex refractive index ñ(ω)

The complex refractive index ñ(ω) of a medium interacting with light is defined like
in Eq. (1.23) as [22, p. 27]

ñ(ω) =
√

1 + χ̃(ω) =
√
ε̃r(ω), (1.26)

where ε̃r is the complex relative permittivity of the medium. There is some poten-
tial ambiguity since many authors use ε̃ instead of ε̃r for the relative permittivity. A
clear notation is ε̃r = ε̃/ε0 [24, p. 6], where ε̃ is the absolute permittivity and ε0 the
vacuum permittivity of the medium. Other sources, including the book Nonlinear
Fiber Optics by Govind P. Agrawal [22, p. 27], from which many of the mathematical
procedures described in this work are taken, prefer to drop the index r and just use
ε̃ for the relative permittivity. The relative permittivity is a dimensionless quantity,
therefore an examination of the dimension of ε̃ clarifies whether it is meant as the
relative or the absolute permittivity.
As a complex quantity ñ can be expressed in its real and imaginary parts ñ = n+iκ

[26, p. 258], where n determines the speed of light cm in the medium with cm = c/n,
and κ is responsible for absorption losses. In terms of notation the attenuation
constant α will be used instead of κ hereafter, with [22, p. 27]

ñ = n+ iα

2k , (1.27)

where k is the wavenumber. Because of the Kerr effect both n and α have additional
nonlinear parts caused by high light intensities and n is replaced with n → n + n2I
in accord with Eq. (1.24). The nonlinear part of the attenuation constant α2 is so
small that it can be neglected [22, p. 33]. By introducing the complex envelope Ã(t)
from Eq. (1.7) and normalizing it so that |Ã(t)|2 is equal to the instantaneous power
P (t), Eq. (1.27) can be written as [22, p. 34]

ñ = n+ n2
|A|2

Aeff
+ i

α

2k = n+ ∆ñ, (1.28)

where Aeff is the effective mode area of the beam cross-section. In ∆ñ the nonlinear
refractive index n2 and the attenuation α are combined.

The propagation constant β(ω)

The propagation constant β(ω) is commonly used in fiber optics in lieu of the spectral
phase transfer function φd(ω) defined in Eq. (1.12). It is the product of the real
refractive index n with the vacuum wavenumber k, or the spectral phase transfer
function φd(ω) divided by the length z. Like φ(ω) in equation (1.9) it can be expanded
in a Taylor series as

β(ω) = β0 + β1(ω − ω0) + 1
2β2(ω − ω0)2 + 1

6β3(ω − ω0)3 + ..., (1.29)
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with

βj = ∂jβ(ω)
∂ωj

∣∣∣∣∣
ω0

. (1.30)

According to the complex refractive index ñ a complex β̃ can be defined as

β̃ = ñk = β + ∆β̃ (1.31)
and

∆β̃ = ∆ñk. (1.32)
It is possible to expand β̃(ω) and ∆β̃(ω) in their own respective Taylor series, as

is done for β(ω) in Eq. (1.29) and (1.30).

Because ∆β̃ is small in comparison to β, and the higher order terms βR in the Taylor
series expansion of β are small in comparison with β0, the following approximation
can be adopted [22, p. 34]

β̃2 − β2
0 = β2 + ∆β̃2 + 2β∆β̃ − β2

0

= (β0 + βR)2 + ∆β̃2 + 2(β0 + βR)∆β̃ − β2
0

' 2β0(βR + ∆β̃)
' 2β0(β̃ − β0).

(1.33)

The nonlinear parameter γ(ω)

The nonlinear parameter γ(ω) and γ0, the first coefficient of its Taylor series expan-
sion, are used in fiber optics to calculate the effects of the nonlinear processes during
pulse propagation [22, p. 35, 37]. It is defined as

γ(ω) = n2ω

cAeff
. (1.34)

The quantities n2 and Aeff usually depend on the frequency ω in fiber optics [27].
From Eq. (1.28), (1.32) and (1.34) follows that

∆β̃ = γ|A|2 + i
α

2 . (1.35)

γ(ω) can be expanded in a Taylor series same as β(ω).

The propagation constant in a gas medium

The refractive index of a gas medium depends on the pressure p. The starting
point for this is the Lorentz-Lorenz equation which states that for a gas at constant
temperature [28, p. 88]
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n2 − 1 ∝ p. (1.36)

By replacing n2 − 1 with (n + 1)(n − 1) and approximating n + 1 ' 2 for a gas
around p ' 1 bar and n ' 1, this is reduced to n− 1 ∝ p or

n = (n0 − 1) p
p0

+ 1, (1.37)

where the index 0 denotes a reference pressure, for example p0 = 1 bar. From this
it is obtained that

∂jn(ω, p)
∂ωj

= p

p0

∂jn(ω, p0)
∂ωj

. (1.38)

It follows from Eq. (1.30) and (1.38) that β2 and higher coefficients of the dispersion
scale directly with pressure p, or that

βj(p) = p

p0
βj(p0) for j ≥ 2. (1.39)

For β0 and β1 the case is more complicated since these coefficients also include
instances of n and not only derivatives of n, and because of that they are not directly
proportional to p.

1.3. The pulse propagation equation
The aim of the pulse propagation equation (PPE) is to describe the changes a pulse of
light experiences as it propagates through a medium, based on an envelope function
representation of the pulse. This includes dispersion and any nonlinear effects which
occur in the medium, depending on the intensity of the electric field. In this work
the PPE will mostly be attained as by the procedure described in Nonlinear Fiber
Optics by Govind P. Agrawal [22, p. 25-40].
In a solid-core optical fiber consideration of a delayed response for the nonlinear

effects in form of the response function R(t) would result in a slightly more compli-
cated PPE and the addition of an intrapulse Raman scattering term [22, p. 37-40].
However, since this work is concerned with the propagation through a noble gas in-
side a hollow-core fiber, the PPE derived in this section adopts the approximations
already described in section 1.2 and assumes an instantaneous nonlinear response.
This section starts with the Maxwell equations and will move over the wave equa-

tion to the Helmholtz equation. Since the Helmholtz equation cannot be solved with
analytical methods, the problem will be reduced in complexity by considering it for
only one dimension and by applying the slowly varying envelope approximation. The
obtained equation will be solved in regard to different terms of the Taylor series ex-
pansion of the nonlinear parameter γ(ω), with the first coefficient of the expansion
leading to self-phase modulation and the second coefficient leading to self-steepening.
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1.3.1. The Hemholtz equation
This work is concerned with problems in the field of classical optics and hence the
Maxwell equations are chosen as a starting point. These can be written in a differ-
ential form as [22, p. 25]

∇D = ρ (1.40)
∇B = 0 (1.41)

∇× E = −∂B
∂t

(1.42)

∇× H = J + ∂D
∂t

, (1.43)

where E is the electric field, D is the electric flux density, H is the magnetic
field, and B is the magnetic flux density. The other quantities are the electric charge
density ρ and the electric current density J. Bold symbols represent vector quantities.
The relations between the fields and their respective flux densities are given by

[22, p. 26]

D = ε0E + P (1.44)
B = µ0H + M (1.45)

where P is the polarization, M is the magnetization, ε0 is the vacuum permittivity,
and µ0 the vacuum permeability. The interaction medium treated in this work is a
noble gas inside a hollow-core fiber, which is a non-magnetic medium and hence
M = 0. The peak power of the laser pulses used in our experiments is below the
critical power for ionization and hence there are no free charges in the interaction
medium, or J = 0 and ρ = 0.
From equations (1.42) to (1.45) the wave equation can be directly obtained in the

form

∇×∇× E = − 1
c2
∂2E
∂t2
− µ0

∂2P
∂t2

, (1.46)

where c is the speed of light with [24, p. 7]

c2 = 1/ε0µ0. (1.47)

In the noble gas are no free charges as long as the laser power stays below the
ionization threshold, and the identity ∇ × ∇ × E = ∇(∇E) − ∇2E [22, p. 27] is
reduced to

∇×∇× E = −∇2E. (1.48)
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Under the assumption that the electric field E and the polarization P are linear
polarized, Eq. (1.18) remains valid and in the frequency domain

P̃(ω) = ε0χ̃(ω)Ẽ(ω). (1.49)

If Eq. (1.46) is Fourier-transformed the operator ∂/∂t is replaced with−iω. Together
with Eq. (1.48) and (1.49), Eq. (1.46) can then be written as

∇2Ẽ(r, ω) = (−iω)2

c2 Ẽ(r, ω) + µ0(−iω)2ε0χ̃Ẽ(r, ω). (1.50)

With Eq. (1.26), Eq. (1.47) and the identity k = ω/c, Eq. (1.50) can be written as

∇2Ẽ(r, ω) + k2ε̃rẼ(r, ω) = 0. (1.51)

This is the Helmholtz equation.

1.3.2. 1-dimensional approach
The easiest way to solve the Helmholtz equation (1.51) is to ignore the transversal
distribution of Ẽ(r, ω) and to consider only one dimension, the propagation direction.
Since we are mainly interested in the dynamics and properties of the E field while the
beam propagates along the length z of the fiber this is a justified simplification, and
it is commonly applied in works about this topic [2, 22, 29]. A comparison between
the results of the 1-dimensional model and the 3-dimensional model for a hollow-core
fiber by Nurhuda et al., which is also discussed in section 2.2.2, shows that the results
for the two models are nearly identical as long as the incident laser power is below
a critical value Pcrit [30]. Beyond that self-focusing leads to a critical deformation of
the pulse profile. For propagation inside a waveguide this critical power is given as
[31]

Pcrit,hcf = 0.3λ
2

n2
. (1.52)

In our setup, with a central wavelength λ = 800 nm, a nonlinear refractive index
n2(p) = p

1bar 9.4 · 10−25 m2/W [32] and pressure p = 3 bar, this critical power is
Pcrit,hcf = 68GW. As shown in Fig. 3.4 on page 62, the peak power of the input pulse
stays below P ≤ 18GW and hence it is justified to apply the 1-dimensional model
here.

It is assumed that the light is linear polarized in x direction parallel to the table and
perpendicular to the propagation direction, and that this polarization is maintained
along the length of the fiber. Measurements with a polarizing cube and a power meter
in front and after the hollow-core fiber in our setup have verified this assumption.
This allows to treat the electric field vector Ẽ(r, ω) as a scalar Ẽ(r, ω) in x direction.
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As is done in section 1.1.2, the scalar electric field is now expressed in an envelope
form in both time and frequency domain [22, p. 33-34]

Ẽ(r, ω) = F (x, y)Ã(z, ω)eiβ0z

E(r, t) = 1
2F (x, y)Ã(z, t)ei(β0z−ω0t) + c.c.

(1.53)

with a complex envelope Ã and a carrier frequency ω0. F (x, y) is the transverse
modal distribution.
Eq. (1.53) is now inserted into Eq. (1.51) and solved either by separation of vari-

ables [22, p. 34] or by directly letting F (x, y) drop, which leads to identical results
since F (x, y) does not contribute to a 1-dimensional solution. Following the latter
procedure, Eq. (1.51) can be written as

0 = ∂2

∂z2

(
Ãeiβ0z

)
+ k2ε̃rÃe

iβ0z

= ∂

∂z

(
Ã′eiβ0z + iβ0Ãe

iβ0z
)

+ k2ñ2Ãeiβ0z

= Ã′′ + 2iβ0Ã
′ − β2

0Ã+ β̃2Ã,

(1.54)

where Ã′ denotes a derivative with respect to z and β̃ is defined as in Eq. (1.31).
Now the slowly varying envelope approximation (SVEA) is introduced. The SVEA

assumes that the envelope of the light pulse is only slowly varying in either t or z
in comparison to the carrier frequency. Originally it has been expected that the
SVEA loses physical validity as the duration of the pulse envelope approaches the
carrier oscillation period, or equivalently when the bandwidth of the propagating
field approaches the carrier frequency [2, p. 1134]. It has been shown in various
studies, e.g. [33], that the SVEA or very similar concepts can be extended down to
pulses in the single cycle regime. Since this work is treating pulses with a duration
of 30 fs it is justified to apply the SVEA to the calculations done here.
The benefit of the SVEA in this case is that it permits to neglect the Ã′′ term in

Eq. (1.54). Then the approximation of Eq. (1.33) is used to obtain

i
∂Ã

∂z
+ (β̃ − β0)Ã = 0. (1.55)

1.3.3. Self-phase modulation
The nonlinear parameter γ(ω) has already been introduced in Eq. (1.34). It can be
expanded in a Taylor series and if the expansion is stopped after the first term, which
amounts to neglecting the frequency-dependency of γ, one obtains

γ(ω) ' γ0 = n2(ω0)ω0

cAeff(ω0) . (1.56)
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If Eq. (1.31), (1.35) and (1.56) are inserted in the bracket of Eq. (1.55), it can be
written as

(β̃ − β0) = (β − β0 + ∆β̃)

= (β − β0 + γ0|A|2 + i
α

2 ).
(1.57)

The propagation constant β(ω) is expanded to its 3rd order term, and Eq. (1.55)
can be written as

∂Ã

∂z
= i

(
β1(ω − ω0) + 1

2β2(ω − ω0)2 + 1
6β3(ω − ω0)3 + i

α

2 + γ0|A|2
)
Ã, (1.58)

which is inverse Fourier-transformed, using the replacement (ω − ω0) → i∂/∂t, to
obtain

∂A

∂z
= −β1

∂A

∂t
− i12β2

∂2A

∂t2
+ 1

6β3
∂3A

∂t3
− α

2A+ iγ0|A|2A. (1.59)

Then the time t is substituted with the retarded time T = t − z/vgr = t − β1z
and the length z with ξ = z. That introduces a frame of reference moving along
with the pulse at the group velocity vgr = 1/β1, and it follows that ∂/∂t = ∂/∂T and
∂/∂z = ∂/∂ξ − β1∂/∂t. The result is

∂A

∂z
= −i12β2

∂2A

∂T 2 + 1
6β3

∂3A

∂T 3 −
α

2A+ iγ0|A|2A. (1.60)

The terms with βj describe the dispersion occurring in the medium, respectively
the group delay dispersion (GDD) and third order dispersion (TOD). Higher order
coefficients can be added at need. The α term describes absorption losses in the gas-
filled hollow-core fiber, and the γ0 term finally is responsible for self phase modulation
(SPM) in its basic form and hence the generation of new frequencies in the pulse
spectrum.
Eq. (1.60) and its variants like Eq. (1.62) are referred to as the nonlinear Schroedinger

equation (NLSE).

1.3.4. Self-steepening
In obtaining Eq. (1.60) γ(ω) has been expanded only to the zero order coefficient
of its Taylor series and the dependency of the nonlinear process on the frequency
has been neglected. If a linear dependency on the frequency is included and the
expansion of γ(ω) is done to the first order term instead, the respective coefficient is

γ1 = ∂γ

∂ω

∣∣∣∣∣
ω0

= ∂

∂ω

n2(ω)ω
cAeff(ω)

∣∣∣∣∣
ω0

= γ0

ω0
+ γ0

n2

∂n2

∂ω

∣∣∣∣∣
ω0

− γ0

Aeff

∂Aeff

∂ω

∣∣∣∣∣
ω0

' γ0

ω0
,

(1.61)
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where ∂n2/∂ω and ∂Aeff/∂ω have both been dropped. In the case of an optical fiber
with a solid fused silica core Aeff(ω) can be calculated [27], but for a hollow-core fiber
Aeff is approximated as constant with no dependency on the frequency [8, 16]. The
dependency on frequency for n2 is usually discarded as being negligible far from the
ultraviolet resonances [27], and that is even more true for neon (λres ' 74 nm) than
for fused silica(λres ' 116 nm) [21, 20].
The expansion term γ1(ω − ω0) is added to Eq. (1.57), and instead of Eq. (1.60)

one finally obtains

∂A

∂z
= −i12β2

∂2A

∂T 2 + 1
6β3

∂3A

∂T 3 −
α

2A+ iγ0|A|2A−
γ0

ω0

∂

∂T
(|A|2A). (1.62)

The last term on the right-hand side is responsible for self-steepening, and its effects
on the nonlinear process and the generation of new frequencies will be discussed in
detail in section 2.2.3. It is inclusion of this term in the NLSE which allows to expand
SVEA methods into the regime of single-cycle pulses [33].
Eq. (1.62) is the propagation equation as it is used for the numerical calculations

throughout this thesis.

1.4. Self-phase modulation
This work concerns itself predominantly with the generation of new frequencies in
a hollow-core fiber, and because of that the effects of self-phase modulation (SPM)
merit some further discussion. SPM is the driving mechanism behind the generation
of new frequencies and has been introduced as a mathematical term of the PPE in
section 1.3.3. The aim of this section is to convey a more intuitive and practical view
of SPM and its consequences.

1.4.1. SPM in the time domain
To establish a better understanding of SPM it is helpful to visualize its effect on the
pulse’s instantaneous frequency. The instantaneous frequency ω(t) is the derivative
of the temporal phase, as introduced in Eq. (1.2), with respect to time t and can be
understood as the average frequency of the pulse at any given time.
If the electric field of a bandwidth-limited pulse is defined similar to Eq. (1.53) as

E(z, t) = 1
2Ã(z, t)e−i(ω0t−β0z) + c.c., (1.63)

then the instantaneous frequency ω(t) is, under consideration of Eq. (1.24),

ω(t) = ∂

∂t
(ω0t− nk(ω0)z)

= ω0 − n2k(ω0)z ∂
∂t
I.

(1.64)
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Figure 1.1.: Instantaneous frequency of a short pulse which has experienced SPM.
The input pulse is bandwidth-limited and its instantaneous frequency
(not shown) is constant at ω0. The temporal pulse shape (black) re-
mains unchanged by SPM. The instantaneous frequency after SPM (red)
is given in arbitrary units centered on ω0 and is normalized on the max-
imum frequency shift.

From this follows that at each moment the instantaneous frequency ω(t) is changed
to a new frequency which depends on ∂/∂tI, as illustrated in Fig. 1.1. Due to the
minus sign in Eq. (1.64) new frequencies generated at the rising slope of a short pulse
are below the carrier frequency ω0, and at the trailing edge new frequencies higher
than ω0 are generated.

1.4.2. SPM in the frequency domain
In Fig. 1.2 a) the spectrum of a pulse which has experienced SPM is illustrated. It
consists of two high sidewings and several lesser oscillations between them, which is a
characteristic appearance for a SPM spectrum neglecting self-steepening and it can be
explained with the help of Fig. 1.1. The two side wings correspond to the frequencies
generated by the maximum shift of the instantaneous frequency. The frequencies
between these peaks are generated at two different moments in time respectively,
and the oscillations belong to the interference pattern of these two contributions.
As the pulse propagates through a nonlinear medium new peaks arise at the central
frequency, split in two and drift apart.
The spectral phase of the pulse is depicted in green and the group delay, the

derivative of the spectral phase with respect to frequency, is depicted in red in Fig. 1.2
a). With the exception of the carrier-envelope phase the group delay carries the
same information as the spectral phase, but presents it in a way in which some
characteristic features become more readily apparent, as for example the position
of the group delay peaks at minima of the spectrum. For that reason the group
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Figure 1.2.: a) Spectral amplitude (black), phase (green) and group delay (red) of an
example pulse which has experienced SPM. The effects of dispersion and
self-steepening have been omitted. The linear scale for the spectrum is
not shown. In b) the temporal pulse shape once without self-steepening
(but including SPM and dispersion), and once with self-steepening. The
ordinate of b) depicts the temporal power, the intensity is obtained by
division by Aeff ' 0.48πa2 [8].
(Parameters: input Gaussian pulse τ0 = 28 fs, φ(ω) = 0, ω0 = 2.36PHz,
E = 830 µJ per pulse; HCF length z = 1m, bore radius a = 125 µm,
neon gas p = 2 bar)

delay will often be illustrated in addition to or instead of the actual spectral phase
throughout this work.

1.4.3. Self-steepening

As can be seen in Eq. (1.62), the self-steepening term is a real quantity and as such
acts directly on the temporal pulse envelope and not on the phase. It is hence a less
abstract concept than self-phase modulation and its basic effect is simple to visualize.
The effect of self-steepening on the temporal pulse shape is illustrated in Fig. 1.2 b).
Because of the Kerr effect, the nonlinear increase of the refraction index caused by

the light intensity, different parts of the pulse in the time domain will have slightly
different group velocities. Since the refraction index is higher at the points of higher
intensity, the pulse peak actually moves slower than the peak slopes. In consequence
the rising slope moves away from the main pulse and becomes broader, while the
trailing slope moves towards the main peak and hence becomes steeper. This self-
steepening of the pulse’s trailing edge is what gives this effect its name.
Since a steeper edge has a higher gradient, SPM will be enhanced for the pulse’s

trailing slope. The interplay between these two effects and the consequences for the
pulse will be discussed in section 2.2.3.
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1.5. Time-frequency representations
In the previous sections various properties of short pulses are discussed, and how
they behave in either the time or the frequency domain. However, a representation
in either domain fails to visualize the behavior of the pulse in the other domain. When
depicting a pulse of light in the frequency domain, for example, all the information
about its behavior in the time domain is encoded in its phase, which is not always
intuitive to read. There are several approaches to represent transient signals in both
time and frequency domain at the same time, to visualize properties in a light pulse
which are difficult to discern just from the envelope and phase plots in either domain.
The purpose of any time-frequency representation is to estimate the strength of the
frequency ω at time t. It is only possible to do this in approximation though, since the
uncertainty principle precludes a perfect simultaneous description of both time and
frequency [34, p. 8], and every time-frequency representation comes with limitations.
For a thorough account of different time-frequency representations I refer to the

doctoral thesis of S. C. Bradford from the California Institute of Technology [34].
In this section two methods of time-frequency representation are introduced. The

first is the short-time Fourier-transform (STFT) spectrogram, a very basic method.
It is limited in its resolution and can present detailed information in one domain only
at a loss of accuracy in the other. The other method is the Wigner-Ville distribution,
which is able to depict a detailed view in both domains at once, but comes with
complications like interference patterns and negative values. Nonetheless the Wigner-
Ville distribution is used to illustrate particular pulse properties of both measured
and calculated pulses throughout this work.

1.5.1. The STFT spectrogram
For a given signal x(t) in the time domain it is possible to use the Fourier-transform
of Eq. (1.4) to look at the spectrum of this signal at any time t. A sliding time
window can then be employed this way to generate a time-frequency representation.
This is done with the short-time Fourier-transform (STFT), which is defined as [34,
p. 18]

STFT(t, ω) =
∫
∞
x(τ)h∗(τ − t)e−iωτ dτ, (1.65)

where h(t) is the function of the time window and can have different forms. The
spectrogram is the squared amplitude of the STFT. In Fig. 1.3 three spectrograms
with different lengths of a Gaussian time window are presented, which demonstrate
the fundamental issue with STFT spectrograms. As example a short pulse which has
experienced self-phase modulation, but not dispersion or self-steepening, is chosen.
A short time window as in Fig. 1.3 a) provides good detail in the time domain
properties of the presented pulse, as observable in Fig. 1.3 e). The spectrum is
reduced to a double peak though and does not resolve the central oscillations of the
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original spectrum, as observable in Fig. 1.3 d). Accordingly a long time window
resolves these central peaks in the spectrum, but the features of the pulse shape are
smeared broadly in time. A time window which has a length in between the two
previously chosen, as a compromise, results in a spectrogram which is unsatisfactory
in both domains.
However, it is not possible to resolve the features in both the time and the fre-

quency domain at once in detail. Nonetheless the STFT spectrogram is used for the
representation of ultra short laser pulses at occassion, as for example in [35].

1.5.2. The Wigner-Ville distribution
Wigner proposed this method 1932 for a joint representation of position and mo-
mentum in quantum mechanics [36], and Ville adapted it 1948 to the equally related
pair of time and frequency in the area of signal processing [37]. The Wigner-Ville
distribution permits a time-frequency representation with more detail in both the
time and frequency domain at once than a STFT spectrogram. Mathematically it is
defined as [38, p. 3]

W(t, ω) =
∫
∞
z(t+ τ

2)z∗(t− τ

2)e−iωτ dτ, (1.66)

where z(t) is the analytic signal of a real-valued signal x(t). The analytic signal
serves as a complex representation of a real signal and is also called the analytic
associate or analytic representation of a signal. It is defined as [38, p. 3]

z(t) = x(t) + iH(x(t)). (1.67)

H(x(t)) is the Hilbert-transformation of the signal x(t). It follows that the analytic
signal for E(t) is Ẽ+(t), the quantity already introduced in section 1.1.1.
From Eq. (1.66) can be obtained that [18, p. 13]∫

∞
W(t, ω)dt = |Ẽ(ω)|2∫

∞
W(t, ω)dω = 2π|Ẽ(t)|2.

(1.68)

From this follows that the integral of W(t, ω) along the time axis is equal to the
spectrum P (ω) of the signal E(t), and that the integral along the frequency axis
is equal to the instantaneous power P (t) of the signal. This provides an intuitive
relationship between the Wigner-Ville distribution and the spectrum and pulse shape
of a signal which is lacking in the STFT spectrogram, as demonstrated in Fig. 1.3.
However, while W(t, ω) is always real-valued it can assume negative values, which

precludes a straight interpretation ofW(t, ω) as the energy of the signal at a specific
time and frequency. These negative values occur because of cross-term interference
between z(t) and z∗(t), or Ẽ+(t) and Ẽ+∗(t), when multiple frequency components
are present in the signal [34, p. 24].
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Figure 1.3.: a)-c) STFT spectrograms of a pulse which has experienced SPM with
a Gaussian time window of three different lengths. The time window
in a) has a length of 50 fs, in b) 100 fs, and in c) 200 fs. d) Calculated
spectral amplitude (black) and the integral

∫
STFT2 dt for each time

window (color). e) Calculated temporal power (black) and the integral∫
STFT2 dω for each time window (color).

(Parameters: input Gaussian pulse τ0 = 28 fs, φ(ω) = 0, ω0 = 2.36PHz,
E = 830 µJ per pulse; HCF length z = 1m, bore radius a = 125 µm,
neon gas p = 2 bar)
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It is possible to reduce this cross-term interference with the application of different
smoothing windows in both time and frequency domain [34, p. 28-29], but this is
beyond the scope of this thesis. Where it is considered helpful for visualization, the
Wigner-Ville distribution as defined above is used for time-frequency representations
throughout this work.
Fig. 1.4 shows exemplaryWigner plots for four different short pulses to demonstrate

the usefullness of this method for pulse visualization. In b) a pulse with a linear
upchirp is depicted and the continuous shift in the spectrum to higher frequencies
with an increase in time is clearly visible in the Wigner plot.
In c) a pulse with negative TOD is depicted and its temporal pulse shape demon-

strates the characteristic prepulses. In the respective Wigner plot the presence of
negative values for W(t, ω) is visible.
The pulse in d) has experienced SPM and is the same pulse as depicted in Fig. 1.2

a), since dispersion and self-steepening have not been considered. The patterns of
cross-term interference are apparent. This Wigner plot can be directly compared to
the STFT spectrograms in Fig. 1.3 since these were calculated by using the same
exemplary pulse. The high intensity parts of this Wigner plot convey the same basic
behavior as Fig. 1.3 a), but with a better resolution, and correspond to a nearly linear
shift of frequency with time similar to Fig. 1.4 b). It follows that the dispersion of
the pulse is mostly GDD. This is the explanation why a SPM-modified pulse can be
compressed to short pulse durations just by application of negative GDD with, for
example, a chirped mirror compressor.
Because of the cross-term interference the Wigner-Ville distribution is not com-

monly used in ultra short pulse analysis. However, while the value of W(t, ω) does
not strictly represent pulse energy it still holds true that the pulse energy will be high
at high values of W(t, ω) and low for low or negative values of W(t, ω) [34, p. 8]. In
Ultrashort Laser Pulse Phenomena Diels and Rudolph [18, p. 12-18] comment on the
Wigner-Ville distribution and use it to define the instantaneous frequency ω(t), and
in [39] the Wigner-Ville distribution is used as a tool for analyzing nonlinear pulse
propagation in optical fibers. In this thesis the Wigner-Ville distribution is used to
visualize particular properties of the discussed pulses when it is helpful to do so,
but always with the caveat that it can not be read as simply representing the pulse
energy at a specific time and frequency. Which would be a physical impossibility due
to the uncertainty between time and frequency.
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Figure 1.4.: Spectral amplitude P (ω), spectral phase φ(ω), group delay, pulse shape
P (t), the nonlinear part of the temporal phase φa(t) (from Eq. (1.2))
and Wigner plot W(t, ω) for four different exemplary pulses. In a) a
Gaussian pulse with τ0 = 28 fs and a spectral phase of zero is depicted,
in b) the same pulse with GDD +300 fs2, in c) the same pulse with
TOD −10.000 fs3, and in d) the pulse from a) after experiencing SPM
(no dispersion, no self-steepening). The plots for the spectral phase
and group delay use a scale with the same numbers but different units
respectively. The intensities for the Wigner plots are normalized and
can not be compared in their absolute intensity values. Note that the
Wigner plot for c) has a different time scale and the plot for d) has a
different frequency scale than the other Wigner plots.
(Parameters for SPM simulation as in Fig. 1.2)



2. Methods
Supercontinuum generation is a subject which has been extensively studied since the
first broadly successful experiment of Alfano and Shapiro in 1970 [4]. The medium
of choice for these studies are usually optical fibers or photonic crystal fibers with a
solid core, and a comprehensive review of this field was done in 2006 by Dudley et
al. [2].
In 1997 Nisoli et al. [9] demonstrated the first use of a gas-filled hollow-core

fiber to generate a supercontinuum with few-cycle pulses in the gigawatt regime.
High power pulses like these were consequently used for high harmonic generation
(HHG) as a table top source for coherent extreme ultraviolet (XUV) radiation [40],
and in 2001 these methods were expanded to generate single light pulses with a
duration of attoseconds [10]. In 2007 Cavalieri et al. [12] studied inner shell states in
single-crystalline tungsten with such attosecond pulses, generated by application of
a hollow-core fiber supercontinuum. The beamline in the attosecond laboratory at
University Bielefeld follows the same basic setup as the beamline used by Cavalieri
et al. in Munich.

Several different gating schemes are researched to extract isolated light pulses
of attosecond duration out of the attosecond pulse trains created by high harmonic
generation. A discussion of these gating techniques is given in the recent review paper
from Sansone et al. [41]. To date the most successful of these schemes all require the
application of intense ultrashort laser pulses in the few-cycle regime with a duration
of about 5 fs or less. As has been discussed in section 1.1.3 the duration of a pulse of
light is related to its spectral bandwidth, and only the very broad spectral bandwidth
of a supercontinuum makes it possible to provide the ultrashort pulses necessary to
generate isolated attosecond pulses. Because of that the control and optimization
of the created supercontinuum are important parts of any time-resolved experiment
advancing beyond the femtosecond regime.

In this chapter the different methods used to study supercontinuum generation in
this thesis are presented and discussed, starting with a description of the experiment
in section 2.1 and covering the numerical simulation in section 2.2.

2.1. Experiment
The attosecond beamline of Universitaet Bielefeld uses a commercial system, consist-
ing of the FemtoSource Rainbow, the FemtoPower compact PRO and the Kaleido-
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scope from FemtoLasers, to generate ultrashort high power laser pulses with a pulse
duration of two periods of the carrier frequency. Section 2.1.1 provides a detailed
description of the light source and the experimental setup as far as it is of concern for
this work. For a description of the attosecond-resolved photoelectron spectroscopy
experiment I refer to section 3.1 and the master theses of Sergej Neb and Christian
Sander [42, 43]. Since all the experiments presented in this thesis resolve around su-
percontinuum generation in a gas-filled hollow-core fiber, section 2.1.2 describes the
adjustment procedure of the hollow-core fiber. In section 2.1.3 the operating princi-
ple of a SPIDER is explained, an instrument capable of characterizing the spectral
phase of a laser pulse.

2.1.1. Experimental setup
The light source in the attosecond laboratory is the Ti:sapphire oscillator Fem-
toSource Rainbow from FemtoLasers. It is pumped with 4.9W by a Verdi V5, a
diode-pumped solid-state (DPSS) laser from Coherent. This system provides a seed
pulse of 3nJ at a central wavelength of 800 nm, with a pulse duration specified as less
than 7 fs and a repetition rate of about 80MHz. The carrier-envelope phase (CEP)
of the laser pulses is stabilized such that every fourth pulse has the same CEP. This
is accomplished with an acousto-optic modulator (AOM) inside the Rainbow. The
fast CEP fluctuations are measured by a f-to-2f interferometer and the AOM is then
used to modulate pump power to minimize these fluctuations and hence stabilize the
CEP.
Fig. 2.1 shows an overview of the experiment setup as far as it is of concern to this

work. A setup of the experiment for attosecond-resolved photoelectron spectroscopy
is shown in section 3.1.
The oscillator pulses serve as seed light for a chirped pulse amplifier (CPA) Fem-

toPower compact PRO from FemtoLasers. As a CPA system the amplifier consists
basically of three parts. In the stretcher the incident pulses pass twice through a
5 cm long slab of SF-57 Schott glass to increase pulse duration by several orders
of magnitude. This makes it possible to further increase the pulses’ energy while
staying below the damage threshold of the optical components and without inducing
undue self-phase modulation because of high intensities. The actual amplification is
done in a multipass arrangement. The laser medium is a Ti:sapphire crystal, which
is cooled with a Peltier element and pumped at 1 kHz with 10.4W by an Etna DPSS
laser from Thales. After half of the passes a Pockels cell is used to select a seed
pulse with appropriate energy and pulse-to-pulse stability, setting the system to a
repetition rate of the Etna’s 1 kHz. Then the pulses pass through a prism compressor
to decrease pulse duration down to about 30 fs. Since the pulses’ spectrum suffers
a decrease in bandwidth during amplification, it is not possible to reach the same
pulse duration as the pulses have before the CPA.
After the pulses have left the CPA a small part of the beam is branched off with a

beam splitter to another f-to-2f interferometer. Here the CEP is checked again and
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Figure 2.1.: Beamline setup. Ultra short laser pulses are generated in an oscillator
and amplified in a CPA amplifier consisting of a stretcher, a multipass
amplifier and a prism compressor. A f-to-2f interferometer checks the
carrier-envelope phase and sends feedback to the oscillator to ensure
stabilization of the CEP. Beam position is controlled by a beam point-
ing system consisting of one steerable mirror and a detector. The light
pulses are focused with a lense into a hollow-core fiber filled with neon
gas. Wedges positioned after the fiber allow for fine tuning of the dis-
persion. The beam is collimated with a spherical mirror and the pulses
are compressed in a chirped mirror compressor. Afterwards the pulses
are sent towards the photoelectron experiment.
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Figure 2.2.: The gas-filled hollow-core fiber (HCF). It has a length of 1m, an inner
diameter of 250 µm, and is filled with neon at a gas pressure between
0.05 and 3bar.

feedback sent back to the oscillator’s AOM, to ensure that the 1 kHz pulses are still
CEP-stabilized after the optical path length inside the CPA. This is an imperative
requirement for the experiments described in section 3.1, but will be of no relevance
for the contend of this work.
To reduce the pulse duration down into the few-cycle regime it is necessary to

increase the bandwidth of the pulses’ spectrum considerably. This generation of new
frequencies is only possible in a nonlinear process, and the resulting spectrum is
often described as a supercontinuum. The driving mechanism responsible for this is
self-phase modulation (SPM) of a high-intensity laser beam in a nonlinear medium.
While it is possible to do this in a bulk medium, the process is much more efficient if
the beam is lead inside a waveguide. Optical fibers made of fused silica are suited well
to this, but do not allow the high throughput of energy required for our experiments.
Hence we are using a hollow-core fiber filled with noble gas, as it is illustrated in
Fig. 2.2.
The Kaleidoscope hollow-core fiber compressor from FemtoLasers is a commercial

system complete with a chirped mirror compressor. The hollow-core fiber is made of
fused silica and is 1m long, has a diameter of 3mm and an inner bore diameter of
250 µm. It has to lie straight and rests without application of force on an aluminum
v-groove. The fiber is placed inside a pressure chamber which allows for gas pressures
between 0.05 and 3 bar. The beam enters and leaves the chamber through windows of
1mm fused silica, which are aligned in Brewster angle in respect to the beam’s linear
polarization to enable maximum transmission. It is possible to look at the fiber’s
front end through a window. The whole pressure chamber rests on two micrometer
XY translation stages to provide for an exact control of the fiber’s alignment in regard
to the beam, and the support point of the front end stage has been put exactly under
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the fiber’s front end. This way the fiber’s back end can be moved with minimal
changes to front end position.
This is a static setup, with the same gas pressure applying to the whole length of

the hollow-core fiber. It is also a common setup to provide for a steady gas flow and
pressure gradient by setting different gas pressures at each end of the hollow-core
fiber. This is especially useful to prevent ionization at the fiber’s entrance while
still maintaining high gas pressure and high laser power [44]. A similar if more
complicated way to set this up is a steep temperature gradient along the fiber [45].
In this work the dependency of the white light generation process on the gas pressure
in the hollow-core fiber is studied, and hence a static pressure setup is preferable.
Neon with a purity of 4.5 or 4.0, which is equal to a purity of 0.99995 or 0.9999

respectively, is used as noble gas inside the hollow-core fiber. Other setups often use
argon instead of neon due to its greater nonlinear refraction index n2, which is about
an order of magnitude higher than for neon [32]. However, the critical power at
which self-focusing and ionization leads to deformation of the pulse scales inversely
to n2 [31], so neon allows for the application of higher laser power. In experiments
where the focus lies on the process of frequency generation argon is usually chosen as
medium [15, 46], while for applications which require high power, like high harmonic
generation for the photoelectron spectroscopy experiment down the line, neon is
usually chosen as gas medium in the hollow-core fiber [8, 12].
In front of the pressure chamber of the hollow-core fiber is a beam steering sys-

tem installed to ensure a stabilized position of the laser beam, since the frequency
generation process is extremely sensitive to any change of alignment between beam
and fiber. A setup with only one steerable mirror already achieves good results in
beam stability. Details about this non-commercial beam stabilization system can be
looked up in the master thesis of Emanuel Marschewski [47].
The power of the laser beam is measured in front of and after the pressure chamber

of the hollow-core fiber with a thermal sensor from Ophir Photonics. The incident
power is about P = 830mW, which corresponds to an energy of 830 µJ per pulse
in a 1 kHz system. After the hollow-core fiber, but without the wedges, the pulses
have an energy of about 550 µJ per pulse, resulting in an overall transmission of 66%
through the fiber. Measurements performed in the amplifier before compression of
the pulses in the prism compressor demonstrate a pulse-to-pulse energy stability of
better than 1%.
To couple the laser beam into the hollow-core fiber it is focused with a plano-convex

lens made of fused silica with a focal length of 1.5m, which has an anti reflex coating
on both sides. Measurements with a beam profiler, a WinCamD CCD camera from
Data Ray, have shown that the 1/e2 beam waist in focus, at entry into the hollow
fiber, is around 200 µm in diameter. Upon exit from the fiber the beam is divergent
and is collimated by a spherical mirror with a focal length of 1m. Shortly after the
hollow-core fiber, before the beam radius is getting too wide, a pair of thin fused
silica wedges is placed to fine tune the pulses’ dispersion for optimal compression.
They have no anti reflex coating. The wedges can be aligned in Brewster angle in
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regard to the beam to allow for minimal reflection losses, but in practice this causes
an undesirable displacement of the beam when the wedges are moved in or out more
than a small amount. For this reason the wedges are put nearly perpendicular into
the beam for most applications. The wedges are not inserted exactly perpendicular
though, since we have found that the back reflex from the front wedge will find its
way back through the fiber, the compressor, the multipass and the stretcher, to be
detected in the 2-to-2f interferometer of the oscillator.
After the beam has been collimated it enters a compressor consisting of six chirped

mirrors. These compensate for the dispersion which is added to the pulses inside the
gas-filled hollow-core fiber, the propagation distance in air and by passing through
dispersive optical components like the wedges or the glass windows of the pressure
chamber. The exact amount of dispersion compensated by the chirped mirror com-
pressor is estimated from measurements later in section 3.4.
Finally the beam passes through two irises to fix its position, and is directed

towards experiment and beam analysis.

2.1.2. Adjustment of the hollow-core fiber
The adjustment of the hollow-core fiber and its alignment in regard to the input
laser beam is a critical parameter in the experiment. Even a slight misalignment or
a shift of the fiber’s input end for as little as 5 µm has a notable impact on the beam
properties after the hollow-core fiber, including beam power, beam profile and the
bandwidth of the resulting supercontinuum. Because of that an automated beam
steering system is necessary in front of the hollow-core fiber to ensure a stabilized
laser beam position once the adjustment of the hollow-core fiber is finished.
The actual adjustment procedure is rather tricky and mostly determined by expe-

rience about what works best in the laboratory for the respective system. The results
presented in chapter 3 demonstrate that the numerical simulation is in qualitative
agreement with the measurements of the experiment. Because of that it is concluded
that the adjustment of the hollow-core fiber for the experiment has not introduced
any perturbances in the results and is reasonable exact.
Here follows a description of the adjustment procedure as applied in the experi-

ments presented in this work.

1. Both translation stages of the hollow-core fiber (HCF) are set to their default
values to keep beam position after the HCF.

2. The power of the input laser beam is reduced to prevent damage to the HCF.
Two adjustment mirrors in front of the HCF are used to shift the beam in a
beam walk until transmission through the HCF is at its maximum.

3. Beam power is increased to operation value. Beam stabilization system is
activated.
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4. HCF is adjusted by beamwalk of front and end translation stage until transmis-
sion through the HCF is at its maximum (with round beam profile). The front
stage will be moved for micrometers only, but the position of the end stage can
vary about ±2mm.

5. HCF front stage is moved to make beam profile after the HCF round and
symmetric.

6. IR beam profiler camera is put into beam. HCF front stage is moved until an
as good as possible compromise between a) roundness and color of visible beam
profile, b) roundness of IR beam profile and c) small size of IR beam profile is
achieved.

7. Two adjustment mirrors after the chirped mirror compressor are used to shift
the beam in a beamwalk, to compensate for changes in HCF position and to
ensure beam is in standard position defined by two irises.

8. Check quality of beam (pulse duration and shape) with SPIDER.

Step 1 and 4 are only done rarely, for example after an exchange of the hollow-core
fiber or a reset of the iris apertures which are part of the prism compressor. The day
to day adjustment of the hollow-core fiber starts with step 5.
However, before engaging in a thorough adjustment of the hollow-core fiber it is

worthwhile to check the adjustment of the prism compressor which is part of the
CPA laser amplifier. A precise alignment is important for the prism compressor to
work correctly, and it has to be checked occasionally whether the beam is still located
in the center of the iris apertures. It is also recommended to verify the beam path
inside the compressor now and then, to ensure that the outgoing beam takes the
same path as the incoming beam. A difference in paths is a strong indicator that the
prism compressor is not doing its job anymore and that the compressed beam will
exhibit spatial chirp, meaning the different wavelengths which are part of the pulse
spectrum are not distributed homogeneously across the beam cross-section.

2.1.3. SPIDER
The main tool for pulse analysis used in the experiments for this work is a Pulse: Four
SPIDER from Venteon. The abbreviation stands for Spectral Phase Interferometry
for Direct Electric-field Reconstruction. This measurement technique is based on
spectral shearing interferometry and allows the retrieval of the spectral phase φ(ω)
of an ultra short laser pulse. It was first demonstrated in 1998 by the work of Iaconis
and Walmsley [48].
The Venteon SPIDER implements spectral shearing interferometry by sending it

through an ultra thin glass etalon and creating three copies of the original laser pulse.
The reflections at the front and back side of the glass constitute one arm of the spider,
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SHG crystal

focusing mirror iris aperture

Figure 2.3.: Schematic SPIDER setup. Two pulse copies with a time delay τ are su-
perimposed with a stretched pulse copy in an SHG crystal. The resulting
up-converted pulses have a slight frequency shear due to the chirp of the
stretched pulse.

with two pulse copies parted by the time delay τ determined by the thickness and
material of the etalon. The other arm is the pulse transmitted through the etalon,
which is then temporally stretched by about three orders of magnitude in a glass
block. As illustrated in Fig. 2.3 the two SPIDER arms meet again when focused at
cross direction into a type II SHG crystal. When the two short pulse copies are in
superposition with the stretched pulse, two new pulses are generated with a frequency
equal to the sum of the two superimposed frequency constituents. Due to the linear
upchirp of the stretched pulse, the two resulting pulses will have slightly different
central frequencies. This is the spectral shear Ω. Then the interference pattern
between these two short pulses is measured by a spectrometer. With knowledge of
the spectral shear Ω and the time delay τ the spectral phase φ(ω) can be retrieved out
of this interference pattern. The algorithm for this fast procedure was first introduced
by Takeda et al. in 1982 [49].
The spectral interference pattern S(ω) of the two frequency-sheared pulse versions

is Fourier-transformed into the time domain where it has three components, around
t = 0 and the time delay t = ±τ . The component around t = 0 only contains infor-
mation about the pulse’s spectral amplitude, while the two sidebands also contain
(identical) information about the spectral phase φ(ω). One sideband is selected by
application of a filter, and then inverse Fourier-transformed back into the frequency
domain as φ(ω−Ω)−φ(ω)+ωτ . The so called spider phase is obtained by subtracting
the ωτ term from this. The actual spectral phase is then retrieved out of the spider
phase by concatenation [50].
Unfortunately this procedure fails if the interference pattern, which is modulated

by the spectral amplitude of the original pulse, is too close to zero at points. At these
points the extracted phase difference is undefined and the relative phase between
adjacent spectral points is lost. This is generally a problem when using a SPIDER
to characterize pulses which have underwent frequency generation in a hollow-core
fiber. The spectrum of such pulses commonly shows strong oscillations and is prone
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to have points of extreme low intensity, see Fig. 3.5 on page 64 for an example of a
spectrum. This will in turn cause the existence of points of near zero intensity in the
interference pattern, and at these points the retrieval algorithm might fail and the
reconstructed phase will not be continuous.

The SPIDER is not able to measure the carrier-envelope phase (CEP) of the in-
cident laser pulse. In the Taylor series expansion of the spectral phase φ(ω) the
expansion coefficients φ0 and φ1, respectively the CEP and the time delay of the
pulse, are set equal to zero by the Venteon SPIDER in measurements. Because of
this an arbitrary offset and an arbitrary gradient can be added to each measurement
of the spectral phase φ(ω). The actual pulse shape in the time domain or the enve-
lope of the field E(t) is not affected by this though, since it is only determined by
the higher order coefficients of the Taylor expansion of the spectral phase φ(ω). It
can be reconstructed from the measured spectral phase and the spectral amplitude
|E(ω)|, which is measured by a spectrometer as part of the SPIDER.

2.2. Numerical simulation
One method to calculate the propagation of a light pulse through a nonlinear medium
is solving the Maxwell equations according to appropriate boundary conditions. For
this a second order differential equation must be solved, which is not possible to do
analytically but can be done numerically with, for example, finite difference time
domain (FDTD) methods [51, 52]. In 1987 Kodama and Hasegawa [53] proposed the
use of a simpler version of the wave equation, based on an approach which separates
an electric field into an envelope function and a fast oscillating carrier wave. This
makes it possible to convert the second order differential equation into a first order
equation, and solve the problem with much less computational effort than with FDTD
methods. In the work of Blow and Wood [54] self-steepening was included into this
approach, and Brabec and Krausz [33] extended the method 1997 to laser pulses of
durations down to a single cycle of the carrier wave.
Since then this method has become standard and it has been used in many pub-

lications to study the propagation of few-cycle pulses in a nonlinear medium, as for
example for the effects of self-phase modulation and induced-phase modulation in
optical fibers [29], for effects close to the zero dispersion wavelength in optical fibers
[55], for self-focusing and critical power in hollow waveguides [56], for a cascading
hollow-core fiber arrangement [16], for a frequency-dependent effective mode area in
a photonic crystal fiber [27], for modelling sub-cycle dynamics [57], or for hollow-core
fibers with a temperature gradient [58] to name some applications.

In this section the method and the model used for numerical calculations of the
nonlinear process in a hollow-core fiber in this work is presented. First the split-step
method is introduced in section 2.2.1. The two operators which are implemented by
this method, the nonlinear operator N̂ and the dispersion operator D̂, are discussed
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in that section, as well as any approximations and assumptions made in the model.
In section 2.2.2 the results of the calculations are compared with those of previous
works to inspect the validity of the model. Finally in section 2.2.3 the two driving
forces of the nonlinear process, self-phase modulation and self-steepening, are studied
with the help of numerical calculations.

All calculations have been programmed in LabVIEW 8.6, see appendix A.

Throughout this work simulation parameters are listed in the figure captions. The
default parameters are those used in the experiment: input spectral amplitude and
phase as in experiment (Fig. 3.4, PrismComp0), ω0 = 2.365PHz, E = 830 µJ per
pulse; hollow-core fiber length z = 1m, bore radius a = 125 µm, filled with neon gas
at p = 3 bar. Parameters which are consistently not changed, like central frequency
ω0, pulse energy E, fiber length z, fiber bore radius a or gas type, are usually omitted.
The carrier or central frequency of the input pulses measured in the experiment is

also used for pulses with a Gaussian spectrum. It corresponds to a central wavelength
of 797 nm.

2.2.1. Split-step method
The split-step method is a numerical method especially used to calculate the solution
of nonlinear partial differential equations like the nonlinear Schroedinger equation [22,
p. 41-45]. Its name stems from the fact that it splits the calculation into small steps
in which the linear and nonlinear parts of the equation are computed independent of
each other.

In section 1.3.4 the 1-dimensional pulse propagation equation was obtained in the
form of Eq. (1.62)

∂A

∂z
= −i12β2

∂2A

∂T 2 + 1
6β3

∂3A

∂T 3 −
α

2A+ iγ0|A|2A−
γ0

ω0

∂

∂T
(|A|2A).

If a dispersion operator D̂ and a nonlinear operator N̂ are defined as

D̂ = −i12β2
∂2

∂T 2 + 1
6β3

∂3

∂T 3 −
α

2 (2.1)

N̂ = iγ0

(
|A|2 + i

1
ω0A

∂

∂T
(|A|2A)

)
(2.2)

Eq. (1.62) from above can be written as

∂A

∂z
= (D̂ + N̂)A, (2.3)

which can be solved with A(z) = A0e
(D̂+N̂)z.
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In the split-step Fourier method it is assumed that the operators D̂ and N̂ can
be handled as acting on the pulse independent of each other for small distances h,
which results in [22, p. 42]

A(z + h, T ) ' A(z, T )eD̂heN̂h. (2.4)

First, the dispersion D̂ acts on the pulse along the length of h, and then the
nonlinearity N̂ acts on the modified pulse for the same length, or the other way
round. Then the dispersion D̂ acts again during the next small step h, followed by
N̂ , and this is repeated until the end of the fiber is reached.
The main benefit of this procedure is that it allows for a simple calculation of eD̂hA

by Fourier-transforming this expression and replacing ∂/∂T with −iω. This way D̂ is
just a number in the frequency domain and the product is resolved by multiplying
A with a spectral phase. The result is then transformed back into the time domain
with an inverse Fourier-transformation to obtain the new A(z + h, T ).
The same trick is not useful for N̂ . The nonlinear operator still has to be applied

in the time and not the frequency domain since the term |A|2 contains the temporal
envelope A(T ), normalized such that the square of its absolute value is equal to the
instantaneous power P (T ), a quantity which cannot be obtained in the frequency
domain. As a consequence the two operators D̂ and N̂ have to be applied in their
respective domains in two separate steps, which is the reason for the name of the
method.
However, the operators D̂ and N̂ do not commutate [22, p. 42] and hence eD̂+N̂ 6=

eD̂eN̂ . Eq. (2.4) is only valid as approximation for small step sizes h. To estimate
the error which is caused by this, the order in which the operators D̂ and N̂ act
on A at each step h can be reversed, and the result compared to the result of the
calculation without reversal of the order in which the operators act. For h = 5mm
it is found that the results are in very good agreement. The difference in frequency
bandwidth between two calculations with a different order of operators is equivalent
to a difference in the Fourier-transform limited pulse duration of ∆τ0 = 0.002 fs,
which is more accurate than the listed decimal of any result presented in this work.
At h = 5mm the step size is chosen sufficiently small to allow treating N̂ and D̂ as
if they would indeed commutate.

Nonlinear operator N̂

The Nonlinear operator N̂ of Eq. (2.2)

N̂ = iγ0

(
|A|2 + i

1
ω0A

∂

∂T
(|A|2A)

)
consists of the term for SPM, which is the first term on the right-hand side and

the source of the new frequencies created in the hollow-core fiber, and the term for
self-steepening, which is the second term on the right-hand side and results in a
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modification of the pulse shape. The self-steepening term is obtained by considering
the dependency of the nonlinear parameter γ on the frequency ω in first order and
neglecting the derivatives ∂n2/∂ω and ∂Aeff/∂ω, as seen in Eq. (1.61). Both terms scale
with γ0, which is defined in Eq. (1.34) as

γ0 = γ(ω0) = n2(ω0)ω0

cAeff(ω0) . (2.5)

The quantities which need to be determined are n2(ω0) and Aeff(ω0).
The nonlinear refractive index of neon is n2(p) = p

1 bar 9.4 · 10−25 m2/W at a wave-
length of 800 nm [32].
The effective mode area of a hollow-core fiber is Aeff ' 0.48πa2, where a is the

radius of the fiber bore [8, 16].

Dispersion operator D̂

The dispersion operator D̂ of Eq. (2.1)

D̂ = −i12β2
∂2

∂T 2 + 1
6β3

∂3

∂T 3 −
α

2
consists of terms for the dispersion parameters GDD and TOD and a term for

attenuation. Unlike the N̂ operator, the dispersion operator D̂ is not applied directly
to A(z, t) in the calculation. Instead it is Fourier-transformed along with A(z, t) and
then applied in the frequency domain, before the result is inverse Fourier-transformed
back into the time domain. In the frequency domain Eq. (2.1) looks like

D̂ = i
ω2

2 β2 + i
ω3

6 β3 −
α

2 . (2.6)

Terms for higher orders of dispersion can be added to Eq. (2.6) at leisure, however
it is not necessary to do so in the case of a hollow-core fiber filled with neon. This can
be shown by calculating the coefficients βi, for which it is first necessary to know the
dependency on the wavelength of the refractive index of neon. This can be obtained
from [21]

n− 1 = 0.012055
(

0.1063λ2

184.661λ2 − 1 · 1012 m2 + 1.829λ2

376.84λ2 − 1 · 1012 m2

)
, (2.7)

for a temperature T = 273K and a pressure p = 1 bar. The coefficients βi of
the propagation constant can be calculated with Eq. (1.30) as βj = ∂jβ/∂ωj|ω0

. The
results for β2, β3 and β4 are illustrated in the left-hand side of Fig. 2.4. The 4th
order coefficient β4 and its gradient are nearly equal to zero, so β4 and all higher
dispersion coefficients can be neglected for neon.
The same can be determined by applying the different terms of dispersion to the

numerical calculation. For an input pulse as measured in the experiment and shown
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Figure 2.4.: In a) Phase constants β2 to β4 of neon gas at temperature T = 273K and
pressure p = 1 bar are shown, calculated according to [21]. In b) numeri-
cally calculated spectra after the HCF are shown, considering dispersion
terms up to the given order. The spectrum including a β4 term is already
indistinguishable from the spectrum including only up to a β3 term - it
lies beneath it and is invisible.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0); HCF p = 3 bar)

in section 3.2 the results are illustrated in the right-hand side of Fig. 2.4. It is
apparent that inclusion of the GDD term has a notable effect on the calculated
spectral amplitude. The additional inclusion of the TOD term changes the calculated
spectrum only in minor details, while the calculated spectrum including the 4th order
term is not even visible anymore - at the resolution of the figure it is identical with
the spectrum lacking a 4th order term. Calculations show that inclusion of the 4th
order term changes the Fourier-transform limited pulse duration τ0 of the spectrum
only by 2 · 10−4 fs, and it can hence be disregarded.
The pressure-dependency of the coefficients βj can easily be accounted for with

Eq. (1.39) on page 16, by calculating βj(p0) with the help of Eq. (2.7) and multiplying
the result with p

1bar .

Attenuation and input coupling

The dispersion operator D̂ does not only consist of the respective dispersion terms
and includes also the absorption loss coefficient α. Since beam power is measured in
front of the hollow-core fiber, α consists in practice of two different parts, respectively
the attenuation losses occurring while the beam is propagating along the length of
the fiber, and the coupling losses occurring at input coupling at the start of the fiber.
The beam also passes two thin fused silica windows on its way in and out of the
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Figure 2.5.: The attenuation coefficient α for a fused silica HCF with bore radius
a = 125 µm, calculated according to Eq. (2.8). Attenuation is notable
higher for low frequencies.

pressure chamber which contains the hollow-core fiber and the neon gas, but these
are aligned in the Brewster angle in regard to the beam’s linear polarization and
hence can be ignored. Measurements in front of and behind the hollow-core fiber
show that the total loss to power is usually very close to 34%. This does not account
for any additional loss incurred by a pair of fused silica wedges often positioned
shortly after the hollow fiber for dispersion control, which in our setup cause another
12 to 13% loss of power.
In a common solid optical fiber the refractive index of the cladding is lower than in

the core and the beam stays inside the core due to total internal reflection, incurring
a minimum of absorption losses along the length of the fiber. For a gas-filled hollow-
core fiber this is obviously not the case and the beam will suffer reflection losses along
its way through the fiber. The angle of incidence is very small though, so losses are
expected to be low. This has already been studied in the 1960’s by Marcatili and
Schmeltzer [59, p. 14] and the so called attenuation loss depends on the wavelength,
the bore radius a and the refractive index ncl of the fiber cladding, fused silica in our
case, as follows

α = (2.405)2c2

ω2a3
n2
cl(ω) + 1√
n2
cl(ω)− 1

. (2.8)

The attenuation loss coefficient α is plotted in Fig. 2.5.
Light propagating in a fiber will do so in specific states called fiber modes, which

describe the transversal distribution of the electric field. Since this work is based on
a 1-dimensional solution of the wave propagation equation I will not go into detail
concerning fiber modes, and instead refer to the existing literature as for example
[22, 59]. The factor 2.405 in Eq. (2.8) is a constant depending on the fiber mode, for
example, and the particular value given here belongs to the fundamental mode HE11.
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When a beam with a 1/e2 waist radius of more than 60% of the bore radius is coupled
into a hollow waveguide, nearly all of the the beam’s energy is deposited in the
fundamental mode HE11 [60] and remains there during propagation [31]. Coupling
into the fundamental mode is optimal (' 98% of the total power) when the beam
waist radius is 64% of the bore radius a, but remains high (> 80%) for values greater
than that until the beam waist is larger than the bore. In our setup the beam waist
radius is at 80% of the bore radius, which results in a coupling of about 90% into
the fundamental mode [60]. While this might be less than optimal, it causes the
undesirable higher fiber modes to be suppressed even stronger. Since it is energy
deposited in those higher fiber modes which causes self-focusing and the ensuing
deterioration of the beam profile at critical powers [61, p. 557], an increase of power
in the higher fiber modes is to be avoided.
The loss occurring by coupling the beam into the fiber is experimentally estimated

by taking the measured total loss of 34% of the beam’s power and subtracting the
loss caused by attenuation in the fiber. This results in an input coupling loss of 24%.
This is high considering that input coupling losses are expected to be only about 10%.
Either the properties of the fiber front make for a less than ideal input coupling, or
additional losses occur inside the hollow fiber. For example, a fiber which is not
perfectly straight can induce considerable additonal losses [59, p. 24].
When using beam powers which approach the critical power for self-focusing of

Eq. (1.52), the attenuation coefficient also needs to account for ionization effects.
Since we stay safely below this threshold, see section 1.3.2, ionization effects are not
considered in this work.

General remarks

The calculations were done using a positive ω axis of 4096 points ranging from 0Hz to
slightly over 1 · 1016 Hz or 10PHz, with a step size of ∆ω = 2.5 · 1012 Hz. The time
axis accordingly has 8192 points with a step size of ∆t ' 0.307 fs, ranging across
±1.25 ps. At a period of 2.67 fs this translates into slightly less than nine points per
oscillation. A further decrease of ∆ω or ∆t with an according increase in the number
of points brought no change in the calculation results.
The interaction step length h for the split-step method is chosen as h = 5mm.

While very similar results can already be obtained with step lengths as large as
h = 5 cm, the simulation proves to be unstable at this length, showing critical effects
and apparent beam collapse due to self-steepening when in fact it did not show this
behavior under otherwise identical settings except for a shorter length of h. To avoid
such artifacts in the simulation, the step size was reduced until the simulation ran
stable.
At a length of h = 5mm a single run of the LabVIEW calculation takes about

seven seconds, and a run with 60 different values for pressure (∆p = 0.05 bar) takes
slightly over six minutes.
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2.2.2. Comparison with literature
In this section the results of two publications which treat numerical simulations
of pulse propagation in a hollow-core fiber are compared with the results of the
numerical calculation presented in this work. This is done to ensure that the model
has been adapted correctly and performs well in comparison to other models. First
a publication from 2010 is presented, which investigates an interesting observation
about self-steepening which is in agreement with results of the numerical calculations
presented in section 2.2.3. Further a comparison with the results of a publication
from 2003 is done, which studies the differences between a 1-dimensional and a 3-
dimensional model.

Bejot et al. - Mechanism of hollow-core-fiber infrared-supercontinuum
compression with bulk material

In their paper from 2010 Bejot et al. [46] investigate, both by numerical calculation
and experiment, a supercontinuum created in the infrared around 1.8 µm instead of
the more commonly used central wavelength of 800 nm provided by a Ti:sapphire
laser amplifier. One of the advantages of this spectral regime is that fused silica
exhibits anomalous dispersion at these wavelengths and induces negative GDD in
light pulses propagating through it. By utilizing a simple fused silica plate of 3mm
thickness after the hollow-core fiber as a compressor instead of a chirped mirror
setup, Bejot et al. demonstrate the compression of infrared light pulses to less than
12 fs, which is below two cycles of the carrier frequency. They also comment on the
presence of unexpected negative third-order-dispersion (TOD) in the pulses, which
has to be generated during propagation through the hollow-core fiber, and identify
self-steepening as the cause of this TOD.
Fig. 2.6 shows simulations done by Bejot et al. in which the spectral amplitude is

calculated in dependence on the distance z propagated in the hollow-core fiber, with
an input beam which is assumed to have a spectral phase φ(ω) equal to zero. On
the left-hand side is a symmetric spectrum without inclusion of the self-steepening
term in the calculation, and on the right-hand side a spectrum including the self-
steepening term and demonstrating the corresponding asymmetry. In the bottom
row simulations done with the numerical calculation presented in this chapter are
shown, after adapting the calculation to the set of parameters used by Bejot et al..
This includes an input beam with a pulse duration of 73 fs instead of 32 fs, with
a spectral phase φ(ω) equal to zero, a carrier frequency of ω0 = 1.03PHz, and an
energy of E = 930 µJ per pulse. The hollow-core fiber has an inner bore radius of
a = 200 µm instead of a = 125 µm and the same length z = 1m. It is filled with
argon instead of neon, at a pressure p = 1.4 bar.

Bejot et al. use a 1-dimensional pulse propagation equation nearly identical to
Eq. (1.62). However, the optical Kerr effect is not only considered as a χ(3) effect, but
includes the contribution of higher nonlinear terms up to χ(11). This is made possible
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Figure 2.6.: Calculated spectra after the HCF in dependence on the distance z prop-
agated in the hollow-core fiber. On the left-hand side without and on
the right-hand side with the self-steepening term. The top row shows
simulations done by Bejot et al. [46], while the bottom row shows sim-
ulation results calculated in this work but with identical parameters as
used by Bejot et al..
(Parameters: input Gaussian pulse τ0 = 73 fs, ω0 = 1.03PHz, E = 930 µJ
per pulse; hollow-core fiber argon gas, p = 1.4 bar, a = 200 µm.)
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by publications investigating the higher order refraction indices n2m for argon and
other constitutents of air [62], but not for neon. For a central wavelength of 800nm
the contribution of higher order terms for the optical Kerr effect is reported to have
only a negligible effect on simulations though [23], gaining importance only in the
blue and UV regimes.
The absorption coefficient α used by Bejot et al. is determined differently than

in section 2.2.1, where it is handled by separation into two parts, losses occuring
at input coupling into the hollow-core fiber and losses due to attenuation caused by
grazing incidence reflections inside the hollow fiber bore. Unfortunately Bejot et al.
do not state exactly how they determine the absorption coefficient α.
They also do not comment on the effective mode area Aeff and how it is obtained.
Despite these differences it is observable in Fig. 2.6 that the two sets of simulations

are in good agreement with each other. The features in the simulation from Bejot
et al. are slightly shifted to shorter propagation distances in the hollow-core fiber,
which implies that the nonlinear process is handled as working a bit more efficient
than in this thesis. A likely explanation for this is a small decrease of either the
attenuation coefficient α or the effective mode area Aeff.

Nurhuda et al. - Propagation dynamics of femtosecond laser pulses in a hollow
fiber filled with argon: constant gas pressure versus differential gas pressure

In their paper from 2003 Nurhuda et al. [30] investigate the advantages of a differen-
tial gas pressure inside the hollow-core fiber instead of a constant pressure setup like
it is used in this work. For this they adapt a 3-dimensional model for the numerical
calculations and compare it to the results of a 1-dimensional model, and demonstrate
that the two different approaches arrive at the same results as long as the laser power
stays below the critical value for self-focusing (see the start of section 1.3.2). Above
the critical value self-focusing leads to critical deformation of the transversal electric
field or the modal distribution of the pulse, and the assumption of the 1-dimensional
model that the transverse modal distribution F (x, y) remains unchanged does not
hold anymore.
Fig. 2.7 shows on the left-hand side calculations taken from [30] with low pulse

powers in which the 1-dimensional and 3-dimensional models are compared to each
other, and it is demonstrated that they arrive at the same results with the chosen
parameters. On the right-hand side a simulation performed with the numerical calcu-
lation presented in this work is shown, using the same parameters as the simulation
of Nurhuda et al.. The spectral phase and the bandwidth and general form of the
calculated spectral amplitude is comparable to that on the left-hand side, even if
the peak ratio is reversed. This might be due to different transformations from the
frequency into the wavelength domain. To visualize this the change of domain in the
right hand side graph is performed both with and without the required Jacobi trans-
formation of the spectral amplitude, and it is observable that the spectrum attained
without Jacobi transformation looks very similar to that presented by Nurhuda et al..
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Figure 2.7.: Left-hand side: Comparison between calculated spectrum and phase af-
ter the HCF with a 1-dimensional (dotted line) and a 3-dimensional
model (solid line) for a laser power below the critical power for ion-
ization, taken from Nurhuda et al. [30]. Right-hand side: results of
calculations performed for this thesis with identical parameters as used
by Nurhuda et al., once with Jacobi-transformation into the wavelength
domain (black) and once without (blue).
(Parameters: input Gaussian pulse τ0 = 60 fs, ω0 = 2.39PHz, E = 100 µJ
per pulse; HCF argon gas, p = 2 bar, a = 125 µm.)

Nurhuda et al. apply a laser peak power in their calculations for low pulse powers
which is equal to 0.32 Pcrit,hcf for argon. In the experiments described in the next
chapter we remain below 0.25 Pcrit,hcf for neon. Hence it can be safely assumed that
the result of Nurhuda et al., that the 1-dimensional model is equivalent to a full
3-dimensional model for low laser powers, also holds true for the calculations done in
this thesis. This means that the laser power is so low that self-focusing is not strong
enough yet to lead to critical deformations of the beam profile and that the form of
the transverse modal distribution F (x, y) can be considered as constant during beam
propagation in the hollow-core fiber.

2.2.3. Self-phase modulation and self-steepening
In this section numerical calculations are used to examine the effect of the self-
phase modulation and self-steepening terms in Eq. (1.62). This establishes a better
understanding of the features of spectral amplitude and phase in more depth than
in the introduction presented in section 1.4, and will also demonstrate that self-
steepening is responsible for the generation of negative third order dispersion (TOD)
during propagation through the hollow-core fiber.

Fig. 2.8 illustrates how the spectral amplitude, group delay and instantaneous
power, or temporal shape, of an unchirped input pulse change after propagation
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through the gas-filled hollow-core fiber in dependence on the terms for self-phase
modulation (SPM), dispersion and self-steepening in Eq. (1.62).
For the case considering only SPM, Fig. 2.8 shows the same graphs as Fig. 1.2

on page 23. It is already discussed in section 1.4 that SPM is responsible for the
symmetric peaks in the spectral amplitude. The temporal pulse shape is not changed
by SPM, which acts only on the temporal phase of the pulse in the time domain and
not on the envelope. The group delay, the first derivative of the spectral phase φ(ω),
shows sharp peaks located in the minima of the spectral amplitude. Upward peaks
or maxima for frequencies below the carrier frequency ω0 and downward peaks or
minima for frequencies greater than ω0. The linear distribution of W(t, ω) in the
Wigner plot suggests that the pulse exhibits mostly group delay dispersion (GDD),
see Fig. 1.4 on page 28.
If absorption and dispersion are added to the calculation an obvious decrease in the

instantaneous power P (t) occurs, which is mainly due to the losses of about 24% at
coupling into the hollow-core fiber. The temporal shape also becomes broader because
of dispersion and a slight frequency-dependence of the absorption during propagation
through the hollow-core fiber. Due to the decrease in power the generation of new
frequencies works less efficiently and in the spectral amplitude is one peak less than
without dispersion and absorption, and the bandwidth is slightly reduced. Dispersion
causes an additional gradient in the group delay, which is also observable in the
Wigner plot as an increase of GDD.

In contrast to SPM self-steepening only acts on the envelope and not on the tem-
poral phase in the time domain. It is caused by the frequency-dependency of the
nonlinear process and expresses itself in the last term of Eq. (1.62). Since the self-
steepening term scales with the derivative of the intensity its effect is strongest at
times t when the pulse intensity rises or falls. Due to the term’s minus sign it will
decrease intensity and broaden the pulse slope when the pulse is rising, and increase
intensity and steepen the pulse slope when intensity is falling. The result is the
shifting of the pulse’s centrum back towards the trailing edge of the pulse, which is
already discussed in section 1.4.3 and is also visible in Fig. 2.8 b).
Self-steepening causes an increase of the intensity gradient at the pulse’s trailing

edge where, as has been shown in section 1.4.1, SPM generates the new frequencies
which are higher than the carrier frequency ω0. Since the efficiency of SPM scales
with the gradient of intensity, the high frequencies originating at the pulse’s trailing
edge are generated with a greater bandwidth ∆ω than the low frequencies originating
at the pulse’s rising edge. The peak areas remain the same though since low frequency
peaks in the spectral amplitude are high and have a small bandwidth, while high fre-
quency peaks are low and have a great bandwidth. This effect is illustrated in Fig. 2.8
a). The central frequency of the spectral amplitude shifts to higher frequencies during
propagation in the hollow-core fiber under influence of self-steepening.
It is discernable in the Wigner plot that W(t, ω) has acquired a slight bend to the

left with the inclusion of self-steepening in the calculations. This is an indication of
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Figure 2.8.: Calculations for a Gaussian beam with SPM only, with dispersion and
SPM (but no SS), and with dispersion, SPM and SS. In a) spectrum
P (ω) (black) and group delay (red) after HCF, and spectrum P (ω) in
front of HCF (blue) divided by 5. In b) the instantaneous power P (t)
after the HCF, and in c) the Wigner plots.
(Parameters: input Gaussian pulse τ0 = 28 fs, φ(ω) = 0; HCF p = 2 bar)
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Figure 2.9.: Example of pulse collapse induced by the self-steepening term. Right-
hand side is the evolution of the temporal pulse shape |A(z, t)|2 along the
fiber length z. The yellow lines mark the positions of line scans depicted
on the left-hand side. The pulse’s trailing edge starts to break up at
about z = 40 cm.
(Parameters: input Gaussian pulse τ0 = 21.2 fs, φ(ω) = 0; HCF p =
3 bar)

the presence of negative third order dispersion (TOD) in the pulse, a result that is
discussed in more detail in the section after the next, at the end of this chapter.

Pulse collapse

Ultrashort pulse propagation models can exhibit two distinct types of singularities,
self-focusing collapse and self-steepening induced shock [63]. In the case of self-
focusing collapse the Kerr lens induced by the nonlinear change of the refractive index
continues to focus the beam until it eventually approaches a singularity and collapse
occurs, at least in simulations. Physically this process is arrested by mechanisms
like multiphoton ionization or pulse splitting [64]. But even without collapse this
effect will lead to deformation of the pulse’s transversal field and modal distribution
if the input laser pulse exceeds a critical power [31]. This threshold is adressed by
the critical power Pcrit,hcf introduced in Eq. 1.52 on page 18.
Another kind of pulse collapse is caused by self-steepening shock. Self-steepening

causes an increase and steepening of intensity in the pulse’s trailing edge, which
can ultimately lead to shock creation when the gradient of the temporal envelope
becomes infinte [65]. Physically this process is slowed down or even arrested by a
decrease of intensity through absorption or by broadening of the pulse by dispersion.
In the simulations in this thesis, which include both absorption and dispersion, this
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kind of collapse can still be observed as the trailing edge of the pulse becomes nearly
vertical and then intensity ’spills over’ and generates afterpulses. This is exemplary
depicted in Fig. 2.9. In calculations done with parameters similar to those of the
experiment this self-steepening shock usually sets in when the Fourier-transform lim-
ited duration τ0 of the pulse falls below 3 fs and approaches the duration of just one
oscillation. We have not yet investigated how a laser pulse behaves in the experiment
when the calculation yields that the pulse is at the onset of self-steepening collapse,
and currently it is assumed that visible onset of collapse means that the numerical
calculations cease to be an accurate description of the experiment.

Prepulses

The purpose of the supercontinuum generated in our setup is to provide sufficient
frequency bandwidth for the pulse to enable compression down into the few-cycle
regime. In the experiment an arrangement of chirped mirrors and a pair of fused
silica wedges are used for the actual pulse compression. In the simulation an arbitrary
amount of dispersion can be added to the pulse after the numerical calculation of the
nonlinear processes in the hollow-core fiber to make the pulse as short as possible in
the time domain. To stay inside the parameters which are possible to control in the
experiment with standard commercial chirped mirrors, only group delay dispersion
(GDD) and third order dispersion (TOD) are considered for this adjustment of the
spectral phase.
When only GDD is applied to the pulse in the simulation for compression, it

becomes obvious that also a notable component of TOD is generated during pulse
propagation in the hollow-core fiber. This is not the case for calculations which
only consider self-phase modulation (SPM). As soon as the self-steepening term is
included however, the indications of TOD are observable both in the temporal pulse
shape and the respective Wigner plots, as is illustrated in Fig. 2.10.
SPM causes strong oscillations in the spectral phase and the group delay. Because

of that it is not straightforward to calculate the exact amount of GDD and TOD
necessary to compensate that dispersion and make the pulse as short as possible.
Hence it is easiest to not calculate the required amounts of GDD and TOD, but to
vary them as parameters in the simulation until the pulse is as short as possible in
the time domain. This can be done with an uncertainty of ±1 fs2 for GDD and ±1 fs3

for TOD.
For a bandwidth-limited Gaussian input pulse with a duration of 28 fs, a neon gas

pressure in the hollow-core fiber of 2 bar and otherwise using standard experiment
settings (E = 830 µJ per pulse, HCF z = 1m, a = 125 µm), this results in adding
-21 fs2 GDD and +15 fs3 TOD to make the pulse as short as possible. If the pulse
would be measured directly after exit from the hollow-core fiber, without any addi-
tional dispersion from propagation through neon, air, the fused silica of the pressure
chamber window, or any other medium.
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In Fig. 2.10 the presence of TOD in the pulse after propagation through the hollow-
core fiber and its connection to the self-steepening term is demonstrated. It is ap-
parent that in simulations only considering SPM and not self-steepening, the pulse
after the hollow-core fiber can be compressed nearly down to its Fourier-transform
limited (FTL) duration just by application of negative GDD. While in simulations
including both SPM and self-steepening also the application of additional positive
TOD is required, and sufficient, to compress the pulse nearly down to its FTL dura-
tion. The influence of higher coefficients of the Taylor series of the spectral phase is
negligible for pulse compression in the simulations.
In graph a) the temporal pulse shapes for three different cases are illustrated. The

black plot represents a calculation done without the self-steepening term, with−21 fs2

GDD added for compression after the hollow-core fiber. The pulse shape is strictly
symmetric with only minor side peaks. The corresponding Wigner plot in graph b)
shows thatW(t, ω) is concentrated in a vertical line around t = 0, an indication that
its spectral phase is about zero and its pulse duration is nearly bandwidth-limited.
The red plot in Fig. 2.10 a) represents a calculation including the self-steepening

term, which otherwise has the same parameters as the black plot. The series of
prepulses signify notable negative TOD. The same information can be gathered from
the corresponding Wigner plot in graph c). W(t, ω) shows a curvature to the left-
hand side which is characteristic for negative TOD, as can be seen in Fig. 1.4 on
page 28.
The green plot demonstrates that this negative TOD can be compensated with

the application of +15 fs3 TOD. Now the temporal pulse shape is nearly symmetric
again and its peak is even narrower than before for the black plot. That illustrates
that self-steepening makes the process for generating new frequencies more efficient,
causing the spectral amplitude to be broader and hence the compressed pulse to be
shorter.

Many textbooks and works about frequency generation consider only SPM in their
predictions, because this way the pulse propagation equation can be solved analyti-
cally when dispersion is also neglected . The observation that self-steepening causes
the generation of negative TOD during propagation through a hollow-core fiber in ad-
dition to the anticipated positive GDD generated by SPM is somewhat unexpected.
It is in agreement with the results of the work of Bejot et al. [46] discussed in sec-
tion 2.2.2, where also the presence of unexpected negative TOD is detected after
frequency generation in a hollow-core fiber, even with a completly different set of
parameters.
At the parameters chosen for the simulation, with an input Gaussian pulse with

τ0 = 28 fs, φ(ω) = 0 and E = 830 µJ per pulse, and a hollow-core fiber with length
z = 1m, bore radius a = 125 µm and filled with neon at p = 2 bar, the induced
negative TOD can be compensated with +15 fs3 TOD. That is equivalent to the
amount of TOD introduced by 0.5mm fused silica.
Since the pressure chamber of the gas-filled hollow-core fiber has a fused silica exit



2.2 Numerical simulation 53

- 1 5 - 1 0 - 5 0 50

5 0

1 0 0

1 5 0

d )c )

b )

W(
t,ω

) [a
rb.

u.]

 

 

Po
we

r [G
W]

 P ( t )  w / o   S S ,  G D D - 2 1  f s 2

         τ  =  3 . 6 1  f s   ( τ 0 =  3 . 5 6  f s )
 P ( t )  w i t h  S S ,  G D D - 2 1  f s 2

         τ  =  3 . 5 7  f s   ( τ 0 =  2 . 9 6  f s )
 P ( t )  w i t h  S S ,  G D D - 2 1  f s 2

         a n d  T O D + 1 5  f s 3

         τ  =  3 . 0 2  f s   ( τ 0 =  2 . 9 6  f s )

a )

- 2 0 - 1 0 0 1 0 2 0

2 . 0

2 . 5

3 . 0

3 . 5 w / o  S S ,  G D D - 2 1  f s 2

- 2 0 - 1 0 0 1 0 2 0

2 . 0

2 . 5

3 . 0

3 . 5 w i t h  S S ,  G D D - 2 1  f s 2

An
g. 

Fre
qu

en
cy 

[PH
z]

T i m e  [ f s ]
- 2 0 - 1 0 0 1 0 2 0

2 . 0

2 . 5

3 . 0

3 . 5 w i t h  S S ,  G D D - 2 1  f s 2 ,  T O D + 1 5  f s 3

T i m e  [ f s ]
- 1

2

Figure 2.10.: Calculated pulse shape P (t) of a Gaussian beam after HCF and com-
pression in a), without (black) and with (red and green) self-steepening.
GDD −21 fs2 has been applied after the HCF to compress the pulse,
and in one case (green) also +15 fs3 TOD. An inset shows the respective
FWHM pulse durations and Fourier-limited pulse durations. The pulse
shapes of the uncompressed pulses are presented in Fig. 2.8 b).
In b) to d) the respective Wigner plots are presented. These are the
same plots as in Fig. 2.8 c), just with additional dispersion for pulse
compression.
(Parameters: input Gaussian pulse τ0 = 28 fs, φ(ω) = 0; HCF p = 2 bar)
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window of about 1mm thickness, the negative TOD generated in the hollow-core fiber
will probably never pose a problem. For someone designing a beamline intended for
generating few-cycle pulses this negative TOD is of interest though, to help deciding
on the exact dispersion values for the compressor.



3. Results of the Experiment
In this chapter measurements performed in the attosecond laboratory of Universitaet
Bielefeld in regard to supercontinuum generation in a gas-filled hollow-core fiber are
presented. The interaction of high intensity few-cycle laser pulses with a gas medium
is already discussed in the literature [64], but mostly these studies were concerned
with a free volume of gas and the formation and the properties of filaments of light.
This phenomenon describes the diffractionless propagation of a focused laser beam
through a medium over long distances, and it requires high laser pulse powers to
maintain a balance between self-focusing due to the Kerr effect and defocusing due
to multiphoton ionization [66].
Propagation of a pulse of light inside a gas-filled hollow-core fiber has been less

thoroughly studied and there are many open questions about this process yet.

In section 3.1 the experiment for which the supercontinuum studied in this work
is generated in the first place is introduced, both to provide a motivation for the
investigation and optimization of the supercontinuum, and to present independent
confirmation that the Venteon SPIDER which is used in our measurements delivers
trustworthy results.
As a base for the presented experiments and numerical simulations the input laser

pulses are characterized with the SPIDER, in front of the hollow-core fiber in sec-
tion 3.2 and after the hollow-core fiber in section 3.3.
In section 3.4 the chirped mirror compressor used to compensate the dispersion in-

troduced by the hollow-core fiber and the considerable propagation distance through
air and several glass windows is characterized with the SPIDER.
In section 3.5 finally the dependence of the supercontinuum and its spectral am-

plitude and phase on the gas pressure inside the hollow-core fiber is investigated
and compared with the results of the numerical simulation, and it is found that the
simulation is in qualitative agreement with the experiment.

3.1. The time-resolved photoelectron spectroscopy
experiment

The time-resolved photoelectron spectroscopy experiment is performed to measure
the dynamics of electrons with a time scale of attoseconds. The optimization of
the single attosecond pulses which are employed in that experiment is ultimately the
reason why few-cycles pulses and the supercontinuum necessary to generate them are
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studied in this thesis. The time-resolved photoelectron spectroscopy experiment also
provides a means to measure the temporal pulse shape and hence the spectral phase
φ(ω) of the few-cycle infrared laser pulses generated by the laser system discussed so
far. This method of measuring the spectral phase is disproportionate more involved
and complex than using the SPIDER for the same end, but it provides an important
independent source for validation of the SPIDER results.

In section 3.1.1 the experimental setup is described and the process with which
single pulses of attosecond duration are generated is explained. In section 3.1.2 the
results of the experiment are presented and it is shown that they are in qualitative
agreement with the results of the SPIDER.
For a more detailed presentation of the experiment and its results I refer to the two

master theses of Sergej Neb [42] and Christian Sander [43] and the intended doctoral
thesis of Fabian Merschjohann [67].

3.1.1. Setup
The setup of the attosecond beamline of Universitaet Bielefeld is based on the setup
used in the experiment of Cavalieri et al. [12].

The source of the laser pulses is the beamline as described in section 2.1.1. After
propagation through the hollow-core fiber and compression in the chirped mirror
compressor the infrared (IR) laser pulses are directed to the experiment. The setup
of the experiment is illustrated in Fig. 3.1. The beam is focused by a spherical mirror
with a focal length of f = 50 cm and enters a vacuum chamber through a window of
1mm fused silica with an anti-reflection coating. A gas cell with 2mm diameter is
put shortly behind the focus and the laser beam drills its own entry and exit holes
into the thin nickel walls of the cell. The cell is filled with neon gas at ca. 250mbar.
The dispersion control with the chirped mirror compressor and the fused silica

wedges is tuned such that the laser pulses have the shortest possible pulse duration
of about τ = 5.3 fs, or two optical cycles, when they interact with the gas medium. In
a nonlinear process odd order high harmonics of the fundamental beam are generated
in the extreme ultraviolet regime (EUV).
The high harmonic radiation consists of pulse trains in which each pulse has at-

tosecond duration. To separate a single attosecond pulse in our setup the carrier-
envelope phase (CEP) of the fundamental beam has to be stabilized such that the
maximum of the pulse’s envelope coincides with a single maximum of the carrier
wave, a so called cosine pulse. In addition the incoming pulse has to have a short
pulse duration, so that the whole pulse consists of only a few oscillations. These
two conditions together provide that the highest energies at the cutoff of the EUV
spectrum are only generated at the central maximum of the pulse, and that only a
single pulse in the train of attosecond pulses possesses these high energies. If those
two conditions are met and the fundamental IR laser pulse is both very short and
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Figure 3.1.: Setup of the experiment for attosecond-resolved photoelectron spec-
troscopy. The few-cycle IR pulses are focused with a spherical mirror
into a gas target for high harmonic generation. Then the IR beam and
the generated EUV beam are spatially separated with a two-part filter
which consists of a pellicle (blocks EUV, IR can pass) with a zirconium
foil in the center (blocks IR, EUV can pass). Both beams are focused
on a target with a spherical double mirror which selects the energy of
the EUV pulses and controls the time delay between the IR and EUV
pulses. Above the target is a TOF which measures the kinetic energy of
the photoelectrons emitted from the target. Removal of the target and
the two-part filter allows to check for the spatial and temporal overlap
of the two beams. Removal of the double mirror allows to characterize
beam profile and spectrum of the EUV beam with a spectrometer.
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CEP stabilized at a cosine phase, then a single attosecond pulse can be extracted
by focusing the beam with an EUV mirror and by filtering out all attosecond pulses
with lower energies.
EUV radiation is in an energy regime where light has a high absorption coefficient

and a low reflectivity for all materials. For this reason multilayer mirrors, which are
tailored to a specific energy and energy bandwidth, have to be employed as mirrors
for EUV radiation. This means that it is possible both to focus the beam and to select
the required pulse energy with a spherical mirror specifically made for this particular
energy and bandwidth [68]. It is a crucial tool in selecting a single attosecond pulse.
In our beamline a multilayer mirror for a central energy of 91 eV is employed, which

is equivalent to a wavelength of 13.6nm or an angular frequency of 1.38 · 1017 Hz,
and a FWHM energy bandwidth of 6 eV, which is enough to support a pulse with a
duration of 300 as. With a different choice of mirror it is possible to select another
bandwidth, but an increase in bandwidth and hence temporal resolution is balanced
with a loss of energy resolution and vice versa, and the mirror has to be chosen in
accord with the experiment.

After high harmonic generation in the gas cell the EUV beam is still superimposed
with the fundamental IR beam. The two beams are spatially separated with a filter
which has two parts. The central diameter is a thin zirconium foil which stops the IR
light and lets the EUV pass, while the outer ring is a pellicle which stops the EUV
and lets the IR light pass. The amount of transmitted IR light is controlled with an
iris aperture. The focussing mirror likewise consists out of two parts. The central
part is an EUV multilayer mirror while the outer part is a metal mirror suited for
IR light. Both parts of the double mirror have the same focal length of f = 12.5 cm
and they are moved in regard to each other by means of a piezo translation stage
to finely control the time delay between and the spatial overlap of the IR and EUV
pulses [42, p. 63].
Both beams are focused on a target, which can be a gas stream or the surface of a

solid target. The single EUV attosecond pulse causes the emission of photoelectrons
which have a discrete energy depending on the energy of the photon, 91±3 eV, the
binding energy of the electron and the work function of the material in question. The
kinetic energy of the photoelectrons is measured with a time-of-flight spectrometer
(TOF). The photoelectrons are also accelerated by the electric field of the femtosec-
ond IR pulse though, and their kinetic energy is modified by the vector potential
of the IR field. The exact amount by which the electron’s kinetic energy is shifted
depends on the time at which the electron enters the IR field, which in turn is deter-
mined by the delay between the EUV and IR pulses.
If photoelectrons are emitted from two different states at different energies, a dif-

ference in the energy shift between these photoelectrons can be utilized to determine
the moment at which the photoelectrons start interacting with the IR field. This
method of determining a difference in time by measuring a difference in another
quantity is referred to as streaking.
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Figure 3.2.: Measurement of the time-resolved streaking of the neon 2p photoelec-
trons. The white curve marks the square root of the pulse shape as
reconstructed by the SPIDER. Figure is taken from [42].

Cavalieri et al. reported with an experiment like this that the photoelectrons
emitted from the tungsten conduction band and the 4f core state emerge from the
tungsten surface with a time difference of 110± 70 as.

3.1.2. Results with a gas target
The time-resolved experiment has also been performed with a neon gas target. Neon
gas has only one dominant state from which photoelectrons are emitted with an
excitation energy of 91 eV. It is the neon 2p state with a binding energy of 21.65 eV
[69, p. 2]. While no time difference between different states can be determined this
way, the neon 2p peak is easy to observe and it is a common choice to test the
functionality of the beamline.
In Fig. 3.2, which is taken from the master thesis of Sergej Neb [42], a measurement

of the streaking of the photoelectrons emitted from the neon 2p state is illustrated.
The feature which is of interest for this work is the envelope of the streaking oscilla-
tions, from which the temporal envelope of the IR pulse can be determined. In this
regard the streaking experiment can be used to measure the spectral phase φ(ω) of
the IR pulse.
This is a method to verify the SPIDER measurement of the IR pulse. As discussed

previously in section 2.1.3, the SPIDER can have problems retrieving the spectral
phase of a pulse which shows deep minima in its spectral amplitude. Since this
is the case for supercontinua generated by propagation through a gas-filled hollow-
core fiber, the validity of the SPIDER measurements could conceivably be called
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Figure 3.3.: Comparison between the IR pulse shape as retrieved from the streaking
experiment and as reconstructed by the SPIDER. Figure is taken from
[42].

into question. However, Fig. 3.2 also includes the pulse shape as reconstructed by
the SPIDER, which is in qualitative agreement with the measured amplitude of the
streaking. Note that the square root of the reconstructed SPIDER pulse shape is
depicted, to allow comparison with the envelope of the electric field and instead of
its intensity.

A more detailed comparison is provided in Fig. 3.3, which is also taken from [42].
Here the SPIDER results are compared with the broadening of the photoelectron
spectrum. The connection between the pulse shape of the IR light and the broadening
of the electron spectrum is explained in [42, p. 19]. The latter occurs when the vector
potential of the IR light changes signs and the rising edge of the electron peak is
affected by a vector potential with a different sign than the back slope of the electron
peak. This causes the electron spectrum to broaden, and the envelope of this effect
scales with the electric field of the IR pulse.

Fig. 3.3 demonstrates that the pulse shape reconstructed by the SPIDER is in
very good agreement with the temporal pulse form contrived from the streaking
measurement. This is an important result which confirms that the Venteon SPIDER
is well suited for the characterization of our few-cycle IR pulses. It is also obvious
from Fig. 3.3 that the laser pulses used in the experiment exhibit strong prepulses
and possess an excess of negative third order dispersion (TOD). The main source of
this TOD is the chirped mirror compressor, an effect which is discussed in section 3.4.
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3.2. Pulse properties in front of the hollow-core fiber
In this section we return to the study of the few-cycle infrared pulses and the super-
continuum generated in the gas-filled hollow-core fiber.
In Fig. 3.4 the spectral amplitude, the spectral phase, the group delay and the

pulse shape of a typical laser pulse before entry into the hollow-core fiber as measured
with the SPIDER are illustrated. This is done for three different settings of the prism
compressor that is part of the chirped pulse amplifier. The denomination +0.4mm
means that the prisms are moved 0.4mm further into the beam and that dispersion
is added accordingly.
The spectral amplitude is not smooth and exhibits several small peaks, but follows

roughly a Gaussian distribution. The position and ratio of the respective peaks shift
slightly with the setting of the prism compressor.
It has been discussed in section 2.1.3 that the SPIDER sets the spectral phase and

its first derivative with respect to frequency equal to zero at the central frequency
ω0. In terms of the Taylor series expansion of the spectral phase this means that
φ0 = φ1 = 0. The central frequency was set to 2.368PHz for the measurements,
which corresponds to a wavelength of 796 nm, and the respective zero points can be
seen in the plots of the spectral phase and the group delay in Fig. 3.4.
Where the spectral amplitude is high the spectral phase is dominated by two

oscillations. This is disadvantageous since it makes it necessary to use high order
coefficients to expand the spectral phase in a Taylor series. Even with expansion
coefficients up to the 8th order the double peak of the spectral phase cannot be
resolved, and to achieve a good fit coefficients of up to the 18th order need to be
included in the Taylor series. Because of that it is not feasible to quantify the change
in dispersion caused by the prism compressor settings just in terms of group delay
dispersion (GDD) and third order dispersion (TOD) in the measurement.
The prism compressor has been carefully readjusted to ascertain that no misalign-

ment of the prisms is causing these oscillations in the spectral phase. It is possible
that the oscillations are caused by self-phase modulation, for example either in the
prism compressor of the amplifier or in the SHG crystal used for measurements of
the spectral phase directly after the oscillator, but the matter has not been further
investigated by us yet.
Reconstruction of the temporal pulse shapes yields that the pulse with the green

plot has the shortest full width half maximum (FWHM) pulse duration τ . It is the
black plot though which achieves the broadest supercontinuum after the hollow-core
fiber in the experiment.
A possible explanation for this might be provided by the Wigner plots. Of all

three plots the default setting (PrismComp0) has the smoothest distribution of the
high intensity area in the Wigner distribution. Intensity in this case is meant as the
value W(t, ω) of the Wigner-Ville distribution, and not as the energy of the pulse.
In the leftsided curvature of all three Wigner plots it is observable that the pulses
have an imbalance towards negative TOD or higher odd coefficients of the spectral
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Figure 3.4.: Pulse properties measured before the HCF, a) spectral amplitude P (ω),
b) temporal pulse shape P (t), c) spectral phase φ(ω), and d) group
delay, where c) and d) are underlayed with the spectral amplitude of
PrismComp 0 from a). Measurements for three different settings of the
prism compressor are illustrated. In e) to g) the respective Wigner plots
are shown. In b) a legend lists the respective pulse durations, where τ is
the FWHM duration of P (t) and τ0 is the Fourier-transform limit.
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phase’s Taylor series expansion. The interference patterns visible on the left hand
side of the Wigner plots are produced by cross-term interference, see section 1.5.2,
caused by oscillations in the spectrum and the pulse shape which are a consequence
of self-phase modulation.

These measurements were done with the Venteon SPIDER, which is usually po-
sitioned behind the hollow-core fiber for characterization of the ultra short pulses.
Because of that it is not available for constant survey of the input pulses in front of
the hollow-core fiber, and none of the measurements shown in this chapter come with
a simultaneously done characterization of the input pulse. As such the measurements
of Fig. 3.4 are only meant as a typical examples for the input pulses. Some variation
of the spectral phase from day to day has to be expected, especially in consequence
of readjustment of either the laser oscillator or the amplifier, but this has not been
systematically investigated.

3.3. Pulse properties after the hollow-core fiber
In this section the properties of two exemplary laser pulses after the gas-filled hollow-
core fiber, the chirped mirror compressor and the fused silica wedges are presented
and briefly discussed. This serves as a reference for later sections, when pulse prop-
erties and their dependence on parameters like the gas pressure will be studied in
more detail.
After propagation through the gas-filled hollow-core fiber the energy per pulse is

down to about 66% of the original energy in front of the hollow-core fiber, if the fiber
is well aligned. Or about 57% when the pair of fused silica wedges positioned shortly
after the fiber is also accounted for. Measurements have shown that this is inde-
pendent of the gas pressure, so neither absorption in gas nor the nonlinear process,
which strongly depends on the gas pressure, are relevant factors for transmission.
Fig. 3.5 shows the properties of two different pulses after propagation through the

hollow-core fiber, wedges and chirped mirror compressor.
The oscillations in the spectra seen in Fig. 3.5 a) are characteristic for pulses after

frequency generation in a fiber, for hollow-core fibers [70] as well as for solid optical
fibers [29]. They are caused by self-phase modulation, the fundamental process re-
sponsible for the generation of new frequencies in a fiber. It will be shown later in
section 4.2 that the spectral phase of the input pulse is mainly responsible for the
form of these oscillations. The spectra of the two different pulses are very similar to
each other.
The SPIDER assigns different linear gradients to the two respective spectral phases,

but these have no influence on the pulses’ temporal shape or duration and simply
shift the pulse as a whole in the time domain, as was discussed in section 1.1.2. The
peaks of the spectral phase of both pulses do coincide, and as such the two spectral
phases resemble each other.
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Figure 3.5.: Example of pulse properties measured behind the HCF, the chirped mir-
ror compressor and the wedges. In a) spectrum P (ω), spectral phase
φ(ω) and group delay, in b) pulse shape P (t) and nonlinear temporal
phase φa(t), and in c) the respective Wigner plot. The y-axis on the
right hand side of a) serves for both the spectral phase and the group
delay, with different units respectively. For better resolution the spectral
phase has been multiplied by 10. On the left hand side one pulse with a
very smooth pulse shape is depicted, and on the right hand side a more
typical pulse with TOD-induced prepulse. Both pulses have the same
FWHM duration. One month passed between measurements.
Left hand side: E = 845 µJ per pulse, p = 3 bar
Right hand side: E = 835 µJ per pulse, p = 2.95 bar
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They are not the same however, as is apparent in Fig. 3.5 b) in the plots of the
temporal pulse shape. Pulse I on the left hand side has a central peak and only
negligible side pulses, while pulse II on the right hand side has a prepulse of 30%
intensity caused by negative TOD. Pulse I and II have both the same FWHM pulse
duration and the same Fourier-transform limited pulse duration though.
The same observation is made in the respective Wigner plots of the two pulses.

For pulse I all high intensity components ofW(t, ω) are gathered in a narrow band at
time t = 0 and it is nearly ideally compressed, with the exception of the frequencies
below 2.2PHz. The Wigner plot of pulse II in comparison shows a curvature to the
left, which is a sign of negative TOD (see Fig. 1.4). W(t, ω) is also less concentrated
and has components spread over a larger time t. The frequencies below 2.2PHz
show a notable amount of uncompensated dispersion, same as for pulse I. The latter
feature has already been observed in the simulations of Fig. 2.10 on page 53.

It has to be mentioned that a pulse such as pulse II on the right hand side of
Fig. 3.5 is more often observable in the experiment, and a pulse without side pulses
in the temporal shape requires careful adjustment of the complete system. It stands
to reason that an imbalance towards negative TOD is present in the laser pulses. It
has been shown in section 2.2.3 that the nonlinear process in the hollow-core fiber
is responsible for a small part of that negative TOD. In the next section the effects
of the chirped mirror compressor are discussed, which is another source of negative
TOD in the beamline.

3.4. The chirped mirror compressor

The chirped mirror compressor (CMC) is required to compress the laser pulses after
propagation through the hollow-core fiber. It also pre-compensates the dispersion
which is introduced by passing through objects like the wedges and the glass windows
of the pressure and vacuum chambers and simple distance in air such that the laser
pulses achieve their shortest duration not directly after the CMC, but at a critical
point in the experiment which is a distance of several meters away.
We use an arrangement of six chirped mirrors from FemtoLasers, which are spec-

ified to compensate −45 ± 10 fs2 GDD per bounce for a wavelength range of 620 to
920 nm, corresponding to frequencies of 2.05 to 3.05PHz. It is not specified how
much TOD is compensated by the mirrors. To investigate the smoothness of the
spectral phase applied by the CMC and to verify the amount of GDD and TOD it
compensates, measurements with the SPIDER with and without the CMC have been
performed. For this the CMC was bypassed with a pair of mirrors.
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Figure 3.6.: Measurement of the group delay caused by the chirped mirror compres-
sor. Dispersion caused by the propagation distance in air has been de-
ducted. The blue plot is a 2nd order polynomial fit which results in GDD
−248 fs2 and TOD −244 fs3. The green plot is a fit which results in GDD
−251 fs2 and TOD −162 fs3.

GDD [fs2] TOD [fs3]
1m Air 20 12
1mm Fused Silica 36.1 27.4
Beamline (6.3m air, 2.5mm FS 216 143
Typical dispersion after HCF (simulation) 36 -32
Total 252 111
CMC (fit) -250 -162 to -244
Difference -2 -51 to -133

The dispersion coefficients of air at room temperature, p = 1 bar and a wavelength
of 800 nm are +20 fs2/m GDD and +12 fs3/m TOD [19], about an order of magnitude
higher than for neon gas. If the dispersion caused by the propagation through air is
accounted for in the calculations, the dispersion which is solely caused by the CMC
mirrors can be retrieved. The result is illustrated in Fig. 3.6.
A second order polynomial is fitted to the measured group delay to estimate the

dispersion caused by the chirped mirrors. Fit 1 extends over a frequency of 2PHz to
2.95PHz and delivers a dispersion of −248 fs2 GDD and −244 fs3 TOD. The limits of
the supporting frequency are chosen such that it is possible to fit the polynomial close
to the measured group delay and the mean square error is only 27.9 fs2. However, if
the limit is extended to a frequency of 3.1PHz for fit 2, the fit delivers a dispersion
of −251 fs2 GDD and −162 fs3 TOD with a mean square error of 52.6 fs2, which is
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nearly twice as much as for fit 1. The difference in estimation of GDD is negligible,
but the result for TOD is very sensitive to the limits of the supporting frequency.
Because of this the results of the fits have to be taken as a rough approximation for
TOD.
The fits deliver a dispersion of −41.3 fs2 GDD and −40.7 fs3 TOD, or −41.8 fs2

GDD and −27 fs3 TOD, in average per bounce, which is in quantitative agreement
with the mirror specification of −45 ± 10 fs2 GDD per bounce. A specification of
dispersion per bounce is potentially misleading though. The dispersion introduced
by a single chirped mirror has pronounced oscillations, which are compensated by
using chirped mirrors in matched pairs to achieve a dispersion which is as smooth
as possible in average [61, p. 553]. As such the small oscillations in the group delay
observable in Fig. 3.6 are not surprising. It is also obvious that these small oscillations
are mainly at frequencies where the spectral amplitude has low intensities and the
SPIDER measurement is less reliable.
The beamline covers about 6.30m distance in air and 2.5mm in fused silica from

leaving the pressure chamber of the hollow-core fiber to entering the vacuum chamber
of the experiment. This amounts to a dispersion of +216 fs2 GDD and +143 fs3 TOD.
Results of numerical simulations suggest that typical laser pulses in our setup have a
dispersion of +36 fs2 GDD and -32 fs3 TOD upon exit from the hollow-core fiber. It
follows that the compressor has to compensate for about +252 fs2 GDD and +111 fs3

TOD in total. The fit in Fig. 3.6 estimates the dispersion actually provided by
the CMC to be about −250 fs2 GDD and between −244 fs3 and −162 fs3 TOD. The
GDD is in good agreement and the difference can easily be adjusted with the wedges.
However, there is a big surplus of negative TOD, between -51 and −133 fs3. It is this
negative TOD, introduced by the CMC and the nonlinear process in the HCF, which
is responsible for the prepulses in the temporal envelope of type II pulses depicted in
Fig. 3.5.

3.5. Dependency on gas pressure and comparison
with numerical simulation

The nonlinear process in the hollow-core fiber depends on many parameters, as the
properties of the input laser pulse (power, spectral apmlitude and spectral phase) and
the properties of the hollow fiber (diameter, length, gas type and gas pressure). In
this section measurements of the supercontinuum’s spectral amplitude and spectral
phase in dependency on the gas pressure inside the hollow-core fiber are presented
and compared to the results of numerical simulations, which have been calculated
with the parameters used in the experiment.
The measurements were performed with the SPIDER placed after the hollow-core

fiber, the wedges and the chirped mirror compressor.

The section starts with an investigation how accurately the input parameters for
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the simulation are known from the experiment and what consequences fluctuations of
those parameters have. Then the results of experiment and calculation are presented
for three different gas pressures, 0.8 bar, 1.8bar and 2.8 bar respectively. This is
followed by a more complex pressure-dependent pseudocolor representation where
the spectrum is illustrated in pressure steps of ∆p = 0.05 bar from 0.05 to 3 bar.
The discussion of the results is mostly done in form of a description and comparison

of the data. Explanations of some specific features are presented in chapter 4, where
the properties of the supercontinuum are further explored with the help of numerical
simulations.

The default parameters for the numerical simulations are those used in the experi-
ment: input spectral amplitude and phase as in experiment (Fig. 3.4, PrismComp0),
ω0 = 2.365PHz, E = 830 µJ per pulse; hollow-core fiber length z = 1m, bore radius
a = 125 µm, neon gas at p = 3 bar.

3.5.1. Uncertainty of simulation parameters
The accuracy of a comparison between the results of a numerical calculation and an
experiment naturally depends on the accuracy with which the various input param-
eters of the simulation are known in the experiment.

The parameters affiliated with the gas-filled hollow-core fiber are bore radius and
length of the fiber, and gas pressure inside the fiber. Of these quantities the bore
radius has not been verified and is specified as a = 125 µm. Simulations yield that
an error of ∆a = ±5 µm, or ±4%, when otherwise typical parameters from the
experiment are used, results in a Fourier-transform limited (FTL) pulse duration τ0
after the hollow-core fiber of 4.4±0.3 fs, or a difference of ±6%. This is a possible
source of systematic error.
The actual length of the fiber is 1.004m instead of exactly 1m. This additional

bit of distance reduces the FTL duration τ0 about 0.02 fs (at otherwise typical pa-
rameters) and can hence be safely ignored.
The gas pressure is measured with two different manometers, one at the reducing

valve of the gas cylinder with an accuracy of reading of ±50mbar, and a second
manometer at the pressure chamber of the hollow-core fiber with an accuracy of
reading of ±10mbar. This keeps variations in the day-to-day gas pressure small,
with an estimated influence on the FTL duration of ∆τ0 ' ±0.02 fs, so that they
can be neglected. However, the second manometer has been calibrated with the
manometer of the reducing valve and its less fine reading accuracy, which is another
possible source of systematic error. Hence the potential systematic error due to
uncertainties of the pressure measurement is estimated to be ∆τ0 ' ±0.1 fs.

The parameters affiliated with the input laser pulses in front of the hollow-core
fiber are the power, spectral amplitude and spectral phase of the pulses.



3.5 Dependency on gas pressure and comparison with numerical simulation 69

Measurements with a LeCroy WaveSurfer 104Xs digital oscilloscope yield that the
laser pulses have a shot-to-shot energy per pulse stability of about 1%. At typical
parameters this results in ∆τ0 ' ±0.05 fs. If the gas pressure varied at random, this
energy fluctuation would correspond to a pressure uncertainty of ±40mbar, which is
of interest for the pressure pseudocolor plots of Fig. 3.10 later in this chapter.
The spectral amplitude is measured with an Avantes Avaspec-2048 spectrometer

which is part of the Venteon SPIDER. In section 4.2 it is shown though that small
variations of the input spectral amplitude have no notable influence on the results
of the numerical simulation. The uncertainty introduced by measurements of the
spectral amplitude can hence be neglected.

The spectral phase of the input laser pulses is a very sensible parameter however.
In section 4.2.1 it is shown that the settings of the prism compressor of the CPA
amplifier in front of the fiber have a great impact on the supercontinuum after the
fiber, and not only insofar that the spectral phase determines the duration and hence
the peak power of the pulses in front of the fiber.
Also, the day-to-day stability of the spectral phase in front of the fiber has not

been thouroughly investigated yet. The SPIDER is an expensive instrument and we
only have one SPIDER at our disposal. For this reason none of the measurements
after the fiber presented in this section come with a simultaneous measurement of the
spectral phase in front of the fiber. It is not uncommon to have to adjust the prisms
of the prism compressor for ±0.2mm, and Fig. 4.3 illustrates the consequences for the
supercontinuum with a change of±0.4mm of the prisms. Because of that it is difficult
to attach the correct input spectral phase to a measurement of the supercontinuum
after the fiber and this remains a degree of freedom in the comparison of measurement
and simulation.

3.5.2. Spectrum line scans dependent on pressure
In Fig. 3.7 to 3.9 the spectral amplitude P (ω), the spectral phase φ(ω) and the group
delay, the first derivative of the spectral phase with respect to ω, are illustrated for
gas pressures of 0.8bar, 1.8bar and 2.8bar in the hollow-core fiber. The pressure
values have been chosen to represent low, middle and high gas pressures. Each plot
depicts two different measurements, which have been performed at different days,
and the numeric simulation. The results of the two different measurements generally
agree with each other apart from minor deviations for all three exemplary pressures,
which is evidence to the reproducibility of the experiment. Of greater interest is the
comparison between the measurements and the numerical calculation.
Since the three depicted quantities, spectral amplitude, spectral phase and group

delay, each have their own respective properties, the discussion of the figures is
grouped according to those quantities for simplicity’s sake.
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Figure 3.7.: Measurements and numerical calculation of the spectral amplitude P (ω),
the spectral phase φ(ω) and the group delay after HCF, CMC and
wedges. HCF is filled with neon at 1.8bar pressure. The graphs for
spectral phase and group delay show the calculated spectrum as a refer-
ence.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse, HCF length z = 1m,
bore radius a = 125 µm, neon gas)
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Figure 3.8.: Measurements and numerical calculation of the spectral amplitude P (ω),
the spectral phase φ(ω) and the group delay after HCF, CMC and
wedges. HCF is filled with neon at 1.8 bar pressure. The graphs for
spectral phase and group delay show the calculated spectrum as a ref-
erence. The graph for the spectral phase also shows a thin black line,
which is the spectral phase of measurement 1 with arbitrary coefficients
for φ0 and φ1 to match it to the calculated data.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse, HCF length z = 1m,
bore radius a = 125 µm, neon gas)
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Figure 3.9.: Measurements and numerical calculation of the spectral amplitude P (ω),
the spectral phase φ(ω) and the group delay after HCF, CMC and
wedges. HCF is filled with neon at 2.8bar pressure. The graphs for
spectral phase and group delay show the calculated spectrum as a refer-
ence. The graph for the spectral phase also shows two thin green lines,
which are the spectral phase of measurement 2 with arbitrary coefficients
for φ0 and φ1 to match it to the two other curves.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse, HCF length z = 1m,
bore radius a = 125 µm, neon gas)
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Spectral amplitude

The spectral amplitude is rather straightforward. At 0.8bar the agreement of the
calculated spectral amplitude with the measured data is good for the low and high
frequency peaks and side wings, and hence produces a very similar bandwidth. The
position of the central peaks does not coincide as well though and shows some small
deviation in peak position and height.
At 1.8bar the agreement between measured and calculated data is generally good

for both the side wings and most peaks.
At 2.8bar a discrepancy at the low frequency side wing, which begins to be ob-

servable at 1.8bar, has become very distinct. In the measurements the left sidewing
has the form of a large round bump with steep flanks, while in the simulation it is a
low and nearly symmetric elevation which is shifted to lower frequencies.
At all pressures the simulation shows a series of fast oscillations between 2.52 and

2.58PHz which is not evident in the measurements.

The Fourier-transform limited (FTL) pulse duration τ0 of the respective spectral
amplitudes is calculated as the FWHM duration of the Fourier-transform of the
spectral amplitude without a spectral phase. It defines the shortest possible pulse
duration for that spectral amplitude. At each gas pressure the values for τ0 are only
spread over a small range, and they are even identical at p = 2.8 bar. This is in
indicator that the simulated spectral amplitude is in general good agreement with
the measured spectral amplitude.

Spectral phase

Before comparing the spectral phase φ(ω) one has to consider that the SPIDER does
not measure the carrier-envelope phase (CEP), which is the zero order coefficient of
the Taylor series expansion of the spectral phase, and simply sets φ(ω0) equal to zero.
As such each measured spectral phase plot can have an arbitrary offset added to it.
The same applies to the first order coefficient of the expansion and the SPIDER also
sets φ1(ω0) equal to zero. This means that each measured spectral phase plot can
have an arbitrary linear gradient added to it. That are two important degrees of
freedom in the comparison of the spectral phase which have no impact on the form
of the temporal envelope of the pulse, but make interpretation of the spectral phase
less intuitive. Often it is easier to compare the group delay instead, which has only
one degree of freedom in form of an arbitrary offset for φ1.
It is also important to keep in mind that the spectral phase and the group delay at

a particular frequency are of no relevance when the corresponding spectral amplitude
has no intensity at that frequency. As illustrated in Fig. 1.2 on page 23, the spectral
phase of a pulse which has experienced self-phase modulation (SPM) can show strong
shifts in frequency areas with low spectral intensity. Accordingly the group delay
exhibits pronounced peaks when this happens. Such peaks immediatly catch the eye
when looking at the grop delay, but when they take place in areas of low spectral
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intensity they have only a small impact on pulse properties like the temporal pulse
shape, for example.

That said, the spectral phase of the two different measurements is nearly identical
at 0.8 bar even without any adjustment to φ0 or φ1. At 1.8 bar a slight offset would be
necessary to superimpose the two measurements, and at 2.8 bar it is also necessary
to change the gradient of one of the measured spectral phases to bring them in
agreement. However, if this is done, as illustrated by one of the thin green plots in
Fig. 3.9, the spectral phase of the two different measurements is in good agreement
for each of the three exemplary gas pressures.
The calculated spectral phase agrees well with the measured data at 0.8 bar, and

a bit less so at 1.8bar. At a pressure of 2.8 bar only slight similarities exist between
the calculated and the measured spectral phase.

Group delay

In the graphs of the group delay it is readily apparent that the peaks of the group
delay, minima as maxima, coincide with the low intensity minima of the spectral
amplitude. The higher the gas pressure the more efficient is the SPM process, and
the sharper are the spectral amplitude minima and the higher are the group delay
oscillations. It is also observable that the measured group delay only slowly follows
the sharp and high oscillations of the calculated group delay. In fact the measured
group delay looks like the calculated group delay smoothed with a FFT lowpass
filter which eliminates oscillations with a high frequency. This suggests that the
SPIDER might simply not be able to resolve the fast oscillations of the group delay.
A possible explanation for this is that the high oscillations of the group delay occur
at frequencies where the spectral amplitude is low. The SPIDER, which uses a
nonlinear process for frequency shearing, is naturally less sensitive at frequencies
with low spectral amplitude. However, this is not further investigated in this work
and remains speculation.

At 0.8 bar the calculated group delay is in reasonable agreement with the mea-
sured data. As with the spectral phase, the similarities between the measured and
calculated group delay decrease with an increase of the gas pressure.

However, while the line scans presented in this section are useful to compare the
features of the spectrum at a particular gas pressure in detail, they are not well suited
to illustrate the development of those features in dependence on the gas pressure. To
help visualize this dependency, pseudocolor plots are used in the next section.

3.5.3. Pressure pseudocolor plots
In Fig. 3.10 the pressure-dependency of the spectral amplitude and phase, or rather
the group delay, after the hollow-core fiber is illustrated in pseudocolor plots. The
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group delay has been chosen instead of the spectral phase because it contains the same
information, and to avoid having to adjust the gradient of the spectral phase for each
step in gas pressure due to the indeterminacy of φ1 in the SPIDER measurements.
For the group delay this only results in an arbitrary offset, which has not been varied
in Fig. 3.10. Like in the linescans before, the results of two measurements from
different days and for the numerical simulation are depicted.

In section 3.5.1 it is ascertained that the shot-to-shot fluctuations of the laser power
of about ±1% cause deviations in the spectrum which correspond to fluctuations of
the gas pressure of ±0.04bar. From this follows that the power fluctuations cause
each line of the pressure-dependent pseudocolor plots to actually be an average of
±1 line for measurement 1, which has a stepsize of ∆p = 0.05 bar, and ±1/2 line for
measurement 2, which has a stepsize of ∆p = 0.1 bar.

Spectral amplitude

By looking at any of the presented pseudocolor plots for the spectral amplitude of
Fig. 3.10, it is observable that the pressure dependency of the spectrum follows a
specific pattern.
Each spectrum consists of several more or less sharp central peaks and a wing

at each side. The central peaks keep their position in frequency and increase and
decrease over a pressure range of about 1bar into and out of existence. Eventually
a new peak rises again at the same frequency. In pressure regions where old peaks
vanish and new peaks rise the two sets of peaks reach into each other like the teeth
of two combs.
The side wings shift their position in frequency, wandering outwards with increasing

gas pressure. In the measurements the high frequency side wing has a lower amplitude
than the low frequency side wing, while in the simulation it is the other way round.
Both side wings exhibit peaks which remain at constant frequency, as the central
peaks do, but they are less visible due to a lower contrast and are difficult to discern
at all.
The simulation exhibit fast oscillations of the spectral amplitude at ca. 2.21PHz

and at ca. 2.55PHz, which is symmetric around the central frequency ω0. The pseu-
docolor plots, in contrast to the line scans, reveal that the measurements also show
these oscillations, but at reduced resolution.

Overall the qualitative agreement of the simulated spectral amplitude with the
measured spectral amplitude is very impressive, both in the general behavior of the
side wings and the dynamic of the central peaks.

Group delay

The pseudocolor plots for the measured group delay in Fig. 3.10 show some blank
areas in black or white where the measured values go beyond the range of the color
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Figure 3.10.: Spectral amplitude P (ω) and group delay after HCF in dependence on
gas pressure in HCF, in a) measurement 1, in b) measurement 2 and in
c) numerical simulation. The black lines mark the positions of the line
scans which are shown in Fig. 3.7 to 3.9. Note that the pressure axis
starts with an offset since it is not possible to achieve pressures of less
than p = 50mbar with the employed vacuum pump.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse; HCF length z = 1m,
bore radius a = 125 µm), neon gas
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scale. This is to be expected for the lower left and right corners. These are areas
where the spectral amplitude has no noteworthy intensity and where the spectral
phase and hence the group delay has no physical meaning.
There are also blank spots in the middle of each of the measured plots, around

ca. 2.2bar. These are due to the limitation of the SPIDER, discussed in section 2.1.3,
to reconstruct the spectral phase in regions where the spectral amplitude has an
intensity near zero.
The spectral phase, or the group delay directly, suffers a discontinuity at those

points and accordingly a noteworthy offset, which moves those data points beyond
the limits of the color scale. It is possible to make an educated guess about the
amount of this offset, especially under consideration of the measurements without
discontinuity, and show result graphs with the blank areas filled in. However, for this
work it has been preferred to show the unmodified data.
The blank areas in the simulated pseudocolor plot are simply regions where the

value of the group delay lies outside the range of the color scale. This is unavoidable
since the same color scale as for the measured group delay is being used, but as it
is known from the line scans, the simulated group delay does oscillate with a much
higher amplitude than the measured group delay.

The plots for the measured group delay in Fig. 3.10 show similar characteristics as
the spectral amplitude. There are no side wings, but there are well defined peaks for
the central frequencies which do not shift in frequency. As for the spectral amplitude,
these peaks remain stable while they increase and decrease over a pressure range of
about 1bar or a bit less.
However, it is striking that the regions where these peaks are at their maximum and

the regions where they are about to vanish, and in the process of being replaced by
a new set of peaks at another frequency, are shifted for half a period in comparison
to the peaks of the spectral amplitude. This is for example demonstrated at gas
pressures of p = 1 bar and p = 1.5 bar in the plots of Fig. 3.10 a). At 1 bar the peaks
of the spectral amplitude have reached their maximum while those of the group delay
are about to change frequency, while at 1.5bar the peaks of the spectral amplitude
are about to change frequency while those of the group delay have reached their
maximum. This behaviour is observable in each of the pseudocolor plot pairs.

The appearance of the simulated group delay is in some aspects different from that
of the measured group delay. As already observed in the line scans, the oscillations of
the group delay in the simulation are higher and narrower than in the measurements.
In the pressure-dependent pseudocolor plot it is also apparent that the group delay

peaks do not remain stationary at the same frequency, like the peaks of the spectral
amplitude, but shift continuously in frequency. In general the maxima shift to lower
frequencies with increasing gas pressure, while the minima shift to higher frequencies.
At the intersections where these lines cross the group delay often assumes extreme
values. This happens because these intersections correspond to minima of the spectral
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Figure 3.11.: Wigner plots after HCF with p = 2.9 bar. In the experiment the spec-
tral phase was optimized with application of a pair of wedges. In the
simulation GDD and TOD were optimized independently of each other
(with -30 fs2 GDD and +20 fs2 TOD).

amplitude in the pressure-dependent plot.
The measured plots for the group delay show in tendency the same behavior as

the simulation, but with less contrast and detail, as if smoothed by some filter.
Whether this is caused by a physical process which is not considered in the numerical
simulation or simply by an inability of the SPIDER to resolve the fine details of the
group delay can currently not be determined.

Wigner plots

In Fig. 3.11 Wigner plots for gas pressures of p = 2.9 bar for both experiment and
simulation are illustrated. In the curved form of the high W(t, ω) region in the
measured data in a) it is apparent that pulse compression is not yet optimal in the
experiment. See Fig. 3.4 on page 62 for an example where better compensation of
the spectral phase is achieved. Both measured plots demonstrate a disadvantageous
peak broadening for low frequencies though. A comparison with Fig. 3.6 shows that
the chirped mirror compressor should work fine at the respective frequencies, so this
effect might be caused by a process in the hollow-core fiber which is not covered by
the numerical simulation.
For the simulated data in Fig. 3.11 b) compression is adjusted by optimizing GDD

and TOD independent of each other, in this case with -30 fs2 GDD and +20 fs2

TOD, which is unfortunately not possible in the experiment since the only degree
of freedom to change the dispersion is the wedge position. In the direct comparison
between the measured and the calculated data it is obvious that the spectral phase
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Figure 3.12: Measurements of the spectral
amplitude behind HCF in de-
pendence on the gas pressure
published by Frank et al. [71].
The input laser pulses have
a duration of τ = 30 fs and
E = 900 µJ per pulse. HCF
has a length of z = 1m, a
bore diameter of a = 250 µm
and is filled with neon gas.

measured in the experiment is not as detailed as the simulated phase and produces
a time-frequency plot which is not as finely resolved as for the calculated data.

Comparison with literature

Measurements of the spectral amplitude of a supercontinuum generated by prop-
agation through a hollow-core fiber in dependence on the gas pressure in the fiber
have been published in previous works, especially as part of comparisons between the
spectra generated by constant gas pressures and differential gas pressures [15, 44]. In
Fig. 3.12 the results of Frank et al. [71] are shown. The experimental setup is very
similar to the one used in our experiment and the parameters for the measurements
are nearly the same, which makes these results convenient for a comparison.
Even with a wavelength axis it is observable that the behavior of the central peaks

is the same. They remain at a fixed frequency and increase and decrease over a gas
pressure range of ca. 1 bar. The side wings shift outwards in frequency with increasing
pressure, but show a small region of fast oscillations at a constant frequency on each
side of the central frequency.

Gallmann et al. report in 2007 in a comparison of pulse properties between few-
cycle pulses generated in a hollow-core fiber and those generated by filamentation that
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Figure 3.13: Measurements of the spectral
phase φ(ω) behind a HCF in
dependence on the gas pres-
sure published by Gallmann
et al. [72]. The plotted
φ(ω) is actually the difference
between φ(ω) at the respec-
tive gas pressure and φ(ω)
at the next lower pressure.
The input laser pulses have
a duration of τ ' 25 fs and
E = 800 µJ per pulse. HCF
has a bore diameter of a =
250 µm and is filled with neon
gas. The spectral amplitude
is recorded at p = 2 bar.

the positive GDD of the output spectral phase after the hollow-core fiber increases
faster for gas pressures around 2 bar than for low gas pressures around 1 bar [72]. This
in regard to gas pressure nonlinear increase of GDD is explained as a manifestation
of the increasing self-phase modulation experienced by the intense pulse propagating
through the hollow-core fiber. The reported results are illustrated in Fig. 3.13.
However, this effect is not reproduced in the measurements presented here, and

neither does it occur in the numerical simulations.

General remarks

In conclusion of chapter 3 it can be stated that the results of the numerical calculation
are in qualitative agreement with the results of the experiment. This is in particular
true for the spectral amplitude. The agreement of the spectral phase leaves something
to be desired yet, though currently it cannot be determined whether this is because
of a physical effect and a real loss of detail, or due to a limitation of the SPIDER to
resolve fast changes of the spectral phase coupled with a low intensity of the spectral
amplitude.
This result justifies the application of the simple 1-dimensional approach and the

various assumptions and approximations made both in obtaining the propagation
equation (1.62) in chapter 1 and in implementing the nonlinear operator and disper-
sion operator in chapter 2. It proves that these lead to a model which is sufficiently
exact to describe the nonlinear process in our setup, and that the numerical simula-
tion can serve to make valid predictions about the experiment.



4. Results of the Numerical
Simulation

In this chapter the numerical simulation is used to study the effects of the input
spectral phase on the supercontinuum after the fiber. In the previous chapter this has
been executed for gas pressure in the hollow-core fiber and the results of the numerical
simulation have been found to be in qualitative agreement with the experiment.
Because of that the simulation is able to make valid predictions about the behavior
of the experiment and the resulting supercontinuum. It is found that the input
spectral phase is a key parameter in formation of the supercontinuum, and that this
parameter can be used to manipulate and optimize the properties of the pulses after
the hollow-core fiber.

In section 4.1 the effect of the fiber length on the supercontinuum is briefly inves-
tigated. In section 4.2 the effect of the input pulses’ properties and predominantly
of the spectral phase φ(ω) on the supercontinuum is studied. It turns out that the
input spectral phase is a crucial parameter which determines many of the resulting
supercontinuum’s features, like its bandwidth or the oscillation of peaks in the spec-
trum. In section 4.3 this result is applied to optimize the Fourier-transform limited
(FTL) pulse duration τ0 after the hollow-core fiber, since this is the supercontinuum
property with the highest importance to our experiment. In section 4.4 finally the
predictions about the FTL duration τ0 are transferred to simulations of the actual
pulse duration τ . It is found that by adding a substantial amount of third order dis-
persion (TOD) to the input spectral phase the pulse duration can likely be decreased
by at least 0.3 fs.

The parameters for the numerical simulations are listed in the figure captions. The
default parameters are those used in the experiment: input spectral amplitude and
phase as in experiment (Fig. 3.4, PrismComp0), ω0 = 2.365PHz, E = 830 µJ per
pulse; hollow-core fiber length z = 1m, bore radius a = 125 µm, neon gas. Pa-
rameters which are consistently not changed, like central frequency ω0, pulse energy
E, gas type, fiber length z and fiber bore radius a, are usually omitted. While the
gas pressure will change so often that no default value is listed here. The carrier or
central frequency of the input pulses in the experiment is also used for pulses with a
Gaussian spectrum and corresponds to a central wavelength of 797 nm.
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4.1. Effects of the hollow-core fiber on the
supercontinuum

The length and diameter of the gas-filled hollow-core fiber are important parameters
for the setup, and their optimal values depend on the choosen gas, pressure, and
input laser intensity [16]. The spectrum of the light pulse continues to broaden while
propagating along the length z of the hollow-core fiber, and the numerical simulation
makes it possible to examine the characteristics of the laser pulse at each increment
of z during propagation. Actually the simulation shows the same change in pulse
properties for percental variations of the length z as for variations of the gas pressure
p as they are illustrated in Fig. 3.10. Meaning, for a given simulation at gas pressure
p = p0/2 and fiber length z = z0, a simulation at p = p0 and z = z0/2 will deliver the
same results.
This is to be expected, because it follows from the equations presented in sec-

tion 2.2.1 that the operator N̂ ∝ γ0 ∝ n2 ∝ p, and roughly D̂ ∝ βi ∝ p. Only the
absorption coefficient α, which is also a part of D̂, is not proportional to the gas
pressure p, since it is not derived from absorption in the gas, which is negligible, but
from reflections inside the hollow-core fiber. From Eq. (2.4) follows that the oper-
ators N̂ and D̂ are incorporated in the numerical simulation as the product of the
respective operator with h, which is a small increment of the length z. Hence hN̂ and
hD̂ are directly proportional to both h and p, and it follows that a percentual change
in z has the same consequences as a corresponding change in p. At least inside the
limitations of this relative simple model for pulse propagation.

In Fig. 4.1 the change of the Fourier-transform limited (FTL) duration τ0 of the
pulse, which is directly retrieved from the spectral amplitude, is illustrated for three
different input pulses during propagation through the hollow-core fiber. The three
investigated pulses are an input pulse as measured in the experiment (black line), a
pulse with the same spectral amplitude but with a spectral phase of φ(ω) = 0 (red
line), and a Gaussian pulse with a narrower spectral amplitude and a spectral phase
φ(ω) = 0, but with the same pulse duration as the pulse from the black line (green
line). For curiosity’s sake the change of the central frequency ω0 is also plotted. It is
evident that due to self-steepening, which favors the generation of new frequencies on
the blue side of the spectrum, the central frequency ω0 is subject to a steady increase
during propagation through the fiber.
In the black curve kinks or abrupt steps of the gradient in the evolution of the FTL

pulse duration τ0 are observable, as for example at z ' 47 cm. Since the step size
h is 5mm this is not due to a lack of data points. Rather these steps agree with a
observation made in section 3.5.3, that the spectrum does not evolve continuously but
in steps. While this observation has been made for the dependency of the spectrum
on the gas pressure p, it follows from the discussion above that a dependency on the
fiber length z has to show the same behavior. Indeed the sudden increases of the
high frequency side wing of the spectrum in Fig. 3.10 roughly correspond with the
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Figure 4.1.: Calculation of FTL pulse duration τ0 during propagation inside HCF for
three different input pulses. The first input pulse is a Gaussian with
τ0 = 21 fs and a spectral phase equal to zero (red), the second is a
Gaussian with τ0 = 34.9 fs and a spectral phase equal to zero (green),
and the third a Gaussian with τ0 = 21 fs and a spectral phase as measured
in the experiment. The dotted lines belong to the y-axis on the right
hand side and are the respective values for the central frequency ω0.
(Parameters: p = 3 bar)

gradient steps of the black curve in Fig. 4.1, which serves to explain the latter.
As can be gathered from the black curve, the pulse in the experiment is not achiev-

ing as broad a supercontinuum as it could after propagating 1m in the gas-filled
hollow-core fiber. However, the limitations of the pressure chamber make an increase
of fiber length or a further increase of gas pressure difficult, and the input laser power
is already at the maximum the laser system can provide. A more viable approach
would be to fabricate a smoother spectral phase φ(ω) for the input pulse and decrease
pulse duration in this way.
The red curve illustrates the FTL pulse duration τ0 for an input pulse with a

spectral amplitude as in the experiment but with a spectral phase equal to zero. It
is evident that in this case gas pressure would have to be decreased considerably to
achieve an appropriate FTL duration after a propagation distance of 1m.
The green curve illustrates an input pulse with a spectral phase equal to zero but

with a decreased spectral bandwidth. It has the same pulse duration in front of the
hollow-core fiber as the pulse of the black curve, and yet its FTL pulse duration τ0
is notably shorter than it is for the black curve.
It follows that the spectral phase of the input pulse is an important parameter

for the generation of a supercontinuum, and not only insofar that it determines the
pulse duration of the input pulse. This is further investigated in the next section.
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4.2. Effects of the input laser pulse on the
supercontinuum

The output of the numerical calculation is determined by the input beam, its power,
spectral amplitude and spectral phase. In Fig. 4.2 the simulation results for three
different input pulses are shown. The first is the pulse as measured in the experiment,
including spectral amplitude (black curve) and group delay (blue curve). The second
is a Gaussian pulse with a bandwidth equivalent to a FTL pulse duration of τ0 =
21 fs (green curve) with a spectral phase as measured in the experiment. The third
illustrated input pulse is a Gaussian with reduced bandwidth and a Fourier-limited
pulse duration τ0 = 34.9 fs (red curve), with a spectral phase equal to zero. The
frequency bandwidths of the respective Gaussian pulses are chosen such that all
three input pulses have the same pulse duration τ = 34.9 fs.
One of the objectives of the simulations presented in Fig. 4.2 is to determine and

compare the roles of the input spectral amplitude and phase. The effect of the input
spectral amplitude can be estimated by means of the first two curves, which have the
same spectral phase but a different spectral amplitude. While the latter two curves
both have a Gaussian spectral amplitude but different spectral phases, and hence are
used to estimate the effect of the input spectral phase.
As is observable in Fig. 4.2 c) the differences in spectral amplitude between the

black (spectral amplitude of experiment) and the green (Gaussian spectral amplitude)
input pulse make nearly no difference for the result of the calculated hollow-core fiber
output. In the calculated group delay the only notable difference is the behavior at
the fringes on both sides. The group delay of the green curve shows strong oscillations
in the fringes, despite the green curve having the same input spectral phase and a
smoother input spectral amplitude than the black curve.
In comparison the bandwidth-limited curve (red), which has the same pulse dura-

tion at entry into the hollow-core fiber as the two other pulses but a very different
spectral phase, shows a quite different behavior. The resulting spectrum is both
broader and less perturbed by oscillations, and the latter effect is also very notable
in the group delay. Due to the increase in bandwidth this pulse has a much shorter
FTL pulse duration, and due to the overall smoother phase it is easier to compress.
In comparison of the Wigner plots in Fig. 4.2 e) and f) the consequences of the

different input spectral phases φ(ω) are demonstrated. For the input pulse with a
spectral phase of the experiment (green curve) a considerable part of the pulse energy
after the hollow-core fiber is bound in side pulses in front and after the main pulse,
while the input bandwidth-limited pulse (red curve) shows no apparent side pulses
at all. The difference in generated bandwidth is also apparent in the Wigner plots.
From the gradient of the highW(t, ω) band can be discerned that the pulse with the
spectral phase of the experiment (green curve) has a greater amount of GDD than the
bandwidth-limited pulse (red curve). Further simulations yield that the pulse with
the spectral phase as measured (green curve) needs -36 fs2 GDD and +32 fs3 TOD for
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Figure 4.2.: Simulation results after HCF for three different input pulses. Parameters:
spectral amplitude and phase as in experiment (black), Gaussian with
τ0 = 21 fs and spectral phase as measured in experiment (green), and
Gaussian with τ0 = 34.9 fs and spectral phase of zero (red). All three
pulses have the same pulse duration τ = 34.9 fs. In a) the spectral
amplitude P (ω) (normed to energy per pulse) and spectral phase φ(ω)
of the input pulses are shown, in b) the temporal pulse shape P (t), in
c) the calculated spectrum after the HCF, in d) the calculated group
delay after the HCF, and e) and f) show the Wigner plots of the pulses
represented by the green and red curves respectively.
(Parameters: p = 3 bar)
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optimal compression and the bandwidth-limited pulse (red curve) only -30 fs2 GDD
and +19 fs3 TOD. With this dispersion values both pulses are compressed nearly
down to their respective Fourier-transform limit.
For these comparisons the green and the red curve have been chosen because both

have a Gaussian input spectral amplitude, if with different bandwidths, and the
dominant difference between both pulses is the spectral phase φ(ω). The conclusion
is that the spectral phase of the input pulse is a critical parameter in the generation
of new frequencies and not only insofar as it determines the duration of a pulse,
which has been the same for all three exemplary pulses. The simulations of Fig. 4.2
show that an input laser pulse with a smooth spectral phase is advantageous for the
generated supercontinuum even if the input pulse duration remains unchanged. This
observation is investigated further in the next section.

4.2.1. Input pulse spectral phase
To further investigate the impact of the input pulse’s spectral phase on the proper-
ties of the supercontinuum after the hollow-core fiber, simulations of the pressure-
dependent spectral amplitude and group delay like they are presented in chapter 3
are studied. The three prism compressor settings illustrated in Fig. 3.4 on page 62
are chosen to set the input spectral phase for three simulations. In Fig. 4.3 the results
are shown, which are quite different from each other despite only minor differences in
the respective input spectral phase. As a reference the results for a Gaussian input
pulse with a spectral phase equal to zero are also depicted.
In comparison to plot b), which shows the same data already presented in Fig. 3.10

c), plot a) has an increased bandwidth and slightly less pronounced oscillations in the
spectral amplitude. It does not show the prevalence of negative odd order dispersion
as plot b) does, expressed in the increased intensity of its high frequency sidewing
and its rupture into different peaks, but rather a prevalence of even order dispersion.
The effects of even and odd order dispersion on a pressure-dependent spectrum plot
are further illustrated in Fig. 4.4.
Fig. 4.3 c) has a decreased bandwidth and shows pronounced oscillations in the

spectral amplitude, especially in the side wings. The influence of even order disper-
sion is supressed in favor of the odd terms. The gas pressure range in which the
peaks remain constant are longer and have an offset in pressure in comparison to a)
and b). This is due to the increased input pulse duration and reduced instantaneous
power, which makes the nonlinear process overall less efficient.
Fig. 4.3 d) shows the calculation for an input pulse with a spectral phase of zero. It

is notable different from the other three calculations, with more intensity in the side
wings of the spectrum and very minor oscillations in the center. Both the spectral
amplitude and the spectral phase evolve smoothly in dependence on the gas pressure,
without the stepwise evolution observable in the plots a) to c).

From this follows that the form of a supercontinuum spectrum after frequency
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Figure 4.3.: Calculated spectral amplitude P (ω) and group delay for four different
input pulses in dependency of the gas pressure in HCF. Input pulses of
a) to c) are taken from measurements Fig. 3.4. The PrismComp value
stands for three different settings of the prism compressor in front of the
HCF. The data for b) are the same as in the bottom row of Fig 3.10.
In d) the input pulse is a Gaussian with pulse duration τ0 = 35 fs and a
spectral phase φ(ω) = 0.
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generation in a hollow-core fiber, with its well known oscillations, is predominantly
determined by the spectral phase of the input pulse. This permits to assess the
spectral phase of the input pulse by studying the spectrum of the pulse after the
hollow-core fiber and especially its pressure-dependent evolution. Even more im-
portant, this opens the possibility to manipulate and optimize the spectrum of the
supercontinuum by manipulating the input spectral phase of the laser pulse in front
of the hollow-core fiber, for example with chirped mirrors.
Before the latter is discussed in section 4.3, the effects of the different Taylor series

expansion coefficients of the spectral phase are briefly investigated.

Effects of different expansion coefficients of the spectral phase

In Fig. 4.4 the effects of coefficients of the spectral phase φ(ω) up to the 5th order
on a pressure-dependent pseudocolor spectrum plot are illustrated. As demonstrated
in the discussion of Fig. 4.3 above this can be useful in comparisons of such plots.
The exact value of the input spectral phase in Fig. 4.4 is chosen such in each case
that the Fourier-transform limited (FTL) pulse duration after the hollow-core fiber is
τ0 = 4.5 fs at p = 3 bar, and the spectral amplitudes have a comparable bandwidth.

In the case of group delay dispersion (GDD) it is apparent that a FTL pulse du-
ration of 4.5 fs can be achieved with a bit more positive GDD than negative GDD.
This means that input negative GDD is more disadvantegous to the spectral band-
width than positive GDD. This is an established phenomenon [73]. Negative GDD
means that the pulse is down-chirped, or that the high frequencies are at the pulse
front and the low frequencies at the pulse’s trailing edge. However, SPM creates new
frequencies with lower energy than the central frequency at the pulse front and with
higher energy at the pulse’s trailing edge. Hence the spectrum of a pulse with nega-
tive GDD does not gain new frequencies by SPM, and indeed the spectral bandwidth
decreases at first as the frequencies in the pulse are averaged out. Only when SPM
has cancelled the previous down-chirp of the pulse it begins to increase the spectral
bandwidth of the pulse again.
In addition to that change in efficiency Fig. 4.4 demonstrates another significant

difference on the consequences of positive and negative GDD. For a pulse with positive
GDD the peaks of the spectral amplitude shift continuously apart with increasing
gas pressure. Or during propagation in the hollow-core fiber, since it has been shown
at the start of this chapter that the changes of the pulse spectrum in regard to gas
pressure are the same as in regard to propagation distance. For an input pulse with
negative GDD however the central peaks in the spectral amplitude remain at the same
frequency while the gas pressure increases. New peaks come into existence, increase
in amplitude and then decrease and vanish again, without a shift in frequency. Only
the side wings of the spectrum show a continuous shift like it is the case for an input
pulse with positive GDD.

The plots for third order dispersion (TOD) in Fig. 4.4 clearly demonstrate the
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Figure 4.4.: Calculated pressure-dependent spectrum plots for negative and positive
coefficients of the spectral phase φ(ω) up to the 5th order. The respective
values of φ(ω) are chosen such that at 3bar the spectral amplitude has
a FTL pulse duration τ0 = 4.5 fs. A plot with φ(ω) = 0 is depicted in
Fig. 4.3 d).
(Parameters: input Gaussian pulse τ0 = 35 fs)
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Figure 4.5.: Simulation of the spectral amplitude after the HCF for input pulses with
φ(ω) = ±5000 fs3 TOD, at three different gas pressures, for comparison
of the peak ratios.
(Parameters: input Gaussian pulse τ0 = 35 fs)

asymmetric nature of the effects of TOD on the supercontinuum. An input pulse
with negative TOD shows a significant increase in the spectral amplitude for high
frequencies, while a pulse with positive TOD favors low frequencies. It has been
shown in section 2.2.3 that self-steepening is responsible for a similar asymmetry
by making the pulse trailing edge steeper, and hence causing SPM to work more
efficiently for the pulse trailing edge and the high frequencies located there. This
causes the high frequency peaks in the spectral amplitude to become broader and
hence lower in amplitude, and the low frequency peaks to become narrower but higher
in amplitude. TOD in the input pulse works in a similar way by changing the gradient
of the pulse slopes and hence the efficiency at which SPM generates new frequencies.
Positive TOD increases the gradient in the pulse trailing edge and works in the same
direction as self-steepening, broadening the high frequency peaks and causing the low
frequency peaks to be narrower and higher in amplitude. This is illustrated in Fig. 4.4.
For negative TOD the opposite effect is observed at first and the high frequency
peaks become narrow and show an increased amplitude. This effect is reduced by
the onset of self-steepening however, and the peaks for high and low frequencies
then show similar widths and amplitude heights. With increasing gas pressure self-
steepening becomes dominant and the low frequency peaks are again narrower and
have a higher amplitude than the high frequency peaks. This is illustrated in Fig. 4.5.
For comparison the results for both positive and negative TOD are shown, and the
supercontinuum for an input pulse with positive TOD does not display this reversal
in peak ratio since its effect is already working in the same direction as the effect of
self-steepening.
In the TOD plots of Fig. 4.4 it is also obvious that, same as for GDD, a FTL

pulse duration of 4.5 fs can be achieved with a larger amount of positive TOD than
negative TOD. This is only to be expected, since previous simulations have shown
that self-steepening has an advantageous effect on the supercontinuum bandwidth.
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Negative TOD in the input pulse counters this and is hence more disadvantageous
to the bandwidth than positive TOD.

The 4th order dispersion plots of Fig. 4.4 show traits which resemble those the
GDD plots, and the plots for 5th order dispersion resemble those for TOD. It is to
be expected that the different even order coefficients in the Taylor expansion of the
spectral phase φ(ω) are similar in their effect on the supercontinuum, and so are the
effects of the respective odd order coefficients. A notable difference is the appearance
of very fast oscillations at roughly 2.25 and 2.5PHz. These oscillations increase with
the coefficient order, and they are also observable in the simulation of Fig. 3.10 c).

The unfortunate double peak form of the spectral phase in our experiment and
the necessity to use high order coefficients in the Taylor expansion to reproduce
this phase have already been demonstrated and discussed in section 3.2. However,
simulations show that the result of a pressure pseudocolor plot like in Fig. 4.3 is very
sensitive to the input spectral phase. If such a plot is measured in an experiment
it is conceivably possible to reconstruct the input spectral phase from it with an
appropriate algorithm, if it can be demonstrated that the correlation between input
spectral phase and pressure pseudocolor plot is unambiguous. Of course this is only
a useful option if a SPIDER or another phase measurement device is not readily
available, or if the spectral amplitude of the supercontinuum has so extensive minima
that the spectral phase cannot be retrieved by the SPIDER algorithm.

4.2.2. Input pulse spectral amplitude
In the previous section the effects of the input pulse’s spectral phase on the properties
of a supercontinuum after a hollow-core fiber have been discussed in detail. In Fig. 4.2
on page 85 it has already been demonstrated that small deviations from a Gaussian
pulse in the spectral amplitude make no difference for the calculation and provide
the same result as for a Gaussian spectral amplitude. In this section it is investigated
whether big changes in the spectral amplitude of the input pulse can have effects on
the supercontinuum similar to the effects of the spectral phase which have already
been demonstrated.
It is observable in Fig. 3.10 that the single peak of the input spectral amplitude

separates instantly into a double peak even at low preasures and very weak self-phase
modulation. This is a consequence of the double peak in the input spectral phase
φ(ω). Simulations demonstrate that a very similar pressure-dependent spectrum
plot can be achieved with an input spectral phase equal to zero, if the input spectral
amplitude already consists of two peaks before entering the hollow-core fiber. This
is illustrated for three different examples in Fig. 4.6.
The pressure-dependent pseudocolor spectrum plots for these input pulses with

a double peak in the spectral amplitude show a similar behavior of the spectral
amplitude after the hollow-core fiber as the pulses with a double peak in the input
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Figure 4.6.: Calculation of the pressure-dependent spectrum P (ω, p) after the HCF
with an input spectrum of double Gaussian peaks. In a) three different
input spectra are depicted. The two symmetric spectra have a different
peak bandwidth and distance between peaks, which are chosen to result
in the same Fourier-limited pulse duration for the double peak. In b)
to d) P (ω, p) is shown. The peak ratio for the asymmetric spectrum is
1:1.5 for the field amplitude or 1:2.25 for the power.
(Parameters: input spectral phase φ(ω) = 0)
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spectral amplitude in Fig 3.10, both for the central peaks as for the side wings. In
comparison between Fig. 4.6 b) and d) it is apparent that an increase in modulation
of the input spectral amplitude peaks results in sharper defined peaks in the spectral
amplitude after the hollow-core fiber. Plot c) demonstrates the calculation results for
a spectrum with asymmetric peaks, and on the side of the low input peak all peaks
in the resulting spectral amplitude are reduced in intensity.
It follows that manipulation of the input spectral amplitude of the laser pulses

in front of the hollow-core fiber can have a similar effect like manipulation of the
spectral phase. The investigation in this section is only done in the form of a few
examples though and is in no way meant as comprehensive.

4.3. Optimization of the supercontinuum with the
input spectral phase

In a publication from 2008 Winterfeldt et al. investigate the application of temporal
and spatial pulse shaping to ultra short laser pulses after a hollow-core fiber to control
the characteristics of high harmonic radiation generated with these pulses [74]. For
this they employ a pulse shaper realised with a deformable mirror to manipulate the
spectral phase of the laser pulses between the exit of the hollow-core fiber and the
gas target for high harmonic generation.
It has been demonstrated in section 4.2.1 that the input spectral phase φ(ω) of

the laser pulses in front of the hollow-core fiber can also be used to manipulate the
properties of the pulses after the fiber. While this approach naturally cannot achieve
the fine control provided by a pulse shaping device, it is implemented earlier in the
beamline and is not accompanied by the inherent limitations of a pulse shaper in
regard to pulse duration and power. The optimization of high harmonic generation
(HHG) through control of the spectral phase in front of the hollow-core fiber is a
potentially promising application.
The supercontinuum property which is of greatest importance for HHG and the

isolation of attosecond pulses is the pulse duration. In this section it is investigated
with numerical simulations to which extend the bandwidth of the supercontinuum
can be optimized with the input spectral phase, first for a spectral phase near to zero
and then for a spectral phase as used in the experiment.
The optimized quantity is the Fourier-transform limited (FTL) pulse duration τ0

of the supercontinuum, which ought to be as short as possible. It is defined as the full
width half maximum (FWHM) of the temporal pulse shape for a bandwidth-limited
pulse, meaning for a spectral phase φ(ω) = 0.

The influence of an input spectral phase on an output supercontinuum has already
been investigated for several applications. In a study of the shot-to-shot stability of
several pulse parameters in front of and after a hollow-core fiber measurements of
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the output pulse duration in dependence on a linear input chirp (GDD) have been
reported [75].
Solitons are pulses which propagate through optical fibers with anomalous dis-

persion without changing their pulse shape, and they can be transmitted over long
distances through optical fibers if they are amplified in periodic distances. It has
been found that the distance at which amplification is necessary can be increased
when the input pulses exhibit positive GDD [76].
Intense few-cycle pulses generated through self-filamentation in a noble gas at-

mosphere instead by propagation through a gas-filled hollow-core fiber are a broad
field of study, and it has been found that for such pulses the shortest output pulse
after compression is not achieved with the shortest input pulse, but with a positive
input GDD [77]. It has recently been reported that it is even possible to achieve self-
compression of few-cycle pulses generated by self-filamentation with the application
of positive input GDD [78].
However, these studies concern themselves nearly exclusively with a quadratic

input spectral phase, also referred to as a linear chirp, and with supercontinua which
are not generated by propagation through a gas-filled hollow-core fiber.

4.3.1. Nearly bandwidth-limited pulse
Eq. (1.64) states that the generation of new frequencies scales with the derivative
of the pulse intensity with respect to time. Since a bandwidth-limited pulse with
a spectral phase equal to zero has the shortest duration which is attainable for a
pulse with a given spectral amplitude, it is intuitive to assume that such an input
pulse will result in the broadest possible supercontinuum after propagation through
a hollow-core fiber.
However, the numerical calculations show that positive TOD in front of the hollow-

core fiber can actually slightly reduce the Fourier-transform limited (FTL) pulse
duration of the pulse after the hollow-core fiber. This effect is illustrated in Fig. 4.7.
With a Gaussian input pulse which has a FTL pulse duration of τ0 = 30 fs and
E = 830 µJ per pulse at a central frequency ω0 = 2.36PHz, and a hollow-core fiber
of z = 1m length and a = 125 µm radius filled with neon gas at p = 2 bar, the
simulation predicts that the shortest pulse after the fiber is achieved with an input
spectral phase of +2000 fs3 third order dispersion (TOD). The difference in duration
to an input bandwidth-limited pulse is only small though, with about ∆τ0 ' 0.1 fs.
The TOD required to achieve the shortest possible FTL pulse duration after the

hollow-core fiber depends on the characteristics of the input laser pulse and the
settings of the hollow-core fiber. Fig. 4.8 demonstrates that in the case of an input
Gaussian with a FTL pulse duration of τ0 = 50 fs the optimal TOD scales nearly
linear with the gas pressure p, for example.
The reason for this positive consequence of TOD in the spectral phase of the input

pulse is the interplay between TOD, self-steepening and self-phase modulation (SPM)
which has already been commented on in the discussion of Fig. 4.4. A correct amount
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Figure 4.9.: Left-hand side: simulation of FTL pulse duration τ0 after propagation
through HCF in dependence on GDD and TOD in front of HCF for a
pulse with a spectral phase as in experiment (PrismComp0, Fig. 3.4).
Right-hand side: pulse duration τ of the input pulse in front of HCF.
In white areas τ is beyond the scale because of double peaks making
the FWHM method to determine pulse duration impractical. The black
lines mark the original input spectral phase without additional GDD or
TOD. The input spectral phase resulting in the shortest pulse duration
is marked with a black dot.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse, neon gas at p = 1.8 bar)

of positive TOD increases the advantegous effect of self-steepening on the generation
of new frequencies due to SPM. Simulations without the self-steepening term do not
show this behavior and have a minimum FTL pulse duration after the hollow-core
fiber for an input pulse with no TOD.

4.3.2. Pulse with a spectral phase of the experiment
The potential for optimizing a nearly bandwidth-limited pulse is certainly of academic
value, but of immediate interest for any experiment is the optimization of the pulses
available in that experiment. Fig. 4.9 shows the simulation results for the FTL pulse
τ0 duration after the hollow-core fiber if the input spectral phase φ(ω) is varied around
a phase as measured in our experiment instead of a nearly bandwidth-limited pulse.
As starting spectral phase the measurement for the default prism compressor setting
(PrismComp0) illustrated in Fig. 3.4 is chosen.
Due to the double peak form of the input spectral phase, variations of GDD and

TOD of the input phase result in several local minima of the FTL pulse duration
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Figure 4.10.: Standard deviation pulse duration τσ in dependence on additional GDD
and TOD in front of HCF for a pulse with input spectral phase as in
the experiment. Left-hand side: simulation of FTL τσ after propaga-
tion through HCF. Right-hand side: τσ (not FTL) of the input pulse
in front of HCF, and input spectral phase describing the shortest pulse
is marked with a black dot. The black lines mark the original input
spectral phase without additional GDD or TOD.
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse, neon gas at p = 1.8 bar)

τ0 after the hollow-core fiber which would be difficult to find experimentally. A
comparison with the pulse duration τ in front of the hollow-core fiber reveals that
short FTL pulse durations after the fiber tend to occur with short pulse durations in
front of the fiber, even if the two plots are not in complete agreement and areas with
notable differences exist. At conditions as in the experiment, with exception of the
gas pressure which is reduced to p = 1.8 bar to prevent the onset of pulse collapse in
the calculation, the shortest possible FTL pulse duration in the simulation is achieved
with an additional −100 fs2 GDD and +20 000 fs3 TOD in front of the hollow-core
fiber. In comparison to the original spectral phase at the reduced gas pressure of
1.8bar, this more than halves the FTL pulse duration τ0 from 6.7 fs to 2.9 fs.

The standard deviation pulse duration τσ

The right-hand side of Fig. 4.9 illustrates that the FWHM method of determining
pulse durations is at its limits for pulses with the depicted spectral phase. Fig. 4.10
demonstrates how the same plots look if instead of the FWHM pulse duration τ the
standard deviation pulse duration τσ introduced in section 1.1.3 is used.
The left-hand side of Fig. 4.10 makes it clear that the standard deviation pulse
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Figure 4.11.: Reconstructed pulse shapes in front of HCF. The original pulse as mea-
sured with the SPIDER (black), the original pulse with an additional
−100 fs2 GDD and +20 000 fs3 TOD to achieve the shortest possible
FWHM FTL duration τ0 after HCF (red), and the original pulse with
an additional −160 fs2 GDD and +10 000 fs3 TOD to achieve the short-
est standard deviation duration τσ in front of HCF (green).

duration τσ produces durations which are very different from the FWHM pulse dura-
tions τ . It is not a quantity well suited to describe a pulse shape which is dominated
by a single peak, since little side peaks which are distant from the central time t = 0
are considered in undue strength and increase the pulse duration immensely despite
their low physical importance. However, the combination of τ and τσ allows to make
interesting conclusions about the temporal pulse shape. If τ is low and τσ is high,
there is a short single peak, but a notable part of the total pulse energy is lost in
small side peaks. If τ is high and τσ is low, the pulse energy is concentrated around
t = 0, but in a disadvantageous broad peak or maybe even a double peak. If both τ
and τσ are low the pulse shape is ideal for a single short peak with maximum energy.
The right-hand side of Fig. 4.10 demonstrates that τσ provides a much more in-

tuitive description of the pulse in front of the hollow-core fiber than the FWHM
duration τ . The standard deviation pulse duration τσ is at its minimum when the
pulse is as close to being bandwidth-limited as is possible with its spectral phase
φ(ω). Around this minimum τσ increases symmetrically and continuously with vari-
ation of the spectral phase. In Fig. 4.10 that minimum of τσ is achieved when the
spectral phase is modified by an additional −160 fs2 GDD and +10 000 fs3 TOD in
front of the hollow-core fiber.
It is an interesting observation that in the simulation the shortest FWHM FTL

duration τ0 after the hollow-core fiber is achieved with an input spectral phase with
another +10 000 fs3 TOD. Fig. 4.11 illustrates the temporal pulse shape of three
different pulses in front of the hollow-core fiber. The original pulse with the spectral
amplitude and phase of our experiment (black), the pulse which according to the
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simulation provides the shortest possible FWHM FTL pulse duration τ0 after the
hollow-core fiber and which exhibits a steep trailing edge (red), and the pulse which
has the shortest standard deviation duration τσ in front of the fiber and which has
the most symmetrical of the three pulse forms (green). The starting slope of all
three pulses is similar, while the trailing edge has different gradients for each pulse.
This demonstrates once more that not a smooth input spectral phase results in the
shortest pulse duration possible after the fiber, but a spectral phase with a surplus
of TOD and hence a pulse with a steep trailing edge.

4.3.3. Consideration of the chirped mirror compressor
An optimization of the Fourier-transform limited pulse duration τ0 provides impor-
tant information about the supercontinuum after the hollow-core fiber, but neglects
to consider the restrictions imposed by the compressor which has to compensate for
the dispersion of the laser pulse. It is demonstrated in Fig. 3.6 on page 66 that
the mirrors from FemtoLasers, which are employed in our chirped mirror compressor
(CMC), only work for frequencies from 2PHz to roughly 3.1PHz. The FTL pulse
duration τ0 is not a good quantity for optimization of the pulse if this causes a consid-
erable part of the optimized supercontinuum to be outside of the spectral amplitude
supported by the CMC.
The left-hand side of Fig. 4.12 illustrates what pulse durations τ are to be expected

in the experiment if CMC and wedges are included in the simulation. The dispersion
of the CMC is illustrated in Fig. 3.6, and the dispersion caused by propagation
through air and fused silica elements in the beamline is also added to the simulation.
The wedge position is handled as a degree of freedom and is optimized for each
calculation to provide a short pulse duration after the CMC.
Actually, what is optimized with the wedges in the simulation is not the pulse

duration but the peak power. The right-hand side of Fig. 4.12 shows how a pulse
optimized with the wedges for pulse duration τ would look like in comparison to a
pulse optimized for peak power. It is the same pulse after the fiber, but with slightly
different settings of the wedges. The pulse optimized for pulse duration τ is slightly
shorter, but it exhibits strong side peaks. This happens because with the wedges
GDD and TOD are not optimized separately from each other, and an increase of
GDD is also coupled with an increase of TOD. The same effect is observed in the
actual experiment. Hence the slightly increased pulse duration of a pulse optimized
for peak power is considered a trade-off for a notable increase in peak power and
contrast.
The shortest pulse duration under these conditions is achieved with a modification

of −20 fs2 GDD and +20 000 fs3 TOD of the input spectral phase in front of the
hollow-core fiber in the simulation. In comparison to Fig. 4.9 it is apparent that the
general behaviour of the pulse duration after the hollow-core fiber under consideration
of the compressor is similar to the behaviour of the FTL pulse duration, though with
a shift of the input spectral phase to slightly higher values of GDD. For the shortest
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Figure 4.12.: Left-hand side: simulation of the pulse duration τ after propagation
through HCF and CMC in dependence on GDD and TOD in front of
HCF for a pulse with a spectral phase as in experiment (PrismComp0,
Fig. 3.4). In white areas τ is beyond the scale. The input spectral phase
resulting in the shortest pulse duration is marked with a black dot. The
black lines mark the original input spectral phase without additional
GDD or TOD. Right-hand side: simulated pulse with −20 fs2 GDD and
+20 000 fs3 TOD, with wedges optimized for peak power (in black) and
for pulse duration τ (in red).
(Parameters: input spectral amplitude and phase as in experiment
(Fig. 3.4, PrismComp0), E = 830 µJ per pulse, neon gas at p = 1.8 bar)



4.4 Expectations for the experiment 101

possible pulse duration this difference amounts to +140 fs2 GDD.

4.4. Expectations for the experiment
It has been established in this chapter that it is possible to optimize the properties
of the supercontinuum after a hollow-core fiber by manipulation of the input pulse’s
properties, and in particular its spectral phase φ(ω). In the previous section it is
demonstrated that for our experiment and its settings, including the typical input
spectral phase provided by the laser system and the properties of the chirped mirror
compressor, a modification of −20 fs2 GDD and +20 000 fs3 TOD of the input spectral
phase in front of the fiber would be beneficial for the generation of short pulses.
Fig. 4.13 illustrates the expected changes to the supercontinuum after the hollow-

core fiber and the properties of the compressed laser pulses. The depicted simulations
have been performed for three different input pulses, the original pulse (in black),
the original pulse with an additional -20 fs2 GDD and +20 000 fs3 TOD (in green)
in accord with the results of Fig. 4.12, and a Gaussian pulse with a spectral phase
equal to zero and a Fourier-transfrom limited (FTL) duration τ0 = 27 fs (in blue). In
comparison, the original input pulse has a FTL pulse duration τ0 = 21.5 fs and a pulse
duration τ = 34.9 fs, with the latter decreasing to τ = 24.8 fs with the modification
of -20 fs2 GDD and +20 000 fs3 TOD.
To keep the simulation inside parameters where the calculation is valid the gas

pressure has been reduced to p = 1.8 bar for the simulations depicted in Fig. 4.13 e)
and f). In c) p = 3 bar is used, since this is a common setting in the experiment. In d)
the results for the same input pulse as in c) are displayed for p = 1.8 bar instead, and
as expected the bandwidth of the supercontinuum decreases with the gas pressure.
In Fig. 4.13 e) it is demonstrated that the modification of the input spectral phase

with -20 fs2 GDD and +20 000 fs3 TOD results in a supercontinuum with a FTL pulse
duration τ0 which is more than 1 fs shorter than for the simulation with the original
settings, depicted in c). If the same gas pressure p is used in the simulations, to
allow for a more objective comparison of the effect of the input spectral phase, the
difference in τ0 is even 3.5 fs. This is mostly achieved by a broadening of the high
frequency sidewing in the spectral amplitude. Furthermore the number of oscillations
in the central part of the spectrum has been reduced and instead a single peak with
more than twice the amplitude as before has evolved.
In Fig. 4.13 f) the results for a Gaussian input pulse with a flat or rather linear

spectral phase are illustrated. The FTL pulse duration τ0 is comparable with the
results in e) for a Gaussian input pulse with the chosen bandwidth, but both the
spectral amplitude and the group delay are much smoother than in c) or e). The
smooth group delay means that this pulse is easier to compress, and a consequence of
the smooth spectral amplitude is that the SPIDER will have less problems to retrieve
the spectral phase.
In Fig. 4.13 g) the pulse shape after compression in the chirped mirror compressor
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Figure 4.13.: Simulation results of the spectral amplitude, group delay and pulse du-
ration τ after CMC for three different input pulses. In a) the spectral
phase φ(ω) and the spectral amplitude of the three input pulses are
shown, with the original φ(ω) of the experiment (see Fig. 3.4, Prism-
Comp0) in black, the original φ(ω) with an additional -20 fs2 GDD
and +20 000 fs3 TOD in green, and a flat φ(ω) in blue. The first two
curves belong to the input spectral amplitude of the experiment, which
is underlayed with grey, while the third curve has an input Gaussian
pulse with τ0 = 27 fs, which is marked with a blue dashed line. In b)
the respective group delay is shown. In c) to f) the resulting spectral
amplitudes for these input pulses are shown at different gas pressures
p. In g) the expected pulse shape and FWHM pulse duration τ after
compression with the CMC and optimization with wedges are shown,
belonging to the plots of c), e) and f) respectively.
(Parameters: E = 830 µJ per pulse, HCF length z = 1m, bore radius
a = 125 µm, neon gas)
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and optimized wedges is illustrated for the three chosen input pulses. It has to be
pointed out though that the simulated pulse duration is about 0.5 fs shorter than the
pulse duration measured with the SPIDER in the experiment, see Fig. 3.5 on page 64.
Hence the pulse durations given by the simulation should rather be considered in
comparison to each other than as absolute values. The pulse duration τ for the pulse
with the modified input spectral phase at a gas pressure p = 1.8 bar is about 0.5 fs
shorter than for the original pulse at p = 3 bar. However, the spectrum has become
very broad, as is observable in plot e), and the chirped mirror compressor is not able
to handle it as well as the spectrum in plot c). As a result laser power is transferred
from the main peak to side peaks of the pulse and the peak power decreases about
23%, which is a disadvantage in nonlinear applications like high harmonic generation.
This is an effect which is not included in the results of Fig. 4.12.
For example, a modification of the input spectral phase with +10 000 fs3 TOD

instead of -20 fs2 GDD and +20 000 fs3 TOD results in a pulse with a 0.1 fs longer
duration τ , but only 7% loss of peak power instead of 23%.
An even better pulse after the hollow-core fiber is provided by an input pulse with

a linear spectral phase, as is illustrated in Fig. 4.13 g). It has the shortest achievable
pulse duration of the depicted pulses and even shows a slight increase of peak power.
This would require the elimination of the double peak observed in the input spectral
phase though.

At a wavelength of 800 nm a dispersion of +10 000 fs3 corresponds to the amount
of TOD introduced by 36 cm fused silica or 10 cm SF10 Schott glass. Insertion of
such a slab of material would increase the GDD for an even higher amount though
and stretch the pulse to over 1 ps duration. Instead compressor schemes will have to
be calculated to estimate how a high amount of TOD is introduced best to modify
the input spectral phase.
Actually a pair of chirped mirrors with this purpose is already part of the stretcher

in the CPA laser amplifier which is described in section 2.1.1. These chirped mirrors
induce a not specified amount of negative GDD and positive TOD to compensate
for negative TOD introduced in the amplifier, so that the pulses can be compressed
as short as possible in the prism compressor which is part of the amplifier. Such a
setup can be used to even further increase the amount of positive TOD, either by
adding an additional pair of mirrors or by increasing the number of reflections on
those present.
Chirped mirror compressors as these have been used in conjunction with the prism

compressor of the CPA amplifier in successful beam lines. This hybrid compressor
is meant to prevent the laser pulses from reaching their shortest duration inside
one of the prisms of the prism compressor, which could otherwise cause self-phase
modulation (SPM) in the prism [79, p. 36-37]. While SPM is utilized in the hollow-
core fiber to increase the spectral bandwidth of the laser pulses, for pulses with
negative GDD like in the prism compressor SPM has the opposite effect and decreases
the pulses’ bandwidth. This effect is explained in section 4.2.1. Because of that it
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is desirable to prevent the onset of SPM in the prism compressor. Not to mention
the possibility raised in section 3.2 that SPM in the prism compressor might be
responsible for generating the disadvantageous double peak in the spectral phase in
front of the hollow-core fiber. It has to be noted that the new generation of CPA
amplifiers from FemtoLasers avoids the issues coming with a prism compressor by
replacing it with a transmission grating compressor.
Barring a replacement of the prism compressor with an expensive grating compres-

sor, a chirped mirror setup meant to introduce additional TOD for pulse optimization
can also double as part of a hybrid compressor to prevent SPM in the amplifier and
would hence be especially useful.

Even more attractive than a modification of the input spectral phase would be
the achievement of a linear spectral phase. For this it is necessary to identify and
if possible neutralize the cause of the double peak observable in the input spectral
phase as illustrated in Fig. 3.4.
One possible source of this double peak is SPM occuring in the last prism of the

prism compressor which is part of the CPA laser amplifier. While the beam has a
large cross section in the last prism, the pulse duration is already so small that an
onset of nonlinear processes in the glass is conceivable.
Another possible culprit is the SHG crystal which is part of the FemtoSource

Rainbow oscillator from FemtoLasers. It is used to double the frequency of a part of
the laser pulses to allow to monitor the spectral phase of each pulse with an f-to-2f
interferometer. While the energy per pulse is low after the oscillator, the pulses have
an ultrashort duration and are focused into the crystal, and hence the intensity might
be sufficient to cause nonlinear effects beyond second harmonic generation.
It follows that it is necessary to measure the spectral phase at different locations in

the system of laser oscillator and CPA amplifier to identify the source of the double
peak in the spectral phase. Once it is found, it might be feasible to take steps to
eliminate or decrease these double peaks and to provide a smooth spectral phase for
the experiment.

This section demonstrates that the numerical simulation is a valuable tool to es-
timate how the laser pulse in front of the fiber can be modified to optimize the
supercontinuum after the fiber, even if the proof for the validity of the results has
to be provided by the experiment yet. However, it has been shown in chapter 3
that the results of the numerical simulations are in qualitative agreement with the
results of the experiment. This opens the possibility to optimize the properties of
the supercontinuum and to tailor it to specific applications by manipulation of the
input pulse in front of the hollow-core fiber.



5. Conclusion and Outlook
In the late 1990’s the principles of supercontinuum generation have been extended
to gas-filled hollow-core fibers to create ultrashort high power laser pulses in the
few-cycle regime for high harmonic generation. Since then the application of the
generated high harmonic radiation has seen fast develoment and today the dynamics
of solid state electron transitions are probed with attosecond resolution. There have
been only few publications concerned with the complex process of supercontinuum
generation inside the gas-filled hollow-core fiber though. This thesis contributes to
the study of this field and opens possibilities for further optimization of the generated
supercontinuum and ultrashort laser pulses.
At the attosecond beamline of University Bielefeld state-of-the-art experiments to

resolve electron dynamics inside single crystal and layered crystal targets are per-
formed, driven by single EUV light pulses of ca. 300 as duration. The generation
of these isolated attosecond pulses is of crucial importance for the results of the ex-
periment. To this end high harmonics are generated in a gas target with incident
few-cycle infrared laser pulses of 5.3 fs duration and 50GW peak power. Only with
infrared laser pulses of this or shorter duration is it currently possible to isolate clean
single attosecond pulses, and because of this the optimization of this pulse dura-
tion and the respective supercontinuum is an important procedure for a successful
experiment.
The hollow-core fiber employed for the generation of the supercontinuum has a

length of 1m and an inner diameter of 250 µm, and is filled with neon gas at con-
stant pressure up to 3bar. The input laser pulses in front of the fiber are centered
at a wavelength of 800nm and have a pulse duration about 30 fs and an energy of
ca. 830 µJ per pulse. To reproduce and explain the experimental results with nu-
merical calculations a 1-dimensional model for pulse propagation in a fiber has been
adapted to these parameters and is shown to provide correct results.
Building on that, the simulation is used to explain the experimental results and to

make predictions about how to optimize the generated supercontinuum in this work.
It is found that the spectral phase φ(ω) of the input laser pulse in front of the fiber
is a crucial parameter to control and optimize the properties of the supercontinuum
after the fiber.

In experiments at the beamline the spectrum of the supercontinuum has been
measured in dependence on the gas pressure in the hollow-core fiber and is found
to be in qualitative agreement with the results of the numerical simulation. This is
in particular true for the spectral amplitude. The agreement of the spectral phase
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is less distinct, and currently it cannot be determined whether this is because of a
physical effect or due to a limitation of the SPIDER to resolve fast changes of the
spectral phase coupled with a low intensity of the spectral amplitude.
The pressure-dependent pseudocolor plots of the spectral amplitude after the

hollow-core fiber are found to contain useful information about the input spectral
phase of the laser pulses in front of the fiber. This allows to make educated guesses
about the input spectral phase even without application of a phase-measuring instru-
ment like a SPIDER.
The central result of the numerical calculations presented in this thesis is that

characteristic features of the supercontinuum spectrum, like its bandwidth and the
rapid oscillations of the central peaks, are identified as originating from properties of
the input laser pulse in front of the hollow-core fiber, and in particular its spectral
phase. This opens the possibility to control and optimize the supercontinuum by
manipulation of the input spectral phase in front of the fiber.

Since the duration of the pulses after the hollow-core fiber is the most important
characteristic of the supercontinuum for our experiment, simulations are used to
optimize this quantity. It is found that even nearly bandwidth-limited input pulses
provide shorter pulses after the fiber if the input spectral phase is modified with
positive third order dispersion (TOD). The reason for this is the interplay between
the pulse shape and self-steepening during propagation through the hollow-core fiber.
In a more practical application it is investigated whether a laser pulse as employed

in the experiment, with a double peak in its spectral phase, can be optimized by
simple manipulations of the spectral phase. It is found that a considerable amount
of positive TOD in front of the fiber, in the form of +20 000 fs3, is likely to enhance
the performance of the experiment and to significantly reduce the duration of the
pulse after the hollow-core fiber. Considering the limitations of the chirped mirror
compressor, the simulation estimates a reduction of the FHWM pulse duration about
0.5 fs for our experiment.
The simulation predicts that a similar reduction of the pulse duration would be

achieved by a flat or linear input spectral phase, accompanied by other advantageous
characteristics like an increased peak power and a smoother output spectral ampli-
tude and phase. This would require to identify and eliminate the source of the double
peak present in the spectral phase though, which might be caused by a flaw in the
principle laser setup. This is a possibility meritting further investigation.

It might also be worthwhile to extend the simulation to a 3-dimensional model
instead of the simpler 1-dimensional model employed in this thesis. The generated
supercontinuum has proven to be highly sensible to changes of the alignment of the
hollow-core fiber. It might be viable to investigate and illuminate this process with
a simulation including all spatial directions.

The ability to optimize the properties of a supercontinuum by control of the spec-
tral phase of the laser pulse in front of a hollow-core fiber, be it to increase the
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bandwidth of the supercontinuum and decrease the pulse duration or to change the
form of the oscillating peaks in the spectrum, is a powerful and important tool in
any experiment concerning itself with ultrashort light pulses. It is demonstrated in
this thesis that simple changes of the input spectral phase offer the possibility to
optimize and improve the supercontinuum after the fiber and can be of great benefit
for the experiment.
In the next step it has to be investigated experimentally whether the manipulation

of the spectral phase in front of the fiber achieves the results in the supercontinuum
predicted by the numerical calculations. Beyond that it is conceivable to expand the
simulation with the employment of a genetic algorithm, to tailor the input spectral
phase to specific desirable properties of the supercontinuum and utilize this opti-
mization method for manifold purposes.





A. Data Archiving
The numerical simulation and other software tools written for this work have been
programmed in LabVIEW 8.6. They can be found in the
nanooptik/DataArchive/Bartz_Peter_PhDThesis_2014
directory of the Faculty of Physics server of University Bielefeld.

The experimental and simulated data belonging to each figure of this thesis are
also saved in that directory.
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