
Dissertation zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

der Technischen Fakultät der Universität Bielefeld

Kisses, ambivalent models and more:
Contributions to the analysis of

RNA secondary structure.

Stefan Janssen
April 8, 2014

ML
MR

IR

ML
MR

ML MR

ML
MR

IR

E

ML

S

0.33

0.33

0.33

10.27

0.73
0.25

0.25
0.25

0.25

0.8

0.1

0.1

1

0.46

0.23
0.31

0.36
0.64 0.95 0.05

0.32

0.68 0.42

0.58

1

grammar gra_macrostate uses

sig_foldrna(axiom = struct)

{ struct = left_dangle | trafo

(noleft_dangle) |

left_unpaired # h;

left_unpaired = sadd

(BASE with unpaired,

left_unpaired) | sadd(BASE

with unpaired, left_dangle) #

h; left_dangle = ambd

(edanglel, BASE with

unpaired, noleft_dangle) |

cadd_Pr(edanglel,

{noleft_dangle | nil(LOC)}) |

cadd(edanglelr, {left_dangle |

left_unpaired}) | nil(LOC) # h;

noleft_dangle = cadd_Pr_Pr

(edangler, {left_dangle |

left_unpaired}) | cadd_Pr_Pr_Pr(nodangle,

{noleft_dangle | nil(LOC)}) | ambd_Pr

(nodangle, BASE with unpaired,

noleft_dangle) # h; edanglel = edl(BASE

with unpaired, strong, LOC) # h;

edangler = edr(LOC, strong, BASE with

unpaired) # h; edanglelr = edlr(BASE with

unpaired, strong, BASE with unpaired) # h;

nodangle = drem(LOC, strong, LOC) # h; strong

= {sr(BASE, weak, BASE) with basepair} with

allowLonelyBasepairs(false) | { weak } with

allowLonelyBasepairs(true) # h; weak = stack

| hairpin | multiloop | leftB | rightB | iloop # h;

multiloop = {mldl (BASE, BASE with unpaired,

ml_comps1, BASE) with basepair | mladl (BASE, BASE

with unpaired, ml_comps2, BASE) with basepair |

mldr (BASE, ml_comps3, BASE with unpaired, BASE)

with basepair | mladr (BASE, ml_comps2, BASE with

unpaired, BASE) with basepair | mldlr (BASE, BASE

with unpaired, ml_comps4, BASE with unpaired, BASE)

with basepair | mladlr (BASE, BASE with unpaired,

ml_comps2, BASE with unpaired, BASE) with basepair |

mldladr(BASE, BASE with unpaired, ml_comps1, BASE with

unpaired, BASE) with basepair | mladldr(BASE, BASE with

unpaired, ml_comps3, BASE with unpaired, BASE) with

basepair | ml (BASE, ml_comps2, BASE) with basepair} # h;

ml_comps1 = combine(block_dl, no_dl_no_ss_end) | combine

(block_dlr, dl_or_ss_left_no_ss_end) | acomb(block_dl, BASE

with unpaired, no_dl_no_ss_end) # h; ml_comps2 = combine(incl

(nodangle), no_dl_no_ss_end) | combine(incl(edangler),

dl_or_ss_left_no_ss_end) | acomb(incl(nodangle), BASE with

unpaired, no_dl_no_ss_end) # h; ml_comps3 = combine(incl(edangler),

dl_or_ss_left_ss_end) | combine(incl(nodangle), no_dl_ss_end) | acomb

(incl(nodangle), BASE with unpaired, no_dl_ss_end) # h; ml_comps4 =

combine(block_dl, no_dl_ss_end) | combine(block_dlr,

dl_or_ss_left_ss_end) | acomb(block_dl, BASE with unpaired,

no_dl_ss_end) # h; block_dl = ssadd(REGION with unpaired,

edanglel) | incl(edanglel) # h; block_dlr = ssadd(REGION

with unpaired, edanglelr) | incl(edanglelr) # h;

Gedruckt auf alterungsbeständigem Papier nach ISO 9706.

Acknowledgments

Scientists are crazy people. They devote their lives often with surpassing, sometimes
even baneful, tenacity to explain the miracles of nature. I always wanted to become one
of them.

I thank my parents for never bringing me to reason and full support to reach this level
of craziness. I am deeply indebted to Robert Giegerich for many years of unobtrusively
but priceless guidance to science and his faith in my skills.

Many thanks go to the father of Bellman’s GAP, Georg Sauthoff, who patiently
bear all my special requirements. For past and ongoing RNA debates, I am especially
grateful to Jan Reinkensmeier, Cédric Saule, Stefanie Schirmer and Jens Reeder. Apolo-
gies to Jan Krüger, Daniel Hagemeier, Thomas Gatter and Madis Rumming for all the
extra work of bringing my software online via their BiBiServ project. I thank Andreas
Bremges and Benedikt Loewes for reporting bugs and the whole AG-PI team for a very
cooperative working atmosphere.

Further thanks go to Sebastian Loth, Sebastian Schipporeit, Steffi and Cedric for the
pain of carefully proofreading this thesis. Anne Arend pushed me into the right direction,
once again. Without her, I had certainly vasted much time by re-coding my software
instead of writing this thesis. Last but not least, I thank my girlfriend for sharing her
life with me. She made me not only explaining nature, but enjoying the beauty of it.

I love you, Iris!

3

Abstract

The full functional role of RNA in all domains of life is yet to be explored. Deep
sequencing technologies generate massive data about RNA transcripts with functional
potential. To decipher this information, bioinformatics methods for structural analysis
are in demand. With this thesis at hand, we want to improve current secondary structure
prediction in different respects.

The introductory chapter explains ADP with a focus on its comfortable, but atypical
style of specifying algorithms. Then, we present five contributions to the analysis of
RNA secondary structures.

1. It is the nature of models to abstract and simplify reality in order to master its
complexity. Chapter 3 is an in depth analysis of four popular computational models
of RNA secondary structure (Programs RNAshapes and RNAalishapes).

2. The secondary structure of RNA is too dynamic to be described by a single struc-
ture and in turn, there is no single optimal secondary structure. Thus, we compute
the most likely abstract shape of a given RNA sequence. Improvements of the al-
gorithms for computing the likelihood of abstract shapes are discussed in Chapter
4, specifically with regards to computational speed (Program RapidShapes).

3. For computational complexity reasons, models of RNA structures commonly ex-
clude crossing base-pairs, the so-called “pseudoknots”, from the secondary struc-
ture. In Chapter 5, we introduce a heuristic for mastering a frequent type of
pseudoknots: “kissing-hairpins” (Program pKiss).

4. In Chapter 6 we revisit the old algorithmic idea of outside-in computation for
the new programming framework Bellman’s GAP. This broadens the arsenal
of rapid prototyping algorithms for RNA and other sequential problems. It adds
“outside” and “MEA” functionality to RNAshapes and RNAalishapes.

5. Covariance Models representing RNA families assume a single consensus secondary
structure for a set of related RNAs and serve as statistical tools to search for addi-
tional members. In Chapter 7, we evaluate CM scorings that are more structure-
specific than the standard sequence-to-model alignments. Furthermore, we intro-
duce a technique to incorporate “ambivalent” consensus structures into covariance
models (Program aCMs).

The results of this work are available at the Bielefeld Bioinformatic Server. The
RNA Studio (http://bibiserv.cebitec.uni-bielefeld.de/rna) supports ready to
use web-submissions, web-services and cloud computing for the programs developed in
this thesis. debian packages foster a simple way to install our software on your local
machine. Developers can benefit from our algorithmic analyses or use our sources for
rapid prototyping as a primer for new implementations: http://bibiserv.cebitec.

uni-bielefeld.de/fold-grammars.

5

http://bibiserv.cebitec.uni-bielefeld.de/rna
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars

Contents

1 Introduction 11

2 Background 13
2.1 Algebraic Dynamic Programming . 13

2.1.1 ADP Formalism . 13
2.1.2 History of ADP implementations 22
2.1.3 Ambiguity . 26

3 Lost in folding space? 29
3.1 Background . 29

3.1.1 Motivation . 29
3.1.2 Goals of the evaluation . 30

3.2 Methods . 30
3.2.1 Free energy and partition function 31
3.2.2 Implementing the energy model 31
3.2.3 Model NoDangle . 33
3.2.4 Model OverDangle . 34
3.2.5 Model MicroState . 35
3.2.6 Model MacroState . 37
3.2.7 Signature and evaluation algebras 40

3.3 Results & Discussion . 48
3.3.1 Data set . 48
3.3.2 Technical Environment . 49
3.3.3 Evaluation of models for MFE structure prediction 49
3.3.4 Evaluating models for partition function and related computations 54

3.4 Conclusion . 62
3.4.1 Model comparison . 62
3.4.2 Evaluation of further models . 63
3.4.3 A new strategy for level-2 shape probabilities? 64
3.4.4 A word on longer sequences . 64

3.5 Acknowledgments . 65

4 RapidShapes 67
4.1 Introduction . 67

4.1.1 Computational cost of probabilistic shape analysis 67
4.1.2 Outline of ideas . 68

7

Contents

4.2 A method for faster shape probability computation 69
4.2.1 Basic problem: Shapes with a least T% probability 69
4.2.2 Analysis of the folding space partitioned by shape 69
4.2.3 Heuristic Shape selection . 73
4.2.4 Asymptotics . 74

4.3 Evaluation . 74
4.3.1 Evaluation setup . 74
4.3.2 Results on random data . 75
4.3.3 Results on real data . 77

4.4 Discussion . 78
4.4.1 Speed-ups and brake-even points achieved 78
4.4.2 Problem variants . 79
4.4.3 Implementation alternatives . 79
4.4.4 Open problems . 80

4.5 Acknowledgments . 80

5 pKiss 81
5.1 Introduction . 81

5.1.1 Biological relevance of pseudoknots in RNA structure 81
5.1.2 Folding pseudoknots . 81
5.1.3 Typology of structures . 82

5.2 Three strategies for kissing hairpin prediction 83
5.2.1 The combined power of canonization rules and non-ambiguous dy-

namic programming . 83
5.2.2 Decomposition alternatives of the kissing hairpin motif 84
5.2.3 Strategy A – an O(n4) time, O(n2) space algorithm 85
5.2.4 Strategy B – an O(n4) time, O(n3) space algorithm 87
5.2.5 Strategy C – an O(n5) time, O(n2) space algorithm 88

5.3 Algorithms . 88
5.3.1 Algorithmic subtleties . 88
5.3.2 Pseudoknot-recurrence of pknotsRG – csrPK 89
5.3.3 Recurrences of Strategy A – csrKHA 90
5.3.4 Recurrences of Strategy B – csrKHB 90
5.3.5 Recurrences of Strategy C – csrKHC 91
5.3.6 Recurrences of Strategy D – csrKHD 92

5.4 Implementation via Bellman’s GAP 92
5.4.1 Signature . 92
5.4.2 Grammar . 92
5.4.3 Algebras . 97

5.5 Evaluation . 97
5.5.1 A piece of anecdotal evidence . 97
5.5.2 Test set “knot” . 97
5.5.3 Comparing pKiss strategies to other prediction tools 99

8

Contents

5.6 Conclusion . 106
5.6.1 Acknowledgments . 108

6 Computation of McCaskill base-pair probabilities: an outside algorithm 109
6.1 Traditional algorithmic idea . 110
6.2 A general scheme for ADP . 110

6.2.1 Outside-in emulation . 112
6.2.2 McCaskill base-pair probability computation 116
6.2.3 Extension 1: dangling bases . 120
6.2.4 Extension 2: folding alignments 121

6.3 Evaluation . 125
6.3.1 Correctness check . 128
6.3.2 Comparing model variants . 132
6.3.3 Run-time analysis . 132

6.4 Conclusion . 135

7 Covariance Models 137
7.1 Three contributions to Covariance Models 138
7.2 Faithful CM re-implementation in Bellman’s GAP 139

7.2.1 Upward compilation in Bellman’s GAP 139
7.2.2 Approving faithful re-implementation 141
7.2.3 Determine Infernal’s guide-tree to construct identical state ar-

chitecture. 141
7.2.4 Conclusion . 145

7.3 Alternative semantics . 147
7.3.1 Trace semantics . 147
7.3.2 Structure semantics . 149
7.3.3 Ambiguity compensation . 149
7.3.4 Evaluation . 156
7.3.5 Conclusion on the new semantics 157

7.4 Two Track Counting . 157
7.5 Ambivalent Covariance Models . 160

7.5.1 Evaluation . 162
7.5.2 Conclusion . 166

8 Bibliography 167

9 Appendices 179
9.1 Appendix A: Complete set of all 20 TDM generators. 179

9.1.1 Common Signature . 179
9.1.2 TDM grammars . 179
9.1.3 TDM algebras . 184

9.2 Appendix B: Source code for pKiss pseudoknot non-terminals. 199

9

1 Introduction

The RNA world hypothesis [35] puts the ribonucleic acid (RNA) in the center of the
origin of life. RNA is a linear bio-polymer with a very repetitive structure. Every
monomer (nucleotide) is composed of a ribose sugar, bound to a phospate, and carries
at its 1’ end one of the following bases: adenine, cytosine, guanine or uracil. A monomer
is connected with its ribose 3’ end to the phosphate of the next monomer, which is bound
at its 5’ end.

Simple as RNA is, it encodes genetic information by the sequence of nucleotides.
Furthermore, it can catalyse chemical reactions by its 3D embodiment. Both properties
in combination should be sufficient to create the first stable self-replicating system:
life. During the evolution, RNA invented two new types of bio-molecules to specialize
both capabilities: 1) error correcting double stranded DNA for more stable information
storage and 2) more customizable proteins, composed out of about 20 different amino
acids, for more efficient catalyses.

Due to this outsourcing, RNA was thought as only a rather passive messenger between
DNA and proteins. Its importance has been obscured to scientists for many years. This
neglect ended abruptly when it became clear that the human genome did not carry
enough protein-coding genes to account for its metabolic and developmental complexity.
Rapidly, several new RNA-based mechanisms were discovered, such as gene silencing in
mammals and plants [24], and an immune system in bacteria [42]. Bioscience has just
begun to understand the universal dependence of life on RNA. While determination of
the sequence for an RNA molecule in a wet-lab is nowadays trivial, discovering the 3D
structure and thereby clues about its function is a matter of years.

This situation raises the needs for computer predictions. Given the sequence, what is
the most likely structure for this RNA molecule? Unfortunately, present days computer
hardware is too slow to master this problem within reasonable time or resources. Luckily,
chemists found that RNA structures form hierarchically when synthesised [89], i. e. early
connections between nucleotides will most often remain in the final structure. A set of
these pairs is called a secondary structure.

With this thesis at hand, we want to improve current secondary structure prediction
in different directions.

• It is the nature of computer models to abstract and simplify reality to tackle its
complexity. Chapter 3 is an in depth analysis about four popular variations to
model secondary structures in computers.

• It is known that an RNA is too dynamic to describe it just by one optimal sec-
ondary structure. Instead, we prefer to predict the most probable secondary struc-
ture in terms of the shape in which the molecule stays most of its time. Chapter

11

1 Introduction

4 reports about algorithmic improvements to significantly speed-up this kind of
synoptic predictions.

• A common model cutback – purely for computational reasons – is to restrict a sec-
ondary structure to contain no two connections, which cross each other. However,
these pseudoknots are frequently observed in nature. In Chapter 5, we introduce
a biology inspired heuristics to conquer the sub-class of pseudoknots, which are
named “kissing-hairpins”.

• In Chapter 6 we re-invent an old algorithmic idea (outside-in computation [47]) for
a new programming framework (Bellman’s GAP). With the concrete example
of McCaskill base-pair probabilities, we introduce a general approach to enable
outside-in computations in Bellman’s GAP, which is naturally not able to do
so. This broadens the arsenal of rapid prototyping algorithms for RNA and other
sequential problems.

• If we assume that related organisms evolved conjointly, their RNAs are expected
to be similar but not identical. We can improve predictive power from these small
differences compared to single sequences or identify important regions if they are
conserved over time. Covariance Models (CMs) assume one consensus secondary
structure for such a family of RNAs and serve as statistical tools to screen for
further members. Despite the structural importance, current CMs are often very
sequence centric. With Chapter 7, we evaluate more structure specific scorings for
CMs and introduce a technique to incorporate ambivalent consensus structures.

Background information about the comfortable but atypical style to specify our algo-
rithms is given in Chapter 2.1.

12

2 Background

2.1 Algebraic Dynamic Programming

Algebraic Dynamic Programming (ADP) [31] is a discipline to formulate algorithms for
sequential problems. Its high level of abstraction allows for a clear separation of con-
cerns. 1) A combinatorial search space is generated by a regular tree grammar. 2) Each
candidate of the search space is evaluated by an evaluation algebra. 3) The “best” can-
didate is determined by an objective function. 4) Dynamic programming’s characteristic
tabulation of intermediate results – the table design [86] – can be tuned afterwards to
trade speed for a lower memory footprint without editing existent components; just by
annotations to the already existing regular tree grammar. Dynamic programming (DP)
intermingles search space generation, evaluation and optimization for the – usually –
exponential number of candidates in the search space by applying Bellman’s Principle of
Optimality [7], such that the best candidate can be determined within polynomial time
and space. In contrast to traditional DP, only execution but not development of the
different components are intermingled in ADP. Thus, components can be easily replaced
or even combined [85] to tackle new challenges. Error prone subscripts, as known from
traditional DP matrix recurrences, are not necessary any more.

Although highly optimized code will surely outperform ADP programs, development
is significantly faster, programs are easier to debug due to the absence of indices and
hence it is definitely more fun.

The formal concepts of ADP are defined in the following section. These are illustrated
by examples from RNA secondary structure prediction. Still, ADP is not restricted
to RNA problems, but can be applied to all kinds of problems over sequential data.
Implementation details are postponed to Section 2.1.2, since ADP is more a style to
organize and think about a DP program than a single framework.

2.1.1 ADP Formalism

Regular Tree Grammar

A regular tree grammar is formed by an alphabet, a set of non-terminal symbols and a
set of production rules, whose functions follow a signature. In the following, we provide
the general definitions as well as their specific form in RNA sequence analysis.

Definition 1. An alphabet A is a finite set of symbols.

In the context of RNA, the symbols are A for Adenine, C for Cytosine, G for Guanine
and U for Uracil.

13

2 Background

Table 2.1: Signature Σ5 for RNA problems. The result of all algebra functions is of type
S as defined in 2. A is a symbol from the alphabet, i. e. a single character
from the input sequence.

nil()
pair(A,S,A,S)
open(A,S)

Definition 2. A signature Σ over A is a family of function declarations. Functions can
have different arity. Their arguments are either of the type A or S – a placeholder for
an unspecified data domain, called sort. The results are always of type S.

Signatures describe languages of terms. Terms are well-typed formulas constructed by
functions of Σ and symbols of A. The term language defined by Σ over A is denoted as
TΣ. Allowing variables from a set V in the terms result in a term language with variables
TΣ(V).

The example signature Σ5 for RNA related problems is given in Table 2.1. This can
be regarded as a Java interface that is limited to defining the available functions and
the abstract types of their arguments.

Definition 3. A regular tree grammar over Σ is a four-tuple G = (A, V, Z, P), where
V is a finite set of non-terminal symbols, Z ∈ V is a designated start symbol – called
axiom, and P is a finite set of productions of the form v → t with v ∈ V and t ∈ TΣ(V).

A tree grammar G describes a language L:

L(G) = {t | t ∈ TΣ, Z ⇒∗ t}

This defines all valid terms t ∈ TΣ that can be formed by starting from the axiom Z
and applying one or more productions (⇒∗) of G. In contrast, using only a signature is
not sufficient as it would allow any combination of functions. The grammar limits this
multiplicity to only those combinations given by the productions, i. e. L(G) ⊆ TΣ. In
our RNA example, L(G) is the language of all structures for all RNA sequences.

Regular tree grammars are ADP’s combinatorial machinery to systematically span the
search space. So far, these definitions are independent of the input. This changes now:

Definition 4. The yield function y has type TΣ → A∗ and is defined by y(a) = a for
a ∈ A, and y (C (x1, . . . , xn)) = y(x1) . . . y(xn) for n ≥ 0 and each n-ary function C of
Σ.

If we think of a term t as a tree, the yield function y(t) concatenates all leaves of type
A into a plain string through a preorder traversal.

Given a regular tree grammar G, the yield-function y and a concrete input x ∈ A∗,
the search space spawned by x is

FG (x) = {t | t ∈ L(G), y(t) = x}.

14

2.1 Algebraic Dynamic Programming

S nil

ε

open

b S

pair

b S b S
basepair

Figure 2.1: Regular tree grammar G5 for RNA secondary structure prediction. Single
non-terminal and thus also axiom is S. Functions are given in green, terminal
parsers are blue, syntactic filters are pink.

Figure 2.1 depicts the regular tree grammar G5 [20] for a model of RNA secondary
structures, and Table 2.1 holds the respective signature Σ5. Let the alphabet be A =
{A, C, G, U} and the only non-terminal be V = {S}. Then, axiom must be Z = S which is
given in bold face. Productions P with identical left hand sides are merged into one rule;
alternative right hand sides are separated by vertical bars. Functions of Σ are colored
in green. Terminal parser b takes exactly one base ∈ A from the input. The special
terminal parser ε reads the “empty word”, i. e. does not consume any character from the
input. This is typically used to indicate the end of parsing for the current derivation.
The annotation basepair at function pair means that left l and right r bases must be able
to form a valid base-pair, i. e. (l, r) ∈ {(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)}. Annotat-
ing a grammar with syntactic filters, e. g. basepair, is an abbreviation to modify the
grammar. Otherwise, the explicit form for restricting the set of valid base-pairs would
employ six different productions of pair. Consequently, we would use terminal parser for
specific bases, e. g. pair(A, S, U, S), pair(U, S, A, S), . . ., instead of the general terminal
parser b.

The concept of G5 is as follows: Each term representing a secondary structure is derived
from the axiom S. Any structure can be extended by adding a single unpaired base to
its left (open). Alternatively, a structure grows by a base-pair (pair). This automatically
introduces a potential structural bifurcation, as a result of the second non-terminal S of
production pair. The bifurcation can be masked by immediately ending this derivation
via a nil production. Also, the production nil must be used to terminate rows of unpaired
bases or base-pairs with no inner sub-structure.

The complete search space FG5(CGUG) shown in Table 2.2 consists of seven terms which
are depicted as little trees ta to tf .

A regular tree grammar has the same power as a context free string grammar (CFG),
i. e. it generates the same language if we apply the yield function y to every term in the
search space:

Ly(G) = {y(t) | t ∈ TΣ, Z ⇒∗ t}

Looking at a candidate generated by a CFG there is no hint about the productions
that have been used to parse the input. Our example input CGUG would be exactly
re-established seven times, thus we cannot identify how they were produced. The great
advantage of regular tree grammars is the use of algebra functions which are part of
the terms. As with CFGs, terms do not capture by which productions they have been
generated. However, the algebra functions retain an internal structure.

15

2 Background

Table 2.2: Complete search space of FG5(CGUG), holding seven terms (or candidates):
ta to tg. Below the tree representations, the yield-string of the terms are
shown in blue, their Vienna-Dot-Bracket string (see Section 2.1.1) in red,
the number of base-pairs in black as well as their counting in regular font.

ta tb tc td te tf tg

pair

C nil G pair

U nil G nilε

ε ε

pair

C nil G open

U open

G nil

ε

ε

pair

C pair G nil

G nil U nil ε

ε ε

pair

C open G nil

G open

U nil

ε

ε

open

C pair

G nil U open

G nilε

ε

open

C open

G pair

U nil G nil

ε ε

open

C open

G open

U open

G nil

ε

CGUG CGUG CGUG CGUG CGUG CGUG CGUG

()() ().. (()) (..) .(). ..()

2 1 2 1 1 1 0
1 1 1 1 1 1 1

Evaluation Algebras

The algebra functions which are part of the candidates allow a conceptual separation of
candidate generation, evaluation and selection for the “best” candidates. A Σ-algebra
is a concrete implementation of a signature and is used to evaluate terms of the search
space. Furthermore, it also specifies a concrete data type for the abstract sort S.

Optimization problems typically pose the question: Given the scores of different can-
didates, which are the ones we are interested in? We identify the set of interesting
candidates by an objective function h. Hence we define an evaluation algebra I as a
Σ-algebra augmented with an objective function h.

Definition 5. Evaluating terms from the search space with functions of a Σ-algebra
results in a list of values which are of type S: [S]. An objective function h – often called
choice function – is a mapping

h : [S]→ [S] .

Using identity as objective function will simply preserve all candidate values. An objec-
tive function might withdraw all but the best k candidate values, or remove those values
that exceed a specific threshold. If h is a function that naturally results in a single value
(e. g. maximization or summation), it must be engulfed in a list! In the following, we
use the terms “algebra” and “evaluation algebra” equivalently.

In Table 2.3 four different algebras are presented. All functions (leftmost column),
defined by the signature, are implemented by concrete operations. In our case string
concatenation (⊕), summation (+) or multiplication (·). Additionally, the abstract sorts
S become concrete data types (string or int) and the optimization criteria – the objective
functions – are determined (identity, max imization or summation: Σ).

16

2.1 Algebraic Dynamic Programming

Table 2.3: Four evaluation algebras for terms of ΣRNA. Algebra Iyield computes the
yield function y for a candidate t. The result of Idb is a Vienna-Dot-Bracket
string for t. Algebra INussinov computes the number of base-pairs in t. ICount
with summation as objective function reports the size of the search space.
Operator ⊕ denotes string concatenation, ε is the empty string. An algebra
is the place where the abstract type S becomes concrete, thus we give these
types as the penultimate row. In the last row, we define the objective function
for the algebras, which is identity for Iyield and Idb, i. e. candidates are never
ruled out, max imization in the case of counting base-pairs for INussinov and
summation (Σ) for search space counting via ICount.

algebra function Iyield Idb INussinov ICount
nil() ε ε 0 1

pair(a, x, â, y) a⊕ x⊕ â⊕ y (⊕ x⊕)⊕ y 1 + x+ y x · y
open(a, x) a⊕ x .⊕ x x x
S string string int int

objective function id id max Σ

Yield string Given an arbitrary candidate t from the search space defined by G5 algebra
Iyield recovers the original input sequence. This resembles the previously introduced
behavior of the yield function y of Definition 4. Take candidate ta of Table 2.2 as an
example. Written as a function it looks like:

tb = pair (C, nil (ε) , G, open (U, open (G, nil (ε))))

We now systematically evaluate all abstract algebra functions by the concrete operations,
defined by Iyield:

(C⊕ ε⊕ G⊕ (U⊕ (G⊕ ε)))

Since string concatenation is associative, we can remove all parentheses:

C⊕ ε⊕ G⊕ U⊕ G⊕ ε

and finally, perform the concatenation:

CGUG

Please note that ε is the empty word, and thus vanishes if concatenated to a non-empty
word. As expected from a yield function, the result of y(tb) ≡ Iyield(tb) = CGUG is equal
to the original input sequence. Of course, this is also true for all other terms.

Now that we performed kind of a sanity check by applying a yield function algebra
to a candidate to understand how it is evaluated, we can start to use other algebras for
computing new information.

17

2 Background

Vienna-Dot-Bracket string Vienna-Dot-Bracket strings are machine friendly repre-
sentations for secondary structures. A dot ‘.’ represents an unpaired base. A pair of
parentheses ‘()’ indicates an opening and closing position of a base-pair. The algebra
Idb evaluates candidates into these string representations. With respect to concatenat-
ing elements, the algebras Idb and Iyield are highly similar. Crucially, Iyield operates
on symbols of the input whereas Idb uses dots and brackets. For example, substituting
algebra functions with operators () and function arguments with dots and brackets (Idb,
see column 3 in Table 2.3) the candidate tb results in:

((⊕ ε⊕)⊕ (.⊕ (.⊕ ε))) = ()..

Base-pair counting Ruth Nussinov’s pioneering algorithm [67] for predicting a sec-
ondary structure computes the maximal number of base-pairs for a given RNA input se-
quence. The number of base-pairs in each term is counted by using the algebra INussinov
as defined in Table 2.3. Applying INussinov for substituting algebra functions to our
example candidate tb results in:

(1 + 0 + ((0))) = 1.

Candidate counting The size of the search space is determined by counting each can-
didate using the algebra ICount (as defined in Table 2.3). Every terminal parser (b or ε)
returns 1 and every non-terminal parser simply reports the current value, without any
changes.

An algebra function containing several terminal and non-terminal parsers returns the
product of these numbers, i. e. pair(a, x, â, y) = 1 · x · 1 · y and open(a, x) = 1 · x. Our
example candidate tb is evaluated to

(1 · 1 · ((1))) = 1.

This reflects the expectation of evaluating one candidate.

Objective function

So far, we have evaluated candidates with algebras but we have not applied objective
functions. This is the last step in solving an ADP problem.

Definition 6. Given a regular tree grammar G, an evaluation algebra I, including an
objective function h, and an input sequence x, an ADP problem is solved by computing:

G (I, x) := h [I (t) | t ∈ L(G), y (t) = x] .

In words: all candidates, which are generated by the grammar L(G) and whose yield
string equals the original input y (t) = x, are evaluated by the algebra functions defined
in I. From this list, the objective function h selects suitable values.

18

2.1 Algebraic Dynamic Programming

The search space FG5(CGUG) consists of the candidates [ta, tb, tc, td, te, tf , tg]. If we
assume that the objective function of INussinov is the identity function (as defined in
Table 2.2), we would get

G5 (INussinov, CGUG) = [2, 1, 2, 1, 1, 1, 0] .

The optimization problem of finding the maximal number of base-pairs for a given RNA
sequence can be solved by switching the objective function to max imization:

G5 (INussinov, CGUG) = [2] .

The evaluation of the candidates using ICount and summation for h reduces the list of
the results – [1, 1, 1, 1, 1, 1, 1] – to the size of the search space:

G5 (ICount, CGUG) = [7] .

Efficiency

The computational efficiency is irrelevant for abstract concepts, but this certainly dif-
fers for implementations of ADP! Specifically, two properties affect the efficiency of the
computation: First, the conceptional question whether the problem can be tackled by
Dynamic Programming at all, i. e. is Bellman’s Principle of Optimality satisfied? Sec-
ondly, the rather technical side of deciding which non-terminals should be tabulated –
the table design.

Table design Dynamic programming is fast because intermediate results are stored
in tables and are re-used on demand instead of computing them from scratch for all
(usually exponentially many) candidates of the search space. There is a trade-off between
speed and memory footprint. One extreme option is to tabulate all non-terminals of a
grammar. This reduces run-time to a minimum, but it also maximizes the memory usage.
Often we want to trade the (in principle) infinite resource time for the naturally limited
resource memory. Ideally with only little losses in speed, i. e. a constant slow-down is
accepted as long as the algorithm preserves the original asymptotic class.

Finding an optimal table design for an arbitrary grammar is a NP-complete problem
[86]. However, the ADP implementation Bellman’s GAP typically provides good re-
sults by employing an heuristic [79]. The heuristic takes into account that it is sometimes
faster to re-compute than to access a value from the relatively slow main memory and
thus, not every non-terminal should be stored. Using a yield-size analysis, the heuristic
computes the optimal number of dimensions of the tables – not every non-terminal needs
a quadratic table – and estimates constants for the asymptotic run-time.

Bellman’s Principle of Optimality Working with tabulated solutions for sub-problems
will only yield correct results, if the algebra satisfies Bellman’s Principle of Optimality,
i. e. if the overall solution can be combined of solutions for sub-problems. In Bellman’s
own words:

19

2 Background

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision [7].

We re-formalize this principle for ADP:

Definition 7. An evaluation algebra I satisfies Bellman’s Principle of Optimality, iff
for each k-nary algebra function f in I and all answer lists Z1, . . . , Zk, the objective
function h satisfies:

1. h([f(x1, . . . , xk) | x1 ← Z1, . . . , xk ← Zk]) =
h([f(x1, . . . , xk) | x1 ← h(Z1), . . . , xk ← h(Zk)])

2. h([]) = []

3. h(Zi ⊕ Zj) = h(h(Zi)⊕ h(Zj)) ∀ 1 ≤ i, j ≤ k

Operator ⊕ is list concatenation: [a1, . . . , an] ⊕ [b1, · · · , bm] = [a1, . . . , an, b1, · · · , bm], []
is the empty list and ← is list membership.

The practical interpretation of the optimality principle is that we may push the applica-
tion of the objective function inside the computation of sub-problems, thus preventing
combinatorial explosion.

Algebra products

ADP is very adaptable. An existing ADP program can be turned into an algorithm for
solving a different problem simply by replacing the algebra, i. e. by adjusting a single
component. For example, G5 (INussinov, x) determines the maximal number of base-pairs
for x, while G5 (ICount, x) identifies the size of the search space. We do not have to
re-think the search space, the signature or the table design. Yet, ADP goes one step
further with the product of algebras [85].

Definition 8. Let IM and IN be two evaluation algebras over signature Σ. Their lexi-
cographic algebra product IM ∗IN is an evaluation algebra over Σ and has the functions

fIM∗IN ([(m1, n1) , . . . , (mk, nk)]) = (fIM ([m1, . . . ,mk]) , fIN ([n1, . . . , nk]))

for each k-nary algebra function f in Σ and the objective function

hIM∗IN ([(m1, n1) , . . . , (mk, nk)]) = [(l, r) |
l ∈ L,
r ← hIN ([r′ | (l′, r′)← [(m1, n1) , . . . , (mk, nk)] , l

′ = L])]

where L = hIM ([m1, . . . ,mk])

In the above, ∈ denotes set membership and hence ignores duplicates. In contrast, ←
denotes list membership and respects duplicates.

20

2.1 Algebraic Dynamic Programming

Intuition For an intuitive understanding, we take the perspective of successive phases
again: The first step is the evaluation of all k candidates by IM and IN . Each algebra
evaluates the candidates independently. The tuple (mi, ni) stores the results of algebra
IM and IN for the candidate i. In turn, evaluating a list of candidates results in a list
of tuples [(m1, n1) , . . . , (mk, nk)].

The second phase, the candidate selection, takes place in two steps: The first step is
to compile a unique set of answers L regarding only the left algebra IM . This is done
in the “normal” ADP way as described by Definition 6. Duplicates might have to be
removed from the result list, if the objective function hIM has not already done so. In
the second step, [(m1, n1) , . . . , (mk, nk)] is pruned such that only tuples are left, whose
left component is element of L. All right components from the remaining tuples are
collected in a list processed by the second objective function hIN thus compiling answer
list [r]. In contrast to L, r can have duplicates. A list of tuples with a unique left
element is generated by combining all elements of L with all elements of r (in process
similar to the Cartesian product). This list is the desired result for our problem: the
application of a algebra product to a search space.

Application examples Given some standard algebras and the algebra product op-
eration, ADP can perform a remarkable variety of applications: optimizations under
multiple objective functions, alternative solutions and backtracing, holistic search space
analysis, ambiguity checking, and more. Each of these applications can be implemented
without additional programming effort or the need for debugging.

The single instance G5 (INussinov, CGUG) reports the numeric value of the maximal num-
ber of base-pairs which the sequence CGUG can fold [2] and G5 (Idb, CGUG) shows Vienna-
Dot-Bracket strings for all seven candidates ([()(), ().., (()), (..), .()., ..(),]).
Importantly, both algebras can be combined by using the algebra product into a more
complex instance G5 (INussinov ∗ Idb, CGUG). This instance resembles a backtracing mech-
anism and returns only those Vienna-Dot-Bracket strings, that belong to those can-
didates which have maximal number of base-pairs, together with the number of base-
pairs: [(2, ()()) , (2, (()))]. Such an algorithm would otherwise be tedious to implement,
specifically for co-optimal or sub-optimal enumeration. This manual work can be avoided
elegantly by using the built-in algebra products of ADP.

We can count the number of co-optimal solutions by applying the algebra product
G5 (INussinov ∗ ICount, CGUG), which is [(2, 2)]. Left 2 of the tuple is the maximal number
of base-pairs, right 2 is the number of co-optimal candidates.

We can also combine algebras to meaningless products like G5 (ICount ∗ INussinov, CGUG)
= []. The answer list is empty in this case because in the first phase of selection, L is [7],
the size of the search space. However, ICount operated on each candidate individually
without applying its objective function. Thus, all left components were evaluated as 1.
Consequently, the second phase cannot find any candidate whose left component of the
answer tuple is 7.

There is no additional programming effort needed to use algebra products, since they
are a generic operation in ADP. But it is our obligation to prove whether a product of

21

2 Background

algebras still satisfies Bellman’s Principle, which is not necessarily the case even if both
single algebras fulfill it.

2.1.2 History of ADP implementations

During the past 15 years, the concepts of ADP were implemented four times. It started
with Haskell-ADP [27, 31], a prototypical embedding of the concepts in the functional
programming language Haskell.

Secondly, aiming for a smaller memory footprint and a gain of speed, the compiler
ADP-C was developed for translating Haskell-ADP into native C code [33, 84]. Es-
sentially, this requires that Haskell is still used for programming ADP. However, the
ADP principles are not accessible to the Haskell interpreter or compiler and thus, they
reported incomprehensible errors messages, mostly convoluted type errors.

These problems led to the development of Bellman’s GAP [32, 80, 79, 81]. This
package consists of a new programming language (GAP-L) and a dedicated compiler
(GAP-C) for generating C++ code. The name reflects the most important concepts:
Bellman’s Principle of Optimality, Grammars, Algebras and Products. GAP-C can
comprehensively analyse ADP components written in GAP-L code. This allows the
GAP-C to produce better error messages. Also, GAP-C introduces significant improve-
ments in terms of developer support including (but not limited to): Non-productive or
unreachable non-terminals in the grammar are reported, the burden of deciding on a
good table design is taken from the developer by providing a feasible heuristic, asymp-
totic run-time analysis is provided and yield size analysis is performed automatically to
avoid unnecessary moving boundaries while partitioning the input.

Due to recent improvement to the Glasgow Haskell Compiler (GHC), Christian Höner
carries ADP back to a highly optimized Haskell version: ADP-fusion [41]. ADP-
fusion’s run-times are comparable to native C code, by sacrificing code readability for
speed. Unfortunately, ADP-fusion works only in Christian’s hands – for now.

In this work, we will focus only on Bellman’s GAP.

Terminal parsers

Terminal parsers in Bellman’s GAP do not hold symbols from the input, but start-
and stop-positions of the parsed sub-sequence. Given the input and start- and stop-
positions, the symbols can easily be recovered. Additionally, storing a region with only
two numbers instead of all its symbols is often more efficient when working with longer
sub-sequences. Not the symbols but their boundaries are addressed by indices, an ex-
ample input might look like 0G1A2G3A4A5A6C7C8. The three successive As are addressed
by the sub-sequence (3, 6) = 3A4A5A6. The use of a fictitious 0-position at the start of
the input avoids a lot of fiddling with ±1, since a sub-word (i, j) has length j − i and
splits seamlessly into sub-words (i, k) and (k, j) for i ≤ k ≤ j.
We will use four different terminal parsers:

1. The terminal parser b takes exactly one base ∈ A from the input. The resulting

22

2.1 Algebraic Dynamic Programming

tuple for the boundaries is of the form (i, j), with j = i+ 1. In GAP-L, this parser
is written as BASE.

2. The terminal parser r consumes a region from the input. A region is a successive
row of bases written as A∗ in a signature and REGION in GAP-L. The boundaries
are depicted as (i, j) with i < j. An empty region constitutes a special case and is
covered by r0, where i ≤ j. In GAP-L, this empty region is written as REGION0.

3. Terminal parser ε does not consume any character from the input and is applicable
at every position, but returns nothing. There is no boundary tuple. This parser
is written as EMPTY in GAP-L.

4. A second non-consuming terminal parser is l, which can also be placed at every
position. In contrast to ε, it reports its location, i. e. there is a boundary tuple of
the form (i, j), with j = i. GAP-L’s writing is LOC. In signatures, we will write it
as A0.

RNA energy library

In the usual approximation model, the free energy of an individual RNA secondary
structure s is the sum of the energetic contributions of all structural elements of s [45]:

∆G0
T,s =

∑
helices j

∆G0
T,j +

∑
loops k

∆G0
T,k

with energy of an individual helix:

∆G0
T,helix =

∑
base-pair
stacks m

∆G0
T,m .

That is, the energy of a helix depends only on its type of base-pairs {(A, U), (U, A), (C, G),
(G, C), (G, U), (U, G)} stacking on its neighboring base-pair [10]. The minimum length of
a helix is two base-pairs (one base-pair stack). Single (lonely) pairs should not exist.
The energy of a loop depends on its type, the sequence(s) of loop nucleotides, and
type of closing base-pair(s). A hairpin loop is closed by a helix, internal and bulge
loops are closed by two helices and multiloops or junctions are closed by more than two
helices. Thus, the free energy of any given secondary structure s can be computed by
decomposing it into its basic structural elements. The elementary energy function E (see
Table 2.4) is called repeatedly for each basic element. Summing up these values yields
the free energy of s.

For Bellman’s GAP, we include some of the original Vienna-Package [50] source
files to address the concrete energy parameters. We can load the same parameter files
and use the same temperature re-scaling as used by software from the Vienna-Package,
which facilitate comparison of prediction results. The Vienna-Package is written in C and
directly addresses the characters of the input. That is different from Bellman’s GAP,

23

2 Background

where boundaries are addressed, see Section 2.1.2. See functions E of Table 2.4 as
interfaces between both programming languages.

Energy functions typically operate on the RNA input, specifically the input positions.
Their output depends on the RNA input. The function Esbase, Eml and Eul are exceptions
and point to constants. Let us assume (.(...)) is a secondary structure with a hairpin
loop and a left bulge for the input sequence 0G1A2G3A4A5A6C7C8. At some point, we have
to look up the energy contribution for the left bulge, by accessing Ebl(1A2, 7C8). However,
the energy value cannot be determined by taking into account only the pair (1A2, 7C8).
Additional information is required. First, the outer base-pair (0G1, 7C8). Secondly, the
inner base-pair (2G3, 6C7) of the hairpin-loop, onto which the outer base-pair stacks.
Thirdly, the size of the bulged out region, here the single 1A2. That means that we make
assumptions about the sub-structure of a candidate by using Ebl. Thus, this imposes
restrictions on the design of the grammar.

The call Ebl(r, â), provides not only the symbols of r and â implicitly, but also their
positions within the input. We may write that as Ebl(irj, kâl). All three energy contri-
butions can be looked-up via these indices: 1) outer base-pair embraces the sub-word
(i−1r, âl), since we know that its left partner must be directly left of the unpaired re-
gion r. 2) inner base-pair covers the sub-word (rj, kâ), which could also be written as
(rj, âl−1), because k+1 = l. Here, we use the structural assumption that the left partner
must be the right neighbor of the last unpaired base of r and right partner is directly
left of â. At last, 3) the size of the bulge loop is j − i.

Table 2.5 lists special energy functions – or better constants, used only in the context
of pseudoknot folding algorithms. These values have not been determined in a wet
lab, but show reasonable behavior in various computational experiments. However, the
most important two – namely Einitpk and Einitpkiss – will be adjustable for the user when
integrated into Bellman’s GAP programs. We discuss the details about pseudoknot
energies in Chapter 5.

Precision of the energy parameters in the Vienna-Package is limited to two decimal
places, used data type is int instead of a floating point number. Thus, the parameters
were shifted and in turn, the results have to be divided by 100 to get kcal/mol. For
more details on the energy functions inspect the elaborate documentation in the source
files rtlib/rna.hh and librna/rnalib.c of Bellman’s GAP.

24

2.1
A
lgeb

raic
D
y
n
am

ic
P
rogram

m
in
g

Table 2.4: Basic energy functions. The table lists the energy functions, their names in actual Bellman’s GAP code, their
inherent assumptions about the structure of sub-candidates and their meanings. Parameters a and â are pairing
bases, r is a non-empty region and l is a non-consuming location.

Function GAP-C name Structural assumptions Meaning

Esr(a, â) sr energy bases a and â build an outer base-
pair and bases right of a and left of
â form an inner base-pair

The most important source for stabilizing an RNA secondary structure is stacking of
two (or more) base-pairs.

Etermau(a, â) termau energy bases a and â form a base-pair Base -pair different from (G, C) or (C, G) at the terminal end of a stacking region adds
less stabilizing energy than within a stacking region.

Ehl(r) hl energy bases left and right of r form a base-
pair

Stabilizing contribution for the loop-closing base -pair stack plus destabilizing contri-
bution for the hairpin loop region plus bonus energy for special loop sequence (e. g.
extra-stable tetra loops).

Ebl(r, â) bl energy base left of r builds an outer base-
pair with â and base right of r and
left of â form an inner base-pair

Analog to Ehl, but for a destabilizing loop region bulged out to the left.

Ebr(a, r) br energy base right of r builds an outer base-
pair with a and base left of r and
right of a form an inner base-pair

Symmetric case to Ebl.

Eil(rl, rr) il energy bases left of rl and right of rr form
an outer base-pair and bases right of
rl and left of rr form an inner base-
pair

Analog to Ehl, but with two destabilizing loop regions.

Eml() ml energy – Since a multiloop of x stems is less stable than x adjacent stems, it gets a penalty.
Eul() ul energy – Each stem in a multiloop gets an initial penalty.
Ess(r) ss energy – Regions of unpaired bases could get penalized, but typically this value is set to zero.
Esbase() sbase energy – Same as Ess, but for a single unpaired base.
Edl(a, l) dl energy bases a and l build a base-pair, on

which the base left of a dangles
A single base left of a closed sub-structure can dangle onto this stack and thus might
further stabilize it.

Edr(l, â) dr energy bases l and â build a base-pair, on
which the base right of â dangles

Symmetric case to Edl.

Eext mm(a, â) ext mismatch energy bases a and â build a base-pair, on
which the bases left of a and right of
â dangle

Two bases left and right of a stack, which do not form a base-pair (they mismatch),
can dangle from both sides to the stack.

Edli(a, â) dli energy bases a and â build a base-pair, on
which the base left of a dangles from
the inner

A multiloop is closed by one stack. A single base at the inside of the multiloop and
directly next to the closing stack might dangle from left onto this stack. The energy
values are the same as Edr, but for a reversed sub-sequence.

Edri(a, â) dri energy bases a and â build a base-pair, on
which the base right of â dangles
from the inner

Symmetric case to Edli.

Eml mm(a, â) ml mismatch energy bases a and â build a base-pair, on
which the bases right of a and left of
â dangle from the inner

Two bases on both inner sides of a multiloop closing stack may dangle from the inside
onto this stack, but do not form a base-pair (mismatch).

25

2 Background

Table 2.5: Special pseudoknot energy functions.

Function GAP-C name Structural assumptions Meaning

Esr pk((a, â), (b, b̂) sr pk energy bases a and â, as well as b and
b̂ build base-pairs, where the
first one stacks onto the sec-
ond.

Models the stabilizing contribution of co-
axial stacking, observed in H-type pseudo-
knots.

Einitpkml
() pkmlinit – Destabilizing energy for integrating a pseu-

doknot into a multiloop. Set to +6.0 kcal/-
mol.

Einitpk () pkinit – Energetic penalty for opening an H-type
pseudoknot. Default is +9.0 kcal/mol.

Einitpkiss
() pkissinit – Energetic penalty for opening an K-type

pseudoknot. Default is +12.0 kcal/mol.
Enpp() npp – Energetic penalty for a single unpaired

base inside a pseudoknot. Set to +0.1
kcal/mol.

2.1.3 Ambiguity

A grammar is called ambiguous, if the same input has two or more different derivations
[70]. That likely causes problems, if you want to design a grammar to parse e. g. a
programming language or an XML document, but it is a key ingredient for optimization
problems. Here, we exploit the ambiguity to systematically explore the space of different
derivations and seek for the “best” one. For example, all possible alignments of two fixed
protein sequences form a defined search space such that the best one can be selected by
measuring their similarity. Similarly, the stablest RNA secondary structures for a fixed
RNA sequence can be determined. Ambiguity is “good” to choose from many solutions,
but it may turn “bad” if some solutions are enumerated several times.

Imagine you arrive in a hotel after a long flight. Unfortunately, you forgot the correct
combination of digits for the lock of your suitcase. Maybe you are lucky with some
arbitrary combinations, but in the worst case you have to test all the 10n sequences. A
systematic approach such as grammar Gl1 (see Figure 2.2) would be a better solution:

Every combination ends with a last digit. We can also create a multi-digit combina-
tion, by adding two sub-combinations next to each other. A digit parses one character
of the input sequence in ten different ways (0 to 9), thus creating the wanted “good”
ambiguity. Opposite to the mentioned examples above, here the sequence just gives the
number of digits for the lock, not a combination itself. For example, the input xxxx

encodes a 4-digit problem. The very same problem could be encoded as xyxy since
the input characters do not matter, only their number (here four). Grammar Gl1 is
syntactically ambiguous, since the input can be parsed in many different ways.

All combinations can now be enumerated in a systematical fashion with the help of Gl1.
For example, the combination 1409 is produced by the derivation la of Table 2.6, if you
read the numbers in a depth-first ordering. Interpreting a derivation as a combination
can be formally expressed by an algebra Ic, given in Table 2.7. The good news is, that
you will recover the unlocking combination for sure, i. e. the optimization problem can
be solved correctly. Unfortunately, you are spending to much time with the lock, instead
of enjoying your holidays, because every combination is enumerated several times! In

26

2.1 Algebraic Dynamic Programming

last next

digit comb comb

comb

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

c c c c c c c c c c

Figure 2.2: Grammar Gl1 to enumerate all combinations for a n-digit lock. Axiom is
comb.

Table 2.6: All five derivations, whose canonical representation is the combination 1409.
See Algebra Ic of Table 2.7 for the mapping from a derivation to a canonical
representation. Input sequence is xxxx for a 4-digit lock. Applying Ic to
Gl1 reveals the grammars semantic ambiguity regarding combinations, since
different derivations map to the same combination.

la lb lc ld le

next

next next

last

0

x

last

9

x

last

1

x

last

4

x

1

2 3

4 5 6 7

8 9 10 11

next

next

next

last

0

x

last

9

x

last

1

x last

4

x

1

2 3

4 5 6

7 8 9

10 11

next

next

last

4

x

last

1

x

next

last

9

x

last

0

x

1

2 3

4 5 6

7 8 9

10 11

next

next

next

last

0

x

last

9

xlast

1

x

last

4

x

1

2 3

4 5 6

7 8 9

10 11

next

next

next

last

0

x

last

9

x

last

1

x

last

4

x

1

2 3

4 5 6

7 8 9

10 11

fact, all five derivation la to le of Table 2.6 point to the very same combination 1409,
just with different internal structures, which does not impress the lock.

While a combination is the meaning of a real world object, the derivation has –
in principle – no interpretation. We call the meaning the semantics, and the result
of mapping a derivation to its meaning a canonical representation. Let us refine our
definition to distinguish “good” (syntactic) and “bad” (semantic) ambiguity:

Definition 9. A grammar is called syntactically ambiguous if there is more than one
derivation for a given input.

Definition 10. A grammar is semantically ambiguous regarding a given semantics, if
two derivations have the same canonical representation, i. e. the semantic mapping is
not injective.

When solving optimization problems, semantic ambiguity often does not hurt. The
optimal value may be computed by several derivations but can still be correctly deter-
mined. Problems arise, if we want to e. g.

• report a meaningful list of sub-optimal solutions. This list will be polluted by
many duplicates.

• say something about the number of different meanings, e. g. counting them. The
problem is, that the search space is larger than the space of different meanings.

27

2 Background

Table 2.7: Algebra Ic to formally define the semantics of a combination. Operator ⊕ is
string concatenation.

algebra function Ic
last(d) d

next(x, y) x⊕ y
0(c) 0

...
...

9(c) 9

S string
objective function id

• compute a most likely meaning. A meaning might be composed of several deriva-
tions. In this case its probability is not identical with the probability of the most
likely derivation. We will not be able to observe this situation, but a Viterbi al-
gorithm must fail. That might be manageable for the lock example, where every
combination has the same number of different derivations. But what about gram-
mars where different meanings have different numbers of derivations? In general,
semantic ambiguity most likely ruins all forms of stochastical analysis! We will face
this situation, e. g. for computing RNA shape probabilities (see Chapter 3.2.5) or
matching an RNA sequence against an RNA family model (see Chapter 7.3).

In conclusion, it is better to avoid semantic ambiguity in the first place. Unfortu-
nately, checking a given grammar, together with a formally defined semantics, for being
semantically ambiguous is – in general – an undecidable problem [70].

Coming back to our example, the ambiguity of Gl1 is easily avoided by replacing
next(comb, comb) by e. g. adddigit(digit, comb), because now a further digit can only
be added to a combination in a single fashion.

28

3 Lost in folding space?

This chapter follows our BMC Bioinformatics publication [45]. The test data have been
replaced with longer sequences, algorithms are described more elaborately and additional
influencing factors like energy parameter set and lonely base-pairs are investigated.

3.1 Background

3.1.1 Motivation

A wide variety of bioinformatics tools exist, which help to analyze RNA secondary
structure based on an experimentally supported thermodynamic model of RNA folding
[61]. Typical tasks performed by such tools are

• prediction of a single, “optimal” structure of minimal free energy,

• computation of near-optimal structures, either by complete enumeration up to a
certain energy threshold, or by sampling from the folding space,

• computation of base-pair probabilities and dot plots,

• computation of representative structures of different abstract shapes,

• computation of Boltzmann probabilities, either of individual structures or accu-
mulated over all structures of the same abstract shape.

From a macroscopic point of view, all these approaches are based on the same thermo-
dynamic model, but when checking in detail, this does not hold. Algorithms for different
tasks make certain assumptions about the folding space, where little is known to which
extent these assumptions influence the outcome of the analysis.

The present study is designed to fill this gap. We explicate the details of four differ-
ent models of the RNA folding space, named NoDangle, OverDangle, MicroState and
MacroState. They capture four different models of the folding space, as they are imple-
mented in the programs RNAfold [40], RNAshapes [34], and RNAsubopt [95]. 1

We compare the outcome of predictions from the different models, and evaluate them
against a widely trusted data set derived from experimentally proven structures.

1Our observations may pertain also to other popular programs such as Mfold [97], UNAfold [55]
and RNAstructure [75], but their folding space implementations have not been re-modeled here.

29

3 Lost in folding space?

3.1.2 Goals of the evaluation

The goal of this study is not to define a “correct” or “best” way of modeling the RNA
folding space. Different definitions may retain their merits in the light of different
computational constraints. We want to explicate the differences in the results which are
due to the choice of a particular model. Aside being interesting in its own right, this
allows future algorithm designers to make a well-founded choice of the model they base
their work on.

How to compare the performance of different models? A first idea would be to eval-
uate them with respect to prediction of the structure of minimum free energy (MFE;
for details see below), using a reference set of trusted structures. This has been done
occasionally [20, 61], and we will include such an evaluation here for the sake of com-
pleteness. However, MFE structure prediction is notorious in the sense that a slight
offset in energy can lead to a radically different structure. This is a consequence of the
underlying thermodynamic model, and not due to its inadequate implementation. For
a more robust evaluation, we need a measure which constitutes a more comprehensive
characteristic of the overall folding space of an RNA molecule, including evidence for
competing near-optimal structures of significant structural variation.

Abstract shapes of RNA [34, 91] provide such a measure. This approach provides
two essential types of analysis: (1) to compute a handsome set of representative, near-
optimal structures, which are different enough to be of interest, and (2) to compute shape
probabilities, which accumulate individual Boltzmann probabilities over all structures of
the same shape. The shape probability is a robust measure of structural well-definedness,
and in contrast to folding energy, it is independent of base composition and meaningful
for comparing foldings of different sequences with similar length.

Types (1) and (2) of abstract shape analysis are achieved by different algorithms, using
different models of the folding space in the program RNAshapes. A similar situation
prevails within the Vienna-RNA-Package, where different models of the folding space are
used with various functions of RNAfold and RNAsubopt under different parameter
settings.

For our evaluation, we implement probabilistic shape analysis in four different ways,
three of which closely correspond to the folding space models implemented for MFE
prediction in RNAfold2, and two of which correspond to the algorithms used in
RNAshapes. This set of programs will allow us to derive observations about the un-
derlying folding space models.

3.2 Methods

In this section, we recall the definitions underlying the thermodynamic model of RNA
folding, and then proceed to specify four different implementations of this model.

2One may view our re-engineering as adding shape probability functionality to the Vienna-RNA-
Package from outside.

30

3.2 Methods

3.2.1 Free energy and partition function

Structure formation of a single-stranded nucleic acid sequence x—from an unfolded,
random coil structure c into the folded structure s—is a standard equilibrium reaction
with temperature-dependent free energy ∆G0

T and equilibrium constant KT :

c
 s

KT =
[s]

[c]

∆G0
T = −RT lnKT .

The number of possible secondary structures of a single sequence, i. e. the folding
space F (x) of x, grows exponentially with the sequence length n [93, 66]. These possible
structures si of a single sequence coexist in solution with concentrations dependent on
their free energies ∆G0(si); that is, each structure is present as a fraction psi according
to its Boltzmann probability

psi = exp

(
−∆G0

T (si)

RT

)
/Q

given by its molar Boltzmann weight exp(−∆G0
T (si)/(RT)) and the partition function Q

for the ensemble of all possible structures

Q =
∑

all structures si ∈ F (x)

exp

(
−∆G0

T (si)

RT

)
.

The structure of lowest free energy is called the (thermodynamically) optimal structure
or structure of minimum free energy (MFE). Variable R is the universal gas constant
(0.00198717 kcal/K) and T is the temperature in Kelvin.

3.2.2 Implementing the energy model

The free energy of a given secondary structure s is obtained by decomposition of s
into its structural elements and summation of values obtained by respective calls of the
elementary energy functions of these elements as listed in Table 2.4 on page 25. With
the example shown in Figure 3.1, this would be three calls to Esr for the three base-pair

stacks (
5′AC3′

3′UG5′
,

5′CC3′

3′GG5′
, and

5′XY3′

3′YX5′
), a call to Etermau for the terminal

5′A

3′U
pair, and a call to

Ebl for a bulge loop with sequence 5′N---N3′ and closing pairs
5′C

3′G
and

5′Y

3′X
.

In addition to the basic energy model described above, unpaired bases at the end of a
helix can stabilize the helix by stacking on the terminal base-pair [12, 68, 49] 3. Introduc-
ing dangling bases effectively refines our notion of structure. Any secondary structure,

3Similarly, stacking of helices [92, 96, 61] can further contribute free energy. This aspect is not
considered here.

31

3 Lost in folding space?

ACCN---NXY---
UGG YX---

(((.---.((---)))))

ACCN---NXY---XYGGU stack sr

A U

C Gr strong

5' 3'

5'

3'

A

B

C

D

sr

C Gbl

Figure 3.1: Example on structure representations. A sequence, shown in A), folds into
a structure that is represented by the three equivalent illustrations in B–
D). The structure consists of a helix with three base-pairs (ACC paired with
GGU), a bulge loop (N---N; N meaning aNy nucleotide), and a helix with two
base-pairs formed by any complementary nucleotides. The dashes designate
omitted sequence stretches. The structure in B) is in Vienna-Dot-Bracket
notation. The structure in C) is the usual squiggly representation. D) is
the tree representation of the same structure: a stacked region (sr) is formed
by an A:U pair stacked on top of a second stacked region C:G on-top of a
bulge loop (bl) including a stacking pair (C:G) and a loop region with one or
more residues (r) on the left (5’) side. The helix continues with a “strong”
structural element (which is defined as any sub-structure starting with a base
stack).

as defined solely by its set of base-pairs, can now have several variants according to
different choices of dangling bases. Such a refinement can be reflected in our structure
representation by replacing certain dot symbols by d, indicating a base dangling onto
a helix to its left, and b for a base dangling onto a helix to its right. For example, a
structure like

((..((...)).((...)).))

now has dangle variants such as

((d.((...))b((...))b))

((.b((...))b((...))b))

((db((...))b((...))b))

((..((...))d((...))b))

((..((...))b((...)).))

and 31 more. Each end of a helix can have dangling bases, except an end which leads
to the hairpin loop. In this case, energy contributions from dangling bases are already
incorporated in the energy parameters (Ehl) for the loops.

Given a concrete secondary structure, it is no problem to consider all possible dangles
and compute the optimal energy for this structure. The program RNAeval from the
Vienna-Package can be used for this purpose. However, for structure prediction from a
primary RNA sequence, dangle means trouble, as we shall see shortly.

32

3.2 Methods

Grammars and their relation to established structure prediction programs

All approaches using the thermodynamic model are implemented via dynamic program-
ming. Recursively, structures are composed from smaller sub-structures. Such a dy-
namic programming algorithm always has an underlying grammar, which describes all
the candidates in the folding space of a given RNA sequence. Hence, by extracting the
grammars behind different algorithms, we can analyze the differences in their respective
folding space in a precise way, and without obscuring implementation detail.

We will present four grammars, GNoDangle, GOverDangle, GMicroState and GMacroState. The
first three implement the folding space of RNAfold used with options -d0, -d2, and
-d1, respectively. The grammars GMicroState and GMacroState implement the folding space
of RNAshapes in its two functions. All four grammars will then be empowered with
algebras for MFE prediction (Imfe), dot-bracket representation (Idb), shape abstraction
(Iπi) for five different levels i, Boltzmann weighted energies (Ibwe), and are used in our
evaluation for computing shape probabilities (via the algebra product Iπi ∗ Ibwe) under
the different models.

3.2.3 Model NoDangle

Grammar GNoDangle is our incorporation of the elementary energy model, without con-
sidering dangling bases at all. It corresponds to the model underlying RNAfold when
used with option -noLP -d0 4. It is also used in RNAsubopt. We give a narrative
explanation of how this grammar of Figure 3.2 works.

Each term, which represents a secondary structure, is a struct, i. e. it is derived
from the axiom of GNoDangle. It might have leading unpaired bases (sadd), hold one or
more closed sub-structures (cadd), or just ends with the empty word (nil). A dangle
is a closed sub-structure whose directly neighbored bases might dangle onto the stack
of base-pairs. We keep the name dangle for consistency with the other grammars, but
no dangle energies are considered in GNoDangle; A stack must have strong stabilizing
energies, if we forbid lonely base-pairs, i. e. at least two directly nested base-pairs must
stack on top of each other. Otherwise, strong is just a forwarding to weak, a sub-
structure enclosed by a base-pair, which eventually leads to one of five structural motifs:
hairpin loop (hl), bulge to the left (bl), bulge to the right (br), internal loop (iloop) or
multiloop (ml). The multiloop is a concatenation (ml comps and ml comps1) of two or
more sub-structures, embraced by one closing stack. A helix initiated by weak can be
elongated by sr.

Filter ≥ 3 requires the region of the hairpin-loop (hl) to be at least 3 bases long.
Similar is the effect of ≤ 30 to regions. Annotations basepair beneath non-terminals
mean that leftmost l and rightmost r bases of all right hand sides must be able to form
a valid base-pair, i. e. (l, r) ∈ {(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)}. Filters 6= LP and
= LP control presents of Lonely base-Pairs in the terms. A base-pair at positions (i, j)
is lonely iff neither (i− 1, j + 1) nor (i+ 1, j− 1) form another base-pair. Shall we want
to model terms with lonely base-pairs, we set variable LP = true, hence production

4RNAfold-manual: “-d or -d0 ignores dangling ends altogether (mostly for debugging).”

33

3 Lost in folding space?

sadd cadd nil

l

struct

b struct dangle struct

drem

l lstrong

dangle

sadd cadd

b ml_comps incl ml_comps1

dangle

ml_comps sadd cadd incl addssml_comps1

b ml_comps1

dangle

incl ml_comps1 rincldangle

dangle

sr

b b

strong

weak

weak
basepair

≠ LP = LP

ml

b bml_comps

multiloop
basepair

il

b br rstrong
≤30 ≤30

iloop
basepair

br

b brstrong
≤30

rightB
basepair

bl

b br strong
≤30

leftB
basepair

hl

b br
≥3

hairpin
basepair

sr

b bweak

stack
basepair

stack | hairpin | leftB | rightB | iloop | multiloopweak

Figure 3.2: Regular tree grammar GNoDangle for RNA secondary structure prediction.
Axiom is struct. Functions are given in green, terminal parsers are blue,
syntactic filters are pink. Search space L(GNoDangle) is identical to RNAfold
(with option -d 0), except both regions of internal loops (il) together may
not exceed 30 bases in RNAfold.

“strong → weak” can be applied, but not production “strong → sr(b, weak, b)”. LP
set to false, on the other hand, makes formation of lonely base-pairs impossible; which
should be the default.

Automated table design of Bellman’s GAP for GNoDangle, results in the tabulation
of non-terminals {struct, dangle, strong, weak, iloop,ml comps,ml comps1}. The other
5 non-terminals {hairpin, leftB, rightB,multiloop, stack} are not tabulated, yielding a
run-time5 of 6 · n3 + 4, 478 · n2 + 8 · n+ 6.

3.2.4 Model OverDangle

Grammar GOverDangle considers dangling base energies in a simplified form. It corre-
sponds to RNAfold called with options -noLP -d2 6. The grammar itself is identical
to GNoDangle (cf. Figure 3.2). It computes the same folding space, but evaluates energies
differently. It assumes an energy contribution from dangling bases on every side of a
helix, even if a base is not available for dangling, for example because it is itself engaged
in another helix, or already dangling there. The algebra functions drem and ml con-
trol the dangling behavior, which is the only difference between the models NoDangle
and OverDangle. In the OverDangle model drem and ml always adds dangling energies
for left and right dangles. This is why the production using drem uses two l terminal
parser: l recognizes the empty word, and returns its position in the sequence. These
positions are used by drem to look at the two bases to the left and right of the strong
sub-structure.

5determined by the tool multi rt approx from the Bellman’s GAP suite
6RNAfold-manual: “With -d2 this check is ignored, dangling energies will be added for the bases

adjacent to a helix on both sides in any case; this is the default for partition function folding (-p).”

34

3.2 Methods

This “overdangling” model is used because a correct treatment of dangles is much
more complicated, as we shall see below. As a plausibility argument in favor of this
heuristic, one may say that when a base is overdangled, for example between two adjacent
helices, as with the midpoint in ((...)).((...)), this can be seen as a bonus for co-
axial stacking of the two helices. Including full co-axial stacking could be considered
as a further refinement of the folding space beyond the GMicroState model, which will be
described below. Still, due to overdangling, the MFE energy value computed may be
smaller than actually assigned by the thermodynamic model to the underlying structure.
Partition function computations in RNAfold use the OverDangle approach, and so
does RNAsubopt with option -d2 (and even -d1, but see below).

Would we use both NoDangle and OverDangle to produce a list of all structures in
the folding space, sorted by free energy, these lists would hold the same structures, but
in a different order. The true MFE structure (under the full model with correct dangles)
will be near the front of each list, but it is not guaranteed to come out on first place.
Our next two grammars are designed to achieve this goal.

3.2.5 Model MicroState

Grammar GMicroState is a grammar which refines our model of a secondary structure. It
corresponds to RNAfold -noLP -d1 7 and is used in the 2004 release of RNAshapes
[34] for the computation of representative structures of different shape.

GMicroState has separate rules for a helix end with two bases, one base or no base
dangling onto it (see Figure 3.3). These four cases compete with each other for minimum
free energy. If surrounding bases are already base-paired, only the drem case applies
(no dangles). If it is decided (say) that the left neighboring base dangles onto the helix,
then this base is not available for also dangling on another helix. In this way, grammar
GMicroState correctly finds the structure of minimal free energy, and could, in principle,
also explicitly report the optimal dangles, as in ..b((...))d((...))....

All variants of the same secondary structure, augmented with different dangles, are
now separate members of the folding space. Grammar GMicroState is semantically ambigu-
ous with respect to the Vienna-Dot-Bracket notation (see Section 2.1.3). In contrast to
the classical model, accounting only for base-pairs, we call them “microstates”. Let us
derive a rough estimate of this folding space enlargement. The size of the folding space
for a sequence of length n grows asymptotically with a · bn · n−3/2, with b = 1.44358 and
a = 3.45373 [66]. A structure has, on average, k(n) helices, where k grows with n. Each
helix end has up to four ways to play with the dangles, but helix ends in hairpin loops do
not count. Directly adjacent helices further reduce the number of dangling alternatives.

Let us, for simplicity, assume that an helix has 4 dangle variants on average. Then, the
above formula changes for the number of microstates to a · 4k(n) · bn ·n−3/2. An empirical
measurement is shown in Figure 3.4. From the measurements, and for their particular
data sequences and lengths, we can estimate k(n) ≈ n

15
. For a sequence of length 100, for

7RNAfold-manual: “With -d1 only unpaired bases can participate in at most one dangling end, this
is the default for MFE folding but unsupported for the partition function folding.”

35

3 Lost in folding space?

multiloop
basepair

mldl

b bml_compsb

mldr

b bml_comps b

mldlr

b bml_compsb b

dangle edl

b lstrong

edr

l bstrong

edlr

b bstrong

ml

b bml_comps

drem

l lstrong

Figure 3.3: Grammar GMicroState extends the rules of grammars GNoDangle or GOverDangle

(Figure 3.2) for the non-terminal symbols “dangle” and “multiloop”. Instead
of just one way, we now have four alternatives to dangle bases onto a closed
sub-structure: Both neighboring bases do not dangle (drem and ml), only
the left neighbored base dangles onto the stack (edl and mldl), only the right
one (edr and mldr), or both ones (edlr and mldlr).

1

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

1e+18

0 20 40 60 80 100

no
. s

tr
uc

tu
re

s

sequence length

MacroState
OverDangle

MicroState
NoDangle

Figure 3.4: Growth of folding spaces for all four grammars. We used uniformly dis-
tributed random sequences, with step-size 5 bp. The number of secondary
structures heavily depends on sequence composition, thus we took the aver-
age over 100 sequences per data point. Curves for GMacroState and GOverDangle

are not visible, because they are perfectly overlayed by GNoDangle, i. e. all
three folding spaces have exactly the same size.

example, we see an increase by a factor of 104. Clearly, this is a substantial enlargement
of the folding space, and different structures are affected to a different extent. (For
example, the open structure (no base-pairs) gives rise to only one microstate.)

This enlargement of the search space is not a problem for MFE structure predic-
tion. The dynamic programming algorithm derived from GMicroState only does a constant
amount of extra work compared to GNoDangle and GOverDangle. But a severe problem arises
with the desire to investigate near-optimal structures. The roughly 4k microstates of an
optimal structure with k helices crowd the near-optimal folding space, while represent-
ing the same structure in the non-dangling sense. Enumerating sub-optimals returns a
tremendous amount of useless information. RNAsubopt therefore uses GOverDangle for
enumeration, even when option -d1 is specified. Afterwards, it re-evaluates the energy
of predicted structures using correct dangling. Hence, the ranking of structures may

36

3.2 Methods

change. Occasionally, we observe that the energy of the true MFE structure is so much
above the energy of other, overdangled structures that it falls above the energy threshold
for enumeration and is not returned at all. 8

The second problem arises with computations that are based on Boltzmann statistics.
The partition function Q sums up the Boltzmann-weighted energies of all members in the
folding space. Each secondary structure contributes to the partition function as many
times as it has microstates, hence the result would be skewed towards structures with
many microstates. The significance of this bias is hard to judge 9, and up to this study,
it could not be evaluated empirically. For this reason, RNAfold does not support
partition function computation with the MicroState model (option -d1).

Fortunately, the partition function with correct dangles, avoiding overdangling as well
as explosion of the folding space, can also be computed. To keep the folding space
simple, we need a more sophisticated grammar: GMacroState.

3.2.6 Model MacroState

Grammar GMacroState (see Figure 3.2.6) follows the overall pattern of the other grammars,
but is much more refined. This grammar was designed originally with the 2006 release
of RNAshapes [91] to compute complete probabilistic shape analysis. Its rules are
written to record and distinguish the situation where a helix (1) ends with a base-pair,
(2) already has a single unpaired base to its right or left, or (3) has several unpaired
bases on either side. No dangle energies are added in cases (1) and (3), and in case (2),
all possible dangle variants (up to four microstates) are evaluated and minimized over
while considering the corresponding macrostate. This leads to a much larger number
of non-terminal symbols and functions in the grammar. GMacroState has 26 non-terminal
symbols and 32 algebra functions, compared to GNoDangle with 12 non-terminals and
12 algebra functions.

The important feature of GMacroState is that for any sequence, it defines the identical
folding space as GNoDangle. This is hard to believe when just looking at the grammar,
but has been shown in [91], and is further demonstrated by the measurements shown in
Figure 3.4. The size of the folding space, as defined by GMacroState, agrees with that of
GNoDangle and GOverDangle not only on average, but also on each individual sequence.

What is the effect of using either GMicroState or GMacroState? Does it really matter?
Here is an extreme example of how the choice of the state space affects the computed
probabilities:

GACCAAAGCCUUUGUCCCACAAAUUGCGAUCGCGUCGCGGAGC

MacroState prob. MicroState prob. shape class
58.44% 32.58% [][]

29.32% 63.43% [[][]]

12.24% 03.99% []

8A larger threshold will always help. However, one cannot tell whether this situation has occurred.
9Whether or not it is adequate in partition function computations to split a secondary structure into

several microstates is an unresolved dispute among experts (M. Zuker, personal communication).

37

3 Lost in folding space?

In this example, 40% of the probability mass is shifted by switching models, causing the
order of the two top-ranking shapes to be reversed. To find out whether this situation
is the exception or the rule is a main motivation of this study.

MacroState’s conception

The basic structure of GMacroState (Figure 3.2.6) is inherited from the previous three
grammars, but it has a more complex distinction of cases for dangling bases.
GMacroState has to consider all the different dangling situations as in GMicroState, but its

search space is restricted to the k(n)-times smaller folding space of the input sequence.
To achieve these contradicting goals, dangling alternatives do not exist as search space
candidates but are implicitly examined within the evaluation algebra.

Grammar GMacroState has to ensure that a sub-structure is of a defined dangling type
whenever its energy or partition function value is used in an algebra evaluation function.
We know that any helix derived from noleft dangle has no unpaired bases to its left
or right, while helices from edanglel, edangler or edanglelr have exactly one unpaired
base dangling from left, right or exactly two unpaired bases dangling from both sides,
respectively. In all four cases, there is no unpaired base left for a further dangling. Care
must be taken, where we can not be sure if e. g. the leftmost unpaired base of a block dl
derivation is free to dangle to some helix to its left. The unpaired base would be available
for a dangling if we use ssadd, but is occupied in incl situations. This uncertainty is
passed to every calling function, but with a clever grammar design we can at least ensure
that its type does not change. For example every ml comps1 or dl or ss left no ss end
derivation contains one or more helices with one or more unpaired bases at its 5’ end and
definitely no unpaired base at its 3’ end. Furthermore ml comps2 and no dl no ss end
always have no unpaired bases to both sides, ml comps3 or no dl ss end have one or
more unpaired bases only at its 3’ end and finally ml comps4 or dl or ss left ss end are
known to have one or more unpaired bases to both ends. The benefit of these distinctions
can be demonstrated with the multiloop functions mldl and mladl. The important base
is the one that is directly left to the ml comps1 or ml comps2 sub-structure. In principle,
it can either dangle to the left, that is the closing stem of the multiloop, or the right, that
is the leftmost helix within the multiloop. Actually, for mldl our base of interest can only
dangle to the left, because every ml comps1 derivation already has at least one further
base in front of the first inner helix. For mladl we truly have an ambiguous situation,
where the base of interest could dangle to one of both sides. Please note that mldl
and mladl correspond to two different dot-bracket structures. mldl handles macrostates
of the type ((... including microstates ((... and ((d.., whereas mladl handles
macrostates of type ((.((... and includes the microstates ((.((..., ((d((..., and
((b((.... The MFE algebra function locally chooses the variant with the better free
energy, even if a global analysis would reveal that the locally worse structure would
become MFE in the end. This constitutes a rare case where the MFE structure may be
missed. Our partition function algebra correctly keeps track of these situations.

38

3.2
M
eth

o
d
s

left_unpaired sadd

b left_unpaired

sadd

b left_dangle
weak stack | hairpin | multiloop | leftB | rightB | iloop

struct left_dangle trafo left_unpaired

noleft_dangle

left_dangle ambd

edanglel b noleft_dangle

cadd'

edanglel noleft_dangle | nil

cadd

edanglelr left_dangle | left_unpaired

nil

l

l

l

noleft_dangle cadd''

edangler left_dangle | left_unpaired

cadd'''

nodangle noleft_dangle | nil

ambd'

nodangle b noleft_dangle

edanglel edl

b strong l

edangler edr

l strong b

edanglelr edlr

b strong b

nodangle drem

l strong l

ml_comps1 combine

block_dl no_dl_no_ss_end

combine

block_dlr dl_or_ss_left_no_ss_end

acomb

block_dl b no_dl_no_ss_end

ml_comps2 combine

nodangle

incl no_dl_no_ss_end

combine

edangler

incl dl_or_ss_left_no_ss_end

acomb

nodangle

incl b no_dl_no_ss_end

ml_comps3 combine

edangler

incl dl_or_ss_left_ss_end

combine

nodangle

incl no_dl_ss_end

acomb

nodangle

incl b no_dl_ss_end

ml_comps4 combine

block_dl no_dl_ss_end

combine

block_dlr dl_or_ss_left_ss_end

acomb

block_dl b no_dl_ss_end

block_dl ssadd

r edanglel

incl

edanglel

block_dlr ssadd

r edangler

incl

edanglelr

dl_or_ss_left_no_ss_end ml_comps1 block_dl

no_dl_no_ss_end ml_comps2 incl

nodangle

no_dl_ss_end ml_comps3 incl

edangler

addss

edangler

incl r

dl_or_ss_left_ss_end ml_comps4 block_dlr addss

block_dlr r

il

b br rstrong
≤30 ≤30

iloop
basepair

br

b brstrong
≤30

rightB
basepair

bl

b br strong
≤30

leftB
basepair

hl

b br
≥3

hairpin
basepair

sr

b bweak

stack
basepair

sr

b b

strong

weak

weak
basepair

≠ LP = LP

b b ml_comps1 b b b ml_comps2 b b ml_comps3 b b b ml_comps2 b b b b ml_comps4 b b b b ml_comps2 b b b b ml_comps1 b b b b ml_comps3 b b b ml_comps2 b

multiloop mldl mladl mldr mladr mldlr mladlr mldladr mladldr ml
basepair

Figure 3.5: Grammar GMacroState unambiguously enumerates the folding space with respect to the Vienna-Dot-Bracket nota-
tion and treats dangling bases in a nearly correct fashion as does GMicroState. It is correct for partition function
computation, but it violates Bellman’s Principle of Optimality (cf. Section 2.1.1) in the case of MFE prediction.39

3 Lost in folding space?

Table 3.1: Signature ΣRNA for RNA problems. Result type of all algebra functions is
sort S. A is a symbol from the alphabet, i. e. a single character from the
input sequence. A∗ stands for a non-empty sub-sequence from the input and
A0 shall denote reading the position within the input, but not consuming any
symbol.

sadd(A,S) hl(A,A∗,A) addss(S,A∗) mladr(A,S,A,A)
cadd(S,S) bl(A,A∗,S,A) incl(S) mladlr(A,A,S,A,A)
nil(A0) br(A,S,A∗,A) cadd’(S,S) mldladr(A,A,S,A,A)
drem(A0,S,A0) il(A,A∗,S,A∗,A) cadd”(S,S) mladldr(A,A,S,A,A)
edl(A,S,A0) ml(A,S,A) cadd”’(S,S) ssadd(A∗,S)
edr(A0,S,A) mldl(A,A,S,A) ambd(S,A,S) trafo(S)
edlr(A,S,A) mldr(A,S,A,A) ambd’(S,A,S) combine(S,S)
sr(A,S,A) mldlr(A,A,S,A,A) mladl(A,A,S,A) acomb(S,A,S)

3.2.7 Signature and evaluation algebras

In the previous sections, we developed four regular tree grammars (GNoDangle, GOverDangle,
GMicroState and GMacroState) to enumerate all secondary structures for a given RNA in-
put sequence. Missing components for an executable Bellman’s GAP program are
signature and evaluation algebras, which will be presented in the following.

The signature defines the set of functions that can be used in the production rules
of a grammar (see Definition 2). A grammar does not need to incorporate all these
functions. Thus, we can specify just one common signature ΣRNA (see Table 3.1) for
all grammars, where e. g. GNoDangle will use only 12 functions, while the most complex
grammar GMacroState needs all 32 functions.

Using a common signature comes with the advantage that we have to implement
some of the evaluation algebras also just once. The Vienna-Dot-Bracket algebra Idb (cf.
Section 2.1.1) and the five shape abstraction algebras Iπi ∀ 5 ≥ i ≥ 1 will work for all
four grammars (see Table 3.2).

Abstract shapes

Many of the possible secondary structures for an RNA sequence differ from each other by
only tiny structural rearrangements like addition or removal of a base-pair, or a slight
shift in position of a small bulge loop. Structures can be pooled according to their
abstract shape. Generally, an abstract shape gives information about the arrangement
of structural elements such as helices, but no concrete base-pairs [34, 91]. The MFE
structure within each shape class is called “shrep”, which is short for shape representative
structure. The partition function Qp for the ensemble of all structures of shape p is

Qp =
∑

all structures si∈p

exp

(
−∆G0

T (si)

RT

)
.

40

3.2 Methods

Table 3.2: Algebras for terms of ΣRNA. Result of Idb is a Vienna-Dot-Bracket string. The
other five algebras Iπ5 to Iπ1 realize the abstract shape concept, by reducing
a candidate t to a shape-string. For the sake of readability, we omit the string
concatenation operator symbol ⊕ between every two parts of the result. ε
is the empty string and ...|r| means one ‘.’ for each base in r. In the case
of the shape algebras Iπi , the concatenation must be implemented such that
⊕ = is satisfied, i. e. adjacent symbols for unpaired regions are fused.

algebra function Idb Iπ5 Iπ4 Iπ3 Iπ2 Iπ1
sadd(a, x) . x x x x x x
cadd(x, y) x y x y x y x y x y x y

nil(l) ε ε ε ε ε ε
drem(l1, x, l2) x x x x x x

edl(a, x, l) . x x x x x x
edr(l, x, b) x . x x x x x
edlr(a, x, b) . x . x x x x x
sr(a, x, â) (x) x x x x x
hl(a, r, â) (...|r|) [] [] [] [] []

bl(a, r, x, â) (...|r| x) x x [x] [x] [x]

br(a, x, r, â) (x ...|r|) x x [x] [x] [x]

il(a, r1, x, r2, â) (...|r1| x ...|r2|) x [x] [x] [x] [x]

ml(a, x, â) (x) [x] [x] [x] [x] [x]

mldl(a, b, x, â) (. x) [x] [x] [x] [x] [x]

mldr(a, x, b, â) (x .) [x] [x] [x] [x] [x]

mldlr(a, b, x, c, â) (. x .) [x] [x] [x] [x] [x]

addss(x, r) x ...|r| x x x x x
incl(x) x x x x x x

cadd’(x, y) x y x y x y x y x y x y
cadd”(x, y) x y x y x y x y x y x y
cadd”’(x, y) x y x y x y x y x y x y
ambd(x, b, y) x . y x y x y x y x y x y
ambd’(x, b, y) x . y x y x y x y x y x y

mladl(a, b, x, â) (. x) [x] [x] [x] [x] [x]

mladr(a, x, c, â) (x .) [x] [x] [x] [x] [x]

mladlr(a, b, x, c, â) (. x .) [x] [x] [x] [x] [x]

mldladr(a, b, x, c, â) (. x .) [x] [x] [x] [x] [x]

mladldr(a, b, x, c, â) (. x .) [x] [x] [x] [x] [x]

ssadd(r, x) ...|r| x x x x x x
trafo(x) x x x x x x

combine(x, y) x y x y x y x y x y x y
acomb(x, b, y) x . y x y x y x y x y x y

S string string string string string string
choice function id unique unique unique unique unique

41

3 Lost in folding space?

Of course, the structures from all shape classes sum up to the ensemble of all structures:

Q =
∑

all shape classes p

Qp

and the probability of shape p is

Prob(p) = Qp/Q .

Shape abstraction can be defined in various ways. RNAshapes provides shape ab-
straction algebras Iπ1 to Iπ5 which implement different levels of abstraction, with Iπ5
being the most abstract. Shapes can be represented as strings, similar to structure rep-
resentations, where a single pair of square brackets [] marks a helix (of any length),
and an underscore marks a stretch of unpaired bases, also of any length. Levels of
abstraction differ in the amount of information they retain about unpaired regions. The
RNA structure ((.((((..(((...))).....((.((.....))...)).)))))) is mapped to
shape strings on abstraction levels 2 and 5 as follows:

Iπ2 : [[[][[]]]]

Iπ5 : [[][]]

Both shapes indicate that the structure is a so-called Y-shape, a multiloop with a two-
way branch. This most abstract view is conveyed by abstraction level 5. The less
abstract level 2 shape indicates, in addition, that the outer stem is interrupted by a
bulge on the 5’ side, and that the 3’ branch inside the multiloop is interrupted by an
internal loop. For a detailed definition of shape abstraction levels, see Table 3.2.

MFE algebras

Differences between the four models of this study stem on the one hand from different
grammars and on the other hand from different MFE algebras. We still use the common
signature ΣRNA, to re-use as many functions as possible, but we will need three different
versions for the MFE algebras. A starting point is algebra Imfe of Table 3.3. It suits for
models NoDangle and MicroState. Since these grammars do not use all functions defined
in ΣRNA, we omit the unused ones here for the sake of space. For Bellman’s GAP,
they are of course implemented – in a dummy fashion: they simply return 0.

We have now all components at our disposal to create an RNA secondary structure
prediction program for the NoDangle model: To resemble RNAfold with option -d 0

for an input sequence x, we compile the Bellman’s GAP instance

NoDangle : GNoDangle(Imfe ∗ Idb, x).

The change to model MicroState – equivalent to RNAfold -d 1 – is fairly easy, just
replace the grammar

MicroState : GMicroState(Imfe ∗ Idb, x).

42

3.2 Methods

For model OverDangle we need the variant IOverDanglemfe (Table 3.4) of the MFE algebra.
Positions where a stem is initialized (drem and ml), additionally account dangling en-
ergies for both adjacent bases – available or not. All other algebra functions remain
untouched. Thus, RNAfold -d 2 agrees with

OverDangle : GOverDangle(IOverDanglemfe ∗ Idb, x).

The MFE algebra variant for model MacroState IMacroState
mfe (Table 3.5) is not only com-

plicated, but also violates Bellman’s Principle of Optimality. We want to consider all
dangling variants as in GMicroState, but have only the smaller search space of GNoDangle.
Thus, within one macrostate, several microstates have to be explored, for example when
combining one closed component x to a sequence of closed components y, with one
unpaired base b in-between: ambd(x, b, y).

Base b can either dangle from right onto the stem of x (Edr) or from left onto the first
stem of y (Edl). By grammar construction, base left of b must be part of the outermost
base-pair of the stem in x; as well as the base right of b is part of the outermost base-pair
of the first stem in y. Since x might have leading unpaired bases in front of the stem, we
cannot know the left partner of the crucial base-pair. The same holds for y, which can
hold several adjacent stems. The base-pair partner will be hidden somewhere in y. The
only chance to keep track of the important base-pairs is to use a special answer type.
Instead of one integer value for the free energy, we switch to a five-tuple of integers. The
five components of an answer x stand for x1: free energy, x2: left border of first stem,
x3: right border of first stem, x4: left border of last stem and finally x5: right border
of last stem. With this additional information, we can determine the correct dangling
energies: Edr(x4, x5) or Edl(y2, y3).

Minimizing within an algebra function instead of creating real candidates can lead
to wrong results, as we will see in the following example: Let our input sequence be
xay = XXZZZZZYYaGGGGAAACUCUC. The left part up to the lower case a, which is the un-
paired base between x and y, shall be consumed by x in the form of a simple hairpin-loop
((.....)) with free energy of – say −3.0 kcal/mol. The following two alternative sec-
ondary structures must have been enumerated when determining the optimal solution(s)
for y: i) (((.....))). with 1.3 kcal/mol and ii) (((......))) with 1.6 kcal/mol. Of
course, only i) would have been kept. Let us assume that a achieves better free energy
if it dangles onto the right stem, i. e. the base-pair (G, U) with −0.3 kcal/mol, instead
of dangling onto x. Then, the total free energy is −3.0 + −0.3 + 1.3 = −2.0 kcal/mol
for the secondary structure ((.....)).(((.....))).

But what if dangling base a onto a base-pair (G, C) would give −0.7 kcal/mol, like
in alternative ii)? Total energy would be −3.0 + −0.7 + 1.6 = −2.1 kcal/mol for the
structure ((.....)).(((......))), which is better than the above one. This is a clear
violation of the third rule of Bellman’s Principle (see Section 2.1.1), since we cannot
move application of choice function h down.

Dangling contributions have not too huge energy values, thus this effect is not of-
ten seen for real RNA inputs. Thus, we include the MacroState model into our MFE

43

3 Lost in folding space?

Table 3.3: MFE evaluation algebra Imfe for terms of ΣRNA. Algebra functions cadd’
to acomb are not shown, since they are not part of Grammars GNoDangle and
GMicroState. Detailed information about the energy functions E are given in
Section 2.1.2. Terminals are represented with single letters, like a. In fact,
they are tuples of starting and ending borders of the parsed sub-word (see
Section 2.1.2). Thus, a+1 means shifting both borders one position to the
right; a−1 is a shift to the left.

algebra function Imfe
sadd(a, x) x+ Esbase

cadd(x, y) x+ y
nil(l) 0

drem(l1, x, l2) x+ Etermau(l1, l2)
edl(a, x, l) x+ Etermau(a+1, l) + Edl(a+1, l)
edr(l, x, b) x+ Etermau(l, b−1) + Edr(l, b−1)
edlr(a, x, b) x+ Etermau(a+1, b−1) + Eext mm(a+1, b−1)
sr(a, x, â) x+ Esr(a, â)
hl(a, r, â) Ehl(r)

bl(a, r, x, â) x+ Ebl(r, â)
br(a, x, r, â) x+ Ebr(a, r)

il(a, r1, x, r2, â) x+ Eil(r1, r2)
ml(a, x, â) x+ Eml + Eul + Etermau(a, â)

mldl(a, b, x, â) x+ Eml + Eul + Etermau(a, â) + Edli(a, â)
mldr(a, x, b, â) x+ Eml + Eul + Etermau(a, â) + Edri(a, â)

mldlr(a, b, x, c, â) x+ Eml + Eul + Etermau(a, â) + Eml mm(a, â)
addss(x, r) x+ Ess(r)

incl(x) x+ Eul

S int
choice function min.

evaluation, via the Bellman’s GAP instance

MacroState : GMacroState(IMacroState
mfe ∗ Idb, x).

Boltzmann weighted energy algebras

The second part of the evaluation is based on probabilities, or more precisely on shape
class probabilities. Probability psi of a single secondary structure si is its free energy
∆G0

T (si), weighted according to Boltzmann’s formula pf and divided by the sum of
all Boltzmann weights, i. e. the “partition function” Q (see Section 3.2.1). Function

pf(x) is defined as e
−x/100
R·T , where the division by 100 stems from the fact that energy

parameters in the Vienna-Package are encoded times 100. Thus, boltzmann weighted

44

3.2 Methods

Table 3.4: MFE evaluation algebra IOverDanglemfe for the OverDangle model. It is identical
to Imfe of Table 3.3, except for the algebra functions drem and ml. Differences
are marked with bold face.

algebra function IOverDanglemfe −B Imfe
drem(l1, x, l2) x+ Etermau(l1, l2) + Eext mm(l1, l2)

ml(a, x, â) x+ Eml + Eul + Etermau(a, â) + Eml mm(a, â)

energy algebras Ibwe are very similar to MFE algebras, but energy values are scaled
via pf , additions are replaced by multiplications and the choice function is summation
instead of minimization. Due to technical reasons, values are down scaled by sc(y) =(
e

0.1843
R·T

)−y
, according to sub-word length y to avoid numerical overflows.

Probability of a shape class is its individual partition function Qp, divided by the over-
all partition function Q: Prob(p) = Qp/Q. Both partition functions can be computed
via two Bellman’s GAP instances. First instance returns Qp for all possible p, here
for the NoDangle model:

GNoDangle(Iπi ∗ Ibwe, x).

Second instance directly gives Q:

GNoDangle(Ibwe, x).

Alternatively, Q could be deduced from a run of the first instance, simply as
∑

pQp.
Algebra Ibwe is given in Table 3.6.

For MicroState results, we just have to replace the grammar: GMicroState(Iπi ∗ Ibwe, x).
Transition to the OverDangle model is achieved by using a special bwe algebra IOverDanglebwe

(Table 3.7), which only differs in the functions drem and ml.
The according Bellman’s GAP instance is GOverDangle(Iπi ∗ I

OverDangle
bwe , x).

The correct MacroState algebra IMacroState
bwe has a very complicated internal structure.

Thus, we forbear to present it here in full details and point to the source code. However,
we give one example to sketch the intuition of the algebra:

Let us first reconsider the “meaning” of the answer type x in a simple function like
sr(a, x, â). It represents the Boltzmann weighted energies of all possible sub-candidates
that can be parsed by the sub-sequence for x. By grammar construction, we know that
whatever x might be, outermost bases form a base-pair. Thus, we can conceptually
extend all these candidates by one base-pair, practically by one multiplication of x with
the according Boltzmann weighted energy pf (Esr(a, â)).

Function acomb(x, b, y) connects one closed component x to a sequence of one or more
closed components y with an unpaired base b between them in the context of a multiloop.
Conceptually, the list of candidates for the complete word xby is the Cartesian product
of x and y with optimal dangling of b for each combination. The problem is that we
have no access to these lists of candidates, since x and y are just two numbers. In the

45

3 Lost in folding space?

Table 3.5: MFE evaluation algebra IMacroState
mfe for the MacroState model. Here, the an-

swer data-type is a five int-tuple. First component is the free energy. Second
and third component store left and right border of the leftmost stem in the
candidate. Left border of a terminal parser a is addressed as ia, right border
as aj. The last two components store borders for the rightmost stem.

algebra function IMacroState
mfe

sadd(a, x) (x1 + Esbase, x2, x3, x4, x5)
cadd(x, y) (x1 + y1, x2, x3, y4, y5)

nil(l) (0, 0, 0, 0, 0)
drem(l1, x, l2) (x1 + Etermau(l1, l2), x2, x3, x4, x5)

edl(a, x, l) (x1 + Etermau(a+1, l) + Edl(a+1, l), x2, x3, x4, x5)
edr(l, x, b) (x1 + Etermau(l, b−1) + Edr(l, b−1), x2, x3, x4, x5)
edlr(a, x, b) (x1 + Etermau(a+1, b−1) + Eext mm(a+1, b−1), x2, x3, x4, x5)
sr(a, x, â) (x1 + Esr(a, â), x2, x3, x4, x5)
hl(a, r, â) (Ehl(r), ia, âj , ia, âj)

bl(a, r, x, â) (x1 + Ebl(r, â), ai, âj , ai, âj)
br(a, x, r, â) (x1 + Ebr(a, r), ia, âj , ia, âj)

il(a, r1, x, r2, â) (x1 + Eil(r1, r2), ia, âj , ia, âj)
ml(a, x, â) (x1 + Eml + Eul + Etermau(a, â), ia, âj , ia, âj)

mldl(a, b, x, â) (x1 + Eml + Eul + Etermau(a, â) + Edli(a, â), ia, âj , ia, âj)
mldr(a, x, b, â) (x1 + Eml + Eul + Etermau(a, â) + Edri(a, â), ia, âj , ia, âj)

mldlr(a, b, x, c, â) (x1 + Eml + Eul + Etermau(a, â) + Eml mm(a, â), ia, âj , ia, âj)
addss(x, r) (x1 + Ess(r), x2, x3, x4, x5)

incl(x) (x1 + Eul, x2, x3, x4, x5)
cadd’(x, y) (x1 + y1, x2, x3, y4, y5)
cadd”(x, y) (x1 + y1, x2, x3, y4, y5)
cadd”’(x, y) (x1 + y1, x2, x3, y4, y5)
ambd(x, b, y) (x1 + y1 + min(Edr(x4, x5),Edl(y2, y3)), x2, x3, y4, y5)
ambd’(x, b, y) (x1 + y1 + min(Edr(x4, x5),Edl(y2, y3)), x2, x3, y4, y5)

mladl(a, b, x, â) (x1 + Eml + Eul + Etermau(a, â) + min(Edli(a, â),Edl(x2, x3)), ia, âj , ia, âj)
mladr(a, x, c, â) (x1 + Eml + Eul + Etermau(a, â) + min(Edri(a, â),Edr(x4, x5)), ia, âj , ia, âj)

mladlr(a, b, x, c, â) (x1 + Eml + Eul + Etermau(a, â)
+min(Edli(a, â),Edl(x2, x3)) + min(Edri(a, â),Edr(x4, x5)), ia, âj , ia, âj)

mldladr(a, b, x, c, â) (x1 + Eml + Eul + Etermau(a, â)
+Edli(a, â) + min(Edri(a, â),Edr(x4, x5)), ia, âj , ia, âj)

mladldr(a, b, x, c, â) (x1 + Eml + Eul + Etermau(a, â)
+Edri(a, â) + min(Edli(a, â),Edl(x2, x3)), ia, âj , ia, âj)

ssadd(r, x) (x1 + Ess(r), x2, x3, x4, x5)
trafo(x) x

combine(x, y) (x1 + y1, x2, x3, y4, y5)
acomb(x, b, y) (x1 + y1 + min(Edr(x4, x5),Edl(y2, y3)), x2, x3, y4, y5)

S (int,int,int,int,int)
choice function min.

46

3.2 Methods

Table 3.6: Boltzmann weighted energy evaluation algebra Ibwe. Unused algebra functions
in models NoDangle and MicroState are omitted for the sake of readability.

algebra function Ibwe
sadd(a, x) x · pf (Esbase) · sc(1)
cadd(x, y) x · y

nil(l) 1.0
drem(l1, x, l2) x · pf (Etermau(l1, l2))

edl(a, x, l) x · pf (Etermau(a+1, l) + Edl(a+1, l)) · sc(1)
edr(l, x, b) x · pf (Etermau(l, b−1) + Edr(l, b−1)) · sc(1)
edlr(a, x, b) x · pf (Etermau(a+1, b−1) + Eext mm(a+1, b−1)) · sc(2)
sr(a, x, â) x · pf (Esr(a, â)) · sc(2)
hl(a, r, â) pf (Ehl(r)) · sc(2 + |r|)

bl(a, r, x, â) x · pf (Ebl(r, â)) · sc(2 + |r|)
br(a, x, r, â) x · pf (Ebr(a, r)) · sc(2 + |r|)

il(a, r1, x, r2, â) x · pf (Eil(r1, r2)) · sc(2 + |r1|+ |r2|)
ml(a, x, â) x · pf (Eml + Eul + Etermau(a, â)) · sc(2)

mldl(a, b, x, â) x · pf (Eml + Eul + Etermau(a, â) + Edli(a, â)) · sc(3)
mldr(a, x, b, â) x · pf (Eml + Eul + Etermau(a, â) + Edri(a, â)) · sc(3)

mldlr(a, b, x, c, â) x · pf (Eml + Eul + Etermau(a, â) + Eml mm(a, â)) · sc(4)
addss(x, r) x · pf (Ess(r)) · sc(|r|)

incl(x) x · pf (Eul)
S float

choice function Σ

Table 3.7: Boltzmann weighted energy evaluation algebra IOverDanglebwe for the OverDangle
model.

algebra function IOverDanglebwe −B Ibwe
drem(l1, x, l2) x · pf (Etermau(l1, l2)+ Eext mm(l1, l2))

ml(a, x, â) x · pf (Eml + Eul + Etermau(a, â) + Eml mm(a, â)) · sc(2)

47

3 Lost in folding space?

MFE example, we saw that representing y with just one candidate led to wrong results.
How many classes of candidates do we have to store, to handle this situation correctly?
In fact, it is just two for each sub-component! Why?

Grammar design for y tells us, that b can only dangle onto a base-pair, whose left
partner is directly adjacent to b, but there can be different right partners. Not only the
position of b is fixed, but of cause also the according nucleotide; say it is an A. Wherever
the right partner might be located, it must be an U. For the Boltzmann weighted energy
contribution the partnering position is of no interest, what counts is the nucleotide.
Thus, multiplying the position independent amount pf (Edl’(b, (A, U))) with the result
will implicitly handle all candidates correctly.

Due to the wobbling base-pairs, the right partner is not unambiguously defined, e. g.
partner for an G can either be C or U. Since some bases have two alternatives, we need to
split the partition function value for y into two parts. The same thoughts apply to x. In
the end, we are able to treat all ambiguous situations of GMacroState correctly by locally
splitting the partition function values in at most 4 parts. Thus, the answer type is an
eight tuple, with four components for the partition function value and four components
for tracing first and last stem borders, as in IMacroState

mfe . Computing shape probabilities
for MacroState is realized with the instance

GMacroState(Iπi ∗ IMacroState
bwe , x).

3.3 Results & Discussion

3.3.1 Data set

Compiling a list of experimentally verified RNA secondary structures is a very tedious
and error prone task. It is unclear to what extend e. g. the crystallization for X-ray
diffraction – or other techniques – changes the native structure of an RNA molecule.
Furthermore, only one of all possible structures of the ensemble is captured. Is it the
most likely or thermodynamically most stable one?

We used a very conservative set of reference structures in our original publication.
The side effect was a relatively short mean sequence length of only ≈ 46bp. To see if
our observations pertain for longer sequences too, we here switch to the widely used set
of Andronescu et al. “S-full”[4]. The set “S-full”contains 3,245 sequence / structure
pairs. The mean sequence length is ≈ 270bp. A length histogram is given in Figure 3.6.
Andronescu et al. applied processing steps to obtain structures that can be predicted by
the features of the Turner model and to reduce the uncertainty in the data. These steps
include shortening the structures to be at most 700 nucleotides in length and the removal
of the minimum number of base-pairs that close pseudoknots, of non-canonical base-
pairs, of structures with unknown nucleotides, and of overly large loops. We consider
the “S-full”set of structures as the set of “reference” structures. They constitute our
standard of truth, but we are reluctant to call them “true” structures, since structures

48

3.3 Results & Discussion

Histogram for 'S−Full' (N=3245)

sequence length

F
re

qu
en

cy

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0

79

140
183

470

170
204

41
11 9 10 22 26

47
82

125

230

111

328

141

92
53

80

16 23
50

94 85 78

14 25

159

22
3 13 9

Figure 3.6: Sequence length histogram for the data set “S-full”. It contains 3,245 RNA
sequences with known secondary structures from the RNA STRAND v2.0
data-base [2].

in cristallo may be different from structures in vivo 10.

3.3.2 Technical Environment

Measurements for the evaluation have been performed on a 48 core machine, powered
by a Red Hat 4.7.2-8 operating system. It is equipped with 4 AMD Opteron(tm) 6168
processors, running at 1.9 GHz and 128 GB main memory. Jobs were scheduled via the
Oracle Grid Engine (OGE), version 6.2u7. Maximal memory consumption for each job
has been restricted to 4 GB via the -l virtual free and -l h vmem OGE parameters.

We used the tool GNU time 1.7 to log run-time and memory consumption. The latter
in the form of the maximum resident set size (RSS) of the process during its lifetime.

3.3.3 Evaluation of models for MFE structure prediction

While our main interest is in the effect of the chosen model on the partition function
based computations, we here evaluate the four grammars with respect to prediction of
a single MFE structure.

Evaluation setup

In evaluating models with respect to MFE structure prediction, we include not only our
programs NoDangle and OverDangle, MicroState and MacroState, but also the folding

10This can be evaluated by experimental techniques [26], but sufficient data are not yet available.

49

3 Lost in folding space?

programs UNAfold and RNAfold, which our readers are rightfully curious about
because of their practical importance. Turner’2004 parameters [60] were used through-
out11. These parameters are derived from melting experiments, with a few exceptions.
Multiloop parameters such as Eml in Turner’2004 are not derived from experiment,
but are optimized from structure data to be used in conjunction with the MicroState
model. Out of competition, we also include CentroidFold, which goes beyond strict
energy minimization by producing a near-optimal ensemble of structures and choosing
the eventual, single-structure prediction based on this sample.

Relative performance of programs of different origin is, however, not our main interest
here. Mainly, the evaluation should support that our four grammars faithfully reproduce
the behavior of the models underlying RNAfold with options -d0, -d1, and -d2, as
postulated at the outset of this study.

Evaluation results are summarized in Figure 3.7. We use an asymmetric base-pair
distance for comparison, where one structure (row entry) is treated as the prediction,
the other as the reference (column entry): One base-pair set, i. e. secondary struc-
ture, is the reference (R: table columns), the other one is the prediction (P : table
rows). Traditional base-pair distance is defined as |R \ P | + |P \ R|. Following [25],
we decide to allow additional base-pairs in the prediction, as long as they are com-
patible with the reference, i. e. both bases are unpaired and the additional base-pair
does not introduce a pseudoknot in the reference. The set of compatible base-pairs is
P−c = P \ {(a, b)|(a, b) /∈ R ∧ (a, b) compatible to R}. Then, our asymmetric base-pair
distance is: |R \ P |+ |P−c \R|. Table values are the sums of base-pair distances for all
3,245 sequences. In the case of co-optimal results, the one with the smallest distance to
the reference is chosen.

Our distance function is rather strict and does not allow base-pair slippage. If a
reference base-pair (i, j) is mispredicted as (i+ 1, j), this contributes a distance of 2.

For each RNA sequence of our test-set we called the programs with the following
command line options:

• RNAfold (version 2.1.3): echo sequence | RNAfold --noPS --noLP -dX, where
X is 0, 1 or 2.

• UNAfold (version 3.8): hybrid-ss-min --suffix=DAT --mfold --NA=RNA

--tmin=37 --tinc=1 --tmax=37 --sodium=1 --magnesium=0 --noisolate

--nodangle tmpseqfile > /dev/null && ct2b.pl tmpseqfile.ct, with and with-
out the --nodangle , where “tmpseqfile” is a fasta file containing the sequence
and “ct2b.pl” is a small Perl script from the Vienna-Package, which converts
RNA structures from “connect” to “dot-bracket” format.

• CentroidFold (version v0.0.9): centroid fold --engine=X tmpseqfile, where
X is the source of base-pair probabilities and is either computed by RNAfold
(McCaskill) or by CONTRAfold.

11Except for CentroidFold, since its most current release is not aware of these new parameters.

50

3.3 Results & Discussion

reference
1:go 2:RN 3:No 4:UN 5:RN 6:ma 7:mi 8:UN 9:RN 10:Ov 11:Ce 12:Ce

p
re
d
ic
ti
o
n

1: gold structure 0

2: RNAfold -d0 245,833 0 0 174,558 133,196 129,997 130,751 208,090 139,036 136,086 174,077 175,426

3: NoDangle 241,853 0 0 169,748 129,501 126,370 126,996 203,889 134,949 132,046 170,751 172,138

4: UNAfold -nodangle 228,945 170,814 166,016 0 176,695 173,551 173,335 140,973 176,773 173,625 157,957 171,040

5: RNAfold -d1 220,047 132,266 128,546 179,488 0 30,471 0 172,942 87,720 84,161 152,188 158,553

6: macrostate 216,012 129,249 125,594 176,523 30,738 0 27,171 169,353 82,384 79,053 149,590 156,492

7: microstate 216,936 129,861 126,079 176,069 0 26,978 0 169,448 84,315 80,778 149,655 155,916

8: UNAfold 207,414 203,771 199,580 139,552 169,045 165,367 165,646 0 172,030 168,550 141,867 162,165

9: RNAfold -d2 224,054 140,422 136,305 181,929 90,469 84,925 87,014 178,396 0 0 155,033 161,604

10: OverDangle 220,792 137,502 133,438 178,760 86,916 81,597 83,466 174,874 0 0 152,583 158,945

11: CentroidFold McCaskill 74,677 103,685 100,190 88,660 78,187 75,132 75,805 71,078 76,749 74,162 0 44,325

12: CentroidFold CONTRAfold 104,309 110,272 106,801 108,577 90,512 88,449 87,979 99,023 89,303 86,526 47,065 0

Figure 3.7: Base-pair distances of different MFE prediction programs with “S-full”. To-
gether, all “reference” structures contain 235,654 base-pairs.

• Our ADP implementation of the four grammars “NoDangle”, “OverDangle”, “Mi-
croState” and “MacroState” get the sequence as their sole input. The bina-
ries can be built with the source code provided by the fold-grammars repository
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars/ and the Bell-
man’s GAP compiler.

Observations from MFE prediction experiment

Consistency of implementations Naturally, comparing the results from the same tool
leads to entries of zero base-pair distance in the diagonal of Figure 3.7. The off-diagonal
zero entries, however, are quite remarkable. When two different algorithms perfectly
agree in their MFE predictions on the complete data set, this provides strong evidence
that they both faithfully implement the same thermodynamic model of the folding space
in each of its variants. In particular, this shows that our grammars GNoDangle/GOverDangle

and GMicroState indeed capture the analysis computed by RNAfold with options -d0/d2
and -d1. The perfect zeroes might even make our reader suspicious! Occasionally, there
must be two (or more) co-optimal structures of minimal free energy, and it is not formally
defined which one a program should return in this situation. Hence, it is accidental
whether or not two different programs, implemented by different programmers, make

51

http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars/

3 Lost in folding space?

the same choice. We therefore have designed our new programs to report all co-optimal
solutions in such a situation, and then choose the structure closest to the RNAfold
prediction. This always delivered a perfect match. Additionally, we had to obey the
Vienna-Package rule, that the combined size of both unpaired regions of an internal
loop (il) cannot exceed 30 base-pairs, which is a minor difference from the presented
grammars in Figures 3.2, 3.3 and 3.2.6. Otherwise, 22 of the 3,245 sequences would
not perfectly agree. Differences between MacroState and MicroState/RNAfold -d1
illustrate cases where MacroState’s violation against Bellman’s Principle of Optimality
leads to wrong results.

We apply the same technique of safe-guarding against co-optimals when comparing
to a database structure. Note that in practice, when predicting structure for a novel
RNA, the users of a structure prediction program have no reference structure to resort
to. In this case, reporting all co-optimal structures makes them aware of the ambiguity
of the situation, and leaves them with the choice to make. This is somewhat preferable
to quietly reporting a single MFE structure, selected from several by implementation
peculiarities.

The agreement of MacroState with the MFE prediction of RNAfold -d1 as well as
the perfect agreement with MicroState demonstrates that MacroState in fact computes
the energy model of the other two programs, while avoiding (as explained above) their
explosion of the state space. Taken together, these consistency results shows that we
have correct programs set up for our second experiment, where we will evaluate the
effect of the chosen energy and state space model on partition function calculations.

Results for UNAfold are not in perfect agreement with MicroState as well as
UNAfold -nodangle does not totally agree with NoDangle. Nevertheless, these pairs
fit best. Discrepancies can be explained by the fact that UNAfold basically implements
the same folding space as the other programs, but also models some additional aspects.
Unfortunately, these extra aspects violates Bellman’s Principle of Optimality (cf. Section
2.1.1).

UNAfold violates Bellman’s principle of optimality UNAfold’s manual 12 says

Finally, there are some special hairpin loop rules derived from experiments
that will be defined explicitly here. A hairpin loop closed by ri and rj (i < j)
called a “GGG” loop if ri−2 = ri−1 = ri = G and rj = U . Such a loop receives
a free energy bonus that is stored in the miscloop.dg or miscloop.TC file,
which contains a variety of miscellaneous, or extra free energy parameters.

Assume UNAfold would use GNoDangle to span the search space, use Imfe to evaluate
candidates and Idb to represent them. Actually, UNAfolds recurrences are not defined
by a grammar and uses only three “non-terminals”, but the following considerations still
hold. Two of the candidates of FGNoDangle

(GGGAAAUUU) are given in Figure 3.8.
Furthermore, assume that the special energy bonus is −2.2 kcal/mol as defined in file

miscloop.DAT of the UNAfold package 13. Respecting this bonus, energy of candi-

12http://mfold.rna.albany.edu/download/mfold-3.0-manual.pdf.gz, seen on 26.06.2013
13shipped with program version 3.8

52

http://mfold.rna.albany.edu/download/mfold-3.0-manual.pdf.gz

3.3 Results & Discussion

0G1 8U9

cadd

sr0l0 9l9

drem nil

9l9

1G2 2GAAAU7 7U8

hl

((.....))

1G2 7U8

cadd

sr

0l0 9l9

drem nil

9l9

2G3 3AAA6 6U7

hl

(((...)))

0G1 8U9

sr

a) b)

5.2 kcal/mol 5.4 kcal/mol

Figure 3.8: Two of several candidates from the search space FGNoDangle
(GGGAAAUUU), to

illustrate situations where UNAfold violates Bellman’s principle of opti-
mality, regarding an energy evaluation algebra.

date tb would promote to 3.2 kcal/mol and clearly overtake former energetically better
candidate ta. This promotion can only be made at sr(0G1, x, 8U9), where x holds the
energy for the best sub-structure for sub-word (1, 8), which is that of ta. Thus, we would
compute the false result of 3.0 kcal/mol, which is even better than the optimal value of
3.2 kcal/mol!

Here are some thoughts about possible solutions:

1. Similar to the energy functions, we might be able to “look” into the sub-word
(1, 8) at sr to recognise the GGG ↔ UYY pattern, but we would not know, if it is
really modelled as the right secondary structure, because sr can precede all kinds
of closed motives. We even cannot get this right if we do not apply choice function
min to x beforehand. Although x would turn from a single energy value into a
list of energy values, we would still miss the associated structural information.
Besides, we would loose a significant amount of run-time speed-up from dynamic
programming.

2. Another dangerous route to integrate this bonus could be to add a special pro-
duction to GNoDangle, like hairpin = hlGGG(sr(G, sr(G, hl(G, r, U), Y), Y)). Due to this
production, it is ensured that hlGGG captures both, the right sequencial pattern
and the right sub-structure. Thus, the energy bonus could specifically be applied.
Predicting just one MFE structure will be fine. But identical secondary structures
like (((...))) are modeled by two candidates (semantic ambiguity, cf. Section
2.1.3), destroying all stochastic properties and thus renders the grammar useless
regarding shape-class or base-pair probabilities and other purposes.

3. In principle, it is possible to design a special grammar, that can precisely differ-
entiate between normal hairpins with three base-pairs and the special one. But it
would require enormous overhead and a significant slow-down in run-time is to be
expected, although leaving the asymptotics untouched. Since there are no traces
of this effort in the UNAfold code and the default parameter for the bonus is set
to zero, this route does not seem to be promising, as well.

53

3 Lost in folding space?

Quality of MFE predictions Overall, the quality of MFE predictions compared to “ref-
erence” structures is moderate when measured on the individual base-pair level, with
errors 14 ranging from 44% to 52% for the reference structures. This is expected and well-
known. It is the reason why researchers have developed more advanced techniques, such
as structure sampling, complete enumeration, or shape abstraction. Experimentally re-
solved structures contain base-pairs which by definition are not predicted – non-standard
pairs, 3D interactions, pseudoknots, and lonely pairs.

The reference structures are best predicted by UNAfold (distance 207,414), due to
its additional rules. However, these rules – and thus UNAfold – cannot be considered
in the prediction of shape probabilities, because of the the problems stated in Section
3.3.3.

Performance of different dangling models Comparing the full dangling model (Mi-
croState, MacroState) to its upper and lower approximations NoDangle and OverDangle,
we find that its proper implementation pays off. It reduces the accumulated distance by
about 11% over NoDangle, and by 2% over OverDangle. Similar percentages apply for
RNAfold option -d1 versus -d0 and -d2. This also shows that OverDangle approxi-
mates the correct model better than NoDangle and justifies its use as a substitute for the
full model in partition function calculations with RNAfold and RNAsubopt, where
GMacroState is not available.

Looking deeper into the near-optimal folding space We included CentroidFold
[37] as a representative of methods which, in contrast to the above programs, look
deeper into the Boltzmann ensemble of near-optimal structures. Our evaluation shows
that the extra effort is well spent. CentroidFold comes closest to the gold structures,
and with respect to the single structure predictors, it corresponds on average best with
OverDangle.

3.3.4 Evaluating models for partition function and related
computations

Evaluation Criteria

In this section, we apply probabilistic shape analysis to our data set. In fact, we have
to fall back to heuristics, to compute with the long sequences of “S-full”(see “Technical
feasibility”). We are interested in the difference of performance of the four models
NoDangle, OverDangle, MicroState and MacroState. For simplicity, we call the abstract
shape of the reference structure the “reference shape”, and refer to the most likely
predicted shape as the “dominant shape”, although its actual dominance within the
Boltzmann ensemble will not be strong if there is another shape with similar probability.

14It is not obvious how to convert our absolute distances into error rates. Remember that a mispredicted
base-pair can contribute a distance of 2 (cf. Section 3.3.3). Assuming that predictions hold about
the same number of base-pairs as the reference structures (235,654), the interval of possible distance
scores is [0,471308], from which the above percentages are derived.

54

3.3 Results & Discussion

The shape string of the reference shape of sequence s is obtained by a call to RNAshapes

--mode=abstract --shapelevel=l "s", where l is one of the five shape abstraction
levels.

We ask the following questions:

• What are the differences in the shape probabilities computed with each of the four
models?

• How is the difference affected by the shape abstraction level considered?

Since we do observe significant differences in model behavior, we also ask which model
comes closer to the truth:

• To what extend does the dominant shape agree with the reference shape?

• What is the median (or the 20%, 35% and 65% quantile) of the reference shape
among the predicted shapes?

And we consider

• What are the run-time or memory trade-offs for computing with different models?

Evaluation method Shape probabilities do not make a structure prediction per se.
They provide holistic information by assigning probabilities to all shapes in the folding
space of a sequence x. It is our responsibility how we interpret these data. The hope
is, of course, to find the biologically functional structure among the high-probability
shapes, to find two high probability shapes for a riboswitch, to use lack of any shape
with high probability as an indicator of absence of a well-defined structure, and so on.
Such analysis goes beyond shape probabilities, and takes into account the concrete shreps
returned for each shape.

Independent of what the shape probabilities will be used for, we want to focus on
the agreement between the four grammars. To measure this, we use the shape proba-
bility shift (SPS), first introduced and later published by Andreas Bremges [36]. For a
given sequence x, all grammars will report the same shape classes, but with different
probabilities. Let P (x) be the shape space, i. e. the set of all shape classes for x, and
ProbG(p) the shape probability of p under grammar G. The shape probability shift for
x and grammars A and B is defined as:

SPSA,B(x) =
1

2
·
∑
p∈P (x)

∣∣ProbA(p)− ProbB(p)
∣∣ (3.1)

Note that 0 ≤ SPS(x) ≤ 1, where the extreme case of 1 would only be achieved when
all shapes with positive probability by grammar A have zero probability by grammar B
and vice versa. The SPS can be interpreted as the overall probability mass that moves
between shapes.

We chose the SPS measure because of this nice interpretation. We also evaluated
two alternative measures. The squared distance of base-pair probability matrices is

55

3 Lost in folding space?

Table 3.8: Relative memory. Averaged RSS for sequences 1 to 70 of Random set 1
relative to the reference NoDangle in level 1, which equals 40 MB of RSS.

memory 5 4 3 2 1 avg.

NoDangle 1.0 1.0 1.0 1.2 2.6 1.4
OverDangle 1.0 1.0 1.0 1.2 2.6 1.4
MicroState 1.0 1.0 1.0 1.3 3.0 1.5
MacroState 1.1 1.1 1.2 1.9 5.5 2.2

avg. 1.0 1.1 1.1 1.4 3.4

Table 3.9: Relative run-time. Averaged run-time for sequences 1 to 70 of Random set 1
relative to the reference NoDangle in level 1, which equals 1.02 seconds.

run-time 5 4 3 2 1 avg.

NoDangle 1.0 1.3 1.5 4.7 22.2 6.2
OverDangle 0.9 1.2 1.5 4.7 22.4 6.2
MicroState 1.2 1.9 2.3 8.0 39.8 10.7
MacroState 1.8 2.7 3.3 9.9 36.7 10.9

avg. 1.2 1.8 2.2 6.8 30.3

correlated with the SPS by a factor around 0.83 at shape level 5 and not much lower on
less abstract shape levels. The Kullback-Leibler divergence turned out to be unsuitable
for the purpose, as it is not symmetric and both versions (KL(x,y) versus KL(y,x))
show the poorest correlation among all methods tested. Details of this investigation of
alternatives are given in additional file 1 of [45].

Relative run-time and memory consumption Running probabilistic shape analyses
with random sequences for all models in all shape levels reveals that MacroState in level
1 is the most memory consumptive (see Table 3.8) one. Random set 1 contains 1,000
random sequences, which have an equally distributed nucleotide composition and are
ascendingly ordered by their sequence lengths. Each length is covered exactly once. We
subsequently executed probabilistic shape analysis in all four models and for all five
shape abstraction levels sequence by sequence. Relative run-times are given in Table
3.9. Memory has been initially exceeded for a random sequence with 71 nucleotides.

MacroState is the most sophisticated grammar and hence the most expensive to com-
pute with in terms of memory as well as in run-time. This is clear, since all algorithms
are implemented via dynamic programming, where a difference in the number of ta-
bles to be filled (with MacroState needing the most) directly maps to the difference in
run-time as well as in space requirements.

56

3.3 Results & Discussion

Grammars NoDangle, OverDangle and MicroState all use the same number of DP
tables (7), while only MacroState uses 20. Both, search space extension in MicroState
and algebra enhancement of MacroState cause similar slowdowns compared to NoDan-
gle/OverDangle on average. Automated table design (multi rt all of GAP-C) de-
rives asymptotic run-times of 6n3 + 4478n2 + 8n + 6 for NoDangle and OverDangle,
6n3 + 4506n2 + 8n + 6 for MicroState and 36n3 + 4571n2 + 18n + 4 for MacroState.
Overall, the selected shape abstraction level makes more difference with resource re-
quirements than the chosen model. For example, NoDangle (the most efficient) used
with abstraction level 2 uses more time and space than MacroState (the least efficient)
with abstraction levels 5, or 4.

Technical feasibility The number of shape classes grows exponentially with sequence
length, as stated previously. A lower abstraction level cause a larger exponential factor.
Nebel et al. estimates this factor to be ≈ 1.5 for shape level 1 [66]. As a practical
consequence, shape probability computations often exceed available memory, even for
short sequences � 100 bp, as observed in the last section.

There are two types of heuristics available for probabilistic shape analysis to handle
sequences of common length, like in “S-full”.

• low probability filter (probs): during the search space exploration sub-shape
classes less likely than a given threshold α will be excluded, thus reducing the
exponential number of shape classes. A priori, it is impossible to know if an
initially unlikely class cannot collect sufficient probability mass during computation
to overshoot threshold α. That fact renders this approach into a heuristics. In the
worst case, it might even miss the dominant shape class.

• stochastical backtrace (sample): similar to Sfold [13, 18], a given number of
random structures r are drawn from a forward filled DP matrix. For a concrete
RNA input, the summed Boltzmann weights for sub-structures at alternatives of a
non-terminal in the grammar (i. e. other cells of the DP matrix) transform it into
a stochastic context free grammar. The stochastical backtrace process randomly
picks one alternative at each non-terminal, according to its Boltzmann weight. All
sampled structures are abstracted to their shape classes and their frequency in the
sample serves as an estimate for the shape class probability. The larger the number
of sampled structures, the better the estimates. A (small) discrepancy between
estimate and true probabilities will always remain. Thus, stochastical backtrace is
a heuristics as well.

Both presented heuristics allow to trade speed-up for accuracy, either via the filter
threshold α or the sample size r.

Figure 3.9 illustrates the consequences of different parameter values. All measurements
are for MacroState in shape level 1, since it is the most resource demanding computation
(cf. Tables 3.8 and 3.9). Exact shape probabilities could only be computed for the first
and shortest 70 sequences of Random set 1 . All heuristic runs have been called with
these 70 sequences. Their results are compared to the exact probabilities in terms of

57

3 Lost in folding space?

● ●● ●● ●

●●●●●● ●● ●

●●●●●● ●● ●

● ●●● ●●● ●● ●

●● ● ●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●

●● ● ●

●● ●● ●

●

● ●● ● ●

●●●● ●

●●●● ●

min. inter grammar

probs: 0

probs: 1e−07

probs: 1e−06

probs: 1e−05

probs: 0.0001

probs: 0.001

probs: 0.01

probs: 0.1

probs: 0.9

sample: 50000

sample: 10000

sample: 5000

sample: 1000

sample: 500

sample: 100

sample: 50

sample: 10

sample: 5

sample: 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Shape Probability Shift # sequences from S−Full

0 1000 2000 3000

complete S−Full

70

106

120

127

139

176

170

177

213

391

403

404

404

404

410

410

432

432

432

Figure 3.9: Influence of different parameter values for stochastical backtracing (orange)
and low probability filter (blue) heuristics. The last row is to relate the error
rate to the effects, i. e. model differences, that shall be analysed.

SPS to see the decline in accuracy. All SPS values are plotted as horizontal boxplots.
Completely switching off the low probability filter (row “probs: 0” in Figure 3.9) by
setting α = 0 yields the exact values. Consequently, the SPS is zero for all sequences.
As expected, with growing α or declining r the error rate, i. e. SPS, increases.

The numbers in the rightmost column of Figure 3.9 give the maximal sequence length
for which the program did not exceed the given resource limitations when processing
Random set 1 . Only considering the sequence lengths, the mid part of Figure 3.9
indicates the ratio of computable sequences of “S-full”. A clear anti-correlation between
SPS and computable sequence length is observable.

In order to find a good trade-off between error rate and possible sequence length
we must consider that we want to make statements about differences between the four
grammars. Last row in Figure 3.9 “min. inter grammar” represents 70 SPS values for
those two grammars that have smallest SPS deviations on average. The two closest
grammars for the 70 sequences are MacroState and OverDangle. The vertical red line
marks the median of those 70 SPS values.

Due to the results of Figure 3.9, we decide to use stochastical backtrace with a sample
size of r = 10, 000 for all subsequent shape class probability analyses.

58

3.3 Results & Discussion

Ma Mi Ov No

Ma 0.000 0.216 0.251 0.445

Mi 0.216 0.000 0.271 0.551

Ov 0.251 0.271 0.000 0.506

No 0.445 0.551 0.506 0.000

shape level 5

Ma Mi Ov No

Ma 0.000 0.263 0.330 0.483

Mi 0.263 0.000 0.361 0.578

Ov 0.330 0.361 0.000 0.524

No 0.483 0.578 0.524 0.000

shape level 4

Ma Mi Ov No

Ma 0.000 0.284 0.363 0.501

Mi 0.284 0.000 0.401 0.594

Ov 0.363 0.401 0.000 0.534

No 0.501 0.594 0.534 0.000

shape level 3

Ma Mi Ov No

Ma 0.000 0.339 0.414 0.534

Mi 0.339 0.000 0.446 0.613

Ov 0.414 0.446 0.000 0.559

No 0.534 0.613 0.559 0.000

shape level 2

Ma Mi Ov No

Ma 0.000 0.405 0.519 0.611

Mi 0.405 0.000 0.575 0.691

Ov 0.519 0.575 0.000 0.595

No 0.611 0.691 0.595 0.000

shape level 1

Ma = MacroStates
Mi = MicroStates
Ov = OverDangle
No = NoDangle

Figure 3.10: Model similarity: shape probability shift.

Observations The values in Figure 3.10 are average SPS over the 2, 522 computable
sequences of “S-full”.

First, consider shape abstraction level 5. We find that models MacroState and Mi-
croState show the most agreement, where the SPS is around 21.6%. MacroState shows a
significant SPS against the others, strongest against NoDangle (44.5%) but also against
OverDangle (25.1%). A SPS in this range means that while in many cases, the predicted
dominant shape will be the same for all models, this need not hold in general. This jus-
tifies the question which of the model finds the reference shape as the dominant shape
more often (see below). By the way: the dominant shape and the shape of the MFE
structure agree for MacroState in 2, 027 out of 2, 522 cases, for MicroState in 1, 716, for
OverDangle in 2, 019 and for NoDangle in 2, 110 cases.

Let us turn from level 5 to decreasing levels of abstraction. Moving to abstraction
levels 4, 3, 2, and 1, the number of shapes increases with each step, while each shape
class holds a smaller number of structures. The overall relationship between the models
on levels 4 through 1 is consistent with what we observe for level 5. Overall, the SPS
values increase. A closer inspection of the raw data shows that SPS values actually
decrease for each individual shape, but due to the larger number of (smaller) shifts,
their sum increases. Evidence is provided in Figure 3.11.

Dominant shape is reference shape? The values in Table 3.10 show the ratios of
correct shape predictions vs. the size of the test-set, which is 2, 522 for “S-full”. We
observe the following:

The best ratio of agreement of dominant shape and reference shape is 40.0%. The fact
that this value is not higher is the reason which makes investigators look into several
high-probability shapes and their shreps in practice. Comparing the models, we find

59

3 Lost in folding space?

Ma Mi Ov No

Ma 0.000 0.010 0.009 0.024

Mi 0.010 0.000 0.009 0.030

Ov 0.009 0.009 0.000 0.026

No 0.024 0.030 0.026 0.000

shape level 5

Ma Mi Ov No

Ma 0.000 0.003 0.003 0.006

Mi 0.003 0.000 0.003 0.007

Ov 0.003 0.003 0.000 0.006

No 0.006 0.007 0.006 0.000

shape level 4

Ma Mi Ov No

Ma 0.000 0.002 0.002 0.005

Mi 0.002 0.000 0.003 0.006

Ov 0.002 0.003 0.000 0.005

No 0.005 0.006 0.005 0.000

shape level 3

Ma Mi Ov No

Ma 0.000 0.001 0.001 0.002

Mi 0.001 0.000 0.001 0.002

Ov 0.001 0.001 0.000 0.002

No 0.002 0.002 0.002 0.000

shape level 2

Ma Mi Ov No

Ma 0.000 0.001 0.001 0.002

Mi 0.001 0.000 0.001 0.003

Ov 0.001 0.001 0.000 0.002

No 0.002 0.003 0.002 0.000

shape level 1

Ma = MacroStates
Mi = MicroStates
Ov = OverDangle
No = NoDangle

Figure 3.11: Model similarity: average shape probability shift per shape.

Table 3.10: Ratio of agreement between dominant shape and reference shape for the
different grammars (columns) and different shape abstraction levels (rows).

Level MacroStates MicroStates OverDangle NoDangle

5 0.383 0.400 0.395 0.312
4 0.231 0.243 0.239 0.180
3 0.213 0.220 0.209 0.162
2 0.192 0.202 0.191 0.141
1 0.125 0.123 0.137 0.107

that there is no clear winner, with a margin of only 6.0% between the best and the
worst performer. Here, MicroState finds agreement most often, with a 1.0% margin over
MacroState and 5.7% margin over NoDangle. NoDangle performs worst (31.2%), but
not hopeless when we consider that one will look at a number of top-ranking shapes
anyway.

Thus, the more interesting question is how the reference shape is placed among the
predicted shapes – cf. Table 3.11. We investigate this aspect by compiling a list of
rank(preference) for all 2, 522 test-sequences, sorting this list ascendingly and report the
median (50%), the 20%, the 35% and the 65% quantile of the list. For example, the
value 3 for MacroState in shape abstraction level 5 in the 50% column means that, if we
decide to take only the top three shapes for closer study, the reference shape is among
them in 50% of the cases. Four top shapes suffice to reach this coverage with NoDangle.
Overall, the advantage of OverDangle appears marginal over the other grammars on
level 5, and appears somewhat randomized for weaker abstraction levels.

60

3.3 Results & Discussion

Table 3.11: Positions of correct shapes. The − indicates that the reference shape class
was not among the 10, 000 sampled structures.

MacroStates MicroStates OverDangle NoDangle
Level 20% 35% 50% 65% 20% 35% 50% 65% 20% 35% 50% 65% 20% 35% 50% 65%

5 1 1 3 14 1 1 3 19 1 1 3 12 1 2 4 20
4 1 4 145 - 1 4 125 - 1 4 64 - 2 7 - -
3 1 5 - - 1 4 - - 1 5 400 - 2 8 - -
2 2 17 - - 1 15 - - 2 16 - - 4 43 - -
1 3 57 - - 3 58 - - 3 71 - - 10 266 - -

Considering further folding space parameters The folding space of an RNA sequence
is not only ruled by the used grammars, but also depends on other variables. We want
to shed some light on the two factors “lonely base-pairs” and the “energy parameter
set” in a very coarse grained fashion.

Stabilizing energy basically comes from stacking base-pairs. Thus, lonely base-pairs
should in principle not occur; also energy parameters are not available for those situ-
ations. However, algorithmically, inclusion of lonely base-pairs is not a problem. Pro-
grams like RNAfold allows them on default. Inclusion of lonely base-pairs for our
grammars is controlled by the syntactic filter = LP. Figure 3.12 illustrates the impact
of lonely base-pairs.

We applied the sampling heuristics – as done before – to all “S-full”sequences twice, to
produce lists of shape classes ranked by their probability. The reference run is without
lonely base-pairs, the second run allows for lonely base-pairs. We identify the rank of the
reference shape in the reference shape class list and compare it to the rank of the same
shape in the second list. This difference is the rank shift ; an asymmetric measure. Since
we expect to observe similar tendencies throughout all four grammars and all five shape
levels we merge these results. Figure 3.12 is basically a histogram over all 2, 522 · 4 · 5
rank shifts between lonely base-pairs (blue) and no lonely base-pairs (red) in the folding
space(s). If the reference shape is not among the samples structures the rank shift is
±∞ (outermost vertical bars). To break down the results to one single number, the
mean rank shift is also provided.

In conclusion, lonely base-pairs do not only raise computational demands, they also
worsen the predictions.

A second factor on prediction performance is the used set of energy parameters. Even
if the folding space, i. e. the grammar, remains unchanged, results can change to a
great degree if the same candidates are scored differently. Figure 3.13 is constructed
in the same way as Figure 3.12, but 7 non-standard parameter sets are related to the
default “rna turner2004.par”. Confirmatively, both DNA sets (“dna mathews1999.par”
and “dna mathews2004.par” from the Vienna-Package), score worst. The update from
“rna turner1999.par” to “rna turner2004.par” (both from Vienna-Package) seems worth
the effort, since predictions improve. The four andronescu sets [4] can improve predic-

61

3 Lost in folding space?

−20 −10 0 10 20

1
10

10
0

10
00

10
00

0

rank shift, relative to 'no lonely pairs' (smaller is better)

fr
eq

ue
nc

y
(lo

g
sc

al
e)

−inf
< −20 > +20

+inf

means:

no lonely pairs
allow lonely pairs

Figure 3.12: Influence of the presents of lonely base-pairs on prediction results.

tions even beyond the “rna turner2004.par” set – at least for “S-full”sequences. But this
impression can be misleading. These parameter sets have been trained with exactly the
“S-full”set itself, thus we might observe some over-fitting effects.

3.4 Conclusion

3.4.1 Model comparison

Summing up our observations from model comparison and model performance evalua-
tion, we conclude the following:

Conclusion 1 For prediction of a single structure, there is no better alternative
(among the models considered) than UNAfold, possibly augmented to report ALL struc-
tures with the optimal MFE value as in MicroState, when several exist.

However, with such augmentation, a filter must be provided to safeguard against
co-optimal microstates of the same optimal macrostate being reported.

Conclusion 2 The distortion of shape probabilities caused by state space explosion
(MacroState versus MicroState) is smaller than the one caused by over- or underesti-
mating energies (MacroState and MicroState versus NoDangle or OverDangle).

Models being so similar leads us to the question of run-time effort.
Conclusion 3 Since results between models MacroState and MicroState differ only

marginally, MicroState may be used for probability calculation. The higher computational
effort of MacroState is not justified.

In the light of the previous conclusions we find:
Conclusion 4 On longer sequences, the only remaining virtue of MacroState appears

to be its ability to enumerate sub-optimal structures with correct energies, and without
redundancy.

62

3.4 Conclusion

−20 −10 0 10 20

1
10

10
0

10
00

10
00

0

rank shift, relative to 'rna_turner2004.par' (smaller is better)

fr
eq

ue
nc

y
(lo

g
sc

al
e)

−inf
< −20 > +20

+inf

means:
dna_mathews1999.par
dna_mathews2004.par
rna_andronescu2007.par
rna_andronescu2010_BLstar.par
rna_andronescu2010_CGstar.par
rna_andronescu2010_NOMCG.par
rna_turner1999.par
rna_turner2004.par

Figure 3.13: Influence of energy parameter sets on prediction results.

Furthermore, we make the
Conclusion 5 Best default energy parameters are “rna turner2004.par” while disal-

lowing lonely base-pairs. Although Andronescu parameters from various machine learn-
ing approaches could achieve better results for “S-full”, we suspect to see over-fitting
effects.

This answers the questions raised at the outset of this study.

3.4.2 Evaluation of further models

Our evaluation was focused on the models underlying the three programs RNAfold,
RNAshapes, and RNAsubopt. There are many other folding programs out there. If
these implementations adhere to the abstract models we present here in the form of tree
grammars, our evaluation pertains to them as well. More likely, each implementation
has its own peculiarities. In fact, one may think of extending our evaluation to models
that are not based on thermodynamics at all, but are derived via machine learning
techniques [19, 4]. These programs could be evaluated in the setting of this study in
one of two ways. Either, the program source code is extended by the computation of
abstract shapes and their shape probabilities (a useful feature anyway), and applied to
our data sets directly. Or, the model behind the program is extracted as a tree grammar,
coded in Bellman’s GAP, and combined with existing modules for shape abstraction
and partition function computations. Depending on the model differences, extracting

63

3 Lost in folding space?

the grammar behind the code may come down to a few minor changes to the four models
provided here.

Generally, the four models MacroState, MicroState, OverDangle and NoDangle are
available as a starting point for future research into on thermodynamic RNA folding.
Implemented in the Bellman’s GAP language, these programs are especially easy to
modify or extend, while the Bellman’s GAP compiler provides automatic transla-
tion into efficient and correct dynamic programming algorithms. The complete source
code of our four models is available at http://bibiserv.cebitec.uni-bielefeld.de/
fold-grammars/.

3.4.3 A new strategy for level-2 shape probabilities?

Our observations about the performance of shape level 2 gives rise to the investigation
of a new strategy. Recall that level 2 gives much stronger information than levels 5 or
even 3. Level 2 records not only the overall arrangement of helices, but also reports and
distinguishes internal loops, 5’ and 3’ bulges.

Over all sequences of “S-full”, consideration of (only) the fifteen most likely level-2
shapes (using MicroState) reports the reference shape in 35% of the cases, while for
just 8% the reference shape is on a deeper rank and it is not worth to inspect the
shape list for the remaining 57%, because their reference shape class it not among
the sampled structures (data not shown). However, the cost of level-2 shape analysis
becomes prohibitive for longer sequences. Our data show a slowdown factor of 6.8 (on
average for all grammars) over level-5 analysis, which should become even worse for
longer sequences. Therefore, we conclude

Conclusion 6 A strategy to efficiently compute level-2 shapes for long sequences is
desirable

Let us sketch a strategy how this speed-up can be achieved, borrowing ideas from the
RapidShapes method [43]. Directly accessing the complete level-2 shape space of a
long sequence appears infeasible. But we can compute a level-5 analysis at 90% or 100%
coverage quickly, by reporting a small number top-ranking level-5 shapes. For these
shapes, we can generate a thermodynamic matcher [43] to perform a separate level-2
analysis within each of the reported level-5 shape classes. Generating such a matcher
as a tree grammar, encoded in Bellman’s GAP, plus its subsequent compilation has
negligible run-time. This should reduce the computational effort (which results from the
number of shapes) considerably. While this is not mathematically guaranteed to yield
the most likely level-2 shape, the idea appears promising.

3.4.4 A word on longer sequences

In comparison to our publication [45], we used a much larger test set with longer se-
quences, which required heuristic shape probability computations. Overall, we see the
same trends but with small differences:

64

http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars/
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars/

3.5 Acknowledgments

1. Best MFE prediction is now achieved by UNAfold, instead of MicroState/-
MacroState (Figure 3.7).

2. Reference shape matches most often the dominant shape for MicroState, not for
MacroState (Table 3.10).

3. Run-time (Table 3.9) and memory consumption (Table 3.8) are more homogeneous
and better fit to our theoretical arguments, probably because the impact of the
overhead for starting a process compared to pure computation time is reduced due
to longer sequences.

4. MFE prediction results, as well as shape probability analysis are much worse. This
is to be expected, because of the sheer length and thus size of the folding spaces
for the longer sequences.

3.5 Acknowledgments

Thanks go to Michael Zuker for comments on the energy model and the UNAfold
program, to Georg Sauthoff for support with the Bellman’s GAP system and to An-
dreas Bremges for the SPS measure. We also thank the anonymous reviewers for helpful
comments on the manuscript.

65

4 RapidShapes

The chapter at hand follows our Bioinformatics publication [43]. Since probabilistic
shape analysis has been introduced and motivated in Chapter 3, we do not repeat much
of these arguments and basic explanations here. In short, shape probabilities have been
used to assign significance levels to predicted miRNA precursors in large scale studies
[8, 53]. Consensus shapes for a set of sequences can be determined quickly and have been
used as the basis of consensus structure prediction [72]. Finally, it has been determined
that Rfam families can be indexed by their shape spectra, which leads to a significant
speed-up of Rfam searches [44].

We will not retell ADP concepts here, since they have been introduced in Chapter 2.1.
The original article is about shape level 5 for GMacroState. Considering results of Chapter
3, we now pass over to GOverDangle. We give detailed descriptions of GOverDangle in level 5
in the following section and move those details for the other grammars and shape levels
to the appendix section 9.1 for clarity.

4.1 Introduction

4.1.1 Computational cost of probabilistic shape analysis

While standard MFE folding algorithms have the asymptotic run-time of O(n3), where
n is the sequence length, probabilistic shape analysis has a run-time of O(rn3). The
value r is the (expected) number of all shapes encountered in the folding space of
the analysed RNA sequence. The asymptotic number of all shapes of all sequences
of length n has been determined to be 1.20n · 5.13 · n−3

2 [51, 66], but the expected
number of shapes encountered for an individual sequence is not known. Rudimentary
measurements in [91] indicate a value of r ≈ 1.1n. As a consequence of this exponential
factor, exact probabilistic shape analysis for the random sequence of length 125bp from
the “S-full”test-set requires about 2.7 hours and 2.7 GB memory on the evaluation
hardware (see Section 3.3.2). All longer sequences cannot be computed within 8 GB of
memory.

It is clear that when computing the probabilities of all shapes, a factor related to
the number of shapes cannot be avoided. But in practice, we are interested only in a
handful of top-ranking shapes. We can compute the top k shapes ranked by shrep energy
in O(kn3) time – so it may seem surprising that this should not be possible for shapes
ranked by probability. The explanation is that shape probabilities add up from many
small contributions, and there is no way to determine early which sub-shapes may later
contribute to the top ranking ones. In other words, Bellman’s Principle of Optimality

67

4 RapidShapes

(see Section 2.1.1), the prerequisite of dynamic programming algorithms, does not apply
for shape probability computation.

There may be a different approach to compute shape probabilities in polynomial time,
but the chances do not look good: Problems of this type are closely related to the path
labeling problem for hidden Markov models, shown to be NP-hard in [11].

For this reason of computational expense, the RNAshapes program also provides two
heuristics: One is a low probability filter that excludes sub-shapes of very low probabil-
ity, e. g. less than 10−6. This implies that the overall partition function appears smaller
than it is. The other heuristic is a sampling mode, akin to Sfold, but defining clusters
a priori as shapes. Still, sampling gives up on computing exact probabilities, and also
becomes expensive for longer sequences when a large number of samples must be drawn.
Therefore, we set out here to provide a run-time heuristic to compute the shapes of
highest probability. A run-time heuristic means that we still compute the exact prob-
abilities, efficiently in many cases, but with no guarantee for polynomial run-time in
general.

4.1.2 Outline of ideas

Let s be the sequence under consideration, and length(s) = n. The partition function
Q(s) of the complete folding space F (s) can be computed efficiently in O(n3) time. Now
consider a specific shape p, such as [][]. All the structures of shape p constitute a
sub-space Fp(s) ⊂ F (s). The probability of p is

Prob(p, s) = Qp(s)/Q(s), where Qp(s) =
∑

x∈Fp(s)

e
−Ex
RT (4.1)

This means that Qp(s) is itself the partition function of Fp(s), and with a special program
that folds s exactly and only into the structures of Fp(s), we can computeQp(s) efficiently
in O(n3) time.

A program folding an RNA sequence into a restricted set of structures, using the
standard energy model, is called a thermodynamic matcher (TDM) [72]. Such TDMs
are produced, for example, via the tool Locomotif, where a user composes pictures
of annotated RNA structures, which are then compiled into programs for RNA motif
search [69]. We use a similar TDM generator which, given an abstract shape p, generates
the TDM for p, which computes the partition function.

The overall idea is as follows:

1) We compute Q(s) = GOverDangle(IOverDanglebwe , s) in O(n3).

2) We enumerate (heuristically) a series of promising shapes p1, p2, . . .

3) For each pi, we generate TDMi as a program coded in ADP style.

4) We compile TDMi and execute it to compute Qpi(s) = GTDMi
(IOverDanglebwe , s) in

O(n3), and obtain Prob(p, s) according to Eq. 4.1.

68

4.2 A method for faster shape probability computation

5) We continue until a specified portion of the shape probabilities is exhausted.

Since the time for TDM generation and compilation is small compared to their exe-
cution time, overall run-time of this heuristics is O(tn3) where t is the number of TDMs
(shapes) used. We call this approach RapidShapes.

4.2 A method for faster shape probability computation

4.2.1 Basic problem: Shapes with a least T% probability

Here we define the standard problem we want to solve efficiently; later we shall discuss
variations of it. Let us set up a probability threshold T for the shapes of interest, say
0.9 or 0.6 as used in [8], or maybe as low as 0.1. Given T , only a constant number of
shapes (1 with the first two settings, 9 for the third, or d(1/T)− 1e in general) can meet
the threshold – independent of the sequence length n. Note that there may be no shapes
at all meeting the threshold. On the other hand, there is a large population of shapes
living in sub-thresholdia, their number growing exponentially with n.

Problem Definition

Given an RNA sequence s of length n and a threshold 0 < T ≤ 1, compute all shapes
p of s with Prob(p) ≥ T , together with their shape representative structures and free
energy.

This definition permits that some shapes with sub-threshold probability will also be
computed, but the goal is, of course, to minimize our efforts spent on those. We have
to solve two sub-problems, namely the analysis of sub-spaces Fp(s) and the generation
of a good list of “promising” shapes.

4.2.2 Analysis of the folding space partitioned by shape

A thermodynamic matcher (TDM) folds a sequence only to a restricted set of struc-
tures. For RapidShapes, such a restricted set of structures comprises all structures of
a particular shape (and no other). A TDM can compute the partition function value
Qp(s) of its restricted folding space Fp(s) in O(n3) time, just as the unrestricted RNA
folding program does for the complete folding space F (s). Since Qp(s) is the sum of all
structures in Fp(s), and Fp(s) is a precise subset of F (s), we have to ensure that a TDM
folds exactly those structures constituting the shape class p. Our strategy is to generate
such programs on demand.

Generating grammars from shapes

Given shape p, we generate the specialized grammar Gp. We do so using another tree
grammar GTDM5 (see Figure 4.1), which parses a shape representation as its input in a
syntactically non-ambiguous way. The rules of GTDM5 follow the intention of the shape

69

4 RapidShapes

hairpin

[]

multiloop

[cons_mlmode]

compconvert

structure

head unpaired

_

root

cons_hlmode

structure

last_hlmode

danglecomp

next_hlmode

danglecomp cons_hlmode

cons_hlmode last_mlmode

danglecomp danglecomp

next_mlmode

danglecomp cons_mlmode

cons_mlmode

dangle

strong

comp

danglecomp

Figure 4.1: Grammar GTDM5 to generate specialized tree grammars. Input for this gram-
mar is a shape string like [][].

abstraction in its respective shape level: Recognizable structural sub-components in
level 5 are either hairpins or multiloops. A component has either some others next to
it or is the last in an – otherwise maybe empty – row of components. This must hold
for a row of consecutive components (cons hlmode) as well as for a list of components
enclosed by a multiloop (cons mlmode). Rows within a multiloop must have at least
two components, cf. last mlmode. Aspects like base-dangling and lonely base-pairs are
treated by the algebra functions dangle and strong, respectively. Every structure starts
at the root or is completely unpaired. Some general transformations will be done in the
function convert.

For our example p = [][] (see left column of Figure 4.2), t[][] is the unique parse of
[][] with GTDM5 . The restricted tree grammar G[][] for folding exactly those structures
of shape class [][] is constructed by applying a grammar-generating evaluation scheme
Itdm OverDangle 5 (see Table 4.1) to t[][].

The result is shown in the right column of Figure 4.2. The important difference to
GOverDangle is that the non-terminals are now position specific - or better helix specific -
by the addition of magenta coloured subscripts to their names. These subscripts reflect
the sub-shape of its non-terminals. Furthermore, the alternatives of GOverDangle are
reduced for some positions. For example, the rule struct[][] lacks the nil alternative,
while struct lacks cadd.

The parse-tree t[][] has the repetitive sub-tree dangle(strong(hairpin([,]))). Thus,
our generator would create those grammar rules twice, leading to a waste of run-time
and memory consumption. Since a grammar is a set of rules, and non-terminals are helix
specific, multiply generated rules will collapse to just one instance, saving re-computation
of whole RNA sub-structures by using dynamic programming.

On the technical side, this is realized by using a two level C++ hash data-structure
– called rules – as the answer type of Itdm OverDangle 5. The first level key is the helix
specific non-terminal name, e. g. stack[]; second level key is the right hand side of the
production, e. g. sr(b,weak[], b). The actual hash value is always empty, because we
just utilize the hash’s uniqueness property for keys to store our grammar rules. In Table
4.1 the→ symbol separates first and second key. To be concise, C++ data type rules also
keeps track of the current shape string, which is used to specialize the non-terminals to
their helix contexts (magenta subscripts in Table 4.1).

The only purpose of the convert algebra function, which prefixes every candidate of
GTDM5 , is to convert the rules data-type into a plain ASCII string of Bellman’s GAP

70

4.2 A method for faster shape probability computation

t[][] G[][]

convert

root

next_hlmode

strong

hairpin

[]

dangle last_hlmode

dangle

strong

hairpin

[]

drem

l lstrong[]

dangle[]

sr

b b

strong[]

weak[]

weak[]

basepair

≠ LP = LP

il

b br rstrong[]

≤30 ≤30

iloop[]

basepair

br

b brstrong[]

≤30

rightB[]

basepair

bl

b br strong[]

≤30

leftB[]

basepair

hl

b br
≥3

hairpin[]

basepair

sr

b bweak[]

stack[]

basepair

stack[] | hairpin[] | leftB[] | rightB[] | iloop[]weak[]

struct[][]struct

sadd caddstruct[][]

b struct[][] dangle[] struct[]

sadd nil

l

struct_

b struct_

Figure 4.2: Left: the unique parse tree for the input shape string [][]. Right: the
generated Grammar G[][], which is specialized to enumerate all but no other
secondary structures than those whose shape string is [][].

source code and to encapsulate the pure grammar source with an appropriate name in
Bellman’s GAP syntax. Thus, Itdm OverDangle 5 in fact uses two different sorts ; default
is rules but the result of convert is of type code, cf. Signature ΣTDM in Table 4.2. To
avoid defining two choice functions for the two sorts, we simply omit application of a
choice function to the non-terminal head.

Different shape levels deal with different types of shape strings, e. g. the character
is only present in levels 2 and 1 if we ignore the degenerated case of the completely
unpaired structure. Thus, we need different shape string parsing grammars GTDMi

for
different shape levels i. Details are given in the appendix Section 9.1. In short, grammars
for lower levels require more complex rules and thus more different algebra functions.
However, we just want to deal with one common signature ΣTDM , given in Table 4.2,
fitting all GTDMi

grammars. Since GTDM5 only uses the first 10 and the convert algebra
functions, defined in ΣTDM , we decided to move definition of the remaining 72 algebra
functions into Table 9.1 of the appendix.

Generation of a specialized grammar Gp for shape string p of level 5, following the
OverDangle architecture, is achieved by executing the Bellman’s GAP instance

GTDM5(Itdm OverDangle 5, p).

Using the standard energy model Although Q(s) and Qp(s) are computed by two
independent programs, they have to fold the same structures and evaluate them to the
same energy values, i. e. Boltzmann weighted energies. We can assure this by using the

71

4 RapidShapes

Table 4.1: TDM generating evaluation algebra for grammars following the OverDangle
concept in shape level 5. Algebra functions in the left column stem from
parsing the shape string with GTDM5 , while the green algebra functions on the
right column will be part of the generated, specialized grammar.

algebra function Itdm OverDangle 5

convert(x) bgap(x)
root(x) struct→ structx

struct → sadd(b, struct)
struct → nil(l)

dangle(x) danglex → drem(l, strongx, l)
next hlmode(x, y) structxy → sadd(b, structxy)

structxy → cadd(danglex, structy)
last hlmode(x) structx → sadd(b, structx)

structx → cadd(danglex, struct)
unpaired(a) struct → struct

struct → sadd(b, struct)
struct → nil(l)

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

weakx → leftBx

weakx → rightBx

weakx → iloopx

stackx → sr(b,weakx, b)bp
leftBx → bl(b, r≤ 30, strongx, b)bp
rightBx → br(b, strongx, r≤ 30, b)bp
iloopx → il(b, r≤ 30, strongx, r≤ 30, b)bp

hairpin(a, b) weak[] → hairpin[]

hairpin[] → hl(b, r≥ 3, b)bp
multiloop(a, x, b) weak[x] → multiloop[x]

multiloop[x] → ml(b,ml compsx, b)bp
next mlmode(x, y) ml compsxy → sadd(b,ml compsxy)

ml compsxy → cadd(incl(danglex),ml compsy)
last mlmode(x, y) ml compsy → sadd(b,ml compsy)

ml compsy → incl(dangley)
ml compsy → addss(incl(dangley), r)
ml compsxy → sadd(b,ml compsxy)
ml compsxy → cadd(incl(danglex),ml compsy)

S rules
objective function id

72

4.2 A method for faster shape probability computation

Table 4.2: First part of the common Signature ΣTDM used for generating TDMs. Shown
are only the 11 algebra functions used by GTDM5 . We moved definition of the
remaining 72 algebra functions to Table 9.1 of appendix Section 9.1.1.

root(S) unpaired(A) next mlmode(S,S)
dangle(S) strong(S) last mlmode(S,S)
next hlmode(S,S) hairpin(A,A)
last hlmode(S) multiloop(A,S,A) code = convert(S)

identical evaluation algebra IOverDanglebwe (see Table 3.7 on page 47) for both programs.
This comes for free, because the algebra functions in GOverDangle and Gp are always the
same.

Theorem 1. GTDM5(Itdm OverDangle 5, p) generates a TDMp which correctly computes
Qp(s).

Proof. By construction, TDMp recognizes unambiguously all structures of shape p.
When applied to s, it exactly constructs Fp(s) and hence computes Qp(s). That our im-
plementation actually satisfies this mathematical property, can be systematically tested
by checking

∑
pQp(s) = Q(s).

4.2.3 Heuristic Shape selection

To run RapidShapes for a given sequence s, we construct a list L(s) of “promising”
shapes. For each shape p ∈ L(s), we construct TDMs and compute Prob(p, s) in O(n3)
time. Ideally, L(s) would only contain the shapes above the threshold, but this is exactly
the problem to be solved.

Selection by shrep energies (Lenergy) The simple shape analysis for a given sequence
s computes the top k shapes ranked by the energy of their shreps (cf. Section 3.1.2).
The Bellman’s GAP instance

GOverDangle
((
Iπ5 ∗ I

OverDangle
mfe

)subopt

, s

)
without the semantic filter subopt would return the complete shape space with its ac-
cording shrep energies. The filter subopt reduces computation to only that part of the
shape space, which is top ranked according to shrep energies. Although shape ranks by
shrep energy and shape ranks by probability do not agree, there is a positive correlation
between shrep energies and shape probabilities. We start with a small k to compute
L(s) = [p1, . . . , pk] by simple shape analysis. If

∑k
i=1 Prob(pi, s) < 1− T , we repeat the

simple shape analysis with larger k to extend L(s).

73

4 RapidShapes

Selection by sampled frequencies (Lsampling) Sampling of structures (via stochastical
backtrace, see Section 3.3.4) to estimate shape probabilities can be done very fast, but
the results are not exact, cf. Figure 3.9. However, the reported shapes may be the most
likely ones, in spite of their probabilities being incorrect. To combine both advantages,
we use the quickly calculated shapes from the sampling as members for L(s) and precisely
determine their probabilities via TDMs. Sampling requires a bound on the number of
samples drawn, which was set to 10,000 for this study. This might overlook shapes with
probability ≥ T , but this chance can be decreased by drawing more structures.

4.2.4 Asymptotics

To satisfy the problem definition, given in chapter 4.2.1, RapidShapes must calculate
the probability, the shrep structure and its free energy for all k shapes with Prob(p) ≥ T .
All three values can be computed for one shape by using specialized evaluation schemes
with the TDM, where Prob(p) is Qp(s) divided by Q(s), which must be calculated just
once. For the sake of speed, we separate the computation of shape probabilities for all
shapes in L(s) from the computation of shrep structures and free energy values for all
k shapes, with Prob(p) ≥ T , because usually |L(s)| >> k. This leads to an asymptotic
run-time of O(n3 + |L(s)| · n3 + k · n3 + l).

4.3 Evaluation

The technical environment for all measurements is described in Section 3.3.2. For the
following evaluations we increased the main memory limit to 8GB.

4.3.1 Evaluation setup

Our evaluation, summarized in Figure 4.3, uses two kinds of RNA sequences. On the one
hand, the set “random” is compiled from every fifth sequence of Random set 1 (Section
3.3.4), thus providing 200 sequences of lengths 5 up to 1, 000 nucleotides. On the other
hand, we use the “real” set “S-full”, see Section 3.3.1.

We tested three different methods to fill the list of promising shapes L(s) for a thresh-
old of T = 0.1 for Random set 1 :

• The green colored Loracle(0.1, s) is the optimal choice of shapes for RapidShapes.

• “Selection by shrep energies” Lenergy(0.1, s) is colored in red

• and “Selection by sampled frequencies” Lsampling(0.1, 10000, s) for 10,000 samples
per sequence is colored in blue.

To gain the measurements, particularly for the oracle, we ran RapidShapes with a very
low threshold of T = 0.01 and a combined guessing mode. Shape list L(s) was first filled
by “Selection by sampled frequencies” with 10,000 structures. Should the combined

74

4.3 Evaluation

shape probability mass not match 99%, we iteratively ran “Selection by shrep energies”
with growing k.

By omitting the artificial oracle method, we could use normal versions of our program
RapidShapes with T = 0.1 (black) and T = 0.5 (gray) for Random set 1 . The
remaining two methods “Selection by sampled frequencies” and “Selection by shrep
energies” are visualized in Figure 4.3 with continuous and dashed lines, respectively.

The RapidShapes processes for the different sequences of both sets where allowed
to compute TDMs in a round-robin fashion on our 33 nodes compute cluster. After
consuming ≈ 17.4 CPU years, we stopped the evaluation. Thus, RapidShapes could
not reach the required probability mass for all test sequences in the given time span. As
a consequence, the 23% sequences of “S-full”, larger than 396 nucleotides, are not in-
cluded in the evaluation. In the case of Random set 1 , the longest computable sequence
with at least 90% combined probability mass has a length of 570 nucleotides. More-
over, RapidShapes failed to discover the required 99% combined probability mass for
sequences larger than 425 nucleotides. This means, that the number of used TDMs for
Loracle(0.1, s) might be slightly overestimated, should RapidShapes have missed shape
classes with low energy but high probability.

The shape-space F (s), i. e. number of different shape classes for input sequence s, is
determined by counting classes of GOverDangle(Iπ5 ∗I

OverDangle
bwe , s) with low probability fil-

ter set to 10−6, colored in magenta, and without filtering, colored in cyan for sequences
of Random set 1 . Largest sequences, whose shape-space enumeration could fit within
8GB of memory, are 125 and 395 nucleotides long, without and with low probability
filter, respectively.

Pure run-time of the stochastical backtracing process, aka “sampling” (cf. Section
3.3.4), with 10,000 drawn structures is given as the orange curve in part B) of Figure
4.3.

Oracle

To mark the theoretical maximum speed-up for RapidShapes, we assume an oracle
which a priori denominates the shapes for L(s), ordered by their shape probabilities.
This would allow to use the minimum number of TDMs for any choice of T . Of course,
such an oracle does not exist, but we can determine what it would have returned by
dropping sub-threshold shapes from L(s) after their evaluation.

4.3.2 Results on random data

The performance evaluation of RapidShapes has two aspects: The effective number of
shapes which have to be evaluated, and the absolute gain in run-time.

Required number of TDMs

Part A) of Figure 4.3 is a comparison of the growth of F (s) and L(s) for different
methods to fill this list with promising shapes.

75

4 RapidShapes

F(s) lowProbFilter=0
F(s) lowProbFilter=0.000001

-0.8

-0.6

-0.4

-0.2

0

0.2

0 100 200 300 400 500 600 700 800 900 1000
100

101

102

103

104

105

|Lsampling(0.1, 10000, s)
|Lenergy(0.1, s)|
|Loracle(0.1, s)|

|F(s)| lowProbFilter=0
|F(s)| lowProbFilter=0.000001

|Lsampling(0.1, 10000, s)| (real data)
|Lenergy(0.1, s)| (real data)

|Lsampling(0.5, 10000, s)| (real data)
|Lenergy(0.5, s)| (real data)

10-2

10-1

100

101

102

103

104

105

106

107

0 100 200 300 400 500 600 700 800 900 1000

Lenergy(0.1, s)
Loracle(0.1, s)

10-2

10-1

100

101

102

103

104

105

106

107

0 100 200 300 400 500 600 700 800 900 1000
10-2

10-1

100

101

102

103

104

105

106

107

Lsampling(0.1 ≤ T ≤ 0.6, 10000, s)
Lenergy(0.1 ≤ T ≤ 0.6, s)

RNAshapes -p -F 0.000001

ac
cu

m
ul

at
ed

 s
ha

pe
 p

ro
ba

bi
lit

y
-

(1
 -

 T
)

|L
(s

)|
 =

 n
o.

 T
D

M
s

sequence length: |s| = n

Necessary number of TDMs (T = 0.1)

ru
nt

im
e

in
 s

ec
on

ds

Runtime comparison (T = 0.1)

ru
nt

im
e

in
 s

ec
on

ds

sequence length: |s| = n sequence length: |s| = n

Runtimes for different thresholds: 0.1 ≤ T≤ 0.6

A)

B) C)

out of memory (8 GB)

compute time exhausted
(17.4 CPU years)

out of memory (8 GB)

compute time exhausted
(17.4 CPU years)

out of memory (8 GB)

compute time exhausted
(17.4 CPU years)

pure sampling 10000

Lsampling(0.1, 10000, s)

Lsampling(0.1, 10000, s) (real data)
Lenergy(0.1, s) (real data)

Lsampling(0.5, 10000, s) (real data)
Lenergy(0.5, s) (real data)

Figure 4.3: A) Necessary number of TDMs compares the growing numbers of shapes
in F (s) and |L(s)|. The x-axis is sequence length, the logarithmic scaled right
y-axis is |L(s)|. Shape guessing methods “oracle”, “energy” and “sample”
for T = 0.1 for Random set 1 as well as “sample” with continuous and
“energy” with dashed lines for “S-full” for T = 0.1 (black) and T = 0.5
(gray) have been tested. See main text for details. The left y-axis depicts
the amount of unaccounted folding space, i. e. the accumulated probability
of all evaluated shapes minus (1−T). The dotted blue curve corresponds to
Lsampling(0.1, 10000, s).
B) Run-time comparison illustrates actual run-times instead of counting
shapes. The log-scale y-axis is here run-time in seconds. Run-time for sam-
pling is given in orange.
C) Run-times for different thresholds shows the influence of selecting
different values for the threshold T .
All curves are smoothed via the gnuplot option “smooth bezier”.

76

4.3 Evaluation

As expected, just a very small number of all existing shape classes in F (s) (cyan
colored curve) seems to account for a major part of all structure probabilities. The
number of TDMs, which must be generated, compiled and executed for RapidShapes,
is strikingly smaller than |F (s)|, regardless of the method for filling L(s).

The Selection by shrep energies (red curve) is not perfect, observable by the somehow
below green curve of the omniscient oracle, but the distance is not too wide and it follows
the trend of the oracle.

Selection by sampled frequencies (blue curve) runs the risk of not creating enough
shapes, due to the limited sample size. Sampling 10, 000 structures can result in at most
10, 000 different shapes, and normally much less. For larger sequences the accumulated
probability of these shapes may not be sufficient to cover 1−T . Where this strategy needs
even less TDMs than the oracle, it comes with an increasing proportion of unexplored
parts of F (s). The amount of unaccounted folding space for the Selection by sampled
frequencies method is indicated by the blue dotted curve in part A) of Figure 4.3.

It is interesting that the sampling strategy becomes faster than the energy based
strategy exactly where it starts missing shapes above the threshold. We conclude that
there lies no real advantage in the sampling strategy when computing all exact shape
probabilities above the threshold is required.

Run-time speed-up

Different shape strings result in different TDMs, i. e. different grammar sizes. The larger
the grammar, the higher is the run-time for generation, compilation and execution,
independent of the input sequence. To include these effects into the evaluation results,
part B) of Figure 4.3 shows our analysis of empirically measured run-times.

For short sequences, the overhead of constructing TDMs prevents RapidShapes from
being useful, but with input sequences larger than 300 nucleotides there is a growing
speed-up, compared to the Bellman’s GAP instance GOverDangle(Iπ5 ∗ I

OverDangle
bwe , s).

Furthermore, the heuristic makes it possible to compute shape probabilities for sequences
larger than 395 nucleotides, where GOverDangle(Iπ5 ∗ I

OverDangle
bwe , s) runs out of memory.

The achieved speed-up depends on the choice of threshold T . Our previous measure-
ments were made for a rather low threshold of T = 0.1. In practice, a threshold of 0.6 or
even 0.9 makes sense when checking for the existence of a dominant shape. The larger T ,
the faster is RapidShapes– this is demonstrated by the different red and blue curves
in part C) of Figure 4.3 for “selection by shrep energies” and “selection by sampled
frequencies”, respectively.

4.3.3 Results on real data

Natural RNAs, whether functional or not, are not random sequences. Functional non-
coding RNAs are known to be optimized for good folding energy, although this signal
is not strong enough to discern functional from non-functional RNA. All natural RNA
has a bias towards lower folding energy than random sequences. Cf. [16] and the long
debate summarized therein. We can expect this bias to favor a small number of shapes

77

4 RapidShapes

with a high probability over a more even distribution in real RNAs. This fact must
lead to RapidShapes requiring a smaller number of TDMs and hence becoming faster.
This result is confirmed on the “real” data testset “S-full”. Returning to part A) of
Figure 4.3, consider the black and the grey line, computed with T = 0.5 and T = 0.1,
respectively. The smaller number of required TDMs also results in a moderate speed-up.

872 out of these 3, 245 sequences are longer than 300nt, the break-even point (for
T = 0.1) where RapidShapes starts to become faster than RNAshapes and smaller
than 396nt to not crash RNAshapes with 8 GB memory. While RNAshapes with
activated filtering consumes 693.6h to calculate shape probabilities, RapidShapes takes
only 227.0h of run-time. This speed-up factor is expected to significantly grow for larger
sequences.

4.4 Discussion

4.4.1 Speed-ups and brake-even points achieved

Abstract shape probabilities, as computed by RNAshapes, provide useful information
beyond minimum free energy folding. Due to the large computational cost, previously,
a sampling heuristic had to be used for sequences longer than about 300 bases. This
heuristic, however, has the disadvantages that (1) it does not return exact probabilities,
(2) does not account for the part of the folding space not covered by the sampling, and
(3) does not return shape representative structures. The average shape probability shift
(SPS) between sampled and exact shape probabilities for all testsequences is 0.025. In
a case where a particular shape clearly dominates all others, these disadvantages do not
really matter, as this shape will be sampled many times (dwarfing the probabilities of
other shapes), and the shape representative structure has a good chance to be in among
the sample. However, one cannot know in beforehand whether this situation applies.

The approach RapidShapes presented here overcomes these limitations and enables
the computation of shape probabilities to a much wider sequence range. It is a run-time
heuristic – i. e. the computed probabilities are exact, we obtain the shape representative
structures, and we know about the uncovered amount of probability in the folding space.
What cannot be guaranteed is polynomial run-time in a strict asymptotic sense, but the
evaluation shows that RapidShapes performs well in practice.

The speed-up achieved by RapidShapes depends on the threshold and on the se-
quence length. Using a very relaxed threshold T = 0.1, RapidShapes becomes faster
than the traditional method (using its low probability filter) at sequence length 300. At
sequence length 395, RapidShapes is faster by a factor of 3.6. Taking a more strin-
gent threshold at T = 0.6, RapidShapes becomes faster at sequence length 265, and
at sequence length 395, the speed-up factor is about 45.6. Independent of threshold,
RapidShapes is the only practical method to compute exact shape probabilities for
sequences longer than 395nt.

78

4.4 Discussion

Expected numbers of shapes above a probability threshold

The combinatorics of shapes has found considerable interest recently, but the expected
number of shapes of a sequence of length n is still unknown. Our large-scale evaluation
has produced some empirical data in this respect. Assuming a simple exponential growth
pattern of O(αn), we can estimate α. Our data (part A) of Figure 4.3) suggest that α =
1.09495n for the number of all shapes of a sequence of length n (cyan curve), α = 1.02331
for all shapes with a probability larger than 10−6 (magenta curve), and α = 1.01156n for
all shapes with probability larger than T = 0.1 (green oracle). RapidShapes computes
α = 1.01156n shapes (red curve) and hence is so close to optimal, that it cannot be
distinguished at this level. For T = 0.5, the oracle value is α = 1.00584 (data not
shown). All estimations have been computed via gnuplot’s fitting capability. The
function to fit is f(xα) with an initial α-value of 1.1.

4.4.2 Problem variants

k-best shapes

As explained initially, we can efficiently compute the k best shapes of sequence s ranked
by shrep energy, but not ranked by probability. In order to compute the k best shapes
ranked by probability, we compute shape probabilities according to the Lenergy strategy.
Assuming K ≥ k shapes have been computed, and p1, . . . , pk are the best k shapes seen
so far, we can stop computation as soon as 1−

∑K
i=1 Prob(pi) ≤ Prob(pk).

Best shape only

If we ask for the best shape no matter how small its probability is, we can do no better
than to apply the above strategy for k = 1. However, if we are interested in the existence
of a dominant shape, loosely defined here as one which is more likely than all the rest
together, we just solve the standard problem with threshold T = 0.5.

4.4.3 Implementation alternatives

Algorithm parameterization versus generation

From an algorithmic point of view, or method of generating, compiling and running
algorithms for sub-problems on the fly appears somewhat unusual. As an alternative,
one could think of modifying the code of the traditional method to accommodate a
target shape p as an extra parameter, and restrict the folding to structures which match
p running through list Lenergy. This would turn the general method into the equivalent
of a TDM for p. However, this would slow down the inner loop of an O(n3) algorithm,
whereas generating and compiling takes O(n) time (empirically: less than 7, 76% of
the overall process) to yield an O(n3) TDM algorithm without such a slowdown. And
besides, generating TDMs from shapes has other applications, e. g. in RNA motif search.

79

4 RapidShapes

Other shape enumeration heuristics

We have experimented with other ideas of enumerating promising shapes, such as (1)
using a precompiled library of frequently encountered shapes, or (2) always computing
low complexity shapes (such as []) first. Neither of these ideas has provided an im-
provement. When computing shape probabilities for abstraction levels i < 5, a good
strategy may be to first compute best shapes of level i + 1 and then computing their
sub-shapes at level i. This is possible since shape abstraction levels form a hierarchy.
However, this idea has not been further explored yet.

4.4.4 Open problems

Given a particular TDM, it is easy to generate a scanning version to find high probability
instances of its shape in a longer sequence. An adaptive window size, subject to a
reasonable upper bound, also seems feasible. However, thinking of RNA gene prediction
based on dominant shapes, we would need a scanning version which dynamically changes
the shape as it moves along the sequence. This presents a challenge for future research.

Our technique does not depend on the concrete information which is accumulated
for each shape. Recent approaches such as CONTRAfold [19] and CG [3] replace
the classical thermodynamic model by stochastic models, trained from structural data
via machine learning techniques. To benefit from our approach, these methods need to
be augmented to support shape abstraction. Technically, they are based on different
grammars than RNAshapes. For these grammars, shape abstraction functions need to
be defined and implemented. Then, our TDM generator and the strategies described
here should carry over without change.

4.5 Acknowledgments

The authors thank Jens Reeder for providing the TDM generator from Locomotif,
Georg Sauthoff for the ADP to C code generator (Bellman’s GAP), Robert Homann
for his program randomseq and Stefanie Schirmer for careful proofreading and discus-
sions. Special thanks go to Jana Raupach and Philipp Schubert for taking RapidShapes
online: http://bibiserv.cebitec.uni-bielefeld.de/rapidshapes/.

80

http://bibiserv.cebitec.uni-bielefeld.de/rapidshapes/

5 pKiss

The following chapter is based on our publication “Prediction of RNA secondary struc-
ture including kissing hairpin motifs” [87], which we extend here by details about the
Bellman’s GAP implementation and a thorough evaluation to compare run-time and
accuracy to a set of different pseudoknot prediction programs.

5.1 Introduction

5.1.1 Biological relevance of pseudoknots in RNA structure

RNA is a chain molecule, the activated form of genetic information in all living organ-
isms. Folding back onto itself, RNA forms secondary structure via base-pairing of com-
plementary nucleotides. Stacks of base-pairs form helices, akin to the Watson-Crick he-
lix of DNA, but with base-pairs (A, U), (G, C), (G, U), and occasionally some non-standard
pairs. Ultimately, a tertiary (spatial) structure forms which is essential for biological
function. Pseudoknots are structural motifs also defined via base-pairing patterns, but,
as they form late in the folding process, are generally considered as elements of tertiary
structure.

Kissing hairpins are a common RNA folding motif belonging to the class of pseudo-
knots. The unpaired bases of a secondary structure build crossing base-pairs by loop-loop
interactions (the “kiss”) and form a stable tertiary structure motif. Although these mo-
tifs have been known for over fifteen years, our understanding of kissing hairpins is still
small. Especially viral genomes have been investigated for kissing hairpins, but also
bacterial and eukaryotic ones. Researchers showed that kissing hairpins have impor-
tant duties in a wide variety of RNA mediated processes. For example, they contribute
extensively in stabilizing the structure and also play a role in viral plasmid DNA replica-
tion [14] or RNA synthesis [63]. Li et al. investigated in 2006 the mechanical unfolding
of a minimal kissing complex [48]. They discovered that the loop-loop interaction is
exceptionally stable.

5.1.2 Folding pseudoknots

Structures with pseudoknots are much more difficult to predict than nested structures.
Even under energy models much simpler than what we use in practice, prediction of
the optimal pseudo-knotted structure has been shown to be NP-hard [54, 1]. This has
generated considerable interest in algorithms that solve the problem in polynomial time
for restricted topologies of pseudoknots – see the review by Condon and Jabbari [17].

81

5 pKiss

a
a'

b

b' c

c'

a b b' c c' a'

a a'

b b'

a
a'

b b'

c c'

a a'b b' a b a' c b' c'

α α

β
β

γ

Figure 5.1: Schematic representation of a nested structure (the Y shape), a simple pseu-
doknot, and a kissing hairpin motif. The bottom line shows the arrangement
of helix parts mapped to the primary sequence, with arbitrary sequence in
between.

Many of these results are mainly of theoretical interest and have not led to practical
tools. In an investigation of pseudoknot topologies [77], Rødland argues that the full
topological complexity of pseudoknots is probably not needed in practical applications.
For reasons of space, in the sequel we focus on those approaches which have resulted in
realistic programs.

Pseudoknot folding using the established energy model was pioneered by Rivas and
Eddy [76]. They presented an O(n6) time, O(n4) space algorithm for a fairly general
class of pseudoknots, which we will refer to with the name pknotsSE. The high effort
allows to fold only rather short sequences, and hence, the generality of the algorithm
cannot really be exploited. A pragmatic approach was chosen by Reeder and Giegerich
with the program pknotsRG [71]. They restricted the analysis to the class of canonical
simple recursive pseudoknots, achieving O(n4) time, O(n2) space, and leading to a pro-
gram widely used 1 today. The program HotKnots [74] uses a heuristics to assemble
pseudoknots from low-energy helices.

Quite recently, a new algorithm has been published in [15], but at the point of this
writing, an implementation was not yet available. Our new approach presented here is
an extension of the ideas used with pknotsRG, which we will review in necessary detail
in Section 5.2.1.

5.1.3 Typology of structures

Notation

Dynamic programming over sequences leads to a decomposition of the given sequence
into sub-words, typically in all possible ways. Let us recall, that we address sub-words
as their pair of boundaries. For example, sub-word (0, n) is S and sub-word (2, 4) is

1Counting over 200 downloads and over 4,000 submissions per year according to http://bibiserv.

techfak.uni-bielefeld.de/statistics/

82

http://bibiserv.techfak.uni-bielefeld.de/statistics/
http://bibiserv.techfak.uni-bielefeld.de/statistics/

5.2 Three strategies for kissing hairpin prediction

2s3s4.
We write s = xyz to indicate that s is split into sub-words x, y, z. The notation

s = ixkylzj indicates, more concretely, that s is itself a sub-word of the overall input
sequence S with boundaries i and j, and k, l denote the sub-word boundaries between
x, y, z. If all boundaries are independent, a dynamic programming algorithm investigat-
ing all possible decompositions of this type has at least O(n4) steps, iterating over all
0 ≤ i ≤ k ≤ l ≤ j ≤ n.

Nested structures, simple pseudoknots, and kissing hairpins

We use the notation axa′ to indicate that sub-word a′ is a reverse complement (under
RNA rules) of a, and hence the two can form a helix. Using these conventions, Fig-
ure 5.1 sketches three types of RNA structures, together with their associated sequence
decomposition. The first is a nested structure, the so-called Y-shape, the second a sim-
ple pseudoknot (sometimes called H-type), and the third is a kissing hairpin structure,
which is our specific concern here. We shall reserve the word “pseudoknot” for simple
pseudoknots here, to distinguish them from kissing hairpins. When we allude to pseu-
doknots with a more complex topology than these two classes, we shall explicitly say
so.

To evaluate the folding energy of a kissing hairpin motif on sub-word s, we need to
split s = aubva′wcxb′yc′. The sub-words named u, v, w, x, y can attain arbitrary (sub-
)structures, so kissing hairpins (as well as pseudoknots) may be embedded within each
other.

5.2 Three strategies for kissing hairpin prediction

5.2.1 The combined power of canonization rules and
non-ambiguous dynamic programming

Canonization

The algorithm of pknotsRG reduces computational complexity by imposing three can-
onization rules on the pseudoknots it considers:

Rule 1: In a helix s = aua′, a and a′ are perfect helices.
Rule 2: In a helix s = aua′, a and a′ extend towards each other maximally

according to the rules of base-pairing, except the following case:
Rule 3: With crossing helices as in aubva′wb′, Rule 2 might imply a nega-

tive length of v. We set v = ε and both helices meet at an arbitrary
position.

Note that these rules are imposed on pseudoknots only, the search space of nested
structures remains untouched. The beneficial effect of these rules is that maximal he-
lices of form iaza

′
j can be precomputed, and a canonical split into a pseudoknot of form

s = aubva′wb′ is uniquely characterized by four moving boundaries only, more precisely
as s = iaukbva

′
lwb
′
j. This is the key to achieve O(n4) time, O(n2) space efficiency. For

83

5 pKiss

details, we refer to [71]. There, it is shown that while an optimal, pseudoknotted struc-
ture P may not satisfy the canonicity constraints, there is a near-optimal pseudoknot
Pcan which does. However, minimum free energy folding might deliver an unknotted
structure U with free energy such that E(P) ≤ E(U) ≤ E(Pcan). U will be returned
without a hint to Pcan, and hence to the potential existence of P . At this point, com-
puting with canonical pseudoknots seems but another heuristic approach.

Semantic non-ambiguity

A dynamic programming algorithm is called semantically ambiguous [28, 30], if it ex-
amines an object of interest in its search space more than once (cf. Section 2.1.3).
This typically leads to exponential explosion of redundant solution candidates. For find-
ing a single, optimal solution in a dynamic programming algorithm, such redundancy
does not matter, but it renders the algorithm useless for producing near-optimals. The
pknotsRG program is implemented in a semantically non-ambiguous way, according
to the inclusion of pseudoknots.

Combining canonicity with a non-ambiguous algorithm allows the program to return
sub-optimals. In particular, we can ask for the best canonical pseudoknot from the
near-optimal search space, even when the minimum free energy structure comes out
unknotted. The best canonical pseudoknot Pcan may be checked for potential extension
to a non-canonical structure P of even lower energy. In this sense, the heuristic constraint
of canonization appears tolerable. Our algorithms presented here adhere to the same
idea. All considered structures are canonical, and there will be only one situation where
a structure is considered twice.

5.2.2 Decomposition alternatives of the kissing hairpin motif

An elementary decomposition of a kissing hairpin leads to three helices (a−a′, b− b′, c−
c′) with intervening sequences u, v, w, x, y, folded in arbitrary ways, with the overall
arrangement aubva′wcxb′yc′. See Figure 5.2 for an illustration. Such a decomposition,
in full generality, leads to 12 moving boundaries, and makes us resort to canonization.
Rule 2 of our canonization constraints eliminates six moving boundaries – the inner
endpoints of three helices, which are now fixed by the helix maximality rule. The
remaining boundaries are the outer endpoints of the three helices. Iterating over these
six boundaries would lead to an O(n6) time, O(n2) space strategy. We implemented this
slow but exhaustive variant as strategy “D” for evaluation purposes only, but our goal
is to do better than this.

Our key idea is the view of the kissing hairpin motif as an overlay of two simple
pseudoknots (Figure 5.2). Given that we already know how to compute optimal simple
pseudoknots for the overlapping sub-words aubva′zb′ and btcxb′yc′, can we find their
optimal overlay such that z = wcx and t = va′w, thus defining the overall optimal
decomposition into aubva′wcxb′yc′? Can we find its optimal energy as the sum from its
two constituents?

84

5.2 Three strategies for kissing hairpin prediction

c:c'
j

yu

a:a'
k

x

m

l

v

h
b:b'

w

=

u

v

wcx va'w

a:a'

b:b'

c:c'

b:b'

j

x

y
h

k

m

l

m

ii

h

a u b v a′ w c x b′ y c′

|- - - -|- - - - | - - - -|- - - -|- - - - | - - - -|- - - -|- - - -|- - - - | - - - -|- - - -|
i h k m

h l m j

Figure 5.2: The composition of two pseudoknots leading to a kissing hairpin motif with
the overlay of parts of the sequence and the moving boundaries i, h, k, l,
m, and j on top. The linear form of the sequence below shows 12 moving
boundaries (vertical lines). With the canonization rules, only six boundaries
(labeled lines) remain.

Simple as it seems, there is a problem. First, if w = ε, the optimal choice of a′ (with
respect to a and b′) may conflict with the optimal choice of c (with respect to b and c′).
Moreover, in the overlay, the energy contribution of the middle helix (b − b′) and the
structure for v, w, and x embedded within both pseudoknots are accounted for twice, and
must be subtracted from the energy sum of both parts. This violates the monotonicity
requirement for dynamic programming known as Bellman’s Principle (cf. Section 2.1.1):
for the overlay, the energy function is non-monotonic, and as a consequence, an optimal
kissing hairpin motif may arise as an overlay of sub-optimal pseudoknots.

We will present three, increasingly complex strategies A, B, and C, plus an eval-
uation strategy D, such that their search spaces are properly included in the form
SearchspaceA ⊆ SearchspaceB ⊆ SearchspaceC ⊆ SearchspaceD ⊂ SearchspaceKH .
This relation will allow us to evaluate whether the expense for a more general strategy
pays off in practice, but we will not be able to relate our results to an evaluation of the
complete search space SearchspaceKH of all (non-canonical) structures.

5.2.3 Strategy A – an O(n4) time, O(n2) space algorithm

Strategy A (see Figure 5.3) makes the optimistic assumption that at least one of the
pseudoknots is the optimal structure for its underlying sub-word. This fixed, we choose
the rest of the motif in the best possible way.

(1) For all sub-words p, find the optimal pseudoknot such that p = aubva′zb′. Store
results in a table of size O(n2).

(2) For all sub-words s, split in all ways s = pt and look up the optimal decomposition
p = aubva′zb′.

85

5 pKiss

time: O(n4)
space: O(n2)

i j

i j

m
O(n²)

O(n¹)

i

m j
h

k

O(n4)

i

m

j

h

k l

O(n¹)

*

+

*

= O(n4 + n4)

=

i)

ii)

iii)
opt. left PK,
given (i,m)

opt. consistent right PK,
given (h,m,j)iv)

v)
a a'

u

b b'
v

w

c

x

y

c'

a a'u b b'v w c x y c'

a a'

u

b b'
v

z

t

b

r

c c'

x
b'

y

p t

Figure 5.3: Strategy A makes the optimistic assumption that an optimal pseudoknot
for the first half of the input sequence can be taken over to the kissing hairpin.
The missing stem is adopted by an optimal, consistent pseudoknot for the
second half.

(3) For all s of Step 2, use s = auq and find the pseudoknot decomposition such
that q = brcxb′yc′ and r = va′w, to complete the kissing hairpin decomposition s =
aubva′wcxb′yc′. This pseudoknot must be chosen such that c lies strictly to the right of
a′, hence this is not, in general, the optimal pseudoknot over its underlying sub-word q.
Record the decomposition of lowest free energy.

(4 - 6) Apply symmetric steps starting from an optimal choice for the right pseudoknot
in the overlay.

(7) Choose lower energy value from (3) and (6); store it in a table of size O(n2).

The symmetry of (1-3) and (4-6) leads to the only case of ambiguity in our approach:
If the two locally optimal pseudoknots make a perfect overlay as a kissing hairpin, this
(optimal) structure will be found twice.

Efficiency: (1) takes O(n4) steps as with pknotsRG. (2) takes O(n3) steps, as the
decomposition of p is already computed. (3) takes also O(n4), because it inherits O(n3)
from Step 2 for all splits of s, which determine au and hence, the split auq. (Only) one
extra factor of n arises from the split rc, which in turn determines the inner endpoints
of helix (c − c′) due to the maximality rule, and hence implies the split yc′. (4-6) take
O(n4) steps for symmetry reasons. (7) takes O(n2) steps. Postponing implementation
details, we see that this yields an algorithm with O(n4) time, O(n2) space requirements.
Note that Strategy A does some redundant work – the right pseudoknot determined in
Step 3 has already been considered as a (generally sub-optimal) pseudoknot in Step 1.

86

5.2 Three strategies for kissing hairpin prediction

i j

j

m
O(n²)

O(n²)
*h

i

m

j

h

k i

m

j

h

l

i

opt. PK given (i,h,m) opt. PK given (h,m,j)

time: O(n4)

O(n4 + n4)

+

=

= time: O(n4)
space: O(n3)

i)

ii)

iii)

space: O(n3)

a a'u b b'v w c x y c'

a a'

u

b b'
v

z

t

c'c

y

b'b
x

r

a a'

u

b b'
v

w

c

x

y

c'

iv)

Figure 5.4: Strategy B: The overlay of two optimal pseudoknots must not necessarily
yield an optimal kissing hairpin, since the overlay idea violates Bellman’s
principle of optimality. Thus the combination of two sub-optimal pseudo-
knots might result in an energetically better kissing hairpin. This knowledge
is the basis for Strategy B. This modification leads to higher memory con-
sumption to store certain sub-optimal pseudoknots.

5.2.4 Strategy B – an O(n4) time, O(n3) space algorithm

Strategy B (see Figure 5.4) avoids the redundant work of Strategy A, and also enlarges
the search space. We spend extra space in Step 1 to store results about sub-optimal
pseudoknots.

(1) For p = aubva′zb′, and for each choice of b therein, we record the optimal choice
of a′. Conversely, for each choice of a′, we store the optimal choice of b. This requires
two tables of size O(n3).
(2) For the kissing hairpin motif, we first choose a, b, b′, and c′, which costs O(n4), and
use the stored information to optimally determine the other bounds for a′ and c by
look-up with O(1).
(3) Unfortunately, the stored information may suggest that with an optimal choice, a′

and c would overlap (and w have negative length). We correct this by a heuristic decision
– selecting an a′ further to the left and a c further to the right. This decision will also
be based on precomputed information in order to retain a run-time of O(n4).
(4) We minimize over all cases considered.

The overall efficiency is O(n4) time and O(n3) space. Note that the search space here
is more general than with strategy A, as neither pseudoknot needs to be optimal with
respect to its underlying sub-word. This generalization lies with Step 1. In Strategy A,
only the optimal choice of b within p is considered for overlay, while here, all possible
choices of b are tried.

87

5 pKiss

O(n²)

O(n²)
*

*

O(n¹)

i j

j

mh
i

i

m

j

h

k l

= time: O(n5)
space: O(n2)

i)

ii)

iii)

coupled k and l

iv)

a a'u b b'v w c x y c'

a a'

u

b b'
v

w

c

x

y

c'

Figure 5.5: Strategy C: Since larger memory is often a harder problem than longer run-
time, we alter Strategy B to trade memory for run-time. Strategy C avoids
the extra storage required by Strategy B by re-computing the necessary
information on demand. Coupling k and l reduces the run-time by one
dimension.

5.2.5 Strategy C – an O(n5) time, O(n2) space algorithm

Strategy C (see Figure 5.5) avoids the extra storage required by Strategy B. The neces-
sary information is re-computed on demand, after choosing a, b, b′ and c′. This increases
run-time, but also allows us to avoid the heuristic decision when a′ and c would overlap.
For each choice of a′, we compute the best choice of c strictly to its right. This threatens
to raise time complexity to O(n6), but with a clever arrangement of computations and
an extra table of size O(n), we can keep it at O(n5).

The optimal choice of l with respect to (h, j) as a pseudoknot is a heuristics with
respect to (i, j) as a kissing hairpin (see Figure 5.6). It assumes that va′w can fold
optimally. For the kiss, however, v and w can only fold individually, as they are separated
by a′, which is the partner of a. Thus, l need not be optimal for (i, j) as a kissing hairpin.

5.3 Algorithms

5.3.1 Algorithmic subtleties

Annotated energies

When computing minimum free energies from pseudoknots, we will need to also record
the internal boundaries of the given sub-word which achieved optimal energy. These

88

5.3 Algorithms

w

a:a'

b:b'

c:c'
j

y

xv

l

m
u

i k

h

Figure 5.6: The graphic shows the mandatory bases (black dots) of a kissing hairpin and
the indices i, h, k, l, m, and j determining the start and end points of the
helices (black tics). Green regions u, v, w, x, and y can fold in an arbitrary
way.

will be data of the form (e, σ, τ). When we minimize over these tuples, we do this
with a lexicographic ordering. This is consistent with minimizing over energies alone.
When two structures have the same energy, then the choice is arbitrary and remains
unspecified.

Exact sub-word boundaries in the input decomposition

Sub-structures have certain minimal sizes. For example, we forbid lonely pairs, i. e.
helices of length 1. Therefore, in iakza

′
j, we do not iterate k over i ≤ k ≤ j, but only

over i+ 2 ≤ k ≤ j − 2. This does not affect the asymptotics, but saves substantial time
in practice. The minimal sub-word sizes used are two base-pairs for each helix, loop u
and y have one unpaired base. Loop w has two single bases (k + 2 ≤ l). The size of
loop v and x is ≥ 0, because we want to keep the possibility of coaxially stacking of
the helices. With that, we get a minimal sequence length of 16 bases to form a kissing
hairpin (see Figure 5.6).

To be concrete in the following recurrences, we use the precise boundaries consistent
with our implementation. But for understanding the essentials of the algorithms, the
reader may choose to ignore them.

5.3.2 Pseudoknot-recurrence of pknotsRG – csrPK

Due to the canonization of pknotsRG, the calculation of a canonical simple recursive
pseudoknot (csrPK) for a given sub-word needs two boundaries in addition to (i, j): h,
the start position of the b − b′ helix, and k, the end position of the a − a′ helix. The
recurrence of a csrPK for a sub-word (i, j) is:

csrPK (i, j) = min
i+3 ≤ h ≤ j−8
h+4 ≤ k ≤ j−4

EcsrPK

(
iauhbva

′
krb
′
j

)

89

5 pKiss

The energy function EcsrPK makes use of a precomputed DP-table (stacklen) to de-
termine the inner endpoints of the helices in a unique, maximal and non-overlapping
fashion. With these boundaries fixed, the energy value is the sum of stabilizing energies
of both helices + energy contributions of the arbitrary folded regions u, v and w + con-
tributions from bases which dangle onto the helices from inside the csrPK + penalties
for explicitly unpaired bases in front of u and b′, see Table 5.3 for details. For later use,
we adapt EcsrPK to additionally store σ = h and τ = k, which can be retrieved by the
functions boundaryleft and boundaryright.

5.3.3 Recurrences of Strategy A – csrKHA

For Strategy A we make two strong assumptions. (1) Helices a − a′ and b − b′ of an
optimal csrPK, starting at i and ending at m, can be adopted for the overall csrKH
and thus determine the boundaries h and k. We can look up these values via the table
csrPK. (2) The remaining boundary l, the starting point for the c − c′ helix, can be
determined by using the energy of a second csrPK as an objective function. This second
csrPK must start at h, end at j and have its end position of the left helix b : b′ at m,
thus overlaying a part of the first csrPK:

left (i, j) = min
i+13 ≤ m ≤ j−3

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)
, where

h = boundaryleft (csrPK (i,m)) ,

k = boundaryright (csrPK (i,m)) ,

l = boundaryleft

(
min

k+2 ≤ d ≤ m−4
EcsrPK

(
hbva

′wdcxb
′
myc

′
j

))
A csrKH may alternatively arise from the opposite direction, i. e. an optimal csrPK on
its right half overlaying a sub-optimal csrPK at its left:

right (i, j) = min
i+3 ≤ h ≤ j−13

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)
, where

l = boundaryleft (csrPK (h, j)) ,

m = boundaryright (csrPK (h, j)) ,

k = boundaryright

(
min

h+4 ≤ d ≤ l−2
EcsrPK (iauhbva

′
dwcxb

′
m)

)
The optimal csrKH with Strategy A is:

csrKHA (i, j) = min (left (i, j) , right (i, j))

5.3.4 Recurrences of Strategy B – csrKHB

Since Strategy B has to store the optimal choice of a′ for every given b for csrPKs on the
left side and the optimal b for every given a′ for csrPKs on the right side of the csrKH,

90

5.3 Algorithms

we have to replace the function csrPK with lpk and rpk. A csrPK for a sub-word (i, j)
can now be determined by minimizing over lpk (i, h, j) and rpk (i, k, j):

lpk (i, h, j) = min
h+4 ≤ k ≤ j−4

EcsrPK

(
iauhbva

′
krb
′
j

)
rpk (i, k, j) = min

i+3 ≤ h ≤ k−4
EcsrPK

(
iauhbva

′
krb
′
j

)
An overlay of csrPKs from lpk and rkp might overlap in region w of the csrKH, when
building it. We can overcome this obstacle in a heuristic way by introducing an artificial
border ξ:

lpkheuristic (i, h, j) = min
h+4 ≤ k ≤ ξ

EcsrPK

(
iauhbva

′
krb
′
j

)
rpkheuristic (i, k, j) = min

ξ ≤ h ≤ k−4
EcsrPK

(
iauhbva

′
krb
′
j

)
Thus we can construct a csrKH with Strategy B by first iterating over the outer endpoints
of helix b−b′, namely m and h. Second, we choose the energetically optimal combination
of k and l by overlaying all csrPKs from lpk (i, h,m) and rpk (h,m, j), as well as their
heuristic counterparts lpkheuristic (i, h,m) and rpkheuristic (h,m, j) to guarantee at least
one feasible overlay:

csrKHB(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)
, where

k ∈ boundaryright

{
lpk (i, h,m) , lpkheuristic (i, h,m)

}
l ∈ boundaryleft

{
rpk (h,m, j) , rpkheuristic (h,m, j)

}
5.3.5 Recurrences of Strategy C – csrKHC

We start with Strategy C identical to Strategy B, by iterating over m and h. But instead
of retrieving k and l from precomputed csrPK tables, we now also iterate k to determine
a′ and look up the optimal choice for l depending on k in a one dimensional table rpk:

csrKHC(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

h+4 ≤ k ≤ m−6

l = boundaryleft(rpk(k))

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)

When iterating over k, we go from right to left. Thus we have a growing sub-word
(k,m). While shifting k one position to the left, the function rpk(k) also determines the
optimal csrPK that begins at h, ends at j, has its b′ at m and its c somewhere in the
sub-word (k,m). Since we temporarily store the results for rpk(k), it can be calculated
in O(1) time. We just compare the existing result for the one letter shorter sub-word
rpk(k + 1) with one new csrPK, whose boundaries are at h, k + 2,m, j:

rpk(k) = min
(
EcsrPK

(
hbva

′wk+2cxb
′
myc

′
j

)
, rpk(k + 1)

)

91

5 pKiss

5.3.6 Recurrences of Strategy D – csrKHD

Just for completeness, we give recurrences for the evaluation Strategy D, where all six
boundaries have to be iterated independently:

csrKHD(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

h+4 ≤ k ≤ m−6

k+2 ≤ l ≤ m−4

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)

5.4 Implementation via Bellman’s GAP

Alike pknotsRG, pKiss is implemented with ADP. This makes it easy to add and
combine different types of analysis. Our main goal is computation of thermodynamic
optimal and sub-optimal structures, plus integration of possible co-axial stacking of pseu-
doknot stems, which is fairly similar to dangling bases. Thus, we incorporate pseudoknot
dependent rules into GMicroState (see Figure 3.3). In the following, we list technical de-
tails, how we integrated context sensitive non-terminals into the principally context free
framework Bellman’s GAP, focusing on MFE prediction. However, our implemen-
tation (bibiserv.cebitec.uni-bielefeld.de/pkiss) provides a whole set of further
functionalities, e. g. abstract and probabilistic shape analysis, enforced and local pseu-
doknot folding, energetic evaluation of given pseudoknotted structures and comparative
structure prediction.

5.4.1 Signature

We treat a pseudoknot (may it be a csrPK or a csrKH) like a closed sub-structure, which
might be target of dangling bases. Different from “normal” closed sub-structures, where
the partners of the base-pair onto which neighboring bases might dangle are always the
outermost symbols of the according sub-string, one partner of a pseudoknot stem is
always “hidden” somewhere in the middle of the sub-string. In order to calculate the
correct energy contribution, it is necessary to record these positions (σ and τ), together
with the current energy value of the pseudoknot. Thus, for pseudoknot dependent
algebra functions, we need a second sort K and a second objective function hknot, which
chooses from a list of K. Furthermore, these information must sometimes be fed into
other algebra functions, e. g. emptymid, with the help of additional parameters.

Table 5.1 lists all algebra functions of Signature Σknot. Since we need two sorts, we
give the result type of each algebra function as the right hand side of the arrows.

5.4.2 Grammar

Grammar GpKiss of Figure 5.7 embeds pseudoknots into the MicroState Grammar. The
idea is, that a pseudoknot is another closed sub-structure, onto which neighboring bases

92

bibiserv.cebitec.uni-bielefeld.de/pkiss

5.4 Implementation via Bellman’s GAP

Table 5.1: Signature Σknot for RNA problems. Result type of an algebra functions is
either sort S or sort K. A is a symbol from the alphabet, i. e. a single
character from the input sequence. A∗ stands for a non-empty sub-sequence
from the input and A0 shall denote reading the position within the input, but
not consuming any symbol. Additional int parameters are used to identify the
correct pairing partners of base-pairs, onto which other bases might dangle.

sadd(A,S)→ S il(A,A∗,S,A∗,A)→ S emptymid(int, int)(A∗)→ S
cadd(S,S)→ S ml(A,S,A)→ S midbase(int, int)(A∗)→ S
nil(A0)→ S mldl(A,A,S,A)→ S middlro(int, int)(A∗)→ S
drem(A0,S,A0)→ S mldr(A,S,A,A)→ S middl(int)(A,S)→ S
edl(A,S,A0)→ S mldlr(A,A,S,A,A)→ S middr(int)(S,A)→ S
edr(A0,S,A)→ S addss(S,A∗)→ S middlr(int, int)(A,S,A)→ S
edlr(A,S,A)→ S incl(S)→ S bkd(int)(A,S)→ S
sr(A,S,A)→ S pkml(S)→ S pk(K)→ S
hl(A,A∗,A)→ S sadd pk(A,S)→ S kndl(S,K)→ S
bl(A,A∗,S,A)→ S midregion(S)→ S kndr(K,S)→ S
br(A,S,A∗,A)→ S frd(int)(S,A)→ S kndlr(S,K,S)→ S
pknot(int)(A,S,A,S,A,S,A)→ K h([S])→ [S]
pkiss(int)(A,S,A,S,A,S,A,S,A,S,A)→ K hknot([K])→ [K]

might dangle: dangleknot non-terminal with dangling alternatives pk, kndl, kndr and
kndlr. Besides of the fact that non-terminals to create pseudoknots (prefixed with
“pknot” and “pkiss”) are somehow outside of the ADP concept, they are normal citizen
of the grammar, i. e. they can call other non-terminals to form sub-structures for their
loop regions – even recursively themselves – or be called by others, e. g. multiloops or
stretches of adjacent closed sub-structures (cadd). Two of the three (in case of a csrKH)
stems of a pseudoknot might stack co-axial onto each other in 3D. The stabilizing en-
ergy contribution is accounted for as a further base-pair stack in the algebra functions
emptymid or midbase, should only a single base be bulged out.

According to the answer sorts (S or K) of the alternative productions for the non-
terminals, either objective function h (normal black arrows) or hknot (red annotated
arrows) must be applied. Non-terminal knot makes use of a special syntactic filter –
similar to 6= LP | LP – to choose the pseudoknot prediction strategy according to a
command line parameter. The filter ignore is for filling the non-terminal DP table,
but no candidates will ever be part of the search space. It seems rather useless to
compute things that cannot contribute to the overall result, but we need these DP
tables for efficient computation of csrKHs. Some non-terminals are annotated with
gray arguments. These arguments are either used to push information into algebra
functions, e. g. from middle(σ, τ) to midbase(σ, τ), or to control the computation of the
non-terminal itself, e. g. pknot free h(h, kinit). From [79]

A non-terminal symbol can be defined with arguments (i. e. a parameter-

93

5 pKiss

ized non- terminal). The arguments, or expressions including the arguments,
can be used on the right hand side as extra arguments of a function symbol,
a filter function or another parametrized non-terminal call. A parametrized
non-terminal cannot be tabulated, because for every combination of param-
eter values a separate table would be needed.

The children of the algebra function pknot and pkiss are annotated with start- and end-
boundaries of the sub-string they shall consume. This is necessary, since some parts of
the input string have to be consumed at the same time in different terminals / non-
terminals, which is a violation of the tree structure of “normal” context free grammars.
Details about the indices will be given in Section 9.2 of the appendix as source code
segments of the actual Bellman’s GAP code. Variables |α|, |β| and |γ| hold the
length of the up to three stems of pseudoknots.

94

5.4
Im

p
lem

en
tation

v
ia

B
e
l
l
m
a
n
’s

G
A
P

il

b br rstrong
≤30 ≤30

iloop
basepair

br

b brstrong
≤30

rightB
basepair

bl

b br strong
≤30

leftB
basepair

hl

b br
≥3

hairpin
basepair

sr

b bweak

stack
basepair

sadd cadd nil

l

struct

b struct dangle | dangleknot struct

sr

b b

strong

weak

weak
basepair

≠ LP = LP

stack | hairpin | leftB | rightB | iloop | multiloopweak

mldl

b b ml_comps b

mldr

b ml_comps b b

mldlr

b b ml_comps b b

ml

b ml_comps b

multiloop
basepair

sadd addssml_comps1

b ml_comps1

cadd

mldangle ml_comps1

mldangle

mldangle r

sadd cadd

b ml_comps mldangle ml_comps1

ml_comps addss

dangleknot

pkml r0

drem

l lstrong

dangle edl

b lstrong

edr

l bstrong

edlr

b bstrong

mldangle incl

dangle

pkml

dangleknot

pk

knot

dangleknot kndl

b knot

kndlr

b bknot

kndr

bknot

knot strategyA strategyB strategyC strategyD pknotsRG
= A = B = C = D = P

hknot

strategyA pknot_free_h(0,0) pknot_free_k(0,0) pkiss_Aleftpknot_free_hk pkiss_Aright
ignore ignore

hknot

strategyB pknot(0,0) pkiss_B(false) pkiss_B(true)pknot_free_hk_3D
ignore

hknot

strategyC pknot(0,0) pkiss_Cpknot_free_hk
ignore

hknot

strategyD pkiss_Dpknot_free_hkhknot

pknotsRG pknot_free_hkhknot

pk_comps nil

l

sadd_pk

b pk_comps

cadd

mldangle pk_comps

front(τ) pk_comps frd(τ)

pk_comps b

middle(σ,τ) emptymid(σ,τ)

r0
=0

midbase(σ,τ)

r0
=1

middlro(σ,τ)

r0
=2

midregion

pk_comps

middl(σ)

b pk_comps

middr(τ)

pk_comps b

middlr(σ,τ)

b pk_comps b

back(σ) pk_comps bkd(σ)

b pk_comps

middleNoDangling pk_comps

middleNoCoaxStack(σ,τ) nil

l

middlro(σ,τ)

r0
=2

midregion

pk_comps

middl(σ)

b pk_comps

middr(τ)

pk_comps b

middlr(σ,τ)

b pk_comps b

pknot_free_hk

hknot pknot(e)

iri+|α| i+|α|+1fronth(j) hrh+|β| h+|β|middlek-|α|(j-|β|,i+|α|) k-|α|rk kbackj-|β|-2(i) j-|β|rj
pknot(h,k)

pknot_free_h(h,kinit)

pknot_free_k(hinit,k)

pknot_free_hk_3D

hknot pkiss(e)

iri+|α| i+|α|+1fronth(m) hrh+|β| h+|β|middlek-|α|(m-|β|,i+|α|) k-|α|rk mbackj-|γ|-1(h) j-|γ|rjk+1middleNoDanglingl-1 lrl+|γ| l+|γ|middleNoCoaxStackm-|β|(j-|γ|,h+|β|) m-|β|rm
pkiss_D

pkiss_C

pkiss_B(useSplit)

pkiss_Aleft

pkiss_Aright

Figure 5.7: Grammar GpKiss. For special annotations consult main text. Non-terminals for computing the pseudoknots are
described in Section 9.2 of the appendix.

95

5
p
K
iss

Table 5.2: Evaluation algebra Iknotdb to represent a potentially pseudoknotted secondary structures with a Vienna-Dot-Bracket
like string. A notation like [[[|a| means as many [-symbols as the length of a.

algebra function Iknotdb −B Idb
pkml(x) x

sadd pk(a, x) . x
midregion(x) x
frd(τ)(x, b) x .

emptymid(σ, τ)(r) ε
midbase(σ, τ)(r) .

middlro(σ, τ)(r) ..

middl(σ)(a, x) . x
middr(τ)(x, b) x .

middlr(σ, τ)(a, x, b) . x .

bkd(σ)(a, x) . x
pk(x) x

kndl(a, x) . x
kndr(x, b) x .

kndlr(a, x, b) . x .

pknot(e)(a, u, b, v, a′, r, b′) [[[|a| . u {{{|b| v]]]|a′| r .. }}}|b′|
pkiss(e)(a, u, b, v, a′, w, c, x, b′, y, c′) [[[|a| . u {{{|b| v]]]|a′| . w . <<<|c| x }}}|b′| y . >>>|c′|

S string
K string
h id

hknot id

96

5.5 Evaluation

5.4.3 Algebras

Dot-Bracket algebra

We cherish to represent our structure predictions as Vienna-Dot-Bracket strings. In
order to symbolize crossing base-pairs correctly, we need to extend the alphabet with
further pairing characters, i. e. [and], { and } and finally < and >, for α, β and γ
stems, respectively.

Evaluation algebra Iknotdb inherits all 18 algebra functions for “nested” structures from
Idb (Table 3.2). Newly introduced, pseudoknot specific algebra functions are given in
Table 5.2. Both sorts and both objective functions are identical.

MFE algebra

The evaluation of the free energy of a pseudoknotted structure Iknotmfe (Table 5.3) basically
follows the typical scheme of Imfe (Table 3.3). Dangling adjacent unpaired bases onto
stems of the pseudoknot forces us to provide their inner base-pair partners. Thus, sort
K is a triple of the three components 1) free energy, 2) right boundary of the inner base-
pair partner of left stem σ and 3) left boundary of the inner base-pair partner of right
stem τ . The objective function hknot minimizes over the first component of K. Variable
e of pknot and pkiss hold the combined free energy of all pseudoknot stems (it is the
variable “stackenergies” from the source code). We see a lot of dangling contribution
in Iknotmfe , since all the mandatory unpaired bases can dangle onto the pseudoknot stems.
Consult Figure 5.6 to get an overview of those bases.

The prediction of RNA secondary structures including kissing hairpin motifs for an
RNA sequence x is then the result of the Bellman’s GAP instance

GpKiss(Iknotmfe ∗ Iknotdb , x).

5.5 Evaluation

5.5.1 A piece of anecdotal evidence

The RNA polymerase gene (gene 1) of the human coronavirus 229E is a good example for
the usefulness of improved secondary structure prediction tools. Analyzing the genome
of the human coronavirus, Herold and Siddell [38] guessed, that a “slippery site” together
with an H-type pseudoknot acts as a frameshift inducing structure. Extensive mutational
analyses showed that a kissing hairpin is required for high frequency frameshifts. Their
work implied computer-assisted modeling, but prior prediction tools could not detect
kissing hairpin motifs. pKiss finds the proper kissing hairpin.

5.5.2 Test set “knot”

For test set “knot” we compiled a list of 433 RNA sequences with verified pseudoknotted
secondary structures. From this set, 33 sequences form kissing hairpin motifs. See

97

5 pKiss

Table 5.3: Evaluation algebra Iknotmfe to compute the free energy of a potentially pseudo-

knotted secondary structure.

algebra function Iknotmfe −B Imfe
pkml(x) x+ Einitpkml

sadd pk(a, x) x+ Enpp

midregion(x) x
frd(τ)(x, b) x+ Edl(i+1b, bβd) + Enpp

emptymid(σ, τ)(r) Esr pk((i−1r, rσ), (ir, rτ−1))
midbase(σ, τ)(r) Esr pk((i−1r, rσ), (i+1r, rτ−1)) + Enpp

middlro(σ, τ)(r) Edri(τ−1r, rj+1) + Edli(i−1r, rσ+1) + 2 · Enpp

middl(σ)(a, x) x+ Edli(i−1a, aσ+1) + Enpp

middr(τ)(x, b) x+ Edri(τ−1b, bj+1) + Enpp

middlr(σ, τ)(a, x, b) x+ Edli(i−1a, aσ+1) + Edri(τ−1b, bj+1) + 2 · Enpp

bkd(σ)(a, x) x+ Edr(σa, aj−1) + Enpp

pk((x, σ, τ)) x
kndl(a, (x, σ, τ)) x+ Edl(i+1a, aτ) + Enpp

kndr((x, σ, τ), b) x+ Edr(σa, aj−1) + Enpp

kndlr(a, (x, σ, τ), b) x+ Edl(i+1a, aτ) + Edr(σb, bj−1) + 2 · Enpp

pknot(e)(a, u, b, v, a′, r, b′) (e+ u+ v + r
+ Einitpk + 3 · Enpp

+ Etermau(ia, a
′
j) + Etermau(j−1a, a

′
i+1)

+ Etermau(ib, b
′
j) + Etermau(j−1b, b

′
i+1)

+ Edli(j−1a, a
′
i+1)

+ Edri(j−1b, b
′
i+1)

, ib, a
′
j

)
pkiss(e)(a, u, b, v, a′, w, c, x, b′, y, c′) (e+ u+ v + w + x+ y

+ Einitpkiss + 4 · Enpp

+ Etermau(ia, a
′
j) + Etermau(j−1a, a

′
i+1)

+ Etermau(ib, b
′
j) + Etermau(j−1b, b

′
i+1)

+ Etermau(ic, c
′
j) + Etermau(j−1c, c

′
i+1)

+ Edli(j−1a, a
′
i+1)

+ Edri(j−1c, c
′
i+1)

+ Edr(ia, a
′
j)

+ Edl(ic, c
′
j)

, ic, a
′
j

)
S int
K (int,int,int)
h min.

hknot min.

98

5.5 Evaluation

Histogram for 'knots' (N=433)

sequence length

F
re

qu
en

cy

0 50 100 150 200

0
10

20
30

40
50

60

2 1

43

49

41
39

31
27

9
12

26

40

2223

13

6
4 5

2
4

1
4

1
5

2
5 6

1 0
3

0 0 1 2 1 2

kissing hairpins (33)
all other pseudoknots (400)

Figure 5.8: Sequence length histogram for 433 members of test set “knot”.

Figure 5.8 for a sequence length distribution. The examples stem on the one hand from
PseudoBase [90] (363 sequences) and on the other hand from RNAstrand [2] (70
sequence).

Unfortunately, we had to extract the necessary information for PseudoBase from
HTML pages. Sequences “PKB106”, “PKB127”, “PKB149” and “PKB217” had to be
excluded, either for larger gaps or degenerated bases.

For RNAstrand, we used the elaborate search function with the following restric-
tions:

• Type: Any type
• Organism: Any
• Source: Any source , Source ID: Any
• Length: Less than or equal to 200
• Validated by NMR or X-Ray: Yes Number of molecules in complex: Any number
• Fragment: Any
• Duplicates: Non-redundant sequences only
• Sequence pattern: Any
• Abstract shape: Any
• allowed base letters: ACGUT, but no P!
• Number of pseudoknots per molecule: Greater than or equal to 1

5.5.3 Comparing pKiss strategies to other prediction tools

In the following, we compare run-time, memory consumption and accuracy – in different
terms – of the several strategies of pKiss with pknotsRG [71], pknotsSE (version 1.05,

99

5 pKiss

[76]), HotKnots (version 2.0, [5]), ProbKnot (version 5.3 of the RNAstructure
package, [6]), DotKnot [83] (version 1.3.1) and as a “negative” control with nested
structure prediction in terms of GMicroState(Imfe ∗ Idb, x) results. A further strategy
is added, called “pKiss A left”, where we omit computation of kissing hairpin motifs,
starting with an optimal right csrPK. In our terminology “pKiss with strategy P” equals
pknotsRG. The HotKnots software package provides three different parameter sets
(DP, CC and RE). Since we do not know a priori the best set, we test all three of
them. The ProbKnot software uses an iterative approach to converge to a stable
prediction. We allow for 10 such iterations at most (-i 10). We run all tests in our
default environment (see Section 3.3.2) with 8GB memory limitation.

Run-times

Figure 5.9 summarizes the run-times for all 13 prediction tools for test set “knot” as
boxplots. As expected, the extra effort for pseudoknots significantly raises run-times
compared to nested folding (nested microstate). Practical run-times for strategies A
to D nicely follow the theoretical considerations. Since pknotsSE covers pseudoknot
classes even larger than kissing hairpin motifs, it is no surprise that its run-times exceeds
even those of strategy D, while their asymptotics are within the same class of O(n6).
The same argument is true for strategies P and A, where the latter covers the bigger
class of pseudoknots. A bit surprising is the big impact of the chosen parameter set
on run-times for HotKnots. We can only speculate that different parameter sets may
lead to different foldingspace sizes. Computing only half of the kissing hairpin motif
variants (strategy A left) does not yield a 2-fold speed-up.

Memory consumption

Memory consumption (Figure 5.10) follows our expectations. While asymptotic con-
sumption lies in O(n2) for nested and knotted structures, the number of tabulated
non-terminals increase memory consumption for search spaces including pseudoknots
(nested microstate vs. pKiss strategies). Strategy B trades run-time for memory, which
leads to a significantly larger footprint in the consumption. The larger search space of
pknotsSE requires high memory consumption.

Accuracy

We ran every program on each of the test sequences of the set “knot” individually.
Programs, that are written in Bellman’s GAP, are able to report co-optimal results.
Since HotKnots, ProbKnot, pknotsSE and DotKnot cannot, we chose to always
randomly pick one co-optimal prediction as result, to compensate this disadvantage. We
take the annotated structures from the databases as the “truth”.

Base-pair distance Here, we use the traditional base-pair distance, which is defined as
|A \B|+ |B \A|, where A and B are the sets of base-pairs in structure A and structure

100

5.5 Evaluation

●● ●● ●● ●● ●●● ●●● ● ● ●● ● ●● ●●●● ● ● ●● ●●● ●●● ●● ●● ●●●● ● ● ●●●●● ● ●● ●● ●● ●●

●● ●●●●● ●●●● ●●● ●● ●●●● ●●●●●● ●●● ● ●● ●● ●

●● ●● ●●●●● ●● ●● ●● ●●● ●● ●● ●●● ●●●●●●● ● ●●●● ● ●● ●● ●●

● ●● ●● ●●●● ● ●●●● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●●●● ● ●●●● ● ●●●● ● ●●

● ●●● ● ●●● ● ● ●●● ● ● ●●● ●●● ●● ●●● ●● ●●● ●●● ● ●●● ● ●●●● ●● ● ● ●●● ●●●

● ●●● ● ●●●● ● ●●● ● ● ●●● ●●● ●● ●●● ●● ●●●● ●●● ● ●●● ● ●●●● ●● ● ● ●● ●●

●● ●● ●● ●● ●●● ●●● ● ● ●● ● ●● ●●●● ● ● ●● ●●● ●●● ●● ● ●● ●●●● ● ● ●●●●● ● ●●● ●● ●● ●●●

●● ●● ●● ●● ●●● ●●● ●● ● ●● ● ●● ●●●● ● ● ●● ●●●● ●●● ●● ●●● ●●●● ● ● ●●●●● ● ●● ●● ●●●

●● ●● ●● ●● ●●●● ● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●●●● ● ● ●●●● ● ●● ●● ●●

●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●● ●●●● ●●● ●●● ●●● ●● ●●● ●●●● ● ● ●●●●● ● ●● ●● ●●

●● ●● ●● ●● ●●●● ● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●●●● ● ● ●●●● ● ●● ●● ●●

●● ●● ● ●●●● ● ● ●● ●● ●●● ●● ●● ●●● ●●● ●●● ● ●●● ● ●● ●● ●●

●● ●● ●● ●●●● ●● ●● ●● ●● ● ● ●● ● ●●●● ● ●● ●● ● ● ●●● ●●● ●●● ●●● ●●● ●● ●●●● ● ● ●●● ●●●● ● ●● ●● ●● ●

Runtimes for 433 sequences.

runtime in seconds (log−scale)

pknotsSE−1.05: O(n6)

DotKnot −k −g

ProbKnot −i 10

HotKnots RE

HotKnots CC

HotKnots DP

pKiss D: O(n6)

pKiss C: O(n5)

pKiss B: O(n4)

pKiss A left: O(n4)

pKiss A: O(n4)

pKiss P: O(n4)

nested microstate: O(n3)

1e−02 1e+00 1e+02 1e+04

Figure 5.9: Run-times as boxplots for pseudoknot aware prediction tools for the 433
members of test set “knot”. Please note the log-scaled x axis.

●●●● ●●● ●● ●● ●●● ● ●●●● ●●●●●● ●●● ● ●● ● ●●

●● ●●●●● ●●●● ●●●●●●● ●●●●●● ●●● ●● ●●

● ●● ●● ●●● ● ●●●● ●●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●●● ● ●●●● ●● ●

● ●● ●● ● ●● ● ● ●● ●● ●●●● ●●●●● ● ●●● ●●●● ●●●● ●● ●●● ●●● ●●●

● ●● ●●● ● ●●● ● ● ●● ● ● ●●●● ●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●

●● ●●●●● ●● ●● ●●● ●●●●●● ●●●●●● ●●● ●● ●●

●● ●●●●● ●● ●● ●●● ●●●●●● ●●●●●● ●●● ●● ●●

●● ●●● ● ● ●●●●● ●● ●●● ● ●●● ●●●

●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●● ●●

●● ●●●●● ●● ●● ●●● ●● ●●●● ●●●●●● ●●● ●● ●●

●● ●●●●● ●● ●● ●●● ●● ●●●● ●●●●●● ●●● ●● ●●

●●●●●

Memory consumption for 433 sequences.

max RSS in KB (log−scale)

pknotsSE−1.05: O(n4)

DotKnot −k −g

ProbKnot −i 10

HotKnots RE

HotKnots CC

HotKnots DP

pKiss D: O(n2)

pKiss C: O(n2)

pKiss B: O(n3)

pKiss A left: O(n2)

pKiss A: O(n2)

pKiss P: O(n2)

nested microstate: O(n2)

2e+04 4e+04 6e+04 8e+04 1e+05

Figure 5.10: Memory consumption as boxplots for pseudoknot aware prediction tools for
the 433 members of test set “knot”. Please note the log-scaled x axis.

101

5 pKiss

B. Figure 5.11 visualizes summed base-pair distances of all sequences in set “knot”.
As expected for the negative control, “nested microstate” performs worst. Surprisingly,
ProbKnot does not much better. The heuristic HotKnots heavily depends on the
chosen parameter set and comes close to the best results with set “DP”. The slow and
most exhaustive program pknotsSE, with the largest search space does not return best
performance; all strategies of pKiss do better.

The strategies A to D perform best on the kissing hairpin sub-set (greenish), but on all
sequences (yellowish) strategy P (without the ability to predict kissing hairpins) achieve
smallest base-pair distance to the annotated structures. It seems to be the case that
strategies A to D predict too many base-pairs. But we do not know how many of the
annotated structures might turn out to be kissing hairpin motif as well as the “human
coronavirus 229E” example (Section 5.5.1).

Unexpectedly, Strategy A performs best among A, B, C and D – it is faster and
provides almost the same results as the most in-depth strategy D. Closer inspection
showed that it is always the left pseudoknot of the overlay which was chosen optimally.
One may speculate that this is because the strategy is consistent with the hierarchic
folding path during transcription. Strategy “A left” seems to confirm this speculation.

Previously, we discussed about the hierarchy of search spaces of pKiss, which stem
from different levels of heuristic decisions. The surprisingly small inter-strategy base-
pair distances, shown in Figure 5.11, let us hope that we can tackle most input sequences
with the fast strategy A, without much mispredictions.

Stem arrangement distance In Chapter 3, we used an asymmetric base-pair distance,
due to the fact that all folding tools tend to predict additional base-pairs, which often
are “compatible” to existing ones. With the presence of crossing base-pairs, definition
of “compatible” is more complicated. Furthermore, base slippage or small stem breaks
cannot be recognized as tiny changes between structures A and B within the definition
of base-pair distance. Thus, we introduce here the “stem arrangement distance”.

All unpaired bases in the structures are ignored. Successive base-pairs are collapsed
into one symbol for the opening part (capital letters) and another for the closing part
(small letters). We than define one structure as “reference” (R) and the other as “pre-
diction” (P). The following example illustrates the conversion from Dot-Bracket strings
to stem arrangements:

concrete secondary structure stem arrangement

R: (..((..[[[[...{{..]].]].}}).)).. ABCbca

P : .[[..[[[[.<<<...]]]].]]((.((...)))).>>.> ABaCcb

Next, we need to align both stem arrangements. Classical sequence alignment fails due to
two reasons. First, symbols are not independent, they always have a partnering symbol
somewhere in the string; those connections should never be violated during alignment.
Second, the cost of an replacement does not depend on the symbol content, i. e. the
stem representing letter or – in terms of Dot-Bracket strings – the bracket type, since
both are just artifacts from the representation and do not constitute properties of the

102

5.5 Evaluation

T
ru
th

n
es
te
d
m
ic
ro
st
at
e

p
K
is
s
P

p
K
is
s
A

p
K
is
s
A

le
ft

p
K
is
s
B

p
K
is
s
C

p
K
is
s
D

H
ot
K
n
ot
s
D
P

H
ot
K
n
ot
s
C
C

H
ot
K
n
ot
s
R
E

P
ro
b
K
n
ot

-i
10

D
ot
K
n
ot

-k
-g

p
k
n
ot
sS
E
-1
.0
5

Truth 0 6364 4563 4647 4643 4606 4641 4594 4843 5143 5459 6347 4713 4884

nested microstate 658 0 4895 5537 5473 5468 5535 5526 4509 4341 2489 2819 4749 5868

pKiss P 561 293 0 1814 1712 1691 1810 1915 3928 4302 4118 5366 3580 4369

pKiss A 483 491 300 0 184 293 44 221 4188 4578 4696 6000 4044 4987

pKiss A left 483 491 300 0 0 289 228 405 4210 4600 4632 5928 3994 4925

pKiss B 483 491 304 4 4 0 337 514 4221 4617 4627 5959 4033 5010

pKiss C 483 493 298 2 2 6 0 213 4176 4566 4684 6004 4052 4989

pKiss D 461 493 310 24 24 28 22 0 4219 4583 4715 6025 4029 4974

HotKnots DP 618 172 325 449 449 449 451 451 0 858 3328 4972 3886 4541

HotKnots CC 617 165 318 442 442 442 444 444 7 0 3430 4956 4224 4773

HotKnots RE 641 69 320 510 510 510 512 512 181 174 0 3364 3880 4725

ProbKnot -i 10 644 108 307 497 497 497 499 499 198 191 121 0 4916 5613

DotKnot -k -g 610 270 339 447 447 447 447 447 286 279 265 276 0 4339

pknotsSE-1.05 562 482 451 571 571 575 571 553 382 375 463 464 468 0

Figure 5.11: Prediction accuracy in terms of base-pair distance. Summed over all 433
sequences of “knot” in the yellowish upper right triangle. The greenish
lower left triangle displays results just for the 33 sequences of “knot”, which
are annotated as kissing hairpin motifs. The overall number of annotated
base-pairs in the “knot” is 7,528.

103

5 pKiss

objects themselves. The second point leads to the fact that any symbol pair of R might
match to any symbol pair of P , which means that sequence ordering in R and P must be
flexible during alignment. We are not aware of any efficient alignment algorithm fulfilling
these properties. Since our input strings are short enough, we stick to the exhaustive
exponential enumeration of all symbol pair combinations between both sequences. In
addition to those replacements, we allow for insertions of additional stems in P relative
to R and deletions, where a stem in R has been lost in P . Due to the tendency of
predicting additional base-pairs, we chose the following scoring scheme and minimize
over all candidates: match = 0, insertion = 0, deletion = 1.

One out of three co-optimal alignments for our example is:

R: ABCb--ca

P : -BCbDdc-

We renamed the stems of P (A → B, B → C, C → D) to better illustrate the matches.
The distance is 1, because we match stems B and C, insert stem D and delete stem A.
Only the latter implies non-zero costs.

Figure 5.12 reports the summed stem arrangement distances for all tools over set
“knot”. Since we now deal with an asymmetric distance it is important how to read the
figure. If you focus only on kissing hairpin examples (greenish), than the columns are R
and the rows are P . Vice versa for all examples (yellowish).

The vast majority of “knot” is annotated as H-type pseudoknots, i. e. with basically
two stems. Thus, it makes perfect sense, that the negative control “nested microstate”,
which can predict one of both crossing stems at most, mispredicts roughly every second
stem (647 out of 1,278). Stem distance 7 between R = “nested microstate” and the
pKiss strategies A to D result from multiloop enclosing stems (A in the example) in the
nested structures, which are thermodynamically no longer stabilizing in the presence of
pseudoknots:

R: AB-bD-da

P : -BCbDcd-

Except from the fact that pKiss strategies A to D now perform better than pKiss
strategy P, we observe the same tendencies as for base-pair distance.

Topology distance The introduction of energetic penalties (Einitpk , Einitpkiss) to open
pseudoknot motifs follows the idea to penalize opening a multiloop sub-structure (Eml),
but their actual values have never been verified in a wet lab. Thus, our programs might
tend to over- or under-represent pseudoknots. In order to investigate this issue, we use
an even more coarse grained distance than before, the topology distance. The authors of
[73] propose to classify secondary structures into “γ-structures”, which are sub-divided
depending on their shadow -reducibility, see Figure 5.13. A shadow is the more math-
ematical definition of our stem arrangement. Nested structures are “0-structures”, the
pseudoknot class for pknotsRG is a “1-structure” of shadow “H”, kissing hairpin motifs
are “1-structures” of shadow “K”.

104

5.5 Evaluation

T
ru
th

n
es
te
d
m
ic
ro
st
at
e

p
K
is
s
P

p
K
is
s
A

p
K
is
s
A

le
ft

p
K
is
s
B

p
K
is
s
C

p
K
is
s
D

H
ot
K
n
ot
s
D
P

H
ot
K
n
ot
s
C
C

H
ot
K
n
ot
s
R
E

P
ro
b
K
n
ot

-i
10

D
ot
K
n
ot

-k
-g

p
k
n
ot
sS
E
-1
.0
5

Truth 0 649 210 185 184 184 185 185 355 395 487 464 295 291

nested microstate 60 0 45 45 44 43 45 45 55 51 31 12 49 21

pKiss P 50 3 0 72 67 68 72 77 280 319 380 365 216 201

pKiss A 30 7 11 0 9 11 1 9 355 391 454 438 281 275

pKiss A left 30 7 11 0 0 9 8 16 352 389 451 433 275 269

pKiss B 30 7 11 0 0 0 11 19 355 392 452 435 278 271

pKiss C 30 7 11 0 0 0 0 8 354 390 453 437 281 274

pKiss D 28 7 11 1 1 1 1 0 356 391 454 440 282 276

HotKnots DP 49 0 19 37 37 37 37 38 0 53 204 234 140 103

HotKnots CC 50 0 18 36 36 36 36 37 1 0 189 217 142 99

HotKnots RE 57 0 24 45 45 45 45 46 13 13 0 130 86 46

ProbKnot -i 10 55 0 22 42 42 42 42 43 11 11 2 0 179 135

DotKnot -k -g 37 0 13 25 25 25 25 26 11 10 3 3 0 166

pknotsSE-1.05 43 1 14 33 33 33 33 34 7 6 2 3 19 0

Figure 5.12: Prediction accuracy in terms of stem arrangement distance. Summed over
all 433 sequences of “knot” in the yellowish upper right triangle. The green-
ish lower left triangle displays results just for the 33 sequences of “knot”,
which are annotated as kissing hairpin motifs. All 7,528 annotated base-
pairs in “knot” collapse into 1,278 stems.

105

5 pKiss

H-shadow
355

K-shadow
33

L-shadow
4

M-shadow
0

1-structures:

0-structures: nested
0

2-structures:

1 40

Figure 5.13: Classification of secondary structures according to [73]. Numbers show the
distribution of the 433 sequences of test set “knot” into the seven classes.
The green class corresponds to kissing hairpin motifs.

The topology distance between a reference structure and a prediction is 1 if their
structure-shadow classes are not identical and 0 otherwise.

Our program pKiss provides the possibility to set Einitpk and Einitpkiss as command line
parameters. We re-ran pKiss strategy A on “knot” with varying penalties. All combina-
tion of Einitpk ∈ {0.0, 3.0, 7.0, 8.0, 9.0, 10.0, 11.0, 15.0, 18.0} and Einitpkiss ∈ {0.0, 5.0, 10.0,
11.0, 12.0, 13.0, 14.0, 19.0, 24.0} have been tested; data not shown. Since the best com-
bination Einitpk = 7.0 and Einitpkiss = 10.0 could only improve predicted topologies for 5
instances, we decided to stick to the initial parameter values. A more thorough analysis
should be carried out in the future.

5.6 Conclusion

Should the observations from our evaluation on “knot” data generalize, interesting algo-
rithmic perspectives open up. Strategy A evaluates a more complex motif than simple
pseudoknots – without increasing asymptotic complexity. Unexpectedly, Strategy A
performs best among A, B, C and D – it is faster and provides almost the same results
as the most in-depth strategy D. Closer inspection showed that it is always the left
pseudoknot of the overlay which was chosen optimally. One may speculate that this is
because the strategy is consistent with the hierarchic folding path during transcription.
Boldly dropping the symmetric computation starting from the right pseudoknot reduces
work in the innermost loop and may provide a speed-up factor close to 2. On “knot”
data, prediction results even improve, while the expected speed-up factor is just ≈ 1.2.

The more exciting perspective is the extension of the overlay idea to more complex
structures. A motif of four hairpins with two kissing interactions, for example, can be
overlaid as a b a′ c b′ c′ and b c b′ d c′ d′. Using ideas of Strategy A, this can, again, be
achieved in O(n4) time and O(n2) space! Additionally, alternative decompositions, say
a b a′ c b′ c′ with c d c′ d′ (a kissing hairpin overlaid with a simple pseudoknot) may
be investigated, without raising the asymptotics. Furthermore, two such double kissing
structures can form an overlay, and so on. It appears that one can construct a variety
of practically useful, albeit increasingly heuristic, programs for pseudoknotted motifs of
increasingly complex topologies within O(n4) time and O(n2) space.

106

5.6 Conclusion

T
ru
th

n
es
te
d
m
ic
ro
st
at
e

p
K
is
s
P

p
K
is
s
A

p
K
is
s
A

le
ft

p
K
is
s
B

p
K
is
s
C

p
K
is
s
D

H
ot
K
n
ot
s
D
P

H
ot
K
n
ot
s
C
C

H
ot
K
n
ot
s
R
E

P
ro
b
K
n
ot

-i
10

D
ot
K
n
ot

-k
-g

p
k
n
ot
sS
E
-1
.0
5

Truth 0 433 114 164 157 158 164 165 226 260 334 292 194 219

nested microstate 33 0 384 402 402 402 402 402 262 229 125 167 311 254

pKiss P 33 14 0 108 101 102 108 111 164 202 261 241 139 151

pKiss A 12 27 23 0 7 7 0 5 219 251 298 286 171 208

pKiss A left 12 27 23 0 0 4 7 12 212 246 297 284 166 202

pKiss B 12 27 23 0 0 0 7 12 214 248 297 285 168 203

pKiss C 12 27 23 0 0 0 0 5 219 251 298 286 171 208

pKiss D 11 27 23 1 1 1 1 0 221 252 298 286 173 209

HotKnots DP 30 7 11 24 24 24 24 24 0 48 155 214 167 130

HotKnots CC 31 7 10 23 23 23 23 23 1 0 152 216 199 151

HotKnots RE 33 1 13 27 27 27 27 27 6 6 0 175 231 165

ProbKnot -i 10 32 2 13 26 26 26 26 26 7 7 3 0 241 191

DotKnot -k -g 20 16 22 20 20 20 20 20 21 20 17 16 0 156

pknotsSE-1.05 32 4 11 24 24 24 24 24 8 7 5 6 15 0

Figure 5.14: Prediction accuracy in terms of topology distance. Summed over all 433
sequences of “knot” in the yellowish upper right triangle. The greenish lower
left triangle displays results just for the 33 sequences of “knot”, which are
annotated as “1-structures” of shadow “K”.

107

5 pKiss

5.6.1 Acknowledgments

RG thanks A. Condon and H. Jabbari for discussion of the pKiss ideas in their early
state.

108

6 Computation of McCaskill base-pair
probabilities: an outside algorithm

The chapter at hand reports about a (general) scheme to render outside-in computa-
tions possible within the ADP framework, which – by design – allows only inside-out
computations.

We chose the classical example of computing base-pair probabilities for RNA se-
quences, introduced 1990 by McCaskill [62].

Base-pair probabilities are crucial for synoptic secondary structure predictions and
build the foundation of some heuristic pseudoknot aware prediction programs, e. g.
DotKnot [83]. Furthermore, they allow for accessibility studies, i. e. is a sequence
motif accessible for binding with other molecules? This is central for riboswitches, where
accessibility, e. g. for ribosomal binding sites or Shine-Dalgarno sequences, is actively
controlled by conformational changes of the secondary structure.

Many algorithmic strategies have been proposed to overcome the impediments of MFE
predictions for single sequence inputs. Amongst others, like Sfold [13] or the proba-
bilistic mode of RNAshapes [43], the maximum expected accuracy (MEA) is a synoptic
approach, i. e. it justifies the decision of optimality not only on one candidate, but on
properties of the whole foldingspace. MEA relies on base-pair probabilities. It operates
in two steps. First, base-pair probabilities are computed [62], i. e. of all candidates
from the foldingspace, we select those containing the connection between characters i
and j. Their Boltzmann weighted summed energy contribution is related to the com-
bined Boltzmann weight of the whole search space (the partition function, see Section
3.2.1), and thus gives the probability of having a connection between i and j. With little
modifications to the aforementioned algorithms, this can be done in O(n3) time for all
possible i− j connections at once. The second phase aims to find a secondary structure
composed of as many high probability connections as possible.

The above examples should have illustrated that base-pair probabilities truly are the
essence of many important RNA algorithms. In the following chapter, we present all
technical details which are necessary for an implementation in Bellman’s GAP, espe-
cially to add the base-pair probability computation to the rapid prototyping ensemble
for RNA problems, but also as a first working example of an outside-in calculation in
ADP.

109

6 Computation of McCaskill base-pair probabilities: an outside algorithm

AAAGUA
CC AAA

GG CC
A
A
A

U
G

A

C
C

A
A
A

G
G

C
C

i

j

AAAGUA
CC AAA

GG CC
A

U
G

A

C
C

A
A
A

G
G

C
C

i

j

inside outside

A
A * / =bpp(5,11)

Figure 6.1: Efficient computation of base-pair probabilities (bpp): Probability of base-
pair i = 5, j = 11 is the product of the entries from the dynamic program-
ming matrices of inside-out and outside-in computation, hit by the black
arrow, and divided by the partition function, which is given as the upper
right cell of the inside-out matrix. Matrices are computed in O(n3) time,
multiplication for all n3 cells requires constant time.

6.1 Traditional algorithmic idea

The key for efficient computation of base-pair probabilities for all possible pairs (i, j)
is to generate every candidate twice. Once bottom-up, a.k.a. inside-out: candidates
start with an arbitrary base from the input as leaves and grow up to their roots, which
consume the left- and rightmost character from the sequence. We did so in the previous
chapters, e. g. with GNoDangle, Figure 3.2 on page 34. The top-down phase creates
the same candidates in reverse direction, i. e. outside-in. That is not a problem for
traditional recurrences, but currently impossible for ADP. Probability of the pair (i, j)
is then the combination of the intermediate results of inside-out for sub-sequence i to j
and outside-in for sequences 0 to i and j to n, where n is the rightmost character. Last,
this value must be normalized by the partition function. See Figure 6.1. Both dynamic
programming matrices for inside-out and outside-in are computed in O(n3) time and
O(n2) space and provide necessary intermediate results for all possible base-pairs at
once.

6.2 A general scheme for ADP

To reach the goal of computing base-pair probabilities in ADP, as sketched in Figure 6.1,
we also need an outside-in construction of the search space in addition to the inside-out
construction via GNoDangle.

Figure 6.1 is an oversimplification, because we know that GNoDangle consists of more
than one dynamic programming matrix. Still, it is a good sketch of the overall idea. Let
us advance to a more input centric perspective. Figure 6.2 visualizes decomposition of the
input sequence, ranging from 0 to n. Please note, that we use the ADP indexing style and
address boundaries between characters, not characters themselves. Part a) figures the
inside-out construction of candidates via GNoDangle: assuming free energy minimization,

110

6.2 A general scheme for ADP

0 ni j

0 ni j n+1 2n+1n+1+i n+1+j
+

0 ni j0 ni j

a) inside b) outside

d) everted

c) combined
0 n

i j

e) example
 structure

Figure 6.2: Input decomposition for a) inside and b) outside computation direction.
Combining both to compute base-pair probabilities would give decompo-
sition c). Since the information flow from inside to outside direction can
never be reversed in ADP, i. e. b) becomes impossible, we use the evertion
“trick” d) to provide contiguous sub-words for inside and outside halves.
Figure Part e) exemplifies cutting a secondary structure into those halves.

see the result of an arbitrary sub-word (i, j), with 0 ≤ i < j ≤ n as energy value for the
best contiguous sub-structure possible for this sub-word. It has grown from an empty
word ε when i = j, positioned somewhere between i and j, heading to the outermost
borders 0 and n, but a snapshot was made when it reached i and j. Its equivalent in
Figure 6.1 is the yellow lower left triangle, whose summit, holding the result, would be
the marked cell. Index offsets of ±1 between Figures 6.1 and 6.2 stem from different
sub-word addressing methods. The empty word ε is the seed of the growing sub-word
and can be positioned somewhere on the main diagonal of the yellow triangle.

For the outside-in computation of the search space, everything has to be flipped, as
shown in Part b) of Figure 6.2. Even the interpretation of intermediate results. Now
they are the energetically best arrangement of left and right ends of the input, where
a center part is cut out. Imagine a simple hairpin loop with some stacked base-pairs
on-top of it, e. g. Part e) in Figure 6.2. The choice of (i, j) cuts this structure in two
halves. Let it cut somewhere within the stack. The half containing the loop is the inner
part (i, j), covering the center part of the input sequence. The other half is the outer
part, holding leading (0, i) and trailing (j, n) ends of the input. Running indices (i, j)
start as (0, n) and shrink until i = j for every possible position between 0 and n, i. e.
the gap for the inside part has vanished in all possible ways. Translated to Figure 6.1,
we would start at the upper rightmost cell and progress to the main diagonal, which
then holds identical results for the complete input in every cell. To get the intermediate
result for (i, j), we need to fill the rectangle spanned by (i, j) and (0, n). The cell at
(i, j) corresponds to the point of the blue triangle in Figure 6.2, where the tip of the
white gap is located.

In theory, we can seamlessly combine inside-out and outside-in evaluation (Part c)

111

6 Computation of McCaskill base-pair probabilities: an outside algorithm

of Figure 6.2) to compute partial results for both halves for every possible cut point
(i, j). Adding up energies for both parts results in the answer for the complete input.
Thus, combining intermediate results of both evaluation schemes will always provide the
correct answer for the complete input sequence, as long as they are aligned, i. e. there is
no gap when superimposing yellow and blue triangles in Figure 6.2. That is the same as
moving the black arrow in Figure 6.1 along i or j axis, but never changing its direction.

6.2.1 Outside-in emulation

Unfortunately, reversing the information flow from inside-out to outside-in direction is
impossible in ADP, i. e. candidates of the search space are always created bottom-up.
Furthermore, a typical Bellman’s GAP program can only handle a single contiguous
sub-word, since intermediate results are stored in two dimensional tables. Introduction
of four dimensional tables in Bellman’s GAP might allow to define boundaries for the
blue areas in parts b) and c) of Figure 6.2. However, this cannot reverse the information
flow of ADP.

Thus, the outside-in style cannot be realized as described in Part b) of Figure 6.2,
which of cause ruins the combined fashion of Part c). To make the two sub-words (0, i)
and (j, n) contiguous, we have to apply the following “trick”1 : we duplicate the input
sequence but separate both copies with a special character, e. g. original input ccaaagg
becomes ccaaagg+ccaaagg, see Part d) of Figure 6.2. Since everything is duplicated,
sub-word (0, i) for the leading half is identical to (n+1, n+1+i). Concatenated with the
trailing half (j, n) and the separator character (n, n+1), we get the contiguous sub-word
(j, n)+(n + 1, n + 1 + i), for which we can apply any ADP computation. Thereby we
evert the outside-in direction into an inside-out computation.

By systematically mapping indices back to the original input, we can even re-use
existing evaluation algebras. Only the grammar has to be adapted to operate on the
everted input sequence. Since yellow and blue triangle, i. e. inside and outside results,
are both calculated in inside-out style, we can then compute them in one combined run.

In the remainder of this chapter, we develop all four ADP components to predict Mc-
Caskill base-pair probabilities for the NoDangle model in Bellman’s GAP, cf. Section
3.2.3. To ease understanding, we first make a detour over free energy evaluation (Io mfe),
before we transit from MFE prediction to compute base-pair probabilities, basically by
switching evaluation algebra to Io bwe. After the stage is set for computing base-pair
probabilities, we will extend algorithms in two orthogonal directions: Section 6.2.3 cov-
ers the different dangling models OverDangle and MicroState. Our contribution to go
comparative is given in Section 6.2.4, where we switch input from a single RNA sequence
to an RNA alignment.

Signature and Regular Tree Grammar

In the following, we take the NoDangle ADP components of Chapter 3 as foundation
and extend them to simultaneously compute inside and outside parts as in the everted

1first conceived by Matthias Möhl and Robert Giegerich

112

6.2 A general scheme for ADP

Table 6.1: Signature Σo RNA, which is an extension of ΣRNA by the following ten algebra
functions.

makeplot(A∗) o drem(A0,S,A0) o il(A∗,S,A∗)
window(A∗,S,A∗) o bl(A0,S,A∗) o bp(A,S,A)
sep(S,A,S) o br(A∗,S,A0) o ml(A,S,A)
o sr(A,S,A)

evert makeplot

r0

sep incl

b

o_dangle

struct struct o_multiloop

cadd cadd caddo_multiloop

caddml_comps1

o_mlfinal unpaired unpaired o_mlfinal

cadd ml_comps1 caddml_comps1

o_mlfinal ml_comps1

sadd nil

lb unpaired

unpaired

o_drem o_bl o_br o_il

o_bp o_bp o_bp

b b b b

l l l l

o_weak

o_dangle r r r r

o_strong o_strong o_strongb b

≤30 ≤30 ≤30 ≤30

o_sr o_sr

b b b b

o_strong

o_strong o_weak

o_weak
basepair

o_ml

b bo_strong

o_mlfinal
basepair

==+

o_strong

window

r r
= orig n+1

≠ LP = LP

Figure 6.3: Regular tree grammar Go NoDangle for outside parts of RNA secondary
structures. White non-terminals are interfaces to the inside-out grammar
GNoDangle. Axiom is evert. Input for this grammar are two copies of an RNA
sequence, separated by the character +. Terminal parser r0 consumes zero
up to n characters.

style of Figure 6.2. Since extensions mainly cover the outside-in direction, we prefix
names with the word “outside”, or “o” for short, but please remember that in fact it is
about both directions.

Alphabet A = {A,C,G, U,+} had been slightly extended by the separator character
+. Signature Σo RNA is the extension of ΣRNA (Table 3.1, page 40) and additionally
holds the algebra functions given in Table 6.1.

Productions of Go NoDangle are given in Figure 6.3. You can see the connection between
Go NoDangle and GNoDangle by looking at algebra function sep. It uses non-terminal struct,
which is the axiom of GNoDangle. New overall axiom is evert. Note that Go NoDangle re-uses
algebra functions cadd, incl and nil of ΣRNA.

A narrative explanation of normal candidates begins with selection of the right sub-
word. Additionally, the special candidate makeplot(r0) is added to the search space,
that matches each and every input sequence. Terminal parser r0 matches a sub-word
of arbitrary size, it might even be empty. The additional candidate will be used to
combine outside and inside information to compute base-pair probabilities. Right now,

113

6 Computation of McCaskill base-pair probabilities: an outside algorithm

you can ignore it. Duplication of input produces contiguous sub-word (i, j) for the
inside part, contiguous sub-word (j, n + 1 + i) for outside part, but also unnecessary
sub-words (0, i) and (n + 1 + i, 2 · n + 1). Function window withdraws the later two
from further evaluation by o strong, which also ensures that (i, j) plus (j, n + 1 + i)
together have exactly the length of the original input (+1 for separator character) via
filter = orig n+1. Depending on whether you allow lonely base-pairs or not, o strong
forwards to o weak or initiates a stacking region, which can be extended in both cases
via the first alternative. Non-terminal o weak allows for an arbitrary number of nested
structural motifs, like left (o bl) or right (o br) bulges or internal loops (o il), but always
end by using function o drem, which refers to non-terminal o dangle. Please note that
motifs have been turned inside out. Loop regions are at the outsides, the “closing”
base-pair (o bp) is at the inside. First alternative sep of o dangle terminates candidate
construction by parsing the separator character (inner base, which is forced to be + by
the filter ==+), but allowing for additional – maybe empty – sub-structures left and
right of it. Each is modelled by the full GNoDangle grammar, because of the reference to
struct.

Do not get confused by using GNoDangle at this point. We are still modelling the outside
half. Imagine a structure of three adjacent hairpins. Further assume we want to split
the structure somewhere in the stack of the central hairpin, i. e. we need the candidate
where only a few inner base-pairs and the final loop of the central hairpin are missing,
which constitute the inner half. Thus, left and right hairpin must inevitably be part of
the outside half!

However, reference to struct also permits computation of all necessary inside halves
and thus makes it possible to compute intermediate results for inside and outside within
one run.

The second alternative of o dangle is for cases, where the split point is located in a
component of a multiloop, but not its closing stem. The distinct component o mlfinal
can be the last one (first alternative of o multiloop), the first one (second alternative) or
it might be surrounded by other components. We need this kind of distinction, because
we have to guarantee that a multiloop has at least two enclosed components. The
unpaired non-terminal is necessary to allow for unpaired bases adjacent to o mlfinal,
i. e. located between the closing stem of the multiloop and its distinct component. Please
note that we again employ non-terminals (here ml comps1) from GNoDangle for parts of
the outside halves.

Evaluation Algebra and choice function

Although candidates for the everted outside-in style computation are somehow turned
outside-in versions (cf. Grammar Go NoDangle in Figure 6.3) of the familiar inside-out
calculation, a free energy evaluation should still assign the same energies to those struc-
tural motives. Thus, we strive to use the same energy functions as in Imfe of Table 3.3
on page 44.

As illustrated in Section 2.1.2, energy functions like Ebl(i, j) not only need access to
the bases right of i and left of j from the input, but also inspects further symbols. Due

114

6.2 A general scheme for ADP

Table 6.2: Definitions of energy Io mfe and Vienna-Dot-Bracket Io db evaluation algebras
for outside computations. Be reminded that those algebras are extensions of
their previous definitions, given in Tables 3.3 and 3.2.

algebra function Io mfe −B Imfe Io db −B Idb
makeplot(r) 0 ε

window(r2, x, r1) x x
sep(y, s, x) y + x y ⊕ +⊕ x
o sr(â, x, a) x+ Esr(

←−a , â))⊕ x⊕ (

o drem(l2, x, l1) x+ Etermau(
←−
l1 , l2) x

o bl(l, x, r) x+ Ebl(
←−r , l) x⊕ ...|r|

o br(r, x, l) x+ Ebr(
←−
l , r) ...|r| ⊕ x

o il(r2, x, r1) x+ Eil(
←−r1 , r2) ...|r2| ⊕ x⊕ ...|r1|

o bp(â, x, a) x)⊕ x⊕ (

o ml(â, x, a) x+ Eml + Eul + Etermau(←−a , â))⊕ x⊕ (

S int string
choice function min. id

to the inversed character of the grammar, application of Ebl(i, j) to o bl would run into
the wrong direction and return false values or even causes segmentation faults when
accessing positions that do not exist. We can prevent this defect by back transforming
indices of the outside algebra functions into the save interval (0, n). Thanks to the design
of Go NoDangle, we know that symbols left of + are actually in the original right sub-word
(j, n) and symbols right of +, i. e. in (n+ 1, n+ 1 + i) correspond to (0, i). All we need
to do to restore inside fashioned indices is to first subtract n + 1 from the right index
and then switch left and right indices. We will denote this subtraction for sub-word a
as ←−a .

Equipped with index manipulating function←−a , we are now able to define a free energy
evaluation algebra Io mfe (second column in Table 6.2) and benefit from re-using already
established energy look-up functions.

We could also specify an extended Vienna-Dot-Bracket algebra Io db (third column
of Table 6.2) to provide string representations for candidates. An analogous algebra
product to RNAfold would be Io mfe ∗ Io db. Since we do not strictly compute an
outside-in operation, but an everted version, interpretation of answers is not very help-
ful: Applying the algebra product Imfe ∗ Idb to grammar GNoDangle (as in Section 3.2.7)
together with input sequence CCCCCGGGGG, i. e. GNoDangle(Imfe ∗ Idb, CCCCCGGGGG), would
result in (((....))) with −2 kcal/mol as the best candidate. However, the answer of
Go NoDangle(Io mfe∗Io db, CCCCCGGGGG+CCCCCGGGGG) is)))))+(((((with−15.6 kcal/mol,
which apparently is not the same thing as in the inside-out calculation. What we com-
pute is the energetically best way to use the original input for constructing the outside
half of a secondary structure, regardless of the inside half. Thus, the example sequence is
completely consumed to form an ultra-stable helix. We do not have to explicitly forbid

115

6 Computation of McCaskill base-pair probabilities: an outside algorithm

Table 6.3: Definitions of counting evaluation algebra Io count for outside computations.

algebra function Io count algebra function Io count algebra function Io count
sadd(a, x) x mldr(a, x, b, â) x ssadd(r, x) x
cadd(x, y) x ∗ y mldlr(a, b, x, c, â) x trafo(x) x

nil(l) 1 addss(x, r) x combine(x, y) x ∗ y
drem(l1, x, l2) x incl(x) x acomb(x, b, y) x ∗ y

edl(a, x, l) x cadd’(x, y) x ∗ y makeplot(r) 0
edr(l, x, b) x cadd”(x, y) x ∗ y window(r2, x, r1) x
edlr(a, x, b) x cadd”’(x, y) x ∗ y sep(y, s, x) y ∗ x
sr(a, x, â) x ambd(x, b, y) x ∗ y o sr(â, x, a) x
hl(a, r, â) 1 ambd’(x, b, y) x ∗ y o drem(l2, x, l1) x

bl(a, r, x, â) x mladl(a, b, x, â) x o bl(l, x, r) x
br(a, x, r, â) x mladr(a, x, c, â) x o br(r, x, l) x

il(a, r1, x, r2, â) x mladlr(a, b, x, c, â) x o il(r2, x, r1) x
ml(a, x, â) x mldladr(a, b, x, c, â) x o bp(â, x, a) x

mldl(a, b, x, â) x mladldr(a, b, x, c, â) x o ml(â, x, a) x
S int

choice function Σ

candidates in Go NoDangle search space, which contradict typical structural asumptions
like the above one, since they cannot be combined with a meaningful inside half.

Table design

Automated table design by Bellman’s GAP fails, because of the non-native semantic
filter = orig n+1, which cannot be correctly interpreted by the system. Algebra function
window with boundaries window(i r k o strong l r j) is falsely assumed to have the two
inner moving boundaries k and l in addition to the outer boundaries i and j, resulting in
a run-time of O(n4). Since o strong must have a constant size due to the application of
the filter, l is fixed once k has been chosen and thus we are down to O(n3). Nevertheless,
we stick to the automatically generated suggestion to tabulate non-terminals {dangle,
evert, iloop, ml comps, ml comps1, o dangle, o mlfinal, o multiloop, o strong, o weak,
strong, struct, unpaired, weak} but not {stack, hairpin, leftB, rightB,multiloop}.

6.2.2 McCaskill base-pair probability computation

Plan 1: counting

A base-pair probability bpp(i, j) can be seen, assuming all structures are equally likely,
as the ratio of structures containing the specific pair (i, j) versus all structures of the
search space.

For the example input 0GA2GAAAC7C8 of Figure 6.4, we know that the search space

116

6.2 A general scheme for ADP

sadd

G sadd

A sadd

G sadd

A sadd

A sadd

A sadd

C

nil

l

sadd

C

G AGAAA C

cadd

drem

hll l nil

l

sadd

C

........ (.....).

a)

sadd

G sadd

A

G AAA C

cadd

drem

hll l nil

l

sadd

C

..(...).

b)

sadd

G sadd

A

G AAAC G

cadd

drem

hll l

nil

l

..(....)

c)

d)

G AGAAAC C

cadd

hll l

drem nil

l

(......)

e)

G C

cadd

bll l

drem nil

l

G AAA C

hlA

(.(...))

f)

Figure 6.4: All six terms (or candidates) of FGNoDangle
(GAGAAACC) when allowing lonely

base-pairs. Their according Vienna-Dot-Bracket strings are given in red,
where dots represent unpaired bases, while a pair of parentheses indicate
opening and closing position of a base-pair.

contains six candidates. The two candidates, holding the base-pair that connects the
outermost bases of the sub-word (2, 7), namely (G, C), are b) and f). Their Vienna-
Dot-Bracket representations are ..(...). and (.(...)), respectively. Thus, bpp(2, 7)
is 2/6 = 1

3
. Probabilities for the other pairs are: bpp(2, 8) = 1

6
, bpp(0, 7) = 1

6
and

bpp(0, 8) = 1
3
. The sum of all base-pair probabilities (1

3
+ 1

6
+ 1

6
+ 1

3
= 1) might be seen

as the average number of base-pairs over all possible structures for the input sequence.
In our example this number is 1, since structure a) has none but f) has two pairs. For
longer sequences, this number is typically much bigger.

We use the everted style (Section 6.2) to compute all base-pair probabilities within one
run of Go NoDangle(Io count, GAGAAACC+GAGAAACC). Denominator is always the size of the
search space, which would be result of axiom struct of the pure inside grammar GNoDangle

applied to the original input GAGAAACC. Its correspondent in the everted computation
is struct(0, n). Numerator is the product of intermediate inside and outside results. To
avoid double counting the base-pair of interest, we decide that it should be part of the
inside half. Thus, we only consider those inside candidates that are embraced by a base-
pair, which is exactly the definition of non-terminal weak(i, j). Its outside counterpart
is o strong(j, n+ 1 + i), a structure that finally ends with a gap, that fits a base-paired
inside half.

Base-pair (2, 7) provides only one situation for a base-paired inner sub-word at non-
terminal weak(2, 7), see Figure 6.5. The outside half offers the two candidates at
o strong(7, 11), also given in Figure 6.5. Remember that we apply counting to com-
pute base-pair probabilities, we get bpp(2, 7) = weak(2, 7) · o strong(7, 11)/struct(0, 8)
= 1 · 2/6 = 1

3
.

A usual Bellman’s GAP program outputs the result of its axiom for the given input

117

6 Computation of McCaskill base-pair probabilities: an outside algorithm

o_bl

7 Ao_bp

C Go_drem

8 9sep

#nil

8

nil

9

o_drem

sep

sadd sadd

8

11

nilA

saddGnilC

7 11

#

G AAA C

hl

o_strong(7,11):weak(2,7):

Figure 6.5: Partial candidates for inside and outside halves of the example input
GAGAAACC. Blue numbers give positions of the location terminal parsers.

(0, n), which would be 43 for our example input. This information is quite useless for
base-pair probabilities. What we really need is the result of

weak(i, j) · o strong(j, i+ n+ 1)/struct(0, n)

for ∀ 0 ≤ i < j ≤ n, i. e. we have to access intermediate results of different dynamic pro-
gramming matrices. That is the point where the strange extra candidate makeplot(r0)
kicks in. Since r0 is always satisfied, this extra candidate appears in every search space
of Go NoDangle exactly once. We use a C++ macro definition to smuggle this extra func-
tionality into the generated code for algebra function makeplot. Using a macro avoids
problems with wrong scopes for data structures that are declared as private. It iterates
over i and j to compute bpp(i, j). Borrowing an idea from the Vienna-Package, the
macro outputs its results in form of a dot-plot, which is written into a PostScript file.

Computation of bpp(i, j) becomes slightly more complicated, if lonely base-pairs are
not allowed. As you can see from Figure 3.2 non-terminal strong was basically the same
as weak if LP = true. The same holds true for non-terminal o strong and o weak in
Figure 6.3. If we set LP = false, candidates partition into now different non-terminals
and we must take care to connect the right inside and outside halves when composing
candidates. Thus, bpp(i, j) is now computed by

(weak(i, j) · o strong(j, i+ n+ 1) + strong(i, j) · o weak(j, i+ n+ 1)) /struct(0, n)

Plan 2: Boltzmann weighted energies

Stochastics based on counting, as done in the previous Plan 1), assigns the same prob-
ability to each and every candidate from the search space. We now want to progress
to a model that takes the candidates thermodynamic stability into consideration, as we
already did for minimal free energy evaluation. Thus, we render the search space for
input sequence x into a Boltzmann ensemble, by weighting candidates with their free
energies, cf. Section 3.2.1. Base-pair probabilities bpp(i, j) will still be computed as in
Plan 1), but instead of the pure number of candidates, we are going to use partition

118

6.2 A general scheme for ADP

Table 6.4: Boltzmann weighted energy evaluation algebra for outside computation Io bwe,
which inherits all algebra functions from the inside version Ibwe, see Table 3.6
on page 47.

algebra function Io bwe −B Ibwe
window(r2, x, r1) x

sep(y, s, x) y · x
makeplot(r) 1.0

o drem(l2, x, l1) x · pf(Etermau(
←−
l1 , l2))

o sr(â, x, a) x · pf(Esr(
←−a , â)) · sc(2)

o bp(â, x, a) x · sc(2)
o bl(l, x, r) x · pf(Ebl(

←−r , l)) · sc(|r|)
o br(r, x, l) x · pf(Ebr(

←−
l , r)) · sc(|r|)

o il(r2, x, r1) x · pf(Eil(
←−r1 , r2)) · sc(|r2|+ |r1|)

o ml(â, x, a) x · pf(Eml + Eul + Etermau(←−a , â)) · sc(2)
S float

choice function Σ

function values. To do so, we need to replace Io count by the new evaluation algebra
Io bwe, given in Table 6.4, which does the Boltzmann weighting and summation.

To compute the dot-plot, we can carry over the macro mechanisms from Section 6.2.2.
The only change regards the data-type S, which is now a float instead of an int.

Plan 1.5: weight structures according to their number of base-pairs

One might also come up with a third kind of weights to compute base-pair probabilities.
Plan 1.5: weighting each structure according to the number of base-pairs it contains.
These scores would be more elaborate than simple counting (Plan 1), but still not as
sophisticated as Boltzmann weights (Plan 2) and thus maybe a compromise between
speed and accuracy. Weights of structures b) to e) of Figure 6.4 would be 1, weight for
f) would be 2 and weight for a) would be 0. Applying this scheme, base-pair probabilities
would be bpp(2, 7) = bpp(0, 8) = 3

8
and bpp(2, 8) = bpp(0, 7) = 1

8
, which is a slight shift

compared to Plan 1. The bad news is, that such probabilities are impossible to compute
via dynamic programming! The reason is, that computation of the denominator for the
probabilities, e.g. 8 for all base-pairs in FG5 (CGUG) (see Table 2.2 on page 16), violates
Bellman’s Principle of Optimality (cf. Section 2.1.1).

To keep the counter example small, we use G5 from Figure 2.1 to model RNA struc-
tures. The algebra to compute the sum of all base-pairs in the foldingspace Icountdb is
identical to INussinov (Table 2.3 in on page 17), except for the choice function, which
will now be summation instead of maximization.

The following condition is one of the three properties that must hold to satisfy Bell-

119

6 Computation of McCaskill base-pair probabilities: an outside algorithm

man’s Principle of Optimality (Definition 7 of Section 2.1.1):

h([f(x1, . . . , xk) | x1 ← Z1, . . . , xk ← Zk]) =

h([f(x1, . . . , xk) | x1 ← h(Z1), . . . , xk ← h(Zk)]) (6.1)

Proof. Let f(x1, . . . , xk) be pair(a, x, b, y) with its two terminals a = A, b = U and its
two result lists for the sub-problems x = [0, 1], b = [U] and y = [], which we assume to
be correct up to this point.

We first evaluate the left hand side of Equation 6.1, by plugging in our example
h([pair(A, x, U, y) |x ← [0, 1], y ← []]), creating all the candidates h([pair(A, 1, U, []),
pair(A, 0, U, [])]), evaluate each candidate with the algebra function pair(a, x, b, y) =
1 + x + y, which gives h([2, 1]), and finally by applying summation as the choice func-
tion, we get 3 as result. Computing the right hand side of Equation 6.1, makes us first
apply the choice function to the results for the sub-problems: h([pair(A, x, U, y) | x ←
h([0, 1]), y ← h([])]), which will result in h([pair(A, x, U, y) | x ← [1], y ← [0]]). Again,
we generate all candidates, here just one h([pair(A, 1, U, 0)]) and evaluate this candidate:
h([2]). At last, the choice function has to be applied a second time, which gives 2 as the
final result. But we expected to get 3!

Thus, left and right hand sides disagree; the condition does not hold and thus the
problem does not satisfy Bellman’s Principle.

6.2.3 Extension 1: dangling bases

As we saw in Chapter 3, dangling bases can further stabilize RNA secondary struc-
tures, without forming actual base-pairs. Four different models have been introduced:
NoDangle, OverDangle, MicroState and MacroState. During evaluation, Section 6.3, we
are going to compare results of Bellman’s GAP outside computations against results
from RNAfold of the Vienna-Package. Since RNAfold lacks the MacroState model
and due to its complicated grammar design, we postpone development of an outside
MacroState version to future work.

• MicroState (Section 3.2.5, RNAfold command line option -d 1) refines our
model of secondary structures by computing with four different candidates for
each helical end. The four competing cases are: an unpaired base dangles from the
left onto the helix (edl, mldl, o edl, o mldl), or from the right (edr, mldr, o edr,
o mldr), or from both sides while not forming a typical base-pair (edlr, mldlr,
o edlr, o mldlr). Last case is no dangling from either side (drem, ml, o drem,
o ml), as known from Go NoDangle.

The additional candidates are realized by adding further alternatives (Figure 6.6)
to the right hand sides of already existing non-terminals of Go NoDangle, thus speci-
fying grammar Go MicroState. Newly introduced algebra functions, like edl or mldr,
are defined in Table 6.5 for the use of an extended Boltzmann weighted energy al-
gebra IMicroState

o bwe . Keeping the makeplot mechanism, a dot-plot for input sequence

120

6.2 A general scheme for ADP

o_mlfinal
basepair

o_mldl

b bo_strong b

o_mldr

b bo_strongb

o_mldlr

b bo_strongb b

...

o_weak o_edl

l bo_dangle

o_edr

b lo_dangle

o_edlr

b bo_dangle

...

multiloop
basepair

mldl

b bml_compsb

mldr

b bml_comps b

mldlr

b bml_compsb b

...

dangle edl

b lstrong

edr

l bstrong

edlr

b bstrong

...

Figure 6.6: Necessary extensions of Go NoDangle to specify Go MicroState, cf. Figures 3.2 and
6.3. Existing non-terminals, e. g. dangle, get additional, alternative right
hand sides for dangling from left (dl), dangling from right (dr) and dangling
from left and right (dlr). The case of no dangling (drem and ml) was already
covered in Go NoDangle.

x and MicroState dangling ends is computed by:

Go MicroState

(
IMicroState
o bwe , x

)
• OverDangle (Section 3.2.4, option -d 2) assigns dangling contributions to every

helical end, even if neighboring bases are not available, for example because they
are themselves engaged in another helix, or already dangling there. It does not
increase the size of the search space, as MicroState does. Thus, we can re-use
Go NoDangle (Figure 6.3) and simply rename it Go OverDangle for readability. Every-
thing left to do is to re-define the four existing algebra functions drem, ml, o drem
and o ml (see Table 6.6 and compare to Table 6.4) to compute base-pair probabil-
ities with over dangling ends for input sequence x:

Go OverDangle

(
IOverDangleo bwe , x

)
• NoDangle (Section 3.2.3, option -d 0) simply ignores all dangling ends, which

was already realized by the previously defined components:

Go NoDangle (Io bwe, x)

6.2.4 Extension 2: folding alignments

In the lucky situation of having related sequences at hand, we can make use of observing
conservation or compensatory mutation throughout evolution. By increasing the infor-
mation content – quite the opposite meaning of Shannon [82] – using a set of sequences

121

6 Computation of McCaskill base-pair probabilities: an outside algorithm

Table 6.5: Boltzmann weighted energy algebra IMicroState
o bwe as an extension of Io bwe. Here,

we just give definitions for the new algebra functions. Existing ones can be
looked up in Table 6.4. A subscript like d+1 should indicate, that we address
sub-word (di+1, dj+1) instead of (di, dj), which e. g. is necessary to direct not
to the dangling base, but to the left partner of the terminal base-pair in edl.

algebra function IMicroState
o bwe −B Io bwe

edl(d, x, l) x · pf(Etermau(d+1, l)+ Edl(d+1, l)) · sc(1)

o edl(l, x, d) x · pf(Etermau(
←−
d+1, l)+ Edl(

←−
d+1, l)) · sc(1)

edr(l, x, b) x · pf(Etermau(l, b−1)+ Edr(l, b−1)) · sc(1)

o edr(b, x, l) x · pf(Etermau(
←−
l , b−1)+ Edr(

←−
l , b−1)) · sc(1)

edlr(d, x, b) x · pf(Etermau(d+1, b−1)+ Eext mm(d+1, b−1)) · sc(2)

o edlr(b, x, d) x · pf(Etermau(
←−
d+1, b−1)+ Eext mm(

←−
d+1, b−1)) · sc(2)

mldl(a, d, x, â) x · pf(Eml+ Eul+ Etermau(a, â)+ Edli(a, â)) · sc(3)
o mldl(â, x, d, a) x · pf(Eml+ Eul+ Etermau(←−a , â)+ Edli(

←−a , â)) · sc(3)
mldr(a, x, b, â) x · pf(Eml+ Eul+ Etermau(a, â)+ Edri(a, â)) · sc(3)

o mldr(â, b, x, a) x · pf(Eml+ Eul+ Etermau(←−a , â)+ Edri(
←−a , â)) · sc(3)

mldlr(a, d, x, b, â) x · pf(Eml+ Eul+ Etermau(a, â)+ Eml mm(a, â)) · sc(4)
o mldlr(â, b, x, d, a) x · pf(Eml+ Eul+ Etermau(←−a , â)+ Eml mm(←−a , â)) · sc(4)

S float
choice function Σ

Table 6.6: Boltzmann weighted energy algebra IOverDangleo bwe as an extension of Io bwe. Spe-
cial care must be taken to assure that Eext mm(l1, l2) does not access non-
existing characters from the input, like −1 or n+ 1 if l1 = 0 or l2 = n, for the
inside case. For outside, it gets a bit more complicated, because the separator
char + must also be handled as a virtual border that cannot be crossed. The
same holds true for Edl from Table 6.5. This situation arises if we compute
structures with several directly adjacent closed components, where only one
of them is handled by the outside part of Go OverDangle and the others by the
inside non-terminal struct.

algebra function IOverDangleo bwe −B Io bwe
drem(l1, x, l2) x · pf(Etermau(l1, l2)+ Eext mm(l1, l2))

o drem(l2, x, l1) x · pf(Etermau(
←−
l1 ,
←→
l2)+ Eext mm(

←−
l1 , l2))

ml(a, x, â) x · pf(Eml+ Eul+ Etermau(a, â)+ Eml mm(a, â)) · sc(2)

o ml(â, x, a) x · pf(Eml+ Eul+ Etermau(
←−
â , a)+ Eml mm(

←−
â , a)) · sc(2)

S float
choice function Σ

122

6.2 A general scheme for ADP

instead of a single one, one aims to improve the structure prediction. Going compara-
tive is a usual trick to increase reliability of predictions, but comes with computationally
more expensive problems to solve. Simultaneously aligning and folding m sequences of
length n requires O(n3m) time with the Sankoff algorithm [78]. Nevertheless, sacrificing
the guarantee to find the optimum and split the process into two successive tasks often
yields more accurate results than single sequence predictions. Very popular is to team
up clustalW [88] for aligning the sequences and RNAalifold [9] to fold the given
alignment.

This section first reports all necessary adaptions to the previously introduced ADP
components to emulate RNAalifold which finds the energetically most favorable sec-
ondary structure (MFE). Second, we extend these ideas to compute base-pair probabil-
ities for RNA alignments.

MFE structure prediction for alignments

Input alphabet The input alphabet must again be extended to cover gap characters
and end of row symbols #: we get A = {A,C,G, U, ,#}. An alignment can then

be provided to Bellman’s GAP binaries as one lengthy string, where all alignment
rows are concatenated by # characters. Internally, the alignment is stored as a matrix.
Since terminal parsers address sub-words via left and right boundaries, this mechanism
easily carries over from single sequences to single alignment columns (parser b) or from
sub-strings to sub-matrices, always covering all alignment rows (parsers r and r0).

Base-pairing filter We still model secondary structures, thus signature, grammar and
table design remain untouched. Only the syntactic filter basepair must be reconsidered:
For the same positions i and j we might observe a variety of situations for the k rows
of the alignment:

• a “normal” base-pair, e. g. (C, G)

• a further pair, but formed with different bases, e. g. (U, A), called compensatory
mutation

• a broken pair, i. e. bases that cannot form a base-pair any longer, e. g. (A, G)

• a deleted pair, where one or both partners are lost during evolution, indicated by
gap symbols, e. g. (C,) or (,)

A measure to express the ratio of these different situations for two positions i and j of
the alignment is the covariation: c(i, j); aka covariance. We adopt RNAalifold’s defi-
nition and nomenclature of covariation [9]. That is why indices to the end of this section
address characters or alignment columns, but not boundaries like in Bellman’s GAP.
The contribution of existing base-pairs is defined as

γ′(i, j) =
1

2

∑
α,β∈A
α 6=β


h(αi, βi) + h(αj, βj) if (αi, αj) ∈ B

∧ (βi, βj) ∈ B
0 otherwise

123

6 Computation of McCaskill base-pair probabilities: an outside algorithm

where the Hamming distance is defined as

h(a, b) =

{
0 if a = b
1 if a 6= b

and B = {(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)} is the set of possible base-pairs. A
is the alignment matrix, α and β are rows of this alignment. αi is the i-th character
of alignment row α. Thus, the sum permutes over all two rows of the alignment and
accounts for all position independent pairs twice, which is the reason for the 1

2
normal-

ization. Exclusion α 6= β would save some time, but is not strictly necessary, because
for identical rows Hamming distance will always be 0 and thus would not change the
result. The full covariation score γ also includes penalties for sequences in which the
(i, j) base-pair cannot be realized:

γ(i, j) = γ′(i, j)− 2δ
∑
α∈A


0 if (αi, αj) ∈ B
0.25 if αi ∧ αj are gaps
1 otherwise

where δ is a weighting factor; RNAalifold’s default is 1.0. The actual implementation
of c(i, j) normalizes with the number of sequences in the alignment k, multiplies with a
factor of −100 to be more comparable to free energy values and offers another factor η
(again, set to 1.0 by default) to weight the whole thing:

c(i, j) = η · γ(i, j) · −100/k

Finally, alignment columns i and j are considered to form a base-pair iff

c(i, j) ≤ 200/k

The size of the foldingspace – and thus the run-time – is mainly influenced by the
number of possible base-pairs. Depending on the heterogeneity of alignment columns,
this number can significantly drop if only a few columns show sufficient covariance. Thus,
folding an RNA alignment might even be faster than folding a single RNA sequence of
the same size, because of very different foldingspace sizes.

Evaluation algebras Since we stick to the same algebra functions in grammar and
signature, we can – in principle – re-use all existing evaluation algebras. Actually,
Idb, Inussinov and Icount are ready as they are. For Iyield, we have to think about the
representation of (successive) alignment column(s). One solution could be to report just
the positions. Another way is to compute some kind of a consensus sequence. In the
end, all kinds of ASCII representations should work.

Free energy of a structure depends on its sequence. We force all sequences, maybe
interspersed with gaps, of the alignment into the same structure, although they are not

2There is an inconsistency between RNAalifold implementation and manuscript [9], thus we replaced
the plus by a minus sign here.

124

6.3 Evaluation

identical. Thus, energy contributions vary from row to row and we should use their
averages for an alignment specific algebra. We will use an abbreviation to denote this
averaging for an arbitrary motif x:

Ex(a, b) =
1

k
·
∑
α∈A

Ex(αa, αb)

Remember that a and b are in fact left and right boundaries for the sub-words a and b,
thus we do not access character a of row α, but sub-word (ia, aj) of α.

Due to the gaps, it might happen that the nature of a structural motif changes: for
example, assume the structure for the alignment implies a bulge loop to the left, but
in one row the bulged region is just a gap. The bulge collapses to a “normal” stacking
of base-pairs. Another example: an hairpin loop with deletions in the enclosing base-
pair drops back to a stretch of unpaired bases. These and all other alignment induced
conversions are processed in the energy library of Bellman’s GAP. Therefore, we can
simply re-use the familiar energy functions in Ia mfe.

In addition to the free energy contribution, a structure should also be valued by the
amount of its covariance. These considerations result in evaluation algebra Ia mfe, see
Table 6.7. The problem of finding a thermodynamically optimal secondary structure of
a given RNA alignment A is then solved by GNoDangle(Ia mfe,A).

Base-pair probabilities for alignments

Everything we are left to do to compute base-pair probabilities (bpp) for RNA alignments
A is to define a Boltzmann weighted energies evaluation algebra Ia o bwe for an outside
grammar like Go NoDangle, see Table 6.8. A call of

Go NoDangle(Ia o bwe,A)

will then deliver bpp for all base-pairs via candidate makeplot.

6.3 Evaluation

Evaluation is three fold. First, we do a correctness check, i. e. ask the question “do our
Bellman’s GAP implementations compute the same base-pair probabilities as our
template, the Vienna-Package?” (Section 6.3.1). The second part is a short analysis
about the impact of the different dangling models and lonely base-pairs (Section 6.3.2).
Last (Section 6.3.3) is a practical run-time comparison.

We define the “relative error” as the distance between two base-pair probability ma-
trices bppm, which contain all base-pair probabilities bpp(i, j) ∀ 0 ≤ i ≤ j ≤ n for the
input of length n, as

d(bppma, bppmb) =
∑
i<j

{
|bppa(i,j)−bppb(i,j)|

bppa(i,j)
if bppa(i, j) 6= 0

0 otherwise

Normalization by bppa(i, j) gives an asymmetric distance, but is necessary to compare
results for inputs of different lengths. Thus, a distance might also be > 1.

125

6 Computation of McCaskill base-pair probabilities: an outside algorithm

Table 6.7: Free energy evaluation algebra for RNA alignments Ia mfe. Ex is the average
energy contribution for all k alignment rows for motif x. As in Table 6.5, a
notation like d+1 is short for shifting left and right boundaries of sub-word d
one position to the right. c(a, â) is the covariation contribution to the score as
defined in the previous paragraph. It is a further abbreviation for c(ia, âj−1),
which is the correct way to convert from boundary to character addressing.
This table shows definitions for a MicroState evaluation. NoDangle would
simply drop functions edl, edr, edlr, mldl, mldr and mldlr. Additionally
using starred functions drem∗ and ml∗ instead of drem and ml results in an
OverDangle evaluation.

algebra function Ia mfe
sadd(a, x) x +Esbase

cadd(x, y) x+ y
nil(l) 0

drem(l1, x, l2) x +Etermau(l1, l2)
edl(d, x, l) x +Etermau(d+1, l) + Edl(d+1, l)
edr(l, x, b) x +Etermau(l, b−1) + Edr(l, b−1)
edlr(d, x, b) x +Etermau(d+1, b−1) + Eext mm(d+1, b−1)
sr(a, x, â) x +Esr(a, â) + c(a, â)
hl(a, r, â) Ehl(r) + c(a, â)

bl(a, r, x, â) x +Ebl(r, â) + c(a, â)
br(a, x, r, â) x +Ebr(a, r) + c(a, â)

il(a, r1, x, r2, â) x +Eil(r1, r2) + c(a, â)
ml(a, x, â) x +Eml + Eul + Etermau(a, â) + c(a, â)

mldl(a, d, x, â) x +Eml + Eul + Etermau(a, â) + Edli(a, â) + c(a, â)
mldr(a, x, b, â) x +Eml + Eul + Etermau(a, â) + Edri(a, â) + c(a, â)

mldlr(a, d, x, b, â) x +Eml + Eul + Etermau(a, â) + Eml mm(a, â) + c(a, â)
incl(x) x +Eul

addss(x, r) x +Ess(r)

drem∗(l1, x, l2) x +Etermau(l1, l2) + Eext mm(l1, l2)
ml∗(a, x, â) x +Eml + Eul + Etermau(a, â) + Eml mm(a, â) + c(a, â)

S int
choice function min.

126

6.3 Evaluation

Table 6.8: Boltzmann weighted energy evaluation algebra for RNA alignments and
outside-in computations Ia o bwe. pf and sc are scaling factors (see Table
6.4), c is covariation (see Section 6.2.4) and Ex is the average energy for x
(see Table 6.7). Different dangling flavors (MicroState, OverDangle, NoDan-
gle) can be selected as in Table 6.7.

algebra function Ia o bwe

sadd(a, x) x· pf(Esbase)· sc(1)
cadd(x, y) x · y

nil(l) 1.0
drem(l1, x, l2) x· pf(Etermau(l1, l2))

o drem(l2, x, l1) x· pf(Etermau(
←−
l1 , l2))

edl(d, x, l) x· pf(Etermau(d+1, l) + Edl(d+1, l))· sc(1)

o edl(l, x, d) x· pf(Etermau(
←−−
d+1, l) + Edl(

←−−
d+1, l))· sc(1)

edr(l, x, b) x· pf(Etermau(l, b−1) + Edr(l, b−1))· sc(1)

o edr(b, x, l) x· pf(Etermau(
←−
l , b−1) + Edr(

←−
l , b−1))· sc(1)

edlr(d, x, b) x· pf(Etermau(d+1, b−1) + Eext mm(d+1, b−1))· sc(2)

o edlr(b, x, d) x· pf(Etermau(
←−−
d+1, b−1) + Eext mm(

←−−
d+1, b−1))· sc(2)

sr(a, x, â) x· pf(Esr(a, â))· sc(2) ·pf(c(a, â))
o sr(â, x, a) x· pf(Esr(

←−a , â))· sc(2) ·pf(c(←−a , â))
hl(a, r, â) pf(Ehl(r))· sc(2 + |r|) ·pf(c(a, â))

o bp(â, x, a) x· sc(2) ·pf(c(←−a , â))
bl(a, r, x, â) x· pf(Ebl(r, â))· sc(2 + |r|) ·pf(c(a, â))
o bl(l, x, r) x· pf(Ebl(

←−r , l))· sc(|r|)
br(a, x, r, â) x· pf(Ebr(a, r))· sc(2 + |r|) ·pf(c(a, â))

o br(r, x, l) x· pf(Ebr(
←−
l , r))· sc(|r|)

il(a, r1, x, r2, â) x· pf(Eil(r1, r2))· sc(2 + |r1|+ |r2|) ·pf(c(a, â))
o il(r2, x, r1) x· pf(Eil(

←−r1 , r2))· sc(|r2|+ |r1|)
ml(a, x, â) x· pf(Eml + Eul + Etermau(a, â))· sc(2) ·pf(c(a, â))

o ml(â, x, a) x· pf(Eml + Eul + Etermau(←−a , â))· sc(2) ·pf(c(←−a , â))
mldl(a, d, x, â) x· pf(Eml + Eul + Etermau(a, â) + Edli(a, â))· sc(3) ·pf(c(a, â))

o mldl(â, x, d, a) x· pf(Eml + Eul + Etermau(←−a , â) + Edli(
←−a , â))· sc(3) ·pf(c(←−a , â))

mldr(a, x, b, â) x· pf(Eml + Eul + Etermau(a, â) + Edri(a, â))· sc(3) ·pf(c(a, â))
o mldr(â, b, x, a) x· pf(Eml + Eul + Etermau(←−a , â) + Edri(

←−a , â))· sc(3) ·pf(c(←−a , â))
mldlr(a, d, x, b, â) x· pf(Eml + Eul + Etermau(a, â) + Eml mm(a, â))· sc(4) ·pf(c(a, â))

o mldlr(â, b, x, d, a) x· pf(Eml + Eul + Etermau(←−a , â) + Eml mm(←−a , â))· sc(4) ·pf(c(←−a , â))
incl(x) x· pf(Eul)

addss(x, r) x· pf(Ess(r))· sc(|r|)
window(r2, x, r1) x

sep(y, s, x) y · x
makeplot(r) 1.0

drem∗(l1, x, l2) x· pf(Etermau(l1, l2) + Eext mm(l1, l2))

o drem∗(l2, x, l1) x· pf(Etermau(
←−
l1 , l2) + Eext mm(

←−
l2 , l1))

ml∗(a, x, â) x· pf(Eml + Eul + Etermau(a, â) + Eml mm(a, â))· sc(2) ·pf(c(a, â))
o ml∗(â, x, a) x· pf(Eml + Eul + Etermau(←−a , â) + Eml mm(←−a , â))· sc(2) ·pf(c(←−a , â))

S float
choice function Σ

127

6 Computation of McCaskill base-pair probabilities: an outside algorithm

6.3.1 Correctness check

For correctness, we check the following three aspects:

Q1) Vienna-Package consistency: traditional index-based dynamic programming recur-
rences for inside-out and outside-in matrices must seamlessly fit to compute correct
base-pair probabilities, cf. Figure 6.2. Our first test is to check if this is the case
for the hand crafted Vienna-Package programs. We do so just with tools provided
by the Vienna-Package to reduce sources of further errors, i. e. with programs
RNAfold, RNAalifold and RNAsubopt.

Q2) Bellman’s GAP consistency: Basically the same question as Q1), but now for
the outside scheme for Bellman’s GAP. Does our everted style base-pair proba-
bility computation in O(n3) provide the same numbers as an exhaustive inside-style
enumeration of the complete exponential search space?

Q3) Identity: given both software “worlds” are consistent and the fact that they use
the same energy model and parameter set, we check if they really provide identical
base-pair probabilities.

To answer these questions we compute base-pair probability matrices in four different
ways when evaluating results for single sequence inputs, see Figure 6.7:

1. TruthVienna: is a call to RNAsubopt, which exhaustively enumerates the complete
folding space, i. e. each candidate is given as its dot-Bracket representation and
free energy. For each candidate and every base-pair (i, j) within this candidate,
a Perl script transforms the free energy into a Boltzmann weight and adds this
value to a global sum (i, j). To get base-pair probabilities all position specific sums
have to be divided by their overall sum – the partition function.

2. Truthbgap: the same as TruthVienna, but computed via Bellman’s GAP instance:
GNoDangle(Idb ∗ Imfe, x) instead of RNAsubopt.

3. RNAfold: a call to RNAfold with parameter -p to compute a dot-plot, which
contains the base-pair probabilities.

4. outside: is the result of the Bellman’s GAP instance Go NoDangle(Io bwe, x).

Sequences for evaluation stem from a random generator3. Bases are uniformly dis-
tributed. We use 46 sequences, covering all lengths from 5 to 45 nucleotides. These
sequences are part of the fold-grammars repository:
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars.

Regarding questions Q1) to Q3) for single sequence inputs, we conclude the following:

Q1) Consistency for Bellman’s GAP is confirmed, since d(Truthbgap, outside) (the
green lines in Figure 6.7) is very close to zero in all six plots for every test sequence.

3randomseq from Robert Homann

128

http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars

6.3 Evaluation

10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

NoDangle, no LP (n=46)

sequence length

re
la

tiv
e

er
ro

r

10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

OverDangle, no LP (n=46)

sequence length

re
la

tiv
e

er
ro

r

10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

MicroState, no LP (n=44)

sequence length

re
la

tiv
e

er
ro

r

5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

NoDangle, with LP (n=30)

sequence length

re
la

tiv
e

er
ro

r

d(TruthVienna, RNAfold)
d(Truthbgap, outside)
d(TruthVienna,Truthbgap)

5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

OverDangle, with LP (n=31)

sequence length

re
la

tiv
e

er
ro

r

5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

MicroState, with LP (n=23)

sequence length

re
la

tiv
e

er
ro

r

Figure 6.7: Results for correctness check for single sequence input. Plots from left to
right are for the three different dangling end modes, upper row is for struc-
tures without lonely base-pairs (no LP), whereas they are allowed in the three
plots of the lower row (with LP). Sequence length is on the x-axis. Relative
error is on the y-axis. n is the sample size, which is not always number of
test sequences, because exhaustive enumeration of the search space often pro-
duced out of memory errors. Distances d(TruthVienna,Truthbgap) have been
artificially raised by 0.05 units. Otherwise they would have been overdrawn
by the green lines.

129

6 Computation of McCaskill base-pair probabilities: an outside algorithm

Q2) Results from the Vienna-Package4 often do not agree (red lines in Figure 6.7)!
This is surprising. The reason is that lonely base-pair exclusion and dangling ends
handling are not implemented in a consistent manner throughout the package.

The entry for switching off lonely base-pairs (--noLP) in the manual of RNAfold
state: “For partition function folding this only disallows pairs that can only occur
isolated. Other pairs may still occasionally occur as helices of length 1.” partition
function folding is just another name for computing base-pair probabilities.

A similar disagreement between RNAsubopt and RNAfold regarding the Mi-
croState flavor for dangling ends is explained by the manual entry of RNAfold
for -d parameter: “With -d1 only unpaired bases can participate in at most one
dangling end, this is the default for MFE folding but unsupported for the partition
function folding.”

Non zero red lines for all three plots with no lonely base-pairs (upper row) and
both MicroState plots (last column) might be due to the presented implementation
disagreements. The red spikes in the remaining two plots (“NoDangle, with LP”
and “OverDangle, with LP”) cannot be explained by these effects and seem to
point to an error in the RNAfold implementation. This is supported by the
fact that distances d(Truthbgap, outside) and the distances between both truths
d(TruthVienna,Truthbgap) (gray line) are both ≈ 0.

Q3) Identity between both implementations (d(TruthVienna,Truthbgap), gray lines, arti-
ficially raised by 0.05 units) is given, except for MicroState. The reason for this
deviation is that RNAsubopt5 reports only the energetically best way to dan-
gle bases on-top of a stem. For example, sequence GAACCGGGUCC results in the
following different search spaces:

RNAsubopt GMicroState(Idb ∗ Imfe, x)
((......)). 2.30 ((......)). 2.30

((......)). 2.70
..((...)).. 2.70 ..((...)).. 2.70

..((...)).. 3.20

..((...)).. 3.40

..((...)).. 3.70
........... 0.00 0.00

Thus, TruthVienna always misses a significant part of the foldingspace for MicroState
and truth of both software “worlds” can never provide identical results.

Situation for alignment inputs is similar, see Figure 6.8. Test alignments are randomly
cut out sub-alignments of Rfam’s6 seed alignment for family RF00040, an “RNase E 5’
UTR element”. Sub-alignment start positions are randomly chosen. Sub-alignments
contain always all rows from RF00040 alignment. The 46 test alignments vary in length

4version 2.1.2
5version 2.1.2 with parameters -d 1 --noLP -e 9999
6release 11.0

130

6.3 Evaluation

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NoDangle, no LP (n=46)

alignment length

re
la

tiv
e

er
ro

r

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OverDangle, no LP (n=46)

alignment length

re
la

tiv
e

er
ro

r
10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MicroState, no LP (n=45)

alignment length

re
la

tiv
e

er
ro

r

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NoDangle, with LP (n=37)

alignment length

re
la

tiv
e

er
ro

r

d(Truthbgap, RNAalifold)
d(Truthbgap, outside)

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OverDangle, with LP (n=37)

alignment length

re
la

tiv
e

er
ro

r

5 10 15 20 25 30 35
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

MicroState, with LP (n=29)

alignment length

re
la

tiv
e

er
ro

r

Figure 6.8: Results for correctness check for alignment input. Plots from left to right
are for the three different dangling end modes, upper row is for structures
without lonely base-pairs (no LP), whereas they are allowed in the three
plots of the lower row (with LP). Alignment length is on the x-axis. Relative
error is on the y-axis. n is the sample size, which is not always number of
test alignments, because exhaustive enumeration of the search space often
produced out of memory errors.

from 5 to 45 columns. Concrete alignments are part of the http://bibiserv.cebitec.

uni-bielefeld.de/fold-grammars repository.
Unfortunately, there is no equivalent to RNAsubopt or RNAeval in the Vienna-

Package for alignments. Thus, questions Q2) and Q3) cannot be answered. We can
compare the template program RNAalifold only to the truth which is computed
by our Bellman’s GAP program, resulting in distances d(Truthbgap,RNAalifold);
magenta lines in Figure 6.8.

The flat green lines for all six plots indicate that we accomplish consistency for
Bellman’s GAP programs, which is the answer to question Q1).

Figure 6.8 (magenta lines) shows significantly more deviations than Figure 6.7 (red
lines), even for the “unproblematic” situations of NoDangle or OverDangle and lonely
base-pairs. We suspect further implementation problems in Vienna’s software. Provid-

131

http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars

6 Computation of McCaskill base-pair probabilities: an outside algorithm

ing an alignment, consisting only of the single sequence AUGGCG, RNAalifold -p -d0

--bppmThreshold 0 finds not a single base-pair. There is no covariation for just one
sequence. Thus, we expected to recover the same results with RNAfold, but that is
not the case. The sequence AUGGCG with RNAfold -p -d0 --bppmThreshold 0 returns
a base-pair with significant probability, namely for bases (2, 6) = (U, G).

In conclusion we can say that our Bellman’s GAP implementations pass the cor-
rectness tests, even better than the template software from the Vienna-Package.

6.3.2 Comparing model variants

In the course of this study, we presented not only one model for RNA secondary struc-
tures, but all-together six variants. Models vary by allowing or forbidding the presents of
lonely base-pairs and by three ways of dealing with dangling bases. This brief evaluation
shall give a broad overview about the impact of the six variants on base-pair probabili-
ties. Since we do not have – and presumably will never have – confirmed biological data
at our disposal, we cannot tell which variant performs best.

Distance between two model variants is the mean distance, averaged over all 46 test
inputs. Variance between different inputs is quite high (not shown). Figure 6.9 shows
the results for single sequence inputs on the left and alignment inputs on the right heat-
map. Asymmetry of our definition of distance becomes very obvious here. Results are
not crystal clear but two trends are vaguely perceptible:

1. Neglecting additional dangling energies (NoDangle) cause more disparity, com-
pared to the other two variants, than between OverDangle and MicroState. That
might be surprising, since the search space of MicroState is significantly larger
than of the other two.

2. Presents or absence of lonely base-pairs seem to have less impact than the dangling
variants.

6.3.3 Run-time analysis

Last evaluation is about practical run-times for the template program from the Vienna-
Package and our Bellman’s GAP compiled binaries.

Single sequence inputs have again been generated randomly. Sequence length grows
with a step-size of 5 nucleotides. Test alignments are randomly cut out sub-alignments
of Rfam’s7 seed alignment for family RF01960, an “Eukaryotic small subunit ribosomal
RNA”, with 84 members and 2,438 columns. Concrete sequences and sub-alignments
are included in the supplementary file testInputs.tgz. Run-times are measured on the
usual evaluation environment, see Section 3.3.2.

7release 11.0

132

6.3 Evaluation

a) single sequence input b) alignment input

N
oD

an
gl

e,
 n

o
LP

N
oD

an
gl

e,
 w

ith
 L

P

O
ve

rD
an

gl
e,

 n
o

LP

O
ve

rD
an

gl
e,

 w
ith

 L
P

M
ic

ro
S

ta
te

, n
o

LP

M
ic

ro
S

ta
te

, w
ith

 L
P

MicroState, with LP

MicroState, no LP

OverDangle, with LP

OverDangle, no LP

NoDangle, with LP

NoDangle, no LP

0.56 0.47 0.41 0.23 0.34 0

0.37 0.49 0.17 0.34 0 0.31

0.51 0.36 0.33 0 0.47 0.33

0.3 0.42 0 0.26 0.2 0.51

0.32 0 0.74 0.71 0.99 1.36

0 0.21 0.56 0.81 0.86 1.31

N
oD

an
gl

e,
 n

o
LP

N
oD

an
gl

e,
 w

ith
 L

P

O
ve

rD
an

gl
e,

 n
o

LP

O
ve

rD
an

gl
e,

 w
ith

 L
P

M
ic

ro
S

ta
te

, n
o

LP

M
ic

ro
S

ta
te

, w
ith

 L
P

MicroState, with LP

MicroState, no LP

OverDangle, with LP

OverDangle, no LP

NoDangle, with LP

NoDangle, no LP

0.96 0.78 0.86 0.57 0.78 0

0.41 0.66 0.24 0.69 0 0.96

0.6 0.35 0.45 0 0.53 0.45

0.3 0.99 0 1.28 0.46 2.21

0.46 0 0.74 0.95 1.15 2.01

0 1.55 0.77 3.25 1.87 5.56

Figure 6.9: Comparison of all six presented variants of the model for RNA secondary
structures.

133

6
C
om

p
u
tation

of
M
cC

ask
ill

b
ase-p

air
p
rob

ab
ilities:

an
ou

tsid
e
algorith

m

0 500 1000 1500 2000

sequence length

ru
n−

tim
e

in
 s

ec
.

10
−

2
10

0
10

2
10

4

Go_nodangle(Io_bwe)
Gnodangle(Ibwe)
Gnodangle(Imfe * Idb)
RNAfold −d0 −p
RNAfold −d0

0 500 1000 1500 2000

alignment length

ru
n−

tim
e

in
 s

ec
.

10
−

2
10

0
10

2
10

4

Gali_o_nodangle(Io_bwe)
RNAalifold −d0 −p
Gali_nodangle(Ibwe)
Gali_nodangle(Imfe * Idb)
RNAalifold

Figure 6.10: Comparison of practical run-times. X-axis is sequence or alignment length, logarithmic scaled y-axis is run-time
in seconds. Chosen model variant is NoDangle and presents of lonely base-pairs, because this variant causes
fewest differences between both software worlds. Left graph shows run-times for single sequence input, right
graph for alignment input.

134

6.4 Conclusion

Figure 6.10 confirms several assumptions:

1. Handcrafted Vienna software is significantly faster than our generated binaries.
Compare orange (RNAfold-d0) with black (GNoDangle(Imfe∗Idb)) lines for prediction
of “the” single best secondary structure and red (RNAfold-d0 -p) with light green
(Go NoDangle(Io bwe)) lines for computation of base-pair probabilities.

2. Calculating base-pair probabilities in the everted style leads to an increased search
space, thus a higher run-time: light green (Go NoDangle(Io bwe)) line.

3. Computing base-pair probabilities is more costly than MFE prediction, due to
exponential scalings. This surplus is a constant factor for the Vienna-Package. For
Bellman’s GAP, it is only constant if we look at the same search space; compare
black (GNoDangle(Imfe ∗ Idb)) and dark green (GNoDangle(Ibwe)) lines. However, due
to the everted style, the search space of Go NoDangle(Io bwe) (light green line) grows
faster with the input size than inside-out computations.

4. Asymptotic run-time of RNAalifold is O(n2 +n3), compared to RNAfold with
O(n3). The extra n2 time is for pre-computing covariation for all i, j columns.
This cost is higher than the constant factor of exponential scaling for Boltzmann
weighted energies. Thus, the aforementioned difference collapses for alignment
inputs: dark green and black lines are almost on top of each other.

A bit surprising are the facts that:

1. run-times for alignments are that shaky. Most probable reason is the high variance
of the search space size, due to the definition of valid base-pairing positions, see
Section 6.2.4. There are huge highly gaped parts in the RF01960 alignment. A
sub-alignment composed of these region will hardly form any base-pair at all, while
other sub-alignments show “normal” exponential growth with input length.

2. Vienna software for single sequence input outperformed all Bellman’s GAP im-
plementations. That does not hold for alignment inputs. While being significantly
faster than its Bellman’s GAP counter part RNAalifold, when computing
base-pair probabilities, is slower than Bellman’s GAP inside-out calculations.
That might point to some potential for improving RNAalifold’s speed.

6.4 Conclusion

For the concrete example of base-pair probabilities, we could show that it is possible to
compute outside information with Bellman’s GAP. Naturally, this appears impossible
with ADP, but due to the everted style grammar, input duplication and index transfor-
mation we could achieve this goal. Thanks to the high abstraction level, we could easily
implement variants that have not been introduced to the template Vienna-Package, like
a MicroState model or consistent absence of lonely base-pairs. Albeit carefully optimized
software can significantly outperform Bellman’s GAP programs in terms of run-time,

135

6 Computation of McCaskill base-pair probabilities: an outside algorithm

later provide sufficient speed for typical problem sizes and tremendously ease the process
of rapid prototyping.

Generalization of outside concepts for other ADP problems should be within reach,
since they seem to be very mechanistic transformations. Future work may integrate
them directly into Bellman’s GAP’s compiler.

Experimental SHAPE [94] data might be used to measure the agreement of base-pair
predictions and biological truth.

136

7 Covariance Models

Introduction A covariance model (CM) [23] is a stochastical tool to quantify homol-
ogy of an RNA sequence to a family of sequences. The family consists of an aligned set
of RNA sequences (MSA), which are believed to share the same functionality, shape
or other grouping properties, together with one pseudoknot free consensus secondary
structure (SScons). The machinery follows the Bayesian interpretation of probabilities,
by updating family independent expert knowledge (priors) with those frequencies ob-
served in the given family (posteriors). Amalgamation of priors and posteriors is called
“training” and has to be done just once. Result of the training is a stochastical context
free grammar (SCFG) [29] – an automaton with a set of states, state-to-state-transition-
and state-emission-probabilities. It follows the principles of Hidden Markov Models [21],
but is more powerful to account for distant but coupled positions, which represent the
base-pairs of SScons.

If we apply the CM to an RNA sequence, we get the probability of the most likely
state-path through the automaton, which exactly emits the nucleotides of this RNA.
Since this probability tends to be very small, it is related – in terms of a log odds ratio,
which provides a bit-score – to some kind of a background model. Finally, the bit-score
expresses homology between sequence and family. It is up to the user, to decide if the
bit-score suffices to see the input sequence as a new family member.

Reference implementation The Infernal software package [65], a product of 20
years of careful software engineering, is the reference implementation of CMs. It does
not only provide programs for the above described training (cmbuild) and searching
(cmsearch) tasks, but e. g. also tools to “calibrate” the CM – basically to provide e-
and p- values for the bit-scores – or to align the new member to the existing family.
Scoring a sequences s of length n to a family model of length m takes O(n ∗m3) time
and O(n ∗ m2) space. Thus, Infernal provides a whole set of pre-filtering strategies
to mask large regions of s. Remaining sub-sequences of s are scored with a heuristics,
called “query dependent banding” [64], which heavily restricts the search space while
hopefully retaining the most likely candidate. Furthermore, statistics are enhanced for
training by sequence weighting and expectation maximization. Sequence weighting is
to adjust for potential sub-grouping of the family members. Expectation maximization
should compensate for over-fitting, by finding a suitable trade-off between priors and
posteriors. cmsearch can be run in glocal (aka “small in large” or “free shift”) or
local mode. The reported bit-score might be either the mentioned most likely state-path
probability (Cocke-Younger-Kasami = CYK algorithm, which is the analogue to the
“Viterbi” algorithm in HMMs), or probability sum of all possible state paths (“inside”
algorithm; HMM analogue is called “forward” or “backward”).

137

7 Covariance Models

7.1 Three contributions to Covariance Models

Our contribution on CMs is three fold:

1. Section 7.3: The CYK algorithm, which provides the probability of the single
best state path, is fast to compute, but seems to lack accuracy. Predictions,
based on a single (co-)optimal solution, are often of minor quality, compared to
holistic considerations. We already saw this effect in Chapter 3, where we compared
MFE predictions with synoptic approaches, e. g. CentroidFold. Therefore,
Infernal switched from CYK to inside computation, some years ago.

The inside algorithm sums up probabilities for all state paths. The difference
between both algorithms is just the choice function, which is maximization for
CYK and summation for inside. Both variants are calculated in log-space to keep
numerical stability. While this is no problem for maximization, it requires a back-
and forth transformation to correctly sum up two probabilities in log-space. Thus,
inside scores are computationally significantly more costly, although they share
the same asymptotic class.

Apart from the two extrema – considering all or just one candidate – we are going
to explore two middle ways to compute bit-scores. The idea is inspired by the RNA
shape class concept 3.2.7, where a number of (sub-optimal-)solutions are clustered
and evaluated as a group.

2. Section 7.4: The second contribution is of technical nature. Counting observed
frequencies from the family alignment for posteriors usually requires a huge case
distinction, which somehow incorporates the state-model architecture. Special care
must be taken to keep the two implementations for counting and scoring of the
same architecture in sync.

We will propose a general training approach for SCFGs, where the case distinction
comes for free by using basically the same automaton for training and scoring.
In the training phase, two inputs are used for each member of the family: the
alignment row and the consensus structure.

3. Section 7.5: Covariance models, as defined by Sean Eddy, do not reward insertions
of valid base-pairs or complete sub-structures relative to SScons. Nevertheless,
some families, e. g. tRNA, contain minorities with additional informative sub-
structures, which are crashed by the majority during formation of one consensus
secondary structure.

We introduce a method to construct CMs with ambivalent but compatible struc-
tural alternatives and show how they can improved accuracy.

Section 7.2: Integrating our approaches into the highly optimized Infernal software
seemed to be impossible in reasonable time. Thus, we decide to re-implement the core
functions in Bellman’s GAP and use this re-implementation as starting point for our
proposed extensions. For this reason, we first of all have to show that we actually
replicate the same results as Infernal.

138

7.2 Faithful CM re-implementation in Bellman’s GAP

7.2 Faithful CM re-implementation in Bellman’s GAP

We will split up the re-implementation of CMs into two steps. First, we build upon
the results of the training phase from cmbuild, namely the produced CM files. Thus,
divergences from choosing priors, counting posteriors, sequence weighting, expectation
maximization and calibration cannot have any effect, since we use the very same log-
odds values. Giegerich et al. did the same for Haskell ADP in [30] and termed it
“upward compilation of Infernal generated covariance models”.

In a second step, we start from scratch, i. e. from the MSA and SScons and focus on
recovering Infernal’s guide tree.

7.2.1 Upward compilation in Bellman’s GAP

The state architecture of a CM automaton is determined by SScons and has a very
repetitive structure. Each symbol, or pair of symbols for base-pairs, of SScons yields
a node for the CM. Since there arise different situations how to align a base from the
input sequence to the model, each node consists of several states, e. g. a MatL node for
an unpaired base in the model has states to match the base (ML), delete the base from
the input (D) or to insert an additional base relative to the model (IL). Each state has
a very specific set of outgoing edges to transit to the next state. A full example for
consensus structure <*<>> is given in Figure 7.5 – ignore the colors for now.

The following node types are used in CMs: Root for the start, MatP for a base-pair,
MatL for an unpaired base left of some other sub-structure, MatR the symmetric case
for a right unpaired base, Bif for structural bifurcations with left BegL and right BegR

parts and finally a set of End nodes. Nodes always have the following states and the
associated meaning:

Root: S: jump to the next node.
IL: insert a base left of the sub-structure.
IR: insert a base right of the sub-structure.

MatP: MP: match both partners of the base-pair.
ML: match only the left position of the base-pair, the right position is an insertion.
MR: match only the right position of the base-pair, the left position is an insertion.
D: both positions of the base-pair are insertions.

IL: insert a base left of the sub-structure.
IR: insert a base right of the sub-structure. This state is only available if the

node type of the child is not End.

MatL: ML: match the unpaired position, which is left of some sub-structure.
D: the unpaired position is an insertion. This state is only available if the node

type of the child is not End.
IL: insert a base left of the sub-structure.

MatR: MR: match the unpaired position, which is right of some sub-structure.
D: the unpaired position is an insertion.

139

7 Covariance Models

target node
Root MatP MatL MatR BegL BegR Bif End

so
u

rc
e

n
o
d

e

Root ∅ {IL,IR,MP,ML,MR,D} {IL,IR,ML,D} {IL,IR,MR,D} ∅ ∅ {IL,IR,B} ∅
MatP ∅ {IL,IR,MP,ML,MR,D} {IL,IR,ML,D} {IL,IR,MR,D} ∅ ∅ {IL,IR,B} {IL,IR,E}
MatL ∅ {IL, MP,ML,MR,D} {IL, ML,D} {IL, MR,D} ∅ ∅ {IL, B} {IL, E}
MatR ∅ { IR,MP,ML,MR,D} ∅ { IR,MR,D} ∅ ∅ { IR,B} ∅
BegL ∅ {MP, ML,MR,D} ∅ ∅ ∅ ∅ { B} ∅
BegR ∅ {IL, MP,ML,MR,D} {IL, ML,D} ∅ ∅ ∅ {IL, B} ∅
Bif Bif always transitions to both of its children BegL and BegR.
End ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 7.1: Alternative transitions for a state x to a following state y, if x has node type
“source node” and y will have node type “target node”. To avoid ambiguous
paths, the IL alternative is revoked if x itself is of type IR.

IR: insert a base right to the sub-structure.

Bif: B: jump to children.

BegL: S: jump to the next node.

BegR: S: jump to the next node.
IL: insert a base left to the sub-structure.

End: E: end the path through the CM.

The scheme of state-to-state transitions within the CM automaton is reported in Table
7.1. The presence of a transition depends on the current source node (y-axis), its target
node (x-axis) and the current state for a special case: To avoid ambiguous paths through
the model, IR to IL transitions are generally forbidden.

The family specific architecture is encoded in the result file of the cmbuild process.
All states of the automaton are serially numbered in the result file. By parsing these
files, we upward compile an Infernal-like Bellman’s GAP grammar, where each
state becomes a non-terminal. Outgoing transitions are alternative productions for the
same left hand side. From here on, generated – or better: family f specific – ADP
components, like grammar or algebras, will be marked by a hat. We obtain a SCFG

for family f by applying the generated grammar ̂Ginfernal to an generated evaluation

algebra ̂I infernalcyk , which multiplies transition- and emission-probabilities gained from the
cmbuild process. Maximizing over all candidates of the search space for input sequence
x is the CYK algorithm:

̂Ginfernal(̂I infernalcyk , x).

To check if the Bellman’s GAP version is really capable of reproducing cmsearch,
we performed the following test. For all 2, 208 seed CMs in the Rfam 11.0 release, we
run cmsearch1, version 1.0.2, with one randomly picked “original” gap-free sequence

1used command line call is cmsearch -g --toponly --cyk --no-qdb --fil-no-hmm --fil-no-qdb

--noalign --rna -T -10000

140

7.2 Faithful CM re-implementation in Bellman’s GAP

●●● ● ●●● ●●●●● ●●●● ●● ●● ●●● ●●●●● ●● ●● ●●● ●● ●●●●● ●● ● ●●●●● ● ●●● ●●●●●●●● ●●●● ●●● ● ●●● ● ●●●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●● ●● ● ●●●●●● ● ● ●●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●●●●●●● ● ●●●●● ●● ● ●● ●●●● ●● ● ●●● ●●● ● ●●●●● ●●● ● ●● ●●●● ● ●●● ●● ●● ●●●● ●● ● ●● ●● ● ●● ●●● ● ● ●● ●●● ● ● ● ●● ●●● ● ●● ●●●●●● ●● ● ●● ●●●● ● ●●● ● ● ● ●●● ●●● ● ●●●● ● ● ●●

●● ●●● ●●● ●● ● ●● ●●●● ● ● ●● ● ●● ● ●●●●● ● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ●

original

shuffled

0.8 0.9 1.0 1.1 1.2 1.3 1.4

Figure 7.1: Ratio of CYK bit-scores between cmsearch and its Bellman’s GAP ana-

logue ̂Ginfernal(̂I infernalcyk , x) for one randomly picked gap-free “original” se-
quence and its di-nucleotide “shuffled” counterpart for each of the 2,208
families of Rfam 11.0, except for RF00177, RF01800, RF01825, RF01959,
RF01960, RF02088, where memory has been exceeded.

from MSA and its di-nucleotide “shuffled”2 version. Both sequences have also been

scored with ̂Ginfernal(̂I infernalcyk , x). The ratio between Infernal and Bellman’s GAP
CYK scores for all 2,208 sequences are depicted in Figure 7.1.

7.2.2 Approving faithful re-implementation

Results for the “original” inputs for cmsearch and Bellman’s GAP are nearly iden-
tical, with a median ratio of 0.994. The remaining small differences stem from different
rounding methods between the C and the Perl/C++ languages. The “shuffled” sequences
performed just a bit worse. Their median ratio is 1.031. Aside from these numbers, re-
ported alignments are identical (data not shown). Thus, we conclude that we faithfully
re-implemented cmsearch in Bellman’s GAP.

7.2.3 Determine Infernal’s guide-tree to construct identical state
architecture.

As stated earlier, the architecture of a CM is primarily shaped by SScons, namely the
series of nodes. These nodes build the so called guide-tree. Molding the state archi-
tecture for a given guide-tree follows more or less simple rules. Assume some grammar
would parse SScons and produce parse trees / candidates composed only of the algebra
functions defined in Signature Σinfernal, see Table 7.2. We can evaluate every candi-
date, which complies with Σinfernal, with IGinfernal

(see Table 7.3) and thus generate a
Bellman’s GAP version for the state automaton, where start will be the axiom.

2shuffled by uShuffle [46]

141

7 Covariance Models

Table 7.2: Signature Σinfernal for Infernal’s guide-trees.

MatP(A,S,A) Bif(S,S) root(S)
MatL(A,S) BegL(S) End()
MatR(S,A) BegR(S)

Table 7.3: Evaluation algebra IGinfernal
to generate a Bellman’s GAP grammar for

given SScons. Function getStates executes a look-up of the outgoing states in
Table 7.1. Position specific index j is basically the position of the read symbol
from SScons, but for non-consuming functions Bif, BegL and BegR we need
to extend the index to start and stop positions of the containing sub-word.
Otherwise, uniqueness for indices cannot be guaranteed.

algebra function IGinfernal

root((t, i, p))

(root, j, p
∪ start→ begin(r0, Sj, r0)
∪ Sj → Sj X i(X i)
∪ ILj → ILj X i(b, X i)
∪ IRj → IRj X i(X i, b) if t 6= End
\ IRj → IRj ILi(ILi, b)
∀ X ∈ getStates(root, t))

MatP(a, (t, i, p), b)

(MatP, j, p
∪ MPj → MPj X i(b, X i, b)
∪ MLj → MLj X i(b, X i)
∪ MRj → MRj X i(X i, b)
∪ Dj → Dj X i(X i)
∪ ILj → ILj X i(b, X i)
∪ IRj → IRj X i(X i, b) if t 6= End
\ IRj → IRj ILi(ILi, b)
∀ X ∈ getStates(MatP, t))

MatL(a, (t, i, p))

(MatL, j, p
∪ MLj → MLj X i(b, X i)
∪ Dj → Dj X i(X i) if t 6= End
∪ ILj → ILj X i(b, X i)
∀ X ∈ getStates(MatL, t))

MatR(a, (t, i, p), b)

(MatR, j, p
∪ MRj → MRj X i(X i, b)
∪ Dj → Dj X i(X i)
∪ IRj → IRj X i(X i, b) if t 6= End

Continued on next page

142

7.2 Faithful CM re-implementation in Bellman’s GAP

A root

S

S MatP

< S >

MatL

* S

MatR

S *

Bif

BegL BegR

S S

End

ε

≥1 ≥1

Figure 7.2: Infernal’s syntactically ambiguous prototype grammar Ginfernal to parse
SSmatch and construct a guide-tree. Axiom is A.

Continued from previous page

algebra function IGinfernal

∀ X ∈ getStates(MatR, t))

Bif((t, i, p), (t′, i′, p′))
(Bif, j, p ∪ p′
∪ Bj → Bj Si Si

′
(Si, Si

′
)

BegL((t, i, p))
(BegL, j, p
∪ Sj → Sj X i(X i)
∀ X ∈ getStates(BegL, t))

BegR((t, i, p))

(BegR, j, p
∪ Sj → Sj X i(X i)
∪ ILj → ILj X i(b, X i)
∀ X ∈ getStates(BegR, t))

End(l) (End, il, Eil → Nil())
S (string, string, string)
choice function id

Unfortunately, the grammar Ginfernal (Figure 7.2) used by Infernal to parse SScons
is syntactically ambiguous! A given consensus structure will not yield one guide-tree, but
several alternatives. The short example structure <*<>> of Figure 7.5, can already be
parsed with Ginfernal in three different ways. For families of typical length, the number
of guide-trees easily reaches the millions. Since Infernal is a deterministic program,
it must apply some criteria to pick one guide-tree out of the forest. These criteria are
formulated in [22]:

“In general there will be more than one possible guide tree for any given
consensus structure. Almost all of this ambiguity is eliminated by three
conventions: (1) MATL nodes are always used instead of MATR nodes where
possible, for instance in hairpin loops; (2) in describing interior loops, MATL
nodes are used before MATR nodes; and (3) BIF nodes are only invoked

143

7 Covariance Models

where necessary to explain branching secondary structure stems (as opposed
to unnecessarily bifurcating in single stranded sequence). One source of
ambiguity remains. In invoking a bifurcation to explain alignment columns
i..j by two sub-structures on columns i..k and k + 1..j, there will be more
than one possible choice of k if i..j is a multifurcation loop containing three
or more stems. The choice of k impacts the performance of the divide and
conquer algorithm; for optimal time performance, we will want bifurcations
to split into roughly equal sized alignment problems, so I choose the k that
makes i..k and k + 1..j as close to the same length as possible.”

We can precisely reformulate these objectives by a set of evaluation algebras (Table
7.4). A formal proof of the un-ambiguity is pending, but for each of the 2,208 Rfam
families just one guide-tree survived the algebra product:

Pselect = ((((InoSSbif ∗ IminRight) ∗ IlowerBif) ∗ IpushRight) ∗ Ibalance) ∗ IlighterLeft.

Ordering of algebras is important. Their intentions are explained below:

• InoSSbif
Bifurcations are only allowed if both children contain at least one base-pair. Thus,
there cannot be single stranded regions, produced by bifurcations.

• IminRight
Whenever an unpaired base can be modelled via a MatL or MatR, MatL is pre-
ferred. For example *** will result in three successive MatLs, not e.g. in two
MatRs and one MatL. Thus, this criterion minimizes the use of right bases (MatR).

• IlowerBif
A Bif is applied as late as possible, thus its parent is as long as possible. For
example, **<><> will be MatL(*, MatL(*, Bif(BegL(MatP(<, End(), >)), BegR(
MatP(<, End(), >))))) but not Bif(BegL(MatL(*, MatL(*, MatP(<, End(),
>)))), BegR(MatP(<, End(), >))). Seen as a tree, Infernal lowers Bif as much
as possible.

• IpushRight
The use of MatR is applied as late as possible. For example, **()* will be MatL(
*, MatL(*, Bif(BegL(MatP(<, End(), >)), BegR(MatR(END(), *))))) but
neither MatL(*, MatR(MatL(*, MatP(<, End(), >)), *)) nor MatR(MatL(*,
MatL(*, MatP(<, End(), >))), *). Seen as a tree, MatRs are pushed to the right
side of the tree.

• Ibalance
Whenever three or more stems have to be connected to one structure there are
several ways to do so via Bif. Infernal prefers the arrangement that results in
a most balanced guide-tree. The weight of a stem, or better a sub-tree, is the size
of its yield of SScons, i.e. the number of characters consumed. MatL and MatR
each consume one character, while MatP consumes two; thus we can simply count
those node-types in the sub-trees.

144

7.2 Faithful CM re-implementation in Bellman’s GAP

• IlighterLeft
Should there be two balanced guide-tree candidates, the one with lighter (or equal
weight) left child will be the winner.

Just one step is missing to replicate Infernal’s state architecture for a given SScons,
namely removing positions of SScons where the according MSA columns contain more
gaps than defined by a threshold. Simply removing these columns might brake base-
pairs. Thus, care must be taken to convert the former pairing-partner into an unpaired
base, or remove it as well, if its gap contents is too high. Hence, the given SScons is
transformed to SSmatch, containing only those positions with sufficient sequence content.

7.2.4 Conclusion

The final Bellman’s GAP grammar ̂Ginfernal for family f with reduced consensus
structure SSmatch can now be generated by a call to the instance Ginfernal(Pselect ∗
IGinfernal

, SSmatch). To compute homology between a sequence and a family, we can
either resort to the log-odds ratios from the CM file as before, or use our own training
mechanism, see Section 7.4. For all families of Rfam 11.0, upward compiled grammar –
see previous section – and the result of Ginfernal(Pselect ∗ IGinfernal

, SSmatch) are identical.

145

7
C
ovarian

ce
M
o
d
els

Table 7.4: Set of evaluation algebras to pick the same guide-tree as Infernal out of the ambiguous search space, spanned
by Ginfernal for SScons. min1. means minimizing over the first element of a pair.

algebra function InoSSbif IminRight IlowerBif IpushRight Ibalance IlighterLeft
root(x) x x x+ 1 0 x x

MatP(a, x, b) 1 x x+ 1 0 (x1, x2 + 2) (x1, x2 + 2)
MatL(a, x) x x x+ 1 0 (x1, x2 + 1) (x1, x2 + 1)

MatR(a, x, b) x x+ 1 x+ 1 1 (x1, x2 + 1) (x1, x2 + 1)

Bif(x, y)

{
−1 if x < 1 || y < 1

1 otherwise
x+ y 0 0 (|x2 − y2|, x2 + y2)

{
(1, x2 + y2) if x2 > y2

(0, x2 + y2) otherwise

BegL(x) x x x x x x
BegR(x) x x x x x x
End(l) 0 0 1 0 (0, 0) (0, 0)
S int int int int (int,int) (int,int)

choice function min. min. max. min. min1. min1.

146

7.3 Alternative semantics

7.3 Alternative semantics

In [30], Giegerich et al. introduced two new interpretations how to understand matching
an RNA sequence to an RNA family, namely the trace semantics and the structure
semantics. Together with Infernal’s alignment semantics and the total search space
which might be seen as an inside semantics, the four semantics form a proper hierarchy:
A candidate from the search space is unambiguously described as an alignment. Several
alignments have identical trace representations and thus are grouped into a trace-class.
Even more alignments, maybe from different trace-classes, follow the same structure and
thus form a structure-class. All alignments scattered into trace-classes which seamlessly
cluster into structure-classes add up to the single inside-class, which is the complete
search space. Growing circles of Figure 7.3 shall visualize the increasing abstraction
level. In terms of number of classes we have:

alignments ≥ traces ≥ structures ≥ inside = 1.

We will first informally introduce alignment and trace semantics (Sections 7.3.1 and
7.3.2), see why we should switch from Ginfernal to a different CM generating grammar
(Section 7.3.3), where we also catch up on formal definitions of the semantics and finally
show some evaluation results (Section 7.3.4).

7.3.1 Trace semantics

Let us step back to pairwise sequence alignment to introduce the trace semantics. The
evolutionary perspective on sequence alignments is that both sequences stem from a
common ancestor. Matches are conserved bases. Mismatches should be interpreted as
point mutations, while gaps can be explained as insertions or deletions of sub-sequences.
Thus, alignments should give us rise to the evolutionary history, where both sequences
have developed from a common ancestor.

Here are two alignments for sequences x = ACAGGGGCAC and y = ACATTTCAC:

(1) x: ACAGGGG---CAC (2) x: ACA---GGGGCAC

y: ACA----TTTCAC y: ACATTT----CAC

Both alignments state that the first three and last three positions are conserved. The
only difference is, that alignment (1) first inserts four Gs into x and than three Ts
into y, while alignment (2) does the same in reverse order. Since we cannot observe
in time which event really happened first, we should not favor one alignment over the
other. Therefore, both alignments have the same meaning and we should find a common
representation as a trace, e. g.:

x: ACA[GGGG]CAC

y: ACA[TTT] CAC

The search space of all alignments can be partitioned into trace-classes, similar to shape-
classes, which partition the foldingspace of all possible secondary structures. A trace-
class might be represented with the above notation, or by one of its alignments. The

147

7 Covariance Models

UA...CGG
<-*<>>--A1=(

(

U.A..CGG
<*-<>>--A2=(

(

U...ACGG
<*<>->--A3=(

(

U..A.CGG
<*<->>--A4=(

(

T1

... 5 more alignments
in 5 trace-classes

..UAC.GG
<*<->>--A5=(

(

..UACG.G
<*<->->-A6=(

(

..UACGG.
<*<->-->A7=(

(

T2

S1: (.)..

U.ACGG
<*<>>-A8=(

(

T3

S2: (()).

..UA.CGG
<*<>>---A9=(

(

..UAC.GG
<*<>->--A10=(

(

..UACG.G
<*<>-->-A11=(

(

..UACGG.
<*<>--->A12=(

(

... 4 more alignments
in 4 trace-classes

T4

S3: ()...

1,662 more alignments
in 239 traces

in 13 structures

Figure 7.3: The four semantics of CMs: The search space of matching the sequence
UACGG to the model <*<>> is populated with 1, 683 candidates. Due to the
non-ambiguity of CMs regarding alignments each candidate is represented by
exactly one alignment on the lowest abstraction level (A1 to A1683, where the
last 1, 671 are not explicitly shown). Alignments telling the same evolution-
ary history are grouped on a second level into 252 trace-classes (T1 to T252,
only the first four are shown). The alignment which represents its trace-class
is given in bold font. On a third level of abstraction, the 252 trace-classes
are grouped into 16 structure-classes (S1 to S16). Maximal abstraction is
reached by the inside semantics, which contains the complete search space.

latter is frequently used, e. g. by choosing the one alignment where insertions always
precedes deletions.

For CMs, an RNA sequence is “aligned” to a family model. An example is given in
Figure 7.3. Candidates A1, A2, A3 and A4 are four different options to align sequence
UACGG to the model <*<>>. Seen as traces, they all tell the same evolutionary history
and thus are grouped into trace-class T1. Alignment A1 shall represent trace-class T1,
since it is the only alignment of that group which satisfies the “Insert-before-Deletion”
convention. The concept of traces for alignments is carried over to CMs, such that one
(e. g. T3) or several alignments constitutes the same trace. Or in other words: CMs,
as defined in Infernal, are semantically ambiguous regarding the trace semantics, cf.
Section 2.1.3.

148

7.3 Alternative semantics

7.3.2 Structure semantics

Matching the query RNA sequence to a family model always implies a secondary struc-
ture. This structure is not freely folded regarding some general grammar, e. g. GNoDangle,
but restricted to the encoded consensus structure of the model SSmatch. However, due to
deleting base-pairs or unpaired bases or inserting additional unpaired bases3, the struc-
ture can be different from SSmatch. Neglecting base-pairing rules, the sequence UACGG

would have 21 secondary structures for a G5-like grammar. Indeed, the consensus struc-
ture <*<>> of the example in Figure 7.3 prohibits formation of the secondary structures
.()(), ().(), ()()., ()(.) and (.)(). Thus, only 16 instead of 21 secondary structure
can be observed when matching sequence UACGG to the model <*<>>.

Since CMs deal with structured RNA sequences, it would be natural to ask for the
most probable structure. Again, the structure semantics partitions the search space of
the alignments between an RNA sequence and a family model. Furthermore, alignment
semantics, trace semantics, structure semantics and ultimately the inside idea form a
strict semantic hierarchy of growing abstraction; this is comparable to shape classes of
different levels.

7.3.3 Ambiguity compensation

Ambiguity compensation by classification With CMs, we are in a probabilistic setup,

where semantic ambiguity corrupts results. The CYK algorithm – ̂Ginfernal(̂I infernalCY K , x)
– aims to find the most likely alignment between a sequence x and the model f . Correct
results, i. e. the most likely candidate from the search space equals the most likely
alignment, are only guaranteed, iff the search space is semantically non-ambiguous.
That this is the case, has been shown by [30] - not in general, but for all Rfam families
of that time.

What automatically follows is that the same search space generation, must inevitably
be semantically ambiguous regarding trace- and structure- semantics, due to their hi-
erarchy. Thus, CYK cannot provide most likely traces or structures. By replacing the

maximization objective function of ̂I infernalCY K with summation, we gain ̂I infernalinside . Thus,
at least inside scores (the most abstract semantics), can correctly be computed by the

instance ̂Ginfernal(̂I infernalinside , x).

Assume for a while, that we are aware of some evaluation algebras ̂I infernaltrace and
̂I infernalstructure, which can evaluate any candidate from the search space into its trace- or

structure- representation, respectively. By using these algebras for classification, i. e.

̂Ginfernal(̂I infernaltrace ∗ ̂I infernalinside , x) and ̂Ginfernal(̂I infernalstructure ∗
̂I infernalinside , x), summing up prob-

abilities class-wise via inside and determining the class with maximum sum, we can
compute the desired results – at least in principle. Additional effort for classification
depends on the number of classes. Since this number grows exponentially with sequence-

3Interestingly, Infernal does not allow insertion of additional base-pairs.

149

7 Covariance Models

S nil

l

open

* S

pair

< S > S

A root

S

Figure 7.4: Prototype grammar G5 to parse SSmatch to generate CMs. Axiom is A.

and model- length (some numbers are given in [30]), we created algorithms with expo-
nential run-time. Execution becomes infeasible, even for very small examples. Thus,
theoretically elegant classification is of no practical use, here.

Ambiguity compensation by search space modification Besides classification, an-
other path to avoid ambiguity is to directly modify search space generation, i. e. use a
different grammar, in such a way that only the class representatives are enumerated. Of
course, priors and posteriors must be modified in a way that the probabilistic weight of
the former class members now coalesce into the one representative. Unfortunately, we
are not aware of such a grammar modification for the structure semantics. And there
might not be any efficient method, since ambiguity compensation is NP hard in general
[11].

Modifying Infernal’s grammar Furthermore, modification of ̂Ginfernal for the trace se-
mantics seems to be impossible, too. To provide a semantically non-ambiguous grammar
regarding alignments, some of the state transitions are forbidden, e. g. if there are base
insertions on both sides of a base-pair, they cannot be inserted in arbitrary order. All
left bases must already be inserted, before the first right insertion is allowed. This is
realized by having IL to IR transitions, but no IR to IL transitions. One might think,

that ̂Ginfernal can be modified in the same way, i. e. deleting a special set of state tran-
sitions, to prune the alignment search space and end up with a trace search space. We
will demonstrate with a counter example that this is not true. Assume a model where
SS match is <*<>> and query sequence is ACGU. Here are three out of 681 possible
alignments for model and sequence:

...ACGU ..ACG.U ..AC.GU

<*<>--> <*<-->> <*<->->

1234567 1234567 1234567

The corresponding paths for the above three alignments are highlighted by color in
the complete state graph for this model (see Figure 7.5). While the alignments blue
and green are also valid traces, the red one is not. Deletion of the right partner (ML
13, alignment position 5) of the inner base-pair MatP 3 before insertion of a single base
(IR 8, alignment position 6) on the right of the outer base-pair MatP 1 violates the
“Insert-before-Deletion” convention for traces. For a trace search space the red path
must somehow be prohibited. But as you can see, there is no transition uniquely used
by the red alignment. The removal of any red transition would also render blue or green

150

7.3 Alternative semantics

MP 12 ML 13 MR 14 D 15

IL 16 IR 17

ML 9 D 10

IL 11

MP 3 ML 4 MR 5 D 6

IL 7 IR 8

S 0

IL 1 IR 2

E 18

Root 0

MatP 1

MatL 2

MatP 3

End 4

Figure 7.5: Grammar ̂Ginfernal for SSmatch = <*<>>, given in Infernal’s notation of a
state automaton. The three colored paths correspond to three out of 681
possible alignments with sequence ACGU. While blue and green alignments
are also valid traces, the red alignment is not, because deletion of the right
partner of the inner base-pair (ML 13) happens before insertion of a single
base (IR 8).

alignments impossible, which are valid traces and thus must be enumerated by a trace
grammar.

The general problem is, that states of a later node must be aware of decisions made
in earlier nodes. In the example, node 3 must know about node 1. But within the
Infernal architecture a node just knows about its direct predecessor node.

Thus, we conclude that search space modification for ̂Ginfernal is impossible to get a
trace search space.

Modifying Ĝ5 In [30], it was proposed to use the syntactically unambiguous grammar
G5 (see Figure 7.4) to gain the guide-tree. Number of different state types have also been
thinned out. The authors furthermore showed that both kinds of CM generation provide
identical search spaces. A CM for an RNA family f with consensus structure SSmatch
can now be either constructed by the instance G5(IG5 , SSmatch) or by Ginfernal(Pselect ∗
IGinfernal

, SSmatch). While candidates of both search spaces will look different, they
represent the same objects and sizes of the search spaces are identical.

151

7
C
ovarian

ce
M
o
d
els

Table 7.5: Evaluation algebra IG5 to generate a Bellman’s GAP grammar for given SSmatch and, IG5 trace to generate
grammars that only enumerate trace representatives. Algebra II5 trace is a classification algebra to partition the

space of alignments into trace classes. The sort of the generated evaluation algebra Î5 trace will be a two component
column vector of strings. The upper string is to indicate the RNA sequence, the lower string reflects the RNA

structure. The choice function for Î5 trace will be “unique”. Special operator I is explained in the main text.
Algebra II5 structure is the formal definition for a classifying structure semantics.

algebra function IG5 IG5 trace
II5 trace

II5 structure

root((i, p))
(i, p (i, p (i, p (i, p
∪ start→ begin(r0, Si, r0) ∪ start→ begin(r0, Si, r0) ∪ begin(l, x, r) = x ∪ begin(l, x, r) = x
))))

nil(l)

(lj , (lj , (lj , (lj ,
Slj → INSlj (b, Slj) Slj → INSlj (b, Slj) INSlj (a, x) = 〈 a- 〉+ x INSlj (a, x) = .x

∪ Slj → NILlj (l) ∪ Slj → T lj

∪ T lj → NILlj (l) ∪ NILlj (l) = ε ∪ NILlj (l) = ε
))))

open(b, (i, p))

(i− 1, p (i− 1, p (i− 1, p (i− 1, p
∪ Si−1 → INSi−1(b, Si−1) ∪ Si−1 → INSi−1(b, Si−1) INSi−1(a, x) = 〈 a- 〉+ x INSi−1(a, x) = .x

∪ Si−1 → T i−1

∪ Si−1 → MATi−1(b, Si) ∪ T i−1 → MATi−1(b, Si) ∪ MATi−1(a, x) = 〈 a* 〉+ x ∪ MATi−1(a, x) = .x
∪ Si−1 → DELi−1(Si) ∪ T i−1 → DELi−1(T i) ∪ DELi−1(x) = 〈 .* 〉 I x ∪ DELi−1(x) = x
))))

pair(a, (i, p), b, (i′, p′))

(i− 1, p ∪ p′ (i− 1, p ∪ p′ (i− 1, p ∪ p′ (i− 1, p ∪ p′

∪ Si−1 → INSi−1(b, Si−1) ∪ Si−1 → INSi−1(b, Si−1) INSi−1(a, x) = 〈 a- 〉+ x INSi−1(a, x) = .x
∪ Si−1 → T i−1

∪ Si−1 → PKi−1(b, Si, b, Si′) ∪ T i−1 → PKi−1(b, Si, b, Si′) ∪ PKi−1(a, x, b, y) = 〈 a< 〉+ x + 〈 b> 〉+ y ∪ PKi−1(a, x, b, y) = (x)y

∪ Si−1 → Lri−1(b, Si, Si′) ∪ T i−1 → Lri−1(b, Si, T i′) ∪ Lri−1(a, x, y) = 〈 a< 〉+ x I 〈 .> 〉 I y ∪ Lri−1(a, x, y) = .xy

∪ Si−1 → lRi−1(Si, b, Si′) ∪ T i−1 → lRi−1(T i, b, Si′) ∪ lRi−1(x, b, y) = 〈 .< 〉 I x + 〈 b> 〉+ y ∪ lRi−1(x, b, y) = x.y

∪ Si−1 → bgi−1(Si, Si′) ∪ T i−1 → bgi−1(T i, T i′) ∪ bgi−1(x, y) = 〈 .< 〉 I x I 〈 .> 〉 I y ∪ bgi−1(x, y) = xy
))))

S (int, string) (int, string) (int, string) (int, string)
choice function id id id id

152

7.3 Alternative semantics

The big advantage of Ĝ5 over ̂Ginfernal is, that we know how to modify it to generate

search spaces Ĝ5 trace, which only contains trace representatives. Only IG5 has to be
replaced by IG5 trace (see Table 7.5):

G5(IG5 trace , SSmatch).

Now, the S non-terminals are just for incorporating insertions. All other situations are
handled by the new T non-terminals. It is no longer possible to re-enter a S non-terminal
once after a deletion or match has been issued via a T non-terminal. In other words, if
we want to use an insertion, we can only do so prior to any match or deletion.

To validate that Ĝ5 trace correctly creates trace search spaces, we can compare its size

with the number of trace-classes of Ĝ5(Î5 trace, x) – at least for small x. The evaluation
algebra II5 trace , which generates family specific trace classification algebras is given as
the second last column in Table 7.5. Besides using a string tuple as sort, where + should
denote string concatenation in each component individually, i. e. 〈 ab 〉+ 〈 cd 〉 = 〈 a+c

b+d 〉, the
special operator I is employed. This operator shifts all trailing deletions of the left part
behind all leading insertions of the right part. If there are no trailing deletions or no
leading insertions I works as simple concatenation +. Replacing every + with I would
yield the same results, but is computationally more expensive. Here is a Haskell like
definition of I:

(x+ d) I ε = (x+ d)
ε I (i+ y) = (i+ y)

(x+ d) I (i+ y) =

{
(x I i) I (d I y) d == 〈 β- 〉 ∧ i == 〈 .α 〉
x+ d+ i+ y otherwise

where α ∈ {<, >, *}, i.e. i is an insertion of a model position and β ∈ {A, C, G, U}, i.e. d
is a deletion of a base relative to the model.

Notes on the original definition of II5 trace in [30] Algebra II5 trace arose from a
similar version in [30]. But we think, that this version suffers from some problems. The
authors use a similar, but not identical shift operator .. For example, take a look at their
algebra function bgi−1(x, y) = (((〈 .< 〉 . x) + 〈 .> 〉) . y), where we wrote implicit brackets
explicitly. The function bgi−1 is asymmetric. Leading insertions of x will be moved out
of the deleted base-pair, but leading insertions of y cannot enter the deleted base-pair,
because of the definition of ., where the left part d is never split. Should y contain
leading insertions, they would be moved left over the complete base-pair. Consequently,
this asymmetry is also present for Lri−1 and lRi−1.

Besides asymmetry, moving an insertion over a base-pair might be also unwanted,
because it changes the order of the input RNA sequence. Assume input sequence is AC

and SSmatch would be <**>. One of the candidates of the alignment search space is

bg0
(
MAT1

(
A, DEL2

(
NIL3 (l)

))
, INS4

(
C, NIL4 (l)

))
.

If we evaluate this candidate with the generated trace algebra, we will face the situation
〈 .A..<**> 〉 . 〈 C- 〉 when applying algebra function bg0. For simplicity, we have already fully

153

7 Covariance Models

evaluated the left side, since only the right . operation of bg0 is of interest for this
example. The result is 〈 C.A..-<**> 〉. As you can see, A and C are transposed!

Excursion on the inferior run-time of Ĝ5 The authors of [30] have shown that CMs
following G5 are significantly smaller in terms of non-terminals and productions than
Ginfernal. They argued that the decreased size should speed-up run-time substantially.
Quite the opposite is true! The tool multi rt all, shipped with the Bellman’s GAP
compiler, analyzes the grammar – assuming all non-terminals will be tabulated – and
derives asymptotic run-times including constant factors. Table 7.6 exemplifies these
findings with the two Rfam families covered in [30] plus – as an extreme case – family
RF01960, which has the MSA with most columns in the Rfam 11.0 release. Empirical
measurements (rows “real-rt”) with Random set 1 sequences confirm the theoretical
considerations of multi rt all. Note that even the asymptotic class can be reduced

fromO(n3) toO(n2) for ̂GRF01380
infernal , if SSmatch does not contain bifurcations. The expensive

difference between both prototype grammars is that in Ĝ5 stretches of base-pairs, which
are essentially for stable RNA structures, always bifurcate – often with empty right parts,
except the potential to insert additional bases. Because of these insertions, the yield-
size analysis of the Bellman’s GAP compiler cannot automatically correct for the
expensive sub-word splits. The open question is, can we refine G5 to avoid unnecessary
splits, correctly position all insertions, use less production rules than Ginfernal and remain
syntactic non-ambiguity?

The tendency to gain speed by introducing more non-terminals can be also observed

between Ĝ5 and Ĝ5 trace. But please be reminded, that the search space of Ĝ5 trace is
significantly smaller.

154

7.3
A
ltern

ative
sem

an
tics

Table 7.6: Effects of different grammar designs for identical search spaces, regarding CMs. rules is the number of algebra
functions; NTs is number of non-terminals; asymptotic runtime has been determined by the tool multi rt all,
shipped with the Bellman’s GAP compiler. real-rt are real runtime measurements for Random set 1 sequences,
fitted with gnuplot via initial asymp-rt values. RF00163 and RF01380 are amongst the smallest Rfam families
with and without structural bifurcations, respectively. RF01960 holds the MSA with most columns in Rfam 11.0.
Last row is for the smaller search spaces of all trace representatives.

family RF00163 RF01380 RF01960
|SSmatch| 45 19 1,806

̂Ginfernal

rules 622 286 24,482
NTs 143 61 5,543
asymp-rt 2n3 + 1754n2 + 18n+ 19 790n2 + 18n+ 19 60n3 + 66060n2 + 95
real-rt −4.5−e8n3 + 2.7−e4n2 − 4.1−e2n+ 2.3 3.8−e5n2 + 9.4−e3n− 1.2 –

Ĝ5

rules 152 67 5,870
NTs 47 21 1,808
asymp-rt 168n3 + 315n2 + 2 84n3 + 135n2 + 2 5376n3 + 12667n2 + 2
real-rt 250−e8n3 + 7.9−e4n2 − 30.5 6.3−e7n3 + 76−e5n2 − 30.8 –

Ĝ5 trace

rules 198 87 7,676
NTs 93 41 3,615
asymp-rt 105n3 + 394n2 + 2 54n3 + 169n2 + 2 3566n3 + 15386n2 + 2
real-rt 140−e8n3 + 5.6−e4n2 − 20.6 3.9−e7n3 + 51−e5n2 − 21.1 –

155

7 Covariance Models

Table 7.7: Bellman’s GAP instances to evaluate performance of the four different se-
mantics of CMs.

Semantics Bellman’s GAP instance

“inside” Ĝf5 trace(Îinside, x)

“structure” Ĝf5 trace(̂Istructure ∗ Îinside, x)

“trace” Ĝf5 trace(Îinside, x)

“alignment” Ĝf5 (ÎCYK , x)

7.3.4 Evaluation

To assess performance of the four different semantics, we compiled a set of qualified
families, using the same criteria as Nawrocki et al. did for their benchmark Rmark
[64]. From Rfam release 10.1 and 23 families of high quality, provided by Manja Marz
(private communication and [56, 57, 58, 59]), we selected 148 families with sufficient size,
to be split into training- and test- sequences and proper sequence identity, or better –

sequence variation. For each family f , grammars Ĝf5 and Ĝf5 trace, together with according

algebras ÎfCY K , Îftrace,
̂Ifstructure and Îfinside, where generated and trained with SSfmatch

and the aligned training sequences.

To gain test sequences with increasing dissimilarity to the training families, we com-
posed the classes, listed in Table 7.8. Altogether, we got 1, 121 sequences.

The Bellman’s GAP instances of Table 7.7 have been compiled and run with every
test sequence x to compute the required bit-scores. For some semantics, e. g. “inside”,

we could have used Ĝf5 instead of Ĝf5 trace to obtain identical results. We prefer Ĝf5 trace,
because it requires less run-time, cf. Table 7.6.

Figure 7.6 summarizes the bit-score distribution over the sequence classes and se-
mantics. As expected, the scores drop with growing dissimilarity to the family. Un-
fortunately, just very few sequences could be analyzed regarding their most probable
structure; but this was expected, too. Surprising is the fact that scores from “inside”,
“trace” and “alignment” semantics seem to agree in most cases. We anticipated that the
semantic hierarchy is well reflected in significantly different bit-scores. But in positive
cases (left four sequence classes), the single optimal alignment already holds the majority
of total available probability mass, i. e. ratio of “alignment” vs. “inside” (see Figure 7.7),
and the optimal trace-class most often consists of just this optimal alignment. Even if
the optimal alignment leaves some probabilistic space (negative cases), the optimal trace
cannot accumulate much more probability mass, due to extremely few class members.
Structure classes seem to be larger (“orignalTestseq”) and can successfully accumulate
sufficient probability mass to indicate homology, where “trace” and “alignment” fail –
at least for the very few computable examples.

156

7.4 Two Track Counting

Table 7.8: Test classes to evaluate performance of the four different semantics of CMs.
Sequence s is randomly selected from the set of training sequences.

Class name Concept

unchanged Remain s unchanged.
pointmutation Point mutate 10% of the bases of s.
deletedHairpin Delete those bases of s which belong to one arbitrary sub-

structure of SSfmatch ending in a hairpin. (55 families had to
be omitted, since they contain only a single hairpin.)

originalTestseq Randomly choose one test sequence.
dinuc-shuffled Shuffle bases of s di-nucleotide wise.

rand-hmm-0.2divlen Emitting a random sequence with Nawrocki’s 15 state HMM
[64], with a lengths between 50% and 200% of MSA length.

rand-uniform-0.2divlen Generating a uniformly distributed sequence of ± 20% of
MSA length.

partialSeed1 Randomly select a sub-sequence of s of at least 10% length.

7.3.5 Conclusion on the new semantics

In conclusion, the “trace semantics” does not abstract sufficiently from the “alignment
semantics”, while the more promising “structure semantics” is infeasible to compute.
Thus, we suggest to keep using the “inside semantics” for now, but want to encourage
future work on the “structure semantics”, which seems to have more distinctive power.

7.4 Two Track Counting

For CMs, determining posterior frequencies is just counting how often which nucleotide
is in the training sequences in which situation relative to the consensus structure. Align-
ing a query sequence to a model becomes an optimization problem over many different
possibilities, because we do not know the best situation relative to the consensus struc-
ture for each nucleotide in advance (called state path). But we do know the state path
for training. And thus, we have only one candidate in the search space, if we force a
(training) sequence into a concrete state path. We can do so by providing the state
path as a second input, called track, besides the nucleotide sequence itself. The state
path SStrain is SScons, where unpaired positions become gaps, and partnering positions
become unpaired bases, if these positions are marked as insert-columns, due to too high
gap frequencies in MSA.

Mapping a single row of MSA to SStrain might produce columns consisting of a gap
in sequence and model: 〈 .- 〉. These columns must be removed from both input tracks.

An enumeration algebra Ienum is a generic representation for candidates of the search
space, which can automatically be produced by the Bellman’s GAP compiler. It

157

7 Covariance Models

●

●

●

●
●●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●
●

●

●

●

●●●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

absolute Bit−score distribution for different sequence types and four semantics
B

it−
sc

or
e

unchanged pointmutation deletedHairpin originalTestseq dinuc−shuffled rand−hmm−0.2divlen rand−uniform−0.2divlen partialSeed1

−
15

00
−

10
00

−
50

0
0

50
0

N= 147 8 146 147 147 7 146 147 92 1 91 92 147 8 146 147 147 8 146 147 147 8 146 147 147 7 145 147 147 32 145 146

inside
structure
trace
alignment

Figure 7.6: Box plots for all bit-scores, obtained by running the 1, 121 sequences with for
all four semantics, grouped by sequence classes (see Table 7.8) and seman-
tics (see Table 7.7). Sample size, particularly for the “structure” semantics,
sometimes is smaller than the number of available sequences, because exe-
cution exceeded available memory.

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

distribution of most probable structure, trace, alignment grouped by sequence types

pr
ob

ab
ili

ty
 (

lo
g

sc
al

e)

unchanged pointmutation deletedHairpin originalTestseq dinuc−shuffled rand−hmm−0.2divlen rand−uniform−0.2divlen partialSeed1

1e
−

06
1e

−
04

1e
−

02
1e

+
00

8 146 147 7 146 147 1 91 92 8 146 147 8 146 147 8 146 147 7 145 147 32 145 146 =N

structureProb
traceProb
alignProb

Figure 7.7: Basically the same bit-score distributions as in Figure 7.6, but displayed
relative to total probability mass, i. e. “inside” bit-score.

158

7.4 Two Track Counting

Table 7.9: Evaluation algebra IG5 train
to generate a family specific grammar, capable of

parsing an RNA sequence and a secondary structure as two tracks, written
as 2-component column vectors.

algebra function IG5 train

root((i, p))
(i, p
∪ start→ Si

)

nil(l)

(lj ,
Slj → INSlj (〈 b- 〉, Slj)
∪ Slj → NILlj (ε)
)

open(b, (i, p))

(i− 1, p
∪ Si−1 → INSi−1(〈 b- 〉, Si−1)
∪ Si−1 → MATi−1(〈 b* 〉, Si)
∪ Si−1 → DELi−1(〈 .* 〉, Si)
)

pair(a, (i, p), b, (i′, p′))

(i− 1, p ∪ p′

∪ Si−1 → INSi−1(〈 b- 〉, Si−1)

∪ Si−1 → PKi−1(〈 b< 〉Si, 〈 b> 〉, Si′)

∪ Si−1 → Lri−1(〈 b< 〉Si, 〈 .> 〉, Si′)

∪ Si−1 → lRi−1(〈 .< 〉Si, 〈 b> 〉, Si′)

∪ Si−1 → bgi−1(〈 .< 〉Si, 〈 .> 〉, Si′)
)

S (int, string)
choice function id

records which algebra functions were called with which parts of the inputs, but gives no
hint about the used non-terminals, i. e. the grammar production rules. The trace of the
algebra functions is exactly what we need, because they give rise to the path through
the CM states and the sub-words of the nucleotide input, i. e. single bases, informs us
about the concrete emissions. The sequence of non-terminals would correspond to the
node types of the guide-tree, which is not of interest here.

The family specific training grammar Ĝ5 train, which later parses the two tracks of the
training sequence and SStrain, is generated by the Bellman’s GAP instance (see Table
7.9):

Ĝ5 train = G5(IG5 train
, SSmatch).

By creating enum-representations for all training pairs, consisting of the MSA rows
and SStrain, and accumulating the numbers of seen algebra functions, we simply get the
desired counts. Converting these counts into frequencies is achieved by normalizing the
counts by the sum of counts for all alternatives of a non-terminal. In the general case,
we after all have to be informed about the non-terminals of the training grammar – in

159

7 Covariance Models

contradiction of what we stated earlier. The special case of Ĝ5 train can cope without
this additional information, due to unambiguous combinations of algebra function names
and indices.

Training different semantics Two track counting also supports training for different
semantics. If we want to deduce transition and emission counts for e. g. trace semantics,
we are faced with the situation that the training data, in form of MSA and SScons,
follows the alignment semantics, i. e. some alignments A = 〈 x

SStrain 〉, where x is a row of
MSA, might not be valid traces, since they violate the “insert-before-delete” convention.

These situations can easily resolved by the semantics classification algebra, e. g. Î5 trace.

If a run of T = Ĝ5 train(Î5 trace, A) reveals that T 6= A, we know that A falls into the

trace class, which is represented by T . Therefore, we simply re-run Ĝ5 train(T).

7.5 Ambivalent Covariance Models

The dominating source for RNA family models, and thus the most important use-case
for CMs, is Rfam. And in fact, curators of Rfam and developers of Infernal do
closely cooperate. Infernal’s CMs require all family member sequences to fold into
one shared structure with only small deviations to gain good bit-scores. However, the
grouping criteria of Rfam is different4:

The ideal basis for a new family is an RNA element that has some known
functional classification, is evolutionarily conserved, and has evidence for a
secondary structure.

Rfam does not strictly insists on a single common structure. For example, take the
tRNA family (RF00005, Rfam release 10.1). It is known that a minority of the tRNA
structures form a stabilizing “variable stem-loop” in addition to the classical clover leaf
structure. The WikipediA article on tRNA, which Rfam uses to explain the family,
does not fail to point to this fact. By a simple sequence length comparison, we found that
147 out of the 967 seed members constitute this minority. We also constructed a plau-
sible consensus structure for this minority by aligning (RNAforester [39]) individual
structure predictions from tRNAscan-SE [52].

Replacing original SScons with our variable stem-loop enriched version cannot yield a
different CM, because the majority of 820 members have gaps at the variable stem-loop
positions and therefore model them as insertions, i. e. the introduced variable stem-loop
sub-structure is taken out off SSmatch. Informative covariance from base-pairs of this
stem cannot be captured. On the other hand, enforcing SScons = SSmatch by increasing
allowed gap ratio, would impose large deletion costs on the 820 members, when aligning
to the new model.

With the introduction of Ambivalent Covariance Models (aCMs), we hope to open
up a route to get over these shortcomings. Basically, an aCM is a CM constructed

4from http://rfam.sanger.ac.uk/help, seen on March 7th, 2014

160

http://rfam.sanger.ac.uk/help

7.5 Ambivalent Covariance Models

breakpair

< x1

x2
> y1

y2* *

makepair

<
x1

x2 >
y1

y2* *

keeppair

<
<

x1

x2
>
>

y1

y2

Nil

ε1

ε2

keepopen

x1

x2
*
*

delpair

<
-

x1

x2
>
-

y1

y2- -

inspair

-
<

x1

x2
-
>

y1

y2
- -

keepskip

x1

x2
-
-
-
-

delleft

<
-

x1

x2
> y1

y2*-

findleft

-
<

x1

x2 >
y1

y2*-
delright

< x1

x2
>
-

y1

y2* -

findright

<
x1

x2
-
>

y1

y2* -

delopen

x1

x2-*-

insopen

x1

x2
-

*
-

x1

x2

Figure 7.8: Two-track ADP grammar Gali SS to align two consensus structures. Please
note, that non-terminal x is composed of two tracks, x1 and x2. Green dashed
arrows are just to indicate symmetric operations.

by multiple guide-trees, i. e. containing multiple consensus sequences SSicons. These
consensus structures should not be arbitrary structures, but be somehow compatible,
i. e. can form one multiple alignment. This requires that all consensus structures have
the same length, which can simply be achieved by introducing gaps. More thoughts
have to be spend on defining what kinds of alignment columns should be allowed. For
example, we think that the two consensus structures 〈 <<-*>**><<-*>--> 〉 can explain a common
evolution up to the point where two additional unpaired bases are inserted into the
upper consensus. The double gaped column 〈 -- 〉 should be allowed to enable inclusion of
rare sequences into MSA, which hold insertions relative to both consensus structures.

But we disallow alternative base-pair partners, like 〈 <<**>><*<*>> 〉, since we cannot see a
convincing evolutionary explanation. For example, base-pair slippage should better be
modeled via insertions. A formal definition of valid pairwise consensus structure align-
ments is given in the form of the ADP grammar Gali SS in Figure 7.8. Multiple consensus
structures SS1

cons, . . . , SS
n
cons can be checked for compatibility by successively aligning

the pairs (SS1
cons, SS

i
cons) ∀i > 1.

If all consensus structures are compatible, we need to compute their individual guide-
trees and fuse them into one multiple guide-tree. This multiple guide-tree should be the
smallest common tree, to keep the aCM– and thus run-time of the aCM– as small as
possible. During fusion, we also have to make sure that no unseen combinations become
possible, e. g. 〈 <<*>*--><---*<>> 〉 shall not impose model structure <---*-->. Furthermore, for
training the aCM we have to reconsider sequence weighting, transition probabilities
for entering alternative paths and priors. Counting can be accomplished without much
changes via the “Two Track Counting” of Section 7.4.

161

7 Covariance Models

1 2 3 4 5 6 7 8 9

< < * * > * * >
C A - G U C G G
G A - U U C G U

G A - A U - - G
G A A - U - - C
- A - U U - - -
< < * * > * * >

S1 Ins1

S1b

PK1

b S2 b S9

Lr1

b S2 S9

lR1

S2 b S9

bg1

S2 S9

S2 Ins2

S2b

PK2

b S4 b S8

Lr2

b S4 S8

lR2

S4 b S8

bg2

S4 S8

S4 Ins4

S4b

Mat4

S5b

Del4

S5

S5 Ins5

S5b

Nil5

ε

S8 Ins8

S8b

Nil8

ε

S9 Ins9

S9b

Nil9

ε

A6 Ins6

A6b

Mat6

A7b

Del6

A7

A7 Ins7

A7b

Mat7

A8b

Del7

A8

PK2

b S4 b A6

Lr2

b S4 A6

lR2

S4 b A6

bg2

S4 A6

A8 Ins8

A8b

Nil8

ε

P1

P2 E9

O4 O6

E5 O7

E8

P1

P2 E9

O4

E5

E8

(P1,P1)

(P2,P2) (E9,E9)

(O4,O4) (O6,E8)

(E5,E5) (O7, -)

(E8, -)

& =

A)

B)

C)

Figure 7.9: Toy example for an aCM with two consensus structures. Part A) MSA
with the two consensus structures <<-*>**> and <<-*>-->. MSA columns
with borders (3,4) in both and (6,8) for the blue consensus structure are
modelled as insertions. Part B) Individual- and smallest common guide-
tree for the two consensus structures. Part C) Generated aCM grammar
for an ambivalent model.

Generation of a model specific Bellman’s GAP grammar with n consensus struc-

tures Ĝ(1,...,n)
5 is similar to normal generation for CMs, except that we operate on one

multiple guide-tree. Some effort has to be spend on redirecting to the correct position-
specialized non-terminals. We point the interested reader to the Haskell source code
in the fold-grammars repository, for reasons of space: http://bibiserv.cebitec.

uni-bielefeld.de/fold-grammars. Instead of a verbose algorithm description, we
show the exemplary grammar for the consensus structures 〈 <<-*>**><<-*>--> 〉 in Figure 7.9. It
basically follows the G5 prototype grammar. For nodes with different sub-trees for the
consensus structures in the multiple guide-tree, additional production rules are added to
the according non-terminal. (Second row for S2 in the example.) This might also imply
generation of further non-terminals (Ai in the example).

7.5.1 Evaluation

Are aCMs really necessary to find homologs to RNA families with more than one
consensus structure? What if we rigorously split this family into one sub-family for each
consensus structure and use all of these models to score potential candidates? We can
detect homology if just one of these models gains high bit-scores. This is true!

However, since aCMs contain more information, i. e. common sub-structures stronger
deviate from the background model and predetermined sub-structures do not get penal-

162

http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars

7.5 Ambivalent Covariance Models

ized, discriminatory power can be increased. Thus, even those true candidates can get
a positive score for aCMs, which falls below the threshold of the individual CMs.

We show this effect for two examples: tRNA in Figure 7.10 and the spliceosomal U5
RNA in Figure 7.11.

tRNA The first column (“model: all default”) of Figure 7.10 contains CYK bit-scores
for all seed sequences, matched against the original CM, i. e. using the complete MSA
and the default (green) SS cons. The blue box-plot is for all 967 scores, the green
one contains only scores for those sequences following the “default” SScons, the orange
one for sequences including the variable stem-loop (“varloop”). As expected, “varloop”
sequences get penalized, reducing also the median for all sequences. Median score for
the original CM is ≈ 52.04 bits (brownish horizontal line).

For the second column (“model: all varloop”), we constructed a CM for the complete
MSA, but this time with a SScons including the variable stem-loop. Since SScons is
transformed into the same SSmatch as before, producing an identical CM, results do not
change.

Different SSmatch can only be achieved by also using different parts of the MSA.
Column “model: single default” visualizes scores for a CM, which is constructed by the
default SScons and only by those rows of the MSA that belong to it. Again, not much
changes, besides the fact that “varloop” sequences perform even worse.

Good scores for “varloop” sequences can be obtained, if we use a CM constructed
only by the “varloop” consensus and MSA rows (column “model: single varloop”).
Unfortunately, performance for the majority of the sequences nosedive.

Should we be able to a priori use the correct sub-model for each sequence, we would
gain the theoretical mean score of ≈ 54.95 bits (magenta horizontal line). Splitting the
family into two separate sub-families seems to be worth it.

Our proposed aCMs can even do better. As you can see from the last column (“model:
aCM”), not only the scores for the “varloop” sequences are lifted to a reasonable amount,
also the “default” sequences benefit from this information enrichment. aCMs mean
score is ≈ 55.88 bits (purple horizontal line) and thus ≈ 7% better than the median
from the original CM. Bit scores of negative sequences, do not change significantly (data
not shown).

U5 spliceosomal RNA The U5 spliceosomal RNA is a widespread family. Its concrete
secondary structure changes over the different taxons. We used the original alignment
from [57]5, identified six taxons, grouped the sequences and defined according consensus
structures. Figure 7.11 is the result of the same kind of analysis as in Figure 7.10;
negative, i. e. di-nucleotide shuffled sequences, are included here. In conclusion, the
mean bit-score could be increased by 27%, compared to the original CM, while bit-
scores for negative sequences remain low, thus improving discriminatory power.

5www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-001/ALIGNMENTS/ALL.U5.stk

163

www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-001/ALIGNMENTS/ALL.U5.stk

7
C
ovarian

ce
M
o
d
els

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

RF00005: tRNA

C
Y

K
 b

it
sc

or
e

0
20

40
60

model: all default model: all varloop model: single default model: single varloop model: ACM

boxplots

sequence type: all (N = 967)
sequence type: default (N = 820)
sequence type: varloop (N = 147)

median bit scores

original, pos. set: 52.0437 bits
theoretical, pos. set: 54.9542 bits
ambivalent consensus, pos. set: 55.875 bits

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

alignment

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

SScons

Figure 7.10: Evaluation of different ways to construct individual CMs for sub-groups for the tRNA family, compared with
one aCM for both sub-groups. Detailed explanations are in the main text.

164

7.5
A
m
b
ivalen

t
C
ovarian

ce
M
o
d
els

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●●
●●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

Manja−ALL.U5: U5 spliceosomal RNA

C
Y

K
 b

it
sc

or
e

−
50

0
50

10
0

15
0

model: all
NematodsAnnelids

model: all
CrustaceasInsects

model: all
BasalDeuterostomes

model: all
Teleosts

model: all
Tetrapoda

model: all
default

model: single
NematodsAnnelids

model: single
CrustaceasInsects

model: single
BasalDeuterostomes

model: single
Teleosts

model: single
Tetrapoda

model: single
default model: ACM

boxplots

sequence type: all (N = 375)
sequence type: shuffled (N = 375)
sequence type: NematodsAnnelids (N = 86)
sequence type: CrustaceasInsects (N = 122)
sequence type: BasalDeuterostomes (N = 32)
sequence type: Teleosts (N = 47)
sequence type: Tetrapoda (N = 53)
sequence type: default (N = 35)

median bit scores

original, pos. set: 98.233 bits
original, shuffled set: −52.5105 bits
theoretical, pos. set: 120.518 bits
ambivalent consensus, pos. set: 134.706 bits

● ●

alignment

● ●

SScons

Figure 7.11: Evaluation of different ways to construct individual CMs for sub-groups for the U5 family, compared with one
aCM for all six sub-groups.

165

7 Covariance Models

7.5.2 Conclusion

The Rfam database contains several families that cross the limitations of a single con-
sensus structure. The new concept of an Rfam “clan” is a set of closely related families.
It seems to be a workaround to cope with several consensus structures within one former
family, which is now torn apart. Our evaluation shows that a segmentation of a family
corrupts homology analysis. We suggest extending covariance models to hold multiple
consensus structures to keep up with biological needs. Adapting Infernal’s innermost
mechanisms to ambivalent structures seems to be worth the effort.

166

8 Bibliography

[1] Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary structure
prediction with pseudoknots. Discrete Appl. Math., 104(1–3):45–62, 2000.

[2] Mirela S. Andronescu, Vera Bereg, Holger H. Hoos, and Anne E. Condon. RNA
STRAND: The RNA Secondary Structure and Statistical Analysis Database. BMC
Bioinformatics, 9(1):340, 2008.

[3] Mirela S. Andronescu, Anne E. Condon, Holger H. Hoos, David H. Mathews, and
Kevin P. Murphy. Efficient parameter estimation for RNA secondary structure
prediction. Bioinformatics, 23(13):i19–28, 2007.

[4] Mirela S. Andronescu, Anne E. Condon, Holger H. Hoos, David H. Mathews, and
Kevin P. Murphy. Computational approaches for RNA energy parameter estima-
tion. RNA, 16(12):2304–2318, 2010.

[5] Mirela S. Andronescu, Cristina Pop, and Anne E. Condon. Improved free energy
parameters for RNA pseudoknotted secondary structure prediction. RNA, 16(1):26–
42, 2010.

[6] Stanislav Bellaousov and David H. Mathews. ProbKnot: Fast prediction of RNA
secondary structure including pseudoknots. RNA, 16(10):1870–1880, 2010.

[7] Richard Bellmann. Dynamic Programming. Princeton, NJ: Princeton University
Press, 1957.

[8] Eugene Berezikov, Geert van Tetering, Mark Verheul, Jose van de Belt, Linda van
Laake, Joost Vos, Robert Verloop, Marc van de Wetering, Victor Guryev, Shuji
Takada, Anton Jan van Zonneveld, Hiroyuki Mano, Ronald Plasterk, and Edwin
Cuppen. Many novel mammalian microRNA candidates identified by extensive
cloning and RAKE analysis. Genome Res, 16(10):1289–1298, 2006.

[9] Stephan Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas Gruber, and Peter F.
Stadler. RNAalifold: improved consensus structure prediction for RNA alignments.
BMC Bioinformatics, 9(1):474, 2008.

[10] Philip N. Borer, Barbara Dengler, Jr. Ignacio Tinoco, and Olke C. Uhlenbeck.
Stability of ribonucleic acid double-stranded helices. Journal of Molecular Biology,
86:843–853, 1974.

167

8 Bibliography

[11] Broňa Brejová, Daniel G. Brown, and Tomáš Vinař. The most probable annotation
problem in HMMs and its application to bioinformatics. Journal of Computer and
System Sciences, 73(7):1060–1077, 2007.

[12] Mark E. Burkard, Ryszard Kierzek, and Douglas H. Turner. Thermodynamics of
unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix
termini in larger RNAs. Journal of Molecular Biology, 290(5):967–982, 1999.

[13] Chi Yu Chan, Charles E. Lawrence, and Ye Ding. Structure clustering features on
the Sfold Web server. Bioinformatics, 21(20):3926–3928, 2005.

[14] KY Chang and Jr. Ignacio Tinoco. Characterization of a ”kissing” hairpin com-
plex derived from the human immunodeficiency virus genome. Proceedings of the
National Academy of Sciences of the United States of America, 91(18):8705–8709,
1994.

[15] Ho-Lin Chen, Anne E. Condon, and Hosna Jabbari. An O(n5) Algorithm for MFE
Prediction of Kissing Hairpins and 4-Chains in Nucleic Acids. Journal of Compu-
tational Biology, 16(6):803–815, 2009.

[16] Peter Clote, Fabrizio Ferre, Evangelos Kranakis, and Danny Krizanc. Structural
RNA has lower folding energy than random RNA of the same dinucleotide frequency.
RNA, 11(5):578–591, 2005.

[17] Anne E. Condon and Hosna Jabbari. Computational prediction of nucleic acid
secondary structure: Methods, applications, and challenges. Theoretical Computer
Science, 410(4–5):294–301, 2009.

[18] Ye Ding and Charles E. Lawrence. A statistical sampling algorithm for RNA sec-
ondary structure prediction. Nucleic Acids Research, 31(24):7280–7301, 2003.

[19] Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. CONTRAfold: RNA
secondary structure prediction without physics-based models. Bioinformatics,
22(14):e90–98, 2006.

[20] Robin Dowell and Sean R. Eddy. Evaluation of several lightweight stochastic
context-free grammars for RNA secondary structure prediction. BMC Bioinfor-
matics, 5(1):71, 2004.

[21] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, July 2002.

[22] Sean R. Eddy. A memory-efficient dynamic programming algorithm for optimal
alignment of a sequence to an RNA secondary structure. BMC Bioinformatics,
3(1):18, 2002.

168

8 Bibliography

[23] Sean R. Eddy and Richard Durbin. RNA sequence analysis using covariance models.
Nucleic Acids Research, 22(11):2079–2088, 1994.

[24] Andrew Fire, SiQun Xu, Mary K. Montgomery, Steven A. Kostas, Samuel E. Driver,
and Craig C. Mello. Potent and specific genetic interference by double-stranded
RNA in Caenorhabditis elegans. Nature, 391(6669):806–811, Feb 1998.

[25] Paul P. Gardner and Robert Giegerich. A comprehensive comparison of comparative
RNA structure prediction approaches. BMC Bioinformatics, 5(1):140, 2004.

[26] Costin M. Gherghe, Zahra Shajani, Kevin A. Wilkinson, Gabriele Varani, and
Kevin M. Weeks. Strong correlation between SHAPE chemistry and the gener-
alized NMR order parameter (S2) in RNA. J Am Chem Soc., 130(37):12244–5,
2008.

[27] Robert Giegerich. A systematic approach to dynamic programming in bioinformat-
ics. Bioinformatics, 16(8):665–677, 2000.

[28] Robert Giegerich. Explaining and Controlling Ambiguity in Dynamic Programming.
In Proc. Combinatorial Pattern Matching, volume 1848 of Springer Lecture Notes
in Computer Science, pages 46–59. Springer, 2000.

[29] Robert Giegerich. Introduction to Stochastic Context Free Grammars. In Jan
Gorodkin and Walter L Ruzzo, editors, RNA Sequence, Structure and Function :
Computational and Bioinformatic Methods. Springer, 2014.

[30] Robert Giegerich and Christian Höner zu Siederdissen. Semantics and Ambiguity
of Stochastic RNA Family Models. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 8:499–516, 2011.

[31] Robert Giegerich, Carsten Meyer, and Peter Steffen. A discipline of dynamic pro-
gramming over sequence data. Science of Computer Programming, 51(3):215–263,
June 2004.

[32] Robert Giegerich and Georg Sauthoff. Yield grammar analysis in the Bellman’s
GAP compiler. In Proceedings of the Eleventh Workshop on Language Descriptions,
Tools and Applications, LDTA ’11. ACM, 2011.

[33] Robert Giegerich and Peter Steffen. Challenges in the compilation of a domain
specific language for dynamic programming. In Proceedings of the 2006 ACM sym-
posium on Applied computing, SAC ’06, pages 1603–1609, New York, NY, USA,
2006. ACM.

[34] Robert Giegerich, Björn Voß, and Marc Rehmsmeier. Abstract shapes of RNA.
Nucleic Acids Research, 32(16):4843–4851, 2004.

[35] Walter Gilbert. Origin of life: The RNA world. Nature, 319(6055):618–618, Feb
1986.

169

8 Bibliography

[36] Alan Gillett, Petra Bergman, Roham Parsa, Andreas Bremges, Robert Giegerich,
and Maja Jagodic. A Silent Exonic SNP in Kdm3a Affects Nucleic Acids Structure
but Does Not Regulate Experimental Autoimmune Encephalomyelitis. PLoS ONE,
8(12):e81912, 12 2013.

[37] Michiaki Hamada, Hisanori Kiryu, Kengo Sato, Toutai Mituyama, and Kiyoshi
Asai. Prediction of RNA secondary structure using generalized centroid estimators.
Bioinformatics, 25(4):465–473, February 2009.

[38] J. Herold and S.G. Siddell. An ’elaborated’ pseudoknot is required for high fre-
quency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic
Acids Research, 21(25):5838–5842, 1993.

[39] Matthias Höchsmann, Björn Voß, and Robert Giegerich. Pure Multiple RNA Sec-
ondary Structure Alignments: A Progressive Profile Approach. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 1(1):53–62, 2004.

[40] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian L. Bonhoeffer, Man-
fred Tacker, and Peter Schuster. Fast Folding and Comparison of RNA Secondary
Structures. Monatsh. Chem., 125:167–188, 1994.

[41] Christian Höner zu Siederdissen. Sneaking around concatMap: efficient combinators
for dynamic programming. SIGPLAN Not., 47(9):215–226, September 2012.

[42] Philippe Horvath and Rodolphe Barrangou. CRISPR/Cas, the immune system of
bacteria and archaea. Science, 327(5962):167–170, 2010.

[43] Stefan Janssen and Robert Giegerich. Faster computation of exact RNA shape
probabilities. Bioinformatics, 26(5):632–639, 2010.

[44] Stefan Janssen, Jens Reeder, and Robert Giegerich. Shape based indexing for faster
search of RNA family databases. BMC Bioinformatics, 9:131+, February 2008.

[45] Stefan Janssen, Christian Schudoma, Gerhard Steger, and Robert Giegerich. Lost
in folding space? Comparing four variants of the thermodynamic model for RNA
secondary structure prediction. BMC Bioinformatics, 12(1):429, 2011.

[46] Minghui Jiang, James Anderson, Joel Gillespie, and Martin Mayne. uShuffle: A
useful tool for shuffling biological sequences while preserving the k-let counts. BMC
Bioinformatics, 9(1):192, 2008.

[47] Karim Lari and Steve J. Young. The estimation of stochastic context-free grammars
using the Inside-Outside algorithm. Computer Speech & Language, 4(1):35–56, 1990.

[48] Pan T. X. Li, Carlos Bustamante, and Jr. Ignacio Tinoco. Unusual mechanical
stability of a minimal RNA kissing complex. Proceedings of the National Academy
of Sciences, 103(43):15847–15852, 2006.

170

8 Bibliography

[49] John D. Liu, Liang Zhao, and Tianbing Xia. The Dynamic Structural Basis of
Differential Enhancement of Conformational Stability by 5- and 3-Dangling Ends
in RNA. Biochemistry, 47(22):5962–5975, 2008. PMID: 18457418.

[50] Ronny Lorenz, Stephan Bernhart, Christian Höner zu Siederdissen, Hakim Tafer,
Christoph Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA Package 2.0.
Algorithms for Molecular Biology, 6(1):26, 2011.

[51] W. Andy Lorenz, Yann Ponty, and Peter Clote. Asymptotics of RNA Shapes. J
Comput Biol, 15(1):31–63, 2008.

[52] Todd M. Lowe and Sean R. Eddy. tRNAscan-SE: A Program for Improved Detection
of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 25(5):0955–
964, 1997.

[53] Jian Lu, Yang Shen, Qingfa Wu, Supriya Kumar, Bin He, Suhua Shi, Richard W.
Carthew, San Ming Wang, and Chung-I Wu. The birth and death of microRNA
genes in Drosophila. Nat Genet, 40(3):351–355, 2008.

[54] Rune B. Lyngsø and Christian N. S. Pedersen. RNA Pseudoknot Prediction in
Energy-Based Models. Journal of Computational Biology, 7(3–4):409–427, 2000.

[55] Nicholas R. Markham and Michael Zuker. UNAFold: software for nucleic acid
folding and hybridization. Methods in molecular biology (Clifton, N.J.), 453:3–31,
2008.

[56] Manja Marz, Alexander Donath, Nina Verstraete, Van Trung Nguyen, Peter F.
Stadler, and Olivier Bensaude. Evolution of 7SK RNA and Its Protein Partners in
Metazoa. Molecular Biology and Evolution, 26(12):2821–2830, 2009.

[57] Manja Marz, Toralf Kirsten, and Peter F. Stadler. Evolution of Spliceosomal snRNA
Genes in Metazoan Animals. Journal of Molecular Evolution, 67(6):594–607, De-
cember 2008.

[58] Manja Marz, Axel Mosig, Bärbel M.R. Stadler, and Peter F. Stadler. U7 snRNAs:
A computational survey. Genomics, Proteomics & Bioinformatics, 5(3):187–195,
2007.

[59] Manja Marz and Peter F. Stadler. Comparative analysis of eukaryotic U3 snoRNA.
RNA Biol, 6(5):503–507, 2009.

[60] David H. Mathews, Matthew D. Disney, Jessica L. Childs, Susan J. Schroeder,
Michael Zuker, and Douglas H. Turner. Incorporating chemical modification con-
straints into a dynamic programming algorithm for prediction of RNA secondary
structure. Proceedings of the National Academy of Sciences of the United States of
America, 101(19):7287–7292, 2004.

171

8 Bibliography

[61] David H. Mathews, Jeffrey Sabina, Michael Zuker, and Douglas H. Turner. Ex-
panded sequence dependence of thermodynamic parameters improves prediction of
RNA secondary structure. Journal of Molecular Biology, 288:911–940, 1999.

[62] John S. McCaskill. The Equilibrium Partition Function and Base Pair Binding
Probabilities for RNA Secondary Structure. Biopolymers, 1990.

[63] Willem J. G. Melchers, Joost G. J. Hoenderop, Hilbert J. Bruins Slot, Cornelis
W. A. Pleij, Evgeny V. Pilipenko, Vadim I. Agol, and Joep M. D. Galama. Kissing
of the two predominant hairpin loops in the coxsackie B virus 3’ untranslated region
is the essential structural feature of the origin of replication required for negative-
strand RNA synthesis. J. Virol., 71(1):686–696, 1997.

[64] Eric P. Nawrocki and Sean R. Eddy. Query-Dependent Banding (QDB) for Faster
RNA Similarity Searches. PLoS Comput Biol, 3(3):e56, 03 2007.

[65] Eric P. Nawrocki and Sean R. Eddy. Infernal 1.1: 100-fold faster RNA homology
searches. Bioinformatics, 29(22):2933–2935, 2013.

[66] Markus E. Nebel and Anika Scheid. On quantitative effects of RNA shape abstrac-
tion. Theory in Biosciences, 128:211–225, 2009. 10.1007/s12064-009-0074-z.

[67] Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman. Al-
gorithms for Loop Matchings. SIAM Journal on Applied Mathematics, 35(1):68–82,
1978.

[68] Tatsuo Ohmichi, Shu-ichi Nakano, Daisuke Miyoshi, and Naoki Sugimoto. Long
RNA dangling end has large energetic contribution to duplex stability. J. Am.
Chem. Soc., 124:10367–10372, 2002.

[69] Janina Reeder, Jens Reeder, and Robert Giegerich. Locomotif: from graphical motif
description to RNA motif search. Bioinformatics, 23(13):i392, 2007.

[70] Janina Reeder, Peter F. Steffen, and Robert Giegerich. Effective ambiguity checking
in biosequence analysis. BMC Bioinformatics, 6(1):153, 2005.

[71] Jens Reeder and Robert Giegerich. Design, implementation and evaluation of a
practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinfor-
matics, 5(1):104, 2004.

[72] Jens Reeder and Robert Giegerich. Consensus shapes: an alternative to the Sankoff
algorithm for RNA consensus structure prediction. Bioinformatics, 21(17):3516–
3523, 2005.

[73] Christian M. Reidys, Fenix W. D. Huang, Jørgen E. Andersen, Robert C. Penner,
Peter F. Stadler, and Markus E. Nebel. Topology and prediction of RNA pseudo-
knots. Bioinformatics, 27(8):1076–1085, 2011.

172

8 Bibliography

[74] Jihong Ren, Baharak Rastegari, Anne E. Condon, and Holger H. Hoos. HotKnots:
Heuristic prediction of RNA secondary structures including pseudoknots. RNA,
11(10):1494–1504, 2005.

[75] Jessica S. Reuter and David H. Mathews. RNAstructure: software for RNA sec-
ondary structure prediction and analysis. BMC Bioinformatics, 11:129, 2010.

[76] Elena Rivas and Sean R. Eddy. A dynamic programming algorithm for RNA struc-
ture prediction including pseudoknots. Journal of Molecular Biology, 285(5):2053–
2068, 1999.

[77] Einar Andreas Rødland. Pseudoknots in RNA Secondary Structures: Representa-
tion, Enumeration, and Prevalence. Journal of Computational Biology, 13(6):1197–
1213, 2006.

[78] David Sankoff. Simultaneous Solution of the RNA Folding, Alignment and Proto-
sequence Problems. SIAM Journal on Applied Mathematics, 45(5):810–825, 1985.

[79] Georg Sauthoff. Bellman’s GAP: A 2nd Generation Language and System for Al-
gebraic Dynamic Programming. PhD thesis, Bielefeld University, 2011.

[80] Georg Sauthoff, Stefan Janssen, and Robert Giegerich. Bellman’s GAP - A Declar-
ative Language for Dynamic Programming. In Proceedings of 13th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming, PPDP ’11. ACM, 2011.

[81] Georg Sauthoff, Mathias Möhl, Stefan Janssen, and Robert Giegerich. Bellman’s
GAP–a language and compiler for dynamic programming in sequence analysis.
Bioinformatics, 29(5):551–560, 2013.

[82] Claude E. Shannon and Warren Weaver. A mathematical theory of communication.
American Telephone and Telegraph Company, 1948.

[83] Jana Sperschneider, Amitava Datta, and Michael J. Wise. Heuristic RNA pseudo-
knot prediction including intramolecular kissing hairpins. RNA, 17(1):27–38, 2011.

[84] Peter Steffen. Compiling a Domain Specific Language for Dynamic Programming.
PhD thesis, University of Bielefeld, Germany, 2006.

[85] Peter Steffen and Robert Giegerich. Versatile and declarative dynamic programming
using pair algebras. BMC Bioinformatics, 6(1):224, 2005.

[86] Peter Steffen and Robert Giegerich. Table Design in Dynamic Programming. In-
formation and Computation, 204(9):1325–1345, 2006.

[87] Corinna Theis, Stefan Janssen, and Robert Giegerich. Prediction of RNA Secondary
Structure Including Kissing Hairpin Motifs. In Vincent Moulton and Mona Singh,
editors, Algorithms in Bioinformatics, volume 6293 of Lecture Notes in Computer
Science, pages 52–64. Springer Berlin Heidelberg, 2010.

173

8 Bibliography

[88] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTAL W: im-
proving the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids
Research, 22(22):4673–4680, 1994.

[89] Jr. Ignacio Tinoco and Carlos Bustamante. How RNA folds. Journal of Molecular
Biology, 293(2):271–281, 1999.

[90] F. H. D. van Batenburg, A. P. Gultyaev, and Cornelis W. A. Pleij. PseudoBase:
structural information on RNA pseudoknots. Nucl. Acids Res., 29(1):194–195, 2001.

[91] Björn Voß, Robert Giegerich, and Marc Rehmsmeier. Complete probabilistic anal-
ysis of RNA shapes. BMC Biology, 4(1):5, 2006.

[92] Amy E. Walter, Douglas H. Turner, James Kim, Matthew H. Lyttle, Peter Müller,
David H. Mathews, and Michael Zuker. Coaxial stacking of helixes enhances binding
of oligoribonucleotides and improves predictions of RNA folding. Proc. Nat. Acad.
Sci. U.S.A., 91:9218–9222, 1994.

[93] Michael S. Waterman. Introduction to computational biology. Maps, sequences and
genomes. Chapman & Hall, London, 1995.

[94] Kevin A. Wilkinson, Edward J. Merino, and Kevin M. Weeks. Selective 2-hydroxyl
acylation analyzed by primer extension (SHAPE): quantitative RNA structure anal-
ysis at single nucleotide resolution. Nature protocols, 1(3):1610–1616, 2006.

[95] Stefan Wuchty, Walter Fontana, Ivo L. Hofacker, and Peter Schuster. Complete
suboptimal folding of RNA and the stability of secondary structures. Biopolymers,
49(2):145–165, February 1999.

[96] Tianbing Xia, John Jr. SantaLucia, Mark E. Burkard, Ryszard Kierzek, Susan J.
Schroeder, Xiaoqi Jiao, Christopher Cox, and Douglas H. Turner. Thermodynamic
parameters for an expanded nearest-neighbor model for formation of RNA duplexes
with Watson-Crick base pairs. Biochemistry, 37:14719–14735, 1998.

[97] Michael Zuker. Mfold web server for nucleic acid folding and hybridization predic-
tion. Nucleic Acids Research, 31:3406–3415, 2003.

174

8 Bibliography

Contributions

My scientific contributions comprises the following list of peer-reviewed articles, a
textbook chapter and conference talks or posters:

Peer-reviewed articles

• Parts of Chapter 3 have been published as:
Stefan Janssen, Christian Schudoma, Gerhard Steger, and Robert Giegerich.
Lost in folding space? Comparing four variants of the thermodynamic model for
RNA secondary structure prediction. BMC Bioinformatics, 12(1):429, 2011.

• Parts of Chapter 4 have been published as:
Stefan Janssen and Robert Giegerich. Faster computation of exact RNA shape
probabilities. Bioinformatics, 26(5):632–639, 2010.

• Parts of Chapter 5 have been published as:
Corinna Theis, Stefan Janssen, and Robert Giegerich. Prediction of RNA Sec-
ondary Structure Including Kissing Hairpin Motifs. In Vincent Moulton and
Mona Singh, editors, Algorithms in Bioinformatics, volume 6293 of Lecture Notes
in Computer Science, pages 52–64. Springer Berlin Heidelberg, 2010.

• Stefan Janssen, Jens Reeder, and Robert Giegerich. Shape based indexing for
faster search of RNA family databases. BMC Bioinformatics, 9:131+, February
2008.

• Jan-Philip Schlüter, Jan Reinkensmeier, Svenja Daschkey, Elena Evguenieva-Ha-
ckenberg, Stefan Janssen, Sebastian Jänicke, Jörg Becker, Robert Giegerich, and
Anke Becker. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing
alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics, 11(1):245, 2010.

• Florian Grond, Stefan Janssen, Stefanie Schirmer, and Thomas Hermann.
Browsing RNA structures by interactive sonification. Proceedings of the 3rd Inter-
active Sonification Workshop, (Human Interaction with Auditory Displays), 2010.

• Georg Sauthoff, Stefan Janssen, and Robert Giegerich. Bellman’s GAP - A
Declarative Language for Dynamic Programming. In Proceedings of 13th Inter-
national ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming, PPDP ’11. ACM, 2011.

• Georg Sauthoff, Mathias Möhl, Stefan Janssen, and Robert Giegerich. Bellman’s
GAP–a language and compiler for dynamic programming in sequence analysis.
Bioinformatics, 29(5):551–560, 2013.

175

8 Bibliography

Textbook Chapter

• Stefan Janssen and Robert Giegerich. Abstract Shape Analysis of RNA. RNA
Bioinformatics tba, 2014.

Conferences

Talk Ambivalent Covariance Models., “10. Herbstseminar der Bioinformatik”, Doubice,
Czech Republic, 2 – 7 Oct 2012.

Talk Multiple Consensus Structures for Infernal Style Covariance Models., “Computa-
tional methods for RNA analysis.”, Benasque, Spain, 22 Jul – 3 Aug 2012.

Talk Longer, deeper and affordable kisses, “LIX Bioinformatics Colloquium”, Paris,
France, 8 – 10 Nov 2010.

Poster Longer, deeper and affordable kisses, “The Non-Coding Genome”, Heidelberg, Ger-
many, 13 – 16 Oct 2010.

Talk Prediction of RNA secondary structure including kissing hairpin motifs, “10th
Workshop on Algorithms in Bioinformatics”, Liverpool, UK, 6 – 10 Sep 2010.

Lecture RNAshapes, “Theory and Practice of Computational RNA Biology – An EMBO
Practical Course”, Cargèse, France, 26 Apr – 1 May 2010

Talk Role of structure on Rfam., “Computational methods for RNA analysis.”, Be-
nasque, Spain, 26 Jul – 8 Aug 2009.

Talk A runtime heuristic for faster probabilistic analysis of RNA abstract shapes.,
“Bioinformatics Research and Education Workshop (BREW).”, Helsinki, Finland,
26 – 29 April 2009.

Talk Shape based indexing for faster search of RNA family databases., “Non-Coding
RNAs: Computational Challenges and Applications”, Antalya, Turkey, 28 – 29
April 2008.

Software

In the course of this work, I developed and maintain the following software packages.
They can be downloaded as source code, installed as Debian packages or used as web-
services or submission pages via our webserver BiBiServ. All algorithms are coded in
Bellman’s GAP. User interaction is realized via Perl wrappers.

• RNAshapes: RNA secondary structure prediction and shape abstraction for RNA
sequences.
http://bibiserv.cebitec.uni-bielefeld.de/rnashapes

176

http://bibiserv.cebitec.uni-bielefeld.de/rnashapes

8 Bibliography

• RNAalishapes: RNA secondary structure prediction and shape abstraction for
sequence alignments.
http://bibiserv.cebitec.uni-bielefeld.de/rnaalishapes

• pKiss: A tool for secondary structure prediction including kissing hairpin motifs.
http://bibiserv.cebitec.uni-bielefeld.de/pkiss

• RapidShapes: A heuristics which computes the shapes above a specified proba-
bility threshold T by generating a list of promising shapes and constructing spe-
cialized folding programs for each shape to compute its probability.
http://bibiserv.cebitec.uni-bielefeld.de/rapidshapes

• KnotInFrame: A pipeline to predict ribosomal -1 frameshift sites with a simple
pseudoknot as secondary structure in DNA and RNA sequences.
http://bibiserv.cebitec.uni-bielefeld.de/knotinframe

• aCMs: Ambivalent Covariance Models are stochastic homology search tools that
support more than one consensus secondary RNA structures.
http://bibiserv.cebitec.uni-bielefeld.de/acms

The site http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars shall serve as
a lean documentation of the different code components.

177

http://bibiserv.cebitec.uni-bielefeld.de/rnaalishapes
http://bibiserv.cebitec.uni-bielefeld.de/pkiss
http://bibiserv.cebitec.uni-bielefeld.de/rapidshapes
http://bibiserv.cebitec.uni-bielefeld.de/knotinframe
http://bibiserv.cebitec.uni-bielefeld.de/acms
http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars

9 Appendices

9.1 Appendix A: Complete set of all 20 TDM
generators.

The basic concept of a TDM generator for a given shape string has been explained
in Section 4.2.2, i. e. we parse the shape string with a TDM grammar (e. g. GTDM5)
and evaluate the single candidate with a TDM algebra (e. g. Itdm OverDangle 5) into
Bellman’s GAP code for a specialized grammar. The previous text was about gener-
ating a TDM grammar, following the OverDangle prototype, for shape strings of level 5.
Here, we give details about generators for the missing 4 shape levels, first for OverDan-
gle prototypes, later for the three remaining prototype grammars NoDangle, MicroState
and MacroState. We start by completing the signature ΣTDM in Table 9.1, where all
algebra functions are defined. Then, the parsing grammars are presented and finally we
give all detailes about the evaluation algebras.

9.1.1 Common Signature

Table 4.2 in Section 4.2.2 of the main text contains only a small part of the complete sig-
nature ΣTDM , namely those algebra functions used by grammar GTDM5 . The advantage
of using just one signature for different grammars is the re-usability of large code blocks
due to inheritance. On the downside, we have to define and implement all functions,
even if they are not used by a specific grammar (here GTDM5 , which only uses 11 out of
83 functions). Thus, we decided to show only this small part of ΣTDM in the main text
and postpone full definition to Table 9.1.

9.1.2 TDM grammars

Shape level 5

See Section 4.2.2, Figure 4.2.2.

Shape level 4

Compared to level 5 shapes, level 4 additionally recognizes helix interruptions if they
stem from internal loops, cf. algebras Iπ5 and Iπ4 in Table 3.2. To respond to this
interruption, GTDM4 – see Figure 9.1 – has the extra production:

comp→ helixinterrupt([, strong(comp),]).

179

9 Appendices

Table 9.1: Common Signature ΣTDM for GTDM5 and the other 5 TDM grammars, see
Section 9.1

root(S) mldladr(S,A) lastcombine2 b(S,A,S)
dangle(S) mladldr(A,S) nextcombine3 a(S,S)
next hlmode(S,S) ml(S) nextcombine3 b(S,S)
last hlmode(S) next hlmode r(S,A,S) nextacomb3 a(S,A,S)
unpaired(A) last r(S,A,S) lastcombine3 a(S,A,S,A)
strong(S) last (S,S) lastcombine3 b(S,S,A)
hairpin(A,A) last ml (S) lastacomb3 a(S,A,S,A)
multiloop(A,S,A) last ml r(S,S) nextcombine4 a(A,S,S)
next mlmode(S,S) next ml r(S,A,S) nextcombine4 b(A,S,S)
last mlmode(S,S) mlend (A) nextacomb4 a(A,S,A,S)
internalloop(A,A,S,A,A) mlnil(A) lastcombine4 a(A,S,S,A)
leftbulge(A,A,S,A) p(A,S) lastcombine4 b(A,S,A,S,A)
rightbulge(A,S,A,A) nil() lastacomb4 a(A,S,A,S,A)
helixinterrupt(A,S,A) trafo(S) block dl(S)
mladdss(A) nextambd(A,S,A,S) block dlr(S)
mlend() nextcadda(A,S,S) no dl ss end next(S)
sadd(A,S) nextcadd(A,S,S) no dl ss end last(S)
saddml(A,S) lastcadda(A,S) no dl no ss end next(S)
drem(S) lastcadd(A,S,S) no dl no ss end last(S)
edl(S) nextcaddc(S,S) dl or ss left no ss end next(S)
edr(S) nextambda(S,A,S) dl or ss left no ss end last(S)
edlr(S) lastcaddb(S,S) dl or ss left ss end next(S)
mldl(S) comb1 a(A,S,A,S) dl or ss left ss end last(S)
mladl(A,S) combine1 a(A,S,S) leftunpairedend(A)
mldr(S) nextcombine1 b(A,S,S) leftunpaired(S)
mladr(S,A) lastcombine1 b(A,S,A,S) unpaired macrostate(S)
mldlr(S) nextcombine2 b(S,S)
mladlr(A,S,A) acomb2 a(S,A,S) code = convert(S)

180

9.1 Appendix A: Complete set of all 20 TDM generators.

convert

structure

head unpaired

_

root

cons_hlmode

structure

hairpin

[]

helixinterrupt

[strong]

comp

comp multiloop

[cons_mlmode]

last_hlmode

danglecomp

next_hlmode

danglecomp cons_hlmode

cons_hlmode last_mlmode

danglecomp danglecomp

next_mlmode

danglecomp cons_mlmode

cons_mlmode

dangle

strong

comp

danglecomp

Figure 9.1: Grammar GTDM4 to generate specialized tree grammars for shape levels 4,
which is identical to grammar GTDM3 for shape level 3.

convert

structure

head unpaired

_

root

cons_hlmode

structure

hairpin

[]

comp multiloop

[cons_mlmode]

leftbulge

[_ strong]

comp

rightbulge

[strong _]

comp

internalloop

[_ strong _]

comp

last_hlmode

danglecomp

next_hlmode

danglecomp cons_hlmode

cons_hlmode last_mlmode

danglecomp danglecomp

next_mlmode

danglecomp cons_mlmode

cons_mlmode

dangle

strong

comp

danglecomp

Figure 9.2: Grammar GTDM2 to generate specialized tree grammars for shape levels 2.

Everything else is identical to GTDM5 (Figure 4.1).

Shape level 3

The difference between shape levels 4 and 3 is that helix interruptions by left or right
bulges are recognized in level 3, but not in level 4. The shape string remains of the
same kind, just . . . [[. . .]] . . . situations appear more often due to more recorded stem
interruptions. Level 3 reports more helix interruptions, but from the shape string itself
we cannot conclude the type of the interruption, i. e. it is treated identically. Thus, we
can reuse the same grammar of Figure 9.1 for GTDM3 .

Shape level 2

Shape level 2 is also about helix interruptions. Due to the newly introduced underscore
character , we can distinguish between internal loops ([. . .]) and left ([. . .]) or
right bulges ([. . .]). This is reflected by the three separate productions internalloop,
leftbulge and rightbulge for the non-terminal comp of GTDM2 , see Figure 9.2.

181

9 Appendices

convert

structure

head root

cons_hlmode

structure

hairpin

[]

comp multiloop

[next_mlmode]

leftbulge

[_ strong]

comp

rightbulge

[strong _]

comp

internalloop

[_ strong _]

comp

last_hlmode

danglecomp

next_hlmode

danglecomp cons_hlmode

cons_hlmode unpaired

_ _ last_hlmode

danglecomp

sadd

_ next_hlmode

danglecomp cons_hlmode

sadd

dangle

strong

comp

danglecomp

next_mlmode

danglecomp next_mlcomp

next_mlmode

danglecomp last_mlcomp _ next_mlmode

danglecomp next_mlcomp

saddml saddml

_ next_mlmode

danglecomp last_mlcomp

next_mlcomp

last_mlmode

danglecomp mladdss

_ ε

last_mlmode

danglecomp mlend

last_mlcomp

_ last_mlmode

danglecomp mladdss

saddml

_

saddml

_ last_mlmode

danglecomp mlend

ε

Figure 9.3: Grammar GTDM1 to generate specialized tree grammars for shape levels 1.

Shape level 1

Shape level 1 also accounts for all stretches of unpaired bases, which might precede
(sadd, saddml) or follow (mladdss) any closed component. Grammar GTDM1 must reflect
all these situations individually, thus bloating the set of productions rules, see Figure
9.3.

Shape level 1 for MacroState The prototype grammar GMacroState has been developed
with the objective to be semantically unambiguous regarding the Vienna-Dot-Bracket
semantics. A level 1 shape string [] [] might produce structures like ((...)).((...))

or ((...))..((...)). It is fundamental for being unambiguous that the central un-
paired base of the first structure is parsed by the GMacroState production noleft dangle→
ambd’(nodangle, b, noleft dangle) and no other. For the second structure, the mid-
dle two unpaired bases should only be parsable by the production noleft dangle →
cadd”(edangler, {left dangle|left unpaired}). Compare with Figure 3.2.6. The last
alternative cadd”’ of non-terminal noleft dangle from GMacroState can never be used for
the complete shape [] []. Thus, a generator grammar GTDMMacroState

1
– see Figures 9.4

and 9.5 – has to track the different ways to parse the input shape string, which directly
comes with more than one parse. Now, the generator grammar is not syntactically
unambiguous any more.

182

9.1 Appendix A: Complete set of all 20 TDM generators.

comp strong

hairpin

[]

strong

leftbulge

[_ comp]

strong

rightbulge

[comp _]

strong

internalloop

[_ comp _]

strong

multiloop

[startml]

convert

structure

head

structure unpaired_macrostate

leftunpairedend

_

leftunpaired

root

left_dangle

trafo

noleft_dangle

left_dangle nextambd

edl

comp

noleft_dangle_ _

nextcadda

edl

comp

_ noleft_dangle

nextcadd

edlr

comp

_ leftunpaired

left_dangle

lastcadda

_ edl

comp

lastcadd

comp

edlr leftunpairedend

_

noleft_dangle next_hlmode

comp

edr leftunpaired

left_dangle

nextcaddc

comp

drem noleft_dangle

nextambda

comp

_drem noleft_dangle

lastcaddb

comp

edr leftunpairedend

_

last_hlmode

drem

comp

startml mldl

mlcomps1

mladl

_ mlcomps2

mldr

mlcomps3

mladr

mlcomps2 _

mldlr

mlcomps4

mladlr

mlcomps2_ _

mldladr

mlcomps1 _

mladldr

_ mlcomps3

ml

mlcomps2

Figure 9.4: Part 1 of 2: Grammar GTDMMacroState
1

to generate specialized tree grammars

for shape levels 1 for the MacroState prototype.

mlcomps1

combine1_a

_ block_dl

edl

comp

no_dl_no_ss_end__next

mlcomps2

combine1_a

_ block_dl

edl

comp

no_dl_no_ss_end__last

drem

comp

nextcombine1_b

_ block_dlr

comp

edlr dl_or_ss_left_no_ss_end__next

mlcomps1

lastcombine1_b

_ block_dlr

comp

edlr _ dl_or_ss_left_no_ss_end__last

block_dl

edl

compcomb1_a

_ block_dl

edl

comp

_ no_dl_no_ss_end__next

mlcomps2

comb1_a

_ block_dl

edl

comp

_ no_dl_no_ss_end__last

drem

comp

mlcomps2

next_mlmode

comp

drem no_dl_no_ss_end__next

mlcomps2

next_mlmode

comp

drem no_dl_no_ss_end__last

drem

comp

nextcombine2_b

comp

edr dl_or_ss_left_no_ss_end__next

mlcomps1

lastcombine2_b

comp

edr _ dl_or_ss_left_no_ss_end__last

block_dl

edl

comps

acomb2_a

comp

drem _ no_dl_no_ss_end__next

mlcomps2

acomb2_a

comp

drem _ no_dl_no_ss_end__last

drem

comp

mlcomps3

nextcombine3_a

comp

edr dl_or_ss_left_ss_end__next

mlcomps4

lastcombine3_a

comp

edr _ dl_or_ss_left_ss_end__last

block_dlr

edlr _

comp

nextcombine3_b

comp

drem no_dl_ss_end__next

mlcomps3

lastcombine3_b

comp

drem no_dl_ss_end__last

edr

comps _

nextacomb3_a

comp

drem _ no_dl_ss_end__next

mlcomps3

lastacomb3_a

comp

drem _ no_dl_ss_end__last

edr

comp _

mlcomps4

nextcombine4_a

_ block_dl

edl

comp

no_dl_ss_end__next

mlcomps3

lastcombine4_a

_ block_dl

edl

comp

no_dl_ss_end__last

edr

comp _

nextcombine4_b

_ block_dlr

comp

edlr dl_or_ss_left_ss_end__next

mlcomps4

lastcombine4_b

_ block_dlr

comp

edlr _ dl_or_ss_left_ss_end__last

block_dlr

edlr

comp _nextacomb4_a

_ block_dl

edl

comp

_ no_dl_ss_end__next

mlcomps3

lastacomb4_a

_ block_dl

edl

comp

_ no_dl_ss_end__last

edr

comp _

Figure 9.5: Part 2 of 2: Grammar GTDMMacroState
1

to generate specialized tree grammars

for shape levels 1 for the MacroState prototype.

183

9 Appendices

convert

structure

head

comp strong

hairpin

[]

strong

leftbulge

[_ comp]

strong

rightbulge

[comp _]

strong

internalloop

[_ comp _]

strong

multiloop

[startml]

structure root

unpaired
_

root

left_dangle

root

noleft_dangle

left_dangle

edl

next_hlmode

p

comp

_

left_dangle

edl

p

comp

last__

nil

ε

left_dangle

sadd

comp

drem

next_hlmode_

noleft_dangle

sadd

comp

drem

next_hlmode_

sadd

comp

unpaireddrem

last__

_

sadd

comp

nildrem

last__

ε

edlr

next_hlmode

p

comp

_

left_dangle

edlr

p

comp

last_r_

_ nil

ε

left_dangle

sadd

comp

edl

next_hlmode_

noleft_dangle

sadd

comp

edl

next_hlmode_

sadd

comp

unpairededl

last__

_

sadd

comp

niledl

last__

ε

edl

next_hlmode

p

comp

_

noleft_dangle

edl

p

comp

last__

unpaired

_

left_dangle

sadd

comp

edr

next_hlmode_

edr

next_hlmode_r

sadd

comp

_

_ noleft_dangle

sadd

comp

unpairededr

last__

_

sadd

comp

niledr

last_r_

_ ε

edlr

next_hlmode_r

p

comp

_

_ noleft_dangle

edlr

p

comp

last__

unpaired

_

left_dangle

sadd

comp

edlr

next_hlmode_

edlr

next_hlmode_r

sadd

comp

_

_ noleft_dangle

sadd

comp

unpairededlr

last__

_

sadd

comp

niledlr

last_r_

_ ε

Figure 9.6: Part 1 of 2: Grammar GTDMMicroState
1

to generate specialized tree grammars

for shape levels 1 for the MicroState prototype.

Shape level 1 for MicroState Similar to MacroState, we need a set of parses for
the input shape string when generating grammars for MicroState. Each stem of a Mi-
croState structure is the source for maximal four possible ways how to dangle neighbor-
ing unpaired bases; but the same base cannot be dangled to two different stems. Thus,
shape string [] [] must facilitate three different dangling situations for a structure like
((...)).((...)): 1) central unpaired base dangles to the left component, 2) to the
right component or 3) to none of them. A situation where the central unpaired base
dangles to both components must be forbidden, which means that GTDMMicroState

1
cannot

treat the components separately. All the positions where one or more unpaired bases
can be part of a secondary structure forces GTDMMicroState

1
to have a tremendous amount

of production rules, see Figures 9.6 and 9.7.

9.1.3 TDM algebras

Shape level 5, OverDangle prototype

See Section 4.2.2, Table 4.1.

184

9.1 Appendix A: Complete set of all 20 TDM generators.

last_left_ml_end

p

_ last_mlmode

edl mlend_

comp _

p

_ last_mlmode

edlr mlend_

comp _

p

_ last_ml_r

edlr mlnil

comp _

saddml

_ last_mlmode

drem mlend_

comp _

saddml

_ last_mlmode

edl mlend_

comp _

saddml

_ last_mlmode

edr mlend_

comp _

saddml

_ last_ml_r

edr mlnil

comp _

saddml

_ next_mlmode

edlr mlend_

comp _

saddml

_ last_ml_r

edlr mlnil

comp _

last_noleft_ml_end

last_mlmode

drem mlend_

comp _

last_ml_r

edr mlnil

comp _

last_mlmode

edr mlend_

comp _

last_left_ml_noend

saddml

_ last_ml_

drem

comp

saddml

_ last_ml_

edl

comp
p

_ last_ml_

edl

comp

last_noleft_ml_noend

last_ml_

drem

comp

last_ml_end

noleft_ml_end | last_noleft_ml_endedl

p

_ next_mlmode

comp

left_ml_end | last_left_ml_endedl

p

_ next_mlmode

comp

_ noleft_ml_end | last_noleft_ml_endedlr

p

_ next_ml_r

comp

left_ml_end | last_left_ml_endedlr

p

_ next_mlmode

comp

noleft_ml_end | last_noleft_ml_enddrem

saddml

_ next_mlmode

comp

noleft_ml_end | last_noleft_ml_endedl

saddml

_ next_mlmode

comp

_ noleft_ml_end | last_noleft_ml_endedr

saddml

comp

_ next_ml_r

_ noleft_ml_end | last_noleft_ml_endedlr

saddml

comp

_ next_ml_r

left_ml_end | last_left_ml_enddrem

saddml

_ next_mlmode

comp

left_ml_end | last_left_ml_endedl

saddml

_ next_mlmode

comp

left_ml_end | last_left_ml_endedr

saddml

_ next_mlmode

comp

left_ml_end | last_left_ml_endedlr

saddml

_ next_mlmode

comp

noleft_ml_end

_ noleft_ml_end | last_noleft_ml_endedr

next_ml_r

comp

left_ml_end | last_left_ml_endedr

next_mlmode

comp

noleft_ml_end | last_noleft_ml_enddrem

next_mlmode

comp

left_ml_end | last_left_ml_enddrem

next_mlmode

comp

noleft_ml_noend

_ noleft_ml_noend | last_noleft_ml_noendedr

next_ml_r

comp

left_ml_noend | last_left_ml_noendedr

next_mlmode

comp

noleft_ml_noend | last_noleft_ml_noenddrem

next_mlmode

comp

left_ml_noend | last_left_ml_noenddrem

next_mlmode

comp

noleft_dangledrem

next_hlmode

comp

noleft_dangle

left_dangledrem

next_hlmode

comp

left_dangleedr

next_hlmode

comp

_ noleft_dangleedr

next_hlmode_r

comp

comp ε

nildrem

last_

comp ε

_ niledr

last_r

comp _

unpaireddrem

last_

comp _

unpairededr

last_

last_ml_noend

noleft_ml_noend | last_noleft_ml_noenddrem

saddml

_ next_mlmode

comp

noleft_ml_noend | last_noleft_ml_noendedl

saddml

_ next_mlmode

comp

_ noleft_ml_noend | last_noleft_ml_noendedr

saddml

_ next_ml_r

comp

_ noleft_ml_noend | last_noleft_ml_noendedlr

saddml

_ next_ml_r

comp

left_ml_noend | last_left_ml_noenddrem

saddml

_ next_mlmode

comp

left_ml_noend | last_left_ml_noendedl

saddml

_ next_mlmode

comp

left_ml_noend | last_left_ml_noendedr

saddml

_ next_mlmode

comp

left_ml_noend | last_left_ml_noendedlr

saddml

_ next_mlmode

comp

noleft_ml_noend | last_noleft_ml_noendedl

p

_ next_mlmode

comp

left_ml_noend | last_left_ml_noendedl

p

_ next_mlmode

comp

_ noleft_ml_noend | last_noleft_ml_noendedlr

p

_ next_ml_r

comp

left_ml_noend | last_left_ml_noendedlr

p

_ next_mlmode

comp

noleft_ml_noend | last_noleft_ml_noenddrem

p

_ next_mlmode

comp

left_ml_noend | last_left_ml_noenddrem

p

_ next_mlmode

comp

startml

mladlr

_ noleft_ml_noend _

mladr

noleft_ml_noend _

mladl

_ noleft_ml_noend

ml

noleft_ml_noend

ml

left_ml_noend

mldl

left_ml_noend

mladr

left_ml_noend _

mldladr

left_ml_noend _

mladldr

_ noleft_ml_end

mldr

noleft_ml_end

mladl

_ noleft_ml_end

ml

noleft_ml_end

ml

left_ml_end

mldl

left_ml_end

mldr

left_ml_end

mldlr

left_ml_end

Figure 9.7: Part 2 of 2: Grammar GTDMMicroState
1

to generate specialized tree grammars

for shape levels 1 for the MicroState prototype.

185

9 Appendices

Table 9.2: TDM algebra for shape level 4, following the OverDangle prototype grammar.

algebra function Itdm OverDangle 4 −B Itdm OverDangle 5

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

weakx → leftBx

weakx → rightBx

stackx → sr(b,weakx, b)bp
leftBx → bl(b, r≤ 30, strongx, b)bp
rightBx → br(b, strongx, r≤ 30, b)bp

helixinterrupt(a, x, b) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp

Table 9.3: TDM algebra for shape level 3, following the OverDangle prototype grammar.

algebra function Itdm OverDangle 3 −B Itdm OverDangle 5

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

stackx → sr(b,weakx, b)bp
helixinterrupt(a, x, b) weak[x] → iloop[x]

weak[x] → leftB[x]

weak[x] → rightB[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightB[x] → br(b, strongx, r≤ 30, b)bp
iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp

Shape level 4, OverDangle prototype

In shape level 4 a stem and a stem interruption by an internal loop has to be distinguished
to control the presents of such an interruption. Thus, Itdm OverDangle 4 – see Table 9.2 –
basically inherits all algebra functions from Itdm OverDangle 5, but the productions for an
internal loop (iloop and weak) are moved from strong to helixinterrupt.

Shape level 3, OverDangle prototype

The same argument as in level 4 applies to shape level 3. Stem interruptions are
recognized still for internal loops but now also for left and right bulges. Thus, in
Itdm OverDangle 3 (Table 9.3) productions for these three structural motifs move from
strong to helixinterrupt.

186

9.1 Appendix A: Complete set of all 20 TDM generators.

Table 9.4: TDM algebra for shape level 2, following the OverDangle prototype grammar.

algebra function Itdm OverDangle 2 −B Itdm OverDangle 5

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

stackx → sr(b,weakx, b)bp
leftbulge(a, b, x, d) weak[x] → leftB[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightbulge(a, x, c, d) weak[x] → rightB[x]

rightB[x] → br(b, strongx, r≤ 30, b)bp
internalloop(a, b, x, c, d) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp

Shape level 2, OverDangle prototype

Level 2 is still about helix interruptions, but their types are now treated differently. Thus,
Itdm OverDangle 2 (Table 9.4) contains not just one general algebra function helixinterrupt,
but three interruption specific ones leftbulge, rightbulge and internalloop.

Shape level 1, OverDangle prototype

Shape level 1 represents every unpaired base in the shape string with one underscore
(). Situations where two stretches of unpaired bases (both represented with an) for
two sub-motifs are combined, have to be handled with care, such that the concatenation
cannot have two adjacent underscores. For functions last hlmode and last mlmode, the
algebra function of Itdm OverDangle 1 (Table 9.5) itself rather than the grammar design
must cope with this concatenation problem. Read an unsatisfied if-clause as redirecting
the so far composed set of grammar rules to the next algebra function without adding
any further rules.

Shape levels 5 to 1, NoDangle prototype

Since the different scoring evaluation between OverDangle and NoDangle stem from us-
ing different algebras – namely IOverDanglebwe and Ibwe – and not from different grammars,
the TDM grammar generator for NoDangle is identical to OverDangle. Assume we gen-
erate Gp, the result of folding sequence s will follow the OverDangle model when execut-

ing the Bellman’s GAP instance Gp(IOverDanglebwe , s) and it would follow the NoDangle
model with instance Gp(Ibwe, s) – using the very same Grammar Gp.

Shape levels 5 to 2, MicroState prototype

Difference between MicroState and OverDangle is the way of dangling bases directly
adjacent to stems. While OverDangle always dangles everything next to a stem (drem or

187

9 Appendices

Table 9.5: TDM algebra for shape level 1, following the OverDangle prototype grammar.

algebra function Itdm OverDangle 1 −B Itdm OverDangle 5

root(x) struct→ structx

next hlmode(x, y) structxy → cadd(danglex, structy)
last hlmode(x)

{
structx → danglex if x 6=

unpaired(a) struct → sadd(b, struct)
struct → sadd(b, nil(l))

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

stackx → sr(b,weakx, b)bp
hairpin(a, b) weak[] → hairpin[]

hairpin[] → hl(b, r≥ 3, b)bp
multiloop(a, x, b) weak[x] → multiloop[x]

multiloop[x] → ml(b,ml compsx, b)bp
next mlmode(x, y) ml compsxy → cadd(incl(danglex),ml compsy)

last mlmode(x, y)

{
ml compsxy → addss(incl(danglex), r) if y =
ml compsxy → incl(danglex) otherwise

leftbulge(a, b, x, d) weak[x] → leftB[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightbulge(a, x, c, d) weak[x] → rightB[x]

rightB[x] → br(b, strongx, r≤ 30, b)bp
internalloop(a, b, x, c, d) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp
mladdss(a)

mlend() ε
sadd(a, x) struct x → sadd(b, struct x)

struct x → sadd(b, structx)
saddml(a, x) ml comps x → sadd(b,ml comps x)

ml comps x → sadd(b,ml compsx)

188

9.1 Appendix A: Complete set of all 20 TDM generators.

Table 9.6: TDM algebra for shape level 5, following the MicroState prototype grammar.

algebra function Itdm MicroState 5 −B Itdm OverDangle 5

Itdm MicroState 4 −B Itdm OverDangle 4

Itdm MicroState 3 −B Itdm OverDangle 3

Itdm MicroState 2 −B Itdm OverDangle 2

dangle(x) danglex → drem(l, strongx, l)
danglex → edl(b, strongx, l)
danglex → edr(l, strongx, b)
danglex → edlr(b, strongx, b)

multiloop(a, x, b) weak[x] → multiloop[x]

multiloop[x] → ml(b,ml compsx, b)bp
multiloop[x] → mldl(b, b,ml compsx, b)bp
multiloop[x] → mldr(b,ml compsx, b, b)bp
multiloop[x] → mldlr(b, b,ml compsx, b, b)bp

ml) – be it available or not – MicroState discriminates four different possibilities: 1) drem
and ml, 2) edl and mldl, 3) edr and mldr and 4) edlr and mldlr. Thus, TDM algebras
Itdm MicroState i for 5 ≤ i ≤ 2 (see Table 9.6) inherit everything from Itdm OverDangle i, but
extend the dangling possibilities in algebra functions dangle and multiloop.

Shape level 1, MicroState prototype

Due to the elaborate design of Grammar GTDMMicroState
1

(Figures 9.6 and 9.7), which uses a
lot of additional algebra functions, TDM algebra Itdm MicroState 1 (Table 9.7) can inherit
the core from Itdm OverDangle 5 but needs to define all these new algebra functions. Since
GTDMMicroState

1
is syntactically ambiguous, the choice function here must merge (∪rules) the

set of rules from several different parses. It is implemented as an external C++ function
merge, which basically uniquely joins the keys of the two level hashes for the rules.

Table 9.7: TDM algebra for shape level 1, following the MicroState prototype grammar.
algebra function Itdm MicroState 1 −B Itdm OverDangle 5

root(x) struct→ structx

unpaired(a) struct → sadd(b, struct)
struct → sadd(b, nil(l))

nil() struct→ nil(l)
next hlmode r(x, a, y) structx y → cadd(danglex, structy)

next hlmode(x, y) structxy → cadd(danglex, structy)
last r(x, a, y) structx y → cadd(danglex, structy)

last(x, y) structxy → cadd(danglex, structy)
drem(x) danglex → drem(l, strongx, l)

Continued on next page

189

9 Appendices

Continued from previous page

algebra function Itdm MicroState 1 −B Itdm OverDangle 5

edl(x) dangle x → edl(b, strongx, l)
edr(x) danglex → edr(l, strongx, b)
edlr(x) dangle x → edlr(b, strongx, b)

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

stackx → sr(b,weakx, b)bp
hairpin(a, b) weak[] → hairpin[]

hairpin[] → hl(b, r≥ 3, b)bp
leftbulge(a, b, x, d) weak[x] → leftB[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightbulge(a, x, c, d) weak[x] → rightB[x]

rightB[x] → br(b, strongx, r≤ 30, b)bp
internalloop(a, b, x, c, d) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp
multiloop(a, x, b) weakx → multiloopx

ml(x) multiloop[x] → ml(b,ml compsx, b)bp
mldl(x) multiloop[x] → mldl(b, b,ml compsx, b)bp

mladl(a, x) multiloop[x] → mldl(b, b,ml compsx, b)bp
mldr(x) multiloop[x] → mldr(b,ml compsx, b, b)bp

mladr(x, b) multiloop[x] → mldr(b,ml compsx, b, b)bp
mldlr(x) multiloop[x] → mldlr(b, b,ml compsx, b, b)bp

mladldr(a, x) multiloop[x] → mldlr(b, b,ml compsx, b, b)bp
mldladr(x, b) multiloop[x] → mldlr(b, b,ml compsx, b, b)bp
mladlr(a, x, b) multiloop[x] → mldlr(b, b,ml compsx, b, b)bp

next mlmode(x, y) ml compsxy → cadd(incl(danglex),ml compsy)
next ml r(x, a, y) ml compsx y → cadd(incl(danglex),ml compsy)

last ml (x) ml compsx → incl(danglex)
last ml r(x, y) ml compsxy → incl(danglex)

last mlmode(x, y) ml compsxy → addss(incl(danglex), r)
mlend (a)
mlnil(a)

sadd(a, x) struct x → sadd(b, struct x)
struct x → sadd(b, structx)

saddml(a, x) ml comps x → sadd(b,ml comps x)
ml comps x → sadd(b,ml compsx)

p(a, x) x
objective function ∪rules

190

9.1 Appendix A: Complete set of all 20 TDM generators.

Shape level 5, MacroState prototype

Prototype MacroState is more complex to guarantee the semantically unambiguity re-
garding Vienna-Dot-Bracket strings. Therefore, TDM algebra Itdm MacroState 5 (Table
9.8) uses the same algebra functions as Itdm OverDangle 5, but produces much more pro-
duction rules for the specialized grammar.

Table 9.8: TDM algebra for shape level 5, following the MacroState prototype grammar.
algebra function Itdm MacroState 5 −B Itdm OverDangle 5

root(x) struct→ left danglex

struct→ trafo(noleft danglex)
struct→ left unpairedx

dangle(x) nodanglex → drem(l, strongx, l)
edanglelx → edl(b, strongx, l)
edanglerx → edr(l, strongx, b)
edanglelrx → edlr(b, strongx, b)

next hlmode(x, y) left unpairedxy → sadd(b, left unpairedxy)
left unpairedxy → sadd(b, left danglexy)
left danglexy → ambd(edanglelx, b, noleft dangley)
left danglexy → cadd’(edanglelx, noleft dangley)
left danglexy → cadd(edanglelrx, {left dangley | left unpairedy})
noleft danglexy → cadd”(edanglerx, {left dangley | left unpairedy})
noleft danglexy → cadd”’(nodanglex,noleft dangley)
noleft danglexy → ambd’(nodanglex, b, noleft dangley)

last hlmode(x) left unpairedx → sadd(b, left unpairedx)
left unpairedx → sadd(b, left danglex)
left danglex → cadd’(edanglelx, nil(l))
left danglex → cadd(edanglelrx, {nil(l) | left unpairedEnd})
noleft danglex → cadd”(edanglerx, {nil(l) | left unpairedEnd})
noleft danglex → cadd”’(nodanglex, nil(l))

unpaired(a) struct→ nil(l)
struct→ left unpairedEnd
left unpairedEnd→ sadd(b, left unpairedEnd)
left unpairedEnd→ sadd(b, nil(l))

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx= LP

weakx → stackx

weakx → leftBx

weakx → rightBx

weakx → iloopx

stackx → sr(b,weakx, b)bp
leftBx → bl(b, r≤ 30, strongx, b)bp
rightBx → br(b, strongx, r≤ 30, b)bp
iloopx → il(b, r≤ 30, strongx, r≤ 30, b)bp
left unpairedEnd→ sadd(b, left unpairedEnd)

Continued on next page

191

9 Appendices

Continued from previous page

algebra function Itdm MacroState 5 −B Itdm OverDangle 5

left unpairedEnd→ sadd(b, nil(l))

hairpin(a, b) weak[] → hairpin[]

hairpin[] → hl(b, r≥ 3, b)bp
multiloop(a, x, b) weak[x] → multiloop[x]

multiloop[x] → ml(b,ml comps2x, b)bp
multiloop[x] → mldl(b, b,ml comps1x, b)bp
multiloop[x] → mladl(b, b,ml comps2x, b)bp
multiloop[x] → mldr(b,ml comps3x, b, b)bp
multiloop[x] → mladr(b,ml comps2x, b, b)bp
multiloop[x] → mldlr(b, b,ml comps4x, b, b)bp
multiloop[x] → mladlr(b, b,ml comps2x, b, b)bp
multiloop[x] → mldladr(b, b,ml comps1x, b, b)bp
multiloop[x] → mladldr(b, b,ml comps3x, b, b)bp

next mlmode(x, y) ml comps1xy → combine(block dlx,no dl no ss endy)
ml comps1xy → combine(block dlrx, dl or ss left no ss endy)
ml comps1xy → acomb(block dlx, b, no dl no ss endy)
ml comps2xy → combine(incl(nodanglex),no dl no ss endy)
ml comps2xy → combine(incl(edanglerx),dl or ss left no ss endy)
ml comps2xy → acomb(incl(nodanglex), b,no dl no ss endy)
ml comps3xy → combine(incl(edanglerx),dl or ss left ss endy)
ml comps3xy → combine(incl(nodanglex),no dl ss endy)
ml comps3xy → acomb(incl(nodanglex), b,no dl ss endy)
ml comps4xy → combine(block dlx,no dl ss endy)
ml comps4xy → combine(block dlrx, dl or ss left ss endy)
ml comps4xy → acomb(block dlx, b, no dl ss endy)
no dl no ss endy → ml comps2y

dl or ss left no ss endy → mlcomps 1y

no dl ss endy → ml comps3y

dl or ss left ss endy → ml comps4y

block dlx → ssadd(r, edanglelx)
block dlx → incl(edanglelx)
block dlrx → ssadd(r, edanglelrx)
block dlrx → incl(edanglelrx)

last mlmode(x, y) ml comps1xy → combine(block dlx,no dl no ss endy)
ml comps1xy → combine(block dlrx, dl or ss left no ss endy)
ml comps1xy → acomb(block dlx, b, no dl no ss endy)
ml comps2xy → combine(incl(nodanglex),no dl no ss endy)
ml comps2xy → combine(incl(edanglerx),dl or ss left no ss endy)
ml comps2xy → acomb(incl(nodanglex), b,no dl no ss endy)
ml comps3xy → combine(incl(edanglerx),dl or ss left ss endy)
ml comps3xy → combine(incl(nodanglex),no dl ss endy)
ml comps3xy → acomb(incl(nodanglex), b,no dl ss endy)
ml comps4xy → combine(block dlx,no dl ss endy)

Continued on next page

192

9.1 Appendix A: Complete set of all 20 TDM generators.

Table 9.9: TDM algebra for shape level 4, following the MacroState prototype grammar.

algebra function Itdm MacroState 4 −B Itdm MacroState 5

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

weakx → leftBx

weakx → rightBx

stackx → sr(b,weakx, b)bp
leftBx → bl(b, r≤ 30, strongx, b)bp
rightBx → br(b, strongx, r≤ 30, b)bp
left unpairedEnd→ sadd(b, left unpairedEnd)
left unpairedEnd→ sadd(b, nil(l))

helixinterrupt(a, x, b) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp

Continued from previous page

algebra function Itdm MacroState 5 −B Itdm OverDangle 5

ml comps4xy → combine(block dlrx, dl or ss left ss endy)
ml comps4xy → acomb(block dlx, b, no dl ss endy)
no dl no ss endy → incl(nodangley)
dl or ss left no ss endy → block dly

no dl ss endy → incl(edanglery)
no dl ss endy → addss(incl(edanglery), r)
dl or ss left ss endy → block dlry

dl or ss left ss endy → addss(block dlry, r)
block dlx → ssadd(r, edanglelx)
block dlx → incl(edanglelx)
block dlrx → ssadd(r, edanglelrx)
block dlrx → incl(edanglelrx)
block dly → ssadd(r, edanglely)
block dly → incl(edanglely)
block dlry → ssadd(r, edanglelry)
block dlry → incl(edanglelry)

Shape levels 4 to 2, MacroState prototype

The three TDM algebras Itdm MacroState 4 (Table 9.9), Itdm MacroState 3 (Table 9.10) and
Itdm MacroState 2 (Table 9.11) follow the same helix interruption arguments for distributing
the same rules to different algebra functions as their OverDangle counterparts.

193

9 Appendices

Table 9.10: TDM algebra for shape level 3, following the MacroState prototype grammar.

algebra function Itdm MacroState 3 −B Itdm MacroState 5

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

stackx → sr(b,weakx, b)bp
left unpairedEnd→ sadd(b, left unpairedEnd)
left unpairedEnd→ sadd(b, nil(l))

helixinterrupt(a, x, b) weak[x] → leftB[x]

weak[x] → rightB[x]

weak[x] → iloop[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightB[x] → br(b, strongx, r≤ 30, b)bp
iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp

Table 9.11: TDM algebra for shape level 2, following the MacroState prototype grammar.

algebra function Itdm MacroState 2 −B Itdm MacroState 5

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

weakx → stackx

stackx → sr(b,weakx, b)bp
left unpairedEnd→ sadd(b, left unpairedEnd)
left unpairedEnd→ sadd(b, nil(l))

leftbulge(a, b, x, d) weak[x] → leftB[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightbulge(a, x, c, d) weak[x] → rightB[x]

rightB[x] → br(b, strongx, r≤ 30, b)bp
internalloop(a, b, x, c, d) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp

194

9.1 Appendix A: Complete set of all 20 TDM generators.

Shape level 1, MacroState prototype

TDM algebra Itdm MacroState 1 (Table 9.12) has to deal with the syntactic ambiguity of
the according TDM grammar GTDMMacroState

1
, which is the reason for the merging choice

function ∪rules.

195

9
A
p
p
en
d
ices

Table 9.12: TDM algebra for shape level 1, following the MacroState prototype grammar.
algebra function Itdm MacroState 1 −B Itdm MacroState 5

unpaired macrostate(x) struct→ nil(l)
struct→ left unpairedEnd

root(x) struct→ left danglex

struct→ left unpairedx

trafo(x) struct→ trafo(noleft danglex)
nextambd(a, x, b, y) left dangle x y → ambd(edanglelx, b, noleft dangley)
nextcadda(a, x, y) left dangle xy → cadd’(edanglelx, noleft dangley)
nextcadd(a, x, y) left dangle xy → cadd(edanglelrx, {left dangley | left unpairedy})
lastcadda(a, x) left dangle x → cadd’(edanglelx, nil(l))
lastcadd(a, x, y) left dangle xy → cadd(edanglelrx, {nil(l) | left unpairedEnd})

next hlmode(x, y) noleft danglexy → cadd”(edanglerx, {left dangley | left unpairedy})
nextcaddc(x, y) noleft danglexy → cadd”’(nodanglex, noleft dangley)

nextambda(x, a, y) noleft danglex y → ambd’(nodanglex, b, noleft dangley)
lastcaddb(x, y) noleft danglexy → cadd”(edanglerx, {nil(l) | left unpairedEnd})
last hlmode(x) noleft danglex → cadd”’(nodanglex, nil(l))

hairpin(a, b) weak[] → hairpin[]

hairpin[] → hl(b, r≥ 3, b)bp
leftbulge(a, b, x, d) weak[x] → leftB[x]

leftB[x] → bl(b, r≤ 30, strongx, b)bp
rightbulge(a, x, c, d) weak[x] → rightB[x]

rightB[x] → br(b, strongx, r≤ 30, b)bp
internalloop(a, b, x, c, d) weak[x] → iloop[x]

iloop[x] → il(b, r≤ 30, strongx, r≤ 30, b)bp
multiloop(a, x, b) weakx → multiloopx

ml(x) multiloop[x] → ml(b,ml comps2x, b)bp
mldl(x) multiloop[x] → mldl(b, b,ml comps1x, b)bp

mladl(a, x) multiloop[x] → mladl(b, b,ml comps2x, b)bp
Continued on next page

196

9.1
A
p
p
en
d
ix

A
:
C
om

p
lete

set
of

all
20

T
D
M

gen
erators.

Continued from previous page

algebra function Itdm MacroState 1 −B Itdm MacroState 5

mldr(x) multiloop[x] → mldr(b,ml comps3x, b, b)bp
mladr(x, a) multiloop[x] → mladr(b,ml comps2x, b, b)bp

mldlr(x) multiloop[x] → mldlr(b, b,ml comps4x, b, b)bp
mladldr(a, x) multiloop[x] → mladldr(b, b,ml comps3x, b, b)bp
mldladr(x, a) multiloop[x] → mldladr(b, b,ml comps1x, b, b)bp
mladlr(a, x, b) multiloop[x] → mladlr(b, b,ml comps2x, b, b)bp

combine1 a(a, x, y) ml comps1 xy → combine(block dlx, no dl no ss endy)
nextcombine1 b(a, x, y) ml comps1 xy → combine(block dlrx, dl or ss left no ss endy)

comb1 a(a, x, b, y) ml comps1 x y → acomb(block dlx, b, no dl no ss endy)
lastcombine1 b(a, x, b, y) ml comps1 x y → combine(block dlrx, dl or ss left no ss endy)

next mlmode(x, y) ml comps2xy → combine(incl(nodanglex), no dl no ss endy)
nextcombine2 b(x, y) ml comps2xy → combine(incl(edanglerx), dl or ss left no ss endy)

acomb2 a(x, a, y) ml comps2x y → acomb(incl(nodanglex), b, no dl no ss endy)
lastcombine2 b(x, a, y) ml comps2x y → combine(incl(edanglerx), dl or ss left no ss endy)
nextcombine3 a(x, y) ml comps3xy → combine(incl(edanglerx), dl or ss left ss endy)
nextcombine3 b(x, y) ml comps3xy → combine(incl(nodanglex), no dl ss endy)
nextacomb3 a(x, a, y) ml comps3x y → acomb(incl(nodanglex), b, no dl ss endy)

lastcombine3 a(x, a, y, b) ml comps3x y → combine(incl(edanglerx), dl or ss left ss endy)
lastcombine3 b(x, y, b) ml comps3xy → combine(incl(nodanglex), no dl ss endy)
lastacomb3 a(x, a, y, b) ml comps3x y → acomb(incl(nodanglex), b, no dl ss endy)
nextcombine4 a(a, x, y) ml comps4 xy → combine(block dlx, no dl ss endy)
nextcombine4 b(a, x, y) ml comps4 xy → combine(block dlrx, dl or ss left ss endy)
nextacomb4 a(a, x, b, y) ml comps4 x y → acomb(block dlx, b, no dl ss endy)
lastcombine4 a(a, x, y, b) ml comps4 xy → combine(block dlx, no dl ss endy)

lastcombine4 b(a, x, b, y, c) ml comps4 x y → combine(block dlrx, dl or ss left ss endy)
lastacomb4 a(x, a, y, b, c) ml comps4 x y → acomb(block dlx, b, no dl ss endy)

strong(x) strongx → sr(b,weakx, b)bp, 6= LP

strongx → weakx
= LP

Continued on next page

197

9
A
p
p
en
d
ices

Continued from previous page

algebra function Itdm MacroState 1 −B Itdm MacroState 5

weakx → stackx

stackx → sr(b,weakx, b)bp
drem(x) nodanglex → drem(l, strongx, l)
edl(x) edanglelx → edl(b, strongx, l)
edr(x) edanglerx → edr(l, strongx, b)
edlr(x) edanglelrx → edlr(b, strongx, b)

block dl(x) block dlx → ssadd(r, edanglelx)
block dlx → incl(edanglelx)

block dlr(x) block dlrx → ssadd(r, edanglelrx)
block dlrx → incl(edanglelrx)

no dl ss end next(x) no dl ss endx → ml comps3x

no dl ss end last(x) no dl ss endx → addss(incl(edanglerx), r)
no dl ss endx → incl(edanglerx)

no dl no ss end next(x) no dl no ss endx → ml comps2x

no dl no ss end last(x) no dl no ss endx → incl(nodanglex)
dl or ss left no ss end next(x) dl or ss left no ss endx → ml comps1x

dl or ss left no ss end last(x) dl or ss left no ss endx → block dlx

dl or ss left ss end next(x) dl or ss left ss endx → ml comps4x

dl or ss left ss end last(x) dl or ss left ss endx → block dlrx

dl or ss left ss endx → addss(block dlrx, r)
leftunpairedend(a) left unpairedEnd→ sadd(b, left unpairedEnd)

left unpairedEnd→ sadd(b, nil(l))
leftunpaired(a) left unpairedx → sadd(b, left unpairedx)

left unpairedx → sadd(b, left danglex)
objective function ∪rules

198

9.2 Appendix B: Source code for pKiss pseudoknot non-terminals.

9.2 Appendix B: Source code for pKiss pseudoknot
non-terminals.

Following is the Bellman’s GAP source code for the pseudoknot non-terminals. Com-
pared to Section 5.3, index ranges and index ordering might look different. Here, we
optimize for run-time efficiency, in Section 5.3 we tried to ease understanding. At the
end, both versions describe exactly the same iteration about those indices.

We apply one further hack to same run-time. In principle, an ADP grammar should
never be aware of any scoring scheme, because the scoring is a matter of the algebra,
which we might replace by other algebras. However, the stabilizing energy for the
pseudoknot stems is pre-computed in the O(n2) DP table “stacklen”. We transfer this
result from the grammar, i. e. the non-terminal construction, to the algebra functions
pknot and pkiss as the additional parameter “stackenergies”. Furthermore, it relieves
us of the burden to push the four to six inner stem boundaries into the algebras.

The lines INNER(CODE) are the boundary specific calls to the children terminals /
non-terminals, as described in Figure 5.7.
pknot f r e e hk =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f ((i +11 <= j) && (j−i <= maxPseudoknotSize ())) {
f o r (i n t k = i +7; k <= j −4; k=k+1) {

i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < 2) cont inue ;
f o r (i n t h = i +3; h <= k−4; h=h+1) {

i n t a l p h a r e a l l e n = min (k−h−2, min (alphamaxlen , h−i −1)) ;
i f (a l p h a r e a l l e n < 2) cont inue ;
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , j)) ;
i f (betamaxlen < 2) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , j−k−2) , k−h−a l p h a r e a l l e n) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s =

energy (s t a c k l e n (t 0 s eq , i , k))
+ energy (s t a c k l e n (t 0 s eq , h , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1, k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1, j−b e t a r e a l l e n +1)) ;

INNER(CODE) ;
}
}
}

] .

pknot f ree hk 3D =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f ((i +4∗2+3 <= j) && (j−i <= maxPseudoknotSize ())) {
f o r (i n t k = i +3∗2+1; k <= j −2∗2; k=k+1) {

i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < 2) cont inue ;
f o r (i n t h = i +2+1; h <= k−2∗2; h=h+1) {

i n t a l p h a r e a l l e n = min (k−h−2, min (alphamaxlen , h−i −1)) ;
i f (a l p h a r e a l l e n < 2) cont inue ;
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , j)) ;
i f (betamaxlen < 2) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , j−k−2) , k−h−a l p h a r e a l l e n) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s =

199

9 Appendices

energy (s t a c k l e n (t 0 s eq , i , k))
+ energy (s t a c k l e n (t 0 s eq , h , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1, k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1, j−b e t a r e a l l e n +1)) ;

INNER(CODE) ;
i n t n = s i z e (t 0 s e q) ;
i f (! isEmpty (answers)) {

answer pknot mfe mfe = get pk (i , j , h , k) ;
i f (mfe . energy < ge t ene rgy (s u b o p t l e f t , i , j , h , n))

s e t (s u b o p t l e f t , i , j , h , k , mfe . energy , n) ;
i n t s p l i t P o s i t i o n L e f t = h+(j−h) / 2 ;
i f ((h <= s p l i t P o s i t i o n L e f t) &&

(mfe . energy < ge t ene rgy (s u b o p t l e f t h e u r i s t i c , i , j , h , n)))
s e t (s u b o p t l e f t h e u r i s t i c , i , j , h , k , mfe . energy , n) ;

i f (mfe . energy < ge t ene rgy (subopt r ight , i , j , k , n))
s e t (subopt r ight , i , j , k , h , mfe . energy , n) ;

i n t s p l i t P o s i t i o n R i g h t = i +(k−i) / 2 ;
i f ((k >= s p l i t P o s i t i o n R i g h t) &&

(mfe . energy < ge t ene rgy (s u b o p t r i g h t h e u r i s t i c , i , j , k , n)))
s e t (s u b o p t r i g h t h e u r i s t i c , i , j , k , h , mfe . energy , n) ;

}
}
}
}

] .

p k n o t f r e e h (i n t kk , i n t startH) =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i n t k = kk ;
i f ((i +11 <= j) && (j−i <= maxPseudoknotSize ())) {
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen >= 2) {
f o r (i n t h = startH ; h <= k−4; h=h+1) {

i n t a l p h a r e a l l e n = min (k−h−2, min (alphamaxlen , h−i −1)) ;
i f (a l p h a r e a l l e n < 2) cont inue ;
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , j)) ;
i f (betamaxlen < 2) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , j−k−2) , k−h−a l p h a r e a l l e n) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s =

energy (s t a c k l e n (t 0 s eq , i , k))
+ energy (s t a c k l e n (t 0 s eq , h , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1, j−b e t a r e a l l e n +1)) ;

INNER(CODE) ;
}
}
}

] .

p k n o t f r e e k (i n t h , i n t endK) =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f ((i +11 <= j) && (j−i <= maxPseudoknotSize ())) {
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , j)) ;
i f (betamaxlen >= 2) {
f o r (i n t k = h+4; k <= endK ; k=k+1) {

i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < 2) cont inue ;
i n t a l p h a r e a l l e n = min (k−h−2, min (alphamaxlen , h−i −1)) ;
i f (a l p h a r e a l l e n < 2) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , j−k−2) , k−h−a l p h a r e a l l e n) ;
i f (b e t a r e a l l e n < 2) cont inue ;

200

9.2 Appendix B: Source code for pKiss pseudoknot non-terminals.

i n t s t a c k e n e r g i e s =
energy (s t a c k l e n (t 0 s eq , i , k))

+ energy (s t a c k l e n (t 0 s eq , h , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1, j−b e t a r e a l l e n +1)) ;

INNER(CODE) ;
}
}
}

] .

pknot (i n t h , i n t kindex) =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f ((i+2+1<=h && h+2∗2<=kindex && kindex+2+2<=j) && (j−i <= maxPseudoknotSize ())) {
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , j)) ;
i f (betamaxlen >= 2) {
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , kindex)) ;
i f (alphamaxlen >= 2) {
i n t a l p h a r e a l l e n = min (kindex−h−2, min (alphamaxlen , h−i −1)) ;
i f (a l p h a r e a l l e n >= 2) {
i n t b e t a r e a l l e n = min (min (betamaxlen , j−kindex −2) , kindex−h−a l p h a r e a l l e n) ;
i f (b e t a r e a l l e n >= 2) {

i n t s t a c k e n e r g i e s =
energy (s t a c k l e n (t 0 s eq , i , kindex))

+ energy (s t a c k l e n (t 0 s eq , h , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,kindex−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1, j−b e t a r e a l l e n +1)) ;

INNER(CODE) ;
}
}
}
}
}

] .

p k i s s A l e f t =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f (j−i <= maxPseudoknotSize ()) {
f o r (i n t m = i +3∗minLengthKissingHairpinStems ()+7;

m<=j−minLengthKissingHairpinStems ()−1;
m=m+1) {

answer pknot mfe leftPK = g e t p k f r e e h k (i , m) ;
i f (isEmpty (leftPK)) cont inue ;
i n t h = leftPK . betaLeftOuter ;
i n t k = leftPK . alphaRightOuter ;
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t a l p h a r e a l l e n = min (alphamaxlen , h−i −1);
i f (a l p h a r e a l l e n < minLengthKissingHairpinStems ()) cont inue ;
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , m)) ;
i f (betamaxlen < 2) cont inue ;
answer pknot mfe rightPK = g e t p k f r e e h (h , j , m, k+2);
i f (isEmpty (rightPK)) cont inue ;
i n t l = rightPK . betaLeftOuter ;
i n t gammamaxlen = length (s t a c k l e n (t 0 s eq , l , j)) ;
i f (gammamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t gammareallen = min (gammamaxlen , j−m−1);
i f (gammareallen < minLengthKissingHairpinStems ()) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , k−h−a l p h a r e a l l e n) ,

min (betamaxlen , m−l−gammareallen)) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s = energy (s t a c k l e n (t 0 s eq , i , k))

201

9 Appendices

+ energy (s t a c k l e n (t 0 s eq , h , m))
+ energy (s t a c k l e n (t 0 s eq , l , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1,m−b e t a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , l+gammareallen−1, j−gammareallen +1)) ;

INNER(CODE) ;
}
}

] .

p k i s s A r i g h t =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f (j−i <= maxPseudoknotSize ()) {
f o r (i n t h = i+minLengthKissingHairpinStems ()+1;

h<=j−3∗minLengthKissingHairpinStems ()−7;
h=h+1) {

answer pknot mfe rightPK = g e t p k f r e e h k (h , j) ;
i f (isEmpty (rightPK)) cont inue ;
i n t l = rightPK . betaLeftOuter ;
i n t m = rightPK . alphaRightOuter ;
i n t gammamaxlen = length (s t a c k l e n (t 0 s eq , l , j)) ;
i f (gammamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t gammareallen = min (gammamaxlen , j−m−1);
i f (gammareallen < minLengthKissingHairpinStems ()) cont inue ;
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , m)) ;
i f (betamaxlen < 2) cont inue ;
answer pknot mfe leftPK = g e t p k f r e e k (i , m, h , l −2);
i f (isEmpty (leftPK)) cont inue ;
i n t k = leftPK . alphaRightOuter ;
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t a l p h a r e a l l e n = min (alphamaxlen , h−i −1);
i f (a l p h a r e a l l e n < minLengthKissingHairpinStems ()) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , k−h−a l p h a r e a l l e n) ,

min (betamaxlen , m−l−gammareallen)) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s = energy (s t a c k l e n (t 0 s eq , i , k))

+ energy (s t a c k l e n (t 0 s eq , h , m))
+ energy (s t a c k l e n (t 0 s eq , l , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1,m−b e t a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , l+gammareallen−1, j−gammareallen +1)) ;

INNER(CODE) ;
}
}

] .

pk i s s B (bool u s e S p l i t p o i n t) =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f (j−i <= maxPseudoknotSize ()) {
f o r (i n t m = i +3+3∗minLengthKissingHairpinStems ()+2∗2;

m<=j−minLengthKissingHairpinStems ()−1;
m=m+1) {

f o r (i n t h = i+minLengthKissingHairpinStems ()+1;
h<=m−2∗minLengthKissingHairpinStems ()−2∗2−2;
h=h+1) {

i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , m)) ;
i f (betamaxlen < 2) cont inue ;
i n t n = s i z e (t 0 s e q) ;
i n t k = ge t index (s u b o p t l e f t , i , m, h , n) ;
i n t l = ge t index (subopt r ight , h , j , m, n) ;
i f (u s e S p l i t p o i n t) {

202

9.2 Appendix B: Source code for pKiss pseudoknot non-terminals.

k = get index (s u b o p t l e f t h e u r i s t i c , i , m, h , n) ;
l = ge t index (s u b o p t r i g h t h e u r i s t i c , h , j , m, n) ;

}
i f (k > j | | l > j) cont inue ;
i f (l < k+2) cont inue ;
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t a l p h a r e a l l e n = min (alphamaxlen , h−i −1);
i f (a l p h a r e a l l e n < minLengthKissingHairpinStems ()) cont inue ;
i n t gammamaxlen = length (s t a c k l e n (t 0 s eq , l , j)) ;
i f (gammamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t gammareallen = min (gammamaxlen , j−m−1);
i f (gammareallen < minLengthKissingHairpinStems ()) cont inue ;
i n t b e t a r e a l l e n = min (min (betamaxlen , k−h−a l p h a r e a l l e n) ,

min (betamaxlen , m−l−gammareallen)) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s = energy (s t a c k l e n (t 0 s eq , i , k))

+ energy (s t a c k l e n (t 0 s eq , h , m))
+ energy (s t a c k l e n (t 0 s eq , l , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1,m−b e t a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , l+gammareallen−1, j−gammareallen +1)) ;

INNER(CODE) ;
}
}
}

] .

pk i s s C =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f (j−i <= maxPseudoknotSize ()) {
f o r (i n t h = i+minLengthKissingHairpinStems ()+1;

h<=j−3∗minLengthKissingHairpinStems ()−2∗2−3;
h=h+1) {

f o r (i n t m = h+2∗minLengthKissingHairpinStems ()+2∗2+2;
m<=j−minLengthKissingHairpinStems ()−1;
m=m+1) {

rpk setup (m−2−minLengthKissingHairpinStems ()) ;
f o r (i n t k = m−minLengthKissingHairpinStems ()−2−2;

k>=h+minLengthKissingHairpinStems ()+2;
k=k−1) {

i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , m)) ;
i f (betamaxlen < 2) cont inue ;
i f (i+minLengthKissingHairpinStems()+1>h | |

h+minLengthKissingHairpinStems()+2>k | |
m+minLengthKissingHairpinStems()+1> j) cont inue ;

answer pknot mfe optPK = get pk (h , j , k+2,m) ;
i f ((! isEmpty (optPK)) && (optPK . energy < rpk energy (k+1))) {

r p k s e t (k , optPK . energy , optPK . betaLeftOuter) ;
} e l s e {

r p k s e t (k) ;
}
i n t l = rpk index (k) ;
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t a l p h a r e a l l e n = min (alphamaxlen , h−i −1);
i f (a l p h a r e a l l e n < minLengthKissingHairpinStems ()) cont inue ;
i f (k+2> l | | l+2+minLengthKissingHairpinStems ()>m) cont inue ;
i n t gammamaxlen = length (s t a c k l e n (t 0 s eq , l , j)) ;
i f (gammamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t gammareallen = min (gammamaxlen , j−m−1);
i f (gammareallen < minLengthKissingHairpinStems ()) cont inue ;
i n t b e t a r e a l l e n = min (

min (betamaxlen , k−h−a l p h a r e a l l e n) ,

203

9 Appendices

min (betamaxlen , m−l−gammareallen)
) ;

i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s = energy (s t a c k l e n (t 0 s eq , i , k))

+ energy (s t a c k l e n (t 0 s eq , h , m))
+ energy (s t a c k l e n (t 0 s eq , l , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1,m−b e t a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , l+gammareallen−1, j−gammareallen +1)) ;

INNER(CODE) ;
}
}
}
}

] .

pk i ss D =
. [
i n t i = t 0 i ;
i n t j = t 0 j ;
i f (j−i <= maxPseudoknotSize ()) {
f o r (i n t h = i+minLengthKissingHairpinStems ()+1;

h<=j−3∗minLengthKissingHairpinStems ()−2∗2−3;
h=h+1) {

f o r (i n t k = h+2+minLengthKissingHairpinStems () ;
k<=j−2∗minLengthKissingHairpinStems ()−2−3;
k=k+1) {

f o r (i n t l = k+2;
l<=j−2∗minLengthKissingHairpinStems ()−2−1;
l=l +1) {

f o r (i n t m = l+2+minLengthKissingHairpinStems () ;
m<=j−minLengthKissingHairpinStems ()−1;
m=m+1) {

i f (i+minLengthKissingHairpinStems()+1>h | |
h+2+minLengthKissingHairpinStems ()>k | |
k+2> l | |
l+2+minLengthKissingHairpinStems ()>m | |

m+minLengthKissingHairpinStems()+1> j) cont inue ;
i n t alphamaxlen = length (s t a c k l e n (t 0 s eq , i , k)) ;
i f (alphamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t a l p h a r e a l l e n = min (alphamaxlen , h−i −1);
i f (a l p h a r e a l l e n < minLengthKissingHairpinStems ()) cont inue ;
i n t gammamaxlen = length (s t a c k l e n (t 0 s eq , l , j)) ;
i f (gammamaxlen < minLengthKissingHairpinStems ()) cont inue ;
i n t gammareallen = min (gammamaxlen , j−m−1);
i f (gammareallen < minLengthKissingHairpinStems ()) cont inue ;
i n t betamaxlen = length (s t a c k l e n (t 0 s eq , h , m)) ;
i n t b e t a r e a l l e n = min (

min (betamaxlen , k−h−a l p h a r e a l l e n) ,
min (betamaxlen , m−l−gammareallen)

) ;
i f (b e t a r e a l l e n < 2) cont inue ;
i n t s t a c k e n e r g i e s = energy (s t a c k l e n (t 0 s eq , i , k))

+ energy (s t a c k l e n (t 0 s eq , h , m))
+ energy (s t a c k l e n (t 0 s eq , l , j))
− energy (s t a c k l e n (t 0 s eq , i+a lpha r ea l l en −1,k−a l p h a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , h+b e t a r e a l l e n −1,m−b e t a r e a l l e n +1))
− energy (s t a c k l e n (t 0 s eq , l+gammareallen−1, j−gammareallen +1)) ;

INNER(CODE) ;
}
}
}
}
}

] .

204

	Introduction
	Background
	Algebraic Dynamic Programming
	ADP Formalism
	History of ADP implementations
	Ambiguity

	Lost in folding space?
	Background
	Motivation
	Goals of the evaluation

	Methods
	Free energy and partition function
	Implementing the energy model
	Model NoDangle
	Model OverDangle
	Model MicroState
	Model MacroState
	Signature and evaluation algebras

	Results & Discussion
	Data set
	Technical Environment
	Evaluation of models for MFE structure prediction
	Evaluating models for partition function and related computations

	Conclusion
	Model comparison
	Evaluation of further models
	A new strategy for level-2 shape probabilities?
	A word on longer sequences

	Acknowledgments

	RapidShapes
	Introduction
	Computational cost of probabilistic shape analysis
	Outline of ideas

	A method for faster shape probability computation
	Basic problem: Shapes with a least T% probability
	Analysis of the folding space partitioned by shape
	Heuristic Shape selection
	Asymptotics

	Evaluation
	Evaluation setup
	Results on random data
	Results on real data

	Discussion
	Speed-ups and brake-even points achieved
	Problem variants
	Implementation alternatives
	Open problems

	Acknowledgments

	pKiss
	Introduction
	Biological relevance of pseudoknots in RNA structure
	Folding pseudoknots
	Typology of structures

	Three strategies for kissing hairpin prediction
	The combined power of canonization rules and non-ambiguous dynamic programming
	Decomposition alternatives of the kissing hairpin motif
	Strategy A – an O(n to the power of 4) time, quadratic space algorithm
	Strategy B – an O(n to the power of 4) time, cubic space algorithm
	Strategy C – an O(n to the power of 5) time, quadratic space algorithm

	Algorithms
	Algorithmic subtleties
	Pseudoknot-recurrence of pknotsRG – csrPK
	Recurrences of Strategy A – csrKH-A
	Recurrences of Strategy B – csrKH-B
	Recurrences of Strategy C – csrKH-C
	Recurrences of Strategy D – csrKH-D

	Implementation via Bellman's GAP
	Signature
	Grammar
	Algebras

	Evaluation
	A piece of anecdotal evidence
	Test set ``knot''
	Comparing pKiss strategies to other prediction tools

	Conclusion
	Acknowledgments

	Computation of McCaskill base-pair probabilities: an outside algorithm
	Traditional algorithmic idea
	A general scheme for ADP
	Outside-in emulation
	McCaskill base-pair probability computation
	Extension 1: dangling bases
	Extension 2: folding alignments

	Evaluation
	Correctness check
	Comparing model variants
	Run-time analysis

	Conclusion

	Covariance Models
	Three contributions to Covariance Models
	Faithful CM re-implementation in Bellman's GAP
	Upward compilation in Bellman's GAP
	Approving faithful re-implementation
	Determine Infernal's guide-tree to construct identical state architecture.
	Conclusion

	Alternative semantics
	Trace semantics
	Structure semantics
	Ambiguity compensation
	Evaluation
	Conclusion on the new semantics

	Two Track Counting
	Ambivalent Covariance Models
	Evaluation
	Conclusion

	Bibliography
	Appendices
	Appendix A: Complete set of all 20 TDM generators.
	Common Signature
	TDM grammars
	TDM algebras

	Appendix B: Source code for pKiss pseudoknot non-terminals.

