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Introduction

The concept of a tiling is common and natural even to non-mathematicians.
From nature (e.g., honeycombs) to road bricks to fancy kitchen floors (e.g.,
with chessboard patterns) to beautiful artworks (e.g., Escher tilings [Esch]),
different kinds of tilings (usually in two dimensions) are apparent. In an
abstract setting, a tiling is understood to be unbounded and so a planar tiling
extends in all directions, eventually covering the whole plane R2. Tilings attract
attention, mainly due to their design aspects. But a closer inspection reveals
a certain level of complexity that keeps researchers interested, particularly
mathematicians. Normally, this complexity is associated with symmetry and
repetitivity, and repetitivity is usually paired with periodicity. A tiling is
periodic if a non-trivial shift or translation of itself produces an exact copy of
the untranslated tiling. The crystallographic restriction relates the periodicity
and symmetry as follows. A periodic (and so repetitive) tiling may only admit
symmetries of order 1, 2, 3, 4 or 6. For instance, the honeycombs admit a
6-fold rotational symmetry, a chessboard pattern has 2-fold symmetries (e.g., a
180-degree rotation and a reflection), etc. On the other extreme, a tiling pattern
may be amorphous and may seem completely disordered (e.g., a shattered
glass). It would be impossible to find non-trivial symmetries on such patterns.
We are interested on tilings that are somewhere in between, i.e., tilings that
possess a certain level of symmetry and complexity, yet are not periodic. The
only question is whether such tilings exist.

Indeed in 1974, Roger Penrose discovered the now called Penrose tiling,
which is a tiling that is highly symmetrical, but is not periodic since it admits
a 5-fold rotational symmetry. The Penrose tiling provides an example of a non-
periodic tiling that exhibits repeating or recurring patterns. Figure A shows a
patch of the (rhombic) Penrose tiling, where the 5-pointed grey star centre
patch recurs regularly all throughout the tiling, in all rotated and reflected
versions. Meanwhile, for a good number of decades, it was believed that long
range order and periodicity were synonymous in the tiling world. Simply put, a
tiling has long range order (i.e., the tiling has sharp bright spots called Bragg
peaks in its diffraction pattern) if and only if the tiling is periodic. The (non-
periodic) Penrose tiling contradicted this belief as it displayed sharp bright
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2 INTRODUCTION

Figure A. A 5-fold symmetric patch of the rhombic Penrose,
where five grey rhombi form a regular 5-pointed star patch that
‘repeats’ regularly all throughout the tiling. Image created by
M. Baake & U. Grimm, found in [BG13a, Fig. 1.2]; image
used with their kind permission.

spots in its diffraction; see [Sen94] for instance. This initiated a paradigm
shift, and the focus now includes the study of such non-periodic tilings that
possess long range order. This paradigm shift was not immediately accepted,
and true enough in 1984, when Dan Shechtman announced his discovery of
a real world (quasi)crystal whose diffraction pattern exhibited sharp Bragg
peaks with 10-fold symmetry, it sparked a controversial discussion. Other
(quasi)crystals were later found, which similarly possessed long range order yet
admitting non-periodic symmetries. Soon enough, quasicrystals become widely
accepted giving birth to what is now called quasicrystallography, analogous to
that of crystallography. In 2011, Schechtman received a Nobel award for his
discovery of quasicrystals.
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Following these developments, particularly Penrose’s lead, many non-
periodic tilings have been discovered. There are three main methods in gener-
ating non-periodic tilings, namely, via matching rules, via the cut-and-project
method, or via substitution [Sa03]. In this study, we focus on the third method,
and consider tilings produced via substitution called substitution tilings. The
website Tilings Encyclopedia (http://tilings.math.uni-bielefeld.de) currently
provides a collection of some known examples of substitution tilings. In general,
we are after the topology of such tilings, and in particular, we will use the
topological invariant cohomology quite frequently. However, it does not imme-
diately make sense to talk about the cohomology of a tiling, because Rd, which
the tiling covers (regardless of the complexity of the tiling), is contractible and
so getting the cohomology this way becomes trivial. Instead, we work with a
(substitution) tiling space, which contains all substitution tilings derived from
a particular substitution rule. Note that a point in the tiling space is a tiling.

Classifying tiling spaces through their topology is a systematic yet te-
dious way of distinguishing tiling spaces. A family of tilings of Rd defined
through a common substitution rule forms a (substitution) tiling space,
which can be understood as an inverse limit of branched manifolds called
approximants. As an immediate consequence, the Čech cohomology of a
substitution tiling space can be computed as the direct limit of the coho-
mologies of the approximants [AP98]. As such, the (Čech) cohomology
provides a criterion on classifying tiling spaces, and recent developments
involved methods and techniques in computing for the tiling cohomology
[BD08, BDHS09, Sa11, GM13, GHM13]. Tiling spaces with different
cohomologies are necessarily inequivalent. However, the converse is not true
in general as can be seen in the case of the Thue-Morse and period doubling
sequences. These two substitution sequences form two inequivalent hulls (or
tiling spaces) that have isomorphic cohomology groups. Hence, the need for
additional tools (from the perspective of algebraic topology) is needed in order
to classify and distinguish such tiling spaces.

In 2011, Marcy Barge and Lorenzo Sadun introduced the notion of quotient
cohomology, which is a relative version of the tiling cohomology, aimed at
characterising the difference between related substitution tiling spaces [BS11].
Further, it can be used to analyse the structure of a family of substitution
tiling spaces, related via factor maps. In their paper, the quotient cohomology
has been computed for the family of 2-dimensional (generalised) chair tilings,
albeit with a few minor errors, which we correct in this text; compare [BG14].

As the concept of quotient cohomology is fairly new, much is still unknown
and not well understood. It is our objective in this study to provide additional

http://tilings.math.uni-bielefeld.de
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tools to aid in the computation of the quotient cohomology between substi-
tution tiling spaces. More so, we demonstrate how the quotient cohomology
can be used to analyse the general structure of a substitution tiling space
by considering its factors and then classifying the factor maps through a
notion we introduce, called good matches. Further, we introduce the concept
of the quotient zeta function, which is analogous to the typical zeta functions
associated with substitution tiling spaces, aimed to have a better grasp of the
concept of quotient cohomology.

Outline of the thesis

We divide the writing of this thesis in two parts. The first part, which
comprises Chapters 1 to 3, mainly gives an exposition on the background of
our study. We begin Chapter 1 by giving a review on some basic notions from
algebra and algebraic topology that are essential in the general study of tiling
cohomology. In particular, we start with an exposition on direct limits followed
by a discussion on CW complexes and their cohomology. We discuss inverse
limit spaces and their cohomology, which can be computed as the direct limit
of the cohomologies of their approximants. We also give a short review on the
Perron-Frobenius theory and the basics of symbolic substitution.

Chapter 2 provides an exposition on substitution tiling spaces and their
(Čech) cohomology, based on the main result of Jared Anderson and Ian
Putnam in [AP98]. As substitution tiling spaces are inverse limit spaces, their
cohomology is computed as the direct limit of their approximants now called
AP-complexes. Immediately, we get Ȟ0(Ω) ∼= Z for any substitution tiling
space Ω (see Lemma 2.17). However, this should not be surprising by noting
that the tiling space Ω is connected, and the 0th Čech cohomology encodes
the number of connected components. We end the chapter on the discussion
of the (Artin-Mazur) dynamical zeta functions of substitution systems.

It is our intention to make Chapters 2 and 3 a light but sufficient introduc-
tion to the theory of tiling cohomology needed in our study. Two references
provide a very good start, namely the book on tiling spaces by Sadun [Sa08]
and the paper on topological invariants by Anderson and Putnam [AP98].

Next in Chapter 3, we recall the definition of the quotient cohomology as
introduced in [BS11] and provide additional tools in computing the quotient
cohomology. As a consequence, determining the quotient cohomology between
n-dimensional substitution tiling spaces for n ≤ 2 becomes more straightfor-
ward. For any substitution tiling spaces ΩX and ΩY related via a factor map
f : ΩX −→ ΩY , we get H0

Q(ΩX ,ΩY ) ∼= 0 (see Theorem 3.7). In other words,
the 0th quotient cohomology is always trivial between any two substitution
tiling spaces related via a factor map.
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In the same chapter, we also introduce the notion of the quotient zeta
function (between two substitution tiling spaces), which we define as an
analogous extension of the dynamical zeta function in the spirit of Proposition
2.21, complementing the quotient cohomology. We show that our definition of
the quotient zeta function yields a very nice and convenient result, i.e., the
quotient zeta function between two substitution tiling spaces is nothing but
the quotient of the respective zeta functions of the tiling spaces. This is given
in Theorem 3.18.

The second part of this thesis is dedicated to particular examples of
substitution tiling spaces, both in one and two dimensions. In Chapter 4, we
consider three families of 1-dimensional substitution tilings and determine
their quotient cohomologies. In particular, we consider the twisted Fibonacci
substitution, the universal morphism, and the generalised Thue-Morse and
period doubling substitutions. We also give a classification of these tiling
spaces by considering their factors through the notion of good matches. In
Theorem 4.2, we discuss our computation of the quotient cohomology between
the generalised Thue-Morse and period doubling sequences. This result is
included in our paper [BG14], which is to appear in Acta Physica Polonica A.

Finally, Chapter 5 is dedicated to the analysis of some substitution tiling
spaces in two dimensions, namely the squiral tilings, the Chacon tilings, and
the generalised chair tilings. For all three families of 2-dimensional substitution
tiling spaces, we give a thorough characterisation of the spaces via their factors,
whose factor maps are classified through good matches. Using these tiling
spaces, we highlight the direct connection between the quotient zeta function
and the quotient cohomology through their respective degeneracies, under
certain conditions. Particularly for the Chacon tilings, we exhibit a suitable
1-dimensional counterpart to the (2-dimensional) Chacon substitution in
order to further appreciate how the degeneracies of the 2-dimensional Chacon
tiling space arise. Meanwhile for the generalised chair tilings, we provide a
recalculation of the quotient cohomologies to correct the minor errors given in
[BS11]. These corrections also appear in [BG14].
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CHAPTER 1

Preliminaries

In this chapter, we summarise some basic notions that we will be using
throughout the remainder of this text. We begin with a short exposition
on direct limits, covering a family of concrete examples, which usually do
not appear in other texts. The discussion on cohomology follows closely
from [Geo08, Hat02, Sa08] and the discussion on Perron-Frobenius theory
follows from [BG13a]. We end the chapter with the discussion on the basics
of symbolic substitution [BG13a], which will be very handy in the following
chapters. Most of the definitions and terminologies are taken from these sources.
We assume working knowledge on group theory and algebraic topology and a
bit on dynamical systems.

1.1. Direct limits

Direct limits can be defined through a collection of objects (of a category)
paired with a family of morphisms acting on the objects. In our case, we only
need to deal with (abelian) groups and homomorphisms acting between them.
Suppose we are given a family of groups {Gα}α∈I with I being a directed
partially ordered set (or poset), i.e., for any pair α, β ∈ I, there exists a third
element γ ∈ I such that α < γ and β < γ. Further, for any pair α, γ ∈ I
with α < γ, there is a homomorphism ιγα : Gα −→ Gγ so that for any β
between α and γ (i.e., α < β < γ), we have ιγα = ιγβ ◦ ιβα, where ◦ denotes
the composition. The collection {Gα, ιγα, I} (or simply {Gα, ιγα} when the
context is clear) forms a direct system, also called an inductive system.

Let G be an abelian group, and {Gα, ιγα, I} a direct system of abelian
groups over a directed poset I and assume that there is a homomorphism
ια : Gα −→ G for each α ∈ I. The mappings ια are said to be compatible if
ιγ ◦ ιγα = ια whenever α < γ. The abelian group G together with compatible
homomorphisms ια (for any α ∈ I) is a direct limit of the direct system
{Gα, ιγα, I} if the following universal property is satisfied. For any abelian
group G′ with a set of compatible homomorphisms ϑα : Gα −→ G′ for all
α ∈ I, there exists a unique homomorphism ϑ : G −→ G′ such that ϑ◦ ια = ϑα
for all α ∈ I.

7
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G
ϑ // G′

Gα

ια

OO

ϑα

>>

A direct system {Gα, ιγα, I} always has a direct limit, and this limit
is unique up to isomorphism of groups, i.e., if (G, ια) and (G′, ϑα) are two
direct limits of a given direct system, then there is a unique isomorphism
Ψ : G −→ G′ such that ϑα = Ψ ◦ ια. The uniqueness easily follows from the
universal property condition, whereas the existence follows from the following
construction. For any α, β ∈ I, we say that x ∈ Gα is equivalent to y ∈ Gβ
if there exists a γ ∈ I with α, β < γ, such that ιγα(x) = ιγβ(y). In such case,
we write x ∼ y. With this equivalence relation, we denote the equivalence
class of x ∈ Gα by x̃. For any x ∈ Gα and y ∈ Gβ with α, β < γ, the product
x̃ỹ is defined as the equivalence class of ιγα(x)ιγβ(y). Then we get the direct
limit G of the direct system {Gα, ια}, denoted by G := lim−→(Gα, ι) or simply
G := lim−→Gα, as the disjoint union of all Gα modulo the equivalence ∼ defined
above, where we let ια : Gα −→ G to be defined as ια(x) = x̃. Note that the
limit G together with the compatible homomorphisms ια satisfy the universal
property condition. Indeed if {ϑα : Gα −→ G′} is a collection of compatible
maps onto another abelian group G′ for all α ∈ I, then we define the induced
homomorphism ϑ : G −→ G′ as follows. For g ∈ G such that ια(x) = g

for some x ∈ Gα, α ∈ I, we let ϑ(g) = ϑα(x). Note that ϑ is a well-defined
homomorphism and ϑ ◦ ια = ϑα for all α ∈ I. Thus, G is the direct limit of
the direct system.

We now look at some examples, which demonstrate how the direct limit
of a direct system of abelian groups over a poset can be computed. These are
the types of examples we usually encounter in our study. For all examples,
we take I = N := {1, 2, 3, . . .} as the set of all natural numbers. As usual, we
denote by Z the set of all integers, and Q the set of all rational numbers. The
set of all real numbers is denoted by R.

Example 1.1. For all α ∈ N, let Gα = G for some abelian group G. Further
let each ιγα : Gα −→ Gγ be a zero map. The 0s, each in Gα, belong to one
equivalence class, say 0̃. Since the map ι21 sends the whole G1 to 0 ∈ G2, then
G1 ∈ 0̃. Similarly, G2 ∈ 0̃, and so on. Thus, direct limit is just the trivial group
as everything gets identified to zero. Generally for any α < γ, if ιγα := ιγ−α

for some nilpotent map ι, then the direct limit is still trivial, as everything
gets identified to zero eventually. ♦
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Example 1.2. Let Gα = Z2 for all α ∈ N, and ιγα : Z2 −→ Z2 be given by
the matrix

Aγα :=
(

0 1
1 1

)γ−α
for any pair α, γ ∈ N such that α < γ, i.e., ιγα(x) := Aγαx for x ∈ Gα = Z2.
Notice that each map is an isomorphism (since det(Aγα) = (−1)γ−α, where
detA denotes the determinant of A), and so ιγα(Gα) = Gγ . Thus, the direct
limit is just Z2, as every element of Gα = Z2 forms its own equivalence class
in the direct limit and nothing more. In general, if Gα = G for all α ∈ I and
each ιγα is an isomorphism for any α, γ ∈ I with α < γ, then lim−→Gα = G.

♦

Remark 1.3. For a positive integer d ∈ N, let Gα = Zd for all α ∈ N, and
let ιγα : Gα −→ Gγ have the matrix representation Aγα that is invertible over
Q for any α, γ ∈ N with α < γ. Further, assume that G is the direct limit of
the direct system {Gα, Aγα}. The compatible maps iγ : Gγ −→ G are defined
as follows. For γ = 1, ιγ is the inclusion map, and for γ > 1, ιγ(x) := ια ◦A−1

γα

for any α < γ. Letting α = 1 yields ιγ(x) = ι1 ◦A−1
21 ◦A

−1
32 ◦ · · · ◦A

−1
γγ−1. Thus,

G is a subgroup of Qd, and in particular, if detAii−1 = m 6= 0 for all i > 1,
then G is a subgroup of Z[ 1

m ]d. ♦

Example 1.4. Suppose Gα = Z for all α ∈ N. For each pair α, γ ∈ I with
α < γ, define ιγα : Gα −→ Gγ by ιγα(x) = 2γ−αx. Thus, we are taking the
direct limit of

Z ×2−→ Z ×2−→ Z ×2−→ Z ×2−→ · · · (1.1)

which is isomorphic to the dyadic rationals, i.e., lim−→(Z,×2) = Z[1
2 ] ⊂ Q. To

see this, first note that Z ∼= G̃1 ⊂ lim−→Gα, where G̃1 is the union of equivalence
classes that contains the whole of G1, twice of G1 in G2 (i.e., the even integers
in G2), and in general 2k−1G1 in Gk for k > 0. Next, the equivalence class
G̃2 contains the odd integers in G2 (those left out after taking G2 modulo
∼), twice the odd integers in G3 (equivalently, those integers congruent to 2
mod 4), and so on. Taking the disjoint union of all G̃α means the direct limit
is isomorphic to the disjoint union of the whole of G1 = Z, half of G2 (i.e.,
1
2Z), fourth of G3 (i.e., 1

4Z), and so on. More precisely, the direct limit of (1.1)
is isomorphic to the direct limit of the embedding

Z ↪−→ 1
2Z ↪−→ 1

22Z ↪−→ 1
23Z ↪−→ 1

24Z ↪−→ · · ·

which is just the union
⋃∞
i=0

1
2iZ. This union is precisely the definition of Z[1

2 ].
The direct limit generalises to the ring Z[ 1

m ] (for any integerm) by replacing
2 with m in the definition above, i.e., ιγα(x) = mγ−αx. If m = 0, we just



10 1. PRELIMINARIES

regard Z[1
0 ] := Z[0] = 0 by an abuse of notation, which is still consistent with

Example 1.1. ♦

The previous example extends to higher dimensions as well, the simple
case of which is when the homomorphism ιγα : Zd −→ Zd (d ≥ 1, for any
α < γ) has the matrix representation Aγ−α, where A is a d×d diagonal matrix
with integer entries. In this case, the direct limit is computed as

⊕d
i=1 Z[ 1

mi
].

As before, we take Z[1
0 ] := 0 by an abuse of notation.

Calculating the direct limit in certain cases may require some manipulation.
For instance, for a non-singular matrix A (with integer entries) that may not
be diagonalisable over Q, but whose characteristic polynomial has all but the
leading coefficient divisible by the determinant of A, the direct limit of the
direct system {Zd, ι} with ιγα(x) = Aγ−αx, can be computed as

⊕d
i=1 Z[ 1

m ],
where 0 6= m = det(A) is the determinant of A. We see this in the next
example.

Example 1.5. Let Gα = Z2 for any α ∈ N and let ιγα (with α < γ) be given
by ιγα(x) := Aγαx for any x ∈ Z2, where

Aγα := Aγ−α =
(

0 −2
3 6

)γ−α
.

Since A is non-singular and has determinant 6, it follows from Remark 1.3
that the direct limit of the system is a subgroup of Z[1

6 ]2. Meanwhile, the
characteristic polynomial of A, given by P (λ) := det(A− λI2) = λ2 − 6λ+ 6,
implies that A2−6A+6I2 = 0 or 1

6I2 = A−2(A−I2), where I2 denotes the 2×2
identity matrix. Thus, whenever x is in the limit, then so is some y ∼ 1

6x, and
so the direct limit contains Z[1

6 ]2 as a subgroup, implying that the direct limit
is really the whole of Z[1

6 ]2 = Z[1
6 ]⊕Z[1

6 ] [GM13, cf. Ex. 1.21]. More generally,
for a d × d non-singular matrix A such that det(A) = m 6= 0, if m divides
P (A)− (−1)dAd, where P (λ) := det(A− λId) is the characteristic polynomial
of A and Id is the d× d identity matrix, then we get 1

mId = A−dQ(A), where
Q(λ) = 1

mP (λ) has integer coefficients. By similar reasoning as above, the
direct limit is computed as

⊕d
i=1 Z[ 1

m ].
Loosening the restriction thatm|P (A)−(−1)dAd to π(m)|P (A)−(−1)dAd,

where π(m) denotes the product of the distinct prime factors of m, still yields
the same direct limit since Z[ 1

m ] = Z[ 1
π(m) ].

Particularly for 2×2 matrices,m divides P (A)−A2 if and only if detA| trA,
where trA denotes the trace of A. ♦

In some cases, the integer eigenvalue(s) may play a role in the calculation
of the direct limit. This is precisely the case in the following examples.
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Example 1.6. Suppose Gα = Zd for all α ∈ N and for some arbitrary but
fixed d. Also, suppose that the homomorphism ιγα is given by ιγα(x) = Aγ−αx

(α < γ) for any x ∈ Zd, for some non-singular matrix A with integer entries.
Now consider the following commutative diagram of two direct systems.

Zd Zd Zd Zd · · ·

A−1Zd A−2Zd A−3Zd A−4Zd · · ·

A A A A

A A2 A3 A4

The two direct systems have isomorphic direct limits, and the direct limit of
the bottom direct system is easily

⋃
n∈NA

−nZd.
Now, suppose that the matrix A is diagonalisable (over Q) with inte-

ger eigenvalues, and let B be a matrix with integer entries whose columns
are the respective eigenvectors of the eigenvalues of A. Then lim−→(Gα, ι) ∼=⋃
n∈NBMB−1Zd, where M := (mi)1≤i≤d is a diagonal matrix and mi = λ−ni

such that λi ∈ Z is the ith eigenvalue of A. In certain cases, we get lim−→(Gα, ι) ∼=⊕d
i=1 Z[ 1

λi
], as in the case when d = 2 and

A =
(

1 1
2 0

)
.

Indeed,

lim−→(Gα, ι) =
⋃
n

1
3

(
−1 1
2 1

)(
(−1)−n 0

0 2−n

)(
−1 1
2 1

)
Z2.

It can be shown that this direct limit is isomorphic to Z⊕ Z[1
2 ], cf. [BKS12].

♦

Example 1.7. For all α ∈ N, suppose Gα = Z4 and each homomorphism
ιγα : Z4 −→ Z4 has the matrix representation

Aγα := Aγ−α =


−2 2 0 1
1 1 0 0
−4 1 −1 3
−5 3 0 3


γ−α

given that α < γ. The matrix A is diagonalisable (over C) and has the following
eigenvalues: −1, 2, −

√
2 and

√
2. Also, note that (0, 0, 1, 0)T and (1, 1, 1, 2)T

span the eigenspaces of −1 and 2, respectively, where vT denotes the transpose
of the vector v. To get the direct limit of the direct system

Z4 A−−→ Z4 A−−→ Z4 A−−→ Z4 A−−→ · · · (1.2)

we instead consider a re-coordinatisation of Z4, and study the induced action of
Aγα on it. Note that the elements of Gα = Z4 are understood to be expressed
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using the standard basis vectors e1, e2, e3 and e4. Now, we consider a new
set of basis vectors, given by f1 := e1, f2 := e1 + e2 + e3 + 2e4, f3 := e3 and
f4 := e4. The Z-span of this new set of basis vectors is Z4, isomorphic to
each Gα. The induced action of Aγα on Z4 = 〈f1, f2, f3, f4〉Z is deduced as
follows. The action on f3 is multiplication by (−1)γ−α, and the action on f2 is
multiplication by 2γ−α. The action on the remaining Z2 = Z4 mod 〈f2, f3〉Z
is computed to have the matrix representation

A′γα := A′
γ−α =

(
−3 1
−7 3

)γ−α
.

Note thatA′ has eigenvalues±
√

2, and Example 1.5 suggests that lim−→(Z2, A′γα) =
Z[1

2 ]⊕Z[1
2 ] = Z[1

2 ]2. Finally, the direct limit of (1.2) is isomorphic to the direct
limit of the direct system

Z⊕ Z⊕ Z2 ×(−1,2,A′)−−−−−−−→ Z⊕ Z⊕ Z2 ×(−1,2,A′)−−−−−−−→ Z⊕ Z⊕ Z2 ×(−1,2,A′)−−−−−−−→ · · ·

given by Z[−1] ⊕ Z[1
2 ] ⊕ Z[1

2 ]2 = Z ⊕ Z[1
2 ]3, where the first two summands

come from −1 and 2, which are the integer eigenvalues of A. ♦

Generally for a singular matrix, one can look at its eventual range in order
to remove a subgroup of Gα that eventually goes to zero under the action of
the matrix. The induced action on the remaining subgroup has a non-singular
matrix representation and whose direct limit is isomorphic to the original
direct system involving the singular matrix. One can then proceed as in the
previous examples. (Compare the matrix A∗1 in Example 2.15 and the matrix
A∗TM,1 in Example 4.1, where lim−→(Z3, A∗1) = lim−→(Z2, A∗TM,1) = Z[1

2 ]⊕ Z. Note
that A∗1 has eigenvalues −1, 0 and 2, and A∗TM,1 is the matrix representation
of the induced action of A∗1 on Z2 modulo its kernel, left with eigenvalues −1
and 2.)

Determining the direct limit is not always as straightforward as in the
previous examples, especially if the direct limit cannot be expressed as a direct
sum. We do not wish to explore such cases any more as they do not appear in
our study anyway.

1.2. CW complexes

Introduced by J.H.C. Whitehead [Wh49] to address needs in homotopy
theory, CW complexes soon became a topologist’s toy because of their better
categorical properties (than the simpler simplicial complexes) without really
sacrificing computability. Let us begin with the basic building blocks of a CW
complex called its cells.

An n-cell is a topological space homeomorphic to the open disk int(Dn),
the interior of the closed disk Dn := {x ∈ Rn | ‖x‖ ≤ 1} where ‖ · ‖ is the



1.2. CW COMPLEXES 13

S1 e0

e1

e0
1

e0
2

e1
1e1

2

(A) (B) (C)

Figure 1.1. Two different cell decompositions of the (ori-
ented) circle S1.

standard norm on Rn. (Equivalently, int(Dn) = {x ∈ Rn | ‖x‖ < 1}.) A cell
eα is n-dimensional (i.e., dim(eα) = n) if and only if it is an n-cell. When
necessary, we may also write enα to emphasise the dimension of the cell. A cell
decomposition of a topological space X is a collection E := {eα | α ∈ I}, where
each cell eα is a subspace of X and that X is the disjoint union of all cells in
E , i.e., X =

∐
α eα =

∐
n,α e

n
α. Note that the set I is not necessarily countable.

The n-skeleton of X is Xn :=
∐
m≤n,α e

m
α .

Remark 1.8. A cell decomposition of a space X is obviously not unique. For
instance, {e0, e1} is a cell decomposition of the circle S1 = ∂D2 (with ∂A

denoting the boundary of A), where the 0-cell e0 is any point on S1 and the
1-cell is defined as e1 := S1 − {e0}. Another possible cell decomposition of S1

is given by {e0
1, e

0
2, e

1
1, e

1
2}, where e0

1, e
0
2 ∈ S1, and the two arcs in S1 − {e0

1, e
0
2}

are the 1-cells e1
1 and e1

2, respectively. (See Figure 1.1.) Clearly, when e0
1 = e0

2,
then we get the earlier cell decomposition of S1. Further, there is no restriction
on the number of cells in a cell decomposition E , and so a collection E may be
uncountable as in the case where E is the collection of all points in S1. ♦

Given a Hausdorff space X and a cell decomposition E , the pair (X, E) is
called a CW complex if the following axioms are satisfied.
(1) Characteristic Maps. For each n-cell e ∈ E , there is a map Φe : Dn −→ X

restricting to a homeomorphism Φe |int(Dn): int(Dn) −→ e and taking
Sn−1 := ∂Dn into Xn−1.

(2) Closure-Finiteness. For any cell e ∈ E , the closure e intersects only a finite
number of other cells in E .

(3) Weak Topology. A subset A ⊆ X is closed if and only if A ∩ e is closed in
X for each e ∈ E .

The term ‘CW’ comes from the second and third axioms. If (X, E) is a CW
complex, then we say that X has the structure of a cell complex, or simply
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that X itself is a CW complex and write X := (X, E) when the context is
clear.

Proposition 1.9 (c.f. [Geo08, Props. 1.2.5–1.2.9]). Let X = (X, E) be a
CW complex. Then Xn may be obtained from Xn−1 by attaching of the n-cells
in X. �

As such, a CW complex X = (X, E) may be constructed inductively as
follows.

(1) Start with a discrete set X0, whose points are regarded as the 0-cells.

(2) Inductively construct the n-skeleton Xn from Xn−1 by attaching n-cells
enα via maps ϕnα : Sn−1 −→ Xn−1. This makes Xn the quotient space
of the disjoint union Xn−1 with a collection of n-disks Dn

α under the
identifications x ∼ ϕα(x) for x ∈ ∂Dn

α. Thus as a set, Xn = Xn−1∐
α e

n
α,

where each enα is an n-cell.

(3) The inductive process may stop at a finite stage, setting X = Xn for some
n <∞, or may continue indefinitely, setting X = ∪nXn. If X = Xn, for
some n, then X is said to be finite-dimensional, and the smallest such n
is the dimension of X. Note that the dimension of X is the maximum
dimension any cell in X can have.

Example 1.10. The sphere Sn has the structure of a CW complex and may
be constructed from two cells, namely the point (0-cell) e0 ∈ Rn and the
n-cell en attached by the constant map f : Sn−1 −→ e0. This is equivalent to
regarding the sphere Sn as the quotient space Dn/∂Dn. ♦

Remark 1.11. A 1-dimensional CW complex X = X1 is called a graph,
which consists of vertices (as the 0-cells) to which the edges (as the 1-cells) are
attached. When X is an oriented manifold, then its edges are also oriented,
and so X is a directed graph. (Also see Figure 1.1.) ♦

Remark 1.12. CW complexes are the generalisation of simplicial complexes.
Recall that a simplex (also called a hypertetrahedron) generalises the notion
of a triangle to higher dimensions. More precisely, an n-simplex is an n-
dimensional polytope which is the convex hull of its n+ 1 vertices, and the
convex hull of any non-empty subset of its n+ 1 vertices is called a face of the
simplex. In particular, a 0-simplex is a point, a 1-simplex is a line segment, a
2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on. A simplicial
complex K is a CW complex such that every n-cell is an n-simplex with the
following restriction: any face of a simplex from K is also in K, and whenever
any two simplices intersect, the intersection forms a face of both the simplices.

♦
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1.3. Čech cohomology of CW complexes

The (Čech) cohomology offers certain interesting information about tiling
spaces that other topological invariants (e.g., homology and fundamental
group) fail to provide [Sa08, Ch. 3]. As such, we drop the notion of other
usual topological invariants and concentrate mainly on cohomology. There
are many types of cohomology that topologists use, depending on the given
topological space. It is natural to work with cellular cohomology for CW
complexes, however, as we will see in this section, it turns out that the Čech,
cellular, singular and simplicial cohomology of a CW complex are all isomorphic
to one another. Let us review the notion of cochain complexes and singular
cohomology of a topological space before we define the cellular cohomology of
a CW complex.

A graded R-module (for a commutative ring R) is a sequence C := {Cn}n∈Z
of R-modules. Given two graded R-modules C and D, a graded homomorphism
of degree d from C toD is a sequence f := {fn : Cn −→ Dn+d}n∈Z of R-module
homomorphisms. A chain complex over R is a pair (C, ∂), where C is a graded
R-module and (the boundary operator) ∂ : C −→ C is a homomorphism of
degree −1 such that ∂ ◦ ∂ = 0. More precisely, we have the sequence

· · · ∂n+2−−−→ Cn+1
∂n+1−−−→ Cn

∂n−−−→ Cn−1
∂n−1−−−→ · · ·

with ∂k ◦ ∂k+1 = 0.
Of more interest to us is the cochain complex over R, which by definition

is a pair (C∗, δ), where C∗ is a graded R-module and (the coboundary map)
δ : C∗ −→ C∗ is a homomorphism of degree 1 such that δ ◦ δ = 0. The cochain
complex (C∗, δ) = ({Cn}, δ) := ({C∗n}, δ) is dual to the chain complex ({Cn}, ∂)
by letting Cn := C∗n = HomR(Cn, R) and δ the (morphism) transpose of ∂,
which may also be denoted by δ := ∂∗. In particular, δn sends a homomorphism
ϕ : Cn −→ R to the homomorphism ϕ ◦ ∂n+1 : Cn+1 −→ R, and similarly as
above, we have the sequence

· · · δn−2−−−→ Cn−1
δn−1−−−→ Cn

δn−−−→ Cn+1
δn+1−−−→ · · ·

The kth cohomology is given by Hk(C;R) = ker δ/ im δ at Ck, which is well
defined because δk ◦ δk−1 = 0. Depending on how the graded R-module C∗
is defined determines the type of cohomology being considered, e.g., if {Cn}
is a collection of simplicial complexes, then the cohomology is defined as the
simplicial cohomology, etc. Let us now look at a particular way to define a
chain complex, and consequently a cochain complex.

The standard n-simplex ∆n is the closed convex hull of the n+ 1 points
{p0, p1, . . . , pn} in Rn−1, where pj has (j + 1)th coordinate 1 and all other
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coordinates 0, i.e.,

∆n :=


n∑
j=0

tjpj | 0 ≤ tj ≤ 1, and
∑
j

tj = 1

 .
A singular n-simplex in a topological space X is a continuous map σ : ∆n −→
X, and we denote by Sn(X;R) the free R-module generated by the set of all
singular n-simplexes. The ith face of the singular n-simplex σ is the composite
map ∆n−1 Fi−−→ ∆n σ−−→ X, where Fi is the affine map which sends the
coordinate pj to pj if j < i, and pj to pj+1 if j ≥ i. Note that a 0-simplex
has no face, and Sn(X;R) := 0 whenever n < 0. The boundary operator ∂n :
Sn(X;R) −→ Sn−1(X;R) is given by ∂n(σ) :=

∑n
i=0(−1)i(σ◦Fi) for n > 0, and

∂n := 0 for n ≤ 0. The graded R-module S∗(X;R) := {Sn(X;R)}n∈Z together
with the boundary operator ∂ form a singular chain, which can be shown to
be a chain complex over R. Shifting our attention to the dual of (S∗(X;R), ∂)
gives us the singular cochain (S∗(X;R), δ), where S∗(X;R) := {Sn(X;R)}n∈Z
with Sn := S∗n = HomR(Sn, R) and δn = ∂∗n+1. We then define the singular
cohomology of X to be the cohomology of the singular cochain complex
(S∗(X;R), δ).

When X is a CW complex, the singular cohomology of X can be computed
from a cochain complex smaller than S∗(X;R). This can be achieved through
the following construction.

Definition 1.13 (Cellular cohomology of a CW complex). Let X be a d-
dimensional CW complex. The R-module Cn := Cn(X;R) for n ∈ Z is
the free R-module generated by all the n-cells in X [Geo08, Prop. 2.3.1]
(which is also commonly denoted by Cn := Hn(Xn, Xn−1;R)). In particu-
lar, the set of all 0-cells generates C0 ∼= RV , where V denotes the number
of 0-cells, all 1-cells generate C1 ∼= RE with E denoting the number of 1-
cells, and so on. Let ∂ be the usual boundary operator ∂n : Cn −→ Cn−1
[Geo08, Ch. 12.1], then the cellular chain (C∗(X;R), ∂) is a chain com-
plex, where C∗(X;R) := {Cn(X;R)}n∈Z [Geo08, Prop. 2.3.3]. Now, to its
dual, the cellular cochain C∗(X;R), where C∗(X;R) := {Cn(X;R)}n∈Z with
Cn(X;R) := C∗n(X;R) = HomR(Cn(X;R), R) =: Cn, together with the
coboundary operator δn : Cn −→ Cn+1 with δn := ∂∗n+1, is a cochain complex.
By definition, Cn := 0 for n < 0 and the same is true for n > d [Geo08, Prop.
12.1.7]. Thus, we have the sequence

0 −−→ C0 δ0−−→ C1 δ1−−→ · · · −−→ Cd−1 δd−1−−−→ Cd −→ 0.

Representing the boundary and coboundary maps as matrices gives us δk =
∂Tk+1, where MT denotes the transpose of the matrix M . Finally, the kth
(cellular) cohomology is defined as Hk(X;R) := ker δk/ im δk−1. ♦
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For the most part, we let R = Z, and so we may use the term ‘abelian
group’ for the Z-module Cn instead. In such cases, we simply denote the
(cellular) cohomology of X as H∗(X) := H∗(X;Z). Further, there is a natural
isomorphism between the cellular and singular cohomology of X [Geo08,
cf. Thm. 2.3.5]. As such, we no longer distinguish the cellular and singular
cohomology of X.

Example 1.14 (Cohomology of the circle). Earlier, we discussed how the
circle S1 may be written as a CW complex. Let e0 and e1 be the 0- and 1-cells
of S1 as defined in Remark 1.8 (also see Figure 1.1 (B)), and so we have
C0 = 〈e0′〉 ∼= Z and C1 = 〈e1′〉 ∼= Z as (cellular) cochain groups. Note that
e′ denotes the dual to the cell e. The coboundary map δ0 : C0 −→ C1 is the
zero map, since δ0(e0′) = e1′ − e1′ = 0, where the 1-cell e1 is considered to be
a directed edge. We then form the sequence

0 −−→ C0 δ0−−→ C1 −→ 0,

and so H0(S1) = ker δ0 ∼= Z and H1(S1) = C1/ im δ0 ∼= Z. ♦

The Čech cohomology of a topological space is defined through the Čech
cohomology of its open covers. Thus, we first define the Čech cohomology of
an open cover. A collection of open sets U := {Uα|α ∈ A} (where A is not
necessarily countable) of a topological space is said to be an open cover of X
if X ⊆

⋃
α∈A Uα. Suppose X is a topological space and U := {Uα} an open

cover of X. The nerve, denoted by N(U), is a simplicial complex (see Remark
1.12) with the following simplices.
(1) A vertex α for every non-empty open set Uα;

(2) An edge αβ for each non-empty intersection Uα ∩ Uβ;

(3) A face αβγ for each non-empty intersection Uα ∩ Uβ ∩ Uγ ;

(4) An n-simplex for every non-empty intersection of n+ 1 open sets.
The Čech cohomology of the cover U is defined to be the simplicial cohomol-

ogy of its nerve N(U). However, it can be shown that every singular complex
can be subdivided and triangulated to be a simplicial complex [Hat02, Prob.
2.1.23]. Since singular (and hence cellular) cohomology is a topological invari-
ant [Geo08, Thm. 12.1.9], and every singular complex is homeomorphic to a
simplicial complex, the simplicial and singular (and thus cellular) cohomologies
are equivalent for spaces that admit simplicial structures. So we just prefer to
drop the terms simplicial, singular and cellular altogether and refer to them
simply as cohomology. As such, we now arrive at the following definition.

Definition 1.15. The Čech cohomology of an open cover U , denoted by
Ȟ∗(U), is the cohomology of its nerve N(U), i.e., Ȟ∗(U) = H∗(N(U)). ♦
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Example 1.16. Different open covers may correspond to different nerves,
which then could yield different cohomologies. For instance, consider the three
covers of S1 as shown in Figure 1.2, and call them U1, U2 and U3 respectively.
The nerves N(Ui) for i ∈ {1, 2, 3} are also shown in the figure beneath their
respective covers. We get the following non-trivial cohomologies.

Ȟ0(U1) = H0(N(U1)) = 〈e0′〉 ∼= Z;

Ȟ0(U2) = H0(N(U2)) = 〈e0
0
′ + e0

1
′〉 ∼= Z;

Ȟ0(U3) = H0(N(U3)) = 〈e0
0
′ + e0

1
′ + e0

2
′〉 ∼= Z, and

Ȟ1(U3) = H1(N(U3)) = 〈e1
0
′
, e1

1
′
, e1

2
′〉/〈e1

0
′ − e1

2
′
, e1

1
′ − e1

2
′〉 ∼= Z.

Note that Ȟ∗(U3) = H∗(S1) is not a coincidence as a consequence of Proposi-
tion 1.19 below. ♦

An open cover V is a refinement of U if every open set in V is contained in
some open set in U . As such, there is a simplicial map ρUV : N(V) −→ N(U),
which induces a canonical map ιVU : Ȟ∗(U) −→ Ȟ∗(V). See [BT82, Sec. 10]
for details.

Definition 1.17. The Čech cohomology of X, denoted by Ȟ∗(X), is the
direct limit of Ȟ∗(U), where the direct limit is taken over all open covers of
X together with the canonical map ι from above. ♦

The previous definition requires one to look at all open covers of X,
their corresponding Čech cohomology, and the induced maps ι between the
cohomologies. Fortunately, we can avoid this difficulty through the notion of
good covers. An open cover U of X is called a good cover if every open set in
U is contractible, and every non-empty intersection of a finite number of open
sets is also contractible.

Remark 1.18. Consider again the three covers of the circle S1 in Figure 1.2.
The cover U1 := {U0} is not a good cover since U0 is not contractible. The
cover U2 := {U0, U1} is also not a good cover as the intersection U0 ∩ U1 is
not contractible. On the other hand, the cover U3 := {U0, U1, U2} is a good
cover as every open set Ui for i ∈ {1, 2, 3} is contractible and so is any of their
intersections. ♦

Proposition 1.19 ([Sa08, Cor. 3.3]). For a finite CW complex X and a good
cover U of X, we have Ȟ∗(X) ∼= Ȟ∗(U). �

Let us now state formally the Čech cohomology of a finite-dimensional
CW complex.
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U0 U0 U1 U0

U1

U2

e0 e0
0 e0

1

e1 e0
1

e0
2e0

0 e1
2

e1
1e1

0

(A) (B) (C)

Figure 1.2. The circle S1 together with three open covers (A)
U1 := {U0}, (B) U2 := {U0, U1}, and (C) U3 := {U0, U1, U2}.
Beneath the open covers are their corresponding nerves; also
see [Sa08, Ch. 3.3].

Proposition 1.20 ([Sa08, Thm. 3.4]). Let X be a finite CW complex. Then
the Čech cohomology Ȟ∗(X) is isomorphic to the cohomology H∗(X). �

Remark 1.21 (Connectedness vs. Path-connectedness). We could have de-
fined the Čech cohomology of a finite CW complex X simply as its singular
or cellular cohomology. However, we do not wish to imply that the two co-
homologies are necessarily equivalent, as in the case of X being the closed
topologist’s sine curve, i.e., X := {(0, 0)} ∪ {(t, sin 1

t ) | t ∈ (0, 1]}. Indeed,
Ȟ0(X) ∼= Z, whereas H0(X) ∼= Z2 [SS78, 118]. The former indicates the num-
ber of connected components in X, whereas the latter indicates the number
of path-connected components in X. In general though, for any topological
space X that is homotopy equivalent to a finite CW complex, the Čech and
singular cohomologies are isomorphic. ♦

1.4. Inverse limit spaces and their cohomology

Let Υ0,Υ1,Υ2, . . . be topological spaces, and {fn : Υn+1 −→ Υn}n∈N0 be
a family of continuous maps. Let us consider the product space

∏
Υi, whose

elements are sequences x := (x0, x1, x2, . . .) with xi ∈ Υi. The inverse limit
space of Υi relative to the (bonding) maps {fn} is defined as

lim←−(Υ, f) := {(x0, x1, . . .) ∈
∏

Υi | xn = fn(xn+1) ∀n ∈ N0}.

The spaces Υn are called the approximants to the inverse limit space because
knowing a particular xN means being able to determine all xi for 0 ≤ i < N .



20 1. PRELIMINARIES

(A) (B) (C)

Figure 1.3. The first three approximants to the dyadic
solenoid, (A) Υ0 = S1, (B) Υ1 = S1, and (C) Υ3 = S1. Images
created by Jim Belk, retrieved from http://en.wikipedia.
org/wiki/File:Solenoid.gif, used with his kind permission.

The product space
∏

Υi is equipped with the product topology, which means
that two sequences x := (x0, x1, . . .) and y := (y0, y1, . . .) are ‘close’ if their
first N terms are close (in their respective topologies) for a sufficiently large
value of N . (One may further say that for any ε > 0, two sequences x and y
are ‘ε-close’ if their first N terms are close, where N ≤ 1/ε; and so, x and y
are ‘close’ if for sufficiently small ε, they are ε-close.) If xN and yN are close,
then xN−1 and yN−1 are also close by continuity of fN−1, and so are xi and
yi for any 0 ≤ i < N .

A well known example of an inverse limit space are the solenoids [Wi74].

Example 1.22 (Dyadic solenoid). As an inverse limit space, the dyadic
solenoid S2 may be constructed as follows. Let each approximant be a circle,
i.e., Υi = R/Z = S1 = T (1-dimensional torus) for all i ∈ N0, and let each fn be
multiplication by 2. Then S2 = lim←−(S1, f). Geometrically, fn is a mapping that
wraps Υn+1 around Υn twice. Figure 1.3 shows the first three approximants
Υ0, Υ1 and Υ2 (in 3D for better visualisation) to the dyadic solenoid. Imagine
the three tori simply being circles. Then the second torus wraps around the
first twice, and the third around the second twice. A point in S2 is described
by the sequence (x0, x1, x2, . . .), where x0 is a point on the circle Υ0, a choice
x1 ∈ Υ1 from two possible pre-images of x0, i.e., x1 = 1

2x0 or x1 = 1
2(1 + x0),

a choice x2 ∈ Υ2 from two possible pre-images of x1, and so on. As such, the
solenoid is locally a product of an interval and a Cantor set [Sa08]. More
generally, a p-adic solenoid Sp is obtained by defining fn as multiplication by
p > 1. ♦

Proposition 1.23 ([Sa08, Thm. 3.5]). Let X be the inverse limit of a se-
quence of spaces Υn relative to the maps fn : Υn+1 −→ Υn. If each Υn is a

http://en.wikipedia.org/wiki/File:Solenoid.gif
http://en.wikipedia.org/wiki/File:Solenoid.gif
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finite CW complex, then Ȟ∗(X) = Ȟ∗(lim←−(Υ, f)) ∼= lim−→ Ȟ∗(Υn) = lim−→H∗(Υn).
�

Example 1.24 (Čech cohomology of the dyadic solenoid). Let us compute
the Čech cohomology of the dyadic solenoid S2, which is the inverse limit of
circles Υn = S1 relative to the doubling maps fn as defined in Example 1.22.
The continuous map fn induces a map on the approximants Υn as follows. Fix
a 0-cell e0 in Υ0 = S1 and define the 1-cell e1 as the complement S1 − {e0},
as in Figure 1.1 (B). The action of f0 on Υ0 fixes the 0-cell e0 but doubles
the 1-cell e1 in length. In fact, for all n ∈ N0, fn fixes e0 and doubles e1

(n+ 1) times. As a consequence (together with Proposition 1.23), we have the
following Čech cohomologies:

Ȟ0(S2) ∼= lim−→ Ȟ0(S1) = lim−→(Z,×1), and

Ȟ1(S2) ∼= lim−→ Ȟ1(S1) = lim−→(Z,×2).
As in Examples 1.2 and 1.4, we get

Ȟ0(S2) ∼= Z, and Ȟ1(S2) ∼= Z[1
2 ].

For a general p > 1, the Čech cohomology of the p-adic solenoid is given by

Ȟ0(Sp) ∼= Z, and Ȟ1(Sp) ∼= Z[1
p ]. (1.3)

♦

1.5. Perron-Frobenius theory

This short review on the Perron-Frobenius (PF) theory is intended only to
touch a few details that are related to our study. In most cases, we can proceed
even without referring to the PF theory. However, for the sake of completeness,
we choose to cover the essentials in this section. For a background, see [BG13a,
Ch. 2.4] and references therein.

A d× d matrix M ∈ Mat(d,R) is called non-negative when all its entries
are non-negative numbers, and called strictly positive if all its entries are
positive numbers. A non-negative matrix M is said to be primitive if there
exists an integer k ∈ N such that Mk is strictly positive.

Proposition 1.25 (Perron-Frobenius). Let M ∈ Mat(d,R) be a primitive
non-negative matrix. There exists a simple real eigenvalue λPF > 0, called the
Perron-Frobenius eigenvalue, such that for any eigenvalue λ 6= λPF of M , we
have |λ| < λPF . The corresponding eigenvector of λPF may be chosen so that
all its entries are positive numbers. �

As we will see later on, the PF theory provides the necessary tool for
squeezing out the embedded geometric properties of a symbolic substitution
(especially in one dimension) allowing for its natural geometric realisation.
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1.6. Symbolic substitution

A well studied approach in analysing ordered systems, particularly in one
dimension, is provided by substitution rules on finite alphabets; see [BG13a,
Ch. 4] for a detailed exposition. Let us define the substitution first in one
dimension, and then extend it to a particular class of substitutions in higher
dimensions, called the block substitutions [Fra05].

A finite alphabet An consists of a finite number of letters ai ∈ An, i.e.,
An := {ai | 1 ≤ i ≤ n} for some integer n > 1. Letters may be concatenated to
create words. A (finite) word w consisting of k letters is called a k-letter word
whose length is denoted by |w| = k. Words may be extended semi-infinitely,
or bi-infinitely by indefinitely concatenating a letter to the right of the word,
or to either ends of the word. Infinite words may be coordinatised as either
w := w0w1w2 · · · (semi-infinite) or w := · · ·w−2w−1w0w1w2 · · · (bi-infinite),
where each letter wi is in An. Sometimes, the use of a reference marker is
also employed, for instance, w := |w0w1w2 · · · or w := · · ·w−2w−1|w0w1w2 · · · ,
where we use a vertical line to serve as a reference marker. By convention, an
empty word ε may also be introduced. Note that |ε| = 0, and for any word w,
we have the following concatenation wε = w = εw.

A substitution % on An is a rule that assigns a (finite and non-empty)
word to every letter ai ∈ An. The substitution naturally extends to any word
by applying the rule individually to every letter of that word. The process
of substitution (of a word) can be repeated indefinitely, and we assume that
the lengths of the words go to infinity the further the iteration goes. Thus,
a semi- or bi-infinite word may be constructed via substitution. We define
the substitution matrix M% (of the substitution %) as (M%)ij := cardai(%(aj))
for 1 ≤ i, j ≤ n, where cardx(y) denotes the number of occurrences of x in
y (e.g., carda(aaa) = 3 and cardaa(aaa) = 2). The substitution matrix M%

keeps record of the power counting of a finite word w under k-fold substitution
through (cardai(%k(w)))i = (Mk

% (cardai(w)))i.
The substitution % is primitive if there is an integer k ∈ N such that for

any ai, aj ∈ An, %k(ai) contains aj . Equivalently, % is primitive if and only if
its substitution matrix M% is primitive. The primitivity of % guarantees that
|%k(ai)| −→ +∞ as k → +∞ for any ai ∈ An.

A word w′ is called a subword of w if and only if cardw′(w) > 0, and
necessarily, |w′| ≤ |w|. A word w is said to be legal (with respect to %) if for
each finite subword w′ of w, there exist ai ∈ An and k ∈ N such that w′ is a
subword of %k(ai). When a word w is finite, then it is legal if and only if it is a
subword of %k(ai). An infinite word w is called a fixed point of the substitution
%k (for some k ∈ N) if %k(w) = w, relative to a reference point. The legal word
u|v is called a seed of a (two-sided or bi-infinite) fixed point w if and only
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if w = limm→∞ %
km(u|v), where the vertical line | marks the reference point.

Analogously, |u is a seed of a (one-sided or semi-infinite) fixed point w if and
only if w = limm→∞ %

km(|u). Note that when % is primitive, there is always a
fixed point of %k for some k ∈ N [BG13a, Lem. 4.3].

Example 1.26 (Fibonacci substitution). Perhaps one of the most known
examples of a primitive substitution is the Fibonacci substitution [BG13a,
Ch. 4.6] given by

%F :=
{
a 7−→ ab

b 7−→ a
(1.4)

Applying %F on b a few times gives us

b 7−→ a 7−→ ab 7−→ aba 7−→ abaab 7−→ abaababa 7−→ · · · (1.5)

where the number of letters in each iteration forms the Fibonacci numbers
[OEIS, A000045]. After every iteration (except for the very first), the iterated
words always begin with the previous iterated words, which means that this
sequence of words of increasing length converges to a limit w such that
w = %F (w), where w is a semi-infinite word. In this case we write w := w(|a)

to denote that the limit is a one-sided fixed point of % from the initial letter a.
However, we are more interested in bi-infinite words as they are a better fit for
our purpose when we begin considering substitution tilings later. To obtain a
bi-infinite word, we may apply %F to a|a, where the vertical line denotes the
reference point. We then get the following iterations

a|a %F7−→ ab|ab %F7−→ aba|aba %F7−→ abaab|abaab %F7−→

abaababa|abaababa %F7−→ abaababaabaab|abaababaabaab %F7−→ · · ·

In contrast, there is no two-sided fixed point of %F , since the letter on the
underlined position alternates between a and b. However, this also means that
we can form two bi-infinite fixed points of %2

F , namely

a|a
%2
F7−→ aba|aba

%2
F7−→ abaababa|abaababa

%2
F7−→ abaababaabaababaababa|

abaababaabaababaababa
%2
F7−→ · · ·

%2
F7−→ w := w(a|a) = %2

F (w)
(1.6)

and

b|a
%2
F7−→ ab|aba

%2
F7−→ abaab|abaab

%2
F7−→ abaababaabaab|abaababaabaab

%2
F7−→ · · ·

%2
F7−→ v := v(b|a) = %2

F (v)
(1.7)

As we see, a|a and b|a are the seeds of the fixed points w = w(a|a) and
v = v(b|a). The notion of fixed points under an m-fold substitution is used to
define dynamical zeta functions, as we will see later in Chapter 2.5.
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The substitution matrix of the Fibonacci substitution is M%F = ( 1 1
1 0 ),

whose PF eigenvalue λPF := λ = τ := (1 +
√

5)/2 is the golden ratio. This
means that asymptotically, the number of letters after every substitution scales
by τ at each iteration, a property that is also known for Fibonacci numbers.
The left eigenvector of λ, given by Lλ := (τ, 1), may be used to transform a
bi-infinite word arising from %F to a covering (or more precisely a tiling∗) T
of R, preserving the natural geometric properties the substitution possesses.
This is achieved by transforming the letters a and b to be closed intervals in
R with lengths τ and 1 respectively. Let us emphasise that the lengths are
the entries in Lλ. (We generalise the discussion on this in Remark 2.4.)

Meanwhile, the substitution yields {aa, ab, ba} as its set of legal 2-letter
words, and {aab, aba, baa, bab} as the legal 3-letter words. This means that
the subwords {bb, aaa, . . .} do not appear anywhere in any word arising from
%F . (Compare Example 2.8.) ♦

Substitution rules on symbolic alphabets may also be used to define
substitutions in higher dimensions, say in dimension d ≥ 2, and one of the
most natural ways of doing this would be through a block substitution, where
a letter is assigned a d-dimensional array of letters, called blocks [Fra05]. If
d = 2, then the blocks are rectangular arrays; for d = 3 the blocks are cubes;
for d = 4 the blocks are hypercubes; and so on. Let us illustrate this with an
example in two dimensions.

Example 1.27 (Chair† substitution). Consider the planar block substitution
on four letters (or symbols) A4 := {1, 2, 3, 4} defined by

%x :=
{

1 7−→
[
4 1
1 2

]
2 7−→

[
2 3
1 2

]
3 7−→

[
4 3
3 2

]
4 7−→

[
4 3
1 4

]

whose first few iterations starting with the symbol 1 look like

1 7−→ 4 1
1 2

7−→

4 3 4 1
1 4 1 2
4 1 2 3
1 2 1 2

7−→

4 3 4 3 4 3 4 1
1 4 3 2 1 4 1 2
4 1 4 3 4 1 2 3
1 2 1 4 1 2 1 2
4 3 4 1 2 3 4 3
1 4 1 2 1 2 3 2
4 1 2 3 4 1 2 3
1 2 1 2 1 2 1 2

7−→ · · ·

∗See definition in Chapter 2.1.
†This substitution is equivalent (see Chapter 2.2 for definition) to the chair tiling

produced in Figure 2.1 [Rob99, BS11].
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Except for the very first iteration (i.e., the iteration of 1), notice that the
centre patch of every iterated block displays the previous block before the
iteration, and so we have found a fixed point of the substitution %x. By having
the origin at the very centre of the iterated blocks of letters, and by assigning
a unit square (or any square of uniform length) to each letter, and colouring
the squares accordingly to distinguish them, we form a covering (or tiling)
of R2 that is faithful to the structure of the actual block substitution. The
counterpart of legal subwords in this case would be legal patches, which are
arrays of a finite number of symbols appearing in %kx(i) for some i ∈ A4 and
integer k ∈ N. It is not difficult to see that this substitution has an inflation
factor of 2, i.e., the number of letters along any row or column is doubled after
every iteration. More precisely when considering square patches (as geometric
representation of the symbols), the side length of the iterated square patch
doubles after every substitution. ♦





CHAPTER 2

Substitution tiling spaces and their cohomology

Perhaps one of the most significant developments in tiling theory in the
recent past came when Anderson and Putnam were able to show that a
substitution tiling space Ω can be regarded as an inverse limit of branched
manifolds, called approximants [AP98]. As a result, the Čech cohomology
of the substitution tiling space may be computed as the direct limit of the
cohomologies of the approximants (also known as AP-complexes) relative to
the bonding map induced by the substitution. Recently in [BD08, BDHS09,
GM13], modified versions of the approximants were introduced, resulting
in a simpler computation of the cohomology of the substitution tiling space.
However, even though the cohomology is computed correctly, the approximants
no longer describe the actual tiling space as their inverse limit, and so, we
do not follow these newer methodologies, but rather still base the discussion
on substitution tilings mainly from our original source, where most of the
terminologies and definitions are taken from.

2.1. Substitution tilings and tiling spaces

A more natural geometric approach to substitution is through tiling theory.
In certain scenarios, particularly in one dimension, we will see how the setting
used in symbolic substitution parallels that of substitution on tilings of Rd.
This provides the necessary connection between the two theories, so that we
can use whichever seems more convenient depending on a given situation.

A tile t is a subset of Rd that is homeomorphic to a closed disk in Rd.
A partial tiling is a set of tiles in Rd, in which any two distinct tiles may
only intersect on their boundaries, and whose support is the union of its tiles.
A tiling of Rd is a partial tiling whose support is Rd. Each tile may carry
a label aside from its geometric shape, and so tiles that look alike can be
distinguished through their labels. Formally, a tile is an ordered pair consisting
of its geometric description and its label. A tiling T is a multi-valued function,
such that for any u ∈ Rd and U ⊆ Rd, we have

T (u) := {t ∈ T | u ∈ t},
T (U) :=

⋃
u∈U

T (u).

27
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Two tilings T and T ′ agree on U if T (U) = T ′(U). Further, for any partial
tiling T , we define an expansion and translation of T by

λT := {λt | t ∈ T} for λ ∈ R+,

T + u := {t+ u | t ∈ T} for u ∈ Rd.

Note that a tiling T is called periodic if T = T + u for some u ∈ Rd − {0}.
We now construct a collection of tilings, denoted by Ω, via a substitution rule

(which later we denote by ω). Tilings defined through substitution are called
substitution tilings. Let {pi | i = 1, 2, . . . , n} be a finite‡ set of (inequivalent)
tiles called prototiles. Let Ω̂ be the collection of all partial tilings that are
constructed using only the prototiles, i.e., each tile in any partial tiling is a
translated copy of some prototile. Assume further that a substitution rule
comes with an inflation factor λ > 1, such that whenever a prototile pi is
assigned a partial tiling Pi with support pi, then λPi is in Ω̂. (See Figure 2.1
for an illustration.) The substitution rule naturally extends to an inflation
map that does not only apply to prototiles, but also to partial tilings. This
inflation map ω̂ is defined as

ω̂ : Ω̂ −→ Ω̂
T 7−→ λ

⋃
pi+u∈T

(Pi + u).

In particular, ω̂2(pi) = ω̂(λPi) ∈ Ω̂ yields a bigger partial tiling than ω̂(pi) =
λPi, and the partial tiling ω̂k(pi), for any k ∈ N, is called the level k supertile
of pi.

Finally, let Ω be the collection of tilings T in Ω̂ such that for any partial
tiling P ⊆ T of bounded support, we have P ⊆ ω̂m({pi + u}) for some m ∈ N,
i ∈ {1, 2, . . . , n} and u ∈ Rd. The restriction ω := ω̂|Ω is a mapping from Ω to
Ω by applying the substitution rule on each tile (of a tiling in Ω) in a consistent
manner as prescribed by ω̂. At times, we may deliberately not distinguish the
substitution rule from the inflation map as the difference between the two is
only technical in the context of our study. As such, we use the same notation
ω whenever we refer to either the substitution rule or the inflation map.

This collection of substitution tilings, denoted by Ω (or Ωω when emphasis
is needed), is called the hull or the tiling space associated to the substitution
ω. We enumerate three assumptions, which most of the interesting examples
satisfy.

‡The assumption on finiteness may be relaxed to consider a more general class of
substitution tilings such as the Pinwheel tiling (compare [Sa08, Ch. 4] and [BG13a, Ch.
6.6]). Such examples of (non-simple) tilings are not considered in this text.
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S ×2 ω̂

(A) (B) (C) (D)

Figure 2.1. A substitution rule that produces the classical
chair (also called triomino [Rob99, AP98]) tiling of R2, where
a prototile (A) is subdivided into four pieces (B), and then is
inflated linearly by a factor of 2 (C). Note that ω̂ = ×2 ◦ S.
The right most partial tiling (D) is the level 2 supertile of the
prototile in (A).

(1) The inflation map ω is one-to-one, and so its inverse exists. Substitution
rules that admit periodic tilings (under the action of the translation group
Rd) do not satisfy this assumption. An example of this is the rule dividing
an interval into two equal parts and then doubling their lengths afterwards.

(2) The substitution is primitive, i.e., there exists an integer N such that for
every pair of prototiles pi and pj , the partial tiling ω̂N ({pi}) contains a
translation of pj . One can also define the substitution matrix associated
to ω (which we denote by Mω) similar to the one in symbolic substitution,
but using prototiles instead of letters. Then ω is primitive if and only if
Mω is primitive.

(3) The hull Ω satisfies a finite pattern condition, i.e., for each real number r,
there are only finitely many partial tilings up to translation P ⊆ T (for
any T ∈ Ω) whose supports have diameter less than r. This property is
also referred to as the finite local complexity (FLC) property in [BG13a,
Ch. 2.1].

Under these assumptions, we have the following.

Proposition 2.1 ([AP98, Prop. 2.1–2.3]). The tiling space Ω is non-empty
and contains no (translation) periodic tilings. Further, ω(Ω) = Ω. �

Remark 2.2. There is an alternative yet equivalent way of defining the
substitution tiling space Ω. In general, a tiling space ΩT associated to a
particular tiling T is defined as the closure of the translation orbit of T under
a metric, where two tilings are “ε-close” if they agree on a ball of radius 1/ε
around the origin, possibly after a translation of at most ε in any direction.
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There are a number of equivalent metrics and topologies arising from this
notion of tiling distance [Rob96, Sol97, Sa08] and the following is the one
given in [AP98]. For tilings T1, T2 of Rd let

d(T1, T2) := inf({1/
√

2} ∪ Ξ), where
Ξ := {ε |T1 + u and T2 + v agree on B1/ε(0) for some ‖u‖, ‖v‖ < ε}

(2.1)

with ‖ · ‖ denoting the standard norm on Rd and Br(x) being the open ball of
radius r centred at x ∈ Rd. Two substitution tilings T and T ′ arising from the
same substitution ω define the same tiling space, and so the hull is instead
associated with a substitution rule rather than a particular substitution tiling,
i.e., Ωω := ΩT = ΩT ′ . The collection Ω of substitution tilings defined earlier
and the tiling space Ωω are equivalent. Compare [BG13a, Thm. 4.1]. ♦

With the (metric) topology of Ω induced by d in Equation (2.1), Anderson
and Putnam showed that ω is a topologically mixing homeomorphism of (Ω, d)
and that (Ω, d, ω) is a Smale space [AP98]. However, we do not pursue these
here, but only need the following, which follows directly from the two assertions.

Proposition 2.3 ([AP98, Cor. 3.5]). The action of Rd on Ω by translation
is minimal, i.e., the translation orbit of any tiling T in Ω is dense. �

Remark 2.4 (1-dimensional substitution tilings). Clearly, a 1-dimensional
tiling substitution ω defines a symbolic substitution % by assigning a letter
to each of the prototiles. If ω is primitive, then so is %. Thus, a substitution
tiling T of R defines a bi-infinite word that can be consistently obtained from
%. Conversely, we can apply the Perron-Frobenius (PF) theory on primitive
symbolic substitutions to derive certain geometric properties associated with
them. Given a primitive substitution % on n ≥ 2 letters with PF eigenvalue
λPF and a left eigenvector (v1, v2, . . . , vn) of λPF whose entries are all positive,
we can transform a letter in An to a prototile in R by assigning the interval
[0, vi] to the letter ai ∈ An. If two different letters are assigned the same
interval, we may label or colour them as to keep them distinguished. As such,
a bi-infinite word arising from % becomes a substitution tiling of R with the
PF eigenvalue λPF being the inflation factor associated to the substitution
tiling. Therefore, the symbolic primitive substitution % defines a primitive
substitution ω.

One can then define a symbolic substitution system, i.e., a (discrete) hull,
analogous to a (continuous) tiling space Ω. However, we do not wish to explore
this approach here. For a thorough exposition on this, see [BG13a, Ch. 4].
In higher dimensions, symbolic block substitutions (of constant length) may
define a substitution tiling of Rd with integer inflation factor λ. An example
of this is the chair substitution in Example 1.27, which defines a substitution
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equivalent to the chair tiling illustrated in Figure 2.1. We will explore more
on such examples in the following chapters. ♦

Remark 2.5 (Forcing the border). A substitution is said to force the border
if there exists a natural number N , such that any two level N supertiles (of
the same tile type) have the same pattern of neighbouring tiles. More precisely,
there is a fixed positive integer N such that for any tile t and any two tilings
T and T ′ containing t, ωN (T ) and ωN (T ′) coincide, not just on ω̂N ({t}), but
also on all tiles that meet ω̂N ({t}).

The Thue-Morse substitution %TM := {1 7−→ 11̄, 1̄ 7−→ 1̄1} (Example
2.15) does not force the border while the Fibonacci substitution %F := {a 7−→
ab, b 7−→ a} (Example 2.14) and the period doubling substitution %pd :=
{a 7−→ ab, b 7−→ aa} (Example 2.16) force the border, though only on one
side, since the substitution of any letter produces a word that begins with a.
On the other hand, the substitution {a 7−→ abb, b 7−→ aab} forces its border,
since all iterated words begin and end with the same letter.

In two dimensions, the Penrose [Kel95] and the half-hex tilings [Sa08,
Ch. 2.5] force their borders, while the chair tiling [BS11] produced in Figure
2.1 does not. ♦

2.2. Equivalence of tiling spaces

The notion of equivalence between tiling spaces can be defined via topo-
logical conjugacy or through mutual local derivability. (The former is weaker
than the latter though.) We begin by defining topological conjugacy, whose
definition is similar to that of other topological spaces.

A homeomorphism between tiling spaces is a continuous map f : ΩX −→
ΩY that is 1-to-1 and onto. Since ΩX is compact and ΩY a Hausdorff space
[Sa08, Ch. 1.3], then the inverse f−1 is necessarily continuous, which agrees
with the usual topological definition of homeomorphism between topological
spaces. A factor map between tiling spaces (of Rd) is a map that commutes with
the action of the translation group Rd and a topological conjugacy between
tiling spaces is a factor map that is also a homeomorphism. Topological
conjugacy preserves the structure of tiling spaces as dynamical systems and
preserves dynamical invariants such as the dynamical spectrum, and mixing
properties, among others.

A stronger notion of equivalence between tiling spaces is given by mutual
local derivability, or MLD for short [BSJ91]. Though, we do not really focus
on the study of MLD between tiling spaces, let us just define the notion of
MLD nonetheless.

We say that the two tiling spaces ΩX and ΩY are MLD if there is a
topological conjugacy between them which is defined locally in either direction.
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This means that there exists a radius R such that whenever two tilings T and
T ′ (both in ΩX) agree on a ball of radius R around x, then f(T ) and f(T ′)
(both in ΩY ) agree on a ball of radius 1 around x. Since f commutes with
translation, it is sufficient to check this at x = 0 [Sa08, Ch. 2.1].

Tilings that are mutual locally derivable are necessarily topologically
conjugate, but the converse is not true in general [Pet99, RS01]. Also see
[Sa08, Ch. 3].

2.3. Tiling spaces are inverse limit spaces

As we have seen in the previous chapter, the Čech cohomology of an inverse
limit space behaves well under direct limits. However, showing that a space
is an inverse limit space is no guarantee for the computability of its Čech
cohomology. In this section, we review the construction of the CW complexes,
called the AP-complexes, that will serve as approximants to the substitution
tiling space that allows for the computation of its cohomology. Let us recall
the inverse limit space

lim←−(Υ, f) := {(x0, x1, . . .) ∈
∏

Υi | xn = fn(xn+1) ∀n ∈ N0}, (2.2)

with approximants Υn and bonding maps fn : Υn+1 −→ Υn.

Remark 2.6. A large class of tiling spaces beyond substitution tilings was
also shown to be inverse limit spaces. This ranges from simple tiling spaces
[Gäh02, BBG06], to non-simple substitution tilings including pinwheel-like
tilings [ORS02, BG03], to certain non-Euclidean spaces [Sa03], and even to
tiling spaces lacking the finite pattern condition [FS09]. All these spaces can
now be understood as inverse limit spaces! We do not however pursue these
types of tiling spaces in this work, as we only focus on (simple) substitution
tiling spaces. ♦

For substitution tiling spaces, the spaces Υn and the continuous maps
fn in (2.2) may be defined in such a way that all the approximants are
topologically identical to one another and all the bonding maps essentially the
same. This simplifies the calculation of the direct limit of the cohomologies.
Further, the approximants turn out to be finite-dimensional CW complexes,
which we pretty much know how to handle. This construction was cleverly
achieved by Anderson and Putnam in [AP98], and as such, the (CW complex)
approximants are now called AP-complexes.

2.3.1. The Anderson-Putnam complexes. An AP-complex Γk for
k ∈ {0, 1} is constructed as follows:
(1) For a tile t ∈ T , let T (0)(t) := {t} and T (1)(t) := T (t). In general, T (k)(t)

is the set of tiles in T that are within k tiles of t, also called the k-collared
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(A) (B) (C) (D)

Figure 2.2. Two distinct 1-collared partial tilings (B and
C), and a 2-collared partial tiling (D) of the uncollared chair
prototile (A).

partial tiling of t. (See Figure 2.2 and also Table 2.1.) As a consequence
of Proposition 2.11 below, there is no need to go beyond k = 1, and so
explains the restriction on k.

(2) Next, we consider the space Ω× Rd with the product topology, where Rd

has the standard topology and Ω has the discrete topology to ensure that
every possible small patch of tiles is represented.

(3) Then let ∼k be the smallest equivalence relation on Ω× Rd that relates
(T1, u1) to (T2, u2) whenever

T
(k)
1 (t1)− u1 = T

(k)
2 (t2)− u2,

for some tiles t1 ∈ T1, t2 ∈ T2 and for some vectors u1 ∈ t1, u2 ∈ t2. The
equivalence class of a point (T, u) is denoted by (T, u)k.

(4) Finally, define Γk := Ω×Rd/ ∼k with the quotient topology. When needed,
we may also write Γk(ω) to emphasise that the approximant Γk is an AP-
complex of Ωω.

When the prototiles are (topologically) d-dimensional disks, then Γk is a
d-dimensional CW complex. Equivalently, if the substitution ω yields a tiling
of Rd, then Γk is d-dimensional as well. In particular, if d = 1, then Γk is a
strongly connected graph and in general, Γk is a compact Hausdorff space
[AP98, Prop. 4.1].

Remark 2.7 (Forgetful map). Let us first discuss a rather simple and intuitive
explanation by Gähler and Sadun about how we can view a substitution tiling
space Ω as an inverse limit of AP-complexes [Sa08, Ch. 2.4]. Proposition 2.11
below formalises this.
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The approximants Υn in (2.2) may now be defined via the AP-complexes.
Let Υ0 be Γk, Υ1 be the inflated version of Γk, i.e., Υ1 := ω̂(Γk) (by an
abuse of notation), and in general, let Υn := ω̂n(Γk). The approximant Υ0
tells us how to place a tile around the origin and Υ1 tells us how to place
a 1-collaring of tiles around the origin in such a way that is consistent with
the instruction given by Υ0 (i.e., a 1-collared partial tiling of the tile placed
around the origin). In general, Υn is a recipe of placing n-collaring of tiles
around the tile at the origin that is consistent with that of Υn−1. There is
a forgetful map fn : Υn+1 −→ Υn that restricts attention to the n-collaring
around the origin while forgetting about the rest of (n+ 1)-collaring around
the origin [Sa08, Ch. 2.5]. A point in the inverse limit space is an instruction
on how the tiles are laid starting from the origin moving out and eventually
covering the whole of Rd, and so defines a tiling. Thus, the set of all points
in the inverse limit space is in 1-to-1 correspondence with all the tilings in
the hull. However, this simple yet elegant approach does not tell us how the
cohomology of the tiling space is computed. ♦

Let us construct both Γ0 and Γ1 together with their inflated versions for
the 1-dimensional Fibonacci substitution tiling space. Both Γ0 and Γ1 are
1-dimensional CW complexes, i.e., they are strongly connected graphs.

Example 2.8 (The Fibonacci substitution tiling space). The 1-dimensional
Fibonacci substitution tiling space may be defined via the following inflation
map on two prototiles (which are closed intervals in R).

The long prototile has length τ = (1 +
√

5)/2 and the short one has length
1, and may be regarded as the closed intervals [0, τ ] and [0, 1] respectively.
More so, the associated inflation factor λ = τ is the golden ratio. After a
substitution, the length of the inflated long prototile is τ · τ = τ + 1, which can
be consistently divided into a long prototile followed by a short prototile. The
inflated short prototile has length 1 · τ = τ , and so may not be further divided.
Thus, the rule simply substitutes a long prototile for a short one under each
iteration. Starting with any tile, such that the origin is placed anywhere but at
the endpoints of the tile, allows us to eventually cover R after a never ending
application of the substitution. A patch of one such Fibonacci tiling of R (but
scaled down) is given in Figure 2.3.

As one may expect, a more compact way of writing this substitution is by
assigning a letter to the prototiles and considering the symbolic counterpart of
the substitution. Denoting the long and short prototiles by a and b respectively,
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· · · · · ·
a a a a a a a a a a ab b b b b b

Figure 2.3. A Fibonacci tiling of R. Above the tiles are their
symbolic representation, where a long tile is labelled a and a
short tile b.

gives us precisely the symbolic substitution %F = {a 7−→ ab, b 7−→ a} defined
in (1.4). Let us now construct the AP-complexes that serve as the approximants
to the Fibonacci substitution tiling space.

For the approximant Γ0, the prototiles are taken as the edges (i.e., the
interiors of the prototiles are the 1-cells) and their boundaries, which are the
vertices (the 0-cells), are identified depending on how the substitution allows
the prototiles to be adjacent. As such, Γ0 has exactly two edges with the long
one labelled a and the short one labelled b. Table 2.1 gives a summary of the
cell structure of Γ0. Since a long tile a may be followed by a short tile b and
a short tile b may be followed by a long tile a, then all the endpoints of the
edges in Γ0 are identified to a single vertex, as shown in Figure 2.4 (A). The
inflated versions of Γ0 are also illustrated in Figure 2.4 (B and C). The action
of the forgetful map defined in Remark 2.7 is as follows. The map f0 sends
the upper loop in Υ1 to the lower loop in Υ0; and the lower loop in Υ1 to
the lower loop then followed by the upper loop in Υ0. Similarly, f1 sends the
upper loop in Υ2 to the lower loop in Υ1; and the lower loop in Υ2 to the
lower loop followed by the upper loop in Υ1.

In most cases, Γ0 is not a ‘good’ approximant in the sense that the inverse
limit is not homeomorphic to the actual tiling space, and so we need a better
one, given by Γ1. Proposition 2.11 below guarantees that Γ1 is sufficient.
Constructing the approximant Γ1 means taking all the possible 1-collarings of
the prototiles, which naturally makes Γ1 a more complicated complex than
Γ0. Working with symbols, this means that the 1-cells consist of all the legal
3-letter words (allowed by %F ); and their boundaries, all the legal 2-letter words,
constitute the 0-cells. (This simplified construction of the approximant is due
to [GM13].) As we already saw in Example 1.26, we have {aab, aba, baa, bab}
and {aa, ab, ba} as the legal 3- and 2-letter words, respectively. See Table 2.1
for the cell structure of Γ1. In Γ1, the head of the edge x := x1x2x3 is identified
to the tail of the edge y := y1y2y3 if and only if x2x3 = y1y2. The 1-cells of
Γ1 are attached to the 0-cells accordingly, as shown in Figure 2.5 (A). The
inflated version of Γ1 is also shown in Figure 2.5 (B). The forgetful map f0
acts on the complexes analogously as in the case of Γ0 above. ♦
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k-cells in Γ0
1-cells 0-cell

a

b

•

k-cells in Γ1
1-cells 0-cells

aab

aba

baa

bab

aa

ab

ba

Table 2.1. The 0- and 1-cells in the AP-complexes Γ0 and Γ1
of the Fibonacci substitution tiling space. Note that the 1-cells
of Γ1 come precisely from all the distinct 1-collared partial
tilings of the two prototiles of the substitution.

b

a

%(b) = a

%(a) = ab

%(a) = ab

%(ab) = aba
(A) (B) (C)

Figure 2.4. Γ0 and its inflated versions (under γ0) as approxi-
mants (A) Υ0, (B) Υ1 and (C) Υ2 to the Fibonacci substitution
tiling space.

Remark 2.9 (Solenoids via substitution). A p-adic solenoid Sp (p > 1) may
also be defined via substitution. The substitution rule that divides an interval
into p equal parts and then inflating the subintervals p times as large defines
a substitution system whose inverse limit is Sp. This inflation map can be
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ab

aa

ba ba

ba

aa

ab

ab

ab

(A) (B)

Figure 2.5. Γ1 and its inflated version as approximants to the
Fibonacci substitution tiling space. An edge between vertices
labelled xy and yz reads xyz, e.g., the edge between ab and ba
reads aba.

represented by the symbolic substitution {s 7−→ sp}. The AP-complex of
this substitution turns out to be a 1-dimensional torus, i.e., Γ0 = Γ1 = S1,
consistent with what we have already seen earlier in Example 1.22. For any
k ∈ N− {1}, the substitution {s 7−→ sk} defines the solenoid Sk as its inverse
limit. This even generalises to higher dimensional solenoids through block
substitution. For instance, the 2-dimensional 3-adic solenoid S3 × S3 may be
obtained as the inverse limit of the substitution

{
s 7−→ s s s

s s s
s s s

}
.

Note however that solenoids are not tiling spaces as the tilings obtained
from these substitutions are all periodic, and so do not satisfy the assumption
on w (the inflation map) being one-to-one. ♦

We now formalise the discussion on how a substitution tiling space can be
written as the inverse limit space of the AP-complexes. First, note that the
substitution rule induces a continuous surjection acting on the approximants
under which the inverse limit is taken to obtain the actual tiling space (up to
topological conjugacy).

Proposition 2.10 ([AP98, Prop. 4.2]). The substitution rule ω induces a
continuous map γk : Γk −→ Γk defined by γk((T, u)k) = (ω(T ), λu)k, where λ
is the inflation factor of ω. �

We then proceed to define the inverse limit of the AP-complexes Γk relative
to the bonding map γk by kΩ := lim←−(Γk, γk). By definition in Equation (2.2),
the inverse limit space kΩ consists of all infinite sequences x := (xi)N0 of points
xi ∈ Υi = Γk such that γk(xi) = xi−1 for i ∈ N. A basis for its topology is all
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such cylinder sets

BkΩ
U (n) := {x ∈ kΩ |xi ∈ γn−ik (U) for i ∈ In}, (2.3)

where In := {1, 2, . . . , n} for n ∈ N and U ⊆ Γk is an open set. We define
the right shift ωk : kΩ −→ kΩ by ωk(x)i := γk(xi) = xi−1 for i ∈ N0 and
x = (x0, x1, . . .). Naturally, there is the left shift, which is the inverse of ωk given
by ω−1

k (x)i := xi+1 for i ∈ N0. It then follows that ωk is a homeomorphism
and so generates a Z-action on kΩ. We then have a dynamical system (kΩ, ωk),
which is shown to be topologically conjugate to (Ω, ω) for k = 1, and even for
k = 0 when the substitution forces the border.

Proposition 2.11 ([AP98, Thm. 4.3]). The dynamical systems (Ω, ω) and
(1Ω, ω1) are topologically conjugate. If the substitution forces the border then
(Ω, ω) and (0Ω, ω0) are also topologically conjugate. �

This proposition essentially says that up to topological conjugacy, the
tiling space is the inverse limit of the AP-complexes. It is true that for all
k ≥ 1, (kΩ, ωk) and (Ω, ω) are topologically conjugate systems. However, the
higher the value of k is, the bigger and more complicated the approximants Γk
become; see Remark 3.4 for instance. There is no added benefit in considering
more complicated approximants, and so we only need to consider k ≤ 1.
Suppose that (Ω′, ω′) is an induced substitution system, where every 1-collared
partial tiling in Ω is considered a prototile in Ω′. This means, that w′ is the
induced substitution on Ω′ acting by applying the same substitution rule ω
on each component of a prototile in Ω′, which is a 1-collared partial tiling
in Ω. Then a restatement of Proposition 2.11 is as follows: The dynamical
systems (Ω, ω), (1Ω, ω1), (0Ω′, ω′0) and (Ω′, ω′) are all topologically conjugate,
as the induced substitution rule on the 1-collared partial tilings always forces
the border [Sa08, Ch. 2.5]. In most cases, a substitution rule does not force
the border, and so we cannot use the simplest approximant given by Γ0.
Throughout the text, we always use Γ1 whenever we need an AP-complex,
without any more verifying whether the substitution forces the border or not.

Remark 2.12 (The induced action of γk). The action of γk on Γk induces
an action on the d-cells in Γk, whose matrix representation we denote by A′d,
where we adopt the notation used in [AP98]. Suppose we number the d-cells in
Γk as 1, 2, . . . ,m. Then, we define the matrix Ad := (aij) by aij := cardi(ω̂(j))
for i, j ∈ {1, 2, . . . ,m}. The number aij counts the number of times i occurs in
the inflation of j. The transpose of the matrix Ad, denoted by A′d, represents
the induced action of γk on the d-cells in Γk. ♦
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2.4. The Čech cohomology of tiling spaces

Let kΩ = lim←−Γk be the inverse limit of the AP-complexes Γk relative to
the bonding map γk for k ∈ {0, 1} as defined in the previous section. Thus,

kΩ = Γk
γk←− Γk

γk←− Γk
γk←− Γk

γk←− · · · (2.4)

and so the Čech cohomology of kΩ reads

Ȟd(kΩ) = Ȟd(lim←−(kΩ, γk)) ∼= lim−→(Ȟd(Γk), γ∗d) = lim−→Hd(Γk), (2.5)

where the second equality follows from Proposition 1.23 and the last equality
follows from Proposition 1.20, and γ∗d is the induced inflation map acting on
the cohomologies Ȟd(Γk). When emphasis for the inflation ω is needed, we
may also write γ∗ω,d for γ∗d , unless the context is already clear.

Proposition 2.13 ([AP98, Thm. 6.1]). Let Ω be the tiling space associated
to the inflation map ω. Further let the AP-complexes Γk be the approximants
to the inverse limit space kΩ. Then the Čech cohomology of Ω isomorphic to
the Čech cohomology of kΩ for k = 1, i.e.,

Ȟ∗(Ω) ∼= Ȟ∗(1Ω) = lim−→H∗(Γ1).

If the substitution forces the border, the same is true for k = 0. �

Unlike other types of tiling spaces that can also be expressed as inverse
limit spaces (see Remark 2.6), substitution tiling spaces are very special in the
sense that their cohomology can be computed rather easily. This is due to the
fact that all the approximants in Equation (2.4) have isomorphic cohomology
groups, and the induced maps γ∗d between each of the cohomologies are all
the same, which makes Equation (2.5) manageable.

It should be clear that whenever we talk about the cohomology of substi-
tution tiling spaces, we really mean the Čech cohomology and so we may just
drop the term Čech. We may also simply write H∗(Ω) := Ȟ∗(Ω) as the context
is clear. We now demonstrate the method of computing the cohomology of a
substitution tiling space through the following examples.

Example 2.14 (Cohomology of Fibonacci substitution). The Fibonacci sub-
stitution %F = {a 7−→ ab, b 7−→ a} does not force the border, and so we cannot
use the approximant Γ0 to correctly compute the cohomology of the Fibonacci
substitution tiling space, which we denote by ΩF (or YF ). Instead, we consider
Γ := Γ1(%F ) and its inflated version as illustrated in Figure 2.5. The cochain
groups C0(Γ) = 〈aa′, ab′, ba′〉 ∼= Z3 and C1(Γ) = 〈aab′, aba′, baa′, bab′〉 ∼= Z4

are related through the coboundary map δ : C0(Γ) −→ C1(Γ), which can be
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read off directly of Figure 2.5 (A) as

δ =


−1 1 0
0 −1 1
1 0 −1
0 1 −1

 ,
and so we have the sequence

0 −→ C0(Γ) δ−−→ C1(Γ) −→ 0.

Thus, H0(Γ) = ker δ = 〈aa′ + ab′ + ba′〉 ∼= Z and H1(Γ) = C1(Γ)/ im δ =
〈aab′, aba′〉 ∼= Z2 with baa′ = aab′ and bab′ = aba′ − aab′ in H1(Γ). The
cohomology of ΩF is computed as the direct limit of the cohomologies of the
approximants relative to the induced homomorphism on the cohomologies,
i.e.,

Hd(ΩF ) = lim
−→

(Hd(Γ), γ∗d),

where γ∗d is the induced inflation map on the cohomologies. To know γ∗d
for d ∈ {0, 1}, we first determine the action of γd on the cells of Γ (recall
Remark 2.12), whose matrix representations we write as A′0 and A′1 respectively.
Reading off of Figure 2.5 (B), we get

A′0 =

0 0 1
0 0 1
1 0 0

 , A′1 =


0 1 0 1
0 0 1 0
1 1 0 0
1 1 0 0

 .
We want to know what happens to the generators of the cohomologies under
these maps. Since A′0(aa′ + ab′ + ba′) = aa′ + ab′ + ba′, γ∗0 is just the identity
map. Further, A′1(aab′) = aba′ and A′1(aba′) = aab′ + aba′ imply that γ∗1 is a
linear map given by

A∗1 :=
[
0 1
1 1

]
.

Therefore, we compute the cohomology of the Fibonacci tiling space as
H0(ΩF ) = lim−→(Z, γ∗0) ∼= Z and H1(ΩF ) = lim−→(Z2, γ∗1) ∼= Z2 as in Example 1.2.

♦

The next two examples are substitutions that also do not force the border,
hence we cannot work with Γ0.

Example 2.15 (Cohomology of Thue-Morse substitution). The substitution
on two letters given by

%TM :=
{

1 7−→ 11̄
1̄ 7−→ 1̄1 (2.6)
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defines the hull of the Thue-Morse substitution, denoted by YTM (compare
[BG13a, Ch. 4.6]). To determine the cohomology of YTM , we first need to
set up the approximant Γ := Γ1(%TM ). The AP-complex Γ is a 1-dimensional
complex whose 0-cells consist of the legal 2-letter subwords, namely,

11, 11̄, 1̄1, 1̄1̄,

and whose 1-cells consist of the legal 3-letter subwords,

111̄, 11̄1, 11̄1̄, 1̄11, 1̄11̄, 1̄1̄1.

Note that the subwords 111 and 1̄1̄1̄ do not appear anywhere in any bi-infinite
word in YTM as evident from %TM . Attaching the 1-cells accordingly gives us
the approximant Γ, shown in Figure 2.6 (A). The cohomology of Γ is computed
via its 0- and 1-cochain groups, i.e.,

C0(Γ) = 〈11′, 11̄′, 1̄1′, 1̄1̄′〉,

C1(Γ) = 〈111̄′, 11̄1′, 11̄1̄′, 1̄11′, 1̄11̄′, 1̄1̄1′〉.

The coboundary operator δ : C0(Γ) −→ C1(Γ), is given by

δ =



−1 1 0 0
0 −1 1 0
0 −1 0 1
1 0 −1 0
0 1 −1 0
0 0 1 −1


.

By definition, we obtain

H0(Γ) = ker δ = 〈11′ + 11̄′ + 1̄1′ + 1̄1̄′〉 ∼= Z,

H1(Γ) = C1(Γ)/ im δ = 〈111̄′, 11̄1′, 11̄1̄′〉 ∼= Z3,

where 1̄11′ = 111̄′, 1̄11̄′ = −111̄′ + 11̄1′ + 11̄1̄′ and 1̄1̄1′ = 11̄1̄′ in H1(Γ).
Figure 2.6 (B) shows the inflated version of Γ, where the inflation maps

A′0 and A′1 on the cochains may be read off as

A′0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , A′1 =



0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0


.

The induced maps γ∗d for d ∈ {0, 1} are deduced as follows. For γ∗0 , since
A′0(11′ + 11̄′ + 1̄1′ + 1̄1̄′) = 11′ + 11̄′ + 1̄1′ + 1̄1̄′, γ∗0 is simply the identity map
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11̄

1̄1

11 1̄1̄ 1̄1

11̄

1̄1̄

1̄1

11̄

1̄1

11

11̄

11̄1̄1

(A) (B)

Figure 2.6. The AP approximants to the Thue-Morse sub-
stitution tiling space.

on H0(Γ). Therefore,

H0(YTM ) ∼= H0(Γ)
γ∗0−−→ H0(Γ)

γ∗0−−→ H0(Γ)
γ∗0−−→ · · ·

∼= Z ×1−−→ Z ×1−−→ Z ×1−−→ · · ·
= Z ∼= 〈11′ + 11̄′ + 1̄1′ + 1̄1̄′〉.

Similarly for γ∗1 , we have

A′1(111̄′) = 111̄′ + 1̄11̄′ = 0 · 111̄′ + 11̄1′ + 11̄1̄′,
A′1(11̄1′) = 1̄11′ + 1̄1̄1′ = 111̄′ + 0 · 11̄1′ + 11̄1̄′,
A′1(11̄1̄′) = 111̄′ + 1̄11̄′ = 0 · 111̄′ + 11̄1′ + 11̄1̄′,

which imply that

A∗1 =

0 1 0
1 0 1
1 1 1

 ,
where A∗1 is the matrix representation of γ∗1 , which is diagonalisable with
eigenvalues 2, −1 and 0. Similar to Examples 1.6 and 1.7, we compute the
cohomology as

H1(YTM ) ∼= H1(Γ)
γ∗1−−→ H1(Γ)

γ∗1−−→ H1(Γ)
γ∗1−−→ · · ·

∼= Z3 ×(2,−1,0)−−−−−−→ Z3 ×(2,−1,0)−−−−−−→ Z3 ×(2,−1,0)−−−−−−→ · · ·

= Z[1
2 ]⊕ Z[−1]⊕ Z[0] = Z[1

2 ]⊕ Z.

♦

Example 2.16 (Cohomology of period doubling substitution). Related to
the Thue-Morse substitution is the period doubling substitution [BG13a, Ch.
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ab

ba

aa ab ba

ba

aa

ab

aaab

ab

(A) (B)

Figure 2.7. The AP approximants to the period doubling
substitution tiling space.

4.5] whose hull Ypd is derived from the substitution rule

%pd :=
{
a 7−→ ab

b 7−→ aa
(2.7)

The hull YTM is a uniformly 2-to-1 cover of the hull Ypd (see Remark 3.4). The
cochain groups of Γ := Γ1(%pd) are given by C0(Γ) = 〈aa′, ab′, ba′〉 ∼= Z3 and
C1(Γ) = 〈aaa′, aab′, aba′, baa′, bab′〉 ∼= Z5. The approximant Γ and its inflated
version are shown in Figure 2.7. The coboundary map δ : C0(Γ) −→ C1(Γ)
reads

δ =


0 0 0
−1 1 0
0 −1 1
1 0 −1
0 1 −1

 ,

and so we get the cohomologies H0(Γ) = ker δ = 〈aa′ + ab′ + ba′〉 ∼= Z
and H1(Γ) = C1(Γ)/ im δ = 〈aaa′, aab′, aba′〉 ∼= Z3 with baa′ = aab′ and
bab′ = aba′ − aab′ in H1(Γ). The induced inflation maps on the cells read

A′0 =

0 0 1
0 0 1
1 0 0

 , A′1 =


0 0 1 0 1
0 0 1 0 1
1 0 0 1 0
0 1 1 0 0
0 1 1 0 0

 .

One computes γ∗0 to be the identity map, and γ∗1 to be given by the linear map

A∗1 :=

0 0 1
0 0 1
1 1 1

 .
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The last matrix is diagonalisable and has eigenvalues 2,−1 and 0, and we
compute the cohomology of the period doubling tiling space as H0(Ypd) ∼= Z
and H1(Ypd) ∼= Z[1

2 ]⊕ Z. ♦

Let us end this section with the following observation.

Lemma 2.17. Suppose Ω is a substitution tiling space. Then Ȟ0(Ω) =
〈
∑
e′i〉 ∼= Z, where the sum runs over all 0-cells of the AP-complex of Ω

and e′i is the dual to the 0-cell ei.

Proof. Let Γ := Γ1 be an AP-complex associated to the tiling space Ω (or
Γ := Γ0 if the substitution forces the border). The 1-skeleton Γ1, consisting of
all 1-cells attached accordingly at their boundaries, is a strongly connected
graph, which means that there is a (directed) path from each 0-cell to every
other 0-cell in the graph. This is due to the primitivity of the substitution. As
such, the kernel of the coboundary map δ : C0(Γ) −→ C1(Γ) is always

∑
i e
′
i,

and so H0(Γ) = 〈
∑
i e
′
i〉, where the sum runs over all 0-cells in Γ. Finally, it is

not difficult to see that γ∗0 is always the identity map since γ∗0(
∑
i e
′
i) =

∑
i e
′
i

as the pre-image of a 0-cell is totally distinct from any other pre-images of the
other 0-cells, and so the pre-image of the entire sum is the entire sum itself.
Getting the direct limit gives us the result we need. �

Remark 2.18. The previous lemma is rather expected because the Čech co-
homology measures the number of connected components and any substitution
tiling space Ω is connected. Thus, Ȟ0(Ω) ∼= Z [Sa08, Ch. 3]. ♦

2.5. Dynamical zeta functions

The (Artin-Mazur) dynamical zeta function ζ(z) of a substitution tiling
system (Ω, ω), is a generating function that encodes the number of points
in the tiling space that are invariant under an m-fold substitution, for some
m ∈ N. By definition, we have

ζω(z) := exp
( ∞∑
m=1

Nm

m
zm
)
, (2.8)

where Nm is the number of fixed points of ωm in Ω = Ωω [Rue94, AP98].

Example 2.19. Let us consider the solenoid S2 = lim←−(S1, f) as in Example
1.22 and compute its dynamical zeta function using the definition. Recall that
a point in S2 may be represented as a sequence x := (x0, x1, x2, . . .) such that
2xi = xi−1 for i ∈ N and xi ∈ S1. A point x ∈ S2 is invariant under fm for
m ∈ N if x = fm(x), i.e., xi = 2mxi (modulo 1) for all i ∈ N0. The values of
Nm and the respective fixed points for m ∈ {1, 2, 3} are listed in Table 2.2. In
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m Nm Fixed point(s) m Nm Fixed point(s)

1 1 (0, 0, . . .) 3 7 (0, 0, 0, 0, . . .)
2 3 (0, 0, 0, . . .) (1

7 ,
4
7 ,

2
7 ,

1
7 , . . .) (4

7 ,
2
7 ,

1
7 ,

4
7 , . . .)

(1
3 ,

2
3 ,

1
3 , . . .) (2

7 ,
1
7 ,

4
7 ,

2
7 , . . .) (5

7 ,
6
7 ,

3
7 ,

5
7 , . . .)

(2
3 ,

1
3 ,

2
3 , . . .) (3

7 ,
5
7 ,

6
7 ,

3
7 , . . .) (6

7 ,
3
7 ,

5
7 ,

6
7 , . . .)

Table 2.2. The fixed points of the dyadic solenoid S2 for
m ∈ {1, 2, 3}. In general, Nm = 2m − 1.

general, Nm = 2m − 1 and so we compute the zeta function of S2 as

ζS2(z) = exp
(
z + 3

2z
2 + 7

3z
3 + 15

4 z
4 + 31

5 z
5 + · · ·

)
= 1− z

1− 2z

where the last equality is a consequence of Proposition 2.21 below. ♦

Example 2.20. Let us now see how we can compute the zeta function for
the Fibonacci substitution tiling space. As the substitution system (ΩF , %F )
is topologically conjugate to (1Ω, ω1), where 1Ω := lim←−(Γ1(%F ), ω1) with ω1
being the right shift map (i.e., ω1(x)i = xi−1), the fixed points of %mF in ΩF

are in 1-to-1 correspondence with the sequences x := (x0, x1, x2, . . .) ∈ 1Ω
such that xi = xi+m for xi ∈ Υi = Γ1(%F ) (i.e., the fixed points of ωm1 in
1Ω). Necessarily, γ1(xi) = xi−1 and recall that γ1(T, u)1 = (%F (T ), τu)1, where
(T, u)1 ∈ Γ1(%F ) and τ = 1

2(1 +
√

5) is the golden ratio. It can be computed
that N1 = 0, N2 = 2, N3 = 3, and in general, Nm = Nm−1 +Nm−2 + 1.

In particular, we get the following fixed points of 1Ω (corresponding to the
fixed points of ΩF ). First, recall in Example 1.26 that %F has no fixed points,
then neither does ω1 in 1Ω. Now, for m = 2, the two bi-infinite fixed points of
the substitution %2

F are given by w := w(a|a) and v := v(b|a), see (1.6) and (1.7).
A corresponding fixed point in 1Ω is given by x := (xi)N0 , where xi = (w, 0) if
i is even, and xi = (v, 0) if i is odd, i.e., x := ((w, 0), (v, 0), (w, 0), . . .). The
second fixed point is y := ω1(x), i.e., y := (yi)N0 with yi = (w, 0) if i is odd, and
yi = (v, 0) otherwise. Thus, y = ((v, 0), (w, 0), (v, 0), . . .). For m = 3, one fixed
point is x := ((v, 1 + 2τ), (w, 1 + τ), (v, τ), (w, 1), . . .). It is an easy check that
(w, 1) ∼ (v, 1 + 2τ), and so x0 = x3, which is a necessary condition for a fixed
point of ω3

1 in 1Ω. The other two fixed points are the ones that begin with (w, 1+
τ) and (v, τ) respectively, i.e., ω1(x) = ((w, 1 + τ), (v, τ), (w, 1), (v, τ − 1), . . .)
and ω2

1(x) = ((v, τ), (w, 1), (v, τ − 1), (w, 2− τ), . . .). Thus, the dynamical zeta
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function of the Fibonacci substitution is given by

ζF (z) = exp
(
0z + 2

2z
2 + 3

3z
3 + 6

4z
4 + 10

5 z
5 + 17

6 z
6 + · · ·

)
= 1 + z2 + z3 + 2z4 + 3z5 + 5z6 + 8z7 + · · ·

= 1 +
∞∑
n=1

Fn−1z
n

where Fn is the nth Fibonacci number [OEIS, A000045]. A more compact
way of writing this zeta function is seen below. ♦

Proposition 2.21 ([AP98, Thm. 9.1]). Let (Ω, ω) be a substitution tiling
system as above. Further let A′d be the induced cellular (or inflation) maps
acting on the d-cells of an n-dimensional AP-complex Γ1 (or Γ0 when ω forces
the border) associated to the substitution ω. Then the zeta function is given by

ζω(z) =

∏
k odd

det(I − zA′n−k)∏
k even

det(I − zA′n−k)
=

∏
k odd

∏
i

(1− zλn−k,i)∏
k even

∏
i

(1− zλn−k,i)
,

where the second equality holds if all A′m are diagonalisable, with eigenvalues
λm,i. �

Note that instead of using A′k, one can also get the same zeta function by
using the matrix representation of γ∗k acting on the cohomology groups, but
with rational coefficients. (Recall in Definition 1.13 that this can be done by
letting R = Q; also see Example 3.17.) If the cohomology groups (with integer
coefficients) do not contain any torsion component, then we can replace A′k
with A∗k, the matrix representation of γ∗k acting on H∗ (with integer coefficients
as before).

Example 2.22. The computation of the following zeta functions is straight-
forward. The first equality uses the eigenvalues of A′d, while the second uses
the eigenvalues of A∗d as none of the cohomology groups considered possesses
any torsion component.

ζF (z) = (1− z)(1 + z)(1− 0z)
(1 + z)(1− 0z)(1− τz)(1 + 1

τ z)
= 1− z

(1− τz)(1 + 1
τ z)

= 1− z
1− z − z2

ζTM (z) = (1 + z)2(1− z)2

(1− 2z)(1 + z)3(1− z)(1− 0z) = 1− z
(1− 2z)(1 + z)

ζpd(z) = (1− z)(1 + z)(1− 0z)
(1− 2z)(1 + z)2(1− 0z)2 = 1− z

(1− 2z)(1 + z) = ζTM (z)

♦



CHAPTER 3

Quotient cohomology between tiling spaces

Topological invariants can provide a systematic way of classifying topologi-
cal spaces. Now that tiling cohomology is within reach, distinguishing substitu-
tion tiling spaces through their cohomology is a prudent next step. A number
of substitution tiling spaces in one and two dimensions have already been exam-
ined and classified through their cohomology, see [AP98, BGG13, Gäh13]
for instance. Recently, Gähler, Hunton and Maloney [GHM13] computed the
cohomology of the 3-dimensional Danzer tiling, demonstrating a more efficient
way of calculating cohomologies especially in higher dimensions.

Tiling spaces with non-isomorphic cohomology groups are necessarily
inequivalent. The converse though is not true in general, as in the case of
the (classical) Thue-Morse and period doubling substitutions which form
two inequivalent tiling spaces yet with isomorphic cohomology groups. For
tiling spaces related through a factor map (regarding the spaces as topological
dynamical systems), a relative version of the tiling cohomology can be used
to tell the spaces apart. Barge and Sadun [BS11] introduced the concept of
quotient cohomology, which is a topological invariant that distinguishes factors
of tiling spaces. As such, quotient cohomology can be used to dissect and
analyse the structure of a substitution tiling space via its factors.

In this chapter, we review the notion of the quotient cohomology between
substitution tiling spaces and offer some results that aid in the computation of
the quotient cohomology. In an attempt to have a glimpse of what the quotient
cohomology means and can offer, we introduce the notion of the quotient zeta
function, whose definition is derived from that of the typical dynamical zeta
function for substitution tiling spaces, inspired by Proposition 2.21. As we
will see, for certain conditions, the quotient cohomology fails to distinguish
related yet inequivalent spaces.

3.1. Definition and examples

Suppose X and Y are topological spaces that are related via a quotient
map f : X −→ Y , i.e., f is surjective and continuous, and for any U ⊆ Y , U
is open in Y if and only if f−1(U) is open in X. If f is injective, then the
relative cohomology group H∗(Y,X) relates the cohomology groups of X and

47



48 3. QUOTIENT COHOMOLOGY BETWEEN TILING SPACES

Y via the long exact sequence

· · · −−→ Hk+1(Y,X) −−→ Hk(Y )
∗f−−→ Hk(X) −−→ Hk(Y,X) −→ · · ·

However, we cannot extend the same mechanism to tiling spaces. Substitution
tiling spaces are minimal dynamical systems (Proposition 2.3), and factor
maps between these spaces are surjective and generally not injective. A factor
map f : ΩX −→ ΩY induces a quotient map on the level of approximants that
is also surjective and generally not injective. Thus, the relative cohomology is
not immediately available for tiling spaces, but can be used in proving some
results [BS11].

Typically for substitution tiling spaces, the quotient map f : Γk(X) −→
Γk(Y ) (on the approximants of ΩX and ΩY respectively) induces a pullback
map f∗ : C∗(Γk(Y )) −→ C∗(Γk(X)) that is injective on the cochain complexes
of Γk(Y ) and Γk(X). Denoting by e′ the dual to the cell e, then in particular,
a y′ ∈ C∗(Γk(Y )) is said to pull back to

∑
x′i ∈ C∗(Γk(X)) if and only if

f(xi) = y for all i ∈ I, for some index I such that outside I, we have f(x) 6= y.
This motivates the following definition of the quotient cohomology [BS11].

Definition 3.1. Let f : X −→ Y be a quotient map between two topologi-
cal spaces such that the pullback map f∗ is injective on cochains. Also, let
CkQ(X,Y ) := Ck(X)/f∗(Ck(Y )) be the quotient cochain groups and take
δXY,k := δk : CkQ(X,Y ) −→ Ck+1

Q (X,Y ) to be the usual coboundary operator.
The (kth) quotient cohomology is defined as Hk

Q(X,Y ) := ker δk/ im δk−1. ♦

By the snake lemma, the short exact sequence of cochain complexes

0 −−→ Ck(Y ) f∗−−→ Ck(X) −−→ CkQ(X,Y ) −→ 0

induces a long exact sequence

· · · −−→ Hk−1
Q (X,Y ) −−→ Hk(Y )

f∗k−−→ Hk(X) −−→ Hk
Q(X,Y ) −→ · · · (3.1)

that relates the cohomology groups of X and Y to H∗Q(X,Y ).

Example 3.2 (Quotient cohomology between AP-complexes). Let us consider
the complexes X , Y and Z in Figure 3.1 together with two quotient maps
f : X −→ Y and g : X −→ Z, such that

f(A) = f(B) = 1, f(C) = f(D) = 1̄,
g(B) = g(C) = a, g(A) = g(D) = b.

Note that the 0- and 1-cells are encoded by two and three adjacent letters, such
that the edge v1v2v3 has the vertex v1v2 as its tail and the vertex v2v3 as its
head. Since these quotient maps induce a homomorphism on the components
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BC

CB

ABCA

BDDC

11̄

1̄1

11 1̄1̄

ab

ba

aa

f

g

X

Y

Z

φ

Figure 3.1. Quotient maps between AP-complexes. Here,
the vertices are labelled such that the edge from the vertex
v1v2 to the vertex v2v3 reads v1v2v3.

of the complexes, we have in particular we have f(AB) = 11, f(ABD) = 111̄,
g(BCB) = aaa, etc.

To compute the quotient cohomology groups H∗Q(X ,Y) between X and Y ,
we first determine the quotient cochains C∗Q(X ,Y), and the coboundary maps
between them, i.e., δkXY : CkQ(X ,Y) −→ Ck+1

Q (X ,Y). Note that f∗(1′) = A′+B′

and f∗(1̄′) = C ′ +D′, and so f∗(11̄) = BC ′ +BD′, f∗(1̄1) = CA′ + CB′, etc.
From the definition, we immediately see that Hk

Q(X ,Y) = 0 for k /∈ {0, 1}
since CkQ(X ,Y) = 0 for k /∈ {0, 1}. Now for k ∈ {0, 1}, we get

C0
Q(X ,Y) :=C0(X )/f∗(C0(Y))

= 〈BC ′, BD′, CA′, CB′, DC ′, AB′〉/
〈BC ′ +BD′, CA′ + CB′, DC ′, AB′〉

= 〈BC ′, CA′〉 ∼= Z2,

and

C1
Q(X ,Y) :=C1(X )/f∗(C1(Y))

= 〈ABC ′, ABD′, BCA′, BCB′, BDC ′, CAB′, CBC ′,
CBD′, DCA′, DCB′〉/〈ABC ′ +ABD′, BCA′ +BCB′,

BDC ′, CAB′, CBC ′ + CBD′, DCA′ +DCB′〉

= 〈ABC ′, BCA′, CBC ′, DCA′〉 ∼= Z4. (3.2)

The induced coboundary map δXY := δXY,0 can be read off of Figure 3.1 as
δX (modulo f∗), where δX is the usual coboundary operator in X . Thus we
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get,

δXY =


1 0
0 1
1 0
0 1

 ,
and so

H0
Q(X ,Y) = ker δXY ∼= 0, (3.3)

H1
Q(X ,Y) = C1

Q(X ,Y)/ im δXY ∼= Z2,

where im δXY = 〈ABC ′ + CBC ′, BCA′ + DCA′〉. The long exact sequence
(3.1) for X and Y reads:

0 −−→ Z

=

H0(Y)

f∗0−−→ Z

=

H0(X )

−−→ 0

=

H0
Q(X ,Y)

−−→ Z3
=

H1(Y)

f∗1−−→ Z5

=

H1(X )

−−→ Z2

=

H1
Q(X ,Y)

−→ 0.

Meanwhile, for the quotient map g : X −→ Z,Hk
Q(X ,Z) ∼= 0 for k /∈ {0, 1}

and for k ∈ {0, 1}, we obtain the following quotient cochains:

C0
Q(X ,Z) :=C0(X )/g∗(C0(Z))

= 〈BC ′, BD′, CA′, CB′, DC ′, AB′〉/
〈BC ′ + CB′, BD′ + CA′, DC ′ +AB′〉

= 〈BC ′, BD′, DC ′〉 ∼= Z3,

and

C1
Q(X ,Z) :=C1(X )/g∗(C1(Z))

= 〈ABC ′, ABD′, BCA′, BCB′, BDC ′, CAB′, CBC ′,
CBD′, DCA′, DCB′〉/〈ABC ′ +DCB′, ABD′ +DCA′,

BCA′ + CBD′, BCB′ + CBC ′, BDC ′ + CAB′〉

= 〈ABC ′, ABD′, BCA′, BCB′, BDC ′〉 ∼= Z5. (3.4)

Also, the induced coboundary map δXZ := δXZ,0 : C0
Q(X ,Z) −→ C1

Q(X ,Z),
which can be read off from Figure 3.1 as δX (modulo g∗), is given by

δXZ =


1 0 1
0 1 1
−1 −1 0
−2 0 0
0 −1 1

 .
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The quotient cohomology groups are computed as

H0
Q(X ,Z) = ker δXZ ∼= 0, (3.5)

H1
Q(X ,Z) = C1

Q(X ,Z)/ im δXZ ∼= Z2 ⊕ Z2.

The torsion in the quotient cohomology comes in from one of the generators
of H1

Q(X ,Z). Writing

im δXZ = 〈ABC ′ +BCA′ + 2BDC ′,
ABD′ +BCA′ + 2BCB′ +BDC ′,

2BCA′ + 2BCB′ + 2BDC ′〉 ∼= Z2 ⊕ 2Z,

we have

H1
Q(X ,Z) = 〈BCA′, BDC ′, BCA′ +BCB′ +BDC ′〉. (3.6)

Since twice the third generator of H1
Q(X ,Z) is 0 (modulo 2), the quotient

cohomology contains torsion. The corresponding long exact sequence relating
the cohomologies of X and Z to their quotient cohomologies is given by

0 −−→ Z

=

H0(Z)

g∗0−−→ Z

=

H0(X )

−−→ 0

=

H0
Q(X ,Z)

−−→ Z3

=

H1(Z)

g∗1−−→ Z5

=

H1(X )

−−→ Z2 ⊕ Z2

=

H1
Q(X ,Z)

−→ 0.

♦

The pullback on the cohomologies f∗k : Hk(Y ) −→ Hk(X) naturally ex-
tends to the cohomologies of their inverse limit spaces f∗k : lim−→(Hk(Y ), γ∗Y,k) −→
lim−→(Hk(X), γ∗X,k). Further, γ∗X,k (modulo f∗) induces γ∗Q,k under which the
direct limit of the quotient cohomologies of X and Y is computed. If X and
Y are the AP-complexes for the tiling spaces ΩX and ΩY , then we have the
following diagram, where we write Hk

Q := Hk
Q(X,Y ).
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y y y y
Hk−1
Q

γ∗Q,k−1−−−−→ Hk−1
Q

γ∗Q,k−1−−−−→ Hk−1
Q

γ∗Q,k−1−−−−→ · · · ∼= Hk−1
Q (ΩX ,ΩY )y y y y

Hk(Y )
γ∗Y,k−−−−→ Hk(Y )

γ∗Y,k−−−−→ Hk(Y )
γ∗Y,k−−−−→ · · · ∼= Ȟk(ΩY )yf∗k yf∗k yf∗k yf∗k

Hk(X)
γ∗X,k−−−−→ Hk(X)

γ∗X,k−−−−→ Hk(X)
γ∗X,k−−−−→ · · · ∼= Ȟk(ΩX)y y y y

Hk
Q

γ∗Q,k−−−−→ Hk
Q

γ∗Q,k−−−−→ Hk
Q

γ∗Q,k−−−−→ · · · ∼= Hk
Q(ΩX ,ΩY )y y y y

Along the horizontal direction are the direct limits, whereas the sequences
along the vertical direction form long exact sequences. Thus, the long exact
sequence in (3.1) extends to the following long exact sequence involving tiling
spaces, where we abbreviate the quotient cohomology H∗Q(ΩX ,ΩY ) by H∗Q.

· · · −−→ Hk−1
Q −−→ Hk(ΩY )

f∗k−−→ Hk(ΩX) −−→ Hk
Q −→ · · · (3.7)

For emphasis, we may sometimes write γ∗Q,k := γ∗XY,k as in the following
example.

Example 3.3 (Quotient cohomology between tiling spaces). The three com-
plexes X , Y and Z in Figure 3.1 are the AP-complexes for a family of one-
dimensional tiling spaces, derived from the following primitive substitution
rules. Namely,

%X :=


A 7−→ BC

B 7−→ BD

C 7−→ CA

D 7−→ CB

%Y :=
{

1 7−→ 11̄
1̄ 7−→ 1̄1 %Z :=

{
a 7−→ ab

b 7−→ aa

Of course, we already know that %Y = %TM and %Z = %pd from (2.6) and (2.7).
Writing ΩX , ΩY (or YTM ) and ΩZ (or Ypd) for the respective hulls of the
substitutions, we compute the quotient cohomology as the direct limit of the
quotient cohomology of their approximants relative to the homomorphisms
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induced by the substitution rule %X depending on the factor maps, i.e.,

Hk
Q(ΩX ,ΩY) ∼= lim

−→
(Hk

Q(X ,Y), γ∗XY,k)

Hk
Q(ΩX ,ΩZ) ∼= lim

−→
(Hk

Q(X ,Z), γ∗XZ,k)

where Hk
Q(X ,Y) and Hk

Q(X ,Z) are the quotient cohomologies of the AP-
complexes and γ∗XY,k and γ∗XZ,k are the induced homomorphisms on the
quotient cohomologies of the approximants. Note that γ∗XY,k = γ∗X ,k (modulo
f∗) and γ∗XZ,k = γ∗X ,k (modulo g∗).

Since H0
Q(X ,Y) ∼= 0 and H0

Q(X ,Z) ∼= 0 from Equations (3.3) and (3.5),
then it follows immediately that

H0
Q(ΩX ,ΩY) ∼= 0, and H0

Q(ΩX ,ΩZ) ∼= 0.

The inflation maps γX ,0, γX ,1 on the cells of X are given by the linear maps,

A′X ,0 =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0


, A′X ,1 =



0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0



.

Let us write B′XY,1 for the matrix representation of the inflation map γXY,1
acting on C1

Q(X ,Y) ∼= Z4 of Equation (3.2). Then B′XY,1 = A′X ,1 (modulo f∗)
is given by

B′XY,1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
It then follows that H1

Q(ΩX ,ΩY) ∼= 0 as γ∗XY,1 is just a the zero map. A less
trivial computation is carried out for H1

Q(ΩX ,ΩZ).
Similarly, let B′XZ,1 := A′X ,1 (modulo g∗) be the inflation map acting on

C1
Q(X ,Z) ∼= Z5 of Equation (3.4), and so we have

B′XZ,1 =


0 0 −1 0 1
0 0 −1 0 1
0 −1 0 0 −1
0 −1 0 0 −1
−1 0 0 −1 0

 .
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The map γ∗XZ,1 that acts on H1
Q(X ,Z) = 〈BCA′, BDC ′, BCA′ + BCB′ +

BDC ′〉 of Equation (3.6) is γ∗XZ,1 = B′XZ,1 (modulo im δXZ). For any m > 2,

(%∗XZ)m(BCA′) = BCA′ +BCB′ +BDC ′,

(%∗XZ)m(BDC ′) = BCA′ +BCB′ +BDC ′,

(%∗XZ)m(BCA′ +BCB′ +BDC ′) = BCA′ +BCB′ +BDC ′,

which means that the first two components of H1
Q(X ,Z) ∼= Z2⊕Z2 eventually

vanish under γ∗XZ,1, and only the third component (which is torsion) eventually
remains. Thus, the eventual range of γ∗XZ,1 is zero on the summand Z2 and
the identity on Z2. The matrix representation of γ∗XZ,1 is given by

B∗XZ,1 =

0 0 0
0 0 0
1 1 1

 . (3.8)

The long exact sequence (3.7) for ΩX and ΩZ is

0 −−→ Z

=

H0(ΩZ)

f∗−−→ Z

=

H0(ΩX )

−−→ 0

=

H0
Q

−−→ Z[1
2 ]⊕ Z

=

H1(ΩZ)

f∗−−→ Z[1
2 ]⊕ Z

=
H1(ΩX )

−−→ Z2

=

H1
Q

−→ 0.

♦

Remark 3.4. The substitution %X in the previous example is the induced
substitution rule on the set of 2-letter legal words of the Thue-Morse substi-
tution, i.e., A := 11, B := 11̄, C := 1̄1, and D := 1̄1̄. In particular, we have
A = (1)1 7−→ (11̄)11̄ =: BC, where the parentheses on the first letter indicate
a reference marker and we take (11̄)11̄ =: BC = 11̄1 so that the last letter in
B = 11̄ coincides with the first letter in C = 1̄1 (analogous to how two adjacent
edges are attached in Figure 3.1). Similarly,B = (1)1̄ 7−→ (11̄)1̄1 =: BD = 11̄1̄,
and also we get C 7−→ CA and D 7−→ CB to obtain the induced substitution
%X from %Y = %TM .

Thus, ΩX and ΩY basically describe the same hull, which means H∗(ΩX ) =
H∗(ΩY), and so explains Hk

Q(ΩX ,ΩY) ∼= 0 for all k. By a severe abuse of
notation, we actually have X = Γ3/2(%TM ), the 1.5-collared AP-complex of
the Thue-Morse substitution, which is a bigger complex than Y = Γ1(%TM ).

The quotient cohomologies we have computed correspond to the following:

H0
Q(ΩX ,ΩZ) = H0

Q(YTM ,Ypd) ∼= 0, and

H1
Q(ΩX ,ΩZ) = H1

Q(YTM ,Ypd) ∼= Z2.

It is not common to define the factor map between the hulls of the Thue-
Morse and period doubling substitution as we did with g, as usually, the factor
map is defined through a sliding block map φ : ΩY −→ ΩZ (equivalently,
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φ : YTM −→ Ypd) given by φ(11̄) = φ(1̄1) = a and φ(11) = φ(1̄1̄) = b (also
see Figure 3.1), i.e., for every 3-letter subword of a bi-infinite word in YTM ,
we have φ(xyz) = φ(xy)φ(yz). Given a bi-infinite word w in Ypd, any 1-letter
subword of w (at any arbitrary position) lifts to two possible pre-images in
YTM . After choosing to which pre-image the 1-letter subword lifts, its adjacent
letters then lift definitely to a pre-image in YTM . Thus, the word w ∈ Ypd

can be lifted in exactly two possible pre-images, say u, v ∈ YTM , such that
u 6= v and φ(u) = φ(v) = w, which explains why the factor map φ is uniformly
2-to-1. We will encounter this again later in our discussion of the generalised
Thue-Morse and period doubling substitutions in Chapter 4.3. ♦

Let us end this section with the following observations.

Lemma 3.5. Let f : X −→ Y be a quotient map, whose pullback f∗ is injective
on cochains. If Hn+1(Y ) ∼= 0, then Hn

Q(X,Y ) ∼= Hn(X)/f∗n(Hn(Y )). For X
and Y being approximant spaces for substitution tiling spaces, H0

Q(X,Y ) ∼= 0
if and only if f∗1 : H1(Y ) −→ H1(X) is injective.

Proof. IfX and Y are approximant spaces for substitution tiling spaces, then
H0(X) ∼= Z ∼= 〈

∑
x′i〉 = 〈

∑
f∗(y′j)〉 ∼= f∗0 (Z) ∼= f∗0 (H0(Y )), where the x′is and

y′js are the duals to the 0-cells in X and Y respectively. Thus f∗0 is surjective,
and so is an isomorphism. Further, the map from H0(X) to H0

Q(X,Y ) in (3.1)
must be a zero map and so the map from H0

Q(X,Y ) to H1(Y ) must be injective.
If f∗1 is injective, then the map from H0

Q(X,Y ) to H1(Y ) must be a zero map as
well, which is already shown to be injective, forcing H0

Q(X,Y ) ∼= 0. Conversely,
if H0

Q(X,Y ) ∼= 0, then f∗1 must be injective since the sequence in (3.1) is
exact. Meanwhile, Hn+1(Y ) ∼= 0 implies that the map Hn(X) to Hn

Q(X,Y ) is
surjective, and so it follows that Hn

Q(X,Y ) ∼= Hn(X)/f∗n(Hn(Y )). �

Theorem 3.6. For n-dimensional substitution tiling spaces, related by a factor
map f : ΩX −→ ΩY , we have Hn

Q(ΩX ,ΩY ) ∼= Hn(ΩX)/f∗n(Hn(ΩY )) and for
k < n, if f∗k is an isomorphism, then Hk

Q(ΩX ,ΩY ) ∼= ker f∗k+1. In particular,
H0
Q(ΩX ,ΩY ) ∼= ker f∗1 , since f∗0 is always an isomorphism.

Proof. The proof follows similarly as in the proof of the previous lemma work-
ing with the long exact sequence in (3.7) instead, and noting that Hn+1(ΩY ) ∼=
0. Further, if f∗k is an isomorphism for some k < n, then Hk(ΩX) −→
Hk
Q(ΩX ,ΩY ) is a zero map, and Hk

Q(ΩX ,ΩY ) −→ Hk+1(ΩY ) is injective. Thus,
Hk
Q(ΩX ,ΩY ) ∼= ker f∗k+1. From Lemma 2.17, it follows that f∗0 : H0(ΩY ) −→

H0(ΩX) is an isomorphism. �
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Theorem 3.7. For any substitution tiling spaces ΩX and ΩY related via a
factor map f : ΩX −→ ΩY , H0

Q(ΩX ,ΩY ) ∼= 0, and so the induced map f∗1 is
injective.

Proof. The quotient cohomology H0
Q(ΩX ,ΩY ) is computed as the direct

limit lim−→(H0
Q(X,Y ), γ∗XY,0), where X and Y are the AP-complexes of the

tiling spaces ΩX and ΩY respectively, and the induced map γ∗XY,0 comes from
γ∗X,0(modulo f∗). From Lemma 2.17, we deduce that γ0

X,0 is the identity acting
on the sum of all the 0-cells in X. Taking modulo f∗ in particular means
taking the modulo under the pullback of the sum of all the 0-cells in Y , which
yields γ∗X,0(modulo f∗) = 0. As in Example 1.1, we compute H0

Q(ΩX ,ΩY ) ∼= 0.
From the previous Theorem, it follows that f∗1 is injective. �

The last two theorems make the calculation of H∗Q simpler for 1- and
2-dimensional substitution tiling spaces. More precisely, let ΩX and ΩY be
two n-dimensional substitution tiling spaces related via a factor map f :
ΩX −→ ΩY . For n = 1, we have H0

Q
∼= 0 and H1

Q
∼= H1(ΩX)/f∗1 (H1(ΩY )).

For n = 2, if f∗1 is an isomorphism, then we get H0
Q
∼= 0, H1

Q
∼= ker f∗2 and

H2
Q
∼= H2(ΩX)/f∗2 (H2(ΩY )). In both cases, notice that knowing the action of

f∗n is sufficient to compute the quotient cohomology H∗Q.

3.2. Topological tools

We now review some results in [BS11] leading to a framework (Proposition
3.11 below), which is really helpful in understanding some of the computations
on quotient cohomology.

Suppose that f : X −→ Y and g : Y −→ Z are quotient maps, whose
pullbacks on cochains are injective. Then h := g ◦ f : X −→ Z is also a
quotient map, and there exists a short exact sequence of the corresponding
chain complexes

0 −−→ CkQ(Y,Z) α−−→ CkQ(X,Z) β−−→ CkQ(X,Y ) −→ 0

that induces the long exact sequence for the triple

· · · −−→ Hk
Q(Y,Z) α∗−−→ Hk

Q(X,Z) β∗−−→ Hk
Q(X,Y ) −−→ Hk+1

Q −→ · · · (3.9)

Proposition 3.8 ([BS11, Thm. 1]). Suppose f : X −→ Y is a quotient
map that induces an injection on the cohains. Further, suppose Z ⊂ X is an
open set such that the restriction on the closure of Z, denoted by f |Z̄ , is a
homeomorphism onto its image. Then the inclusion induced homomorphism is
an isomorphism, i.e., H∗Q(X,Y ) ∼= H∗Q(X − Z, Y − f(Z)). �

Proposition 3.9 ([BS11, Thm. 2]). Suppose that X1, X2 ⊂ X such that
int(X1) ∪ int(X2) = X. Also, suppose that f : X −→ Y, f |X1 , f |X2 and
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f |X1∩X2 are all quotient maps onto Y that induce injections on the cochains.
Then there is a long exact sequence (from the Mayer-Vietoris sequence)

· · · −→ Hk
Q(X,Y ) −→ Hk

Q(X1, Y )⊕Hk
Q(X2, Y ) −→

Hk
Q(X1 ∩X2, Y ) −→ Hk+1

Q (X,Y ) −→ · · ·

�

Corollary 3.10. With the same assumptions as in the previous proposition
and supposing further that f |X1∩X2 is a homeomorphism, we have Hk

Q(X,Y ) ∼=
Hk
Q(X1, Y )⊕Hk

Q(X2, Y ).

Proof. AsX1∩X2 and Y are homeomorphic, thenH∗(X1∩X2) ∼= H∗(Y ) and
in particularH∗Q(X1∩X2, Y ) ∼= 0. The assertion then follows immediately from
the previous proposition by having the exact sequence, 0 −→ Hk

Q(X,Y ) −→
Hk
Q(X1, Y )⊕Hk

Q(X2, Y ) −→ 0 for all k. �

Often, we encounter a sequence of tiling spaces related through a series of
factor maps (compare for instance Figures 4.1 and 5.2), the simplest case of
which is given by

ΩX
f−−→ ΩY

g−−→ ΩZ , (3.10)
and naturally, we are curious as to how f and g relate to their composition g◦f
with respect to their corresponding quotient cohomologies. In particular, the
previous corollary becomes useful in our attempt to classify such factor maps
(and consequently their respective quotient cohomologies) by introducing a
notion we call good matches. We say that the two factor maps f : ΩX −→ ΩY

and g : ΩY −→ ΩZ , as in (3.10), form a good match if and only if

H∗Q(ΩX ,ΩZ) ∼= H∗Q(ΩX ,ΩY )⊕H∗Q(ΩY ,ΩZ).

In other words, determining whether two factor maps (say f and g) form a
good match is equivalent to determining whether the quotient cohomology
between two tiling spaces (say ΩX and ΩZ) may be dissected as the direct sum
of the quotient cohomologies involving an intermediate tiling space (say ΩY )
between them, for which the two factor maps are defined respectively. Further,
if f and g are a good match, we write g ◦ f := fg = (f)(g) for emphasis.
In contrast, when f and g do not form a good match, then we just write
g ◦ f := fg = (fg) 6= (f)(g). In the following chapters, we will classify factor
maps and their compositions through the notion of good matches.

Now, let ΩX be an n-dimensional tiling space (of Rn), ΩX′ a closed subset of
ΩX and Λ a k-dimensional subspace of Rn. We say that ΩX′ is a k-dimensional
tiling subspace of ΩX (along the direction Λ) provided that if T ∈ ΩX′ , then
T − v ∈ ΩX′ if and only if v ∈ Λ. If ΩX′ is a k-dimensional tiling subspace of
ΩX along the direction of Λ and ∼ is an equivalence relation on ΩX′ , then
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∼ is uniformly asymptotic given that for each ε > 0, there is an r ∈ R such
that if T, T ′ ∈ ΩX′ and T ∼ T ′, then d(T − u, T ′ − u) < ε for all u ∈ Λ⊥ with
‖u‖ ≥ r. (Here, we can use the tiling metric d as defined in Equation (2.1).)

The following result is the heart of the paper [BS11] on quotient coho-
mology.

Proposition 3.11 ([BS11, Prop. 4]). Suppose ΩX and ΩY are n-dimensional
substitution tiling spaces related via a factor map f : ΩX −→ ΩY such that the
pullback f∗ induces an injection on the cochains with the following assumptions:

(1) ΩX′ is a k-dimensional tiling subspace of ΩX along the direction of Λ;

(2) f(ΩX′) = ΩY ′;

(3) The equivalence relation ∼, defined as T ∼ T ′ if and only if f(T ) = f(T ′),
is uniformly asymptotic;

(4) The factor map f is injective outside ΩX′−Rn := {T−v |T ∈ ΩX′ , v ∈ Rn};
and,

(5) For T, T ′ ∈ ΩX′ and v ∈ Rn, if f(T ′ − v) = f(T ), then v ∈ Λ.

Then, Hm
Q (ΩX ,ΩY ) ∼= Hm−n+k

Q (ΩX′ ,ΩY ′). �

The last proposition may seem very restrictive due to its many assumptions.
However, some of the interesting substitution tiling spaces (in a number of in-
stances, depending on the factor map) satisfy this framework. The effectiveness
of the last proposition lies on the computability of H∗Q(ΩX′ ,ΩY ′). The pair
ΩX′ and ΩY ′ is called a degeneracy and the cohomology H∗Q(ΩX′ ,ΩY ′) is called
the degeneration (of the factor map f) [BS11]. The following degenerations
will appear in Chapter 5, and so are worthwhile to discuss.

Example 3.12 (Degeneration A). Suppose ΩX′ = Sp × {1, 2, . . . ,m} for
some m ∈ N (i.e., ΩX′ is composed of m copies of the solenoid) and ΩY ′ = Sp,
for some p ∈ N − {1}. Further, let f : ΩX′ −→ ΩY ′ be a projection onto
Sp. If m = 2, then H1

Q(ΩX′ ,ΩY ′) ∼= H1(ΩX′ − ΩY ′) ∼= H1(Sp) ∼= Z[1
p ] and

H0
Q(ΩX′ ,ΩY ′) ∼= H0(ΩX′ − ΩY ′) ∼= H0(Sp) ∼= Z by Proposition 3.8. (Also, see

Equation (1.3).) In general, form ∈ N, we haveH1
Q(ΩX′ ,ΩY ′) ∼=

⊕m
k=2H

1
Q(Sp×

{1, k}, Sp) ∼= Z[1
p ]m−1 and H0

Q(ΩX′ ,ΩY ′) ∼= Zm−1 using Corollary 3.10. ♦

Example 3.13 (Degeneration B). Similarly, suppose Y is a 1-dimensional
substitution tiling space and that f : ΩX′ −→ ΩY ′ is a projection onto ΩY ′ ,
where ΩX′ = Y×{1, 2, . . . ,m} and ΩY ′ = Y for some m ∈ N. Then by Proposi-
tion 3.8 and Corollary 3.10, H1

Q(ΩX′ ,ΩY ′) ∼= H1(Y)m−1 and H0
Q(ΩX′ ,ΩY ′) ∼=
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Figure 3.2. Quotient map between two approximants, where
f(a′) = f(b′), f(a) = f(b) = f(c) = f(d), f(w) = f(y) and
f(x) = f(z).

H0(Y)m−1. In particular, if Y = Ypdk,` (the generalised period doubling sub-
stitution, see Chapter 4.3), then H1

Q(ΩX′ ,ΩY ′) ∼= Z[ 1
k+` ]

m−1 ⊕ Zm−1 and
H0
Q(ΩX′ ,ΩY ′) ∼= Zm−1. ♦

Example 3.14 (Degeneration C). Let us define X ′1 as the hull of the tiling
AaB, where A is a semi-infinite word composed only of a and similarly, B
is a semi-infinite word composed only of b. In the notation AaB, A extends
to the left and B extends to the right. Similarly, let us define X ′2 as the hull
of the tiling BaA. Further, we define X ′ = X ′1 ∪X ′2. The space X ′ consists
of the four translation orbits AA, BB, BaA = BA and AaB = AB. Also,
we define Y ′ to be the hull of the bi-infinite word C, which is comprised of
only the letter c. We also define the substitution systems ΩX′ := (X ′, %) and
ΩY ′ := (Y ′, %), where %(x) = xp for some p > 1 and x ∈ {a, b, c}, together with
the factor map f : ΩX′ −→ ΩY ′ that identifies a and b, i.e., f(a) = f(b) = c.
(Thus, ΩY ′ = Sp.) An approximant of ΩX′ is given in Figure 3.2 (A) and an
approximant for the solenoid ΩY ′ is given in Figure 3.2 (B). The induced
quotient map identifies the 1-cells labelled a′ := a and b′ := b; the 1-cells
a, b, c and d; the 0-cells w and y; and finally the 0-cells x and z, as also
shown in the figure. The quotient cohomology between the approximants are
H1
Q(X ′, Y ′) ∼= Z2 and H0

Q(X ′, Y ′) ∼= 0. The induced map %∗1 on H1
Q(X ′, Y ′) is

the identity on the first component and a multiplication of p on the second.
Thus we get H1

Q(ΩX′ ,ΩY ′) ∼= Z⊕ Z[1
p ], and trivially, H0

Q(ΩX′ ,ΩY ′) ∼= 0.
Analogous to the previous degenerations, we can extend this further to

get H1
Q(ΩX′ × {1, 2, . . . ,m},ΩY ′) ∼=

⊕
m(Z[1

p ] ⊕ Z) ∼= Z[1
p ]m ⊕ Zm for some

m ∈ N and H0
Q(ΩX′ × {1, 2, . . . ,m},ΩY ′) ∼= 0 using Corollary 3.10. ♦

Example 3.15 (Degeneration D). Suppose X ′ is a topological space with
only k points for some k ∈ N, and Y ′ a single point. If f : X ′ −→ Y ′ is
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a quotient map such that f is a projection onto the first component, then
H0
Q(X ′, Y ′) ∼= Zk−1 by Proposition 3.8 and Corollary 3.10. ♦

3.3. Quotient zeta functions

By definition, the dynamical zeta function of a substitution tiling space
Ωω is a generating function that keeps track of the number of fixed points
in Ωω that are invariant under an m-fold substitution ωm, for some integer
m ∈ N. As we saw in the previous chapter, Proposition 2.21 unravels the
deeper connection between the zeta function and the induced substitution
action on the cohomology of the tiling space. In the spirit of this proposition,
we extend the notion of zeta functions to accommodate the study of the
quotient cohomology, i.e., we want to be able to define a generating function
(between two tiling spaces related via a factor map), which we call the quotient
zeta function, that is consistent with Proposition 2.21. We do this through the
following definition, which is nothing but a restatement of the said proposition.
As we will see in Theorem 3.18 below, the quotient zeta function is simply
the quotient of the respective zeta functions of the two tiling spaces, i.e., it
encodes the difference between the number of fixed points of the two spaces
invariant under their respective m-fold substitution, for some integer m ∈ N.

Definition 3.16. For two n-dimensional substitution tiling spaces ΩX and
ΩY related through a factor map f : ΩX −→ ΩY , we define the quotient zeta
function of ΩX and ΩY as

ζX,Y (z) :=

∏
k odd

det(I − zC ′n−k)∏
k even

det(I − zC ′n−k)
=

∏
k odd

∏
i

(1− zλn−k,i)∏
k even

∏
i

(1− zλn−k,i)
(3.11)

where C ′m is the matrix representation of the induced map γm acting on the
quotient m-cochain with rational coefficients, and the second equality follows
if all C ′m are diagonalisable with eigenvalues λm,i. Analogous to the usual
dynamical zeta function, we can replace C ′m with C∗m, the matrix representation
of γ∗m acting on the quotient cohomologies with rational coefficients. When the
quotient cohomology (with integer coefficients) contains no torsion component,
then C∗m = B∗m, the matrix representation of γ∗m acting on Hm

Q (with integer
coefficients). ♦

For convenience, we introduce the notation ζQ,k, which denotes the rational
function corresponding to the induced substitution action on Hk

Q in the spirit
of the definition above, i.e.,

ζQ,m := det(I − zC∗m) =
∏
i

(1− zλm,i), (3.12)
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where the last equality follows if C∗m is diagonalisable. Thus, if n is odd, then

ζX,Y = ζQ,0ζQ,2 · · · ζQ,n−1
ζQ,1ζQ,3 · · · ζQ,n

, (3.13)

otherwise when n is even, we get

ζX,Y = ζQ,1ζQ,3 · · · ζQ,n−1
ζQ,0ζQ,2 · · · ζQ,n

. (3.14)

Example 3.17. Consider again the Thue-Morse and period doubling substi-
tutions in Examples 2.15 and 2.16 and recall the following cohomologies:

H0(YTM ) ∼= Z and H1(YTM ) ∼= Z⊕ Z[1
2 ];

H0(Ypd) ∼= Z and H1(Ypd) ∼= Z⊕ Z[1
2 ];

H0
Q(YTM ,Ypd) ∼= 0 and H1

Q(YTM ,Ypd) ∼= Z2.

Also, recall from (3.8) that the matrix representation of the action of γ∗1
on the quotient cohomology H1

Q(Γ1(%TM ),Γ1(%pd)) ∼= Z2 ⊕ Z2 (with integer
coefficients) is given by

B∗TMpd,1 =

0 0 0
0 0 0
1 1 1

 ,
where everything gets sent to the third generator of H1

Q(Γ1(%TM ),Γ1(%pd)).
With rational coefficients, the action of γ∗1 becomes the zero map, and so
C∗1 = 0. Trivially, C∗0 = 0, and so we get

ζTM,pd(z) = ζQ,0
ζQ,1

= 1− 0z
1− 0z = 1 = ζTM/ζpd.

Notice that C∗1 may be directly obtained from B∗TMpd,1 by simply making the
torsion component zero. Working with rational coefficients, all the torsions
become zero. ♦

Theorem 3.18. ζX,Y (z) = ζX(z)/ζY (z).

Proof. Suppose ΩX and ΩY are n-dimensional substitution tiling spaces and
X and Y their respective AP-complexes. Considering the cohomologies of X
and Y , but using rational coefficients, the long exact sequence in (3.7) reads

· · · −−→ Hk−1
Q (X,Y ) sk−−→ Hk(Y )

f∗k−−→ Hk(X) tk−−→ Hk
Q(X,Y ) −→ · · ·

where of course, hereH∗Q(X,Y ) := H∗Q(X,Y ;Q), and analogously forH∗(X;Q)
and H∗(Y ;Q). Throughout the proof, each cohomology must be understood
as computed over rational coefficients, and so for brevity, we just omit the
rational coefficient in the notation as we did in the exact sequence above.
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Note that im sk = ker f∗k and im tk = ker sk+1. The long exact sequence
induces a series of short exact sequences given by the following:

0 −−→ coker sk
f∗k−−→ Hk(X) tk−−→ im tk −→ 0

where coker sk ∼= Hk(Y )/ im sk = Hk(Y )/ ker f∗k . Further, ker sk+1 = im tk ∼=
Hk(X)/f∗k (coker sk). Because the cohomologies are computed over rational
integers, it then follows that Hk−1

Q
∼= ker sk ⊕ im sk = ker sk ⊕ ker f∗k . If q′

is a generator of Hk such that q′ ∈ ker f∗k , then f∗k (q′) = 0, and so we get
f∗k (coker sk) ∼= f∗k (Hk(Y )). Thus,

Hk
Q
∼= Hk(X)/f∗k (Hk(Y ))⊕ ker f∗k+1.

If f∗k+1 is injective, then Hk
Q
∼= Hk(X)/f∗k (Hk(Y )) and in particular Hn

Q
∼=

Hn(X)/f∗k (Hn(Y )). The rational function in Equation (3.12) becomes

ζQ,m =
det(I − zC∗X,m) det(I − zD∗ker f∗m+1

)
det(I − zD∗Y,m)

where C∗X,m, D∗Y,m and D∗ker f∗m+1
denote the matrix representation of the

induced substitution actions on Hm(X), f∗m(Hm(Y )) and on the subspace
ker f∗m+1. Further, we get the following,

ζQ,n−1
ζQ,n

=
det(I − zC∗X,n−1) det(I − zD∗f∗n)

det(I − zD∗Y,n−1)

/
det(I − zC∗X,n)
det(I − zD∗Y,n)

=
det(I − zC∗X,n−1)
det(I − zC∗X,n)

/
det(I − zD∗Y,n−1)

det(I − zD∗Y,n) det(I − zD∗f∗n)

=
det(I − zC∗X,n−1)
det(I − zC∗X,n)

/
det(I − zD∗Y,n−1)
det(I − zC∗Y,n)

where the last equality follows by noting that f∗n(Hk(Y ))⊕ ker f∗n ∼= Hn(Y )
and so det(I−zC∗Y,n) = det(I−zD∗Y,n) det(I−zD∗f∗n), where C∗Y,m is analogous
to C∗X,m. Similarly, we get the following expression for ζm−3/ζm−2 for m ≤ n:

ζm−3
ζm−2

=
det(I − zC∗X,m−3)
det(I − zC∗X,m−2)

/
det(I − zD∗Y,m−3) det(I − zD∗Y,m−1)

det(I − zC∗Y,m−2)
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For the case when n is odd, Equation (3.13) becomes

ζXY = ζQ,0
ζQ,2
ζQ,1
· · · ζQ,n−1

ζQ,n

=
det(I − zC∗X,0) det(I − zC∗X,2) · · · det(I − zC∗X,n−1)
det(I − zC∗X,1) det(I − zC∗X,3) · · · det(I − zC∗X,n)

/
det(I − zC∗Y,0) det(I − zC∗Y,2) · · · det(I − zC∗Y,n−1)
det(I − zC∗Y,1) det(I − zC∗Y,3) · · · det(I − zC∗Y,n)

= ζX/ζY

noting that ker f∗0 = 0 (compare proof of Lemma 3.5) and so f∗0 (H0(Y )) ∼=
H0(Y ). The last equality follows from Proposition 2.21. The case when n is
even follows analogously. �

Definition 3.16 and Theorem 3.18 are equivalent in the sense that one can
instead start with the theorem as the definition, which then yields Equation
(3.11) as a consequence.

In the case of the Thue-Morse and period doubling substitutions, the
quotient zeta function is trivial because the two substitution systems have
identical number of fixed points invariant under the m-fold substitution, a
rather expected result as a consequence of the previous theorem. More so,
Theorem 3.18 highlights two things. The first is the rather simple calculation
of the quotient zeta function, and the second, which is more subtle, is a hint
as to when the quotient cohomology may fail to distinguish two inequivalent
tiling spaces possessing isomorphic cohomology groups. More precisely, given
a factor map f : ΩX −→ ΩY that is 1-to-1 almost everywhere, if ΩX and ΩY

have the same number of fixed points, then it follows that H∗Q ∼= 0. However,
there is no requirement for ΩX and ΩY to be equivalent. This is precisely
the case for the following example due to Franz Gähler. Let us emphasise
though that this is not the case between the Thue-Morse and period doubling
substitutions as the factor map between them is not 1-to-1 almost everywhere,
but rather is uniformly 2-to-1.

Example 3.19. Consider the hull ΩG of the substitution %G := {a 7−→
aba, b 7−→ baa} and let f : ΩG −→ S3 be a factor map from the hull of %G
to the 3-adic solenoid S3 by simply identifying all the letters (prototiles) in
any sequence (tiling) in ΩG. It then follows that H0(ΩG) ∼= H0(S3) ∼= Z and
H1(ΩG) ∼= H1(S3) ∼= Z[1

3 ]. More so, H0
Q
∼= H1

Q
∼= 0 but clearly ΩG 6= S3, as

the former is a substitution tiling space, which the solenoid is not. ♦





CHAPTER 4

One-dimensional substitution tiling spaces

In this chapter, we look at some known examples of substitution tiling
spaces and compute their respective quotient cohomologies. In particular, we
are interested in the twisted Fibonacci substitution, the ‘universal morphism’,
which is a substitution in one dimension introduced in [BGG13], and the
generalised Thue-Morse substitution as introduced in [BGG12]. As we will
see, computing the quotient cohomology among 1-dimensional substitution
tiling spaces is rather straightforward, and can be done mostly by just using
the definition without much difficulty.

4.1. The twisted Fibonacci substitution

The hull of the Fibonacci substitution %F := {a 7−→ ab, b 7−→ a} (also
see Example 2.8) may be viewed as a factor of the bigger hull YtF , called the
twisted Fibonacci substitution tiling space, derived from the substitution rule

%tF :=


a 7−→ ab̄

b 7−→ a

ā 7−→ āb

b̄ 7−→ ā

whose cohomology is computed as H0(ΩtF ) ∼= 0 and H1(ΩtF ) ∼= Z7.
Let f : ΩtF −→ ΩF be a factor map where a letter is identified with

its barred counterpart, i.e., f(a) = f(ā) and f(b) = f(b̄). Equivalently, we
may regard f as the map that simply removes the bar of a letter, if any. We
now describe the AP-complex of ΩtF and compute the quotient cohomology
H∗Q(ΩtF ,ΩF ). Let us denote the AP-complex of ΩtF by ΓtF := Γ1(%tF ) and
the AP-complex of ΩF as ΓF := Γ1(%F ). To make it easier to the eyes, we
rename the letters in ΩtF as 1 := a, 2 := b, 3 := ā and 4 := b̄. In this way, we
can simply write f(1) = f(3) = a and f(2) = f(4) = b, where the letters a
and b are clearly understood to be the letters in ΩF .

The complex ΓtF has 10 vertices and 16 edges, and we summarise the action
of the (induced) quotient map f in Table 4.1. The quotient cochains are given
by C0

Q := C0(ΓtF )/f∗(C0(ΓF )) ∼= Z7 and C1
Q := C1(ΓtF )/f∗(C1(ΓF )) ∼= Z12.

65
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0-cells f(14) = f(32) = ab

f(41) = f(43) = f(21) = f(23) = ba

f(11) = f(13) = f(31) = f(33) = aa

1-cells f(114) = f(132) = f(314) = f(332) = aab

f(141) = f(143) = f(321) = f(323) = aba

f(211) = f(213) = f(431) = f(433) = baa

f(214) = f(232) = f(414) = f(432) = bab

Table 4.1. The induced quotient map on the legal 2- and
3-letter words of the twisted Fibonacci substitution.

The coboundary map δQ : C0
Q −→ C1

Q reads

δQ =



1 0 0 0 −1 0 0
0 0 0 0 0 −1 0
1 0 0 0 0 0 −1
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 1 −1 0 1 0
0 0 0 0 0 0 1
1 0 1 −1 0 0 0
0 0 1 0 0 0 0
1 −1 1 0 0 0 0



.

The quotient cohomologies are computed as H0
Q(ΓtF ,ΓF ) ∼= ker δQ ∼= 0 and

H1
Q(ΓtF ,ΓF ) ∼= Z12/ im δQ ∼= Z5. The substitution %tF induces the matrices B∗0

and B∗1 , which act on H0
Q(ΓtF ,ΓF ) and H1

Q(ΓtF ,ΓF ) respectively. In this case,
there is really no need to get B∗0 since H0

Q(ΓtF ,ΓF ) ∼= 0, and so immediately
we have H0

Q(ΩtF ,ΩF ) ∼= 0. (Also, see Theorem 3.7.)
On the other hand, the matrix B∗1 reads

B∗1 =


−1 0 0 1 1
−1 0 1 0 0
−1 0 0 2 0
−1 0 0 1 0
−1 1 0 1 0

 ,

and so the direct limit Z5 B∗1−−→ Z5 B∗1−−→ Z5 B∗1−−→ · · · is equal to Z5, since the map
B∗1 has determinant −1 and so is an isomorphism. Thus, H1

Q(ΩtF ,ΩF ) ∼= Z5.
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We get the following long exact sequence for ΩtF and ΩF :

0 −−→ Z
=

H0(ΩF )

f∗0−−→ Z

=

H0(ΩtF )

−−→ 0

=

H0
Q

−−→ Z2

=

H1(ΩF )

f∗1−−→ Z7

=

H1(ΩF )

−−→ Z5

=

H1
Q

−→ 0.

By Theorem 3.6, we see that f∗1 is injective, i.e., an inclusion map embedding
Z2 isomorphically onto Z7. Further, the set of eigenvalues of B∗1 is just the
set of eigenvalues of A∗tF,1 minus the set of eigenvalues of A∗F,1, which is also
explained by the notion of the quotient zeta function. (Note that A∗tF,1 and
A∗F,1 are the induced substitution on the cohomologies H1(ΩtF ) and H1(ΩF ),
respectively.) Indeed, the corresponding zeta functions read,

ζtF (z) = 1− z
(1− z − z2)(1 + z)(1 + z2)(1− z + z2)

= ζF
1

(1 + z)(1 + z2)(1− z + z2) = ζF ζtF,F

where ζtF,F is the associated quotient zeta function.

4.2. The universal morphism

Substitution systems are dynamical systems with the tiling space Ω being
a compact metric space, together with the (continuous) inflation map ω :
Ω −→ Ω. Dynamical systems may be characterised through their dynamical
spectra [Koo31, Neu33]. The dynamical spectrum is then classified into three
components, namely the pure point part, the absolutely continuous part, and
the singular continuous part. On certain conditions, the calculation of the
dynamical spectrum yields the determination of the diffraction spectrum, up
to certain isomorphisms [BLvE14].

One example of a substitution system that has all kinds of dynamical
spectra is given by the following primitive substitution called the universal
morphism [BGG13].

%U :=


a 7−→ ab̄, ā 7−→ āb

b 7−→ ad̄, b̄ 7−→ ād

c 7−→ cd̄, c̄ 7−→ c̄d

d 7−→ cb̄, d̄ 7−→ c̄b

By identifying a letter with its barred version, we define a factor map from the
hull YU (of %U ) to the hull YRS of the well known (quaternary) Rudin-Shapiro
substitution [BG13a, Ch. 4.7] derived from

%RS :=


a 7−→ ab

b 7−→ ad

c 7−→ cd

d 7−→ cb
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Ω H0(Ω) H1(Ω) Dynamical spectrum
U Z Z[1

2 ]5 ⊕ Z9 pp + ac + sc

RS Z Z[1
2 ]3 ⊕ Z pp + ac

T Z Z[1
2 ]⊕ Z pp

TM Z Z[1
2 ]⊕ Z pp + sc

pd Z Z[1
2 ]⊕ Z pp

S2 Z Z[1
2 ] pp

Table 4.2. The cohomology of the universal morphism and
some of its factors; pp, ac, and sc denote the pure point, abso-
lutely continuous and singular continuous parts of the spectrum.

The dynamical spectrum of the hull YRS consists of an absolutely continuous
part and a pure point part [BGG13]. By introducing a sliding block map on
the legal 2-letter words of the substitution %RS , given by

χ(ab) = χ(cd) = A, χ(ad) = χ(cb) = B,

χ(ba) = χ(dc) = C, χ(bc) = χ(da) = D,

we get a factor of YRS , whose hull YT is obtained from the substitution

%T :=


A 7−→ AC

B 7−→ AD

C 7−→ CB

D 7−→ BC

As it turns out, the hull YT defines a dynamical system with pure point
dynamical spectrum, which coincides with the pure point part of the dynamical
spectrum of YRS . Finally, by identifying all the letters in %T , we recover the
solenoid S2 as a factor.

On the other side of the spectrum, we obtain the hull YTM of the Thue-
Morse substitution %TM as factor of YU , through a factor map defined from
identifying all the unbarred letters, and at the same time identifying all the
barred letters. The Thue-Morse substitution produces a hull, whose dynamical
spectrum comprises a singular continuous part and a pure point part [BGG12].
As we already know, the sliding block map φ (as in Remark 3.4) produces the
period doubling hull Ypd, which has pure point dynamical spectrum. Similar
to %T , by identifying all letters in %pd, we obtain the solenoid S2 as a factor.

Table 4.2 lists the cohomology of the universal morphism together with its
factors. In particular, the computation ofH1(ΩRS) ∼= Z[1

2 ]3⊕Z is demonstrated
in Example 1.7, where the matrix A in the example is the induced action on
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YU

YTM

YRS

YpdYT

S2

H1
Q
∼= Z[1

2 ]4 ⊕ Z8
H1
Q
∼= Z[1

2 ]2 ⊕ Z8

H1
Q
∼= Z2

H1
Q
∼= Z[1

2 ]2 ⊕ Z2

H1
Q
∼= Z

H1
Q
∼= Z[1

2 ]4
⊕Z8 ⊕ Z2

H1
Q
∼= Z[1

2 ]4
⊕Z8 ⊕ Z2

H1
Q
∼= Z[1

2 ]4 ⊕ Z9

H1
Q
∼= Z[1

2 ]2 ⊕ Z H1
Q
∼= Z

H1
Q
∼= Z

Figure 4.1. The universal morphism and its factors together
with their pairwise quotient cohomologies. In all cases,H0

Q
∼= 0.

the 1-cells of the AP-complex of ΩRS . Further, we summarise the hierarchy of
the factors in Figure 4.1 together with their pairwise quotient cohomologies
noting that H0

Q
∼= 0 for all pairs of tiling spaces. All the quotient cohomologies

are computed using using Theorems 3.6 and 3.7, though the solution is rather
long to include here, albeit pretty straightforward; compare Example 4.1.

Among the factor maps in Figure 4.1, there are only two compositions
that form good matches, namely YU −→ YRS −→ YT and YU −→ YTM −→
Ypd since H∗Q(YU ,YT ) ∼= H∗Q(YU ,YRS) ⊕H∗Q(YRS ,YT ) and H∗Q(YU ,Ypd) ∼=
H∗Q(YU ,YTM ) ⊕ H∗Q(YTM ,Ypd). The rest of the compositions, particularly

YTM φ−−→ Ypd ψ−−→ S2, no longer form good matches.

4.3. Generalised Thue-Morse and period doubling substitutions

The Thue-Morse and period doubling substitutions belong to a larger
class of tiling spaces of 1-dimensional substitution (on two letters) that admit
integer inflation factors. In particular, we consider the so-called generalised
Thue-Morse and period doubling substitutions (compare [BG13a, Rem. 4.9])
defined by the primitive substitutions
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%TMk,` :=
{

1 7−→ 1k 1̄`
1̄ 7−→ 1̄k 1`

%pdk,` :=
{
a 7−→ bk−1 a b`−1 b

b 7−→ bk−1 a b`−1 a

(4.1)

for any k, ` ∈ N [BGG12]. We denote by YTMk,` and Ypdk,` the hulls of %TMk,`
and %pdk,`, respectively. The case k = ` = 1 yields the classical Thue-Morse
and period doubling substitutions; see Examples 2.15 and 2.16. Recently in
[BGG12], Baake, Gähler and Grimm thoroughly analysed the spectral and
topological properties of the family of generalised Thue-Morse substitutions.
In this section, we show how to compute the quotient cohomology between
the generalised Thue-Morse and period doubling tiling spaces for arbitrary
k, ` ∈ N.

For any k, ` ∈ N, let us consider the tiling spaces YTMk,` ,Y
pd
k,` and also the

solenoid Sk+`. Recall in Remark 2.9 that we may define Sk+` as the inverse
limit of the substitution {s 7−→ sk+`}. The three spaces are related via the
factor maps φ and ψ, namely

YTMk,`
φ−−→ Ypdk,`

ψ−−→ Sk+`

where φ is a sliding block map that identifies 11̄ and 1̄1 with a, and, 11
and 1̄1̄ with b; and the factor map ψ simply identifies a and b with s, i.e.,
φ(11̄) = φ(1̄1) = a, φ(11) = φ(1̄1̄) = b and ψ(a) = ψ(b) = s. Note that φ is
uniformly 2-to-1, whereas ψ is a surjection that is 1-to-1 almost everywhere (see
Remark 3.4). Each of these factor maps induces a pullback on their respective
cohomologies given by

H∗(Sk+`)
ψ∗−−→ H∗(Ypdk,`)

φ∗−−→ H∗(YTMk,` ).

As computed in [BGG12], the cohomologies of the three spaces are:
H0 = Z and

H1(Sk+`) ∼= Z[ 1
k+` ], H1(Ypdk,`) ∼= Z[ 1

k+` ]⊕ Z,

H1(YTMk,` ) ∼= Z[ 1
k+` ]⊕ Z⊕ Z[ 1

k−` ],

where Z[1
0 ] := 0 by an abuse of notation. Let us use Theorem 3.6 to compute

the quotient cohomology. In particular, we are interested in knowing the
action of ψ∗1 : H1(Sk+`) −→ H1(Ypdk,`) and φ∗1 : H1(Ypdk,`) −→ H1(YTMk,` ) and
consequently of φ∗1◦ψ∗1 : H1(Sk+`) −→ H1(YTMk,` ). Knowing these three actions
enables us to determine the quotient cohomology between any of the three
spaces.
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Example 4.1 (The classical case). Suppose k = ` = 1 and we want to see
how φ∗1 and ψ∗1 behave. By choosing particular sets of generators (under which
the direct limit is obtained), we can write the following.

H0(YTM1,1 ) ∼= Z ∼= 〈11′ + 11̄′ + 1̄1′ + 1̄1̄′〉 ×1−−→ 〈11′ + 11̄′ + 1̄1′ + 1̄1̄′〉 ×1−−→ · · ·

H1(YTM1,1 ) ∼= Z⊕ Z[1
2 ] ∼= 〈1̄11′ + 1̄1̄1′, 1̄11̄′ − 1̄1̄1′〉

A∗TM,1−−−−→

〈1̄11′ + 1̄1̄1′, 1̄11̄′ − 1̄1̄1′〉
A∗TM,1−−−−→ · · ·

H0(Ypd1,1) ∼= Z ∼= 〈a′ + b′〉 ×1−−→ 〈a′ + b′〉 ×1−−→ · · ·

H1(Ypd1,1) ∼= Z⊕ Z[1
2 ] ∼= 〈aa′ + ba′, ba′〉

A∗pd,1−−−→ 〈aa′ + ba′, ba′〉
A∗pd,1−−−→ · · ·

H0(S2) ∼= Z ∼= 〈s′〉 ×1−−→ 〈s′〉 ×1−−→ · · ·

H1(S2) ∼= Z[1
2 ] ∼= 〈ss′〉

A∗S2,1−−−→ 〈ss′〉
A∗S2,1−−−→ · · ·

The corresponding induced maps on the (1st) cohomologies have the following
matrix representations

A∗TM,1 =
[
2 0
2 −1

]
, A∗pd,1 =

[
1 1
2 0

]
and A∗S2,1 =

[
2
]

and have left eigenvectors and eigenvalues(
2 3 | 2
1 0 | −1

)
,

(
1 1 | 2
1 −2 | −1

)
and

(
1 | 2

)
.

Since φ(11̄1) = φ(1̄11̄) = aa and φ(111̄) = φ(1̄1̄1) = ba, we get φ∗(aa′) =
11̄1′ + 1̄11̄′ and φ∗(ba′) = 111̄′ + 1̄1̄1′. The eigenvector [1,−2] of A∗pd,1,
corresponding to aa′ − ba′, pulls back to 2 · 1̄11̄′ − 2 · 1̄1̄1′ corresponding
to the eigenvector [2, 0], twice the eigenvector [1, 0] of A∗TM,1. Meanwhile,
the eigenvector [1, 1] of A∗pd,1, corresponding to aa′ + 2 · ba′, pulls back to
3 · 1̄11′ + 2 · 1̄1̄1′ + 1̄1̄1′, corresponding to the eigenvector [2, 3] of A∗TM,1. In
summary, φ∗1 is an isomorphism on the summand Z[1

2 ] in H1(Ypd1,1) into the
same summand in H1(YTM1,1 ), and maps the summand Z in H1(Ypd1,1) into 2Z
in H1(YTM1,1 ). By Theorem 3.6, since φ∗1 is injective, then H0

Q(YTM1,1 ,Y
pd
1,1) ∼= 0

and H1
Q(YTM1,1 ,Y

pd
1,1) ∼= H1(YTM1,1 )/φ∗1(H1(Ypd1,1)) = Z/2Z = Z2.

Meanwhile, the eigenvector [1] of A∗S2,1 corresponding to ss′ pulls back
to aa′ + ab′ + ba′ = aa′ + 2 · ba′ corresponding to the eigenvector [1, 1] of
A∗pd,1. Thus, the map ψ∗1 sends H1(S2) ∼= Z[1

2 ] isomorphically into the same
summand in H1(Ypd1,1), and consequently φ∗1 ◦ ψ∗1 sends H1(S2) ∼= Z[1

2 ] into
the same summand in H1(YTM1,1 ). Similar to φ∗0, the maps ψ∗0 and φ∗0 ◦ ψ∗0 are
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just the identity maps. Thus, H0(YTM1,1 , S2) ∼= 0 and H0
Q(Ypd1,1,S2) ∼= 0, and,

H1(YTM1,1 ,S2) ∼= Z and H1
Q(Ypd1,1, S2) ∼= Z. ♦

For any k, ` ∈ N, the behaviour of φ∗ and ψ∗ on the particular cohomologies
remains unchanged [BGG12], and so we have the following result.

Theorem 4.2. For any k, ` ∈ N, H0
Q
∼= 0. Further,

H1
Q(Ypdk,`, Sk+`) ∼= Z,

H1
Q(YTMk,` , Sk+`) ∼= Z[ 1

k−` ]⊕ Z,

H1
Q(YTMk,` ,Y

pd
k,`) ∼= Z2 ⊕ Z[ 1

k−` ],

where Z[1
0 ] := 0 by an abuse of notation.

Proof. The map ψ∗ sends H1(Sk+`) ∼= Z[ 1
k+` ] isomorphically into the same

summand inH1(Ypdk,`), which then the map φ∗ also sends isomorphically into the
same summand in H1(YTMk,` ). Thus, ϕ∗ := φ∗◦ψ∗ also mapsH1(Sk+`) ∼= Z[ 1

k+` ]
isomorphically into Z[ 1

k+` ] in H
1(YTMk,` ). Furthermore, φ∗ maps the summand Z

in H1(Ypdk,`) into 2Z in H1(YTMk,` ). Thus, the maps ψ∗1, φ∗1 and ϕ∗1 are all injective
maps, and so H0

Q
∼= 0 for all pairs of spaces using Theorem 3.6. By the same

theorem, we get H1
Q(YTMk,` ,Y

pd
k,`) ∼= H1(YTMk,` )/φ∗1(H1(Ypdk,`)) ∼= Z2 ⊕ Z[ 1

k−` ].
The rest of the results follow similarly. �

The three non-trivial quotient cohomologies are related via the short exact
sequence (also see (3.9))

0 −→ H1
Q(Ypdk,`,Sk+`)

×2
↪−→ H1

Q(YTMk,` ,Sk+`) −→ H1
Q(YTMk,` ,Y

pd
k,`) −→ 0.

As one may already suspect, the composition ψ ◦ φ does not form a good
match.

The zeta function for the generalized period-doubling sequence [BGG12]
is given by

ζpdk,` = 1− z
(1 + z)(1− (k + `)z) ,

while the zeta function for the generalized Thue-Morse sequence is given by

ζTMk,` (z) = 1− z
(1 + z)(1− (k + `)z)(1− (k − `)z)

= ζpdk,`
1

(1− (k − `)z) = ζpdk,`ζ
TM/pd
k,`

where ζTM/pd
k,` is the quotient zeta function between the generalised Thue-Morse

and period doubling substitutions.



CHAPTER 5

Two-dimensional substitution tiling spaces

Substitution tiling spaces in two dimensions are naturally more complex.
However, some are very much related to their 1-dimensional counterparts as we
will see in this chapter. This realisation allows for a simpler computation of the
quotient cohomology in certain situations. Let us analyse three tiling spaces
in two dimensions, namely the squiral and Chacon substitution tilings, which
are examples of block substitutions with inflation factor 3, and the generalised
chair tilings with inflation factor 2. Although, the family of the generalised
chair tilings already appeared in [BS11], we still present them here, where
we give some corrections to the minor errors present in the original text. For
these tiling spaces, we present a breakdown of their factors and classify the
factors through our notion of good matches.

5.1. The squiral tiling and its factors

The squiral tiling [GS87, Fig. 10.1.4] is an example of a 2-dimensional
substitution tiling defined using only one prototile (together with its three
other 90-degree rotated versions and their reflections) with infinitely many
edges. It is derived via the following primitive substitution with inflation factor
3, where a reflected prototile is given a different shade for easier identification.§

The dynamical spectrum and other related properties of the squiral tiling
have already been analysed in detail [BG13b], and recently, the cohomology
of the squiral tiling space and its factors were systematically studied [BGG13].
However, the work done here would be a first attempt to analyse the structure
of the squiral tiling space through quotient cohomology, which complements
the study done in [BGG13].

§Image created by M. Baake & U. Grimm, which may be found in [BG13a, p. 215];
image used with their kind permission.
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Figure 5.1. A rectangular patch of the squiral tiling. The
rectangle in the middle highlights how the squiral prototiles
group together to form square tiles, which allows us to write
the squiral substitution as a planar block substitution. Image
created by M. Baake & U. Grimm, found in [BG13a, Fig. 6.24];
image used with their kind permission.

At its current form, the squiral substitution does not seem something
that fits into the settings of our study because of the irregular shape of its
prototiles. However, a simple observation about how these irregularly shaped
prototiles clump up together allows us to define the squiral tiling through
a planar block substitution that is equivalent to the original form. Figure
5.1 shows a rectangular patch of the squiral tiling, where it is evident that
every group of four squiral prototiles forms a square of uniform colour with
the prototiles combining perfectly. The marked rectangle in the middle of the
tiling is a seed for a tiling obtained via the following planar block substitution

It becomes clear that the two substitution tilings are equivalent (more precisely,
they are MLD), and the latter substitution is something that fits nicely into
the framework of our study.

The squiral tiling has a special property that the substitution commutes
with a 2-fold operation of swapping or inverting the colours analogous to the
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Thue-Morse case. Keeping this property in mind, we use the following symbolic
planar substitution rule to define the squiral substitution tiling space instead.
We have

1 7−→

1̄ 1 1̄
1 1 1
1̄ 1 1̄

 1̄ 7−→

1 1̄ 1
1̄ 1̄ 1̄
1 1̄ 1

 (5.1)

with 1̄ := −1 so that ¯̄1 = −1̄ = −(−1) = 1 and −(1) = −1 = 1̄. Note that
without regard, whenever we say the squiral substitution, we mean to use the
symbolic block substitution in (5.1) instead of the original substitution with
irregularly shaped prototiles. Also, we denote by ΩS the hull of the squiral
substitution.

5.1.1. The squiral tiling factors and their cohomology. Similar to
the sliding block map between the hulls of the Thue-Morse and period doubling
substitutions introduced earlier, we can also define sliding block maps on the
squiral substitution to obtain some factors of the tiling space. We introduce
a sliding block map on the set of legal 2 × 2 block patches of the squiral
substitution by assigning a letter to each of them. The squiral substitution
admits 24 − 2 = 14 distinct legal 2× 2 patches, with only the two 2× 2 blocks
of identical entries not included. Analogous to the case of the (generalised)
Thue-Morse tiling space, we want a sliding block map that identifies pairs of
blocks with inverted colours (or swapped bars). We achieve this through the
following.

±
[
1 1
1̄ 1

]
7−→ a ±

[
1 1
1 1̄

]
7−→ b ±

[
1 1̄
1 1

]
7−→ c ±

[
1̄ 1
1 1

]
7−→ d

±
[
1 1
1̄ 1̄

]
7−→ e ±

[
1 1̄
1 1̄

]
7−→ f ±

[
1 1̄
1̄ 1

]
7−→ g

(5.2)

Here, we use the same exact sliding block map introduced in [BGG13] for
uniformity. Clearly, the factor map defined from this sliding block map is
uniformly 2-to-1 on the entire hull of all squiral tilings, analogous to the sliding
block map φ : YTMk,` −→ Ypdk,` in Chapter 4.3 (also see Remark 3.4).

The sliding block map in (5.2) then induces a primitive substitution
(compare Remark 3.4 for methodology) on seven letters given by
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a 7−→

g g a

d c g

a b g

 b 7−→

f f b

d c g

a b g

 c 7−→

f f c

d c e

a b e

 d 7−→

g g d

d c e

a b e



e 7−→

g g e

d c e

a b e

 f 7−→

f f f

d c g

a b g

 g 7−→

g g g

d c g

a b g


(5.3)

which defines the hull of the maximal model set factor of the squiral tiling
space [BGG13]. We denote the hull derived from this substitution by Ωv,h,4.
The reasoning behind the label {v, h, 4} is explained later.

The tiling space Ωv,h,4 is defined through a planar block substitution of
inflation factor 3. Thus, it is easy to see that a factor map (analogous to
ψ : Ypdk,` −→ Sk+` in Chapter 4.3) identifying all the letters in the substitution
yields the two dimensional 3-adic solenoid S3 × S3. In fact, the projection of
Ωv,h,4 onto the solenoid is 1-to-1 almost everywhere via the torus parametrisa-
tion of general model sets [BLM07]. Of interest to us are those tiling spaces
in between Ωv,h,4 and S3 × S3, where the projection onto the solenoid fails to
be 1-to-1. We need factor maps to find these tiling spaces, and to do so, we
define factor maps by simply identifying certain letters in the substitution
(5.3) in a consistent and compatible manner. Getting all such factor maps
can be done via brute force, i.e., through a computer search. There are 110
factor maps that can be found this way, which yield 110 factor spaces between
Ωv,h,4 and the solenoid S3 × S3. However, many of these factor spaces have
isomorphic cohomology groups.

In the analysis of the quotient cohomology between factors of the squiral
tiling space, it is helpful to look at the configurations of the different translation
orbits in Ωv,h,4, similar to how Barge and Sadun did with the chair tiling in
[BS11]. This then allows us to see when the framework in Proposition 3.11 is
available for use. Closely following the approach done in [BGG13], we first
consider the form of the supertiles of order n arising from each of the seven
letters. We get the following block structures,

a 7−→
[
G a

X GT

]
b 7−→

[
F b

X GT

]
c 7−→

[
F c

X ET

]
d 7−→

[
G d

X ET

]

e 7−→
[
G e

X ET

]
f 7−→

[
F f

X GT

]
g 7−→

[
G g

X GT

] (5.4)

with X being a square block of dimension 3n − 1, and E, F and G being rows
whose entries are all e, f and g, respectively. Note that X is exactly the same
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for all supertiles and ET and GT denote the transpose of E and G, and so
form columns.

Blowing up legal blocks by arranging the infinite level supertiles in (5.4)
accordingly yields the following configurations, each of them representing a
translation orbit in Ωv,h,4.

X ET X

G a F

X GT X


X ET X

F b G

X GT X


X GT X

F c G

X ET X


X GT X

G d F

X ET X


X ET X

G e G

X ET X


X GT X

F f F

X GT X


X GT X

G g G

X GT X


(5.5)

Further, these configurations form the seeds of the seven fixed points of the
(maximal model set) substitution in (5.3), where the origin or reference point
is placed somewhere near the centre.

Baake, Gähler and Grimm [BGG13] studied the break down of the factors
between Ωv,h,4 and S3×S3 and computed their cohomology groups. Let us give
a summary on how the factors come about to form the general structure of
the hierarchy of the squiral tiling factor spaces. The tiling space Ωv,h,4 consists
of one copy of the 2-dimensional 3-adic solenoid S3 × S3, two copies of the
1-dimensional solenoid S3, i.e., one vertical and one horizontal (sub)solenoinds,
and four extra fixed points near the origin of S3 × S3. This explains the name
given to Ωv,h,4. To get to the other factors, the different components of Ωv,h,4
are either cut or glued and projected down to the solenoid S3 × S3. Removing
the subsolenoid component either horizontally (f = g) or vertically (e = g)
gives us the tiling space Ωv,4 or Ωh,4. Removing the remaining subsolenoid
(e = f = g) brings us to Ω4. Eliminating the extra fixed points from this point
on one at a time until they are all gone gives us Ω3 (a = b or a = d), Ω2 (a = b,
c = d; or a = d, b = c), Ω1 (e = f = g = c = d, a = b; or e = f = g = b = c,
a = d) and eventually Ω0 := S3×S3 (all letters identified). Removing the extra
fixed points can also be done before eliminating the second subsolenoid, which
would then give us Ωv,3 (f = g, a = b), Ωh,3 (e = g, a = d), Ωv,2 (f = g, a = b,
c = d), and Ωh,2 (e = g, a = d, b = c). Other cuts are not possible through
the type of factor maps we considered that simply identify certain symbols
in the substitution. The hierarchy of the factors of the squiral substitution
obtained is illustrated in Figure 5.2. Also see [BGG13].

Remark 5.1. It is possible to introduce a bigger sliding block map on Ωv,h,4
(say, a sliding block map on its legal 2× 2 block patches), which can produce
other factors we have not accounted for, such as Ωv,1 or even Ωv. However, for
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ΩS

Ωv,h,4

Ωv,4Ωh,4

Ωv,3Ωh,3

Ωv,2Ωh,2

Ω4

Ω3

Ω2

Ω1

S3 × S3

φ

(uniformly 2-to-1)

a′a′

d

d

d

d

aa

aa

aa

d

d

d′

d

Figure 5.2. The squiral tiling space and its factors related
via factor maps of type either a or d. As uncomposed maps,
a′ = a and d′ = d. The distinction becomes relevant when
considering composed maps.

our purpose, there is no need to do this as the 110 factors obtained from simply
identifying certain symbols in the substitution is already a good number of
tiling factors to consider. ♦

The cohomology of the factor tiling spaces is summarised in Table 5.1. For
all (tiling) spaces, we have H0 ∼= Z and H1 ∼= Z[1

3 ]2.
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Name H2(Ω) Identifications
Squiral Z[1

9 ]⊕ Z[1
3 ]2 ⊕ Z6

v, h, 4 Z[1
9 ]⊕ Z[1

3 ]2 ⊕ Z2 ⊕ Z2 maximal model set factor

v, 4 Z[1
9 ]⊕ Z[1

3 ]⊕ Z3 f = g

v, 3 Z[1
9 ]⊕ Z[1

3 ]⊕ Z2 f = g, a = b

v, 2 Z[1
9 ]⊕ Z[1

3 ]⊕ Z1 f = g, a = b, c = d

4 Z[1
9 ]⊕ Z4 e = f = g

3 Z[1
9 ]⊕ Z3 e = f = g, a = b

2 Z[1
9 ]⊕ Z2 e = f = g, a = b, c = d

1 Z[1
9 ]⊕ Z1 e = f = g = c = d, a = b

h, 4 Z[1
9 ]⊕ Z[1

3 ]⊕ Z3 e = g

h, 3 Z[1
9 ]⊕ Z[1

3 ]⊕ Z2 e = g, a = d

h, 2 Z[1
9 ]⊕ Z[1

3 ]⊕ Z1 e = g, a = d, b = c

4 Z[1
9 ]⊕ Z4 e = f = g

3 Z[1
9 ]⊕ Z3 e = f = g, a = d

2 Z[1
9 ]⊕ Z2 e = f = g, a = d, b = c

1 Z[1
9 ]⊕ Z1 e = f = g = b = c, a = d

S3 × S3 Z[1
9 ] a = b = c = d = e = f = g

Table 5.1. The cohomology of the squiral tiling space and
some of its factors. For all the (tiling) spaces, we have H0 ∼= Z
and H1 ∼= Z[1

3 ]2. Also see [BGG13, Tab. 1].

5.1.2. Quotient cohomology between the factors. Knowing the fac-
tor maps is only a prerequisite in computing the quotient cohomology between
the tiling spaces. Let us categorise the quotient cohomology depending on
the type of factor maps and how they are composed. Some computations are
rather long and tedious, but are pretty straightforward.
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Lemma 5.2. The quotient cohomology between the squiral tiling space ΩS

and a factor in Figure 5.2 is given by the following.

Ωv,h,4 : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z4 ⊕ Z2

2,

Ωv,4 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]⊕ Z4 ⊕ Z2,

Ωv,3 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z4 ⊕ Z2,

Ωv,2 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z5 ⊕ Z2,

Ωh,4 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]⊕ Z4 ⊕ Z2,

Ωh,3 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z4 ⊕ Z2,

Ωh,2 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z5 ⊕ Z2,

Ω4 : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

3 ]2 ⊕ Z4,

Ω3 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z4,

Ω2 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z5,

Ω1 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]2 ⊕ Z5,

S3 × S3 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]2 ⊕ Z6.

Proof. Let Ω be a (tiling) space in Figure 5.2 together with the factor map
f : ΩS −→ Ω. Knowing how the cohomology of Ω maps into the cohomology of
ΩS and using the long exact sequence (3.7) allows us to compute the quotient
cohomology. Note that the long exact sequence for ΩS and Ω is given by

0 −→

H0(Ω)

=

Z
f∗0−−→

H0(ΩS)

=

Z −→ H0
Q −→

H1(Ω)

=

Z[1
2 ]2

f∗1−−→

H1(ΩS)

=

Z[1
2 ]2 −→

H1
Q −→ H2(Ω)

f∗2−−→ Z[1
9 ]⊕ Z[1

3 ]2 ⊕ Z6

=

H2(ΩS)

−→ H2
Q −→ 0

Similar to the computation in Example 4.1, we find that the induced maps
f∗0 and f∗1 are isomorphisms for any factor map f and factor Ω of the squiral
tiling space. Thus by Corollary 3.6, it follows that H0

Q
∼= 0 and H1

Q
∼= ker f∗2

and so knowing the action of f∗2 gives us the quotient cohomologies H1
Q and

H2
Q
∼= H2(ΩS)/f∗2 (H2(Ω)).
First, let us consider the sliding block map φ : ΩS −→ Ωv,h,4 as defined

above, and recall that H2(Ωv,h,4) ∼= Z[1
9 ]⊕ Z[1

3 ]2 ⊕ Z2 ⊕ Z2. The induced map
φ∗2 sends the summands Z[1

9 ] ⊕ Z[1
3 ]2 in H2(Ωv,h,4) isomorphically into the

same summands in H2(ΩS) and acts by multiplication of 2 on the rest of
the summands, i.e., Z2 gets mapped to 2Z2 = 0, and Z2 = Z ⊕ Z gets sent
to 2Z ⊕ 2Z. Thus, H1

Q
∼= kerφ∗2 ∼= Z2 and H2

Q
∼= H2(ΩS)/φ∗2(H2(Ωv,h,4)) ∼=
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Z4 ⊕ Z2 ⊕ Z2 ∼= Z4 ⊕ Z2
2. The long exact sequence (of quotient cohomologies)

for ΩS and Ωv,h,4 then reads

0 −→ Z
φ∗0−−→ Z −→ 0 −→ Z[1

3 ]2
φ∗1−−→ Z[1

3 ]2 −→ Z2 −→

Z[1
9 ]⊕ Z[1

3 ]2 ⊕ Z2 ⊕ Z2
φ∗2−−→ Z[1

9 ]⊕ Z[1
3 ]2 ⊕ Z6 −→ Z4 ⊕ Z2

2 −→ 0.

The same analogy applies to the rest of the factor spaces. For Ω := Ωv,j+1
(or Ω := Ωh,j+1), j ∈ {1, 2, 3} with H2(Ω) ∼= Z[1

9 ] ⊕ Z[1
3 ] ⊕ Zj , the map f∗2

sends the summands Z[1
9 ]⊕ Z[1

3 ] isomorphically onto the same summands in
H2(ΩS), while maps exactly one summand of Zj to 2Z, at most one summand
isomorphically into Z in H2(ΩS), and whatever is left gets mapped to zero. In
result, we get H1

Q
∼= Zj−2 and H2

Q
∼= Z[1

3 ]⊕Z6−j⊕Zj−2⊕Z2, where Zj−2 := 0
for j 6= 3.

Finally, for Ω := Ωj , j ∈ {0, 1, 2, 3, 4}, recall that H2(Ω) ∼= Z[1
9 ]⊕ Zj and

Ω0 = S3×S3. The map f∗2 sends Z[1
9 ] isomorphically onto Z[1

9 ] in H2(ΩS), and
so (for j = 0) we get H1

Q(ΩS ,S3 × S3) ∼= 0 and H2
Q(ΩS ,S3 × S3) ∼= Z[1

3 ]2 ⊕ Z6.
Further, for j ∈ {1, 2}, f∗2 maps Z isomorphically onto Z in H2(ΩS) and
whatever is left to zero, and so we have H1

Q
∼= Zj−1 and H2

Q
∼= Z[1

3 ]2 ⊕ Z5.
Meanwhile, for j ∈ {3, 4}, f∗2 maps exactly two summands of Zj isomorphically
into Z2 in H2(ΩS) and maps the rest to zero. Thus, H1

Q
∼= Z⊕ Zj−3 = Zj−2

and H2
Q
∼= Z[1

3 ]2 ⊕ Z4. �

Lemma 5.3. The quotient cohomology between the (maximal model set) factor
Ωv,h,4 and any one of its factors in Figure 5.2 is given by the following.

Ωv,4 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ],

Ωv,3 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z2,

Ωv,2 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z⊕ Z2,

Ωh,4 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ],

Ωh,3 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z2,

Ωh,2 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z⊕ Z2,

Ω4 : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

3 ]2,

Ω3 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z2,

Ω2 : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z⊕ Z2,

Ω1 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]2 ⊕ Z⊕ Z2,

S3 × S3 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]2 ⊕ Z2 ⊕ Z2.

Proof. The results follow similarly as in the proof of the previous lemma.
However, worth looking at are the factor maps f : Ωv,h,4 −→ Ωv,4 (or Ωh,4)
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and g : Ωv,h,4 −→ Ω4, as the only cases where there is no torsion in their
respective quotient cohomology. As we will see in the following lemmas, these
scenarios are not really surprising. Nonetheless, let us see what happens to f∗2
and g∗2 and compute the quotient cohomology in the spirit of Corollary 3.6.

The induced maps f∗0 and f∗1 are isomorphisms, and so we get H0
Q
∼= 0 and

H1
Q
∼= ker f∗2 . As H2(Ωv,4) ∼= H2(Ωh,4) ∼= Z[1

9 ]⊕ Z[1
3 ]⊕ Z3, the map f∗2 sends

the summands Z[1
9 ]⊕ Z[1

3 ]⊕ Z2 isomorphically into the same summands in
H2(Ωv,h,4) ∼= Z[1

9 ]⊕ Z[1
3 ]2 ⊕ Z2 ⊕ Z2. The extra Z in H2(Ωv,4) is mapped to

Z (modulo 2) in Z2, and so we get ker f∗2 ∼= 2Z. This explains H1
Q
∼= 2Z ∼= Z.

Also, we get H2
Q
∼= Z[1

3 ].
Similarly, g∗0 and g∗1 are isomorphisms, and g∗2 sends the summands Z[1

9 ]⊕Z2

in H2(Ω4) ∼= Z[1
9 ]⊕ Z4 isomorphically into the same summands in H2(Ωv,h,4).

The remaining Z2 are then mapped both to the summand Z2 similar to f∗2
above. Thus, H1

Q
∼= ker g∗2 ∼= 2Z⊕ 2Z ∼= Z2 and H2

Q
∼= Z[1

3 ]2. �

Lemma 5.4. The quotient cohomology between any two adjacent (tiling)
spaces in Figure 5.2 is H2

Q
∼= Z[1

3 ], H1
Q
∼= Z and H0

Q
∼= 0 if the type of factor

map relating the two spaces is labelled a (or a′); otherwise, we get H2
Q
∼= Z

and H1
Q
∼= H0

Q
∼= 0 if the factor map type is labelled d (or d′).

Proof. For any factor map of type labelled a (or a′), the translation orbits
(among adjacent tiling spaces in the diagram) are identified through a 1-
dimensional tiling subspace either along the horizontal or vertical direction.
This 1-dimensional subspace is none other than the 3-adic solenoid S3. By
Proposition 3.11, it follows thatH2

Q
∼= H1

Q(S3×S3, S3) ∼= H1(S3) ∼= Z[1
3 ],H1

Q
∼=

H0
Q(S3 × S3, S3) ∼= H0(S3) ∼= Z and H0

Q
∼= 0. This is precisely degeneration A

(of Example 3.12).
On the other hand for the factor maps of type d (or d′), the translation

orbits are identified through a single point near the origin (the single letter at
the very centre), and so by Proposition 3.11, we have H2

Q
∼= Z2−1 = Z and

H1
Q
∼= H0

Q
∼= 0 (degeneration D of Example 3.15). �

Example 5.5. Let us see in much more detail how the previous proof works
for the particular case where we want to get the quotient cohomology between
the tiling spaces Ωv,4 and Ω4. Recall that the tiling space Ωv,4 is obtained
from the substitution (5.3) with the letters f and g identified. On the other
hand, the tiling space Ω4 is obtained from (5.3) by identifying e, f and g. The
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translation orbits in (5.5) become X ET X

G a G

X GT X


 X ET X

G b G

X GT X


 X GT X

G c G

X ET X


 X GT X

G d G

X ET X


 X ET X

G e G

X ET X


 X GT X

G g G

X GT X


in Ωv,4. To get Ω4 as a factor of Ωv,4, we just need to identify e and g in the
configurations above. As a result, only the last two translation orbits merge
and are identified in Ω4. By doing so, only 1-dimensional vertical strips need
to get identified, as the rest of the letters outside these vertical strips are
already the same even before the identification of e and g. The vertical strips
correspond to ET and GT identified. These 1-dimensional tiling subspaces
can be viewed as the inverse limit of the substitutions {e 7−→ eee} and
{g 7−→ ggg}, which are both S3. Hence, we get H2

Q(Ωv,4,Ω4) ∼= H1(S3) ∼= Z[1
3 ],

H1
Q(Ωv,4,Ω4) ∼= H0(S3) ∼= Z and H0

Q(Ωv,4,Ω4) ∼= 0 by Proposition 3.11. ♦

Recall that two factor maps f : X −→ Y and g : Y −→ Z form a
good match if and only if H∗Q(X,Z) ∼= H∗Q(X,Y )⊕H∗Q(Y,Z). If so, we write
g ◦ f := fg = (f)(g), otherwise, we write fg = (fg) 6= (f)(g).

Lemma 5.6. The compositions a′a and dj for j ∈ {2, 3, 4} (with or without
d′) in Figure 5.2 are good matches, i.e., a′a = (a′)(a) and dj = (d)j for
j ∈ {2, 3, 4}.

Proof. The case a′a = (a′)(a) is very particular to the factor map between
Ωv,h,4 and Ω4. (Compare proof of Lemma 5.3.) This can not be computed
using the framework in Proposition 3.11 alone, but by incorporating Corollary
3.10, it is still possible to compute the quotient cohomology without using a
longer and more rigorous albeit straightforward approach. Let X1 ⊂ Ωv,h,4 be
obtained from the closure of the union of the following translation orbits in
Ωv,h,4.  X ET X

G a F

X GT X


 X ET X

F b G

X GT X


 X GT X

F c G

X ET X


 X GT X

G d F

X ET X


 X ET X

G e G

X ET X


 X GT X

G g G

X GT X


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Similarly we define X2 ⊂ Ωv,h,4 from the following translation orbits.

 X ET X

G a F

X GT X


 X ET X

F b G

X GT X


 X GT X

F c G

X ET X


 X GT X

G d F

X ET X


 X GT X

F f F

X GT X


 X GT X

G g G

X GT X



It then follows that Ω4 is homeomorphic to X1 ∩X2, and by Corollary 3.10, it
follows that H∗Q(Ωv,h,4,Ω4) ∼= H∗Q(X1 ∩ Ω4)⊕H∗Q(X2 ∩ Ω4). By Proposition
3.8, we have H∗Q(Ωv,h,4,Ωv,4) ∼= H∗Q(X1,Ω4) ∼= H∗(S3) and H∗Q(Ωv,4,Ω4) ∼=
H∗Q(X2,Ω4) ∼= H∗(S3) (degeneration A). Then the assertion a′a = (a)(a)
follows from Lemma 5.4.

On the other hand, identifying tiling spaces through the composition dj
means identifying some or all of the letters a, b, c and d in (5.3). Note that
necessarily, some if not all of the letters in {e, f, g} must also be identified for
compatibility. In terms of the translation orbits and their configurations, only
the single letters around the origin are getting identified. By Proposition 3.11,
we have H2

Q
∼= Zj =

⊕
j Z and H1

Q
∼= H0

Q
∼= 0, for j ∈ {1, 2, 3, 4} (degeneration

D). The index j indicates how many of the letters in {a, b, c, d} are removed
after identification. �

We now analyse the decomposition of the factor maps into what are
considered good matches. In this way, we see how the quotient cohomology
groups break down and combine together depending on the factor maps between
the tiling spaces. For factor maps that are good matches, the general idea is
the same as what we saw in the proof of the previous lemmas. Good matches
depend on the factor maps specifying how the letters in the substitution are
identified.

Lemma 5.7. The quotient cohomology between any two (tiling) spaces in
Figure 5.2 is given by how the types of factor maps between them are composed.
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We have the following decomposition of maps into good matches.

ad = (a)(d) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]⊕ Z,

add = (a)(d)(d) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]⊕ Z2,

ad′ = (ad′) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ],

add′ = (ad′)(d) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z,

addd′ = (ad′)(d)(d) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z2,

a′d = (a′d) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z2,

a′d2 = (a′d)(d) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z⊕ Z2,

aa′ = (a)(a′) : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

3 ]2,

aa′d = (a)(a′d) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z2,

aa′d2 = (a)(a′d)(d) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z⊕ Z2,

aa′d2d′ = (a′d)(ad′)(d) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]2 ⊕ Z⊕ Z2,

a′ad3d′ = (a′d)(ad′)(d)2 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]2 ⊕ Z2 ⊕ Z2.

Proof. For good matches, the proof follows similarly as in the proofs of
the previous lemmas. Worth mentioning are those factor maps that when
composed, can no longer be broken into good matches. In particular, we have
two compositions, namely ad′ 6= (a)(d′) and a′d 6= (a′)(d), which cannot be
written as a composition of good matches. For any of these two, none of
the translation orbits in (5.5) can be used to define subspaces X1 and X2
(similar as in the previous proof) to which Corollary 3.10 may be applied. The
framework in Proposition 3.11 also does not apply in these cases.

The composition a′d already appears in the proof above for computing
H∗Q(Ωv,h,4,Ωv,4) (or H∗Q(Ωv,h,4,Ωh,4)) and it is clear that a′d 6= (a′)(d) as per
definition. So let us just look at what happens to the composition ad′. This
factor map is very particular to the case f : Ωv,2 −→ Ω1 (or f : Ωh,2 −→ Ω1).
Similar to what we had above, it turns out that f∗0 and f∗1 are isomorphisms,
and so H1

Q
∼= ker f∗2 . Futher, the map f∗2 sends H2(Ω1) ∼= Z[1

9 ] ⊕ Z iso-
morphically into H2(Ωv,2) ∼= Z[1

9 ] ⊕ Z[1
3 ] ⊕ Z. Thus, we get H1

Q
∼= 0 and

H2
Q
∼= H2(Ωv,2)/f∗2 (H2(Ω1)) ∼= Z[1

3 ]. It then follows that ad′ 6= (a)(d′). �

Remark 5.8. Let X be a factor of Ωv,h,4 obtained by identifying a and g.
Now let Y be a factor of X by further identifying d and e. Finally, suppose Z
is a factor of Y , where the letters b and f are also identified. Hence we form a
sequence of factor maps that reads Ωv,h,4

α−−→ X
β−−→ Y

γ−−→ Z. In particular,
Z is a tiling space whose substitution is defined on four letters. As it turns
out, the number of fixed points of all these spaces are the same, even after
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the identifications. This is evident in the following, where no translation orbit
vanishes under any of the factor maps. For X (a = g), we have the following
configuration of the translation orbits:X ET X

G g F

X GT X


X ET X

F b G

X GT X


X GT X

F c G

X ET X


X GT X

G d F

X ET X


X ET X

G e G

X ET X


X GT X

F f F

X GT X


X GT X

G g G

X GT X


For Y (a = g, d = e), we get:X ET X

G g F

X GT X


X ET X

F b G

X GT X


X GT X

F c G

X ET X


X GT X

G e F

X ET X


X ET X

G e G

X ET X


X GT X

F f F

X GT X


X GT X

G g G

X GT X


And finally for Z (a = g, d = e, b = f):X ET X

G g F

X GT X


X ET X

F f G

X GT X


X GT X

F c G

X ET X


X GT X

G e F

X ET X


X ET X

G e G

X ET X


X GT X

F f F

X GT X


X GT X

G g G

X GT X


It follows that H∗Q ∼= 0 for any of these spaces. ♦

5.2. The Chacon tiling space and its factors

The Chacon tiling space denoted by ΩC is the 2-dimensional hull of the
following primitive (block) substitution [Fra08, Fig. 38]:

1 7−→

3 1 4
1 5 1
1 1 2

 2 7−→

5 1 4
2 5 1
2 1 2

 3 7−→

3 1 4
1 5 1
3 3 5



4 7−→

5 1 4
2 5 1
4 3 5

 5 7−→

5 1 4
2 5 1
5 3 5


(5.6)

As we will see in this section, the Chacon tiling space has some strong resem-
blances with the maximal model set factor Ωv,h,4 of the squiral tiling space,
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but we can immediately tell that the two spaces are inequivalent by simply
looking at their cohomology.

A closer inspection of the Chacon substitution reveals an embedded 1-
dimensional primitive substitution that defines a 1-dimensional substitution
tiling subspace. In particular, looking at the last row in the block substitution of
the symbols 1 and 2 shows the embedded substitution {1 7−→ 112, 2 7−→ 212},
which forms a horizontal 1-dimensional tiling subspace of ΩC . The symbols 3
and 5 yield an equivalent 1-dimensional tiling subspace. Also, one can look
at the first column of the block substitution of the symbols 1 and 3, from
which the embedded vertical substitution {1 7−→ 113, 3 7−→ 313} is revealed
forming a vertical 1-dimensional tiling subspace. The same can be observed
with the symbols 2 and 5. This embedded substitution defines a primitive
substitution on two symbols, namely {a 7−→ aab, b 7−→ bab}, which is related
to the classical (1-dimensional) Chacon sequences as we discuss next. Also, we
will see that the embedded substitution is just a generalised period doubling
in disguise!

5.2.1. The Chacon sequences. The (classical) 1-dimensional Chacon
sequence can be constructed from two letters, say s and t, beginning with
s and whose succeeding terms are obtained via the following non-primitive
substitution, namely

{s 7−→ ssts, t 7−→ t}. (5.7)

The first few terms of the sequence can be read immediately after a finite
number of iterations:

s 7−→ ssts 7−→ ssts ssts t ssts 7−→ ssts ssts t ssts ssts ssts t . . .

The limit of the infinite iteration above, i.e., the (one-sided) fixed point of the
substitution, defines a Chacon sequence. It is possible to define a primitive
version of the previous substitution, which yields a fixed point that is locally
derivable from that above. Let us consider the primitive substitution

{0 7−→ 0012, 1 7−→ 12, 2 7−→ 012}. (5.8)

which is equivalent to the previous one. That is, the respective (one-sided)
fixed points of (5.7) and (5.8) (from the seeds |s and |0) are mutually locally
derivable (MLD). To see this, consider the following rules with local support:

0 7→ s, 1 7→ t and 2 7→ s;

and for the opposite direction,

t 7→ 1, and s 7→
{

2, if there is a t before s;
0, otherwise.
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Thus, we get 0012 0012 12 012 . . . from ssts ssts t ssts . . ., which we also
obtain after three iterations of 0 under (5.8). As dynamical systems, the two
systems derived from the two fixed points are topologically conjugate, and are
thus equivalent.

A replace-and-resize version of the last substitution can be obtained by
introducing the following invertible local rule: a ↔ 0 and b ↔ 12, which is
well-defined by noting that the symbol 2 never appears without a 1 before it in
(5.8). In this case, the three original symbols are replaced by two new letters,
and more so, the size of the adjacent symbols 12 is halved to accommodate
the new letter b. This combinatorial process yields the substitution

%C :=
{
a 7−→ aab

b 7−→ bab
(5.9)

which we formally define as the (1-dimensional) Chacon substitution. Clearly,
this replace-and-resize version of the classical Chacon substitution is primitive
with inflation factor 3. More importantly, it defines a tiling space that is
embedded as a tiling subspace in the 2-dimensional Chacon tiling space.
It is interesting to note that the cohomology of the 1-dimensional Chacon
substitution is computed as

H0 ∼= Z, and H1 ∼= Z[1
3 ]⊕ Z,

which is the same as the cohomology of the generalised period doubling
substitution for the case k + ` = 3. Indeed, we have the following.

Remark 5.9 (Chacon is a generalised period doubling). The substitution
rules %C and %pd1,2 (or %pd2,1) define the same hull. Every word of length n that
appears in the hull of the Chacon substitution also appears in Ypd1,2 (or Ypd2,1)
and vice versa. This can be seen by using induction on n. Note that the two
hulls have identical sets of legal 2-, 3-, and 4-letter words, namely

{aa, ab, ba, bb}, {aab, aba, abb, baa, bab, bba},
{aaba, aabb, abaa, abba, baab, baba, babb, bbab}.

There is a way to construct the set of legal 4-letter words from the set of legal
3-letter words, and that is by adding a letter to the right (or to the left) of
the legal 3-letter words, but avoiding the following forbidden subwords:

aaa, bbb, abab, bbaa

This set of forbidden subwords is the same for both hulls as evident from their
substitution rules in (5.8) and (5.9). It becomes clear then by induction, that
starting with identical sets of legal k-words, one can construct the set of legal
(k + 1)-words for both the hulls using the method described above, by just
avoiding the forbidden subwords, which in turn are again identical sets of legal
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(k+ 1)-words. This shows that for any n, the set of legal n-words are identical
for the two hulls, and hence establishes the equality of the two hulls. ♦

Remark 5.10 (Tile length matters). There are important differences in the
dynamical properties of the classical Chacon sequences (5.8) and the Chacon
substitution (5.9). For the classical Chacon sequences, the dynamical properties
have been studied in detail in [Pyth02], where it is shown to be weakly mixing.
Let us briefly define mixing properties of dynamical systems associated with
substitution systems, namely being strongly or weakly mixing.

A substitution system (Ω, ω) may be given an invariant measure µ, see
[BG13a, Eq. (4.3)] for instance, and as such, the substitution system becomes
a measure-preserving dynamical system (Ωω,B, µ, T ) from which certain dy-
namical properties arise. Here, B is the σ-algebra generated by all the Borel
sets (i.e., the σ-algebra generated by all the cyclinder sets as in (2.3)), µ is an
invariant measure, and T is a shift operator (e.g., the right shift ωk considered
in Chapter 2.3). For any A,B ∈ B, the system is strongly mixing (under the
T -action) if

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B),

and is weakly mixing if

lim
n→∞

1
n

n∑
k=0
|µ(A ∩ T−kB)− µ(A)µ(B)| = 0.

Strongly mixing systems are weakly mixing but not necessarily the converse.
The hull of the Chacon sequences in (5.8) gives the first example of a weakly

mixing system (under the Z-action) that is not strongly mixing [Pyth02, Lem.
5.5.1]. On the other hand, the generalised period doubling (tiling space) Ypd1,2
or Ypd2,1 has pure point spectrum Z[1

3 ] [BGG12] and so cannot be a weakly
mixing system under the R-action [Sol99], and consequently cannot be weakly
mixing under an embedded Z-action. The 1-dimensional Chacon substitution
%C is MLD to the generalised period doubling when k + ` = 3, and so has the
same dynamical properties. Let us briefly explain the difference between the
dynamical systems of the classical Chacon sequence and our 1-dimensional
Chacon substitution.

We emphasised in Remark 2.4 how a given symbolic substitution (in one
dimension) may be transformed into a (1-dimensional) tiling substitution in
such a way that the embedded natural geometric properties of the symbolic
substitution are preserved. Recall that this is done primarily via the Perron-
Frobenious (PF) theory. Clark and Sadun in [CS03] studied how modifying
the length of the prototile associated to a symbolic letter alters the dynamical
spectrum of the substitution system. This is precisely the case between the
varying results given in [Pyth02] and [BGG12, Sol99]. When the symbolic



90 5. TWO-DIMENSIONAL SUBSTITUTION TILING SPACES

letters 0, 1 and 2 in (5.8) are given equal tile lengths, then a tiling space
T1,1,1 with a weakly mixing spectrum under the Z-action is achieved (c.f.,
[CS03]), as is the context of the result in [Pyth02]. This is opposed to the
(naturally associated) tiling space T3,1,2 achieved through the PF theory, where
the symbols 0, 1 and 2 are given different tile lengths, in the ratio 3 : 1 : 2.
Such tiling space has pure point spectrum and is not weakly mixing under the
Z-action [BGG12, Sol99]. The two tiling spaces (associated to the classical
Chacon substitution) T1,1,1 and T3,1,2 are homeomorphic spaces but are not
topologically conjugate [CS03], whereas the spaces T3,1,2 and Ypd1,3 (or Ypd3,1)
are MLD, and this is the context we consider in our study. ♦

In the following, we show how to derive the 2-dimensional Chacon substi-
tution given in (5.6).

5.2.2. The 2-dimensional Chacon substitution. A natural way to
extend 1-dimensional tilings to two dimensions is by considering the direct
product A×A, where A is the set of prototiles or letters. In the case of the
(1-dimensional) classical Chacon substitution (5.7) on two letters A := {s, t},
we consider the alphabet {s, t} × {s, t}, with the following notations,

1 := s× s, 2 := s× t, 3 := t× s, 4 := t× t.

The induced substitution on the four new symbols is given by

1 7−→ ssts× ssts, 2 7−→ ssts× t, 3 7−→ t× ssts, 4 7−→ t× t.

We interpret ssts× ssts as a four-by-four array of letters, namely

s (s, s) (s, s) (t, s) (s, s)
t (s, t) (s, t) (t, t) (s, t)
s (s, s) (s, s) (t, s) (s, s)
s (s, s) (s, s) (t, s) (s, s)

s s t s

=

1 1 3 1
2 2 4 2
1 1 3 1
1 1 3 1

where we write (x, y) for x × y with x, y ∈ A. Similarly for the remaining
three, we get

t (s, t) (s, t) (t, t) (s, t)
s s t s

= 2 2 4 2

s (t, s)
t (t, t)
s (t, s)
s (t, s)

t

=

3
4
3
3

t (t, t)
t

= 4
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Writing the induced substitution in a more compact manner gives us the
following (2-dimensional) direct product substitution.

1 7−→


1 1 3 1
2 2 4 2
1 1 3 1
1 1 3 1

 , 2 7−→
[
2 2 4 2

]
, 3 7−→


3
4
3
3

 , 4 7−→
[
4
]
.

Meanwhile, a direct product variation (DPV) substitution may be obtained
by rearranging certain entries in the previous substitution to break up the direct
product structure in such a way that it still yields a consistent substitution
rule. This process should be done with care, as the rearranged version of the
substitution must still consistently tile the plane. A DPV of the previous
substitution is attained by simply permuting the centre square patch of the
four symbols appearing in the substitution of the first symbol and keeping the
rest the same to get

1 7−→


1 1 3 1
2 3 1 2
1 4 2 1
1 1 3 1

 , 2 7−→
[
2 2 4 2

]
, 3 7−→


3
4
3
3

 , 4 7−→
[
4
]
.

Note that this 2-dimensional Chacon DPV substitution tiles the plane consis-
tently. In particular, there exists a fixed point.

Interestingly, this Chacon DPV substitution has striking similarities with
the 2-dimensional Chacon cut-and-stack substitution derived separately and
differently in [PR91], which is shown in Figure 5.3 (A). The similarity becomes
apparent when each symbol in the DPV substitution is assigned a unit square
and coloured similarly as the tiles in the cut-and-stack substitution, see Figure
5.3 (B). Allowing for some degrees of freedom, the DPV substitution may be
obtained from the cut-and-stack substitution, and vice versa, through what is
called a replace-and-rescale method; also see [Fra08].

The substitution rules in Figure 5.3 are not primitive, analogous to the
classical Chacon substitution given in (5.7). Without the big square prototile
(or the symbol 1), the tiles cannot cover the plane, even after an infinite
application of the substitutions. But as in the classical case, the cut-and-stack
prototiles can be recoded through the following invertible local rules [Fra08],
which then induces a primitive substitution.
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1

1 1 1
1 1

1
1 1 1
2

2
23

3

3
4 2 2 2 24 3

3
3

3
4 4 4

(A)

(B)

Figure 5.3. (A) A 2-dimensional cut-and-stack substitution
[PR91], and (B) a DPV substitution [Fra08] of the classical
Chacon substitution.

The local rules applied above induces the following primitive substitution,
which is MLD to the cut-and-stack substitution.

Figure 5.4 shows a comparison between the level 2 supertiles of the pink
and yellow prototiles. Finally, a replace-and-scale method applied on the
induced primitive cut-and-stack substitution produces a substitution on five
congruent square prototiles, distinguished only by their colours, see Figure
5.5. This planar block substitution is the 2-dimensional Chacon substitution
provided in (5.6), which will be the focus of our study in the rest of the section.
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(A) (B)

Figure 5.4. The Chacon level 2 supertiles of the (A) pink,
and (B) yellow square prototiles.

1
3 1 4
1 5 1
1 1 2

2
5 1 4
2 5 1
2 1 2

3
3 1 4
1 5 1
3 3 5

4
5 1 4
2 5 1
4 3 5

5
5 1 4
2 5 1
5 3 5

Figure 5.5. The 2-dimensional Chacon (planar block) sub-
stitution with inflation factor 3.

Remark 5.11. Analogous to their 1-dimensional counterparts, the cut-and-
stack substitution (which is the 2-dimensional counterpart of the classical
Chacon substitution) induces a dynamical system that is weakly mixing under
the Z2-action [PR91], in contrast to the induced dynamical system of the
planar block substitution (which is the 2-dimensional counterpart of %C) that
cannot be weakly mixing under the Z2-action [Sol99, Fra08] as the planar
block subsitution has a pure point spectrum [LMS03, FS07]. Further, the
tiling spaces of the two substitutions are not topologically conjugate but are
homeomorphic spaces [CS06]. ♦

5.2.3. The cohomology of the Chacon tiling space and its factors.
Since the 2-dimensional Chacon substitution tiling space ΩC is defined through
a planar block substitution with inflation factor 3, the Chacon tiling space has
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the 2-dimensional solenoid S3 × S3 as a factor, onto which it projects 1-to-1
almost everywhere.

Similar to how we proceeded in the squiral case, we want to determine the
configuration of the different translation orbits in ΩC to help compute for the
quotient cohomologies. The level-n supertiles of the Chacon substitution have
the following block structure,

1 7−→
[
( 3

1 ) X

1 (12)

]
2 7−→

[
( 5

2 ) X

2 (12)

]
3 7−→

[
( 3

1 ) X

3 (35)

]

4 7−→
[
( 5

2 ) X

4 (35)

]
5 7−→

[
( 5

2 ) X

5 (35)

] (5.10)

where X is a square block of dimension 3n−1 that is the same for all supertiles.
The horizontal and vertical sequences (ab) and ( ba ) form the Chacon sequences
coming from the substitution %C = {a 7−→ aab, b 7−→ bab} with seeds |ab and
b
a . In particular, (12) is a Chacon sequence starting with 1, and similarly ( 5

3 )
is another Chacon sequence starting with 3, but this time in a vertical manner
going up, in contrast to the former, which is going to the right.

Arranging two supertiles such that the separating line between them passes
near the origin gives us four block arrangements, two with a horizontal and
two with a vertical separation line. Note that the separation lines form (1-
dimensional) Chacon sequences, where in this case, (ab) and ( ba ) are bi-infinite
Chacon sequences: X(12)

X

 ,
 X(35)
X

 , [
X ( 3

1 ) X
]
,
[
X ( 5

2 ) X
]
.

Projected to S3 × S3, the translation orbits of the horizontal pair project to
a single translation orbit of a 1-dimensional subsolenoid S3, and similarly
with the vertical pair. By arranging four supertiles of infinite order in such a
way that the common corner remains near the origin, gives us the following
configurations, where in particular, (wx) a (yz) means (wx) is a one-sided Chacon
fixed point of wx| and (yz) is a one-sided Chacon fixed point of |yz.

 X ( 3
1 ) X

(12) 1 (12)
X ( 3

1 ) X


 X ( 3

1 ) X

(35) 1 (12)
X ( 5

2 ) X


 X ( 5

2 ) X

(12) 2 (12)
X ( 5

2 ) X


 X ( 3

1 ) X

(35) 3 (35)
X ( 3

1 ) X


 X ( 5

2 ) X

(12) 4 (35)
X ( 3

1 ) X


 X ( 5

2 ) X

(12) 5 (35)
X ( 3

1 ) X


 X ( 5

2 ) X

(35) 5 (35)
X ( 5

2 ) X


(5.11)
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Each of these configurations represents one of the seeds of the fixed points of
the (2-dimensional) Chacon substitution. Analogous to the case of the maximal
model set factor Ωv,h,4, the hull of the Chacon substitution also consists of
a copy of the 2-dimensional solenoid S3 × S3, two copies of the subsolenoid
S3, and four extra fixed points above the origin of the solenoid. For this, we
denote the Chacon tiling space as ΩC := ΩV,H,4′ . The Chacon tiling space
ΩV,H,4′ is not equivalent to Ωv,h,4 though, as the cohomology of the former
reads

H2 ∼= Z[1
9 ]⊕ Z[1

3 ]2 ⊕ Z3, H1 ∼= Z[1
3 ]2 ⊕ Z, H0 ∼= Z,

which is different from that of the tiling space Ωv,h,4. Also, recall that the
cohomology of Ωv,h,4 contains torsion. However, the two tiling spaces share
the same dynamical zeta function

ζC(z) = (1− z)(1− 3z)2

(1− z)(1− z)3(1− 3z)2(1− 9z) = 1
(1− z)3(1− 9z) = ζv,h,4.

Employing the same technique as in the squiral case in searching for factor
maps, does not yield a lot of factor spaces. Defining factor maps from simply
identifying certain symbols (but maintaining consistency in the substitution)
only yields 6 factors between the Chacon tiling space ΩV,H,4′ and the solenoid
S3× S3. By identifying 1 = 2 and 3 = 5 (or 1 = 3 and 2 = 5), we are removing
a subsolenoid and an extra fixed point in the components of ΩV,H,4′ , and so
we get ΩV,3′ (or ΩH,3′). Further by identifying 1 = 2 = 3 = 5, we remove the
last subsolenoid together with two extra fixed points in the process to get Ω1′ .
On the other hand, starting from ΩV,H,4′ again, identifying 4 and 5 removes
a fixed point to get ΩV,H,3′ . From here, identifying 2, 4 and 5 (or 3, 4 and
5) further removes a subsolenoid, which consequently removes another fixed
point as well, and so gives us ΩH,2′ or ΩV,2′ . Finally, identifying all the letters
produces the solenoid S3 × S3. We summarise the hierarchy of the Chacon
factors in Figure 5.6. Their cohomologies are summarised in Table 5.2.

The general structure of the Chacon substitution in Figure 5.6 shares some
resemblance to that of the squiral tiling in Figure 5.2. In particular, ΩV,3′ ,
ΩV,2′ and Ω1′ have the same configuration as Ωv,3, Ωv,2 and Ω1 respectively.
However, it is clear that they are not necessarily equivalent spaces.

The spaces ΩV,3′ and Ωv,3 are not equivalent. To see this, let us compare
the structure of their translation orbits. For the former, we have the following
configuration of translation orbits:
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ΩV,H,4′

ΩV,H,3′
ΩV,3′ΩH,3′

ΩV,2′ΩH,2′

Ω1′

S3 × S3

BB
D

CC

BB

C CD

DD

Figure 5.6. The Chacon tiling space and its factors related
via factor maps of type either B, C or D. Any composition of
the factor maps is always a good match.

Name H2 H1 Identifications
V,H, 4′ Z[1

9 ]⊕ Z[1
3 ]2 ⊕ Z3 Z[1

3 ]2 ⊕ Z Chacon tiling
V,H, 3′ Z[1

9 ]⊕ Z[1
3 ]2 ⊕ Z2 Z[1

3 ]2 ⊕ Z 4 = 5

V, 3′ Z[1
9 ]⊕ Z[1

3 ]⊕ Z2 Z[1
3 ]2 1 = 2, 3 = 5

V, 2′ Z[1
9 ]⊕ Z[1

3 ]⊕ Z Z[1
3 ]2 1 = 2, 3 = 4 = 5

H, 3′ Z[1
9 ]⊕ Z[1

3 ]⊕ Z2 Z[1
3 ]2 1 = 3, 2 = 5

H, 2′ Z[1
9 ]⊕ Z[1

3 ]⊕ Z1 Z[1
3 ]2 1 = 3, 2 = 4 = 5

1′ Z[1
9 ]⊕ Z4 Z[1

3 ]2 1 = 2 = 3 = 5

S3 × S3 Z[1
9 ] Z[1

3 ]2 1 = 2 = 3 = 4 = 5
Table 5.2. The cohomology of the Chacon tiling and some
of its substitution factors. In all cases, H0 ∼= Z.

 X ( 3
1 ) X

(11) 1 (11)
X ( 3

1 ) X


 X ( 3

1 ) X

(33) 1 (11)
X ( 3

1 ) X


 X ( 3

1 ) X

(33) 3 (33)
X ( 3

1 ) X


 X ( 3

1 ) X

(11) 4 (33)
X ( 3

1 ) X


 X ( 3

1 ) X

(11) 3 (33)
X ( 3

1 ) X


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whereas the latter has the following configuration of translation orbits:X ET X

G a G

X GT X


X GT X

G c G

X ET X


X GT X

G d G

X ET X


X ET X

G e G

X ET X


X GT X

G g G

X GT X


Clearly, the space ΩV,3′ has the 1-dimensional Chacon substitution as a tiling
subspace, which is not locally derivable from any 1-dimensional tiling sub-
space of Ωv,3. (In particular, a 1-dimensional subsolenoid constitutes the
1-dimensional tiling subspace of Ωv,3). Analogously, the spaces ΩV,2′ and Ωv,2
cannot be equivalent for the same reason. In contrast, the spaces Ω1′ and Ω1
are equivalent.

Let us now classify the quotient cohomologies between factors of the
Chacon tiling space through the following lemmas, whose proofs are similar
to those in the previous section.

Lemma 5.12. The quotient cohomology between adjacent tiling spaces in
Figure 5.6 is given by the following, depending on the type of the factor map
between them.

B : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]⊕ Z,

C : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z,

D : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z.

�

Lemma 5.13. Any composition of factor maps in Figure 5.6 forms a good
match, i.e., BC = (B)(C), BD = (B)(D), CD = (C)(D) and DBC =
(D)(B)(C). Their respective quotient cohomologies are given as follows:

BC = (B)(C) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z2,

BD = (B)(D) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]⊕ Z2,

CD = (C)(D) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

3 ]⊕ Z2,

DBC = (D)(B)(C) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

3 ]2 ⊕ Z3.

�

5.2.4. Quotient zeta functions. Given a tiling space Ω consisting of
several components for which the fixed points can be counted separately, we
can write its dynamical zeta function ζΩ as the product of the partial zeta
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functions corresponding to its components [BGG13]. Such is the case for the
Chacon tiling space ΩV,H,4′ , along with its factors that we have enumerated.
(This is also the case for the maximal model set Ωv,h,4 and its factors.) Recall
that the hull ΩV,H,4′ has several components, namely a copy of S3 × S3, two
copies of the subsolenoid S3 and four extra fixed points. As such, its zeta
function reads

ζΩV,H,4′ = (1− 3z)2

(1− z)(1− 9z) ·
( 1− z

1− 3z

)2
·
( 1

1− z

)4
= ζS3×S3ζ

2
S3ζ

4
p

where ζp = 1
1−z is the zeta function of an extra fixed point and as usual, ζS3×S3

and ζS3 are the zeta functions of the solenoid S3 × S3 and subsolenoid S3.
A consequence of Theorem 3.18 together with the observation above

provides a very quick tool in getting the quotient zeta function between any
two factors of the Chacon tiling space. All we have to take note of is the
difference between the components of the two tiling spaces. For instance, to
get the quotient zeta function between ΩV,H,4′ and ΩV,2′ , we simply note that
the difference among their components is a copy of a subsolenoid and two
extra fixed points. Thus, we get the quotient zeta function

ζΩV,H,4′ ,ΩV,2′ = ζS3 · ζ2
p = 1− z

1− 3z ·
( 1

1− z

)2
= 1

(1− z)(1− 3z)

which is of course consistent with the quotient cohomology between the two
tiling spaces. The same can also be done with any two factors of Ωv,h,4

More so, the connection between the degeneracies and the tiling factors
becomes more apparent, through the notion of the quotient zeta function.
Recall the degeneracies we considered in Chapter 3.2 and let f : Ω −→ Ω′ be
a factor map associated to some degeneracy, if any. Then the effect of that
degeneracy on the components of the hull Ω corresponds to the components of
f(Ω) = Ω′. For instance in the Chacon case, we encounter degenerations B, C
and D associated with the factor maps B, C and D. As one may have already
noticed, the effect of degeneration B is the removal of a subsolenoid in the hull
together with an extra fixed point, while degeneration C removes a subsolenoid
and two more extra fixed points. Meanwhile, the effect of degeneration D
is simply the removal of an extra fixed point. In particular, the factor map
between ΩV,H,4′ and ΩV,2′ is a composition of maps corresponding to the
combination of degenerations B and D. Hence, the components of ΩV,2′ is
obtained by removing (which more precisely involves some identifications of)
one subsolenoid S3 and two extra fixed points from the hull ΩV,H,4′ . (This
effect is the same as degeneration C, which should not be surprising because it
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Degeneration Effects on the hull

A One subsolenoid is removed
B One subsolenoid and one fixed point are removed
C One subsolenoid and two fixed points are removed
D One fixed point is removed

F Three subsolenoids are removed
G Two subsolenoids and one fixed point are removed

Table 5.3. The effects of the degeneracies on the hull Ω
corresponding to its image under a factor map associated to
that degeneracy. The degenerations F and G appear in the
generalised chair tilings.

is possible to define a sliding block map¶ c : ΩV,H,4′ −→ ΩV,2′ that is associated
to degeneration C.)

In the squiral case, we encounter a similar effect with degeneration A
(associated to the factor maps a or a′) by removing a subsolenoid in the
component of the hull, in addition to degeneration D (associated to the factor
maps b or b′) as in the Chacon case.

As we highlight at the end of the next section, the effects of the degeneracies
(e.g., A, B, C and D) on the hull is the same for any tiling space (of a constant
length planar substitution) that admits such degeneracies. For quick reference,
we summarise the effects of the degeneracies in Table 5.3.

5.3. The generalised chair tilings

The hull of the classic chair tiling (illustrated in Figure 2.1) belongs to a
family of substitution tiling spaces called the generalised chair tilings, which
Barge and Sadun introduced and analysed in [BS11]. Using decorated square
tiles as prototiles, the most intricate of them defines the tiling space ΩX,+
through the substitution rule

¶We do not explore such sliding block maps in this study though, as there are too many,
around half a million such factor maps.
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w

y

↖
z
x

w

y

↖
1

1 0
y

↙
0
x

1
1
↖
z
xw

0
↗
z

0

w

y

↙
z
x

w

y

↘
0

0 1
y

↙
1
x

0
0
↖
z
xw

1
↙
z

1

w

y

↗
z
x

w

y

↘
0

0 1
y

↗
1
x

0
0
↖
z
xw

1
↗
z

1

w

y

↘
z
x

w

y

↘
1

1 0
y

↙
0
x

1
1
↘
z
xw

0
↗
z

0

(5.12)

where w, x, y, z ∈ {0, 1} and with the two labels adjacent to the head of an
arrow being the same. Note that the substitution above acts on 32 prototiles.
The following 2× 2 legal patches are seeds to the eight fixed points of (5.12)
representing the different translation orbits in the tiling space ΩX,+ [BS11].

1
1
↘
0

0 1
1
↗
1

1

0
0
↖
1

11
1
↗
1

1

1
1
↖
1

1 0
1
↙
0

1

1
1
↖
1

11
0
↗
1

0

1
1
↘
0

0 1
1
↙
1

1

0
0
↖
1

11
1
↙
1

1

1
1
↘
1

1 0
1
↙
0

1

1
1
↘
1

11
0
↗
1

0

1
1
↖
1

0 1
1
↗
1

1

1
0
↘
1

11
0
↙
1

0

1
1
↖
1

1 0
1
↗
1

1

0
0
↘
1

11
0
↙
1

1

1
1
↖
0

1 0
1
↗
0

1

0
1
↘
1

11
1
↙
1

1

1
1
↖
0

0 1
1
↗
0

1

1
1
↘
1

11
1
↙
1

0

(5.13)

Factors of ΩX,+ can be defined by removing and/or identifying certain
decorations on the square tiles to which the general substitution rule (5.12)
applies. Tiling spaces Ωa,b, with a ∈ {X, /, 0} and b ∈ {+,−, 0}, are defined
through the identification rules given in Table 5.4. In particular, ΩX,0 is the
chair tiling space (i.e., the substitution rule in (5.12) becomes %x in Example
1.27 after the identifications) and Ω0,0 is the 2-dimensional dyadic solenoid
S2 × S2 (obtained as the inverse limit of the block substitution {s 7−→ s s

s s }).
This scheme yields nine (tiling) spaces, whose cohomologies are summarised
in Proposition 5.17. The nine spaces are related as follows.
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Index Description

a X The four arrows on the square tiles remain.
/ Only the arrows pointing northeast or southwest remain, i.e.,

arrowheads pointing to other directions are identified.
0 All arrows are identified/removed.

b + All four labels remain.
− Only the labels to the left or to the right remain, i.e., the

top and bottom labels are identified.
0 All labels are identified/removed.

Table 5.4. Identification rules on derividing some factors of
the generalised chair tiling.

ΩX,+
A−−−−→ Ω/,+

A−−−−→ Ω0,+yB yB yB
ΩX,−

A−−−−→ Ω/,−
A−−−−→ Ω0,−yA yA yC

ΩX,0
A−−−−→ Ω/,0

C−−−−→ Ω0,0

(5.14)

Barge and Sadun beautifully computed the quotient cohomology between
adjacent tiling spaces appearing in (5.14), using a framework (see Proposition
3.11) discussed in [BS11]. The quotient cohomologies, depending on the type
of factor maps (i.e., degeneracies), are given by:

A : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

2 ],

B : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

2 ]⊕ Z,

C : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

2 ]⊕ Z.

(5.15)

Tracing a path in (5.14) pertains to a factor map from one tiling space
(starting point) to another tiling space (ending point). As such, paths having
identical starting and ending points pertain to equivalent (composition of)
factor maps. In this sense, we say that the diagram commutes. We generalise
the results in (5.15) by giving the quotient cohomology between tiling spaces
in (5.14), depending on the factor map between them as obtained by tracing
an arbitrary path. We formalise this as the following lemma, whose calculation
is similar to the ones in the previous sections.
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Lemma 5.14. The quotient cohomologies between adjacent tiling spaces in
(5.14) are given in (5.15); for the remaining pairs of tiling spaces, we have the
following decomposition into good matches.

AA = (A)(A) : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

2 ]2,

AB = (A)(B) : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

2 ]2 ⊕ Z,

AAB = (A)(A)(B) : H0
Q
∼= 0, H1

Q
∼= Z3, H2

Q
∼= Z[1

2 ]3 ⊕ Z,

BC = (B)(C) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

2 ]2 ⊕ Z2,

AC = (AC) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z3 ⊕ Z[1

2 ]2,

AAC = (A)(AC) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z3 ⊕ Z[1

2 ]3,

BAC = (B)(AC) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z3 ⊕ Z[1

2 ]3 ⊕ Z,

ABAC = (A)(B)(AC) : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z3 ⊕ Z[1

2 ]4 ⊕ Z.

�

Note that the quotient cohomology depends only on the type of path, and not
necessarily on particular tiling spaces. Also, the quotient cohomology groups
sum up whenever factor maps are composed. The only exception is when
composing A and C which produces the torsion component Z3. For the rest
of the compositions, the operation is associative and commutative.

Remark 5.15 (Two more factors). The substitution in (5.12), which produces
the tiling space ΩX,+, acts on 32 prototiles. Identifying certain prototiles in a
consistent and compatible manner, analogous to identifying certain symbols
in the squiral and Chacon cases, produces some factors of ΩX,+, including all
the factors in (5.14). Interestingly, under this scheme, we find two more tiling
spaces that the identification rules in Table 5.4 do not cover, and so are not
accounted for in (5.14). Denoting the two (extra) tiling spaces by Ω′c and Ω′′c ,
we get the following sequences of factor maps.

ΩX,−
f−−→ Ω′c

D−−→ Ω′′c
D−−→ Ω0,0 = S2 × S2

ΩX,−
A−−→ Ω/,−

g−−→ Ω′′c
D−−→ S2 × S2
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Incorporating the two extra tiling spaces in (5.14) gives us the following
diagram.

ΩX,+ Ω/,+ Ω0,+

ΩX,− Ω/,− Ω0,−

ΩX,0 Ω/,0 Ω0,0

Ω′c

Ω′′c

A A

B B B

A A

A

A

C

A C

f

D

D

g

(5.16)

The 16 prototiles of ΩX,− are enumerated in the following,

0
↙
0

1
↙
0

0
↙
1

1
↙
1

0
↗
0

1
↗
0

0
↗
1

1
↗
1

0
↖
0

0
↖
1

1
↖
0

1
↖
1

0
↘
0

1
↘
0

0
↘
1

1
↘
1

where prototiles that belong in the same row are identified. This identification
yields four new prototiles to which the general substitution (5.12) yields the
tiling space Ω′c.

Identifying further the last two rows of prototiles enumerated above yields
the tiling space Ω′′c , which has three prototiles. The cohomologies of Ω′c and
Ω′′c read

H0(Ω′c) ∼= Z, H1(Ω′c) ∼= Z[1
2 ]2, and H2(Ω′c) ∼= Z[1

4 ]⊕ Z2;

H0(Ω′′c ) ∼= Z, H1(Ω′′c ) ∼= Z[1
2 ]2, and H2(Ω′′c ) ∼= Z[1

4 ]⊕ Z.

We list the quotient cohomologies associated to f and g together with their
compositions in the following lemma. ♦

Lemma 5.16. The quotient cohomologies between the tiling spaces in (5.16)
involving the factor maps f or g are given as follows, where the composition of
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factor maps are also decomposed into good matches. Note that fD = (fD) =
(A)(g) = Ag and fD2 = (fD2) = (A)(gD) = AgD.

D : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z,

D2 = (D)2 : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z2,

f : H0
Q
∼= 0, H1

Q
∼= Z3, H2

Q
∼= Z[1

2 ]3,

fD = (fD) : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

2 ]3,

fD2 = (fD2) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

2 ]3 ⊕ Z3,

g : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

2 ]2,

gD = (gD) : H0
Q
∼= 0, H1

Q
∼= 0, H2

Q
∼= Z[1

2 ]2 ⊕ Z3,

Ag = (A)(g) : H0
Q
∼= 0, H1

Q
∼= Z2, H2

Q
∼= Z[1

2 ]3,

AgD = (A)(gD) : H0
Q
∼= 0, H1

Q
∼= Z, H2

Q
∼= Z[1

2 ]3 ⊕ Z3.

�

The following propositions already appear in [BS11] as Theorems 6 and 7,
although with some errors. The absolute and quotient cohomologies have been
recalculated and the corrected results appear below. The particular corrections
are boxed for easier identification. Proposition 5.18 may also be read off of
Lemma 5.14.

Proposition 5.17 (cf. [BS11, Theorem 6]). The absolute cohomologies of
the nine tiling spaces in (5.14) are given as follows. All spaces have H0 ∼= Z.
The first cohomology is given by

Z[1
2 ]2 ⊕ Z2 A∗←−−−− Z[1

2 ]2 ⊕ Z A∗←−−−− Z[1
2 ]2 ⊕ ZxB∗ xB∗ xB∗

Z[1
2 ]2 ⊕ Z A∗←−−−− Z[1

2 ]2 A∗←−−−− Z[1
2 ]2xA∗ xA∗ xC∗

Z[1
2 ]2 A∗←−−−− Z[1

2 ]2 C∗←−−−− Z[1
2 ]2

The second cohomology is given by
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1
3Z[1

4 ]⊕ Z[1
2 ]4 ⊕ Z A∗←−−−− 1

3Z[1
4 ]⊕ Z[1

2 ]3 ⊕ Z A∗←−−−− Z[1
4 ]⊕ Z[1

2 ]2 ⊕ Z2xB∗ xB∗ xB∗
1
3Z[1

4 ]⊕ Z[1
2 ]3 A∗←−−−− 1

3Z[1
4 ]⊕ Z[1

2 ]2 A∗←−−−−
Z[1

4 ]⊕ Z[1
2 ]

⊕ZxA∗ xA∗ xC∗
1
3Z[1

4 ]⊕ Z[1
2 ]2 A∗←−−−− Z[1

4 ]⊕ Z[1
2 ]⊕ Z C∗←−−−− Z[1

4 ]
�

Proposition 5.18 (cf. [BS11, Theorem 7]). The quotient cohomologies of
the nine tiling spaces in (5.14), relative to the solenoid Ω0,0, are given as
follows. For all spaces, H0

Q
∼= 0. The first quotient cohomology is given by

Z2 A∗←−−−− Z A∗←−−−− ZxB∗ xB∗ xB∗
Z A∗←−−−− 0 A∗←−−−− 0xA∗ xA∗ xC∗
0 A∗←−−−− 0 C∗←−−−− 0

The second quotient cohomology is given by

Z3 ⊕ Z[1
2 ]4 ⊕ Z A∗←−−−− Z3 ⊕ Z[1

2 ]3 ⊕ Z A∗←−−−− Z[1
2 ]2 ⊕ Z2xB∗ xB∗ xB∗

Z3 ⊕ Z[1
2 ]3 A∗←−−−− Z3 ⊕ Z[1

2 ]2 A∗←−−−− Z[1
2 ]⊕ ZxA∗ xA∗ xC∗

Z3 ⊕ Z[1
2 ]2 A∗←−−−− Z[1

2 ]⊕ Z C∗←−−−− 0
�

5.3.1. Translation orbits and the components of the hull. The
zeta function of the tiling space ΩX,+ is computed as

ζΩX,+ = 1
(1− 2z)2(1− 4z) = (1− 2z)2

(1− z)(1− 4z) ·
( 1− z

1− 2z

)4
·
( 1

1− z

)3

= ζS2×S2 · ζ4
S2 · ζ

3
p ,

where ζS2×S2 , ζS2 and ζp denote the zeta function of the 2-dimensional dyadic
solenoid S2×S2, the dyadic subsolenoid S2 and an extra fixed point, respectively.
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The factorisation of ζΩX,+ is not surprising because by employing the same
analysis as in the squiral and Chacon cases, we see that the translation orbits
represented in (5.13) yield a hull with precisely a copy of S2 × S2 onto which
everything projects 1-to-1 almost everywhere, four copies of the subsolenoid
S2 (along the vertical, horizontal and the two diagonals) and three extra fixed
points.

The 11 models in (5.16) all project to the solenoid S2 × S2 1-to-1 almost
everywhere. Taking into account the extra components in their hull, we may
write ΩX,+ as Ω4,3, denoting that aside from a copy of S2 × S2, it also has
four copies of the subsolenoid S2 and three extra fixed points. This notation
is uniform with the notation we used for the squiral and Chacon tiling spaces.
In general, writing Ωα,β for a factor of ΩX,+ = Ω4,3, which has α copies of the
subsolenoid S2 and β extra fixed points, allows us to rewrite the diagram in
(5.16) as follows:

Ω4,3 Ω3,3 Ω2,3

Ω3,2 Ω2,2 Ω1,2

Ω2,2 Ω1,2 Ω0,0

Ω0,2

Ω0,1

A A

B B B

A A

A

A

C

A C

f

D

D

g

(5.17)

This way, the effect of the degeneracies on the respective tiling spaces becomes
very visible by just inspecting the notation of Ωα,β . Also, note that the factor
maps f and g are associated to the degenerations F and G, and as usual, the
factor maps A, B, C and D are associated to the degenerations A, B, C and
D. The effects of such degeneracies on the hull are enumerated in Table 5.3.

Let us also emphasise, that considering this notation, the quotient zeta
function becomes very easy to compute, as it would only involve powers of
the factors ζS2 and ζp. For instance, the quotient zeta function between Ω3,3
and Ω0,1 is simply ζΩ3,3,Ω0,1 = ζ3

S2
ζ2
p as the their components differ by three

copies of the subsolenoid S3 and two extra fixed points.



Outlook

In general, a trivial quotient cohomology does not imply equivalence, as in
the case between the tiling space of the substitution %G = {a −→ aba, b −→
baa} and the 3-adic solenoid S3 in Example 3.19. However, the inequivalence
of the two spaces only becomes apparent after noting that the solenoid is not
a tiling space, in particular, it is periodic in contrast to the tiling space of %G,
which is non-periodic. The question whether a trivial quotient cohomology
between tiling spaces, under certain conditions, can imply equivalence remains
unsolved. A consequence to this question could easily determine whether the
maximal model set factor Ωv,h,4 (of the squiral tiling space) is equivalent to the
tiling spaces X, Y and Z in Remark 5.8. Recall that the quotient cohomology
is trivial among these spaces. We are inclined to believe that these spaces are
equivalent spaces, but do not have a valid proof or argument ready yet.

We have seen that the squiral tiling and the Chacon tiling share interesting
topological properties. In particular, the tiling space Ωv,h,4 and the Chacon
tiling space ΩV,H,4′ have identical set of translation orbits, and as a consequence
share the same dynamical zeta function, albeit being inequivalent tiling spaces,
evident from their different cohomologies. Nonetheless, they might share several
common tiling factors. The search for such factors may be done by introducing
larger sliding block maps on the letters of the substitutions in (5.3) and (5.6).
This would result into a richer breakdown of the tiling spaces Ωv,h,4 and ΩV,H,4′ ,
i.e., the diagrams in Figures 5.2 and 5.6 would contain more factors, such as
Ωv,h,2 or ΩV,1′ for instance. The number of such factors is too great and would
be a computational nightmare, but would certainly give more description on
the said tiling spaces.

A natural next step is to go one dimension higher. A good candidate
to begin with is the 3-dimensional chair substitution shown in Figure B.
Further, the 3-dimensional generalised chair substitution may be obtained
analogous to the (2-dimensional) generalised chair substitution in (5.12). Once
the factors of the 3-dimensional tiling space are enumerated, the quotient
cohomology between them can then be computed. Of particular interest would
be the degeneracies in this case, which should be related to the 2-dimensional
generalised chair tilings we have already considered.
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Figure B. The 3-dimensional chair substitution, where in
each iteration, the volume of the cube is multipied by 23 = 8.
The inflated cube comprises 8 smaller cubes, as shown.

Finally, we are intrigued by the quotient zeta function, and its possible role
in studying more general dynamical systems, beyond the realm of substitution
systems. Of course, this generating function counts the difference between the
fixed points between a dynamical system and its factor, but beyond this is
still unexplored.
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