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Abstract

Preclinical research in the field of central nervous system trauma advances at a fast pace, currently
yielding over 8,000 new publications per year, at an exponentially growing rate. This amount of
published information by far exceeds the capacity of individual scientists to read and understand the
relevant literature. So far, no clinical trial has led to therapeutic approaches which achieve functional
recovery in human patients.

In this paper, we describe a first prototype of an ontology-based information extraction system that
automatically extracts relevant preclinical knowledge about spinal cord injury treatments from nat-
ural language text by recognizing participating entity classes and linking them to each other. The
evaluation on an independent test corpus of manually annotated full text articles shows a macro-
average F1 measure of 0.74 with precision 0.68 and recall 0.81 on the task of identifying entities
participating in relations.

1 Introduction

Injury to the central nervous system of adult mammals typically results in lasting deficits, like permanent
motor and sensor impairments, due to a lack of profound neural regeneration. Specifically, patients who have
sustained spinal cord injuries (SCI) usually remain partially paralyzed for the rest of their lives. Preclinical
research in the field of central nervous system trauma advances at fast pace, currently yielding over 8,000
new publications per year, at an exponentially growing rate, with a total amount of approximately 160,000
PubMed-listed papers today.2

However, translational neuroscience faces a strong disproportion between the immense preclinical re-
search effort and the lack of successful clinical trials in SCI therapy: So far, no therapeutic approach has
led to functional recovery in human patients (Filli and Schwab, 2012). As the vast amount of published in-
formation by far exceeds the capacity of individual scientists to read and understand the relevant knowledge
(Lok, 2010), the selection of promising therapeutic interventions for clinical trials is notoriously based on
incomplete information (Prinz et al., 2011; Steward et al., 2012).

Thus, automatic information extraction methods are needed to gather structured, actionable knowledge
from large amounts of unstructured text that describe outcomes of preclinical experiments in the SCI do-
main. Being stored in a database, such knowledge provides a highly valuable resource enabling curators
and researchers to objectively assess the prospective success of experimental therapies in humans, and sup-
ports the cost-effective execution of meta studies based on all previously published data. First steps towards
such a database have already been undertaken by manually extracting the desired information from a limited
number of papers (Brazda et al., 2013), which is not feasible on a large scale, though.

In this paper, we present a first prototype of an automated ontology-based information extraction system
for the acquisition of structured knowledge about experimental SCI therapies. As main contributions, we
point out the highly relational problem structure by describing the entity classes and relations relevant for

1 The first four authors contributed equally.
2As in this query to the database PubMed (link to http://www.ncbi.nlm.nih.gov/pubmed), as of April 2014.

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=(%22spinal%20cord%20injuries%22%5bMeSH%20Terms%5d%20OR%20(%22spinal%22%5bAll%20Fields%5d%20AND%20%22cord%22%5bAll%20Fields%5d%20AND%20%22injuries%22%5bAll%20Fields%5d)%20OR%20%22spinal%20cord%20injuries%22%5bAll%20Fields%5d%20OR%20(%22spinal%22%5bAll%20Fields%5d%20AND%20%22cord%22%5bAll%20Fields%5d%20AND%20%22injury%22%5bAll%20Fields%5d)%20OR%20%22spinal%20cord%20injury%22%5bAll%20Fields%5d)%20OR%20((%22brain%22%5bMeSH%20Terms%5d%20OR%20%22brain%22%5bAll%20Fields%5d)%20AND%20(%22wound%20healing%22%5bMeSH%20Terms%5d%20OR%20(%22wound%22%5bAll%20Fields%5d%20AND%20%22healing%22%5bAll%20Fields%5d)%20OR%20%22wound%20healing%22%5bAll%20Fields%5d%20OR%20%22repair%22%5bAll%20Fields%5d))%20OR%20(%22spinal%20cord%20regeneration%22%5bMeSH%20Terms%5d%20OR%20(%22spinal%22%5bAll%20Fields%5d%20AND%20%22cord%22%5bAll%20Fields%5d%20AND%20%22regeneration%22%5bAll%20Fields%5d)%20OR%20%22spinal%20cord%20regeneration%22%5bAll%20Fields%5d%20OR%20(%22spinal%22%5bAll%20Fields%5d%20AND%20%22cord%22%5bAll%20Fields%5d%20AND%20%22repair%22%5bAll%20Fields%5d)%20OR%20%22spinal%20cord%20repair%22%5bAll%20Fields%5d)%20OR%20(%22brain%20injuries%22%5bMeSH%20Terms%5d%20OR%20(%22brain%22%5bAll%20Fields%5d%20AND%20%22injuries%22%5bAll%20Fields%5d)%20OR%20%22brain%20injuries%22%5bAll%20Fields%5d%20OR%20(%22brain%22%5bAll%20Fields%5d%20AND%20%22injury%22%5bAll%20Fields%5d)%20OR%20%22brain%20injury%22%5bAll%20Fields%5d
http://www.ncbi.nlm.nih.gov/pubmed
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Figure 1: Workflow of our implementation, from the input PDF document to the generation of the output
relations. Named entity recognition is described in Section 3.1, relation extraction in Section 3.2.

knowledge representation in the domain, and provide a cascaded workflow that is capable of extracting these
relational structures from unstructured text with an average F1 measure of 0.74.

2 Related Work

Our workflow for acquiring structured information in the domain of spinal cord injury treatments is an
example of ontology-based information extraction systems (Wimalasuriya and Dou, 2010): Large amounts
of unstructured natural language text are processed through a mechanism guided by an ontology, in order to
extract predefined types of information. Our long-term goal is to represent all relevant information on SCI
treatments in structured form, similar to other automatically populated databases in the biomedical domain,
such as STRING-DB for protein-protein interactions (Franceschini et al., 2013), among others.

A strong focus in biomedical information extraction has long been on named entity recognition, for which
machine-learning solutions such as conditional random fields (Lafferty et al., 2001) or dictionary-based
systems (Schuemie et al., 2007; Hanisch et al., 2005; Hakenberg et al., 2011) are available which tackle
the respective problem with decent performance and for specific entity classes such as organisms (Pafilis
et al., 2013) or symptoms (Savova et al., 2010; Jimeno et al., 2008). A detailed overview on named entity
recognition, covering other domains as well, can be found in Nadeau and Sekine (2007).

The use case described in this paper, however, involves a highly relational problem structure in the sense
that individual facts or relations have to be aggregated in order to yield accurate, holistic domain knowledge,
which corresponds most closely to the problem structure encountered in event extraction, as triggered by
the ACE program (Doddington et al., 2004; Ji and Grishman, 2008; Strassel et al., 2008), and the BioNLP
shared task series (Nedellec et al., 2013; Tsujii et al., 2011; Tsujii, 2009). General semantic search engines
in the biomedical domain mainly focus on isolated entities. Relations are typically only taken into account
by co-occurrence on abstract or sentence level. Examples for such search engines include GoPubMed (Doms
and Schroeder, 2005), SCAIView (Hofmann-Apitius et al., 2008), and GeneView (Thomas et al., 2012).

With respect to the extraction methodology, our work is similar to Saggion et al. (2007) and Buitelaar et
al. (2008), in that a combination of gazetteers and extraction rules is derived from the underlying ontology,
in order to adapt the workflow to the domain of interest. A schema in terms of a reporting standard has
recently been proposed by the MIASCI-consortium (Lemmon et al., 2014, Minimum Information About a
Spinal Cord Injury Experiment). To the best of our knowledge, our work is the first attempt at automated
information extraction in the SCI domain.

3 Method and Architecture

An illustration of the proposed workflow is shown in Figure 1. Based on the unstructured information
management architecture (UIMA, Ferrucci and Lally (2004)), full text PDF documents serve as input to the
workflow. Plain text and structural information are extracted from these documents using Apache PDFBox3.

The proposed system extracts relations which we define as templates that contain slots, each of which is
to be filled by an instance of a particular entity class (cf. Table 1). At the same time, a particular instance
can be a filler for different slots (cf. Figure 2). We argue that a relational approach is essential to information
extraction in the SCI domain as (i) many instances of entity classes found in the text do not convey relevant

3Apache PDFBox – A Java PDF Library http://pdfbox.apache.org/

http://pdfbox.apache.org/


Relation Entity Class Example Method Resource Count

Integer “42”, “2k”, “1,000” R Regular Expressions
Float “4.23”, “8.12 · 10-8” R Regular Expressions
Roman Number “XII”, “MCLXII” R Regular Expressions
Word Number “seventy-six" O Word Number List 99
Range “2-4” R QTY + PARTICLE + QTY
Language Quantifier “many”, “all” O Quantifier List 11
Time “2 h”, “14 weeks” R QTY + TIME UNIT
Duration “for 2h” R PARTICLE + TIME

Animal

Organism “dog”, “rat”, “mice” O NCBI Taxonomy 67657
Laboratory Animal “Long-Evans rats” O Special Laboratory Animals 5
Sex “male”, “female” O Gender List 2
Exact Age “14 weeks old” R TIME + AGE PARTICLE
Age “adult”, “juvenile” O Age Expressions 2
Weight “200 g” R QTY + WEIGHT UNIT
Number “44”, “seventy-six” R QTY

Injury

Injury Type “compression” O Injury Type List 7
Injury Device “NYU Impactor” O Injury Device List 21
Vertebral Position “T4”, “T8-9” R Regular Expressions
Injury Height “cervical”, “thoracic” O Injury Height Expressions 4

Treatment
Drug “EPO”, “inosine” O MeSH 14000
Delivery “subcutaneous”, “i.v.” O Delivery Dictionary 34
Dosage “14 ml/kg” R QTY + UNIT

Result
Investigation Method “walking analysis” O Method List 117
Significance “significant” O Significance Quantifiers 2
Trend “decreased”, “improved” O Trend Dictionary 4
p Value “p < 0.05” R P + QTY 4

Table 1: A detailed list of relations and the entity classes whose instances are valid slot fillers for them.
Examples for instances of each entity class are also shown, as well as the extraction method, and resources
used for extraction. Instances are either extracted from the text using regular expressions (R) or on a
lookup in our ontology database (O). Resources in italics were specifically created for this application,
resources in SMALL CAPITALS are regular expression-based recombinations of other entities. Entity
classes in bold face are required arguments for relation extraction (cf. Section 3.2). The count specifies
the number of elements in the respective resource.

information on their own, but only in combination with other instances (e. g., surgical devices mentioned in
the text are only relevant if used to inflict a spincal cord injury to the animals in an experimental group), and
(ii) a holistic picture of a preclinical experiment can only be captured by aggregating several relations (e. g.,
a certain p value being mentioned in the text implies a particular treatment of one group of animals to be
significantly different from another treatment of a control group).

We take four relations (Animal, Injury, Treatment and Result) into account which capture the semantic
essence of a preclinical experiment: Laboratory animals are injured, then treated and the effect of the treat-
ment is measured. Table 1 provides an overview of all entity classes and relations. The workflow consists
of two steps: Firstly, rule- and ontology-based named entity recognition (NER) is performed (cf. Section
3.1). Secondly, the pool of entities recognized during NER serves as a basis for relation extraction (cf.
Section 3.2).

3.1 Ontology-based Named Entity Recognition
We store ontological information in a relational database as a set of directed graphs, accompanied by a
dictionary for efficient token lookup. Each entity is stored with possible linguistic surface forms (e. g.,
“Wistar rats” as a surface form of the Wistar rat entity from the class Laboratory Animal). Each surface
form s is tokenized (on white space and non-alphanumeric symbols, including transformation to lowercase,
e. g., leading to tokens “wistar” and “rats”) and normalized (stemming, removal of special characters and
stop words) resulting in a set of dictionary keys (e. g., “wistar” and “rat”). The resources used as content
for the ontology are shown in Table 1. We use specifically crafted resources for our use case4 as well as the

4Resources built specifically are made publicly available at http://opensource.cit-ec.de/projects/scie

http://opensource.cit-ec.de/projects/scie


Five adult male guinea pigs weighing 200-250 g.

Animal Animal

Organism: guinea pigs

Weight: 200-250 g

Age: adult

Sex: male

Number: Five (5)

Organism: guinea pigs

Weight: -

Age: adult

Sex: male

Number: 200

Figure 2: Two example instances of the
Animal relation that can be generated
from the same text. Given its entity
class, the number 200 is a valid filler for
the ‘number’ slot as well as the ‘weight’
slot. Both candidates are generated and
ranked according to their probability (cf.
Equation 4). The manually defined con-
straints of psem ensure that 200 cannot
fill both slots at the same time.

NCBI taxonomy5 and the Medical Subject Headings6 (MeSH). The process of ontology-based NER consists
of (i) token lookup in the dictionary, (ii) candidate generation, (iii) probabilistic candidate filtering and (iv)
ontological reduction (cf. Figure 1).
Token lookup. For each token t in the document, the corresponding surface form tokens st are retrieved
from the database. A confidence value pconf based on the Damerau-Levenshtein-Distance without swaps
(dld, Damerau (1964)) is calculated as

pconf(t, st) := max

{
0, 1−min

t′∈st

dld(t′, t)

|t′|

}
, (1)

where |t| denotes the number of characters in token t. Assuming to find t = “rat” in the text with the
according surface form st = (“wistar”, “rats”), pconf(t, st) = 1 − 1

4
= 0.75. Tokens with pconf < 0.5 are

discarded.
Candidate generation. A candidate h for matching the surface form tokens sh is a list of tokens (th1 , . . . , t

h
n)

from the text. Candidates are constructed using all possible combinations of matching tokens for each surface
form token (as retrieved above). To keep this tractable, we restrict the search space to combinations with the
proximity d(thk , t

h
` ) ≤ 9 for all thk , t

h
` ∈ h, where d(u, v) := NW (u, v) + 3 · NS(u, v) + 10 · NP (u, v)

models the distance between two tokens u and v in the text withNW , NS, NP denoting the number of words,
sentences and paragraphs between u and v. In our example, a candidate would be h = (“rat”).
Candidate filtering. For a candidate h and the surface form tokens sh it refers to, we calculate a total
match probability, taking into account the distance d(u, v) of all tokens in the candidate, the confidence
pconf(t

′, sh) that the token actually belongs to the surface form, and the ratio
∑

t′∈h |t′|/
∑

t∈sh
|t| of the

surface form tokens covered by the candidate:

pmatch(h, sh) =
1∑

t∈sh
|t|

max
t∈h

∑
t′∈h

(
p3dist(t, t

′) · pconf(t′, sh) · |t′|
)
, (2)

where pσdist(u, v) := exp

(
−d(u, v)

2

2σ2

)
(3)

models the confidence that two tokens u and v belong together given their distance in the text. In our example
of the candidate h = (“rat”) with the surface form tokens sh = (“wistar”, “rats”) is pmatch(h, sh) =
1 · 0.75 · 3

6+4
= 0.225. Candidates with pmatch < 0.7 are discarded. The resulting set of all recognized

candidates is denoted with H .
Ontological reduction. As the algorithm ignores the hierarchical information provided by the ontologies,
we may obtain overlapping matches for ontologically related entities. Therefore, in case of overlapping
entities that are related in an “is a” relationship in the ontology, only the more specific one is kept. Assume
for instance the candidates “Rattus norvegicus” and “Rattus norvegicus albus”, where the latter is more
specific and therefore accepted.

3.2 Relation Extraction
We frame relation extraction as a template filling task such that each slot provided by a relation has to be
assigned a filler of the correct entity class. Entity classes for the four relations of interest are shown in

5Sayers et al. (2012), database limited to vertebrates: http://www.ncbi.nlm.nih.gov/taxonomy/?term=
txid7742[ORGN

6Lipscomb (2000), excerpt of drugs from Descriptor and Supplemental: https://www.nlm.nih.gov/mesh/

http://www.ncbi.nlm.nih.gov/taxonomy/?term=txid7742[ORGN
http://www.ncbi.nlm.nih.gov/taxonomy/?term=txid7742[ORGN
https://www.nlm.nih.gov/mesh/


Table 1, where required slots are in bold face, whereas all other slots are optional.
The slot filling process is based on testing all combinations of appropriate entities taking into account

their proximity and additional constraints. In more detail, we define the set of all recognized relationsRθ of
a type θ as

Rθ =

rθ ∈ P(H)

∣∣∣∣∣∣ psem(r
θ)

nθ
·
∑

h∈rθ,h6=g(rθ)

pmatch(h, s
h) min

t∈h,t′∈g(rθ)
pσθdist(t, t

′) > 0.2

 (4)

where P(H) denotes the power set over all candidates H recognized by NER. g(rθ) returns the filler for
the required slot of rθ, pmatch and pdist are defined as in Section 3.1 and psem implements manually defined
constraints on rθ: A wrongly typed filler h for one slot of rθ leads to psem(r

θ) = 0, as does a negative number
in the Number slot of the Animal relation. Animal Numbers larger than 100 or Animal Weights smaller than
1 g or larger than 1 t are punished. All other cases lead to psem(r

θ) = 1. Note that pmatch(h, s
h) = 1 for

candidates h retrieved by rule-based entity recognition. Further, we set σAnimal = σTreatment = 6, σInjury = 10
and σResult = 15.

4 Experiments

4.1 Data Set

Overall 1186

Organism 58
Weight 32

Sex 33
Age 17

Injury Height 35
Injury Type 62

Injury Device 23
Drug 134

Dosage 106
Delivery 70

Investigation Method 129
Trend 219

Significance 137
p Value 131

Table 2: The number of anno-
tations in our evaluation set for
each entity class.

The workflow is evaluated against an independent, manually annotated
corpus of 32 complete papers which contain 1186 separate annotations
of entities, produced by domain experts7. Information about relations
is not provided in the corpus. Only entities which participate in the
description of the preclinical experiment are marked. The frequencies
of annotations among the different classes are shown in Table 2.

4.2 Experimental Settings
We evaluate the system with regard to two different tasks: extraction (“Is
the approach able to extract relevant information from the text, without
regard to the exact location of the information?”) and annotation (“Is the
system able to annotate relevant information at the correct location as in-
dicated by medical experts?”). Furthermore, we distinguish between an
all instances setting, where we consider all instances independently, and
a fillers only setting, where only those annotations in the system output
are considered, that are fillers in a relation (i.e. the fillers only-setting
evaluates a subset of the all instances-setting). The relation extraction
procedure is not evaluated separately. For each setting, we report preci-
sion, recall, and F1 measure.

Taking the architecture into account, we have the following hypotheses: (i) For the all instances setting we
expect high recall, but low precision. (ii) For the fillers only setting, precision should increase notably. (iii)
Comparing the all entities and the fillers only setting, recall should remain at the same level. We therefore
expect the extraction task to be simpler than the annotation task: For any information to be annotated at
the correct position, it must have been extracted correctly. On the other hand, information that has been
extracted correctly, can still be found at a ‘wrong’ location in the text. Thus, we expect a drop of precision
and recall when moving from extraction to annotation.

4.3 Results
The results are presented in Table 3: For each relation mentioned in Section 3, and the entity classes partic-
ipating in it, we report precision, recall and F1-measure8. This is done for all four combinations of setting
and task. For each relation we also provide the macro-average of precision, recall and F1-measure over all
entity classes considered in that relation and the overall average.

7Performed in Protégé http://protege.stanford.edu/ with the plug-in Knowtator http://knowtator.
sourceforge.net/ (Ogren, 2006)

8Note that VertebralPosition and InjuryHeight are merged in the result table, as are Organism and Laboratory Animal and
Age and Exact Age. The Animal Number was excluded from the evaluation as it has not been annotated in our evaluation set.

http://protege.stanford.edu/
http://knowtator.sourceforge.net/
http://knowtator.sourceforge.net/


Task Extraction Annotation

Setting All Instances Fillers Only All Instances Fillers Only

Entity Class Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Overall Average 0.58 0.95 0.72 0.68 0.81 0.74 0.13 0.77 0.22 0.21 0.51 0.30

Animal Average 0.62 0.99 0.76 0.82 0.94 0.87 0.12 0.91 0.21 0.31 0.81 0.44

Organism 0.41 1.00 0.58 0.88 0.90 0.89 0.02 1.00 0.04 0.24 0.66 0.35
Weight 0.20 1.00 0.33 0.52 0.94 0.67 0.08 0.97 0.15 0.49 0.91 0.64
Sex 0.85 0.99 0.91 0.87 0.98 0.92 0.18 0.94 0.30 0.26 0.94 0.41
Age 1.00 0.95 0.97 1.00 0.93 0.96 0.19 0.71 0.30 0.23 0.71 0.35

Injury Average 0.63 0.94 0.76 0.74 0.75 0.75 0.12 0.72 0.21 0.18 0.38 0.24

Injury Height 0.42 0.98 0.59 0.56 0.74 0.64 0.10 0.91 0.18 0.24 0.51 0.33
Injury Type 0.70 0.91 0.79 0.81 0.73 0.77 0.07 0.48 0.12 0.18 0.35 0.24
Injury Device 0.78 0.93 0.85 0.86 0.79 0.82 0.20 0.77 0.32 0.11 0.28 0.16

Treatment Average 0.45 0.91 0.61 0.53 0.78 0.63 0.14 0.72 0.23 0.19 0.54 0.28

Drug 0.10 0.98 0.18 0.24 0.69 0.36 0.01 0.74 0.02 0.10 0.42 0.16
Dosage 1.00 0.81 0.90 1.00 0.76 0.86 0.30 0.52 0.38 0.32 0.46 0.38
Delivery 0.26 0.95 0.41 0.34 0.89 0.49 0.11 0.89 0.20 0.15 0.74 0.25

Result Average 0.59 0.93 0.72 0.60 0.75 0.67 0.13 0.71 0.22 0.15 0.30 0.20

Investigation Method 0.29 0.96 0.45 0.27 0.79 0.40 0.03 0.66 0.06 0.02 0.16 0.04
Trend 0.37 0.91 0.53 0.44 0.78 0.56 0.06 0.63 0.11 0.07 0.27 0.11
Significance 0.70 0.90 0.79 0.70 0.71 0.70 0.17 0.69 0.27 0.22 0.39 0.28
p Value 1.00 0.96 0.98 1.00 0.71 0.83 0.27 0.86 0.41 0.30 0.36 0.33

Table 3: The macro-averaged evaluation results for each class given in precision, recall and F1 measure.

For the extraction task with all instances setting, recall is close to 100% for all entity classes considered
in the Animal relation. It is 81% for Dosages. The rule-based recognition for Dosages (as for Ages and p
Values) is very precise: All recognized entities have been annotated by medical experts somewhere in the
document. This strong difference between entity classes can be observed in the annotation task and the fillers
only setting as well: The best average performance in F1-measure is achieved for entity classes that are part
of the Animal relation. Precision is best for Dosages, Ages and p Values.

The recall for the all instances setting is high in both the extraction and in the annotation task. However,
the number of annotated instances (29,628 annotations in total) is about 25 times higher than the number of
expert annotations, which leads to low precision especially in the annotation task. For the fillers only setting,
the number of annotations decreases dramatically (to 4069 annotations); at the same time, precision improves.
Regarding the comparison of both tasks, precision and recall are both notably lower in the annotation task,
for the all entities setting, as well as for the fillers only setting. The overall recall is lower by 14 percentage
points (pp) in the extraction task and by 26 pp in the annotation task when considering the fillers only setting.
The decrease is most pronounced for Investigation Methods in the annotation task with a drop of 50 pp.

4.4 Discussion

The results are promising for named entity recognition. Recall is close-to-perfect in the extraction task
and acceptable in the annotation task. The results for relation extraction leave space for improvement: An
increase in precision can be observed but the decrease in recall is too substantial. The Animal relation is an
exception, where an increase in F1 measure is observed for the fillers only setting for nearly all entity classes,
leading to 0.87 F1 for Animals in the extraction task.

An error analysis revealed that for the fillers only setting, most false positives (55%) are due to the fact
that the medical experts did not annotate all occurrences of the correct entity, but only one or a few. 18% are
due to ambiguities of surface forms (for instance the abbreviation “it” for “intrathecal” leads to many false
positives). Regarding false negatives, 41% are due to missing entries in our ontology database and further
26% are caused by wrong treatment of characters (mostly wrong transcriptions of characters from the PDF).



5 Conclusion and Outlook

We described the challenge of extracting relational descriptions about preclinical experiments on spinal cord
injury from scientific literature. To tackle that challenge, we introduced a cascaded approach of named
entity recognition, followed by relation extraction. Our results show that the first step can be achieved by
relying strongly on domain-specific ontologies. We show that modeling relations as aggregated entities,
and extracting them using a distance filtering principle combined with domain specific knowledge, yields
promising results, specifically for the Animal relation.

Future work will focus on improving the recognition at the correct position in the text. This is a pre-
requisite to actually tackle and evaluate the relation extraction not only on the basis of detected participating
entities. Therefore, improved relation detection approaches will be implemented which relax the assumption
that relevant entities are found close-by in the text. In addition, we will relax the assumption that different
slots of the annotation are all equally important. Finally, we will address aggregation beyond individual
relations in order to allow for a fully accurate holistic assessment of experimental therapies.

Our system offers a semantic analysis of scientific papers on spinal cord injuries. This lays groundwork
for populating a comprehensive semantic database on preclinical studies of SCI treatment approaches as de-
scribed by Brazda et al. (2013), laying ground and supporting transfer from preclinical to clinical knowledge
in the future.
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