The Cognitive Interaction Toolkit — Improving
Reproducibility of Robotic Systems Experiments

Florian Lier', Johannes Wienke!?, Arne Nordmann'?, Sven Wachsmuth!, and
Sebastian Wrede!+?

1 Cognitive Interaction Technology — Center of Excellence
2 Research Institute for Cognition and Robotics — CoR-Lab
Bielefeld University, Bielefeld, Germany
http://www.cit-ec.org & http://www.cor-lab.de
{flier, jwienke, anordman, swachsmu, swrede}@techfak.uni-bielefeld.de

Abstract. [PRE PRINT VERSION] Research on robot systems either
integrating a large number of capabilities in a single architecture or dis-
playing outstanding performance in a single domain achieved consider-
able progress over the last years. Results are typically validated through
experimental evaluation or demonstrated live, e.g., at robotics compe-
titions. While common robot hardware, simulation and programming
platforms yield an improved basis, many of the described experiments
still cannot be reproduced easily by interested researchers to confirm the
reported findings. We consider this a critical challenge for experimen-
tal robotics. Hence, we address this problem with a novel process which
facilitates the reproduction of robotics experiments. We identify major
obstacles to experiment replication and introduce an integrated approach
that allows (i) aggregation and discovery of required research artifacts,
(ii) automated software build and deployment, as well as (iii) experi-
ment description, repeatable execution and evaluation. We explain the
usage of the introduced process along an exemplary robotics experiment
and discuss our approach in the context of current ecosystems for robot
programming and simulation.

Keywords: Software Engineering, Experimental Robotics, Development
Process, Semantic Web, Continuous Integration, Software Deployment

1 Introduction

Research on autonomous robots and human-robot interaction with systems that
integrate a large number of skills in a single architecture achieved considerable
progress over the last years. Reported research results are typically validated
through experimental evaluation or demonstrated live at robotics competitions
such as the DARPA Robotics Competition, RoboCup or RockIn. Given the
complexity of these systems, many of the described experiments cannot easily
be reproduced by interested researchers to confirm the reported findings [3]. We
consider this a critical shortcoming of research in robotics since replicable exper-
iments are considered good experimental practice in many other research disci-
plines. Despite this observation, robotics has already made significant progress

2 Cognitive Interaction Toolkit

towards better reproducibility [3]. This trend can mainly be attributed to the
following developments. Firstly, diverse “off-the-shelf” robots have become avail-
able that ideally only need to be unboxed and powered-on, e.g., the PeopleBot [1],
PR2 [6], NAO [9], or iCub [13]. These are often available in simulation. Secondly,
there are open source and community-driven software ecosystems, established
frameworks and libraries available, such as ROS [14], OPRoS [10] or Orocos [5]
which support researchers by providing sophisticated software building blocks.
Lastly, dedicated activities towards systematic benchmarking of robotic systems
have been carried out in terms of toolkits for benchmarking and publicly avail-
able data sets, e.g. the Rawseeds Project [4].

From our point of view, these are promising developments that foster repro-
ducibility in terms of hardware as well as software aspects. However, besides these
initiatives, there are also more fundamental methodological issues that prevent
reproducibility of robotic system experiments. For instance, Amigoni et al. [2]
already point out deficiencies in experimental methodology.This includes the
frequently neglected impact on experiments caused by the relationship between
individual components and the whole system, as well as the way how publica-
tions need to be written in order to improve reproducibility. We identified the
four following issues that are critical with respect to sustainable reproducibility
of robotic system experiments:

i) Information retrieval and aggregation: Publications and associated artifacts
relevant for reproduction (software components, data sets, documentation
and related publications) are often distributed over different locations, like
digital libraries or diverse websites. Hence, already the discovery, identi-
fication and aggregation of all required artifacts is difficult. Furthermore,
this kind of information is typically not available in a machine interpretable
representation.

ii) Semantic relationships: Often, crucial relationships between artifacts are
unknown or underspecified, e.g.: which specific versions (master or 1.33.7)
of software components in combination with which data set, hardware or
experiment variant was in use for a particular study?

iii) Software deployment: Most current systems are realized using a component-
based architecture [15,10,7,17] and usually not all components are written
in the same language. Consequently, they do not make use of the same build
infrastructure®, binary deployment mechanism, and execution environment.
Therefore, it is an inherently complex and labor-intensive task to build and
distribute a system in order to reproduce experimental results. This becomes
even more complex when experiments require software artifacts from more
than one ecosystem because there is usually no cross-ecosystem integration
model.

iv) Ezxperiment testing, execution and evaluation: Advanced robotics experi-
ments require significant efforts spent on system development, integration
testing, execution, evaluation and preservation of results. This is particular
costly if many of these tasks are carried out manually, which is intriguing,

3 CMake, Catkin, setuptools, ant, maven, etc.

Cognitive Interaction Toolkit 3

as established methods from software engineering are available to automate
these tasks, e.g., based on the continuous integration (CI) paradigm. To the
best of our knowledge, so far, these techniques were not widely adopted by
the general community for the iterative design, automated execution and
ensured repeatability of robotics experiments.

To tackle these issues we introduce an approach for reproducible robotics ex-
perimentation based on an integrated software toolchain for system developers
and experiment designers. Currently, it supports (robotics) software and sim-
ulation environments while physical robots/entities will be introduced in later
versions. This toolchain is described in Section 2 and combines state of the art
technologies like web-based catalogs and continuous integration methods into a
consistent process that facilitates the reproduction process of robotic systems
and experiments. After describing the toolchain, we will briefly outline the repli-
cation process for a simulation experiment in Section 3 and conclude with a
discussion of well-known robotics ecosystems with regard to their support for
reproducible experimentation in Section 4.

2 The CITk Toolchain: Concepts and Components

DEVELOPER

Add entities / systems and link artifacts

Add build recipes Discover all relevant artifacts at once

Checkout build description for local distribution
Entities / systems are built and tested /
cont. Dep&oymen\ - / Make direct use of globally deployed system
Entities / systems are deployed Review evaluation add new tests or metrics
s Entities / systems are evaluated

Fig. 1. Cognitive Interaction Toolkit: toolchain and developer workflow

Recipe RePO

Aggregation

In order to address the aforementioned issues of current robotics research, we
have developed an integrated toolchain which accompanies the complete develop-
ment, reproduction and modification process of robotics systems: the Cognitive
Interaction Toolkit (CITk). The CITk consists of a set of software tools which
are connected by an underlying software development and reproduction process.
This process defines how users interact with our toolchain and has been inspired
by current best practices from research and development, especially in robotics.
Hence, it ties together existing tools and concepts in an integrated fashion. The
general starting point for new users is a web-based catalog. It enables them to
browse and search for software components or complete systems and their related
artifacts like publications and provides them with the necessary information for
the reproduction of these systems. Hence, it addresses the information retrieval
and aggregation requirement (i) by means of semantic relationships between the
different constituting parts of a complete system and its reproduction process
(issue ii). From this catalog, a user who wants to reproduce a system, is directed

4 Cognitive Interaction Toolkit

towards a build infrastructure which allows to consistently and conveniently re-
produce a system based on the CI methodology. Here, we have developed a new,
build system independent, solution to easily bootstrap systems based on a CI
server by using a generator approach, which reduces the required knowledge and
manual work to a minimum (cf. issue iii). Finally, after deploying a system as a
software distribution, the web catalog informs the user about tests and experi-
ments that have been performed with the system. A novel state-machine-based
testing tool enables users to consistently reproduce these experiments, thereby
resolving issue iv. Throughout the whole process, the web catalog forms a cen-
tral information point for the user. Moreover, tools included in the CITk process
are connected with this catalog to either retrieve the required information or
push them back in case a system has been modified or even newly created. This
fact is visualized in Figure 1. In the following subsections we will describe the
fundamental building blocks of the CITk in detail.

2.1 Information Aggregation and Retrieval

_——has——— [Component ‘
—*\ Version _

P ~ _— - f—
e L - consists of \ N T
[Documentation |« as —— [System [\ references references
\ Version / Version | has \
\ / - \
. / - D) produces | A\g—
h ? — consists of / ‘\ \\ produces 2/ \
\ | [\
/ } \ | Component |
has / has des\c"bes consumes \ \ /
1 / / \ \ l \\ /
- \ ——
N\

/ produces

/ N\ - o N - ~

/ \ TN N
‘ Documentation | Hardware | | Publication |- has -+ DataSet |
\\ //,’ N4 . / N4

Fig. 2. Cognitive Interaction Toolkit: conceptual data model

In order to realize a web-based catalog which allows convenient information
retrieval, we implemented the data model depicted in Figure 2 by extending
the Content Management System Drupal*. Since Drupal already supports the
concept of entities, we were able to translate our data model into so-called Drupal
nodes. A Drupal node provides a container for diverse attributes which are named
fields. Fields eventually contain the actual content of a node, such as title, content
authors, links to other nodes, files, or text fields (e.g. version). We implemented
all required node types according to our data model within the catalog. An
exemplary node type for a component can be visited here https://toolkit.
cit-ec.uni-bielefeld.de/node/238. Each component, as well as other node
types, assembles basic meta information about the represented entities, such as
repository location, wiki pages, component maintainer etc. Moreover, related
nodes are linked to the component. For instance a corresponding publication,
version number, component releases, systems, or data sets. Finally, nodes and

* https://drupal.org

Cognitive Interaction Toolkit 5

their fields are semantically enriched to increase machine interpretability by
attaching RDF terms to them, e.g., from DOAP® and Dublin Core.

Links between different node types form aggregations of nodes. A prominent
example of a node aggregation is the system version type which corresponds to a
software distribution for a system to reproduce. Here, a system version node as-
sembles required components, interrelated experiments (cf. Section 2.3), manuals,
how-tos, and of course data sets and publications. In order to prevent redundant
labor with respect to user provided content, most of the catalog’s content is im-
ported from the entities’ origin locations. Thus, we import required information
about a publication by using the Mendeley API and the PUB MODS [18] inter-
face for instance. A user only needs to provide a URL pointing to his/her pub-
lication and a corresponding node is created automatically. The same strategy
is used to add artifact and build job nodes, here the Jenkins REST-like® API is
utilized. Besides manual creation/import of entries, content can also be added by
using the catalog’s REST API and client application”. In parallel to the import
features, catalog content can be either rendered as HTML including RDFa, pure
RDF or JSON to improve automated harvesting and interpretation by search
engines or client applications. In a first user-study [11] we demonstrated that our
approach of referencing/importing existing sources delivers benefits of re-using
data and is perceived as efficient. Furthermore, the web catalog is perceived as
useful to help researchers to accomplish their individual goals by providing in-
formation in this manner. The overall required effort for importing, respectively
adding artifacts, was considered low. The beta version of the catalog is publicly
available at https://toolkit.cit-ec.uni-bielefeld.de.

2.2 Automated Build and Deployment

hile the data model of the web-based catalog already describes the composition
of system components, it lacks information on how to technically reproduce a
referenced version of a system and its components, e.g. by deploying and execut-
ing it. For this purpose, a controlled build process is essential to achieve re-use
and reproducability of experimental setups in robotics. Such a build process
comprises two distinct aspects: a) the build system of individual components,
and b) the composition of individual component builds into deployable software
distributions. For the first aspect, existing ecosystems in robotics often come
with custom build systems in order to facilitate the aspect of creating software
distributions. For instance, ROS provides Catkin as the build system and NAQOqi
promotes qiBuild. Both solutions have chosen CMake, a standard build system
for cross-platform C++ builds, as their basis. While such a solution is straight-
forward, it comes with several drawbacks: First, developers have to learn a new
technology, which sometimes results in refusal to integrate at all. Second, estab-
lished build systems, especially for other languages than C++, are locked out.

® https://github.com/edumbill/doap
5 https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
" http://opensource.cit-ec.de/projects/citk

6 Cognitive Interaction Toolkit

{
"name" : "openrave",
"templates": ["cor-lab", "cmake-cpp"],
"variables": {
"description": "Open Robotics Automation Virtual Environment...",
"keywords": ["library", "robotics", "simulation"],
"repository": "https://github.com/rdiankov/openrave.git",
"branches": ["master", "latest_stable"],
"git.wipe-out-workspace?": false,
}
}

Fig. 3. Recipe for the OpenRAVE [8] toolkit component. Required fields are component
name, the project templates (specifying to use a CMake build system in this case),
references to the available code branches as well as a URL to the source code repository.
Further fields can be used to augment the automatic dependency analysis or customize
the build process.

And third, software components developed with such a tailored build system are
heavily locked into a specific environment, which prevents the use outside of this
environment.

For the aspect of composing software distribution, existing solutions like
Catkin, in an abstract view, act as a build script that respects the dependencies
of the individual software components by building them in the correct order.
While this is sufficient to deploy a software distribution and manually re-trigger
the installation of certain components, it does not automatically facilitate the
ongoing system development process. For this use case, CI with its emphasis on
incremental development and automated testing and reporting is an established
technology. However, CI is usually maintained in parallel to the distribution
deployment process and as a consequence, build instructions are duplicated be-
tween these two distinct processes. Moreover, consistently maintaining a large
number of jobs for CI servers that manage a complete software distributions is
a complex task that requires a considerable amount of knowledge.

CITk addresses the aforementioned issues by applying a generator-based so-
lution. A newly implemented generator uses minimalistic descriptions of the
different software components that belong to a distribution and generates jobs
for a CI server, Jenkins in our case. From the descriptions (which augment the
data model, cf. Figure 3 for an example) and an automatic repository analy-
sis the dependencies and required build steps are derived. Afterwards, the CI
server jobs are generated along user-defined build templates and uploaded to a
Jenkins instance. Since templates can be added on the fly, new build systems
can be added easily without restricting component developers to certain choices.
Moreover, different jobs for either deploying a distribution or supporting the
ongoing development can be automatically generated from the same knowledge
base, preventing the aforementioned duplication of knowledge. The generated
jobs and distributions are optionally synchronized back to the web catalog. Since
setting up an appropriate Jenkins server with the required plugins takes some
time, we provide pre-packaged installations for new users. As a result, we can
use an established technology like the CI server for deploying complete software

Cognitive Interaction Toolkit 7

systems without knowledge duplication, which results in an improved maintain-
ability. Operating system (OS) dependencies like Debian packages are currently
aggregated manually for specific OS distributions. In the future, we will evaluate
how to include them in the model to improve consistency and posisiblities for
automation.

2.3 Experiment Execution and Evaluation

Besides gathering information about a system and deploying it, a successful re-
production and interaction with the system also includes repeating tests and
experiments. This is necessary to ensure the intended responses of complex in-
teractive systems that operate autonomously. It is well-known that sound exper-
iments imply a well-defined experimental protocol. Unfortunately, experiment
execution and testing are mostly carried out manually and are thus infrequent
and prone to user induced errors. This is especially the case because test setups
are usually complicated and require a high level of technical understanding from
the operator.

Tenvironment] - 3
PREFIX = /tmp/oncilla-sim-0.2/ FSMT Execution Environment
WEBOTS_HOME = /usx/local/

CCA_SHARE = $PREFIX/share/cca-oncilla0.4/examples/

{component-1] Start err - Start -
nama = webote
command = webots comp. 1 assess 1
path = SWEBOTS HOME/bin/
f ok

execution_host = localhost
check_execution = True
check type = pid, stdout

tineont = 1 A\ \4

- i Start] 70 [oxt] Start [&1]
(= comp. 2 assess n

command = python $CCA_SHARE/SineMovement.py
Shutdown

Experiment Execution

path = /usr/bin/
Translation into State Machine

{xun]

name = Oncilla-Sim-0.2-Trajectory

run_order = (‘webots', 'sine’)

run_execution_duration = 20

result_assessment_order = ('proc_data’, 'plot’, 'show_plot'),
result_assessment_execution_duration = 10

)

Experiment specification.ini

Fig. 4. Simplified conceptual overview of FSMT

Thus, we suggest to convey the concept of an experiment protocol to the
orchestration of software components involved in an experiment and to execute,
test and evaluate software intensive experiments in an automated manner. For
this purpose, we introduce Finite State Machine Based Testing (FSMT)?, a
software tool that implements the aforementioned suggestions based on finite
state machines that defines the experiment execution. FSMT [12] supports au-
tomated bootstrapping, evaluation and shutdown of a software system used in
an experiment. In order to realize this, it provides definition of environment
variables, executable and parameter specification, hierarchical state-based invo-
cation of components, and status (health) checks. A FSMT experiment specifica-
tion includes three mandatory blocks: environment description, component defi-
nition and the run and assessment state (cf. Figure 4). In the [environment] block

8 http://opensource.cit-ec.de/projects/fsmt

8 Cognitive Interaction Toolkit

an experimenter may assign experiment-specific values to variables, these are ap-
pended to the existing set of environment variables. Components are specified in
[component-*] blocks. Here, paths, executables (scripts), and status check con-
ditions are defined, e.g., whether the PID of a specific process is present within
a given time frame. Furthermore, FSMT may check the stdout and stderr of
components for a given prompt, again, within a specified time frame. Based on
the result of multiple status checks, FSMT will block further execution of the
state machine or, in case a criterion is not satisfied, stop the experiment to pre-
vent subsequent failures. In the [run/ state, the actual experiment is conducted,
which means that all required components of a system are running (verified) and
data is recorded. The recorded data may consist of system specific containers,
such as a rosbag? or component logs that are recorded for all components by
FSMT. In the assessment state, the recorded data is evaluated by assessment
components. Here, experimenters may provide scripts or binaries to evaluate
data gathered in each run or trial, e.g., plot specified data points. The presented
formalization of an experiment protocol allows to consistently reproduce test
results in an automated fashion. This makes it a perfect candidate for CI and
enables inexperienced experimenters to run tests and experiments consistently.
Currently, FSMT supports sequential as well as parallel execution/evaluation of
components. However, since it is based on a generic state-machine based exe-
cution environment (SCXML), additional conditions like retrying or looping are
planned as well as distributed execution.

3 Use-Case: System and Experiment Reproduction

After describing the overall structure and components of the CITk approach, we
will now outline a typical use case in order to demonstrate the steps required to
reproduce a system that has been modeled in the catalog. The reader is encour-
aged to follow these steps on his/her own Linux computer. In our example, a
user wants to reproduce experiments with the Oncilla quadruped robot [16] in a
simulation environment. The first step for the user is to browse our online catalog
and to load the page describing the system, which is https://toolkit.cit-ec.
uni-bielefeld.de/systems/oncilla-quadruped-simulation. This page con-
tains a general description of the system as well as a set of links to specific
versions of the system. The user will continue to the version he/she wants to re-
produce (0.2 in our case) to get details about the included software components
as well as required dependencies for the Linux computer. Hence, the first step is
to install the required dependencies using the package management tool of the
Linux distribution'?. Afterwards, he/she follows the link to the build generator
recipes comprising the system and downloads the required recipes. In order to
generate CI server jobs from the recipes a Jenkins installation as well as our
generator are required. Download instructions for a pre-packaged environment

9 http://wiki.ros.org/rosbag
10 We use as many standard software components from recent Linux distributions as
possible.

Cognitive Interaction Toolkit 9

are included on the website and the user follows these instructions to install the
environment on his/her computer. After starting the local Jenkins instance, the
generator needs to be invoked to configure the CI server with the jobs for the
distribution. The last step is to start the installation process and to open the
web page of the local Jenkins instance and to start the orchestration job for the
distribution. After this job has finished, the system is reproduced on the user’s
computer.

Now, the user can focus on reproducing the experiments that have been
defined for and deployed with the system. These experiments are available as
configuration files for the FSMT testing framework. FSMT and the configura-
tions have just been installed as parts of the software distribution for the system.
The web catalog for the system version lists the available experiments and each
experiment comes with a description of how to execute it. In our case this is
merely a command line to launch FSMT. The user executes the described com-
mands and FSMT reports the results through a report (xunit for instance) and
the process return code. After the experiment has been executed successfully,
the resulting output, e.g., in form of a plot, can be found on the user’s com-
puter (as well as all required logs and data files). Besides the FSMT report, the
generated plot can be compared to a reference plot from the catalog entry of
the experiment. If everything worked correctly, the system is reproduced on the
user’s computer and he/she can start to modify it according to his/her needs or
define new experiments based on the existing system.

4 Related Work and Discussion

In order to relate our approach to exiting work, we will quantitatively examine
the prominent ROS and iCub ecosystems with respect to support for system
reproducibility based on the four issues we have identified in the introduction:
i) information retrieval and aggregation, ii) semantic relationships, iii) software
deployment, and iv) experiment testing, execution and evaluation. In the iCub
ecosystem, a wiki'! is the primary source of information. The wiki lists different
kinds of information, such as links to user manuals, source code repositories, pa-
pers, related (software) projects and summer schools. The main types of artifacts
are iCub modules, applications and tutorials. The corresponding documentation
is automatically parsed from source code (Doxygen). However, there are no ex-
plicit descriptions of existing “demo” systems (versions respectively) as a whole
and their included components. Subsequently, system artifact aggregation and
interlinking is not provided. Nevertheless, existing iCub applications and mod-
ules are assembled and well documented. The iCub ecosystem can be either built
from source or by using pre-built binaries for Debian/Ubuntu Linux distributions
and Windows. This means that systems are implicitly modeled by package de-
pendency resolution. Furthermore, a central CI server'? provides an overview of

" http://eris.liralab.it/wiki/Main_Page
12 http://dashboard.icub.org/

10 Cognitive Interaction Toolkit

the current state of iCub related software. The build system for the iCub ecosys-
tem is based on CMake. With respect to system experiments, the wiki features
an example of checking whether a system installation has been successful or not,
which can be valued as a basic system experiment. In this example, multiple
iCub components are started manually and a provided data set can be replayed.
However, based on the example documentation it remains unclear how to assess
the outcome of the system installation check. Additionally, there is no support
for automated execution or evaluation.

In the ROS ecosystem, a wiki!® is also the main source of information.
It contains structured information about installation, tutorials, distributions,
robots, packages, libraries, papers, books, events and more. While there are
no explicit system descriptions, ROS features system distributions including
a set of versioned ROS stacks. Therefore, systems are also implicitly mod-
eled as stacks or meta packages. Fortunately, ROS provides extra wiki sites
for a few publications that aggregate source code, data sets and usage examples
(for a specific distribution) to reproduce the results published in the attached
papers. Furthermore, there are wiki pages per distribution, stack and (meta)
package, i.e., for pr2_common'. These pages contain basic information, e.g.,
maintainer, license, website, source code location and links to related/included
packages. Basic interlinks between artifacts, i.e., stacks, related packages, de-
pendencies, documentation and source code locations are supported (cf. http:
//wiki.ros.org/turtlesim) — semantic linking is currently not supported. In
recent versions, ROS introduced its own new build system called Catkin that
is based on CMake. By using Catkin, developers can easily setup and deploy
their own ROS components and even add them to a ROS distribution. ROS
also provides a CI build farm to which developer packages can be added via
ROS-bloom!®, a release automation tool. In order to start ROS-based systems
automatically, ROS features roslaunch, a tool for launching multiple ROS nodes
locally and remotely. In a roslaunch file, rostests can be integrated. Therefore,
ROS features a mechanism to automatically start and test a stack or package.
Explicit experiment descriptions are currently not present in the ROS ecosystem.

In general it appears to be a good practice to publish information about
robotics software and the corresponding ecosystem on a structured website. Un-
fortunately, the assembled information is often not complete with respect to
system reproducibility due to a lack of explicit system descriptions, aggregation
of all necessary artifacts and the specification of an experimental procedure in
both examined ecosystems. Since ROS already features websites which assemble
at least source code and data sets for a specific publication, we are confident that
this way of information provision is beneficial. However, semantic linking and
thus machine interpretability of artifacts is broadly neglected in the examined
ecosystems. Systems and system versions are modeled implicitly, but are not
visible/marked as such on the websites. Moreover, systems are not associated

13 http://wiki.ros.org/
1 http://wiki.ros.org/pr2_common
5 http://wiki.ros.org/bloom

Cognitive Interaction Toolkit 11

with an experiment protocol or course of action. Not surprisingly, CI plays an
important role in both ecosystems but is not considered for local usage, e.g., for
decentralized development, testing and distribution. In case of ROS this means
that a developer must comply to the ROS release cycle time and server capac-
ity. However, the sponsorship of an automated build infrastructure and tools
to automatically create build jobs (cf. ROS-bloom and Section 2.2) reduces the
amount of expert knowledge and is thus also considered beneficial. In contrast to
our approach, ROS and iCub distributions can be installed via source builds (not
recommended as stated in the ROS wiki) but also via binary distributions that
simplify and speed up installation time. On the other hand, binary packages often
raise typical issues such as requiring root permissions for installation, the install
prefix is fixed and creating binary packages for diverse operating systems and
flavors is a huge effort. With respect to build systems both ecosystems are based
on CMake, which facilitates cross-platform compatibility, but also, in contrast
to CITK, restricts the number of integrable third-party build tools. This is es-
pecially crucial because robotic systems/experiments often incorporate artifacts
from more than one ecosystem. Finally, experiment specification, orchestration,
automated execution and evaluation is not supported by either ROS or the iCub
infrastructure.

5 Conclusion

We introduced an approach for reproducible robotics experimentation based on
an integrated software toolchain for system developers and experimenters. It
combines state-of-the-art technologies into a consistent process that facilitates
the reproduction of robotic systems and experiments. We briefly outlined the
replication process for a simulation experiment and discussed the benefits of the
approach in comparison to well-known robotics ecosystems and their support for
reproducible experimentation. Future work will focus on providing the complete
toolchain as open source to the community, extending the build generation with
classical continuous integration and deployment features for local development
and extension towards modeling hardware components and versions as part of a
system description.

Acknowledgements: This research and development project is funded as part
of the Center of Excellence Cognitive Interaction Technology (CITEC) at Bielefeld
University and by the German Federal Ministry of Education and Research (BMBF)
within the Leading-Edge Cluster Competition “it’s OWL” (intelligent technical sys-
tems OstWestfalenLippe) and managed by the Project Management Agency Karlsruhe
(PTKA).

References

1. PeopleBot datasheet. http://www.mobilerobots.com/Libraries/Downloads/
PeopleBot-PPLB-RevA.sflb.ashx. visited: 2014-05-19.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Cognitive Interaction Toolkit

F. Amigoni, M. Reggiani, and V. Schiaffonati. An insightful comparison between
experiments in mobile robotics and in science. Autonomous Robots, 27(4):313-325,
2009.

F. Amigoni, V. Schiaffonati, and M. Verdicchio. Good experimental methodologies
for autonomous robotics: From theory to practice. In F. Amigoni and V. Schiaf-
fonati, editors, Methods and Experimental Techniques in Computer Engineering,
Springer Briefs in Applied Sciences and Technology, pages 37-53. Springer Inter-
national Publishing, 2014.

. A. Bonarini et al. RAWSEEDS: Robotics advancement through web-publishing of

sensorial and elaborated extensive data sets. In IROS’06 Workshop on Benchmarks
in Robotics Research, volume 6, 2006.

. H. Bruyninckx. Open robot control software: the orocos project. In Robotics and

Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on,
volume 3, pages 2523-2528. IEEE, 2001.

. S. Cousins. ROS on the PR2 [ROS Topics]. Robotics Automation Magazine, IEEE,

17(3):23-25, 2010.

. S. Cousins, B. Gerkey, and K. Conley. Sharing software with ros [ROS Topics].

Robotics & Automation Magazine, 17(2):12-14, 2010.

. R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD

thesis, Carnegie Mellon University, Robotics Institute, August 2010.

. D. Gouaillier et al. Mechatronic design of NAO humanoid. In Proc. Int. Conf. on

Robotics and Automation, pages 769-774, 2009.

C. Jang et al. OPRoS: A new component-based robot software platform. ETRI
journal, 32(5):646—656, 2010.

F. Lier et al. Facilitating research cooperation through linking and sharing of
heterogenous research artifacts. Proc. 8th Int. Conf. on Semantic Systems, pages
157-164. ACM, 2012.

F. Lier, I. Liitkebohle, and S. Wachsmuth. Towards automated execution and
evaluation of simulated prototype HRI experiments. Proc. 2014 ACM/IEEE Int.
Conf. on Human-robot interaction, pages 230-231. ACM, 2014.

G. Metta et al. The iCub humanoid robot: An open platform for research in
embodied cognition. In Proc. 8th Workshop on Performance Metrics for Intelligent
Systems, pages 50-56, New York, NY, USA, 2008. ACM.

M. Quigley et al. ROS: an open-source robot operating system. In ICRA workshop
on open source software, volume 3, 2009.

P. Soetens. A software framework for real-time and distributed robot and machine
control. PhD thesis, Katholieke Universiteit Leuven, Faculteit Ingenieursweten-
schappen, Departement Werktuigkunde, 2006.

A. Sproewitz et al. Oncilla robot, a light-weight bio-inspired quadruped robot for
fast locomotion in rough terrain. In Symposium on Adaptive Motion of Animals
and Machines, pages 63-64, 2011.

J. Wienke and S. Wrede. A middleware for collaborative research in experimen-
tal robotics. In 2011 IEEE/SICE Int. Symposium on System Integration, Kyoto,
Japan, 2011. IEEE, IEEE.

C. Wiljes, N. Jahn, F. Lier, T. Paul-Stueve, J. Vompras, C. Pietsch, and P. Cimi-
ano. Towards linked research data: An institutional approach. Number 994 in 3rd
Workshop on Semantic Publishing, pages 27-38, 2013.

